
Gabriele Taentzer
Francis Bordeleau (Eds.)

 123

LN
CS

 9
15

3

11th European Conference, ECMFA 2015
Held as Part of STAF 2015
L’Aquila, Italy, July 20–24, 2015, Proceedings

Modelling Foundations
and Applications

Lecture Notes in Computer Science 9153

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Gabriele Taentzer • Francis Bordeleau (Eds.)

Modelling Foundations
and Applications
11th European Conference, ECMFA 2015
Held as Part of STAF 2015
L’Aquila, Italy, July 20–24, 2015
Proceedings

123

Editors
Gabriele Taentzer
Universität Marburg FB Mathematik
Marburg
Germany

Francis Bordeleau
Ericsson Canada Inc
Ottawa
Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-21150-3 ISBN 978-3-319-21151-0 (eBook)
DOI 10.1007/978-3-319-21151-0

Library of Congress Control Number: 2015943444

LNCS sublibrary: SL2 – Programming and Software Engineering

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Foreword

Software Technologies: Applications and Foundations (STAF) is a federation of a
number of leading conferences on software technologies. It provides a loose umbrella
organization for practical software technologies conferences, supported by a Steering
Committee that provides continuity. The STAF federated event runs annually; the
conferences that participate can vary from year to year, but all focus on practical and
foundational advances in software technology. The conferences address all aspects of
software technology, from object-oriented design, testing, mathematical approaches to
modeling and verification, model transformation, graph transformation, model-driven
engineering, aspect-oriented development, and tools.

STAF 2015 was held at the University of L’Aquila, Italy, during July 20–24, 2015,
and hosted four conferences (ICMT 2015, ECMFA 2015, ICGT 2015 and TAP 2015),
a long-running transformation tools contest (TTC 2015), seven workshops affiliated
with the conferences, a doctoral symposium, and a project showcase (for the first time).
The event featured six internationally renowned keynote speakers, a tutorial, and
welcomed participants from around the globe.

This was the first scientific event in computer science after the earthquake that
occurred in 2009 and affected L’Aquila. It is a small, and yet big step towards the grand
achievement of restoring some form of normality in this place and its people.

The STAF Organizing Committee thanks all participants for submitting and
attending, the program chairs and Steering Committee members for the individual
conferences, the keynote speakers for their thoughtful, insightful, and engaging talks,
the University of L’Aquila, Comune dell’Aquila, the local Department of Human
Science, and CEA LIST for their support: Grazie a tutti!

July 2015 Alfonso Pierantonio

Preface

The 11th European Conference on Modelling Foundations and Applications (ECMFA
2015) was organized by the Universitá degli Studi dell’Aqulia, Italy, and held during
July 22–23, 2015.

Model-based engineering (MBE) is an approach to the design, analysis, and
development of software and systems that relies on exploiting high-level models and
computer-based automation to achieve significant boosts in both productivity and
quality. The ECMFA conference series is dedicated to advancing the state of knowl-
edge and fostering the industrial application of MBE and related approaches. Its focus
is on engaging the key figures of research and industry in a dialog that will result in
stronger and more effective practical application of MBE, hence producing more
reliable software based on state-of-the-art research results.

In 2015, the Program Committee received 54 submissions. Each submission was
reviewed by at least three Program Committee members. The committee decided to
accept 13 papers, nine papers for the Foundations Track and four papers for the
Applications Track, resulting in an overall acceptance rate of 32 %. Papers on a wide
range of MBE aspects were accepted, including topics such as aspect-oriented mod-
eling, model management, model transformation, advanced meta-modeling, UML
modeling tools, and domain-specific modeling w.r.t. energy consumption and
cloud-based systems.

We thank Arend Rensink and Sam Nicander for their enlightening keynote talks at
ECMFA 2015. Furthermore, we are grateful to all the Program Committee members for
providing their expertise and quality while reviewing the submitted papers. Their
helpful and constructive feedback to all authors is most appreciated. We thank the
ECMFA Steering Committee members for their advice and help. We also thank all
authors who submitted papers to ECMFA 2015.

July 2015 Gabriele Taentzer
Francis Bordeleau

Organization

Program Committee

Shaukat Ali Simula Research Laboratory, Norway
Behzad Bordbar University of Birmingham, UK
Francis Bordeleau Ericsson, Canada
Goetz Botterweck Lero, University of Limerick, Ireland
Marco Brambilla Politecnico di Milano, Italy
Jean-Michel Bruel IRIT, France
Jordi Cabot Inria-École des Mines de Nantes, France
Michel Chaudron Gothenburg University, Sweden
Federico Ciccozzi Mälardalen University, Sweden
Benoit Combemale IRISA, Université de Rennes 1, France
Diarmuid Corcoran Ericsson AB, Sweden
Marco Di Natale Scuola Superiore SantAnna, Italy
Juergen Dingel Queen’s University, Canada
Maged Elaasar NASA’s Jet Propulsion Laboratory, USA
Gregor Engels University of Paderborn, Germany
Sebastien Gerard CEA, LIST, France
Martin Gogolla University of Bremen, Germany
Jeff Gray University of Alabama, USA
Esther Guerra Universidad Autónoma de Madrid, Spain
Oystein Haugen SINTEF, Norway
Reiko Heckel University of Leicester, UK
Gert Johansson Combitech AB, Sweden
Maximilian Koegel EclipseSource Munich, Germany
Dimitris Kolovos University of York, UK
Thomas Kuehne Victoria University of Wellington, New Zealand
Vinay Kulkarni Tata Consultancy Services, India
Philip Langer EclipseSource, Austria
Roberto Erick
Lopez-Herrejon

Johannes Kepler University, Austria

Ralf Lämmel Universität Koblenz-Landau, Germany
Pierre-Alain Muller Université de Haute-Alsace, France
Ileana Ober IRIT - Universite de Toulouse, France
Daniel Ratiu Siemens Corporate Technology, Munich, Germany
Charles Rivet Zeligsoft, Canada
Bernhard Rumpe RWTH Aachen University, Germany
Houari Sahraoui Université de Montréal, Canada
Rick Salay University of Toronto, Canada

Ina Schaefer Technische Universität Braunschweig, Germany
Bernhard Schaetz TU München, Germany
Andy Schürr TU Darmstadt, Germany
Harald Störrle Danmarks Tekniske Universitet, Denmark
Gabriele Taentzer Philipps-Universität Marburg, Germany
Francois Terrier CEA, LIST, France
Juha-Pekka Tolvanen MetaCase, Finland
Antonio Vallecillo Universidad de Málaga, Spain
Mark Van Den Brand Eindhoven University of Technology, The Netherlands
Pieter Van Gorp Eindhoven University of Technology, The Netherlands
Manuel Wimmer Vienna University of Technology, Austria
Steffen Zschaler King’s College London, UK

Additional Reviewers

Abdeen, Hani
Arifulina, Svetlana
Batot, Edouard
Benomar, Omar
Bousse, Erwan
Burgueño, Loli
Bürdek, Johannes
Chitchyan, Ruzanna
Corley, Jonathan
Corradini, Andrea
Dajsuren, Yanja
Degueule, Thomas
Fazal-Baqaie, Masud
García, Jokin
Greifenberg, Timo
Grieger, Marvin
Hamann, Lars
Heim, Robert

Heindorf, Stefan
Hilken, Frank
Hölzl, Florian
Kanstren, Teemu
Karasneh, Bilal
Kowal, Matthias
Leblebici, Erhan
Lity, Sascha
Mengerink, Josh
Plotnikov, Dimitri
Scandariatto, Riccardo
Sedlmeier, Matthias
Seidl, Christoph
Teufl, Sabine
Verhoeff, Tom
von Wenckstern, Michael
Weckesser, Markus

X Organization

Contents

Domain-Specic Modeling and UML Modeling Tools

Energy Consumption Analysis and Design of Energy-Aware WSN
Agents in fUML . 1

Luca Berardinelli, Antinisca Di Marco, Stefano Pace, Luigi Pomante,
and Walter Tiberti

A Comparison of Two-Level and Multi-level Modelling for Cloud-Based
Applications . 18

Alessandro Rossini, Juan de Lara, Esther Guerra, and Nikolay Nikolov

Empirical Evaluation of UML Modeling Tools- a Controlled Experiment . . . 33
Safdar Aqeel Safdar, Muhammad Zohaib Iqbal,
and Muhammad Uzair Khan

Advanced Metamodelling and Flexible Modelling

A Generative Approach to Define Rich Domain-Specific Trace
Metamodels . 45

Erwan Bousse, Tanja Mayerhofer, Benoit Combemale, and Benoit Baudry

On Lightweight Metamodel Extension to Support Modeling Tools Agility 62
Hugo Bruneliere, Jokin Garcia, Philippe Desfray, Djamel Eddine Khelladi,
Regina Hebig, Reda Bendraou, and Jordi Cabot

Type Inference in Flexible Model-Driven Engineering 75
Athanasios Zolotas, Nicholas Matragkas, Sam Devlin,
Dimitrios S. Kolovos, and Richard F. Paige

Aspect-Oriented Modelling and Model Weaving

AspectOCL: Extending OCL for Crosscutting Constraints 92
Muhammad Uzair Khan, Numra Arshad, Muhammad Zohaib Iqbal,
and Hafsa Umar

Reusable Model Interfaces with Instantiation Cardinalities. 108
Sunit Bhalotia and Jörg Kienzle

A Model-Based Approach for the Integration of Configuration Fragments. . . 125
Azadeh Jahanbanifar, Ferhat Khendek, and Maria Toeroe

Model Management and Transformation

Towards Incremental Updates in Large-Scale Model Indexes 137
Konstantinos Barmpis, Seyyed Shah, and Dimitrios S. Kolovos

A Model Management Imperative: Being Graphical Is Not Sufficient,
You Have to Be Categorical . 154

Zinovy Diskin, Tom Maibaum, and Krzysztof Czarnecki

Opening the Black-Box of Model Transformation. 171
John T. Saxon, Behzad Bordbar, and David H. Akehurst

Property Access Traces for Source Incremental Model-to-Text
Transformation . 187

Babajide Ogunyomi, Louis M. Rose, and Dimitrios S. Kolovos

Author Index . 203

XII Contents

Energy Consumption Analysis and Design
of Energy-Aware WSN Agents in fUML

Luca Berardinelli1,3, Antinisca Di Marco1,2, Stefano Pace1,2(B),
Luigi Pomante1,2, and Walter Tiberti1,2

1 Dipartimento DISIM, University of L’Aquila, L’Aquila, Italy
2 Center of Excellence DEWS, University of L’Aquila, L’Aquila, Italy

{berardinelli,dimarco,pace,pomante}@univaq.it
3 Business Informatics Group, Vienna University of Technology, Wien, Austria

wtuniv@gmail.com

Abstract. Wireless Sensor Networks (WSN) are nowadays applied to a
wide set of domains (e.g., security, health). WSN are networks of spa-
tially distributed, radio-communicating, battery-powered, autonomous
sensor nodes. WSN are characterized by scarcity of resources, hence an
application running on them should carefully manage its resources. The
most critical resource in WSN is the nodes’ battery.

In this paper, we propose model-based engineering facilities to analyze
the energy consumption and to develop energy-aware applications for
WSN that are based on Agilla Middleware. For this aim i) we extend the
Agilla Instruction Set with the new battery instruction able to retrieve
the battery Voltage of a WSN node at run-time; ii) we measure the
energy that the execution of each Agilla instruction consumes on a tar-
get platform; and iii) we extend the Agilla Modeling Framework with a
new analysis that, leveraging the conducted energy consumption mea-
surements, predicts the energy required by the Agilla agents running on
the WSN. Such analysis, implemented in fUML, is based on simulation
and it guides the design of WSN applications that guarantee low energy
consumption. The approach is showed on the Reader agent used in the
WildFire Tracker Application.

Keywords: fUML · Model-driven analysis · Tool support · WSN

1 Introduction

A Wireless Sensor Network (WSN) consists of spatially distributed autonomous
sensors that cooperate in order to accomplish a task. Sensor nodes are small,
low-cost, wireless and battery-powered devices. They can be easily deployed to
monitor several environmental parameters and they create large-scale flexible
architectures. Sensors can be distributed everywhere and they enable different
applications such as domotics, disaster relief, alternate reality game.

This work is supported by the EU-funded VISION ERC project (ERC-240555), the
Christian Doppler Forschungsgesellschaft and the BMWFJ, Austria.

c© Springer International Publishing Switzerland 2015
G. Taentzer and F. Bordeleau (Eds.): ECMFA 2015, LNCS 9153, pp. 1–17, 2015.
DOI: 10.1007/978-3-319-21151-0 1

2 L. Berardinelli et al.

The growing request for applications running on WSN showing high qual-
ity, demands for suitable design and analysis approaches, that consider non-
functional properties already in an early development stage to guarantee the
fulfillment of non-functional requirements. Model-based engineering facilitates
an early analysis of non-functional properties based on design models. In this
respect, UML and its profiles can be chosen as the primary design notation and
analysis-specific languages suitable for model-based analysis. The complexity
brought by the required set of model-based methodologies, notations and tools
may hinder the adoption of UML-based approaches in the WSN domain. The
specific nature of sensors complicates the development of applications, because
the quality of the services they provide is influenced by several factors like net-
work availability, battery levels. Despite this, a WSN must continue providing
its services as long as possible, and with the best effort trying to guarantee net-
work longevity. Traditionally, WSN applications have been developed by with
a code-and-fix approach, that is by directly programming nodes with the use
of low level primitives. This approach, neglecting design and quality validation
phases, results in not structured, hard to maintain code with the risk of missing
non-functional requirements and compromising the system usability. Indeed, the
system’s non-functional properties must be considered as earlier as possible in
the system life-cycle to guarantee their fulfillment.

In this work, we propose model-based engineering facilities to analyse the
energy consumption and to develop energy-aware applications for WSN that are
based on Agilla Middleware. For this aim i) we extend the Agilla Instruction
Set with the new battery instruction able to sense at run-time the battery of a
WSN node; ii) we measure the energy that the execution of each Agilla instruc-
tion consumes on a target platform; and iii) we extend the Agilla Modeling
Framework (AMF)[1,2] with a new analysis that, leveraging on the conducted
energy consumption measurements, predicts the energy required by the Agilla
agents running on the WSN. AMF is an executable model library we imple-
mented to model and analyze Agilla based applications running on WSN. It
permits to conveniently design agent-based software applications and to carry
out its analysis upon the execution of the corresponding UML model. It exploits
the recently introduced Foundational UML (fUML) standard that provides a
formal semantics of a subset of UML enabling the execution of UML models.

The paper is organized as follows: Section 2 describes the new version of
Agilla middleware we implemented; Section 3 shows the process of measurement
of the energy consumption of Agilla instructions; Section 4 introduces the used
case study; Section 5 illustrates the Agilla Modeling Framework we implemented
and its new energy consumption analysis; Section 6 shows the application of the
new energy; Section 7 illustrates related work and Section 8 comments the main
advantages of our approach; Finally, Section 9 concludes the paper.

2 Agilla v2.0: Energy-Aware Middleware

With the introduction of TinyOS 2.x (TOS2, 2005), that is not compatible with
the older TinyOS versions (TinyOS 1.x, TOS1), there is no possibility to exploit

Energy Consumption Analysis and Design 3

some of the old reference applications. Agilla [3] is one of these applications, that
allows creating, migrating and destroying software agents on WSN nodes at run-
time, without service interruption. To continue working with Agilla we needed
to perform a porting of the original Agilla to TinyOS 2.x. Such a porting, called
Agilla2.0, was also released to the TinyOS community and it allows to exploit
increased reliability of TinyOS2.x and new sensor node technologies (i.e. those
not supported by TinyOS1.x), in particular the Memsic IRIS node1.

Agilla2.0 is fully ISA-compatible with the old version, hence it is possible to
execute all the old Agilla applications. To re-use the timing and performance
analysis defined in [1,2] also for Agilla2.0/TOS2.x, we performed once again
the measurement of the execution time of each single Agilla2.0 instruction. The
techniques used in [1] were partially adapted by exploiting a free-running HW
counter to timestamp start and end times of each instruction. Such timestamps
have been then collected and used to evaluate offline (in order to be as less
as possible intrusive in the code behavior) the average execution time for each
instruction and other statistical information. The AMF framework hence con-
tains all the information needed to execute timing and performance analysis
both in case of Agilla1/TinyOS1 and in case of Agilla2.0/TOS2.x.

In order to also provide an effective run-time support to energy analysis and
WSN lifetime estimation, the Agilla2 ISA has been extended by means of a new
instruction (i.e. battery) that is able to provide information about the current
battery voltage of a node to an agent. This made Agilla2.0 energy-aware.

The battery instruction provides voltage information with a precision of 100
mV. Technically, the new instruction reads data from the ADC and puts it on
the top of the agent stack after some processing. Final measurement unit is 100
mV for each unit of the stacked integer value (e.g. a value 33 represents 3.3V).

The ISA extension has followed the procedure reported in the original Agilla
website2. In the following the main issues are described with some details.

VoltageC Module - Memsic IRIS nodes can obtain information about the
voltage by means of the VoltageC TOS2 module. Since the power supply voltage
is attached to a dedicated ADC channel, this module is able to retrieve it easily.
It uses a split-phase command called read() that retrieves voltage data in term
of ADC divisions. Such data is then converted by means of the formula 1. It is a
conversion formula from ADC divisions to the real voltage value, where we just
added the 10 factor and -36 in order to adjust the offset. The formula takes into
account the features of the IRIS ADC3:

V = 10 ∗ [(1100 ∗ 1024)/read()] − 36 (1)

where: i) the 10 factor is used to convert from Volt to Volt/10 (decivolt); ii)
the 1100 value refers the internal reference voltge of iris motes; iii) the 1024 value

1 http://www.memsic.com/userfiles/files/Datasheets/WSN/IRIS Datasheet.pdf
2 http://mobilab.wustl.edu/projects/agilla/docs/tutorials/10 add instr.html
3 http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-ATmega

640-1280-1281-2560-2561 datasheet.pdf

http://www.memsic.com/userfiles/files/Datasheets/WSN/IRIS_Datasheet.pdf
http://mobilab.wustl.edu/projects/agilla/docs/tutorials/10_add_instr.html
http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_datasheet.pdf
http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_datasheet.pdf

4 L. Berardinelli et al.

is the number of ADC steps (10 bit resolution); iv) read() is the actual value
read via VoltageC module; v) The 36 (360mV) value is an offset adjustment
needed to obtain a correct value.

OPBatteryM Module. By following the standard procedure to extend the
Agilla2 ISA, we created a module called OPBatteryM, that contains all the
instructions needed to read and process the voltage value (as described above).
Such a module is also related to a configuration called OPBatteryC that we
inserted in the opcodes Agilla2.0 directory. Moreover, it makes use of all the
interfaces needed to perform its work: previously cited VoltageC and also all
the Agilla2.0 modules that allow to interact with Agilla2.0 main elements (e.g.
stack, context, tuple space, etc.). Finally, to be fully usable in the Agilla2.0
MW, the module provides an implementation of the interface BytecodeI. The
main code related to the execution of a new instruction in the Agilla2.0 MW
context can be found in the execute command of such an interface. In fact, such a
command stops the Agilla2 agent execution and starts the split-phase operation
needed to read the voltage. When the read is done, the value is processed and
then passed to the Agilla2.0 code that writes it on the top the stack (interface
OPStackI). Finally, the agent execution is resumed. To conclude ISA extension,
the Agilla2.0 Agent Injector should be able to identify the new instruction. For
this, we modified the related Java code by inserting battery and associating
to it a unique opcode. In this way, the OPBatteryM module can be properly
exploited when the battery instruction is detected.

Time Measurements of the Battery Instruction. The code related to
battery instruction is nothing more than an ADC read, same as the sense
instruction, for example. So, its execution time can be estimated as equal to
the one of the sense instruction. Code debugging and time measurements have
confirmed the validity of this assumption.

3 Energy Consumption Measurements of Agilla
Instructions

The concept of low-power is strictly related to WSN since their invention. For
this, one of the main goals of this work is to improve the power-awareness
of adopted devices and related software. Considering the previously described
Agilla2.0, we needed an analysis to consider the energy consumption issues
related to the adoption of such a middleware. In particular, starting from
Agilla2.0 instructions’ execution times, we estimated their energy consumption.
For this, we decomposed each instruction into several basic operations and, for
each of them, we measured the power involved on IRIS nodes as detailed below.
Finally, by combining the energy consumption of basic operations and the timing
information, we estimated the consumption of each Agilla2.0 instruction.

In order to estimate the energy consumption, we adopted the milli Ampere
per hour (mAh) metric. Such metric is very useful, since it is directly related
to information provided for some commercial batteries. So, by knowing timing

Energy Consumption Analysis and Design 5

information for each instruction and decomposing each of them in basic opera-
tions, we have measured the power related to each basic operation and we have
combined them with their duration to obtain mAh estimations. In particular, the
considered basic operations are the following ones: i) microprocessor processing,
ii) radio RX/TX, and iii) leds ON/OFF. To measure power consumption associ-
ated to basic operation, we exploited the experimental setup shown in Figure 1.
By means of the voltage measured on R TEST (1.2ohm) we evaluated the power
by using an oscilloscope.

Fig. 1. Energy measure-
ment experimental setup

To associate measured current to the basic oper-
ations, we created a proper Agilla2.0 agent with the
following 5-phases behavior (10 seconds for phase): i)
microprocessor activity only, ii) microprocessor and
led activities, iii) radio ON in reception mode, iv)
radio ON/OFF switching, and v) periodic radio trans-
mission. Finally, we could estimate mAh consumption
for each Agilla2.0 instruction.

3.1 Battery Behavior Analysis

Once estimated Agilla2.0/IRIS energy consumption, some considerations about
commercial batteries behaviours have to be made in order to be able to use
consumption data in a correct way. In particular, nominal mAh could be affected
by operating conditions (e.g. temperature, humidity, etc.). So, in order to be
able to estimate the energy status of a node, we analyzed some info about AA
batteries normally used to power WSN nodes [4]. In particular, for IRIS nodes,
we need two AA batteries, for a total of about 3V. Then, by means of some
stress tests with different reference voltages, we identified a critical threshold of
1.7 V under which the node is no more active. Once under such voltage, only a
nominal voltage (3V-3.3V) followed by a reset allows the node to start working
again. Moreover, we identified four operational zones:

- more than 3V (up to 3.3V): ideal conditions.
- 3V-2.8V: good conditions.
- 2.8V-2.4V: still working but with some warning.
- Under 2.4V: serious warning.

The last zone, considering the information reported in [4], represents a point in
which energy consumption analysis could no more be representative of a real
operative condition due to a possible very fast batteries failure. It is worth not-
ing that this means that, also if the available mAh have not been totally used,
it is not possible to make reliable assumptions about their availability in a short
period. Maybe it could be better to change the batteries, if possible, or to con-
sider using the node only for non critical activities.

6 L. Berardinelli et al.

4 Case Study

In this paper we reuse and extend the Wildfire Tracking Application (WTA),
an existing case study originally described in [3] and already adopted in our
previous work [1,2]. The WTA software is deployed on a WSN distributed into
a region that is prone to fires. It must detect a fire and determine its perimeter.
Figure 2 shows the high-level behavior of the application.

Fig. 2. The WTA App

The original WTA is composed by three Agilla
agents. The Reader agent runs on all the WSN nodes
and is programmed to sense the temperature at regular
time intervals of 1/8 of second. The readings are sent
to the Base Station (BS). A Forwarder agent, running
on the BS, forwards the sensed values up to the PC,
where the temperature level is evaluated. Once a fire has
been detected, a Tracker agent is injected from the PC
into the WSN, through the BS, in order to dynamically
determine the perimeter of the fire.

In this paper, we carry out the energy analysis of two variants of the Reader
agent by extending the original version (Figure 3) with battery awareness capa-
bility through our new battery instruction (battery-aware reader, baReader,
Figure 4). The Agilla code of both agents, Reader and baReader, consists of
Agilla instructions (e.g., pushc) that are grouped in tasks (e.g., BEGIN, depicted
as small gray nodes in the control flow graph. By default, the Agilla middle-
ware executes tasks sequentially by scheduling the next tasks after the latest

Fig. 3. The standard Reader (Reader) Fig. 4. The battery-aware Reader
(baReader)

Energy Consumption Analysis and Design 7

instruction of the previous one. However, goto-like instructions such as rjump
and rjumpc allow (un)conditional relative jumps [3].

This Reader version is programmed to sense the temperature at regular time
intervals of 125 ms (default waiting time of sleep in task BEGIN) and to send
it (rout) to the BS. Since Reader is not battery-aware, no further actions are
taken in case of low battery level.

The baReader version is extended with a battery-level check (BATTERYCHECK
task) before sensing the temperature. In case of low voltage (lower or equal to
2.4 Volts), the execution jumps to the BATTERYLOW task, from where a LOOP task
is entered, where the same actions as the BEGIN task are executed (a counter
is incremented, and the temperature is sensed and sent to the PC) but with a
lower frequency.

Finally, both Reader and baReader agents can stop their execution by check-
ing the presence of a del entry in the Tuple Space (in BEGIN and BATTERYLOW
tasks, respectively). If found, both Reader and baReader agents jump to the
STOP task where the halt instruction is executed.

5 The Agilla Modeling Framework

The Agilla Modeling Framework (AMF)4 is part of a model-driven, tool-
supported approach (see Figure 5) to design and analyze Agilla applications [3]
suitably modeled through the Foundational UML (fUML) [5], a new standard of
the Object Management Group (OMG) that defines the operational semantics
of a (strict) UML subset.

Figure 5 sketches the fUML-driven approach supported by AMF. Artifacts
(fUML Model and Analysis Results) and functionalities (Parsing, Instruction
Semantics Simulation, Trace Generation, Timing Analysis, Performance Anal-
ysis, Energy Analysis) are depicted as rectangles and rounded boxes, respec-
tively, while dashed arrows connect functionalities and related artifacts with
labels detailing their relationships.

Fig. 5. Actors, functionalities and artifacts in AMF

The AMF nature is two-
fold. On the one hand AMF
is a fUML model library,
i.e., a model consisting of
reusable classes and activities
for fUML models represent-
ing Agilla applications as cre-
ated by the Users. On the
other hand, AMF is also a tool
whose analysis algorithms are
implemented (i.e., modeled)
through executable UML activities and Analysis Results are saved as slot values
[6] within the same executable fUML Model.

4 http://sealabtools.di.univaq.it/tools.php

http://sealabtools.di.univaq.it/tools.php

8 L. Berardinelli et al.

The remainder of this section provides a brief background on fUML and
AMF design choices, then describes the new Energy Consumption Analysis capa-
bility. The other AMF capabilities (parsing, instruction semantics simulation,
trace generation, timing and performance analyses) are described in our previ-
ous works [1,2].

5.1 The Foundational UML and AMF Design Choices

fUML[5] defines the operational semantics of a strict UML subset (cf. Figure
7a) that includes Classes, Common Behaviors, Activities, and Actions. Neither
heavy (e.g., metamodel changes) nor lightweight extensions (e.g., UML profiles)
are required. fUML enables the execution of UML models including Classes with
their own Structural (i.e., attributes) and BehavioralFeatures (i.e., operations).
Behavioral specifications (i.e., operations’ body) are modeled through Activities.

The fUML standard goes along with a Java-based reference implementation
of an fUML virtual machine (fUML VM)5, to simulate fUML models. Free open
source and commercial UML modeling tools exist that embed this reference
implementation within their modeling environments, like Papyrus6 and Magic-
Draw7. We adopted the latter, in conjunction with its plug-in Cameo Simulation
Toolkit, as modeling and simulation environment (i.e., UML tool in Figure 5).

Figure 7b shows an excerpt of the user-defined fUML Model for the Reader
agent. Its structure and behavior are modeled through composition of Classes
and hierarchical Activities, respectively. The AMF Model Library helps the
structural modeling of Agilla applications. It includes:

– An abstract, hierarchical structure of classes (AppComp, AgentComp, TaskComp,
InstrComp). User-defined fUML Model of Agilla applications are modeled
with classes and proper Generalization relationships. (e.g., the Reader agent
and its own START, BEGIN, and STOP tasks).

– A set of 74 concrete InstrComp classes (e.g., pushc, cf. Figure 7c) covering
the whole Agilla instruction set [3], including a new class for the battery
instruction.

Fig. 6. baReader agent instance model at simulation time

5 http://fuml.modeldriven.org
6 www.papyrusuml.org/
7 www.nomagic.com/products/magicdraw.html

http://fuml.modeldriven.org
www.papyrusuml.org/
www.nomagic.com/products/magicdraw.html

Energy Consumption Analysis and Design 9

At simulation time, the fUML VM generates a so-called instance model and
ignores the non-executable part (e.g., Sequences, Statemachines, Deployments
or annotations [7]). InstanceSpecifications, Links, and Slots elements are gen-
erated within the instance model as counterparts of Classes, Associations and
Properties, respectively.

The execution of fUML Activities then reads, adds, deletes, and modifies
elements of the instance model. Figure 6 shows a graph-like excerpt of the Reader
agent instance where InstanceSpecification (e.g., reader obj) and Links (e.g.,
own tasks) are depicted as nodes and arrows, respectively.

The behavioral specification of an AgentComp comprises a layered set of
fUML Activities representing i) the flow of tasks (e.g., START, BEGIN, and STOP,
cf. Activity Level 1 in Figure 7b), ii) the flow of instructions for each task (cf.
Level 2 in Figure 7b) and, iii) AMF algorithms like the Energy Analysis (cf.
Level 3 in Figure 7b). The AML user is in charge of modeling the task flow
from scratch. On the contrary, the instruction-level flow is built by dragging and
dropping instruction actions (e.g., halt) from the library and, if needed, man-
ually add parameters through typed pins (e.g., 26:String for pushc)[6]. Such
actions transparently invokes further nested fUML activities realizing instruction
semantics and AMF analysis algorithms (cf. Level 3 in Figure 7c).

The AMF Instruction Semantics Simulation is in charge of traversing an
agent’s instance model and collecting instruction-specific slot values for the sake
of Timing, Performance and Energy Consumption Analyses.

Fig. 7. Modeling with fUML and the AML Library

10 L. Berardinelli et al.

In [1] we modeled and implemented8 the timing analysis algorithm which col-
lects and sums slot values corresponding to measured instruction execution times
(e.g., the et default value of pushc in Figure 7c). In [2] we further enhanced AMF
with a First Come First Served (FCFS) scheduling policy required by the Perfor-
mance Analysis capability to generate additional timed properties like waiting
(wt), and completion times (ct). Similar to the timing analysis algorithm, all
these timed properties (ets, wts, cts), stored as slot values in the Agent’s instance
model, are collected during the instruction semantics simulation to finally obtain
performance indices (e.g., response time) from fUML models of Agilla agents.

In this paper, we enrich AMF with the Energy Consumption Analysis capa-
bility by reusing the same algorithm design. AMF collects the measured energy
consumption of each Agilla Instruction while traversing the instance model dur-
ing the fUML model simulation (see Figure8a).

Figure 7c shows a generic energy consumption analysis algorithm as executed
during the behavior() operations of each InstrComp instance. In particular, a
Random ET and mAh from measurements JavaScript snippet 9 randomly selects
a couple of values vi and wi for et and mah, respectively, from two arrays of n
measurements and adds them to the corresponding partial sums saved as slots of
the owning TaskComp instances. A similar activity calculate the execution time
and power consumption of an AgentComp instance from partial sums stored in
the owned TaskComp ones.

6 Energy Consumption Analysis

The analysis work flow is shown in Figure 8a. We analyzed the energy consump-
tion of Reader and baReader agents in three different scenarios (Sc). In each
scenario, we simulate the fUML model of both Reader and baReader agents, in
isolation, from the beginning (i.e., the execution of the first Agilla instruction,
pushc, see Figures 3 and 4) up to the end (i.e., the first execution of the halt
instruction of the STOP task). Each simulation run corresponds to the execution
occurrence shown in the sequence diagram in Figure 8b10. The three differ-
ent simulation scenarios Sc1, Sc2, and Sc3, differs from the agent’s sleep time
between two consecutive sense and dispatch (rout) of temperature to the base
station (BS). By default, a sense 1 instruction hibernates an agent for 125 mil-
liseconds. In our scenarios Sc1, Sc2, and Sc3, we hibernate the agent for 30, 60,
and 120 seconds. This behaviors are implemented by setting the sleep parameter
to 240, 480, and 960, respectively. At the modeling level, setting such scenarios
consists in i) saving distinct fUML models for both Reader and baReader for a
total of six artifacts (e.g., .mdzip files using MagicDraw), ii) opening each model
and updating the integer value specification [6] of the sleep action (imported
from the Agilla InstructionSet in the AMF model library) within the containing
8 AMF is a tool directly designed in fUML realizing the motto “the model is the code”.
9 Set as body of a UML Opaque action.

10 Both state machine and sequence diagram are not part of the fUML model and it is
used for explanation purposes.

Energy Consumption Analysis and Design 11

BEGIN task action, and iii) starting the model simulation which repeat the agent
simulation for a user-defined number of runs (see Figure 8).

Figure 9 shows the analysis results. Minimums, maximums, and averages
of the energy consumption for both Reader and baReader agents have been
calculated through AMF by executing the corresponding fUML model. Each
scenario has been executed 100 times.

As expected, the baReader agent saves energy (from 38, 37% in Sc1 up to
43, 22% in Sc3, see Figure 9) w.r.t. the battery unaware Reader one. However,
focusing on analysis results of the same reader version in different scenarios, we
observe that the energy consumption is almost the same, i.e., it is invariant w.r.t.

Fig. 8. Energy consumption analysis work flow

Fig. 9. Energy consumption analysis results

12 L. Berardinelli et al.

to the sensing frequency. It may be caused by the busy wait of the sleep instruc-
tion which does not turn off but only hibernates the agent then causing a lower,
but not null, energy consumption while waiting for resuming the agent behavior.
As a consequence, the longer is the busy wait (i.e., greater is the sleep integer
parameter), the higher is the energy required to complete the execution of the
sleep instruction. In addition, we also observe a lower difference among mini-
mums and maximums of the baReader version w.r.t. the corresponding results
for the Reader version in all scenarios. These results are caused, on the one
hand, by the greater complexity of the baReader version whose execution may
generate longer control flows (e.g., more loops) thus requiring more energy to
their completion. On the other hand, it may be caused by the limited number of
simulation runs (100) for the proposed scenarios. Even if, as already experienced
in our previous works [1,2,8], we are limited by the current scalability prob-
lem of the fUML virtual machine which it is not optimized for simulation-based
analysis [9], our approach is promising since we are able to integrate several
non-functional analyses in a single tool. This will open to an easy and consistent
multi-dimensional analyses environment where trade-off analysis are possible.
Moreover, since we do not move from different modeling notations and analysis
tools, we are sure that the results of the analyses refer to the same software
system. Instead when we move to different modeling notations and tools, this
warranty is obtained if it is proved that the provided M2M transformation does
not change the modelled system. Up to day this proof is not provided for most
of the transformation in literature, but it is leaved to intuition. Finally, in litera-
ture, we can find some example of multi-dimensional analysis environment, such
as Palladio [10], using proprietary modeling notations. Differently from them,
we do not use own notations, but UML that is a standard de-facto modeling
language hence the impact of AMF is wider and more general.

7 Related Work

fUML - In this work, that directly stems from [1] as well as in [7] and [11],
we pursue a similar goal but aiming at a tighter integration between fUML and
analysis methodologies. In particular, we showed in [7] and [11] how performance
analysis can be conducted on annotated fUML models by generating and ana-
lyzing traces compliant with a fUML runtime metamodel [12]. Tool support is
provided through a Java-based Eclipse plug-in that suitably interacts with the
fUML VM during its execution. In [1] and in this subsequent work, we fur-
ther emphasize the role and importance of fUML by directly designing (that is,
implementing) the analysis tool as a fUML model library.

In [1,7,11] and in this work as well, the expected benefits of directly utilizing
the execution of UML models for carrying out model-based analysis are twofold:
(i) the costly translation of UML models into formal languages dedicated to
specific analysis purposes is avoided and, hence, (ii) the implementation and
maintenance of supporting analysis tool sets is eased significantly. With AMF
approach presented in this paper, we offer both of these benefits and showcased

Energy Consumption Analysis and Design 13

them by developing a performance analyzer that implements an analysis method
directly on UML models for WSN applications. A translation of UML models into
an analysis model can now be omitted and it is not necessary to use additional
external tools for analysis purposes.

In [13], the authors present a behavioural design solution for WSN, abstract-
ing the complicated dynamic aspects of WSN software systems through the
concept of activity-driven states. This provides the programmer with concrete
design elements that can be directly mapped to the constructs of target pro-
gramming languages opening towards more accurate verification and validation
of software systems for WSNs. Differently from [13], our approach gives the pos-
sibility to design software for WSN with fUML and to map it to the Agilla target
language and provides functional, timing, performance and energy analyses on
the UML models via simulation.

Romero and Ferreira propose an MDA-based approach applied to the domain
of space real-time software for sake of code generation and schedulability anal-
ysis [14]. In their approach platform independent models and test cases are
specified using fUML activities. Non-functional properties are annotated on the
activities using the UML profile MARTE. However, for carrying out the schedu-
lability analysis, fUML activities are translated into AADL models [15].

Benyahia et al. [16] evaluate how well the current fUML semantics supports
the formalization of concurrent and temporal semantic aspects which is required
for the design and analysis of real-time embedded systems. They illustrate how
the standard fUML execution model, as well as the fUML VM, have to be
extended for this purpose to explicitly incorporate a scheduler into fUML that,
at each step of the model execution, determines the activity node to be executed
next according to certain scheduling policies (e.g., first-in-first-out (FIFO)). The
same limitation has been addressed by Abdelhalim et al. [17]. In contrast to
Benyahia et al. [16], they do not propose an extension of the standard fUML
execution model but rather present a model-based framework that translates
fUML activities into communicating sequential processes (CSP) for performing
a deadlock analysis detecting possible scenarios leading to deadlocks which are
provided as UML sequence diagrams.

Energy Analysis - In [18], a Model-Driven approach is used to separately
model the software architecture of a WSN, the low-level hardware specification
of the WSN nodes and the physical environment where nodes are deployed in.
The framework can use these models to generate executable code to analyze the
energy consumption of the modeled application. The last three approaches aim
at evaluating the quality of the WSN application (that is, its performance for the
first two and the energy consumption for the last one). Instead, our approach
aims at performing non-functional analysis, including energy analysis, on the
models with no model-weaving processes. We also generate the executable code,
ready to be deployed and run on a node.

In [19], the authors first break down the energy consumption for the compo-
nents of a typical sensor node, and they discuss the main directions to energy
conservation in WSNs. Then, they present a systematic and comprehensive

14 L. Berardinelli et al.

taxonomy of the energy conservation schemes. This work guided us through the
step of integrating in the framework an energy consumption analysis for Agilla
agents. In [20], the authors propose an energy-efficient MAC protocol for WSNs,
so they save energy at lower level, while we save energy at the application level.

The authors of [21] formulate the energy consumption and study their esti-
mated lifetime based on a clustering mechanism with varying parameters related
to the sensing field (e.g., size and distance). They provide numerical analysis and
results of the energy consumed by the WSN and the WSN’s lifetime, but they
only consider energy consumed in communication, without taking into account
energy consumed in data processing, etc. Further, their analysis is generic and
does not take into account differences between different hardware platforms.
With our approach, instead, we take into account the energy consumed by every
single instruction of an agent, and the energy consumption of each instruction
is evaluated in the specific hardware platform where it is executed. So, when
changing the platform, the energy consumption value may vary also, if the hard-
ware has got different characteristics. In general, great research effort is focused
on optimizing protocols and clustering schemes for performance and energy sav-
ing, but there’s a very poor work on designing and generating good applications
for WSNs, from performance and energy viewpoint. This is instead our research
direction: We design, simulate and analyze Agilla-based WSN applications, in
order to automatically obtain application code that meets the non-functional
constraints.

8 Discussion

It is worth noting that, in this paper, we are extending the analysis capabilities
of AMF with the intent of showing the suitability of fUML for i) the design
and analysis of WSN applications, and ii) the design of more and more complex
analysis tools as fUML model libraries, at the same time. In accordance with our
background and research goals, we primarily focus on assessing the exploitation
of fUML and related technologies in the WSN and extra-functional analysis
domains. We consider AMF and, more in general, the underlying fUML-driven
approach proposed in this paper, an initial as well as a first practical evaluation
of the impact that fUML and its related technologies may have i) on expectations
from UML practitioners and ii) on future research directions in MDE [22,23].
With this work, we show that both the design and analysis of WSN as well as
tool development are feasible activities with fUML. While pursuing our goals,
we experienced both opportunities and limitations related to the usage of fUML.

fUML is a young OMG standard, published on February 2011. It makes a
strict (and then easier to learn) subset of UML executable. By leveraging their
current background in UML, both researchers and practitioners can already
adopt it for their specific purposes. At the time of writing, the (positive or neg-
ative) impact of fUML on daily modeling activities still have to be assessed
(e.g., [23] was concluded in July 2011). fUML promotes model reuse through
executable model libraries, like AMF, and it may be compared to a new pro-
gramming language that, however, still suffers from the lack of an adequate

Energy Consumption Analysis and Design 15

support in term of built-in libraries. In AMF, for example, we had to model
from scratch common auxiliary data structures like queue and stack. The mod-
eling effort required to create executable model libraries may then be high. For
example, fUML activities are much more detailed than non-executable ones and
so far usually disregarded details, like input/output pins, have to be systemat-
ically modeled to allow a correct execution. Being aware of this, we worked on
AMF for its users to simplify the modeling of agents’ control flows.

In addition, still few UML modeling tools exist that provide plug-ins that
support the simulation of their models. We choose MagicDraw and its plug-
in Cameo Simulation Toolkit to support the modeling and simulation tasks in
AMF. However, being fUML models also valid UML models, such artifacts may
be exchanged among any UML modeling tools supporting common serialization
formats (e.g., XMI and Eclipse UML).

In this work, we are adopting fUML to design, from scratch, an analysis
tool. From [1] on, the AMF executable model is growing fast to support its new
functionalities, including also possibly heavy computational tasks, like perfor-
mance analysis is. It is worth noting that AMF can be seen as a layered tool
infrastructure and all the AMF functionalities run within an hosting UML Mod-
eling environment which, in turn, run on atop a Java Virtual Machine. This
layered infrastructure may cause scalability issues for analysis tools, like AMF,
running on the topmost layer. In this work, we mainly focused on promoting
MDE approaches in the WSN domain using fUML as the only modeling and
simulation notation. Assessing the maturity level of fUML and its underlying
technology for such a challenge task is out of scope of this paper and left for
future work.

9 Conclusion

AMF is an ongoing work that spread MDE methodologies and tools in the Wire-
less Sensor Network domain. We developed a model-driven approach that allows
both modeling and multiple analysis (timing, performance and energy consump-
tion) of software for WSN nodes running the Agilla mobile agents-based middle-
ware. We adopted fUML, a strict executable UML subset, as design notation for
AMF users and as well as development language for AMF itself. We provided
modeling guidelines to AMF users in order to obtain an executable specification
directly in UML, without the need of learning ad-hoc notations and tools. In
this respect, thanks to its fUML native compatibility with UML, our approach
is tool-supported by construction and can leverage many existing, industrial-
strength UML-based tools. We simulated different fUML models representing
two (un)aware variants of a reader agent in three different scenarios by feeding
the analysis with measured data obtained from a real Agilla execution platform.
For this purpose, we extended both the Agilla middleware and the corresponding
AMF model library with a new battery instruction.

As future research goals, we plan to improve the design and scalability of
existing analysis algorithms in fUML and to combine them in trade off analyses.

16 L. Berardinelli et al.

References

1. Berardinelli, L., Di Marco, A., Pace, S., Marchesani, S., Pomante, L.: Modeling
and timing simulation of agilla agents for WSN applications in executable UML.
In: Balsamo, M.S., Knottenbelt, W.J., Marin, A. (eds.) EPEW 2013. LNCS, vol.
8168, pp. 300–311. Springer, Heidelberg (2013)

2. Berardinelli, L., Di Marco, A., Pace, S.: fUML-driven design and performance
analysis of software agents for wireless sensor network. In: Avgeriou, P., Zdun, U.
(eds.) ECSA 2014. LNCS, vol. 8627, pp. 324–339. Springer, Heidelberg (2014)

3. Fok, C.L., Roman, G.C., Lu, C.: Agilla: A mobile agent middleware for
self-adaptive wireless sensor networks. ACM Trans. Auton. Adap. 4(3), 16 (2009)

4. A Comparison of Primary Battery Performance using a Solartron 7150plus
Multimeter. http://www.drkfs.net/bestbattery.htm

5. OMG. Semantics of a foundational subset for executable UML models (2011)
6. OMG. UML, Superstructure, Version 2.4.1 (2011)
7. Berardinelli, L., Langer, P., Mayerhofer, T.: Combining fUML and profiles for

non-functional analysis based on model execution traces. In: QoSA (2013)
8. Berardinelli, L., Cortellessa, V.: fUML-driven performance analysis through the

moses model library. In: ACES-MB, MoDELS, pp. 34–43 (2014)
9. Tatibouet, J., Cuccuru, A., Gérard, S., Terrier, F.: Principles for the realization of

an open simulation framework based on fuml (wip). In: Proc. of the Symposium
on Theory of Modeling & Simulation-DEVS Integrative M&S Symposium, p. 4.
Society for Computer Simulation International (2013)

10. Brosig, F., Meier, P., Becker, S., Koziolek, A., Koziolek, H., Kounev, S.: Quantita-
tive evaluation of model-driven performance analysis and simulation of component-
based architectures. IEEE Trans. Software Eng. 41(2), 157–175 (2015)

11. Fleck, M., Berardinelli, L., Langer, P., Mayerhofer, T., Cortellessa, V.: Resource
contention analysis of service-based systems through fUML-driven model
execution. In: Proc. of NiM-ALP, p. 6 (2013)

12. Mayerhofer, T., Langer, P., Kappel, G.: A runtime model for fUML. In: Proc. of
the Int’l Workshop on Models@run.time (MRT 2012) at MODELS (2012)

13. Taherkordi, A., Eliassen, F., Johnsen, E.B.: Behavioural design of sensor network
applications using activity-driven states. In: Int’l Workshop on Soft. Eng. Sensor
Network App. (SESENA), pp. 13–18 (2013)

14. Romero, A.G., Ferreira, M.G.V.: An approach to model-driven architecture applied
to space real-time software. In: Proc. of the Int’l Conf. on Space Op. (2012)

15. Feiler, P.H., Gluch, D.P.: Model-based engineering with AADL: An introduction
to the sae architecture analysis & design language. Addison-Wesley (2012)

16. Benyahia, A., Cuccuru, A., Taha, S., Terrier, F., Boulanger, F., Gérard, S.:
Extending the standard execution model of UML for real-time systems. In:
Hinchey, M., Kleinjohann, B., Kleinjohann, L., Lindsay, P.A., Rammig, F.J.,
Timmis, J., Wolf, M. (eds.) DIPES 2010. IFIP AICT, vol. 329, pp. 43–54. Springer,
Heidelberg (2010)

17. Abdelhalim, I., Schneider, S., Treharne, H.: An integrated framework for checking
the behaviour of fUML models using CSP. Int’l Journal on Software Tools for
Technology Transfer, 1–22 (2012)

18. Doddapaneni, K., Ever, E., Gemikonakli, O., Malavolta, I., Mostarda, L., Muccini,
H.: A model-driven engineering framework for architecting and analysing wireless
sensor networks. In: Int’l Workshop on Soft. Eng. Sensor Network App. (SESENA),
pp. 1–7 (2012)

http://www.drkfs.net/bestbattery.htm

Energy Consumption Analysis and Design 17

19. Anastasi, G., Conti, M., Di Francesco, M., Passarella, A.: Energy conservation in
wireless sensor networks: A survey. Ad Hoc Networks 7(3), 537–568 (2009)

20. Ye, W., Heidemann, J., Estrin, D.: An energy-efficient mac protocol for wireless
sensor networks. In: Proceedings of the Twenty-First Annual Joint Conference
of the IEEE Computer and Communications Societies, INFOCOM 2002, vol. 3,
pp. 1567–1576. IEEE (2002)

21. Duarte-Melo, E.J., Liu, M.: Analysis of energy consumption and lifetime of
heterogeneous wireless sensor networks. In: Global Telecommunications Confer-
ence, GLOBECOM 2002, vol. 1, pp. 21–25. IEEE (2002)

22. France, R.B., Rumpe, B.: Model-driven development of complex software: a
research roadmap. In: Future of Software Engineering, pp. 37–54 (2007)

23. Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.: What industry needs
from architectural languages: A survey. IEEE Trans. Softw. Eng. 39(6) (2013)

A Comparison of Two-Level and Multi-level
Modelling for Cloud-Based Applications

Alessandro Rossini1(B), Juan de Lara2, Esther Guerra2, and Nikolay Nikolov1

1 SINTEF, Oslo, Norway
{alessandro.rossini,nikolay.nikolov}@sintef.no
2 Universidad Autónoma de Madrid, Madrid, Spain

{Juan.deLara,Esther.Guerra}@uam.es

Abstract. The Cloud Modelling Framework (CloudMF) is an app-
roach to apply model-driven engineering principles to the specification
and execution of cloud-based applications. It comprises a domain-specific
language to model the deployment topology of multi-cloud applications,
along with a models@run-time environment to facilitate reasoning and
adaptation of these applications at run-time. This paper reports on some
challenges encountered during the design of CloudMF, related to the
adoption of the two-level modelling approach and especially the type-
instance pattern. Moreover, it proposes the adoption of an alternative,
multi-level modelling approach to tackle these challenges, and provides
a set of criteria to compare both approaches.

Keywords: Domain-specific languages · Metamodelling · Multi-level
modelling · Multi-level reasoning · Cloud computing · CloudMF ·
CloudML · MetaDepth

1 Introduction

Model-driven engineering (MDE) aims at improving the productivity, quality,
and cost-effectiveness of software development by shifting the paradigm from
code to model-centric, whereby models and modelling languages are the main
artefacts of the development process. In MDE, the abstract syntax of a mod-
elling language is defined by its metamodel, which describes the set of concepts,
properties and relations of a domain, as well as the rules for combining them.
Based on this paradigm, a software system is represented by a model that con-
forms to a metamodel. This approach, hereafter called two-level modelling, may
have limitations [5,15,21] when the metamodel includes the type-instance pat-
tern [5,10], which requires an explicit modelling of types and their instances at
the same metalevel. In this case, an alternative approach that employs more than
two levels, hereafter called multi-level modelling, yields simpler models [5,10,21].
However, while some recent studies show the potential applicability of multi-
level modelling [10], there are still scarce works showing its benefits for real-life
projects.
c© Springer International Publishing Switzerland 2015
G. Taentzer and F. Bordeleau (Eds.): ECMFA 2015, LNCS 9153, pp. 18–32, 2015.
DOI: 10.1007/978-3-319-21151-0 2

A Comparison of Two-Level and Multi-level Modelling 19

Cloud computing provides a ubiquitous networked access to a shared and
virtualised pool of computing capabilities (e.g., network, storage, processing,
and memory) that can be provisioned with minimal management effort. MDE
has been applied in the field of cloud computing, where models and modelling
languages enable developers and reasoning engines to work at a high level of
abstraction and focus on cloud concerns rather than implementation details.
One notable example in this area is the Cloud Modelling Framework (Cloud-
MF) [12–14], which consists of: (i) the Cloud Modelling Language (CloudML),
a domain-specific language (DSL) to model the deployment of multi-cloud appli-
cations (i.e., applications that can be deployed across multiple private, public, or
hybrid cloud infrastructures and platforms); and (ii) a models@run-time envi-
ronment to enact the deployment and adaptation of these applications. The
run-time environment provides a model-based representation of the underly-
ing running system, which facilitates reasoning and adaptation of multi-cloud
applications.

This paper reports on some challenges encountered during the design of
CloudMF, related to the adoption of the two-level approach and especially
the type-instance pattern. Moreover, it proposes an alternative, multi-level app-
roach, and provides a detailed comparison of both approaches along six criteria,
which aims to serve as a guideline for prospective adopters of the multi-level
solution.

Paper Organisation. Sec. 2 outlines the current design of CloudML and its
models@run-time environment. Sec. 3 presents a case study used throughout the
paper. Secs. 4 and 5 compare how to model the case study using two-level and
multi-level approaches. Sec. 6 discusses the pro and contra of the two approaches.
Finally, Sec. 7 compares with related work and Sec. 8 ends with conclusions and
future work.

2 CloudMF

CloudMF is being developed in the context of the EU projects MODAClouds
and PaaSage1, where several industrial partners are adopting it to specify and
execute the multi-cloud applications of their use cases. In this section, we outline
its two main ingredients: CloudML and its models@run-time environment.

2.1 CloudML

CloudML has been designed based on the following requirements, among
others:

Separation of concerns (R1): CloudML should support a modular, loosely-
coupled specification of the deployment. This will facilitate the maintenance
as well as the dynamic adaptation of the deployment model.

1 http://www.modaclouds.eu/, http://www.paasage.eu/

http://www.modaclouds.eu/
http://www.paasage.eu/

20 A. Rossini et al.

Reusability (R2): CloudML should support the specification of types that
can be seamlessly reused to model the deployment. This will ease the evolu-
tion as well as the rapid development of different variants of the deployment
model.

Abstraction (R3): CloudML should provide an up-to-date, abstract repre-
sentation of the running system. This will facilitate the reasoning, simulation,
and validation of the adaptation actions before their actual enactments.

CloudML implements a component-based approach [14], which facilitates
separation of concerns (R1) and reusability (R2). Hence, deployment models can
be regarded as assemblies of components and relations between them.

2.2 Models@run-time

Models@run-time [6] is an architectural pattern for dynamically adaptive sys-
tems that leverages upon models at both design-time and run-time. In particular,
models@run-time provides an abstract representation of the underlying running
system, whereby a modification to the model is enacted on-demand in the sys-
tem, and a change in the system is automatically reflected in its model.

Fig. 1. CloudMF architecture

In CloudMF, the models@run-time envi-
ronment provides a model causally connected
to the running cloud-based application
(addressing requirement R3). On the one
hand, any modification to a CloudML model
is enacted on-demand in the running applica-
tion. On the other hand, any change in the
running application is automatically reflected
in its CloudML model.

Fig. 1 depicts the architecture of Cloud-
MF. A reasoning engine reads the current
model (step 1) and produces a target model
(step 2). Then, the run-time environment
computes the difference between the current
model and the target one (step 3). Finally,
the adaptation engine enacts the adaptation
by modifying only the parts of the cloud-based application necessary to account
for the difference and the target model becomes the current model (step 4).

3 Case Study

The adoption of CloudML as the DSL for specifying models in the models@run-
time environment of CloudMF introduces some challenges in its design and
implementation. In this section, we present these challenges through a case study.

SensApp2 is an open-source, service-oriented application for storing and
exploiting large data sets collected from sensors and devices. Suppose that, at
2 http://sensapp.org

http://sensapp.org

A Comparison of Two-Level and Multi-level Modelling 21

Fig. 2. Deployment model at design-time: (a) with single cloud, (b) with multiple
clouds

design-time, we would like to model the deployment of SensApp on a single
cloud, whereby a SensApp cluster should be hosted on a Tomcat container
cluster, which in turn should be hosted on a Ubuntu virtual machine cluster,
which in turn should be provisioned on a private OpenStack cloud in Norway.
Moreover, the SensApp cluster should be load balanced by an HAProxy load
balancer and should have from one to four instances.

Fig. 2(a) shows the deployment model specified using a graphical syntax for
CloudML. The left part depicts the available reusable types, while the right
part depicts instances of these. The range in instances range represents that a
minimum of one and a maximum of four instances of SensApp can be executed at
run-time. We assume the range attached to sensApp1 also applies to its (indirect)
hosts, i.e., tomcat1 and ubuntu1.

We could have considered the deployment of SensApp on multiple clouds,
whereby a second SensApp cluster is deployed and provisioned on a public
Amazon cloud in Europe. Fig. 2(b) shows the deployment model with multiple
clouds. In the remainder of the paper, we only consider the single-cloud scenario
to keep the models simple and retain only the details that are relevant for the
discussion.

Then, suppose that, at run-time, we would like to dynamically adapt the
deployment of the application in order to meet service-level objectives (e.g.,
response time < 50ms) and goals (e.g., minimise cost). A reasoning engine would
first read the number of current instances, and then enact adaptations based on
these service-level objectives and goals. Therefore, the deployment model above
is insufficient, and an additional property is needed to represent the number of
current instances. Fig. 3(a) shows the deployment model before and after the
adaptation.

Finally, suppose that, also at run-time, we would like to dynamically adapt
the deployment of the application in order to prevent impending failures and
recover from occurred ones. A reasoning engine would first read, e.g., the CPU
load of each individual Ubuntu virtual machine, and then enact adaptations
based on scalability rules. Therefore, the deployment in Fig. 3(a) is too high-level

22 A. Rossini et al.

Fig. 3. Deployment model at run-time: (a) with number of current instances, (b) with
explicit instances and CPU loads

(or coarse-grained), and a low-level (or fine-grained) deployment model is needed
to represent each individual instance of SensApp along with the underlying
Tomcat container and Ubuntu virtual machine. Fig. 3(b) shows the deployment
with explicit instances before and after the adaptation.

The current version of CloudML is based on two-level modelling. It supports
the specification of single components within a deployment model, but it does
not support the specification of clusters of components with ranges.

In the following section, we present a proof of concept of how the current
version of CloudML could be extended to support the case study.

4 Two-Level Approach

CloudML implements the type-instance pattern [4]. To declare and instantiate
types (e.g., the type Ubuntu and its instance ubuntu1 in Fig. 2(a)), this pattern
requires both types and instances to be represented by classes in the metamodel.
This pattern also exploits two flavours of typing: ontological and linguistic [17].
The latter is the relation between a model and its metamodel, while the former
is the relation between elements within a model.

Fig. 4 shows a simplified version of the CloudML metamodel along with
the model in abstract syntax corresponding to the one in graphical syntax in
Fig. 3(a), where several concepts such as the life-cycle scripts attached to the
components, the ports provided and required by components, the communica-
tions between ports, and the cloud providers are omitted for brevity (see [14]
for a detailed description of the CloudML metamodel). SensApp represents a
reusable type of SensApp. It is linguistically typed by the class CompType (short
for component type). sensApp1 represents an instance of SensApp. It is ontologi-
cally typed by SensApp and linguistically typed by CompInst (short for component
instance). Similarly, Fig. 5 shows the model in abstract syntax corresponding to
the one in graphical syntax in Fig. 3(b), before adaptation.

A Comparison of Two-Level and Multi-level Modelling 23

Fig. 4. Deployment model in abstract syntax at run-time, with number of current
instances and average CPU load

Figs. 4 and 5 depict one possible approach for allowing CloudML to support
the specification of clusters of components with ranges. However, it implies the
use of two syntactically and semantically disjoint models: one representing the
aggregated view of each cluster (Fig. 4) and one representing each individual
instance in each cluster (Fig. 5). In order to avoid this, a naive solution could
be to merge the two models by applying the type-instance pattern twice, which
would lead to a new type-template-instance pattern. Fig. 6 shows this merged
model. Unfortunately, this solution is both ineffective and insufficient.

First, it is ineffective since applying the type-instance pattern twice leads to
six classes to represent components and their instances, and even more references
between them in both the metamodel and the model (e.g., CompType, CompTemp,
and CompInst in the metamodel and their instances in the model). Please note
that the metamodel in Fig. 6 only contains the classes and references necessary
to represent components and virtual machines, while the model only contains the
elements needed to represent a SensApp application cluster, a Tomcat container
cluster, and a Ubuntu virtual machine cluster. The figure omits the classes and
references needed to represent the life-cycle scripts attached to the components,
the ports provided and required by components, the communication between
ports, and the cloud providers. Applying the type-instance pattern twice would
lead to an explosion of elements for each of these concepts in both the metamodel
and the model. Moreover, this solution is ineffective since checking the type-
instance conformance within the model requires complex OCL constraints in the
metamodel, while applying the type-instance pattern twice requires replicating
these constraints (e.g., C1/C5 and C4/C6).

Second, this solution is insufficient, as we are not modelling the allowed
number of component instances within a host, but the restriction on instances
is checked globally. Please note that this could be naturally expressed if we were
able to put cardinalities on the references st1 and tu1.

24 A. Rossini et al.

Fig. 5. Deployment model at run-time, with two explicit instances and CPU loads

Altogether, we need to apply the type-instance pattern twice and add com-
plex OCL constraints to the metamodel in order to emulate three ontological
levels within a single linguistic level. This makes the two-level approach convo-
luted and less usable [5].

As an alternative design strategy, we could merge the three classes Comp-

Type, CompTemp, and CompInst into one class Component (and similar for VMType,
VMTemp, and VMInst). The resulting class Component would have a reference
type to itself with optional cardinality as well as a property level to distinguish
whether an instance of Component belongs to the type, template, or instance level.
In addition, we could add OCL constraints to ensure the correctness of the onto-

Fig. 6. Proof-of-concept deployment model at run-time, with both number of current
instances as well as explicit instances and CPU loads

A Comparison of Two-Level and Multi-level Modelling 25

logical typing. While this solution would make the metamodel more compact, it
would lead to a higher complexity of OCL constraints. Moreover, it would also
lead to the misuse of model elements, as the properties currentInst, minInst, and
maxInst would be present in instances of Component, independently of their level,
while they are only necessary at the template level.

In the following section, we present a proof of concept of how CloudML
could be defined and used adopting a multi-level approach.

5 Multi-level Approach

Multi-level modelling extends traditional two-level modelling by enabling the use
of an arbitrary number of levels (rather than just two) in a modelling stack. In
scenarios where the type-instance pattern or one of its variants arise [10], this
solution yields simpler models, since the additional classes to specify instances
become unnecessary.

Fig. 7 shows CloudML organised in four levels. The top level contains an
excerpt of the refactored CloudML metamodel, while the subsequent levels
contain the definition of types (e.g., Tomcat, Ubuntu), a high-level deployment
model, and a low-level deployment model with explicit instances and CPU loads
at run-time. In this solution, it is not necessary to have classes CompType, Comp-

Temp, and CompInst at the top level, but a single class Component is sufficient
(and similar for VirtualMachine).

In this approach, elements are called clabjects (by the contraction of
class+object), as they have both a type and an instance facet. For example,

Fig. 7. Simplified multi-level model for CloudML

26 A. Rossini et al.

Ubuntu is an instance of VirtualMachine and the type of ubuntu1. Furthermore,
clabjects can specify the features of their instances beyond the next level. For
example, VirtualMachine specifies that three levels below, its indirect instances
have a cpuLoad, while two levels below, their instances have a cpuLoadAvg. The
mechanism used for this deep characterisation of instances beyond the next level
is potency [4]. A potency is a natural number (or zero) indicating at how many
levels an element can be instantiated (cf. [21] for a formal discussion of different
types of potency). In Fig. 7, the potency is denoted by the @ symbol. At every
lower level, the potency decreases, and when it reaches zero, the element cannot
be instantiated further. If an element does not declare a potency, it inherits it
from its container, and eventually from the enclosing model. Hence, potency is
a generalisation of the standard instantiation mechanism in the two-level app-
roach, where types in the metamodel have potency 1, and instances in the model
have potency 0.

For the case study, we use multi-level modelling as realised in our Meta-
Depth tool [9]. The tool offers textual modelling and integrates the Epsilon
languages3 for model manipulation. MetaDepth also supports derived prop-
erties, whose calculation expression can be specified using the Epsilon Object
Language (EOL, a variant of OCL). The top model in Fig. 7 contains two derived
properties: currentInst on Component, and cpuLoadAvg on VirtualMachine. Both are
calculated at level 1: the first counts the number of instances of each deployed
component at level 1, and the second computes the average of the cpuLoad of all
the instances at the bottom level. We adapted EOL for its use in a multi-level
setting [11]. For example, we allow indirect type referencing. Because the type
names at intermediate levels are unknown when specifying the top level, we can
refer to instances of instances of a type by using the type name. Hence, at level 0,
an expression like Component.allInstances() returns the set {sensApp11, sensApp12,
tomcat11, tomcat12, ubuntu11, ubuntu12}. Since clabjects with potency 1 or more
retain a type facet, it is possible to apply the operation allInstances on them.

Similar to clabjects, properties and references also have type and instance
facets. Thus, references at intermediate levels can specify cardinalities, as is the
case at levels 1 and 2 in the figure. In addition, MetaDepth supports clabject
cardinalities. We have used this feature at level 1 to specify the allowed scaling
for ubuntu1, tomcat1 and sensApp1.

Finally, multi-level modelling permits linguistic extensions, i.e., elements
which are typed linguistically but not ontologically [4]. The typing relation
between the elements of consecutive levels in Fig. 7 is ontological, while all the
elements are typed by a linguistic metamodel (not shown, but it contains classes
like Clabject and Property). In the case study, this feature would allow adding new
clabjects and properties with no ontological typing at levels 1 and 2.

3 http://eclipse.org/epsilon/

http://eclipse.org/epsilon/

A Comparison of Two-Level and Multi-level Modelling 27

6 Comparison

In this section, we discuss the advantages and disadvantages of each approach.
We base our comparison on a set of criteria that demonstrate the expressiveness
and usability of the examined modelling solutions.

Size of Language Definition. A prominent aspect that affects the choice of a
modelling approach is the size of the language definition. We claim that a large
and verbose language definition is generally undesirable because it is harder to
comprehend. This negative effect also projects into the resulting models, since
more elements need to be used in order to represent an intended expression.
As evidenced by the models in Sec.s 4 and 5, the language definition is three
times larger in the two-level approach. For example, the clabject Component in
the multi-level approach needs to be unfolded into CompType, CompTemp, and
CompInst in the two-level approach. The situation is similar with references (e.g.,
hostedComp gets tripled). This is so because the two-level approach requires emu-
lating the ontological typing by adding the references type between classes at the
type, template, and instance levels, as well as the corresponding OCL constraints.
Instead, the ontological typing in the multi-level approach is native.

Complexity of OCL Constraints. Both multi-level and two-level modelling
take advantage of OCL constraints to ensure the well-formedness of the produced
models. However, there are significant differences related to the complexity and
count of the constraints needed to achieve the targeted outcomes. Constraints
in the two-level approach tend to be more complex because they can only use
the linguistic types (CompType, CompTemp, CompInst), but not the reusable types
at the model level (SensApp, Tomcat, Ubuntu). Nevertheless, there are a number
of other factors contribute to this additional complexity:

– Type-conformance constraints. The two-level approach requires defining OCL
constraints to check, e.g., type conformance between the instances of Comp-

Temp and the instances of CompType, and between the instances of CompInst

and CompTemp. In the case study, these constraints check the correctness of
the references hostedCompType and hostedCompInst (see constraints C1 and C4

in Fig. 4, and constraints C5 and C6 in Fig. 5). The multi-level approach does
not need to include such constraints, because the type conformance check is
embedded into the paradigm.

– Access to lower levels. In the two-level approach, to obtain the instances of a
class representing a type (e.g., the instances of SensApp), we need to navigate
the reference type (e.g., CompInst.allInstances()->select(ci — ci.type = SensApp)).
This access is simpler in the multi-level approach, as it is possible to obtain
the direct or indirect instances of a clabject using the operation allInstances

on the clabject (e.g., sensApp.allInstances()). In the case study, cpuLoadAvg

needs to access all instances at the bottom level to obtain the cpuLoad, and
currentInst counts the number of instances at the bottom level.

28 A. Rossini et al.

– Transparent navigation to upper levels. In the multi-level approach, the
expression o.feature looks up the value of feature in the direct type of o, or in
some indirect type in upper levels. In the two-level approach, this needs to
be done explicitly by using o.type.feature or o.type.type.feature.

– Constraints on reusable types. Suppose we need to specify a constraint on
some reusable type (e.g.Ubuntu). In the multi-level approach, the constraint
would be directly specified on the context of the clabject. For example, defin-
ing self.cpuLoad < 80 with potency 2 on the clabject Ubuntu ensures that all
its instances at level 0 have a cpuLoad lower than 80. In contrast, in the two-
level approach, we should add the following constraint to the class VMInst:
self.type.type.name = ’Ubuntu’ implies self.cpuLoad < 80. In addition, we should
add a property name to VMType to be able to identify the instance of Ubuntu.
This is necessary because Ubuntu lacks a type facet in the two-level approach,
and hence, it cannot specify constraints. Moreover, the constraint should be
added to the metamodel, which may not be allowed as metamodel changes
are frequently restricted to language developers.

– Instantiability of classes. To restrict the number of instances of a certain
class (e.g., CompInst), the two-level approach requires adding properties to
the class to specify the minimum and maximum number of allowed instances,
as well as OCL constraints checking their fulfilment (e.g., properties minInst

and maxInst, and constraints C2 and C3, in Fig. 4). Instead, the three-level
approach does not require to specify any OCL constraint, but only the clab-
ject cardinality.

Precision. We define precision as a measure that reflects how accurately, in
semantic terms, a model can represent an intended expression. Thus, we com-
pare how reference cardinalities are specified. The multi-level approach supports
reference cardinalities at level 1, to gain a fine-grained control of the allowed
scaling at level 0. The presented two-level approach uses ranges for this purpose.
However, it does not constrain e.g., how many instances of SensApp are allowed
in a Tomcat, but only that a global maximum of four are allowed, either residing
in a single Tomcat or in several ones. To enable this feature, the two-level app-
roach would require to emulate reference cardinalities by adding extra classes to
the metamodel (the Relation Configurator pattern in [10]).

Extensibility. We define extensibility as the ability to extend a language while
minimising changes to its metamodel. This is because languages, like any other
software artefact, need to evolve in response to changing requirements. In this
respect, the multi-level approach allows adding new properties at levels 1 and
2, due to its support for linguistic extensions (i.e., elements without ontological
type). Thus, we could add a property maxSensors to SensApp to configure the
maximum number of sensors in SensApp applications. Defining this property
on Component at level 3 is less appropriate, as some component instances at level
2 may lack the property. In the two-level approach, being able to specify new

A Comparison of Two-Level and Multi-level Modelling 29

properties in models would require emulating the infrastructure for property
specification/instantiation at the metamodel level.

Flexibility. We define flexibility as the degree of expressiveness of the chosen
abstraction in terms of the model element relationships and level of encapsu-
lation. In the multi-level approach, clabjects at level 1 or above can specify
operations. Thus, the engineer designing the deployment model could add the
following EOL operation to Ubuntu, with a condition for scaling out:

operation Ubuntu scaleOut(): Boolean { return self.cpuLoadAvg >= 90 }
A reasoner could use this operation as a trigger for scaling out. This flexibility

is not possible in the two-level approach, because elements at model level cannot
specify operations. Instead, a workaround would be to design a dedicated DSL
to express such conditions.

Also concerning flexibility, the multi-level approach supports inheritance at
any level. For example, in Fig. 7, the model at level 2 could specify a hierarchy
of application servers. In the two-level approach, the semantics of inheritance at
the model level would need to be emulated. Nonetheless, the two-level approach
allows customising the semantics of the conformance relation (e.g., to permit two
ontological types for an element) and the inheritance relation (e.g., to (dis)allow
multiple inheritance), while the semantics of these relationships is fixed in the
multi-level approach.

Tooling. Lastly, we examine the tool support for each of the methodologies. The
de-facto standard in modelling frameworks in the state-of-the-art is the Eclipse
Modelling Framework (EMF)4. Whereas EMF provides a large ecosystem of tools
and languages for two-level modelling, the support for multi-level modelling is
limited. MetaDepth is compatible with the Epsilon languages but does not
rely on EMF. Similarly, other multi-level tools, like XModeler [7] or Nivel [1]
do not rely on EMF. A notable exception is Melanee [2], which is built upon
EMF. However, in this case model manipulation languages would need to be
adapted to work with it. Alternatively, at the implementation level one could use
programming languages enhanced with multi-level concepts, like DeepJava [18],
or with strong reflection capabilities [8,16].

Table 1 summarises the studied aspects. Altogether, a multi-level approach
for the case study leads to a smaller language definition, with less OCL con-
straints, and less complex. To achieve the same degree of precision, extensibility
and flexibility, the two-level approach would need to include in the metamodel
many features that are native in a multi-level framework, like reference cardi-
nalities, properties, operations, or inheritance. Nonetheless, as metamodelling
features (like ontological typing or inheritance) are explicitly specified, they can
be customised. The case study needed no customisation though. Finally, a richer
set of tools is currently available for a two-level approach.

4 https://www.eclipse.org/modeling/emf/

https://www.eclipse.org/modeling/emf/

30 A. Rossini et al.

Table 1. Comparison criteria

DimensionTwo-Level Multi-Level
Size × 3-fold replication of classes and references

√
Compact language definition: clabjects and poten-

cies
× Explicit modelling of type relations

√
Type relations are native

OCL × Explicit type-conformance constraints
√

Constraints can use ontological types
complexity × Constraints cannot use ontological types

√
Transparent navigation across ontological levels

× Explicit navigation through type rela-
tions

Precision × Lack of cardinality constraints at model
level

√
Fine-grained control by cardinality constraints at

level 1
Extensibility × Dynamic properties need to be emulated

√
New properties can be added at intermediate levels

Flexibility
√

Customisable conformance/inheritance
rel.s

√
Operations can be added at intermediate levels

× Lack of inheritance at model level
√

Inheritance at the model level is native
Tooling

√
Large ecosystems of tools and languages × Limited tool choice, increased integration effort

7 Related Work

In the cloud community, frameworks such as Cloudify, Puppet or Chef5 provide
DSLs that facilitate the specification and enactment of provisioning, deploy-
ment, monitoring, and adaptation of cloud-based applications, without being
language-dependent. Moreover, the Topology and Orchestration Specification
for Cloud Applications (TOSCA) [20] is a specification developed by the OASIS
consortium, which provides a language for specifying the components compris-
ing the topology of cloud-based applications along with the processes for their
orchestration. Similar to CloudMF, the aforementioned solutions are based on
a two-level modelling approach, so an alternative, multi-level modelling approach
could also be considered for these solutions.

There are scarce works comparing two-level and multi-level solutions for given
problems. In [3], some comparison criteria for multi-level approaches (e.g., pow-
ertypes and deep modelling) are proposed. The criteria include language size
and intended audience. Instead, our criteria are directed to evaluate solutions
to a modelling problem. In our previous work [10], we identified patterns that
signal the need for a multi-level solution, and analysed their occurrence on a
set of metamodels, including an early version of CloudML. In [5], the authors
use a simple example to discuss the benefits (regarding size) of a potency-based
multi-level approach compared to powertypes [15] and a two-level approach. In
contrast, we use a real-life example, and discuss other dimensions beyond size.
In [19], the authors detect the multi-level nature of the MARTE profile, and
use an embedding of a potency based multi-level approach using stereotypes
to refactor its definition. Instead, we use a native multi-level framework like
MetaDepth and compare with a two-level solution.

5 http://www.cloudifysource.org/, https://puppetlabs.com/, http://www.opscode.
com/chef/

http://www.cloudifysource.org/
https://puppetlabs.com/
http://www.opscode.com/chef/
http://www.opscode.com/chef/

A Comparison of Two-Level and Multi-level Modelling 31

8 Conclusions and Future Work

In this paper, we have compared two metamodelling techniques for the purpose
of providing CloudML with features that facilitate reasoning and adaptation
of multi-cloud applications at multiple levels of abstraction. The results show
a smaller language definition in the multi-level case, with some other benefits
regarding extensibility, flexibility, and precision.

In the future, we intend to conduct a user-based empirical study on differ-
ences between the two-level and multi-level modelling approaches discussed in
this paper. The goal is to collect quantitative and qualitative measurements on
the two alternatives with respect to the criteria described in Sec. 6, which will
allow us to verify if there is any statistically significant difference and evaluate
the viability of each. Moreover, we plan to take advantages of the best features
from the two-level and multi-level approaches. In this respect, we are building a
compiler from MetaDepth to EMF, which, given the top model in Fig. 7, would
produce the metamodel in Fig. 6, including the OCL constraints. Hence, design-
ers would deal with a reduced language definition, and the resulting framework
would be easy to integrate with the EMF tooling.

Acknowledgments. The research leading to these results has received funding from
the European Commission’s Seventh Framework Programme (FP7/2007-2013) under
grant agreement numbers 317715 (PaaSage), 318392 (Broker@Cloud), and 611125
(MONDO), the Spanish Ministry under project Go Lite (TIN2011-24139), and the
Madrid Region under project SICOMORO (S2013/ICE-3006).

References

1. Asikainen, T., Männistö, T.: Nivel: a metamodelling language with a formal seman-
tics. Software and System Modeling 8(4), 521–549 (2009)

2. Atkinson, C., Gerbig, R., Kennel, B.: Symbiotic general-purpose and domain-
specific languages. In: Glinz, M., Murphy, G.C., Pezzè, M. (eds.) ICSE 2012: 34th
International Conference on Software Engineering, pp. 1269–1272. IEEE (2012)

3. Atkinson, C., Gerbig, R., Kühne, T.: Comparing multi-level modeling approaches.
In: CEUR Workshop Proceedings MULTI 2014: 1st International Workshop
on Multi-Level Modelling, co-located with MODELS 2014: 17th ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems,
vol. 1286, pp. 53–61. CEUR (2014)

4. Atkinson, C., Kühne, T.: Rearchitecting the UML infrastructure. ACM
Transactions on Modeling and Computer Simulation 12(4), 290–321 (2002)

5. Atkinson, C., Kühne, T.: Reducing accidental complexity in domain models.
Software and Systems Modeling 7(3), 345–359 (2008)

6. Blair, G., Bencomo, N., France, R.: Models@run.time. IEEE Computer 42(10),
22–27 (2009)

7. Clark, T., Gonzalez-Perez, C., Henderson-Sellers, B.: A foundation for multi-level
modelling. In: CEUR Workshop Proceedings MULTI 2014: 1st International Work-
shop on Multi-Level Modelling, Co-located with MODELS 2014: 17th ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems,
vol. 1286, pp. 43–52. CEUR (2014)

32 A. Rossini et al.

8. Cointe, P.: Metaclasses are first class: the ObjVlisp model. In: Meyrowitz, N.K.
(ed.) OOPSLA 1987: Conference on Object-Oriented Programming Systems,
Languages, and Applications, pp. 156–167. ACM (1987)

9. de Lara, J., Guerra, E.: Deep meta-modelling with MetaDepth. In: Vitek, J. (ed.)
TOOLS 2010. LNCS, vol. 6141, pp. 1–20. Springer, Heidelberg (2010)

10. de Lara, J., Guerra, E., Cuadrado, J.S.: When and How to Use Multi-Level
Modelling. ACM Trans. on Software Eng. and Methodology 24(2), 1–46 (2014)

11. de Lara, J., Guerra, E., Cuadrado, J.S.: Model-driven engineering with
domain-specific meta-modelling languages. Software and System Modeling 14(1),
429–459 (2015)

12. Ferry, N., Chauvel, F., Rossini, A., Morin, B., Solberg, A.: Managing multi-cloud
systems with CloudMF. In: Solberg, A., Babar, M.A., Dumas, M., Cuesta, C.E.
(eds.) NordiCloud 2013: 2nd Nordic Symposium on Cloud Computing and Internet
Technologies, pp. 38–45. ACM (2013)

13. Ferry, N., Rossini, A., Chauvel, F., Morin, B., Solberg, A.: Towards model-driven
provisioning, deployment, monitoring, and adaptation of multi-cloud systems. In:
O’Conner, L. (ed.) CLOUD 2013: 6th IEEE International Conference on Cloud
Computing, pp. 887–894. IEEE Computer Society (2013)

14. Ferry, N., Song, H., Rossini, A., Chauvel, F., Solberg, A.: CloudMF: applying
MDE to tame the complexity of managing multi-cloud applications. In: Bilof, R.
(ed.) UCC 2014: 7th IEEE/ACM International Conference on Utility and Cloud
Computing, pp. 269–277. IEEE Computer Society (2014)

15. Gonzalez-Perez, C., Henderson-Sellers, B.: A powertype-based metamodelling
framework. Software and Systems Modeling 5(1), 72–90 (2006)

16. Kiczales, G., des Rivieres, J., Bobrow, D.G.: The Art of the Metaobject Protocol.
MIT Press (1991)

17. Kühne, T.: Matters of (meta-)modeling. Software and Systems Modeling 5(4),
369–385 (2006)

18. Kühne, T., Schreiber, D.: Can programming be liberated from the two-level style:
multi-level programming with deepjava. In: Gabriel, R.P., Bacon, D.F., Lopes,
C.V., Jr., G.L.S. (eds.) OOPSLA 2007: 22nd Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications,
pp. 229–244. ACM (2007)

19. Mallet, F., Lagarde, F., André, C., Gérard, S., Terrier, F.: An automated process
for implementing multilevel domain models. In: van den Brand, M., Gašević, D.,
Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 314–333. Springer, Heidelberg
(2010)

20. Palma, D., Spatzier, T.: Topology and Orchestration Specification for Cloud Appli-
cations (TOSCA). Tech. rep., Organization for the Advancement of Structured
Information Standards (OASIS), June 2013. http://docs.oasis-open.org/tosca/
TOSCA/v1.0/cos01/TOSCA-v1.0-cos01.pdf

21. Rossini, A., de Lara, J., Guerra, E., Rutle, A., Wolter, U.: A formalisation of deep
metamodelling. Formal Aspects of Computing 26(6), 1115–1152 (2014)

http://docs.oasis-open.org/tosca/TOSCA/v1.0/cos01/TOSCA-v1.0-cos01.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cos01/TOSCA-v1.0-cos01.pdf

© Springer International Publishing Switzerland 2015
G. Taentzer and F. Bordeleau (Eds.): ECMFA 2015, LNCS 9153, pp. 33–44, 2015.
DOI: 10.1007/978-3-319-21151-0_3

Empirical Evaluation of UML
Modeling Tools–A Controlled Experiment

Safdar Aqeel Safdar1(), Muhammad Zohaib Iqbal1,2, and Muhammad Uzair Khan1

1 Software Quality Engineering and Testing Lab (QUEST),
National University of Computer and Emerging Science, Islamabad, Pakistan

safdar.aqeel@questlab.pk, {zohaib.iqbal,uzair.khan}@nu.edu.pk
2 Interdisciplinary Centre for Security, Reliability and Trust, Luxembourg, Luxembourg

Abstract. Model driven software engineering (MDSE) has shown to provide
mark improvement in productivity and quality of software products. UML is a
standard modeling language that is widely used in the industry to support
MDSE. To provide tool support for MDSE, a large number of UML modeling
tools are available, ranging from open-source tools to commercial tools with
high price tag. A common decision faced while applying UML in practice is the
selection of an appropriate tool for modeling. In this paper we conduct a study
to compare three of the well-known modeling tools: IBM Rational Software
Architect (RSA), MagicDraw, and Papyrus. In this study we conducted an ex-
periment with undergraduate and graduate students. The goal is to compare the
productivity of the software engineers while modeling with the tools. We meas-
ure the productivity in terms of modeling effort required to correctly complete a
task, learnability, time and number of clicks required, and memory load re-
quired for the software engineer to complete a task. Our results show that Ma-
gicDraw performed significantly better in terms of learnability, memory load,
and completeness of tasks. In terms of time and number of clicks, IBM RSA
was significantly better while modeling class diagrams and state machines
when compared to Papyrus. However no single tool outperformed others in all
the modeling tasks with respect to time and number of clicks.

Keywords: Model driven software engineering · UML  · Modeling tools ·
Controlled experiment · Empirical software engineering

1 Introduction

A large number of commercial and open-source tools are available to support UML
modeling, including IBM Rational Software Architect (RSA), MagicDraw, Papyrus,
Enterprise Architect, Visual Paradigm, Rational Rose, and Argo UML. The choice
of selecting a modeling tool has a great impact on the overall success of MDSE
[1, 2, 3, 4]. The available tools not only vary greatly in their price tag, but also vary in
terms of their features, and can greatly impact the productivity of an engineer. Feature
list and price tag can easily be compared directly, but the other aspects that impact
productivity need thorough empirical evaluations. Such evaluations are not easy to
conduct for end users due to limited resources and restricted access to full version of
the available tools, in particular when evaluating commercial tools.

34 S.A. Safdar et al.

To evaluate productivity, we compared the tools in terms of modeling effort re-
quired to correctly complete a task, learnability, and memory load required for the
engineer to complete a task. We consider these factors to be important as they directly
or indirectly affect the productivity of software engineer.

Controlled experiments are widely used in the domain of software engineering for
the comparison and empirical evaluation of different techniques and tools [5, 6]. We
have used controlled experiment for comparison of UML modeling tools. For our
controlled experiment we selected one open source and two commercial tools for
comparison, which include: IBM Rational Software Architecture, Papyrus, and Ma-
gicDraw, whereas Enterprise Architect is used to train the participants. These are
three of the widely used modeling tools that are based on eclipse and fully support
UML 2.0 and EMF compatible XMI export [1, 3].

In this paper we conducted a controlled experiment with multiple participants to
compare the productivity of selected UML modeling tools. The experiment is con-
ducted with 30 students at National University of Computer and Emerging Sciences,
Islamabad, Pakistan. In the experiment, we gave three of the most widely used UML
diagrams [7], i.e., class diagram, sequence diagram, and state machine to model in an
assigned tool and a questionnaire form to fill at the end of the activity. The question-
naire form contains the details related to starting time and completion time corres-
ponding to each diagram, learnability measure, memory load measure, and guidelines
for completing the activity. Our results show that MagicDraw performed significantly
better in terms of learnability, memory load, and completeness of tasks.

The rest of the paper is organized as follows: Section 2 summarizes the literature
review. Section 3 presents the details related to planning of the experiment. Section 4
provides the results and analysis of our experiment corresponding to each research
question. In Section 5 we provide overall discussion. Section 6 highlights the threats
to validity and finally in Section 7 we conclude our work.

2 Related Work

This section discusses the existing literature related to MDSE modeling tools evalua-
tion in software engineering.

After a thorough search, we found a total of seven studies in literature that compare
and evaluate modeling tools. Eichelberger et al. [3] conducted a comparative survey in
which around 75 modeling tools were evaluated. They derived a hierarchal set of features
from UML superstructure document. The purpose of the survey was to assess the com-
pliance with standard UML and classify the tools into different compliance levels.
Khaled [2] described a set of desired features of UML modeling tools and compared four
modeling tools (i.e., Rational Rose, ArgoUML, MagicDraw, and Enterprise Architect)
based on these features. Sengoz et al. [8] compared two design modeling tools (UML-
SPT-Rhapsody and UML-RT-Rose RT) for the real time software modeling based on
their features. Rani and Garg [9] compared four UML modeling tools, i.e., ArgoUML,
StarUML, Umbrello UML Modeller, and Rational Rose based on their features. Heena
and Ranjna [4] compared five modeling tools, i.e., Rational Rose, MagicDraw, Ar-
goUML, UMLet and Visual paradigm based on their features.

In [10], the authors compare the UML modeling tools in terms of time required for
modeling and subjective opinion of participants regarding tools’ features. They also

 Empirical Evaluation of UML Modeling Tools–A Controlled Experiment 35

applied goals, operator method, and selection (GOMS) technique to measure the
modeling effort required. This study was conducted in 2005.

Almost all of the above discussed studies either compare the tools merely based on
their features [2, 4, 8, 9] or are surveys with an intent to classify the tools [3, 11].
There is only one reported experiment to compare UML modeling tools [10]. We
believe that such an empirical study is crucial to help the software engineers select a
particular tool. In our experience [1, 12], selection of a modeling tool has a great im-
pact on the successful implementation of MDSE in industry. The experiment in [10]
was conducted in 2005. Since then the UML as a standard has grown enormously and
similarly the corresponding tool support has evolved. The study in [10] cannot be
used today to help software engineers in selection of a modeling tool.

In our experiment, we not only measure the time required for modeling (as in [10]),
but we also evaluate the tool in terms of how much of the diagrams developed by the
participants are complete and correct. Moreover, we also compared the tools in terms
of learnability and the memory load required for the engineer to complete a task.

3 Experiment’s Planning

In this section, we discuss the details related to the experiment’s planning phase. These
details are in accordance with the guidelines for reporting experiments provided
by Wohlin et al. [13]. Section 3.1 provides goals, research questions, and hypotheses,
Section 3.2 presents the details related to participants’ selection for the experiment whe-
reas in Section 3.3 we provide the details related to experiment material, i.e., case study
and questionnaire form. Section 3.4 defines the dependent and independent variables of
the experiment. Section 3.5 discusses the experiment design, whereas Section 1.1 provides
the details related to training of participants. Finally in Section 3.7 we discuss the details
related to statistical tests that we apply to analyze the experiment’s data.

3.1 Goals, Research Questions, and Hypotheses

The objective of our experiment is to compare the productivity of three of the widely
referred UML modeling tools: IBM RSA, MagicDraw, and Papyrus. We compare the
productivity when working with these tools in terms of modeling effort, learnability,
and memory load. To evaluate the modeling effort we consider two factors: 1) the
time required for completing a given task, 2) the number of clicks required for com-
pleting a given task. We also consider completeness of the diagrams developed as part
of the modeling effort. Following are the research questions for the experiment con-
ducted in order to evaluate modeling effort, learnability, and memory load:
RQ1: Which tool among IBM RSA, MagicDraw, and Papyrus is better with respect to
modeling effort?

To answer RQ1 we compare the UML tools in terms of effort required to complete
the given modeling tasks correctly. We further divide RQ1 into two sub research
questions as follows:

RQ1.1: In which modeling tool, among IBM RSA, MagicDraw, and Papyrus, the
users were able to correctly model more complete diagrams?
We measure completeness as the percentage of modeling elements modeled correctly
by the user for a particular task compared to the total number of modeling elements in
the reference model for that task. Measuring completeness will allow us to determine

36 S.A. Safdar et al.

the modeling tool in which the participants were able to correctly model more model-
ing elements in the given time. By correctness we mean that modeler used the correct
meta-elements for modeling a given diagram. For example to add a constraint on a
class, modeler should use the UML Constraint meta-element. If the modeler used a
Comment or a Note to model the constraint it will be incorrect.

RQ1.2: Which tool among IBM RSA, MagicDraw, and Papyrus is better with re-
spect to time and number of clicks required for modeling?

We are interested in comparing the tools in terms of time and number of clicks re-
quired to complete the given modeling tasks.

RQ2: Which tool among IBM RSA, MagicDraw, and Papyrus is better with respect
to learnability?

Learnability, i.e., how easy is it to learn, is an important characteristic of a model-
ing tool. RQ2 aims to compare the learnability of the three modeling tools.

RQ3: Which tool among IBM RSA, MagicDraw, and Papyrus is better with respect
to memory load?

Memory load refers to the amount of information a user needs to keep in mind
while completing a specific modeling task.
Before the execution of experiment, we assume that there is no difference in terms of
any factor, which leads to two-tailed null hypotheses of our research questions as
provided in Table 1.

Table 1. Null hypotheses

Research
question

Hypotheses

RQ1.1 H1.1.1: There is no difference between IBM RSA and MagicDraw in terms
of completeness.
H1.1.2: There is no difference between IBM RSA and Papyrus in terms of
completeness.
H1.1.3: There is no difference between MagicDraw and Papyrus in terms of
completeness.

RQ1.2 H1.2.1: There is no difference between IBM RSA and MagicDraw in terms
of effort required for modeling.
H1.2.2: There is no difference between IBM RSA and Papyrus in terms of
effort required for modeling.
H1.2.3: There is no difference between MagicDraw and Papyrus in terms of
effort required for modeling.

RQ2 H21: There is no difference between IBM RSA and MagicDraw in terms of
learnability.
H22: There is no difference between IBM RSA and Papyrus in terms of
learnability.
H33: There is no difference between MagicDraw and Papyrus in terms of
learnability.

RQ3 H31: There is no difference between IBM RSA and MagicDraw in terms of
memory load.
H32: There is no difference between IBM RSA and Papyrus in terms of
memory load.
H33: There is no difference between MagicDraw and Papyrus in terms of
memory load.

 Empirical Evaluation of UML Modeling Tools–A Controlled Experiment 37

3.2 Participants

The experiment was conducted in two sessions with two different groups of partici-
pants having different skill sets. The first group comprises of undergraduate students
who have taken just one modeling course and have a working experience with only
one modeling tool, i.e., Enterprise Architect. The second group includes graduate
students who have working experience with more than one modeling tools.

In the first session, the experiment was conducted with 18 undergraduate students of
final year in computer science at National University of Computer and Emerging
Sciences, Islamabad, Pakistan. The university has a well-defined unbiased grading policy
and we have used students’ grades in the undergraduate course on software modeling to
form three different blocks: 1) students with A grade, 2) students with B grade, 3) stu-
dents with C grade. We have selected the grades of this course for blocking because this
is the only course related to UML modeling that they have studies. In this course, stu-
dents study UML language and complete their semester project using Enterprise Archi-
tect for modeling. We organized the students in three balanced groups where each group
contains an equal number of students from each block.

In the second session, the experiment was conducted with 12 students, who are
currently enrolled in “Advance Software Engineering” course of their MS in software
engineering at the same university. All students have experience with different model-
ing tools. We divided them into three groups on the basis of their experience with the
modeling tools.

3.3 Experiment Material

Case Study: The case study used for the experiment contains three diagrams, i.e., class
diagram, sequence diagram, and state machine diagram. Since it is not feasible to include
all UML diagrams in the case study due to limited resources, therefore we have only
selected three of the most commonly used UML diagrams [7]. These diagrams have been
used for industrial case studies ranging from automated code generation from models
[14], to model based testing [15] and model driven refactoring [16]. We could not find a
case study, which contains all UML class diagram elements, so we extended the existing
diagrams and combined them in one case study. The sequence diagram, we use is taken
from “UML 2 Toolkit” [17] and altered by adding missing sequence diagram elements,
e.g., constructor, destructor, and asynchronous call. The state machine is taken from
“Testing Object-Oriented Systems, Models, Patterns, and Tools” [18] and altered to add
missing state machine diagram elements, e.g., OCL constraints and do activity. The
complete set of diagrams can be found in [19].

Questionnaire Form: The questionnaire form is carefully designed to measure the
learnability and memory load of UML modeling tools. To measure the time required for
modeling we asked the participant to note down the starting time and completion time for
each diagram. We also run an automated script to capture the number of clicks for each
diagram. To measure the completeness, we checked the modeled diagrams against
their reference diagrams. The questionnaire form contains personal data of individuals,
information about their experience with modeling, information about starting time and
completion time of each task (diagram), general guidelines, guidelines for each task, and
information about the learnability and memory load of UML modeling tool.

38 S.A. Safdar et al.

3.4 Independent/Dependent Variables

This section presents the independent and dependent variables involved in our expe-
riment. The independent variables include tools and diagrams whereas dependent
variables include completeness, time and number of clicks required for modeling,
learnability, and memory load.

Tools: We selected three UML modeling tools, i.e., IBM RSA, MagicDraw, and
Papyrus as discussed above.

Diagrams: We selected three most commonly used diagrams class diagram (CD),
sequence diagram (SD), and state machine (SM) diagram in the domain of MDSE [7].

Completeness: To measure the overall completeness of modeling tasks we measure
the completeness of each diagram. The formula for measuring the completeness of
each diagram is given below: ݏݏ݁݊݁ݐ݈݁݌݉݋ܥ஼஽,ௌா,ௌெ ൌ ∑ ሺݐܿݑݎݐݏ݊݋ܥ ݂݋ ݁݌ݕݐ ݄ܿܽ݁ ݂݋ ݏݏ݁݊݁ݐ݈݁݌݉݋ܥ௜ሻ୬௜ୀଵ (1)

Here n shows the maximum types of constructs included in a particular diagram.
For example in case of class diagram constructs included are classes, enumeration and
interface, constraints, cardinality, and relationships. In the same fashion we measured
the completeness for sequence diagram and state machine diagram using the above
mentioned formula. To compute the completeness of each type of construct we meas-
ure the fraction of total instances of a particular type, which are modeled.

Time required for modeling: To measure the time required for modeling we com-
puted the time taken for the participants to model each diagram. The formula for
computing the time is given in equation (2). ܶ݅݉݁ ൌ ݁݉݅ܶ ݊݋݅ݐ݈݁݌݉݋ܥ െ (2) ݁݉݅ܶ ݃݊݅ݐݎܽݐܵ

Number of clicks required for modeling: First we captured the number of clicks us-
ing an automated script and then used a simple Java program to count the total num-
ber of clicks corresponding to each diagram.

Learnability: Learnability refers to the ease with which a novice user can utilize a
particular tool to complete a specific task. To measure the learnability of a tool we
asked participants to rate it on a scale of five after completing the given modeling
tasks.

Memory load: By memory load we mean to keep least information in mind to
complete a specific task in the given modeling tool. To measure the memory load of a
tool we asked participants to rate it on a scale of five after completing the given tasks.

3.5 Experiment Design

The experiment design summarized in Table 2. We divided the students into three
groups and labeled them as group 1, group 2 and group 3. Since these groups are al-
ready balanced and have overall same skills set (Section 3.2), therefore, we assigned
group 1, group 2 and group 3 to IBM RSA, MagicDraw, and Papyrus respectively.
Each group was asked to draw the three given diagrams (class diagram, state machine,
and sequence diagram) in the assigned tool.

 Empirical Evaluation of UML Modeling Tools–A Controlled Experiment 39

Table 2. Experiment design

Diagrams to draw UML modeling tools
- IBM RSA MagicDraw Papyrus

Class diagram Group 1 Group 2 Group 3
State machine Group 1 Group 2 Group 3

Sequence diagram Group 1 Group 2 Group 3

3.6 Training

All the undergraduate students have studied a course on software modeling in which
they were required to complete a semester project that involved creation of a number
of UML diagrams using Enterprise Architect. Therefore, they did not need any partic-
ular training in using Enterprise Architect. The graduate students have experience of
using a variety of modeling tools. Thus to make sure that all the participants have
similar expertise of using Enterprise Architect, we gave a 45 minutes training to the
graduate students on Enterprise Architect. After the training, we gave them a home
assignment to practice class diagram, sequence diagram, and state machine diagram
using Enterprise Architect.

3.7 Selection of Statistical Tests

We apply statistical tests in order to assess whether there is a significant difference
among the tools being compared (Section 3.1). For this purpose, we used non-
parametric Mann Whitney U-test for skewed and parametric T-test for normal data
distribution of experimental results [20]. For all statistical tests reported in this paper
we have used the recommended significance level of α = 0.05. Since our data sample
(i.e., the data obtained from results) is small, we used Shapiro-Wilk test to check the
distribution of data samples. These tests are commonly applied in literature for ana-
lyzing results of such controlled experiments [20].

4 Results and Analysis

This section presents the results and discussion related to each research question de-
fined in Section 3.1. In Table 3 we provide the descriptive statistics for all productivi-
ty measures, i.e., completeness, number of clicks and time required for modeling,
learnability, and memory load. The raw results of the experiment can be found in
[19].

40 S.A. Safdar et al.

Table 3. Descriptive statistics for all productivity measures

Measures Diagrams

RSA-MD* RSA-P* MD-P*

P-value A12 P-value A12 P-value A12
Completeness CD* 0.191 0.5 0.020 0.62 0.378 0.5

SM* 2.5e-5 0.34 0.278 0.5 0.006 0.62

SD* 0.020 0.37 0.326 0.5 0.001 0.68

Overall 0.025 0.43 0.252 0.5 0.001 0.60
Number of Clicks CD 0.093 0.5 0.008 0.16 1.00 0.5

SM 0.177 0.5 0.025 0.3 0.266 0.5

SD 0.755 0.5 0.730 0.5 0.648 0.5

Overall 0.962 0.5 0.756 0.5 0.775 0.5
Time CD 0.968 0.5 0.022 0.27 0.105 0.5

SM 0.385 0.5 0.003 0.4 0.324 0.5

SD 0.076 0.5 0.114 0.5 0.604 0.5

Overall 0.231 0.5 0.656 0.5 0.299 0.5
Learnability - 0.043 0.31 0.014 0.72 3.89e-5 0.85

Memory load - 0.123 0.5 0.165 0.5 0.007 0.85

* CD: Class diagram, SM: State machine, SD: Sequence diagrams, MD: MagicDraw, P: Papyrus, RSA:
Rational Software Architect, in comparison of A-B where P-value < 0.05, if A12 < 0.5 then B is better than
A whereas if A12 > 0.5 then A is better than B.

4.1 Completeness

The data sample for completeness is not normally distributed; therefore we apply the
non- parametric Mann-Whitney U-test to check the truthfulness of our hypotheses and
Vargha and Delaney’s A12 statistic to find the direction and magnitude of difference
between the tools. We compared the tools in pairs. The statistical results of the tests
for the completeness measure are provided in Table 3. Fig. 1 shows the average per-
centage of completed tasks in the three tools corresponding to each diagram.

According to the results of statistical tests corresponding to completeness
(Table 3), there is no significant difference between RSA-MagicDraw and Magic-
Draw-Papyrus in terms of completeness for modeling class diagrams, though

Fig. 1. Average percentage of completed tasks in the three tools

 Empirical Evaluation of UML Modeling Tools–A Controlled Experiment 41

RSA is significantly better than Papyrus in this regard. In terms of completeness for
modeling state machines and sequence diagrams, there is no significant difference
between RSA-Papyrus. However, MagicDraw is significantly better than RSA and
Papyrus for modeling state machines and sequence diagram. We can also observe
from Fig. 1 that overall MagicDraw achieved 13% and 20% higher scores for com-
pleteness as compared to RSA and Papyrus respectively. Papyrus scored least among
all the selected tools. Therefore, among the null hypotheses corresponding to RQ1.1,
H1.1.2 holds true whereas H1.1.1 and H1.1.3 are false.

4.2 Effort Required for Modeling

To evaluate the effort required for modeling we measured the time and number of
clicks required for modeling. To measure the time we compared the time to draw for
each diagram in different modeling tools. Similarly for measuring the number of
clicks we compared the number of clicks required for modeling each diagram in dif-
ferent modeling tools. The statistical results of the tests for the time and number of
clicks required for modeling are provided in Table 3. We apply the non-parametric
Mann-Whitney U-test for all cases while comparing the tools with reference to time
and number of clicks required for modeling except in case of state machine. The data
sample for state machine has normal distribution; therefore, we apply parametric
T-test to compare the time and clicks required for modeling the state machine.

The results of statistical tests corresponding to time required for modeling
(Table 3) show that there is no significant different between RSA-MagicDraw and
MagicDraw-Papyrus in terms of time required for modeling class diagram, state ma-
chine diagram, and sequence diagram. However, in case of RSA-Papyrus results show
a significant difference in terms of time required for modeling class diagram and state
machine diagram. Participants took significantly more time for modeling class dia-
gram and state machine diagram in Papyrus as compared to RSA. Similarly the results
of statistical tests corresponding to number of clicks required for modeling (Table 3)
bring us to the same conclusion that participants required significantly more modeling
effort for modeling class diagram and state machine diagram in Papyrus as compared
to RSA. Among the null hypotheses corresponding to RQ1.2, H1.2.1 and H1.2.3 hold
true whereas H1.2.2 is false in case of modeling class diagram and state machine
diagram. For all other cases our hypotheses corresponding to RQ1.2 are true.

4.3 Learnability

The data sample for learnability has skewed distribution; therefore, we apply non-
parametric Mann-Whitney U-test to compare the selected tools in reference to learna-
bility. The results of statistical tests corresponding to learnability (Table 3) show that
there is a significant difference between RSA-MagicDraw, RSA-Papyrus, and Ma-
gicDraw-Papyrus in terms of learnability. MagicDraw is significantly better than RSA
and Papyrus whereas RSA is significantly better than Papyrus. All the null hypotheses
corresponding to RQ2, i.e., H2.1, H2.2, and H2.3 are false. The average values of
learnability for each tool on a scale of five are shown in Fig. 2. As one can see from
Fig. 2 learnability of MagicDraw was 31% and 14% higher than Papyrus and RSA
respectively.

42 S.A. Safdar et al.

Fig. 2. Average values of learnability and memory load for the three tools

4.4 Memory Load

Our data sample for memory load is skewed, therefore; we apply Mann-Whitney
U-test to check the truthfulness of hypotheses and Vargha and Delaney’s A12 to find
direction and magnitude of difference between two tools. The results of statistical
tests for the memory load measure are provided in Table 3. The results of statistical
tests suggest that there is no significant difference between RSA-MagicDraw and
RSA–Papyrus in terms of memory load measure. However, in comparison of Magic-
Draw-Papyrus there is significant difference, MagicDraw is significantly better than
RSA in terms of memory load. Among the null hypotheses corresponding to RQ3,
H31 and H32 are true whereas H33 is false. The average scores of memory load for
each tool on a scale of five is provided in Fig. 2. It can be observed from Fig. 2 that
MagicDraw scored 28% higher than Papyrus and 12% higher than RSA Papyrus is the
least scoring tool again just like in case of other factors.

5 Discussion

Based on the results provided in Section 4, MagicDraw performed significantly better
than the other tools in terms of completeness, learnability, and memory load. Papyrus has
the least score in terms of these factors among the three tools. In addition to this we also
observed that class diagram has highest score against completeness (i.e., 71%), state
machine has a score of 37%, and sequence diagram has only 39% completeness. This can
be explained because class diagrams have the least complex modeling elements (e.g.,
when compared to orthogonal regions in a state machine or combined fragments in a
sequence diagram) and is the most widely used of the UML diagrams [7].

Results show that MagicDraw has better learnability as compared to other two
tools, which justify why overall MagicDraw is the leading scorer with respect to
completeness. We also observed that the models of state machines were the least
completed by participants. During the data collection we observed that majority of the
participants committed some common mistakes, e.g., they added constraints either
using a UML note or in a comment. Similarly a number of students added the do ac-
tivity as a note in state machine. Most likely it is because of the fact that the process of
adding such modeling elements, e.g., modeling do activity is complex in the modeling
tools and require the underlying knowledge of UML meta model.

6 Threats to Validity

In this section we discuss the threats to validity of our experiment in accordance with
the guidelines in [13]. The internal threats to validity exist when experiment results

 Empirical Evaluation of UML Modeling Tools–A Controlled Experiment 43

are affected by external factors that are not controlled by the researchers. In our case
we used different participants for different treatments of independent variable tools to
avoid learning and fatigue effect in case of multiple runs of the experiment. Another
internal threat can be poorly designed questionnaire form. To address this we asked
authors of the paper, other than the author who developed the questionnaire form, to
review the questionnaire form. To avoid the biasness in selection of participants, we
formed groups using principles of blocking and balancing. We formed groups using
university grading policy and experience with variety of modeling tools. The lack of
motivation of participants can be another threat to internal validity. To keep them
motivated we assured them that this activity would be treated as a credited course
assignment. Another threat is due to the fact that we have not selected all UML dia-
grams. In practice it is very difficult to cover all the thirteen UML diagrams in a sin-
gle experiment due to limited resources and fatigue of the participants. Therefore, we
have selected the most commonly used UML diagrams (according to [7]): UML Class
diagram, UML State Machine, and UML Sequence Diagram.

The external threats to validity are due to settings that hinder the generalization of
our results of experiment to industrial practices. The participants of our experiment
are students who are not professional software engineers. It is a common practice in
empirical software engineering to use students in experiments. This is primarily due
to the unavailability of industry professionals for long duration that is required by the
experiments. In our experiment, we selected the students with suitable educational
background (Section 3.2), and gave them a training session so that they can be treated
as representatives of professional designers.

7 Conclusion

MDSE has improved the productivity and quality of software products. UML is a
standard modeling language and is widely used in industry to apply MDSE. There are
a large number of modeling tools available in the market supporting UML, ranging
from open-source tools to commercial tools. To apply UML in practice we need to
make a critical decision about the selection of an appropriate tool for modeling. Not
all end users are in a position to make such a decision. This paper presented an empir-
ical study to evaluate the productivity of three of the well-known modeling tools:
IBM Rational Software Architect (RSA), MagicDraw, and Papyrus. For this purpose
we compared these tools in terms of modeling effort required for correctly completing
a task, learnability, and memory load required for the engineer to complete a task. The
results of our experiment suggest that MagicDraw performed significantly better in
terms of learnability, memory load, and completeness of state machine and sequence
diagram. MagicDraw outperformed IBM RSA and Papyrus in terms of completeness
of state machines and sequence diagram, learnability, and memory load. In terms of
time and number of clicks, IBM RSA was significantly better while modeling class
diagrams and state machines when compared to Papyrus, however no single tool out-
performed others in all the modeling tasks.

Acknowledgement. This work was supported by ICT R&D Fund, Pakistan under the project
ICTRDF/MBTToolset/2013. Muhammad Zohaib Iqbal was partly supported by National Re-
search Fund, Luxembourg (FNR/P10/03).

44 S.A. Safdar et al.

References

1. Iqbal, M.Z., Ali, S., Yue, T., Briand, L.: Applying UML/MARTE on industrial projects:
challenges, experiences, and guidelines. Software & Systems Modeling, 1–19 (2014)

2. Khaled, L.: A comparison between UML tools. In: Second International Conference on
Environmental and Computer Science, pp. 111–114. IEEE (2009)

3. Eichelberger, H., Eldogan, Y., Schmid, K.: A Comprehensive Survey of UML Compliance
in Current Modelling Tools. Software Engineering 143, 39–50 (2009)

4. Heena, R.: A comparative study of UML tools. In: Proceedings of 11th International Con-
ference on Advances in Computing and Artificial Intelligence, pp. 1–4 (2011)

5. Bellon, S., Koschke, R., Antoniol, G., Krinke, J., Merlo, E.: Comparison and evaluation of
clone detection tools. IEEE Transactions on Software Engineering 33, 577–591 (2007)

6. Ali, S., Yue, T., Briand, L.: Assessing quality and effort of applying aspect state machines
for robustness testing: a controlled experiment. In: IEEE 6th International Conference on
Software Testing, Verification and Validation, pp. 212–221. IEEE (2013)

7. Dias Neto, A.C., Subramanyan, R., Vieira, M., Travassos, G.H.: A survey on model-based
testing approaches: a systematic review. In: Proceedings of the 1st ACM International
Workshop on Empirical Assessment of Software Engineering Languages and Technolo-
gies: Held in Conjunction with ASE Conference, pp. 31–36. ACM (2007)

8. Sengoz, Y.S., Jawawi, A., Deris, S.B.: A Comparison UML Tools for Real-time Software
Modeling (2009)

9. Rani, T., Garg, S.: Comparison of different UML tool: Tool approach. International
Journal Of Engineering And Computer Science 2, 1900–1908 (2013)

10. Bobkowska, A.E., Reszke, K.: Usability of UML modeling tools. In: Proceedings of the Con-
ference on Software Engineering: Evolution and Emerging Technologies, pp. 75–86 (2005)

11. Smith, H.H.: On tool selection for illustrating the use of UML in system development.
Journal of Computing Sciences in Colleges 19, 53–63 (2004)

12. Ali, S., Iqbal, M.Z., Arcuri, A., Briand, L.: A search-based OCL constraint solver for
model-based test data generation. In: 11th International Conference on Quality Software
(QSIC), pp. 41–50. IEEE (2011)

13. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimenta-
tion in software engineering. Springer (2012)

14. Usman, M., Iqbal, M.Z., Khan, M.U.: A model-driven approach to generate mobile appli-
cations for multiple platforms. In: Asia-Pacific Software Engineering Conference (2014)

15. Jilani, A.A., Iqbal, M.Z., Khan, M.U.: A search based test data generation approach for
model transformations. In: Di Ruscio, D., Varró, D. (eds.) ICMT 2014. LNCS, vol. 8568,
pp. 17–24. Springer, Heidelberg (2014)

16. Khan, M.U., Iqbal, M.Z., Ali, S.: A Heuristic-based approach to refactor crosscutting be-
haviors in UML state machines. In: International Conference on Software Maintenance
and Evolution. IEEE (2014)

17. Eriksson, H.-E., Penker, M., Lyons, B., Fado, D.: UML 2 toolkit. John Wiley & Sons
(2003)

18. Binder, R.V.: Testing object-oriented systems: models, patterns, and tools. Addison-
Wesley Professional (2000)

19. Safdar, S.A., Iqbal, M.Z., Khan, M.U.: Empirical Evaluation of Productivity of Software
Engineer in UML Modeling Tools- A Controlled Experiment. Technical report# 3515.
Software Quality Engineering & Testing (QUEST) Lab (2015)

20. Sheskin, D.J.: Handbook of parametric and nonparametric statistical procedures. Chapman
& Hall/CRC (2007)

A Generative Approach to Define Rich
Domain-Specific Trace Metamodels

Erwan Bousse1(B), Tanja Mayerhofer2, Benoit Combemale3,
and Benoit Baudry3

1 University of Rennes 1, Rennes, France
erwan.bousse@irisa.fr

2 Vienna University of Technology, Vienna, Austria
mayerhofer@big.tuwien.ac.at
3 Inria, Rennes Cedex, France

{benoit.combemale,benoit.baudry}@inria.fr

Abstract. Executable Domain-Specific Modeling Languages (xDSMLs)
open many possibilities for performing early verification and validation
(V&V) of systems. Dynamic V&V approaches rely on execution traces,
which represent the evolution of models during their execution. In order
to construct traces, generic trace metamodels can be used. Yet, regarding
trace manipulations, they lack both efficiency because of their sequential
structure, and usability because of their gap to the xDSML. Our contri-
bution is a generative approach that defines a rich and domain-specific
trace metamodel enabling the construction of execution traces for mod-
els conforming to a given xDSML. Efficiency is increased by providing
a variety of navigation paths within traces, while usability is improved
by narrowing the concepts of the trace metamodel to fit the considered
xDSML. We evaluated our approach by generating a trace metamodel
for fUML and using it for semantic differencing, which is an important
V&V activity in the realm of model evolution. Results show a significant
performance improvement and simplification of the semantic differencing
rules as compared to the usage of a generic trace metamodel.

1 Introduction

In recent years, a lot of efforts have been made to provide facilities to design exe-
cutable Domain-Specific Modeling Languages (xDSMLs) [5,19,22]. Executability
of models opens many possibilities in terms of early dynamic verification and val-
idation (V&V) of models, such as debugging [6], runtime verification [16], model
checking [4], and semantic differencing [15].

A central concept in dynamic V&V approaches is the execution trace, which is
the representation of the evolution of a model’s state during an execution. While
a trace can take numerous forms, we focus in this work on traces containing a
sequence of states of the model being executed and event occurrences related to
state changes. All previously mentioned V&V approaches rely on traces: model
checking consists in verifying a property of a model by analyzing all its possible

c© Springer International Publishing Switzerland 2015
G. Taentzer and F. Bordeleau (Eds.): ECMFA 2015, LNCS 9153, pp. 45–61, 2015.
DOI: 10.1007/978-3-319-21151-0 4

46 E. Bousse et al.

traces and providing traces as counter-examples; runtime verification consists in
checking whether or not a trace satisfies a property; debuggers require traces to
replay faulty scenarios; semantic differencing consists in comparing traces of two
models in order to understand the semantic variations between them.

Therefore, there are at least two significant prerequisites for the V&V of exe-
cutable models: (1) the definition of a trace metamodel to represent traces, and
(2) facilities to manipulate large traces efficiently, i.e. with good scalability in
time. The first prerequisite can be fulfilled by using an existing generic trace
metamodel (e.g. Compact Trace Format defined in [10]), which can be adopted
for any executable language. However, such metamodels cannot take the domain-
specific concepts of an xDSML explicitly into account, which makes the devel-
opment of domain-specific analyses of traces more difficult. To cope with that, a
domain-specific trace metamodel that is specific to an xDSML (e.g. fUML trace
metamodel defined in [18]) can be used. Yet, designing such a metamodel is a
time consuming and error-prone task. Also, regarding the second prerequisite,
existing trace metamodels only offer to explore a trace by enumerating all states
and event occurrence one by one, which can only scale linearly at best.

In this paper, we propose a new way to define domain-specific trace metamod-
els for xDSMLs through two contributions: (1) a generic approach to automati-
cally derive a domain-specific trace metamodel for a given xDSML by analyzing
its definitions of execution states and events; (2) facilities to navigate efficiently
within a trace conforming to such a generated metamodel by providing a variety
of navigation paths. We evaluated this work by generating a rich and domain-
specific trace metamodel for a real world xDSML, namely fUML [21], and by
using it for semantic differencing [15]. The results show a simplification of the
semantic differencing rules and better execution times when using the new trace
structure, compared to the usage of a generic trace metamodel.

The remaining sections are organized as follows. Section 2 motivates the
problem domain and explains our ideas. Section 3 presents what is executable
metamodeling. Section 4 presents our contribution. Section 5 discusses the eval-
uation of our approach in the domain of semantic differencing. Finally, Section 6
discusses related work and Section 7 concludes the paper.

2 Motivation and Problem Statement

In this section, we first introduce two requirements we identified for trace meta-
models, and then present our ideas for complying with these requirements.

2.1 Requirements for a Trace Metamodel

We consider a metamodel to be an object-oriented model defining a particular
domain. Therefore it is composed of classes, which consist of properties. A prop-
erty is either an attribute (typed by a datatype) or a reference to another class.
A model is a set of objects that conforms to a metamodel. Conformity means

A Generative Approach to Define Rich Domain-Specific Trace Metamodels 47

that each object in the model is an instance of one class defined in the meta-
model. An object is composed of fields, each representing the object’s values for
one property of the corresponding class.

In our previous work [3], we highlighted a number of issues that must be con-
sidered when constructing and manipulating execution traces. In particular, the
potentially large size of a trace compromises the capacity to query it in a reason-
able time. For instance, if some element of an executable model only changed at
the end of an execution, we might still have to iterate through all states stored
in the corresponding trace before noticing that change. Another issue is to man-
age the manipulation complexity of trace models. Trace analyses can either be
generic (e.g. comparing the number of different states or the amount of event
occurrences), or domain-specific (e.g. determining how many tokens traversed a
Petri net place). In the former case, manipulations are simple and the structure
or content of the trace has little influence on the complexity of the analysis task.
However, in the latter case, manipulations handle domain-specific data that can
be arbitrarily complex depending on the considered xDSML. Hence, in such
cases, defining the right analysis can be error-prone and difficult. A good illus-
tration of these issues is semantic differencing [15]. First, it is a hard problem
because traces tend to be large and therefore expensive to process. But more
importantly, semantic differencing consists in doing domain-specific analyses of
traces, since they are written according to the semantics of a specific xDSML,
and may therefore rely on complex domain-specific data. To sum up, we consider
the following requirements on a good trace metamodel:

Scalability in Time. It should provide good scalability in time when manip-
ulating large traces, i.e. traces with a lot of state changes.

Usability. It should provide good usability both for generic analyses and
domain-specific analyses, e.g. by facilitating the manipulation of traces con-
taining complex domain-specific execution data.

Note that scalability in space or handling distributed systems constitute other
important issues which we presented in [3]. In this paper, we only focus on the
two aforementioned requirements and other issues are out the scope of this work.

2.2 From Generic to Rich Domain-Specific Trace Metamodels

Considerable effort has been made to design generic trace formats to represent
traces of programs or models conforming to any possible language [1,7,8,10].
However, while they may have interesting characteristics (modeling of logical
time, handling of distributed systems, etc.), and may be compatible with generic
trace analysis tools, they do not deal with the requirements previously men-
tioned. First, they do not provide facilities to browse traces efficiently: the only
way to navigate in the trace is by enumerating each captured execution state
one by one. Second, genericity implies a gap between the trace concepts defined
by a trace format and the domain concepts specific to a particular xDSML. This
semantic gap has a significant impact on usability. Moreover, most of these for-
mats only capture events that occurred during an execution, such as the start of

48 E. Bousse et al.

an operation execution, and lack a representation of the execution state, such as
the values of the variables of a program. This is due to the large size of traces,
which leads to limiting the amount of information stored in them. Yet, as stated
previously, we focus in this paper on execution traces containing both states and
events. Indeed, traces containing only events need to be replayed in order to
reconstruct the states, whereas traces containing states allow direct analyses.

To better comply with the requirements (i.e. scalability in time and usabil-
ity), the underlying intuition of the approach we propose is the following: con-
sidering that the benefits of narrowing the scope of a language to a domain are
well known [12], defining a trace metamodel specific to a language should bring
similar advantages. In particular, by providing concepts of the xDSML directy in
the trace metamodel, the usability of the trace should be improved. In previous
work [18], we followed this idea by defining manually a complete trace meta-
model for fUML and recognized the many benefits such a domain-specific trace
metamodel brings. Yet, defining this metamodel was tedious and error-prone,
and we observed redundancies between the trace metamodel and the concepts
defined in fUML. These redundancies are simply explained: the definition of an
xDSML specifies what the state of a model is during its execution as part of the
xDSML’s semantics [5], and a trace metamodel directly requires such a notion
of state. Hence, a first difficulty is the definition of a domain-specific trace meta-
model, which can possibly be mitigated by analyzing how the execution state is
defined in the xDSML. A second difficulty is that while generic trace metamodels
can benefit from existing trace analysis and visualization tools, domain-specific
ones require specific tooling. Therefore, our first idea is to go from generic trace
metamodels to a generic meta-approach to define domain-specific trace meta-
models. More precisely, we propose to automatically derive a complete domain-
specific trace metamodel using the definitions of execution state and events of
an xDSML. Such a generic generative approach would allow both to avoid the
difficulty of defining domain-specific trace metamodels, and to automatically
provide suitable tools for manipulating domain-specific traces.

The second intuition is that while a trace is generally only seen as a sequence
of states and events, there are in fact many imaginable ways to browse a trace.
Having more navigation paths at disposal could be a great way to browse traces
more efficiently. An example is finding the next value change of a given model
element regardless of any other state changes in the model. Such query can be
done easily by traversing the complete trace, yet reifing it as a navigation path
dedicated to the investigated model element would avoid browsing the whole
trace. Henceforth, our second idea is to create rich trace metamodels, i.e. meta-
models that provide many navigation paths to explore a trace.

In a nutshell, our proposal is an approach to automatically generate rich
and domain-specific trace metamodels for an existing xDSML. We evaluate the
relevance of our contribution with respect to the following research questions:

RQ#1: Can a rich domain-specific trace metamodel provide better execution
times for trace manipulations as compared to a generic trace metamodel?

A Generative Approach to Define Rich Domain-Specific Trace Metamodels 49

RQ#2: Can a rich domain-specific trace metamodel simplify the definition of
domain-specific analyses of traces as compared to a generic trace metamodel?

3 From Executable Metamodeling to Execution Traces

In this section, we first present what constitutes an xDSML, then give an example
of an xDSML, and finally provide our definition of execution trace.

3.1 Executable Metamodeling

While the purpose of metamodeling is to define languages, executable metamod-
eling also aims at including execution semantics in the language definition. This
is done through executable Domain-Specific Modeling Languages (xDSMLs),
which are languages that include the definitions of the execution state of a model
conforming to the language, and execution semantics that change this state.

To define the execution state of a model, we consider that an abstract syntax
metamodel can be extended into an execution metamodel with new properties
and classes. To this end, a mechanism equivalent to the well-known package
merge operation can be used. Note that in practice, existing tools and approaches
use different but similar extension mechanisms—e.g. Kermeta [13] uses aspect
weaving, xMOF [19] uses generalization, Hegedüs et al. [11] use separate classes.

There are two general approaches to define execution semantics: transla-
tional and operational semantics. Translational semantics consists in translating
a model m into a model m′ to be executed. This means that the execution state
of m must be constantly synchronized with the execution state of m′. Opera-
tional semantics consist in a set of transformation rules that directly work with
the execution state of m. In this paper, we only deal with operational semantics.

Furthermore, we consider two additional elements of an xDSML. First, in
order to execute a model originally expressed with the abstract syntax meta-
model, the initialization function translates such a model into a model con-
forming to the execution metamodel. Second, the event metamodel defines the
events that may occur between two states during the execution. Each event cor-
responds to a specific transformation rule of the semantics. Such a metamodel
can be directly inferred from the semantics (e.g. an event per transformation
rule) or manually defined for a subset of the rules. Note that our approach does
not require this metamodel, and that in such a case it won’t provide event-based
facilities to construct or manipulate event occurrences in a trace.

Definition 1. An xDSML is defined by:

– An abstract syntax, which is a metamodel. We call immutable a property
introduced in this metamodel. At the model level, we also call immutable an
object’s field based on an immutable property.

– An execution metamodel, which extends the abstract syntax by package
merge. We call mutable a property introduced in this metamodel. At the
model level, we also call mutable an object’s field based on a mutable prop-
erty.

50 E. Bousse et al.

Fig. 1. Petri net xDSML defined using metamodels and xMOF

– Operational semantics, which are a set of transformation rules that modify
a model conforming to the execution metamodel by changing values of muta-
ble fields and by creating/destroying instances of classes introduced in the
execution metamodel.

– An event metamodel, which is a metamodel containing events that may
occur during an execution. Each event is related to a transformation rule.
An instance of an event class is called an event occurrence.

– An initialization function, which given a model conforming to the abstract
syntax, returns a model conforming to the execution metamodel.

Figure 1 shows an example of a Petri net xDSML. On the top left corner, its
abstract syntax is depicted with three classes Net, Place and Transition. Next to
the abstract syntax, the execution metamodel is shown. It extends the class Place
using package merge with a new mutable property tokens. The initialization
function (not shown) transforms each original object (e.g. a Place object without
a tokens field) into an executable object (e.g. a Place object with a tokens field)
as defined in the execution metamodel. It also initializes each tokens field with
the value of initialTokens. At the bottom, the rules defined in the operational
semantics with xMOF [19] are depicted. On the right, the event metamodel is
shown containing a single class FireEvent corresponding to the fire rule.

3.2 Execution Trace

While execution traces can take various forms, we consider in this work that
an execution trace is a sequence of states and event occurrences. Thereby, an
execution state contains all the values of all the mutable fields of a model, i.e.
the values of the fields defined by properties introduced in the execution meta-
model. At each application of a transformation rule defined by the operational
semantics, the execution state of the model changes. As rules are responsible for
state changes, events associated to these rules occur between states.

Definition 2. An execution trace is a sequence of execution states and event
occurrences. While the first state is given by the initialization function, each other
state is reached through the application of a transformation rule and contains at
least the values of the mutable fields of the executed model. If this transformation

A Generative Approach to Define Rich Domain-Specific Trace Metamodels 51

rule is associated to an event, there is a corresponding event occurrence preceding
the state.

4 Generating Rich Domain-Specific Trace Metamodels

To answer RQ #1 and RQ #2, we propose a generative approach to define rich
and domain-specific trace metamodels that provide facilities for efficiently pro-
cessing traces. In this section, we present this approach by first presenting the
challenges we had to overcome, second explaining our generation procedure based
on the introduced Petri net xDSML, third discussing the resulting benefits of
the approach, and fourth providing details on our implementation.

4.1 Observations and Challenges

There are many possible ways to generate a domain-specific trace metamodel
for an xDSML. Regarding the execution states, a simple yet working idea is to
reuse the complete execution metamodel of the xDSML in the trace metamodel.
As the executed model conforms to the execution metamodel, we can clone it at
each execution step and store it as a state in the trace. However, this solution
has multiple drawbacks. First, by duplicating the whole model to store each
execution state, we create redundancies between the states for both immutable
fields (as they never change) and mutable fields (as they may not change in each
step). Scalable model cloning [2] would mitigate this issue at runtime by sharing
immutable data among clones, but would not be of any help when serializing
the trace. Second, the mutable fields we are interested in are scattered among
the immutable fields, which may require complex queries to access them within
a state. These issues compromise RQ #2. Lastly, such a trace metamodel does
not provide any efficient way to browse a trace, since the only possibility is to
enumerate each state one by one. Thus it would be, for instance, tedious and
inefficient to look for the next value of a given mutable field, compromising both
RQ #1 and RQ #2. From these observations, we identified three challenges:

(1) Narrowing the concepts introduced in a trace metamodel, e.g. by focusing
on the mutable properties of the execution metamodel.

(2) Avoiding redundancy in traces, e.g. by not storing the same value twice
consecutively for a given mutable field.

(3) Providing alternative navigation paths, e.g. among the sequence of values of
a specific mutable field.

4.2 Trace Metamodel Generation

Algorithm 1 shows our trace metamodel generation procedure. Note that the
algorithm is simplified for illustration purposes, meaning that some parts are
reduced to functions, and that special cases, such as abstract classes, are not
considered. The inputs of the procedure are the abstract syntax (mmas), the exe-
cution metamodel (mmexe) and the event metamodel (mmevents) of an xDSML.

52 E. Bousse et al.

Fig. 2. Trace metamodel generated for the Petri net xDSML

Algorithm 1. Trace metamodel generation (simplified)
Input: mmas, mmexe, mmevents

Result: mmtrace: the trace metamodel
1 begin
2 ctrace, cexeState ← createBaseGenericClasses()
3 mmtrace ← {ctrace, cexeState}
4 foreach cexe ∈ {c | containsMutableProperties(c)} do
5 ctraced ← createClass()
6 mmtrace ← mmtrace ∪ {ctraced}
7 ctrace.createReferenceTo(ctraced, [0..∗], unordered)
8 if containsImmutableProperties(cexe) then
9 corig ← getClassFromAbstractSyntax(cexe)

10 ctraced.createReferenceTo(corig, [1..1])

11 foreach p ∈ getMutablePropertiesOf(cexe) do
12 cvalue ← createClass()
13 mmtrace ← mmtrace ∪ {cvalue}
14 cvalue.properties ← { copyProperty(p) }
15 ctraced.createReferenceTo(cvalue, [0..∗], ordered)
16 cvalue.createReferenceTo(ctraced, [1..1])
17 cexeState.createReferenceTo(cvalue, [0..∗], unordered)
18 cvalue.createReferenceTo(cexeState, [1..1])

19 if mmevents �= ∅ then
20 cevent ← createEventClass()
21 mmtrace ← mmtrace ∪ {cevent}
22 cexeState.createReferenceTo(cevent, [0..1])
23 cevent.createReferenceTo(cexeState, [1..1])
24 foreach cexeevent ∈ mmevents do
25 ceventcopy ← copyClass(cexeevent)
26 mmtrace ← mmtrace ∪ {ceventcopy}
27 ceventcopy.superTypes ← ceventcopy.superTypes ∪ {cevent}
28 ctrace.createReferenceTo(ceventcopy, [0..∗], ordered)

29 replaceReferencesToExecutionMM(mmtrace,mmas,mmexe)

A Generative Approach to Define Rich Domain-Specific Trace Metamodels 53

The procedure is independent from executable models, since the obtained meta-
model is valid for any execution trace of any model of the considered xDSML.
Note that the classes Trace and ExecutionState are always created (lines 2–3) and
that the class Event is created only when the event metamodel is not empty (lines
20–21). In the following paragraphs, we explain the generation procedure based
on the Petri net xDSML, starting with trace concepts for capturing the small-
est unit of an execution state, i.e. an object’s field values, up to the concepts
for capturing the complete execution state of a model. The trace metamodel
generated for the Petri net xDSML is shown in Figure 2.

Capturing the Values of Fields (lines 11–14). At any given point in time,
all mutable fields of an object of the executed model have a value. To represent
such a value in a trace, we create one class per mutable property of the execution
metamodel, and we copy this mutable property into this new class (lines 12–14).
This enables us to capture each value of a mutable field as an instance of this
generated class. For Petri nets this means creating one class called TokensValue
for the property tokens. Thereby, we precisely narrow the trace metamodel to
the mutable part of the execution metamodel (challenge 1).

Capturing the States of Objects (lines 4–10, 15–16). The state of an
object of the executed model at any point in time is defined by the values of all
its mutable fields. To represent all states reached by an object, we create one
class for each class of the execution metamodel containing at least one mutable
property (lines 4–5). In addition, we make all instances of these generated classes
accessible through a single instance of the class Trace. For Petri nets this means
creating a class TracedPlace for the class Place, and a reference tracedPlaces
from the class Trace. An instance of such a generated class shall contain all values
reached by all mutable fields of an object of the considered type in chronological
order. This is achieved by creating an ordered unbounded reference to each
corresponding generated value class discussed previously (line 15). For Petri
nets this means generating a reference tokensTrace for the class TracedPlace to
the class TokensValue. When creating an execution trace, one TracedPlace object
will be created per Place object, each storing a sequence tokensTrace of all the
values reached by the tokens field of the respective Place object. A first benefit
of this structure is that we avoid redundancy by creating a single object per value
change of a mutable field (challenge 2). A second benefit is that such sequences
provide additional navigation paths in the trace, making it possible to directly
access all changes of one specific mutable field (challenge 3). The last concern for
capturing the state of an object is that the object may also contain immutable
fields, which remain an important piece of information. Since the corresponding
immutable properties are all defined in a class introduced in the abstract syntax,
our solution is to create a reference to this class (lines 8–10). For Petri nets this
means adding a reference originalObject for the traced class TracedPlace to
the class Place of the abstract syntax. A TracedPlace object is thus linked to the
Place object whose states it captures.

54 E. Bousse et al.

Capturing the State of the Model (lines 17–18). An execution state can
be seen as the n-tuple of the values of all mutable fields in an executed model at
a given point in time. However, n is not xDSML-specific, but model -specific, as
the number of mutable fields depends on the number of objects in the executed
model. For instance, in our Petri net xDSML, n equals the number of tokens
fields of one given model, i.e. the number of Place objects. In addition, n can
change during the execution, as new objects can be created for classes introduced
in the execution metamodel. To represent this n-tuple, we create a bidirectional
reference between each generated value class and the class ExecutionState, which
represents one execution state of a model. By that means, an execution state
references an unbounded set of values of mutable fields. For Petri nets this
means introducing the references tokensValue and executionState between
the classes ExecutionState and TokensValue.

Capturing Event Occurrences (lines 19–28). An event may occur between
two execution states if its corresponding transformation rule was responsible for
the respective state change. This is represented by the references preceding-
State and followingEventOcc between the classes ExecutionState and Event
(lines 22–23). Since the abstract class Event represents any kind of event, we
need to copy all classes from the event metamodel into the trace metamodel
and add generalization links to the class Event (lines 25–27). For Petri nets
this means copying the class FireEvent and making it a subclass of Event. In
the same manner as for values, all event occurrences are stored chronologically
within the unique Trace object (line 28). For Petri nets this means having an
ordered reference fireTrace in the Trace class to the class FireEvent. This gives
direct access to all event occurrences of a specific event in chronological order,
which is an interesting additional navigation path for a trace (challenge 3).

Replacing References to the Execution Metamodel (line 29). When
mutable properties and event classes were copied in the trace metamodel, this
included copying references to classes of the execution metamodel. Yet, such
classes may contain mutable properties that were already copied in the trace
metamodel. To avoid having twice the same concept in the trace metamodel
(challenge 1) or twice the same value stored in a trace (challenge 2), our solution
is to replace all references to the execution metamodel by references either to the
abstract syntax or to classes representing the states of objects (e.g. TracedPlace).
This is indicated by the function replaceReferencesToExeMM (line 29).

Example Trace. Figure 3 shows a rich domain-specific trace of a Petri net
model. Note that to construct such a trace, one must instrument the semantics
of an xDSML, which is out the scope of this paper. In the upper part, we use
the concrete syntax of Petri nets to show the execution. In the lower part, we
use an object diagram to show the content of the executed model and of the
trace at the end of the execution. In the example model, the transitions t1 and
t2 are fired, leading to a trace with three states and two event occurrences. To
represent the states, three ExecutionState objects are linked to a set of Tokens-
Value objects, which represent the marking of the Petri net. Some are linked to

A Generative Approach to Define Rich Domain-Specific Trace Metamodels 55

Fig. 3. Example of Petri net model and rich domain specific execution trace

FireEvent objects, which represent the firing of t1 and t2. There is one tokens-
Trace sequence per tokens field: (1, 0) for p1 and p2 , (0, 1, 0) for p3 and (0, 2)
for p4 (not shown). These sequences constitute alternative navigation paths that
facilitate queries, e.g. we can find the maximum number of tokens reached by p1
by reading only two values. Moreover, we can go from one such sequence back
to the complete trace, e.g. to find all states in which p4 had at least two tokens.
Regarding events, we have access to the list of the fired transitions by browsing
the fireEvent trace, e.g. to find states following directly a firing of t2.

Note that this example does not illustrate the creation or deletion of objects
within an execution. Such case is handled with the help of the variable number
of references from a ExecutionState element to values. Hence, an object created
just before a state means that this state and the following ones have references
to the values of this object. Likewise, an object deleted just before a state means
that this state and the following ones have no references to its values.

4.3 Resulting Benefits

Among all the concepts we create in a trace metamodel, some are generic (e.g.
Trace), but the others are specific to the xDSML (e.g. TokensValue). Also, we
make sure not to have any redundancy of concepts. In other words, we precisely
define the structure of execution traces of models conforming to an xDSML.
Thereby, domain-specific analyses of traces have direct access to these concepts,
and do not have to rely on complex queries or introspection to use domain-
specific data. We aim by that means to provide good usability (RQ #2).

In addition, we provide several navigation paths for browsing traces. Indeed,
we create for each mutable property (e.g. tokens) and each event (e.g. FireEvent)
of an xDSML a dedicated navigation path (e.g. tokensTrace and fireTrace).

56 E. Bousse et al.

This allows to enumerate each value of a particular field, or each event occurrence
of a particular event, without having to enumerate all the states of the trace.
Moreover, all values and event occurrences are connected through execution
states, allowing to go from one navigation path to another. These navigation
facilities offer better usability and scalability in time (RQ #1 and RQ #2).

4.4 Implementation

We implemented our approach for the Eclipse Modeling Framework (EMF). Our
completely generic trace metamodel generator is written using EMF and Xtend.
Parts of our prototype are specific to the xMOF framework, including both a
transformation that derives an event metamodel from xMOF semantics and a
trace builder that can construct a trace from the execution of any xMOF-based
model. For more information, the source code (EPL 1.0 licensed) is available at
our project web page: https://gforge.inria.fr/projects/lastragen/.

5 Evaluation

In this section, we present the evaluation of our approach, which consists in a
case study applying rich and domain-specific traces for semantic differencing.
We first introduce our semantic differencing framework, then present our case
study, and finally discuss the obtained results regarding RQ #1 and RQ #2.

5.1 Semantic Differencing

Semantic differencing of models is concerned with identifying differences among
distinct versions of models. Thereby, not only syntactic differences among models
are taken into account, but differences in their semantics are especially consid-
ered. In previous work [15], we have proposed a semantic differencing approach
for xDSMLs, which is based on the analysis of execution traces. In this approach,
execution traces obtained from the execution of two models to be compared are
analyzed for identifying semantic differences among these models. This analysis
is performed by applying semantic differencing rules on the traces, which are
match rules [14] indicating which syntactic differences among the traces consti-
tute semantic differences among the models. The match rules are specific to the
used xDSML as well as the relevant semantic equivalence criterion.

Our semantic differencing approach utilizes a generic trace metamodel for
capturing execution traces. More precisely, a trace conforming to this metamodel
is a sequence of clones of the model after each event occurrence causing a state
change. The usage of a generic trace metamodel has two key implications on
the trace analysis: (i) As a state is simply a collection of objects of any type,
type checks and type casting are required to analyze the captured execution data.
This implies complex rules that are hard to read and comprehend. (ii) Analyzing
state changes of an executed model requires the traversal of all states captured
in a trace. This implies an execution time that scales at best linearly to the
number of captured states. To mitigate these issues, we propose the application
of rich and domain-specific traces as presented in this work.

https://gforge.inria.fr/projects/lastragen/

A Generative Approach to Define Rich Domain-Specific Trace Metamodels 57

5.2 Case Study

As proposed above, we have adapted our semantic differencing framework [15]
so that it relies on execution traces conforming to generated rich and domain-
specific trace metamodels instead of a generic trace metamodel. Thereby, we
conducted a case study with a real world xDSML, namely fUML [21]—a sub-
set of UML comprising class and activity diagrams having well defined execu-
tion semantics. In the case study, we have defined the execution semantics of
fUML using xMOF and used our proposed approach to generate a rich and
domain-specific trace metamodel for fUML. The execution metamodel extends
one metaclass and defines 57 new classes. The generated trace metamodel con-
sists of 56 classes for values and 58 classes for object states. The implemented
semantic differencing rules determine whether two fUML activity diagrams are
trace equivalent, i.e. whether all sequences of action executions possible in one
activity diagram are also possible in the other. We developed two variants of
these rules: one for performing the analysis on trace models conforming to the
generic trace metamodel, and one for performing the analysis on trace models
conforming to the generated domain-specific trace metamodel.

For evaluating the performance improvement gained by relying on the pro-
posed rich domain-specific trace metamodels, we applied the semantic differenc-
ing rules on example fUML models. The example models constitute real world
models taken from the case study of Maoz et al. for evaluating their semantic
differencing operator ADDiff [17]. These models may be found at http://www.
se-rwth.de/materials/semdiff/.

5.3 Results

In the following, we present the results of the evaluation and discuss how they
give answers to the research questions stated in Section 2.2.

Complexity Reduction of Semantic Differencing Rules (RQ #2).
Table 1 compares the complexity of the semantic differencing rules defined for
fUML based on the generic trace metamodel and the rich domain-specific trace
metamodel. For all elements, we observe a significant reduction of the complexity
of the rules reaching from 20% to 100%. This is mainly due to the rich structure
of the generated domain-specific trace metamodel. In contrast to the generic
trace metamodel, there is no need to traverse the complex data structure of the
execution metamodel of fUML, but instead the actions and the evolution of their
values can be directly accessed. Other improvements are due to the fact that the
trace metamodel is domain-specific, such as type checks that become obsolete.
These results allow us to answer RQ #2 as follows: rich domain-specific trace
metamodels simplify the definition of domain-specific trace analyses.

Performance Improvement of Semantic Differencing Rules (RQ #1).
Figure 4 shows the execution times measured for applying the semantic differ-
encing rules on the traces of the considered example models. This experiment
was performed on an Intel Core i7-4600U CPU, 2.10GHz, 2.69GHz, with 12GB

http://www.se-rwth.de/materials/semdiff/
http://www.se-rwth.de/materials/semdiff/

58 E. Bousse et al.

Table 1. Complexity of the seman-
tic differencing rules of fUML defined
for the generic (G) and rich domain-
specific (DS) trace metamodel

Elements G DS Reduction

Lines of code 136 55 60%
Statements 58 21 64%
Operation calls 32 13 59%
Loops 5 4 20%
Type checks 4 0 100%

Fig. 4. Execution time of the semantic dif-
ferencing rules of fUML for generic and rich
domain-specific traces

RAM, running Windows 8.1 Pro. The X-axis of Figure 4 shows the number of
states contained by the generic and domain-specific traces. The Y-axis shows
the measured execution time on a logarithmic scale. Each execution time was
measured ten times and the arithmetic mean values are shown in the figure. As
can be seen from the measurements, the rules analyzing traces conforming to the
domain-specific trace metamodel outperform the match rules analyzing generic
traces since they are between 170 and 400 times faster with an average of 250.
The main reason for this result is the rich structure of the domain-specific trace
metamodel allowing to efficiently explore the trace through dedicated navigation
paths related to specific model elements. These results allow us to answer RQ #1
as follows: rich domain-specific trace metamodels enable better execution times
for trace manipulations as compared to a generic trace metamodel.

6 Related Work

To our knowledge, little work has been done on the topic of domain-specific
traces. Hegedus et al. [11] worked on many aspects of xDSMLs, such as trace
replay and back-annotation. However they do not provide an approach to obtain
trace metamodels for an xDSML. More recently, Meyers et al. introduced the
ProMoBox framework [20], which generates a set of metamodels from an anno-
tated xDSML, including a property metamodel and a trace metamodel. Their
trace metamodel generation has multiple differences with our approach. Among
others, they consider an abstract syntax whose properties are annotated either
as runtime or event to identify mutable elements and event-related elements,
while we consider the abstract syntax and the execution metamodel to be sep-
arated. Indeed, such separation makes possible a better separation of concerns
and interchangeability of semantics. Also, they use generalization to extend a
base trace metamodel, while we generate new classes to avoid having to rely on
introspection and casting when manipulating traces. In addition, they do not
provide alternative ways to explore a trace, while we provide various naviga-
tion paths. Finally, Gogolla et al. [9] generate filmstrip models from UML class

A Generative Approach to Define Rich Domain-Specific Trace Metamodels 59

diagrams. Such filmstrip models match what we call domain-specific trace meta-
models, and also provide some navigation paths among objects states. However,
they do not tackle redundancy since object states are always recreated at each
model change, and they do not consider value states.

Regarding the richness of traces, we will in the future look more thoroughly
at the mostly undocumented and transient traces manipulated by V&V tools.

7 Conclusion and Perspectives

Dynamic V&V of models requires the ability to model executions traces. We
identified two important requirements regarding the definition of a trace meta-
model for an xDSML: it must provide good scalability in time when manipulat-
ing traces, and good usability to analyze traces containing domain-specific data
and events. Generic trace metamodels are not adequate because of their dis-
tance to the domain of an xDSML and because of their lack of alternative trace
exploration means. The approach we presented consists in generating a rich and
domain-specific trace metamodel of an xDSML, using its definition of what the
execution state of a model is, and which events may occur during an execution.
We reify the mutable properties of the execution metamodel into classes, allowing
both to reduce redundancy and to narrow the trace metamodel. We also provide
navigation paths both to follow the evolution of each mutable field of the model
over time, and to follow the event occurrences of each event. This allows an effi-
cient navigation of traces, i.e. an exploration without visiting each state of the
trace. Our evaluation was done by the generation of a trace metamodel for fUML
and its utilization for semantic differencing of several models. The results show
a simplification of the semantic differencing rules and faster execution times of
the rules, when compared to a näıve and generic trace metamodel.

The direct perspectives of this work include defining a common interface for
all generated trace metamodels using model subtyping, enabling compression by
detecting patterns in sequences of values, or handling deltas instead of states for
certain types of value changes (e.g. collections, strings).

Acknowledgments. This work is partially supported by the ANR INS Project
GEMOC (ANR-12-INSE-0011) and by the European Commission under the ICT Policy
Support Programme grant no. 317859.

References

1. Alawneh, L., Hamou-Lhadj, A.: Execution traces: a new domain that requires the
creation of a standard metamodel. In: Ślezak, D., Kim, T., Kiumi, A., Jiang, T.,
Verner, J., Abrahão, S. (eds.) ASEA 2009. CCIS, vol. 59, pp. 253–263. Springer,
Heidelberg (2009)

2. Bousse, E., Combemale, B., Baudry, B.: Scalable armies of model clones through
data sharing. In: Dingel, J., Schulte, W., Ramos, I., Abrahão, S., Insfran, E. (eds.)
MODELS 2014. LNCS, vol. 8767, pp. 286–301. Springer, Heidelberg (2014)

60 E. Bousse et al.

3. Bousse, E., Combemale, B., Baudry, B.: Towards scalable multidimensional exe-
cution traces for xDSMLs. In: 11th Workshop on Model Design, Verification and
Validation. CEUR-WS, vol. 1235, pp. 13–18. CEUR (2014)

4. Combemale, B., Crégut, X., Garoche, P.L., Thirioux, X.: Essay on Semantics
Definition in MDE - An Instrumented Approach for Model Verification. Journal of
Software 4(9), 943–958 (2009)

5. Combemale, B., Crégut, X., Pantel, M.: A design pattern to build executable
DSMLs and associated V&V tools. In: 19th Asia-Pacific Software Engineering
Conference, pp. 282–287. IEEE (2012)

6. Corley, J., Eddy, B.P., Gray, J.: Towards efficient and scalabale omniscient
debugging for model transformations. In: 14th Workshop on Domain-Specific Mod-
eling, pp. 13–18. ACM (2014)

7. DeAntoni, J., Mallet, F.: Timesquare: treat your models with logical time. In:
Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS, vol. 7304, pp. 34–41. Springer,
Heidelberg (2012)

8. Eschweiler, D., Wagner, M., Geimer, M., Knüpfer, A., Nagel, W.E., Wolf, F.: Open
trace format 2: the next generation of scalable trace formats and support libraries.
In: 14th Int. Conf. on Parallel Computing. Advances in Parallel Computing,
vol. 22, pp. 481–490. IOS Press (2011)

9. Gogolla, M., Hamann, L., Hilken, F., Kuhlmann, M., France, R.B.: From
application models to filmstrip models: an approach to automatic validation of
model dynamics. In: Modellierung 2014. LNI, vol. 225, pp. 273–288. GI (2014)

10. Hamou-Lhadj, A., Lethbridge, T.C.: A metamodel for the compact but lossless
exchange of execution traces. Software & Systems Modeling 11(1), 77–98 (2010)

11. Hegedüs, A., Ráth, I., Varró, D.: Replaying Execution Trace Models for Dynamic
Modeling Languages. Periodica Polytechnica - Electrical Engineering 56(3), 71–82
(2012)

12. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical
assessment of MDE in industry. In: 33rd Int. Conf. on Software Engineering (ICSE),
pp. 471–480. ACM (2011)

13. Jézéquel, J.M., Combemale, B., Barais, O., Monperrus, M., Fouquet, F.: Mashup
of metalanguages and its implementation in the Kermeta language workbench.
Software & Systems Modeling, 1–16 (2013)

14. Kolovos, D.S., Di Ruscio, D., Pierantonio, A., Paige, R.F.: Different models for
model matching: an analysis of approaches to support model differencing. In: 2009
ICSE Workshop on Comparison and Versioning of Software Models, pp. 1–6. IEEE
(2009)

15. Langer, P., Mayerhofer, T., Kappel, G.: Semantic model differencing utilizing
behavioral semantics specifications. In: Dingel, J., Schulte, W., Ramos, I., Abrahão,
S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp. 116–132. Springer,
Heidelberg (2014)

16. Leucker, M., Schallhart, C.: A brief account of runtime verification. The Journal
of Logic and Algebraic Programming 78(5), 293–303 (2009)

17. Maoz, S., Ringert, J.O., Rumpe, B.: ADDiff: semantic differencing for activ-
ity diagrams. In: 19th ACM SIGSOFT Symposium and 13th Europ. Conf. on
Foundations of Software Engineering, pp. 179–189. ACM (2011)

18. Mayerhofer, T., Langer, P., Kappel, G.: A runtime model for fUML. In: 7th
Workshop on Models@run.time, pp. 53–58. ACM (2012)

A Generative Approach to Define Rich Domain-Specific Trace Metamodels 61

19. Mayerhofer, T., Langer, P., Wimmer, M., Kappel, G.: xMOF: executable DSMLs
based on fUML. In: Erwig, M., Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS,
vol. 8225, pp. 56–75. Springer, Heidelberg (2013)

20. Meyers, B., Deshayes, R., Lucio, L., Syriani, E., Vangheluwe, H., Wimmer, M.:
ProMoBox: a framework for generating domain-specific property languages. In:
Combemale, B., Pearce, D.J., Barais, O., Vinju, J.J. (eds.) SLE 2014. LNCS,
vol. 8706, pp. 1–20. Springer, Heidelberg (2014)

21. Object Management Group: Semantics of a Foundational Subset for Executable
UML Models (fUML), V 1.1, August 2013. http://www.omg.org/spec/FUML/1.1

22. Tatibouët, J., Cuccuru, A., Gérard, S., Terrier, F.: Formalizing execution semantics
of UML profiles with fUML models. In: Dingel, J., Schulte, W., Ramos, I., Abrahão,
S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp. 133–148. Springer,
Heidelberg (2014)

http://www.omg.org/spec/FUML/1.1

On Lightweight Metamodel Extension
to Support Modeling Tools Agility

Hugo Bruneliere1(B), Jokin Garcia1, Philippe Desfray2,
Djamel Eddine Khelladi3, Regina Hebig3, Reda Bendraou3, and Jordi Cabot4

1 AtlanModTeam (Inria, Mines Nantes & LINA), Nantes, France
{hugo.bruneliere,jokin.garcia-perez}@inria.fr

2 SOFTEAM Cadextan, Paris, France
philippe.desfray@softeam.fr
3 UPMC - LIP6, Paris, France

{djamel.khelladi,regina.hebig,reda.bendraou}@lip6.fr
4 ICREA - UOC, Barcelona, Spain

jordi.cabot@icrea.cat

Abstract. Modeling in real industrial projects implies dealing with
different models, metamodels and supporting tools. They continuously
have to be adapted to changing requirements, involving (often costly)
problems in terms of traceability, coherence or interoperability. To this
intent, solutions ensuring a better adaptability and flexibility of modeling
tools are needed. As metamodels are cornerstones in such tools, meta-
model extension capabilities are fundamental. However, current model-
ing frameworks are not flexible or dynamic enough. Thus, following the
ongoing OMG MOF Extension Facility (MEF) RFP, this paper proposes
a generic lightweight metamodel extension mechanism developed as part
of the MoNoGe collaborative project. A base list of metamodel exten-
sion operators as well as a DSL for easily using them are introduced.
Two different implementations of this extension mechanism (including a
model-level support when (un)applying metamodel extensions) are also
described, respectively based on Eclipse/EMF and the Modelio modeling
environment.

Keywords: Modeling tool · Metamodel extension · Adaptability ·
Flexibility

1 Introduction

Model Driven Engineering (MDE) in general and modeling environments/tools
in particular are used within the industry in various contexts and for varied
purposes [6]. In many cases, companies (both solution providers and users) have
to adapt their model-based infrastructure because of changing requirements or
technological constraints. This usually comes with a range of potential issues
including traceability, coherence or interoperability ones regarding both the mod-
eling artifacts and data conforming to them. This is particularly true for mod-
eling tools that heavily rely on their core supported metamodel(s). Indeed, such
c© Springer International Publishing Switzerland 2015
G. Taentzer and F. Bordeleau (Eds.): ECMFA 2015, LNCS 9153, pp. 62–74, 2015.
DOI: 10.1007/978-3-319-21151-0 5

On Lightweight Metamodel Extension to Support Modeling Tools Agility 63

metamodels may need to evolve over time and new/other ones may have to be
additionally supported by these tools (e.g. due to customer or market require-
ments). Compatibility with already existing models must be preserved, but new
models (conforming to completely different metamodels not yet supported or to
slightly modified versions of existing ones) have to be considered too. Both cases
should be addressed, ideally in such a way that the effort implied by the corre-
sponding modifications to the tools is limited as much as possible. Thus, there
is a clear need for adaptability and flexibility in modeling tools/environments.
This agility requires lightweight metamodel extension capabilities having sev-
eral interesting properties such as compatibility preservation but also genericity,
non-intrusiveness, transparency or some dynamicity (as explained later in the
paper).

Intending to face up current limitations and the lack of standard solutions
(e.g. the OMG MOF Extension Facility (MEF) is still an ongoing RFP [13]), we
propose a dedicated solution in the context of the MoNoGe French collaborative
project1. A generic lightweight metamodel extension approach is being developed
and experimented in an industrial environment where rapid and efficient adap-
tations of the used modeling tools are required. Of course, these tools have to be
modified once to somehow integrate the proposed mechanism. However, among
other reasons detailed later, we consider it lightweight because it then does not
require model migration/transformation processes anymore. It provides meta-
model extension operations to cover real scenarios involving addition, updating
and filtering changes to existing metamodels. Metamodel extension declarations
can be defined and then shared between different modeling tools using a ded-
icated Domain Specific Language (DSL). Thus, the main contributions of the
paper are: i) a base list of metamodel extension operators and corresponding
generic DSL, ii) an overall architecture for implementing a metamodel extension
mechanism based on Eclipse/EMF, transparent from an end-user point of view
and iii) (complementarily) an alternative DSL-compliant solution relying on the
Modelio modeling environment as needed in the MoNoGe project.

The remainder of the paper is structured as follows. We start by explaining
with more details our motivation in Section 2, setting the goals and scope of our
work. In Section 3, we introduce a core list of metamodel extension operators and
the related textual DSL we propose. Then, we describe in Section 4 the proposed
capabilities and architecture to implement a corresponding metamodel extension
mechanism relying on Eclipse/EMF modeling technologies. We also present in
Section 5 an alternative DSL-compliant solution based on the Modelio modeling
environment. We discuss the related work in Section 6 before we finally conclude
in Section 7 with some remaining challenges and future work.

2 Motivation and Industrial Background

As introduced before, the use of MDE-based environments and modeling tools
is relatively widespread in the industry. For various reasons (e.g. new customer
1 http://www.images-et-reseaux.com/en/content/monoge

http://www.images-et-reseaux.com/en/content/monoge

64 H. Bruneliere et al.

needs, technical constraints or business decisions to cite a few), these solutions
have to evolve quite frequently. Related changes can concern several different
aspects: UI can be modified, new features can be added or previous ones removed,
tool’s core can be restructured, etc. In all cases, it is important for software
providers to be able to adapt their tools as easily as possible when implementing
these modifications. According to the promises of MDE, minimizing the cost/-
effort of such evolution is fundamental.

In the particular context of modeling environments, core supported meta-
models are key elements since most components are derived from them (parsers,
editors, verifiers, generators, etc.). Core modification of such environments gen-
erally implies the adaptation of these metamodels and related tooling features.
Modelio is a concrete example of a modeling tool implementing popular stan-
dards such as UML, BPMN, SysML, etc. Users frequently need to reuse pieces
of these standards and create extensions related to domain-specific solutions for
System, Enterprise Architecture or Requirement modeling (for instance). Thus,
already supported metamodels need to be modified to reflect some changes:
new complementary concepts could be added, previously existing ones could
be updated or even filtered if not relevant anymore. In addition, brand new
metamodels may also have to be supported ensuring quality properties such as
traceability of the different versions or coherence between dependent artifacts.
While compatibility with existing models must usually also be preserved, new
models (that can conform to modified or different metamodels) have to be taken
into account too. Both kinds of models need to coexist smoothly within the tool.
As a consequence, modeling environments have to be able to adapt to all these
situations with as much agility as possible.

Illustrating this situation, the MoNoGe main industrial use case comes from
DCNS, a world-leading company in naval defense and energy that notably devel-
ops CMS (Combat Management Systems) for ships. In one of its programs,
DCNS is using two separate modeling tools: one (System Architect) for system-
level modeling using the DoDAF (U.S. Department of Defense Architecture
Framework) standard, the other (Modelio) supporting software design and devel-
opment. DCNS needs to manage permanent consistency between the system and
software modeling levels (plus related traceability and impact analysis), but can-
not customize System Architect.

Thus, part of the work in MoNoGe consists in building a metamodel exten-
sion, in Modelio, to trace and enrich software models with DoDAF elements
(from a subset of the DoDAF metamodel). The objective is to allow architects
and developers to work as before on their current models while, at the same
time, both types of models can be exchanged between the two modeling envi-
ronments and linked together. Only the users who need to see traceability and
impact analysis have access to these extended models combining software- and
system- levels. Interoperability and consistency management stay straightfor-
ward as there is no actual model transformation/migration, just this extended
view of the models in Modelio depending on the user profile.

On Lightweight Metamodel Extension to Support Modeling Tools Agility 65

Fig. 1. Defining NAF by extending DoDAF (excerpt)

Another use case, still in the same DCNS domain, is also being conducted
using an Eclipse/EMF-based environment to demonstrate the genericity of the
proposed extension mechanism and to provide an open source alternative. DCNS
wants to evolve their existing DoDAF models and related tooling support to
NAF (NATO Architecture Framework), which is another architecture framework
deriving its main concepts from MoDAF (British Ministry of Defense Architec-
ture Framework). As NAF is based on Enterprise Architecture concepts relatively
close to the ones existing in DoDAF, the more direct way to make this happen is
to define an extension of the DoDAF metamodel for supporting NAF. The goal
is notably to enable the automatic reuse of existing DoDAF models in a NAF
context. Due to space limit, we introduce here only small parts of the concerned
metamodels and highlight a few required changes. As examples, the following
modifications can be seen in Figure 1:

1. Adding a property FunctionType in the concept SystemFunction.
2. Deleting a property SASymHasFromArrow from the concept DataFlowSym-

bol.
3. Deleting a property SASymHasToArrow from the concept DataFlowSymbol.

Based on these two case studies we conclude that flexible extensions that
do not necessarily require to migrate existing models, and that allow preserving
viewpoints/models of current stakeholders, are an efficient mean to smoothly
integrate modeling tools and increase their scope. To support this, a lightweight
metamodel extension mechanism is needed, like the one we describe in the next
sections.

3 Defining Metamodel Extensions

The first key ingredient of our metamodel extension mechanism is to have an
easy way to express extensions. For that, we provide in this section a textual
DSL that offers an initial list of extension operators (providing base semantics
for extension) to be used when specifying metamodel extensions. After a few

66 H. Bruneliere et al.

introductory definitions, we review the list of operators and textual DSL we are
proposing based on them.

3.1 Terminology and Definitions

In this paper we consider the following definitions. An original metamodel
is an already existing metamodel that has a life on its own (e.g. is integrated
in various tools/solutions, has models that conform to it, etc.). A metamodel
extension is the definition of an extension that is, partially or completely, rely-
ing on concepts coming from original metamodel(s) or from other previously
extended metamodel(s). An extended metamodel is the result of the applica-
tion of one (or several) metamodel extension(s) onto original or already extended
metamodel(s). An existing/legacy model is an already existing model that
conforms to an original metamodel, but not necessarily to the extended meta-
model(s) that could have been specified from this metamodel.

3.2 A Base Set of Metamodel Extension Operators

A metamodel extension specification consists in a set of atomic extension oper-
ations, usually applied on existing metamodel elements. Notably to simplify the
management of extensions (see next section), our goal is to minimize the num-
ber of base operators. These operators can be combined later on to express more
complex changes. Such combinations could also be offered on modeling infras-
tructures supporting them, e.g. as a more powerful predefined extension library.

Our definition of these operators is not linked to any particular technical
environment and therefore could be adopted by all modeling frameworks. Since
metamodels are typically specifying a set of concepts with properties (possi-
bly attributes or references), we follow the same approach for introducing the
operators hereafter:

– ADD (a new concept to the metamodel)
• Create “from scratch” a completely new concept.
• Specialize (subtype) a concept.
• Generalize (supertype) one or several concept(s).

– MODIFY (an existing concept in the metamodel)
• Add property to an existing concept.
• Filter property from an existing concept.
• Modify property of an existing concept (equivalent to Filter + Add).
• Add constraint to an existing concept or one of its properties.
• Filter constraint from an existing concept or one of its properties.

– FILTER (an existing concept in the metamodel).

Constraints on metamodels can be expressed using either natural language
or more dedicated languages depending on implementations (cf. Section 4
for instance). Note that we are voluntarily using the term FILTER and not
DELETE. For coherence and compatibility with the existing/legacy models, we

On Lightweight Metamodel Extension to Support Modeling Tools Agility 67

want our extension mechanism to be as little intrusive as possible. Thus, we
do not want to actually delete elements but rather hide them when asked for.
Filtering is applied on cascade (e.g. in the case of generalizations or derived
properties) and related constraints updated accordingly[11].

3.3 A Textual DSL for Metamodel Extension

Extensions should be easily written by modelers/engineers in a comprehensive
way, justifying the need for a DSL [19]. A textual DSL has been designed in order
to make available the previously introduced extension operators via a textual
concrete syntax very close to our metamodel extension terminology. This syn-
tax is intended to be intuitive and easy-to-learn for people already familiar with
(meta)modeling, and reflects the full list of base extension operators as presented
before. Having genericity and portability in mind, it has been defined indepen-
dently from any particular metamodel or modeling framework/environment.

The overall structure to declare an extension includes its name, the meta-
model(s) it extends and the list of applied operators (as well as the metamodel
elements they are applied to). Figure 2 presents the full grammar of our textual
DSL, thus highlighting its main concepts and structure.

Fig. 2. Grammar of our metamodel extension textual DSL

68 H. Bruneliere et al.

Based on the same small example than introduced at the end of Section 2,
Figure 3 shows a sample metamodel extension illustrating the defined concrete
syntax.

Fig. 3. Example of a metamodel extension definition using our textual DSL

4 Architecture of a Metamodel Extension Mechanism

Once extensions are defined, we need to provide a modeling infrastructure able to
understand and deploy them as part of a normal modeling process. This mainly
includes (de)activating the use of extensions for specific models, and eventually
storing the extension data to be reused in the future. This section presents such
an infrastructure for the Eclipse/EMF framework.

4.1 Expected Characteristics

There are different ways to implement a metamodel extension mechanism (cf.
Section 6). However, we believe such a mechanism should comply with the fol-
lowing list of characteristics, as determined mainly by the industrial partners in
MoNoGe according to their actual needs:

– Genericity. The extension approach cannot be linked to a particular meta-
model, tool or implementing framework. Relying on the same base mecha-
nism, metamodel extensions can be defined on all metamodels and should
be exchangeable between different modeling environments.

– Non-intrusiveness. Defined extensions should not directly modify original
metamodels but rather complement them in an external manner. Thus, tools
relying on these metamodels do not need to be deeply modified when their
metamodels are extended.

– Persistence and Interoperability. Extensions should be specified, stored
and shared in a user-comprehensive format, but also be easily machine-
readable for reusability purposes. For separation of concerns (cf. also Non-
intrusiveness), they should be persisted separately from metamodels.

On Lightweight Metamodel Extension to Support Modeling Tools Agility 69

– Compatibility/conformance preserving. Models should not be altered
when extensions are defined on their respective metamodels: prior meta-
model conformance should always be preserved. Backward conformance is
also interesting: models that conform to a given extension could “forget”
elements brought by this extension (e.g. default values could be used).

– Transparency. From user and tooling perspectives, an extended metamodel
should be presented and manipulated as any regular metamodel. Models can
conform to extended metamodels and dedicated tooling can directly rely on
them.

– Dynamicity and synchronization. Metamodel extensions can be applied
and removed. Corresponding models and tooling should be able to reac-
t/adapt accordingly in order to preserve consistency and usability (notably
concerning compatibility and conformance).

– Runtime computation. (Parts of) Models conforming to an extended
metamodel could be computed at runtime, i.e. from predefined expressions
at extension-level (e.g. queries on the original metamodel). Related models
and tooling should reflect the result of such computations.

4.2 An Eclipse/EMF Implementation

The proposed architecture relies on several existing technologies, reused and/or
refined when needed, from the lively open source ecosystem around Eclipse and
its well-known Eclipse Modeling Framework.

Our Eclipse/EMF implementation first comprises a dedicated parser and
editor for the textual DSL (based on Xtext2) so that users can create their own
metamodel extensions at development time. These extensions are then managed
and processed using the architecture shown in Figure 4.

A Base Operators API consumes, in addition to the original metamodel, the
DSL model generated by Xtext from the user textual definitions of the exten-
sion. Thanks to an ATL3 model transformation, this component produces the
appropriate data required by the Virtualization API to realize the metamodel
extension and corresponding model.

There are different options for linking (meta)models together (cf. Section 6).
In our implementation, we rely on model virtualization techniques to intercon-
nect (meta)models together transparently on an on-demand basis. A virtual
(meta)model is a (meta)model that do not hold concrete data but rather kind of
proxies to original (meta)models, making it relevant in a lightweight metamodel
extension context. As already providing virtualization capabilities, we adapted
EMF Views4 (a refinement of Virtual EMF [1]) to implement the required Virtu-
alization API supporting the previously introduced extension operators. Thus,
“virtual” extended metamodels and models are realized automatically by this
API using the original (meta)models and complementary information computed

2 https://eclipse.org/Xtext
3 https://eclipse.org/atl
4 http://atlanmod.github.io/emfviews

https://eclipse.org/Xtext
https://eclipse.org/atl
http://atlanmod.github.io/emfviews

70 H. Bruneliere et al.

Fig. 4. Overall architecture for the Eclipse-EMF implementation

by the Base Operators API. For conformance reasons, and in case deriving from
already existing models (i.e. prior to metamodel extension), “virtual” models
may need to be completed at runtime (e.g. with some default values) according
to the applied extension operators at metamodel-level (e.g. when a new property
is added). Some initial support is provided via the use of ECL5 as an automated
matching engine in EMF Views. However, this has not been extensively tested so
far in the current version. It can also be noted that constraints on metamodels
are expressed using OCL6.

Interestingly, such extended (meta)models can be manipulated as any EMF
(meta)models in Eclipse, by other existing EMF-based technologies relying on
the standard EMF model handling API or by both kinds of users (cf. Figure 4).
Source code and screencasts of the current implementation are available online7.

The described architecture and Eclipse/EMF implementation globally sat-
isfy the expected characteristics, as introduced in Section 4.1. It is generic as
extensions can be defined and then applied on top of any metamodel. Keep-
ing the DSL tooling independent from the other components makes the overall
extension mechanism even more generic, as defined extensions can be reused
by different modeling environments. The proposed solution is also interoperable
because extension declarations are persisted separately from original metamod-
els and thus can be shared easily between various modeling tools using the same
base extension mechanism (cf. Section 5). The EMF Views non-intrusive and
transparent approach, as well as its extensible architecture, made it a natural
good candidate for our extension mechanism and offers concrete support to these
important properties. Synchronization is ensured because the “virtual” extended
(meta)models simply hold proxies to the real data actually contained in different

5 http://eclipse.org/epsilon/doc/ecl
6 http://wiki.eclipse.org/OCL
7 https://github.com/atlanmod/monoge

http://eclipse.org/epsilon/doc/ecl
http://wiki.eclipse.org/OCL
https://github.com/atlanmod/monoge

On Lightweight Metamodel Extension to Support Modeling Tools Agility 71

Fig. 5. Overall architecture for the Modelio implementation

(meta)models. Moreover, compatibility and conformance are also preserved as
original metamodels are not actually modified. Finally, partial runtime support
is also available via the use of an automated matching engine connected to EMF
Views.

5 An Alternative Compliant Solution

Our textual DSL for specifying metamodel extensions is independent from any
specific modeling tooling, framework or environment. This way, related meta-
model extension mechanisms can be implemented on different technological plat-
forms while still exchanging extension definitions based on the same proposed
DSL. This is an important validation requirement from the MoNoGe industrial
project’s perspective. Thus, in addition to the Eclipse/EMF architecture and
implementation presented before, this section briefly describes an alternative
but DSL-compliant solution being integrated within the Modelio environment8.

In contrast with the Eclipse/EMF solution, the Modelio-based one relies on
a more generative approach (thus partially affecting some of the characteristics
introduced in Section 4.1). There are two very distinct phases in the Modelio
implementation, as summarized in Figure 5.

Firstly, there is a so-called development phase where the extension declara-
tion is processed and transformed into a UML Class model, that is then trans-
formed into a Java implementation model. This later is further processed by
a Java code generator to produce a corresponding metamodel extension Jar
(using the Modelio internal module mechanism) to be loaded in Modelio. Thus,
the Modelio-based solution is able to consume metamodel extensions defined
using the previously introduced DSL. Importantly, this solution also relies on
8 http://www.modelio.org

http://www.modelio.org

72 H. Bruneliere et al.

the same base extension operators (excepting the MODIFY operations which
will be supported in later developments).

Secondly, there is a runtime phase where the packaged metamodel exten-
sion is actually deployed within Modelio. This results in the modification of
the Modelio original metamodel with content from the deployed extension, thus
forming the extended metamodel. Any model that conforms to an extended
metamodel can be imported, seen and used in the Modelio environment. The
possible dynamic loading/unloading of such metamodel extension modules is
currently being evaluated (as impacting more deeply the Modelio application’s
core).

6 Related Work

We compare here our work with other existing metamodel extension approaches,
or solutions that can be applied in this context even if originally designed with
a different purpose in mind.

A first group of related work is the one of metamodel evolution approaches.
Metamodel evolution consists in supporting metamodel changes and their impact
on related models, transformations, etc. An evolution can be perceived as an
extension but, in an evolution context, the old (original) metamodel is gener-
ally abandoned and all the effort is put on adapting related artifacts to the
new metamodel. Several approaches have been proposed to semi-automate the
process concerning model migration [17], transformation migration [4] or DSL
migration [2]. We aim to avoid these complex migration processes and make the
two versions of the metamodel (and related models) coexist.

Metamodel extensions have also been addressed via the the concept of pro-
files, starting with the case of the well-known UML Profile mechanism [14] or
its generalization to an EMF/Ecore context [12]. Following the same under-
lying principles, (meta)model decoration/annotation approaches [10] have also
been used in an extension context, to represent usage-specific information for
instance. However, both kinds of approaches have a limited expressivity as they
are mainly restricted to adding complementary information or metadata. As pre-
sented before, we intend to address a wider range of possible extension operations.

The proposed extension mechanism can be also related to model composition
techniques that may present similar operators to manipulate the models to be
composed [3,5,7,9,16,18]. Model composition can be defined as the creation of a
single model by merging elements coming from several ones [15]. Main problems
then concern the synchronization between original and resulting models, as well
as scalability issues regarding the needed memory and time to actually perform
the merge. In our case, the “new” and “old” models are the same (only the
extensions can be kept separated) and therefore our solution does not suffer
from these problems.

In addition to these approaches, runtime-oriented solutions have been pro-
posed such as EMF Facet9 that allows (meta)model extension by runtime
9 http://eclipse.org/facet

http://eclipse.org/facet

On Lightweight Metamodel Extension to Support Modeling Tools Agility 73

instantiation of additional concepts, attributes or references (computed from
queries defined at metamodel-level). Nevertheless, EMF Facet can only manage
derived information and no new “materialized” data can be part of the extension.

As explained in Section 4, the proposed MoNoGe solution intends to com-
bine the best of different existing approaches. While the extension declaration is
actually persisted via a DSL and can include the three main types of extension
operations, the extended metamodel and related models are concretely realized
by relying on a model virtualization mechanism.

7 Conclusion

We have proposed a lightweight metamodel extension mechanism, based on a tex-
tual DSL for specifying metamodel extensions. We have also described two alter-
native implementations, based on Eclipse/EMF and Modelio respectively, that
concretely enable them. Our main objective is to improve the agility of modeling
frameworks by allowing them to be more flexible and adaptable to changes on
the metamodels they provide support for. The results obtained so far, according
to our industrial partners in the MoNoGe project, are quite promising in terms
of capabilities such as genericity, compatibility preservation, non-intrusiveness,
transparency or dynamicity.

However, the already available DSL and mechanism have to be stressed-out
in more contexts. First, we plan to explore with a couple of other concrete syn-
taxes (including a graphical one) that may be easier to use for some different
user profiles. Moreover, some basic validation support for the defined extensions
is required, e.g. to make sure that a set of extensions applied on a same meta-
model (or extension of metamodel) is coherent. Another interesting aspect would
be to build more elaborated metamodel extension algebra(s) by combining the
proposed based operators, and to tackle related issues such as complex changes
detection [8], consistency management, etc. In addition, the potential use of
our extension approach within other already existing EMF-based tools (such as
Papyrus for instance) could be explored. We could also provide general feedback
to the ongoing OMG MEF standardization process whenever relevant.

Acknowledgments. The presented work is co-funded by the MoNoGe collaborative
project (french FUI 15). We would also like to thank Juan David Villa Calle for the
important amount of work performed on improving the EMF Views tooling in the past
couple of years.

References

1. Clasen, C., Jouault, F., Cabot, J.: VirtualEMF: a model virtualization tool. In: De
Troyer, O., Bauzer Medeiros, C., Billen, R., Hallot, P., Simitsis, A., Van Mingroot,
H. (eds.) ER Workshops 2011. LNCS, vol. 6999, pp. 332–335. Springer, Heidelberg
(2011)

2. Di Ruscio, D., Lämmel, R., Pierantonio, A.: Automated Co-evolution of GMF
Editor Models, pp. 143–162 (2010). CoRR,abs/1006.5761

74 H. Bruneliere et al.

3. Didonet Del Fabro, M., Bézivin, J., Valduriez, P.: Weaving models with the eclipse
AMW plugin. In: Eclipse Modeling Symposium, Eclipse Summit Europe (2006)

4. Garcés, K., Vara, J.M., Jouault, F., Marcos, E.: Adapting Transformations
to Metamodel Changes via External Transformation Composition. Software &
Systems Modeling 13(2), 789–806 (2014)

5. Heidenreich, F., Henriksson, J., Johannes, J., Zschaler, S.: On language-
independent model modularisation. In: Katz, S., Ossher, H., France, R., Jézéquel,
J.-M. (eds.) Transactions on Aspect-Oriented Software Development VI. LNCS,
vol. 5560, pp. 39–82. Springer, Heidelberg (2009)

6. Hutchinson, J., Rouncefield, M., Whittle, J.: Model-driven engineering practices
in industry. In: 33rd ICSE, 2011, pp. 633–642. IEEE, May 2011

7. Jayaraman, P., Whittle, J., Elkhodary, A.M., Gomaa, H.: Model composition in
product lines and feature interaction detection using critical pair analysis. In:
Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS,
vol. 4735, pp. 151–165. Springer, Heidelberg (2007)

8. Khelladi, D.E., Hebig, R., Bendraou, R., Robin, J., Gervais, M.-P.: Detecting
complex changes during metamodel evolution. In: Zdravkovic, J., Kirikova, M.,
Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 263–278. Springer,
Heidelberg (2015)

9. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Merging models with the epsilon
merging language (EML). In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.)
MoDELS 2006. LNCS, vol. 4199, pp. 215–229. Springer, Heidelberg (2006)

10. Kolovos, D.S., Rose, L.M., Drivalos Matragkas, N., Paige, R.F., Polack, F.A.C.,
Fernandes, K.J.: Constructing and navigating non-invasive model decorations. In:
Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 138–152. Springer,
Heidelberg (2010)

11. Kusel, A., Etzlstorfer, J., Kapsammer, E., Retschitzegger, W., Schoenboeck, J.,
Schwinger, W., Wimmer, M.: Systematic Co-evolution of OCL expressions. In:
11th APCCM), vol. 27, p. 30 (2015)

12. Langer, P., Wieland, K., Wimmer, M., Cabot, J.: EMF Profiles: A Lightweight
Extension Approach for EMF Models. Journal of Object Technology 11(1), 1–29
(2012)

13. OMG. Metamodel Extension Facility (MEF) RFP (2011). http://www.omg.org/
cgi-bin/doc.cgi?ad/2011-6-22. (Accessed March-2015)

14. OMG. Unified Modeling Language (UML) (2011). http://www.omg.org/spec/
UML/2.4.1/. (Accessed March-2015)

15. Pottinger, R.A., Bernstein, P.A.: Merging models based on given correspondences.
In: 29th VLDB 2003, pp. 862–873. Morgan Kaufmann, San Fransisco, September
2003

16. Reddy, R., France, R., Ghosh, S., Fleurey, F., Baudry, B.: Model composition - a
signature-based approach. In: Aspect Oriented Modeling (AOM) Workshop (2005)

17. Rose, L.M., Herrmannsdoerfer, M., Williams, J.R., Kolovos, D.S., Garcés, K.,
Paige, R.F., Polack, F.A.C.: A Comparison of model migration tools. In: Petriu,
D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394,
pp. 61–75. Springer, Heidelberg (2010)

18. Sabetzadeh, M., Easterbrook, S.: View Merging in the Presence of Incompleteness
and Inconsistency. Requirements Engineering 11(3), 174–193 (2006)

19. Völter, M.: MD*/DSL best practices (version 2.0), April 2011

http://www.omg.org/cgi-bin/doc.cgi?ad/2011-6-22
http://www.omg.org/cgi-bin/doc.cgi?ad/2011-6-22
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/UML/2.4.1/

Type Inference in Flexible Model-Driven
Engineering

Athanasios Zolotas(B), Nicholas Matragkas, Sam Devlin,
Dimitrios S. Kolovos, and Richard F. Paige

Department of Computer Science, University of York, York, UK
{amz502,nicholas.matragkas,sam.devlin,dimitris.kolovos,

richard.paige}@york.ac.uk

Abstract. In Model-Driven Engineering (MDE), models conform to
metamodels. In flexible modelling, engineers construct example models
with free-form drawing tools; these examples may later need to conform
to a metamodel. Flexible modelling can lead to errors: drawn elements
that should represent the same domain concept could instantiate differ-
ent types; other drawn elements could be left untyped. We propose a
novel type inference approach to calculating types from example models,
based on the Classification and Regression Trees (CART) algorithm. We
describe the approach and evaluate it on a number of randomly generated
models, considering the accuracy and precision of the resultant classifi-
cations. Experimental results suggest that on average 80% of element
types are correctly identified. In addition, the results reveal a correla-
tion between the accuracy and the ratio of known-to-unknown types in
a model.

1 Introduction

In traditional MDE approaches, engineers build models that conform to (typ-
ically pre-defined) metamodels. Flexible modelling tools [1,2] seek to combine
free-form modelling (e.g., sketching on a whiteboard) and more formal mod-
elling (e.g., modelling with a MDE tool). Flexible modelling tools sacrifice some
formality to facilitate exploratory modelling of the domain, but as a result cannot
provide the powerful domain-specific editors generated by MDE tools. Flexible
modelling is arguably accessible to domain experts, who may sketch elements
that represent concepts of a future metamodel; these experts may also assign
types to these drawn elements, when they believe it is suitable to do so.

When examples are constructed using flexible modelling tools, there is no
guarantee that they will consistently obey syntactic and semantic rules that a
rigid metamodel would impose: elements that in traditional MDE would instan-
tiate the same class could have different types assigned by domain experts. This
could happen for a variety of reasons:

1. User input errors: incorrectly assigning different types to nodes/edges that
should have the same type due to typing errors.

c© Springer International Publishing Switzerland 2015
G. Taentzer and F. Bordeleau (Eds.): ECMFA 2015, LNCS 9153, pp. 75–91, 2015.
DOI: 10.1007/978-3-319-21151-0 6

76 A. Zolotas et al.

2. Changes: a domain expert may assign a type to an element, and then later
choose to assign a different type to a different instance of the same element.

3. Inconsistencies: the participation of multiple experts in building examples
could lead to the assignment of different types to elements (nodes/edges)
that are conceptually instances of the same type.

4. Omissions: for example, if the examples are large, it may be easier to overlook
some elements, and not assign them types.

This paper addresses the challenges associated with identifying and managing
omissions during type assignment in flexible modelling; such challenges need to
be overcome in order to provide support for eventual transition from flexible to
more rigorous (metamodel-based) modelling approaches.

There are at least two approaches that can help to address these challenges.
The first is to provide a mechanism to validate that all elements drawn on the
canvas have exactly one type assigned to them. If not, the domain expert could
be prompted to assign missing types and resolve any inconsistencies; a constraint
and repair language [3] can be used to support this. However, this approach may
force users to make decisions about types when they are not ready to do so.
Also, such approaches tend to reveal all omissions and inconsistencies at once,
and so it can be difficult to find and repair specific problems.

The second alternative is that of type inference[4]: missing types could be
inferred by computing and analysing matches between untyped and typed ele-
ments that share the same characteristics. The benefit of this approach is that
users can avoid re-applying the same type to elements that are already defined
in the diagram.

This paper contributes a novel approach to type inference for flexible mod-
els, allowing types to be calculated from example models using classification
algorithms, specifically CART [5]. In our approach, the metamodel of the exam-
ple models is not needed to perform the type inference, as it runs on instances
only. We present the approach in detail, using an illustrative flexible modelling
approach based on GraphML and the flexible modelling technique called Mud-
dles [1]. We demonstrate the approach’s accuracy, precision and limitations via
experiments on a number of randomly generated models. The 80% success rate
indicates that fully automated CART-based type derivation shows promise when
applied to arbitrary muddles.

2 Related Work

In this section, we present literature from the fields of type or metamodel infer-
ence and model matching. Flexible modelling is also briefly summarised. We
describe classification algorithms in more detail in Section 4.2.

Type inference has been widely studied in programming languages, par-
ticularly for dynamically typed languages. Type inference often relies on the
Hindley-Milner [6] [7] algorithm and its extension by Milner and Damas [8]. In
these approaches, program statements are reduced to basic constructs for which

Type Inference in Flexible Model-Driven Engineering 77

a type is already known. Such approaches are challenging to apply in flexible
modelling where there is no predefined abstract syntax.

Inferring types (or metamodels) from example models boils down to a match-
ing problem: elements that are “sufficiently similar” may have similar or identical
types. Model matching has been widely studied, particularly to support model
differencing and versioning. What is important about much of this work is that
different techniques for identifying identical or similar elements have been pro-
posed; a classification was published in [9]. In [10], a model matching technique
is used for the generation of traceability links in MDE. Matching is performed by
checking the name similarity between the data nodes of two attributed graphs
(that represent models). Alanen and Porres [11] use each element’s unique MOF
identifier to calculate the difference and union of models that belong to the
same ancestor model; both approaches are of limited flexibility as they depend
on names or persistent identifiers for inference. In [12] the authors present a
signature-based matching approach that is used for model merging. The signa-
tures are written manually and include the names of the attributes/operations of
each element that should be checked when two elements are examined for their
similarity in order to be merged.

In the domain of flexible modelling, Cho et al. [13] propose the use of example
models to calculate the metamodel in a semi-automatic way. Example drawings,
in [14], created by domain experts, are used as the basis for the definition of a
metamodel. In [15], a tool for the recovery of the original metamodel that was
evolved, using instances models is presented. Finally, in [1], users use a simple
drawing tool to define example models which are then amenable to programmatic
model management (validation, transformation). To the best of our knowledge,
this paper presents the first application of type inference in the domain of flexible
modelling; it also is the first application of CART as the predictive mechanism.
In addition, in contrast with the methods presented in this section, the matching
mechanism is not based on name similarity between the types, the attributes, etc.
but on other structural and semantic characteristics, based on the assumption
that different domain experts that will express example models to define the
same domain may use different names to express the same behaviour.

3 Background: Muddles

In this section, the Muddles [1] flexible modelling approach is presented. We use
Muddles to illustrate our approach to inference.

3.1 Overview

In Muddles, drawing editors are used for the construction of example models (in
[1] yEd1 which is based on GraphML is used to prove the concept). Language
engineers draw examples and then annotate elements with types and attributes,

1 http://www.yworks.com/en/products yed about.html

http://www.yworks.com/en/products_yed_about.html

78 A. Zolotas et al.

while also expressing relations (references and containments) between elements
using edges and group containers. The annotated diagram is then automatically
transformed to an intermediate Muddle (the Muddle metamodel is shown in
Figure 1). Using the Epsilon platform [3], muddles can be consumed so that
model management programs (e.g. transformations) can be executed against
them.

Fig. 1. The Muddle metamodel

3.2 Example

We illustrate “muddling” with an example, creating a language for zoos. The
process starts with the creation of an example zoo diagram (see Fig. 2). Next,
diagram elements are annotated with basic type information. For instance, one
can define the type of the diamond shape as Doctor and the type of the directed
edges from Doctor to Animal nodes (circles) as instances of the cures relation-
ship. The types are not bound to the shape but to each element, meaning that in
another example or even in the same drawing, a diamond can be of type Doctor
while a different diamond can be of type Animal. Types and type-related infor-
mation like properties (attributes of the type), roles and multiplicity of edges
are specified using the appropriate fields in the yEd’s custom properties dialog.
More details about these properties are presented in [1].

Model management programs use this type-related information to access and
manipulate elements of the diagram. For example, if the circle element (typed
as Animal) has a String attribute named name assigned to it, then the following
Epsilon Object Language (EOL) [16] script returns the names of all the ele-
ments of Type Animal. As such, muddles can be programmatically processed
like other models, without having to transform them to a more rigorous format
(e.g., Ecore).

Type Inference in Flexible Model-Driven Engineering 79

Fig. 2. An example Zoo diagram

4 Type Inference Approach

In this section we describe type inference for flexible models. An overview is
shown in Figure 3. The source code for all the algorithms described in Sections 4
and 5 along with detailed instructions can be found at the paper’s website2.

Fig. 3. An overview of the proposed approach

A language engineer constructs a flexible model using a GraphML-compliant
drawing tool. The engineer annotates the model with as much type information
as they see fit; after this, some elements will have known types, others will
have no type. This annotated model is then analysed to extract characteristics
of interest, and these characteristics are passed to the CART algorithm, which
performs type inference. We now explain this process in more detail.

4.1 Model Analysis and Feature Selection

In order to be able to match untyped element with those that are typed, we first
specify a set of characteristics that describe attributes of each element. Each
2 http://www.zolotas.net/type-inference/

http://www.zolotas.net/type-inference/

80 A. Zolotas et al.

characteristic is known as a feature; the set of characteristics for each node is a
feature signature. At the end of the signature, the type of the element (if known)
is also attached. In this approach we used a set of five features that are presented
in Table 1. These were selected because our intention is to base the similarity
measurement and prediction on structural and semantic characteristics of the
models; arguably these features measure these characteristics. As mentioned in
Section 2, the names that domain experts use to express the same behaviour
may vary, and our feature selection was based on this. However, we need to
highlight that we do not claim that the names should be totally ignored as they
can carry useful information. Methodologies proposed in Section 2 which base
their similarity measurement on name matching could be combined with the
approach we propose and possibly improve the prediction results. Plans for this
combination are described in Section 7.

Table 1. Signature features for nodes

Name of Feature Description

Number of Attributes The number of attributes that the node has.

Number of different
types of incoming ref-
erences

The number of all the types of references that target that node. If
a node is targeted by more than one references of the same type,
only 1 instance of them is taken into account (unique references).

Number of different
types of outgoing ref-
erences

The number of all the types of references that come from that
node. As above, multiple outgoing references of the same type
are counted once.

Number of different
types of children

The number of all the unique types that the node contains.
Multiple contained elements of the same type are counted once.

Number of different
types of parents

The number of all the types that the node is contained in.

The example muddle shown in Figure 4(b)) is conceptual instance of the
example metamodel shown in Figure 4(a)). The feature signature of the node
“aZoo” is [2,0,0,1,0,Zoo], as it has 2 attributes, no incoming or outgoing refer-
ences, 2 children which are of the same type (so 1 unique child) and 0 parents.
The 6th position of the signature declares the type of the element, which is useful
for training the classification algorithm that will be used. Similarly, the feature
signature of the node “anAnimal1” is [3,2,1,0,1,Animal] as it has 3 attributes, 2
unique outgoing references (partner and fans), 1 unique incoming reference (part-
ner), 0 children and 1 parent. Its class is Animal. Note here that although the
Animal class in the metamodel has a reference named “cures” of * multiplicity,
it is not added to the signature of the “anAnimal1” element as it is not instan-
tiated in the model. This means that two entities of the same type may have
different signatures. For instance, the signature of the element “anAnimal2” is
[3,1,2,0,1,Animal]. This justifies the choice of using a classification algorithm to
perform the matching. Classification algorithms do not look for perfect matches
but are trained to classify elements by using each time those features that are

Type Inference in Flexible Model-Driven Engineering 81

(a) Example Metamodel (b) Example Model

Fig. 4. Signature Example

most important in the specific set they are trained on, increasing the possibilities
of identifying true positives even if two elements are not identical.

A simple querying algorithm was implemented as part of this approach. The
algorithm parses each of the nodes in the drawing and constructs its feature
signature. All the feature signatures for the elements in which the type is known
are stored in a text file that will be used to train the classification algorithm.

4.2 Training and Classification

Classification algorithms are a form of supervised machine learning for finding
hypotheses that approximate functions mapping input features to a discrete
output class from a finite set of possible values. They require a training dataset
with labelled examples of the output class to process, after which they can
generalise from the previous examples to new unseen instances.

Many classification algorithms exist, some of the most established being deci-
sion trees, random forests, support vector machines and neural networks [17]. For
this work we chose to use decision trees due to the interpretable output repre-
senting the hypothesis learnt. In practice other classification algorithms can often
have higher accuracy, but will produce a hypothesis in a form that is not human
readable. Given the high accuracy of classification achieved using decision trees
in this application, these other algorithms were not deployed in favour of the
aid to debugging provided by being able to interpret how the learnt hypothesis
would classify future instances. Specifically, we used the rpart package (version
4.1-9)3 that implements the functionality of Classification and Regression Trees
(CART) [5] in R4.

3 http://cran.r-project.org/web/packages/rpart/index.html
4 http://www.r-project.org/

http://cran.r-project.org/web/packages/rpart/index.html
http://www.r-project.org/

82 A. Zolotas et al.

An example decision tree is illustrated in Figure 5. Internal nodes represent
features (e.g. Number of Attributes, Parents, etc.), branches are labelled with
values of the parent node and leaf nodes represent the final classification given.
To classify a new instance, start at the root of the tree and consider the feature
specified and take the branch that represents the value of that feature in the new
instance. Continue to process each internal node reached in the same manner
until a leaf node is reached where the predicted classification of the new instance
is the value of that leaf node. For example, given the tree in Fig. 5, a new instance
with less than 3 attributes and 1 unique children would be classified as Zoo (path
is highlighted in Fig. 5).

The success of a classification algorithm can be evaluated by the accuracy of
the resultant model (e.g. the decision tree learnt by CART) on test data not used
when training. The accuracy of a model is the sum of true positives and negatives
(i.e. all correctly classified instances) divided by the total number of instances in
the test set. A single measure of accuracy can be artificially inflated due to the
learnt model overfitting bias in the dataset used for training. To overcome this
k-fold classification can be implemented [18]. This approach repeats the process
of training the model and testing the accuracy k times each time with a different
split of the data into training and test data sets. The final accuracy using this
method is then the mean value generated from the k repeats.

Fig. 5. Example Decision Tree

In our approach, the feature signatures list that contains the signatures of
the known elements of the model are the input features to the CART algorithm.
A trained decision tree is produced. This tree can be used to classify (identify
the type of) the untyped nodes using their feature signatures.

5 Experiment

In this section, we present the experimentation process that was used to evaluate
the proposed approach. An overview of the experiment is shown in Figure 6.
Details about each step follow.

Type Inference in Flexible Model-Driven Engineering 83

Fig. 6. The experimentation process

In order to carry out an evaluation we applied our approach to a number of
publicly available metamodels that were collected as part of the work presented
in [19]. For each of these metamodels we produced 10 random instances using the
Crepe model generator tool [20] (step 1 in Figure 6). Crepe generates random
models that conform to the provided metamodel, using a genetic algorithm. For
our approach, the values that were assigned to the attributes of the instance
models were randomly selected, as the content of the attributes does not affect
the final feature signature of the element. We address any threats to validity of
using randomly generated models in Section 6.3.

Having the experimentation models generated, we had to transform them
into muddles and then randomly erase the types of some of them in order to
simulate a real scenario where some node types are known while others are not.
For that purpose, a Model-to-Text (M2T) transformation was implemented that
transforms instances of Ecore metamodels to GraphML files that conform to the
Muddles metamodel (step 2).

Steps 1 and 2 could be avoided either by directly using available muddles
or by drawing muddles on our own. The first solution was rejected because
flexible modelling approaches are quite new and there is not a repository/zoo
available that hosts such flexible models. The second was also rejected because it
would be a time consuming process but more importantly it could introduce bias
to the process. We decided to follow the 2-step process instead firstly because
we would be able to have a bigger number of test muddles and secondly because
these muddles are randomly generated and are not biased to fit our approach.

After generating the muddles we are now able to extract the feature signature
of each node. As mentioned in Section 3, each muddle conforms to the metamodel
shown in Figure 1. Building atop the Epsilon EMC driver (see Section 3) we

84 A. Zolotas et al.

developed a script that iterates through all the nodes of the graph stored in the
GraphML file and collects the information needed for each node: the number of
attributes, unique outgoing and incoming references, children and parents. This
information is encoded in the comma-separated format presented in Section 4.1
producing one list for each model that contains the feature signatures of the
nodes of this model (step 3).

At this point the types of all the nodes are known to us and saved in the
features signatures list. In order to test the performance of the approach, we need
to simulate the scenario where some nodes in a model are left without a type.
To simulate this we perform the k-fold cross-validation described in Section 4.2.
Each feature signature list is split into two parts, the training and the test set
(step 4). The first set contains the feature signatures of the nodes that will
be used to train the CART algorithm. This set can be thought as the set that
contains all the nodes of which the type is known in the hypothetical scenario
where not all the nodes have types assigned to them. The second set contains the
elements that will perform the role of the nodes of which the type is not known
and will be used to evaluate the accuracy of the trained CART tree. In reality
the types are known, but are ignored during the prediction process and are only
used at the end, to identify if the predictions were correct. The standard 10-Fold
cross-validation will be used in our study: each feature signatures list will be split
10 times to produce 10 different couples of training and test sets. Each time, one
training set will be used to train the algorithm and its coupling test set will
evaluate its success (step 5). The success ratio (also referred as accuracy) is
defined as the total number of correct predictions to the total number of nodes
with missing type. The precision of the algorithm incorrectly predicting each
type is also calculated. The precision is defined as the number of true positives
divided by the sum of the true and false positive predictions for this class. [21]
The algorithm is then reset and is trained and evaluated with the next couple of
training and test sets, respectively. At the end the average accuracy and precision
are calculated (step 6).

The size of the training and the test set may be important in the algorithm
success. We perform the same process for 7 different sampling rates: 30%, 40%,
50%, 60%, 70%, 80% and 90%. For example, in the 80% sampling experiment,
80% of the nodes are placed in the training set and the rest 20% in the test set.
The sampling, the training and the prediction are carried out in R using the
RPart library for the classification. Custom-made scripts were implemented to
automate the calculations of the accuracy, its average values and the precision
for each type.

6 Results and Discussion

Before discussing the results, we present data on the random generated mod-
els that were used in the experimentation process (see Table 2). The smallest
metamodel, a toy example, comprises only 2 types. The largest metamodel is

Type Inference in Flexible Model-Driven Engineering 85

Table 2. Data summary table

Model Name #Types Min Max
Average #Elements

in instances

Chess 2 17 26 21.3

Professor 4 25 36 29.2

Conference 4 30 61 42.5

Zoo 5 47 73 57

Ant 6 53 78 65.3

Use Case 6 35 71 54.2

Bugzilla 7 21 56 39.9

BibTeX 8 56 106 78.8

Cobol 11 33 92 63.7

Wordpress 19 42 71 58.6

Muddle 20 105 105 105

the one that is used to describe Wordpress Content Management System web-
sites (taken from [19]) with 19 different types of classes. On average the test
metamodels had 7.2 types with a median of 6. These numbers do not include
abstract classes but only those that could be instantiated in the random models.
For each metamodel, 10 models were instantiated each of which was of a differ-
ent size. The size of the smallest (Min) and the largest (Max) instance model
for each metamodel is shown in Table 2. The average number of elements for
the instances of each metamodel are also given. We also provide the values for
a muddle drawing we examined. This muddle was part of a side project and
was created before commencing this work. It was used to describe requirements
of a hotel booking system. We only provide this muddle as an indication that
the performance of the algorithm on the random generated muddles from Ecore
metamodels does not differ from the that of applying it to real muddles. All raw
data, results and charts can be found at the paper’s website5.

6.1 Quantitative Analysis

As discussed in the previous section, 10 random models were instantiated from
each of the 10 metamodels. Seven different sampling rates were applied to each
of these models and the CART was run 10 times (10-fold) for each sampling rate
of each model. That sums up to 700 experiments for each of the 10 metamodels
(7,000 runs in total). A summary of the results is presented in Table 3. In the
table, we also include the calculated values for the muddle drawing. However, we
do not include it in the results’ analysis as we have only one instance available
in contrast with the 10 random instances of the other metamodels and thus not
the variability needed to extract safe conclusions from it.

In Table 3, one can see the average accuracy for all the models of each
metamodel split into columns based on the sampling rate that was used each

5 http://www.zolotas.net/type-inference/

http://www.zolotas.net/type-inference/

86 A. Zolotas et al.

Table 3. Results summary table

Average Success Ratio (Accuracy)
for Different Sampling Rates

Model Name #Types 30% 40% 50% 60% 70% 80% 90% Avg. Corel. 1

Chess 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000 -

Professor 4 0.96 0.97 0.98 0.98 0.98 1.00 0.99 0.980 0.90

Conference 4 0.87 0.92 0.95 0.97 0.98 0.99 0.98 0.951 0.90

Zoo 5 0.95 0.98 0.99 1.00 1.00 1.00 1.00 0.989 0.83

Ant Scripts 6 0.69 0.72 0.74 0.74 0.76 0.75 0.77 0.739 0.92

Use Case 6 0.75 0.78 0.79 0.8 0.81 0.79 0.81 0.790 0.82

Bugzilla 7 0.47 0.52 0.54 0.56 0.56 0.58 0.54 0.539 0.75

BibTeX 8 0.66 0.67 0.68 0.67 0.66 0.68 0.69 0.673 0.62

Cobol 11 0.53 0.59 0.62 0.65 0.66 0.67 0.67 0.627 0.92

Wordpress 19 0.44 0.51 0.61 0.66 0.72 0.74 0.77 0.636 0.98

Muddle 20 0.55 0.56 0.59 0.65 0.59 0.67 0.64 0.607 0.82

Avg. 0.732 0.766 0.790 0.803 0.813 0.82 0.822 0.94
Corel. 2 -0.80 -0.78 -0.70 -0.65 -0.57 -0.55 -0.49 -0.67
Corel. 3 0.77 0.72 0.64 0.58 0.53 0.49 0.45

time. For instance, the highlighted value 0.81 indicates that on average, 81% of
the missing types were successfully predicted for the 10 instance models of the
Use Case motamodel, using 70% sampling rate.

Considering the raw values, there are some cases where even with small sam-
pling rates (30%, 40%) all of the missing elements’ types were successfully identi-
fied. More specifically, for smaller models (that were produced from metamodels
with fewer than 5 types) the average success ratio was above 98.9% (between
all the 7 different sampling rates). For metamodels with more types (> 6), that
average dropped to between 53.9% and 79%. However, these values are affected
by the fact that in the relatively large metamodels, the prediction scores are
lower in small sampling rates, but they keep increasing as the sampling rate
(which equals to the amount of knowledge that the CART algorithm is trained
with) is increased.

This observation leads us to two interesting questions, shown under the col-
umn labeled Corel. 1 and the row labeled Corel. 2. Below are the definition of
these correlations.

Corel. 1: How strong is the dependency between the sampling rate and the
success score?

Corel. 2: How strong is the dependency between the number of types in a
metamodel (size of metamodel) and the success score?

As expected, the correlation coefficient values for Corel. 1 indicate a strong or
perfect dependency for all the metamodels, except one (BibTeX). The correlation
coefficient value on the averages of the accuracy for the different sampling rates
is also strong (0.94). This means that prediction scores increase as training sets
become larger. Regarding the second correlation (Corel. 2) we observe a strong
(negative) correlation between the number of types in a metamodel and the

Type Inference in Flexible Model-Driven Engineering 87

success score when the sampling rate is lower than 50%. The correlation becomes
moderate or weak when the sampling rate is larger than 60%. The outcome from
this observation is that when a drawing is left heavily untyped (less than half
of the elements are having a type assigned to them) the success score is affected
by the number of the different types in the drawing: fewer types lead to better
results. In contrast, if the drawing has more information (more than 60% of
the nodes have a type assigned to them) then the number of the types of the
envisioned metamodel doesn’t affect the prediction performance.

The above metrics take only into account the sampling rate. However, it is of
interest to check if the frequency that each type appears to a drawing, increases
the prediction performance of the algorithm. We define frequency as the ratio of
the total number of different types to the total number of elements in the drawn
model. The results are shown in Table 3 (row labelled as Corel. 3) while the
definition of this correlation is the following.

Corel. 3: How strong is the dependency between the frequency with which
a type appears in a drawing and the success score?

Analysing the results, we are led to the same conclusions as with Corel. 2:
For low sampling rates (< 50%), the frequency with which a type appears in
a drawing strongly affects its correct prediction chances. If the sampling rate
increases, this relation no longer exists (or is moderate).

Finally, we analysed the precision of the classifications. Precision is inter-
preted as the certainty in predicting each specific class. Its values vary from 0
(the algorithm never predicted correctly this specific type) to 1 (the algorithm
always predicted correctly this type). The calculation of the precision scores
could be of value in our prediction mechanism because one could initially per-
form a simulation of the prediction in the set that contains all the known types
by splitting it into a new training set and a new test set, running the CART
algorithm and calculating the precision value for each type based on this sim-
ulated training. Then proceed by re-training the CART on the whole original
training set and predict the types of the nodes originally left untyped. If a node
is predicted to be of a type that in the previously described simulation had a
high precision, then assign the type automatically. If the predicted type scores a
very low precision value, then suggest the type for the node but mark this as an
assignment that needs manual reviewing by the domain expert (semi-automatic
assignment).

6.2 Qualitative Analysis

In order to better understand the quantitative results and expose useful infor-
mation on how to improve the performance of the approach we examined the
results from a qualitative perspective, too. Our goal was to identify common pat-
terns and characteristics, if any, in metamodels, where the performance of the
approach was lower. Taking a closer look at all the experimental results of the
Bugzilla metamodel we identified that all incorrect predictions occurred between
types that extend the same abstract class. More specifically, the 4 types (Key-
words, DependsOn, Cc, Blocks) that extend the same class named “StringElt”

88 A. Zolotas et al.

were all identified as being of the same type: the one with the greatest presence in
the training data. Looking at the metamodel, these 4 classes had no attributes,
references or containment relations assigned to them which is a type of structure,
modelling inheritance [22] with no concrete differentiating characteristics.

The same behaviour was also discovered in the BibTeX metamodel. More
specifically, wrong predictions occurred between types that were extending the
same class but their differentiating point was that they both had an extra
attribute than the parent class. The same issue occurred between classes that had
the same grandparent, where their parents had no differentiating characteristics.

Such a behaviour is expected as the elements that belong to the category
described above, share the same characteristics that inherit from their ances-
tors. In addition, they do not have any of their own specific characteristics
(Bugzilla scenario) or they have the same feature which differs (e.g. both have
an extra attribute as in the Bibtex scenario). This means that these elements
share exactly the same features signature. A way to tackle such a behaviour
could be the introduction of other features which are not calculated based on
semantic characteristics that are always the same in such situations. Ideas on
the introduction of new features that could solve this problem are discussed in
Section 7. However, having such a behaviour might be of interest if the goal is
not restricted to type inference but is extended to metamodel inference. CART
supports the functionality of collecting such entities that share enough common
characteristics but are of different type in the same “bucket”. This could also
serve in tackling problems 1-3 identified in Section 1.

6.3 Threats to Validity

In the experimentation process the data for testing the performance of the pro-
posed approach was generated using a random model generator. There are two
issues with this. The first is that we are using models (that conform to a meta-
model) and not muddles, to run the experiments. This was done for largely
pragmatic reasons: we have an efficient model generator available; no muddle
generator currently exists; and we wanted to evaluate the feasibility of using the
CART-based approach for type inference first, before carrying out more detailed
experiments on user-created flexible models. We do not believe that the use
of models instead of muddles will have significant impact on the experimental
results, because the accuracy of our classification algorithm depends only on the
features identified in Table 1; randomly generated models and muddles will not
be observably different in terms of these features. To support this argument, we
ran the prediction on a real muddle and the results suggest that the performance
of the predictions is not affected by this fact. However, other user-defined models
and muddles may differ - and as such our future work will involve conducting
experiments with more user-created muddles.

A second issue in using this generator is that although it generates random
models, the number of attributes that each node has is always the same for
nodes of the same type. However, this does not work in favour of our approach,
because in cases where two different types have the same number of attributes,

Type Inference in Flexible Model-Driven Engineering 89

all instances will have the same value in the attributes feature in their signature.
A work-around for this would be the implementation of a post-generation script
that would randomly delete attributes from the elements to make sure that
different instances will not always have the same number of attributes.

Ten metamodels were used in total to generate testing models. These ten
metamodels were picked randomly from a set of 500 metamodels and the number
of different concrete types in each of them varied from 2 up to 19. It would
be of interest to apply the approach to even larger metamodels, although our
experience (extracted from experimenting with the real muddle provided in this
paper) suggests that having a flexible model with more than 20 different types
is marginal and is not a terribly realistic scenario – generally, language engineers
switch to more formal metamodelling infrastructure for larger languages. The
number of instances for each metamodel and the number of repeats (700 runs
for each metamodel) that the experiment was run on each of them is sufficient
as it complies with the standard 10-fold methodology used in the domain of
classification algorithms.

7 Conclusions and Future Work

We have proposed and evaluated an approach to support type inference for
flexible modelling, thus contributing towards making it easier to transition from
(untyped) example models to MDE models. More specifically, we have presented
a type inference approach to flexible modelling based on CART. The CART algo-
rithm is trained with elements that have been typed (e.g., by domain experts),
in order to predict the types of the elements that have been left untyped. Experi-
ments suggest that the average prediction success ratio was 80% of the elements
between all the generated models. A positive correlation between the ratio of
known to unknown elements with the success score was also identified, along
with a threshold in sampling after which the success score is not affected by the
number of total types in the tested model.

The approach is intended to be used to support flexible modelling, where
examples can be created in ways that are not restricted by metamodels. How-
ever, it could be applied directly to traditional MDE: the CART algorithm could
be used, for example, to infer types from an already-typed model, which may
potentially reveal poor or incorrect type assignments or misuses of the meta-
model.

In the future, we plan to introduce and test additional features that could
be used to characterise the nodes other than the five that we used in this paper.
These new features are inspired by the fact that in flexible modelling there may
be spatial and graphical characteristics that could be useful – for example, the
shape of the nodes, their size or their color, or the semantics that these char-
acteristics denote [23]. In essence, we will experiment with the extent to which
concrete syntax information can be used to further enrich the CART classifi-
cation. In addition, the names that the domain experts choose to assign to the
semantic characteristics could also be assessed to improve the predictions (e.g.

90 A. Zolotas et al.

the name of the attributes of each class). As mentioned, we base this work on
the assumption that domain experts may use different naming conventions to
express the same behaviour however we could overcome this by assigning custom
weight to the importance of name-matching feature: if the examples are gener-
ated by a lot of different people then decrease the impact of the name matching
in the prediction; if they are generated by a few then increase it. Of interest
is the calculation of the level of importance of each feature (those used in this
approach and those proposed in this last paragraph) in the classification deci-
sion. This will help us identify a set of features that maximises the classification
performance and thus discard those that do not offer any valuable information
to the algorithm or even reduce its performance.

Acknowledgments. This work was carried out in cooperation with Digital Light-
speed Solutions Ltd, and was supported by the EPSRC through the LSCITS initiative
and part supported by the EU, through the MONDO FP7 STREP project (#611125).

References

1. Kolovos, D.S., Matragkas, N., Rodŕıguez, H.H., Paige, R.F.: Programmatic muddle
management. In: XM 2013-Extreme Modeling Workshop, p. 2 (2013)

2. Gabrysiak, G., Giese, H., Lüders, A., Seibel, A.: How can metamodels be used flex-
ibly. In: Proceedings of ICSE 2011 Workshop on Flexible Modeling Tools, Waikik-
i/Honolulu, vol. 22. (2011)

3. Paige, R.F., Kolovos, D.S., Rose, L.M., Drivalos, N., Polack, F.A.: The design
of a conceptual framework and technical infrastructure for model management
language engineering. In: 2009 14th IEEE International Conference on Engineering
of Complex Computer Systems, pp. 162–171. IEEE (2009)

4. Mitchell, J.C.: Concepts in programming languages. Cambridge University Press
(2003)

5. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and regression
trees. CRC Press (1984)

6. Hindley, R.: The principal type-scheme of an object in combinatory logic. Trans-
actions of the american mathematical society, 29–60 (1969)

7. Milner, R.: A theory of type polymorphism in programming. Journal of computer
and system sciences 17(3), 348–375 (1978)

8. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: Pro-
ceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pp. 207–212. ACM (1982)

9. Kolovos, D.S., Di Ruscio, D., Pierantonio, A., Paige, R.F.: Different models for
model matching: an analysis of approaches to support model differencing. In: Pro-
ceedings of the 2009 ICSE Workshop on Comparison and Versioning of Software
Models, CVSM 2009, pp. 1–6. IEEE Computer Society, Washington, DC (2009)

10. Grammel, B., Kastenholz, S., Voigt, K.: Model matching for trace link genera-
tion in model-driven software development. In: France, R.B., Kazmeier, J., Breu,
R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 609–625. Springer,
Heidelberg (2012)

11. Alanen, M., Porres, I.: Difference and union of models. In: Stevens, P., Whittle,
J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 2–17. Springer, Heidelberg
(2003)

Type Inference in Flexible Model-Driven Engineering 91

12. Reddy, R., France, R., Ghosh, S., Fleurey, F., Baudry, B.: Model composition-a
signature-based approach. In: Aspect Oriented Modeling (AOM) Workshop (2005)

13. Cho, H., Gray, J., Syriani, E.: Creating visual domain-specific modeling languages
from end-user demonstration. In: 2012 ICSE Workshop on Modeling in Software
Engineering (MISE), pp. 22–28. IEEE (2012)

14. Sánchez-Cuadrado, J., de Lara, J., Guerra, E.: Bottom-up meta-modelling: an
interactive approach. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.)
MODELS 2012. LNCS, vol. 7590, pp. 3–19. Springer, Heidelberg (2012)

15. Javed, F., Mernik, M., Gray, J., Bryant, B.R.: Mars: A metamodel recovery system
using grammar inference. Information and Software Technology 50(9), 948–968
(2008)

16. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon object language (EOL). In:
Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142.
Springer, Heidelberg (2006)

17. Jiawei, H., Kamber, M.: Data mining: concepts and techniques. Morgan Kaufmann,
San Francisco (2001)

18. Mitchell, T.M.: Machine learning, vol. 45. McGraw Hill, Burr Ridge (1997)
19. Williams, J.R., Zolotas, A., Matragkas, N.D., Rose, L.M., Kolovos, D.S., Paige,

R.F., Polack, F.A.: What do metamodels really look like? Eessmod@ Models 1078,
55–60 (2013)

20. Williams, J.R., Paige, R.F., Kolovos, D.S., Polack, F.A.: Search-based model driven
engineering. Technical report, Technical Report YCS-2012-475, Department of
Computer Science, University of York (2012)

21. Powers, D.: Evaluation: From precision, recall and f-factor to roc, informedness,
markedness & correlation (tech. rep.). Adelaide, Australia (2007)

22. Meyer, B.: Object-oriented software construction, vol. 2. Prentice hall, New York
(1988)

23. Zolotas, A., Kolovos, D.S., Matragkas, N., Paige, R.F.: Assigning semantics to
graphical concrete syntaxes. In: XM 2014-Extreme Modeling Workshop, p. 12

© Springer International Publishing Switzerland 2015
G. Taentzer and F. Bordeleau (Eds.): ECMFA 2015, LNCS 9153, pp. 92–107, 2015.
DOI: 10.1007/978-3-319-21151-0_7

AspectOCL: Extending OCL
for Crosscutting Constraints

Muhammad Uzair Khan1(), Numra Arshad1, Muhammad Zohaib Iqbal1,2,
and Hafsa Umar1

1 Software Quality Engineering and Testing Lab (QUEST),
National University of Computer and Emerging Science, Islamabad, Pakistan

{uzair.khan,zohaib.iqbal,hafsa.umar}@nu.edu.pk,
numra.arshad@questlab.pk

2 Software Verification and Validation Lab, Interdisciplinary
Centre for Security, Reliability and Trust, Luxembourg, Luxembourg

Abstract. Constraints play an important role in Model Driven Software Engi-
neering. Industrial systems commonly exhibit crosscutting behaviors in design
artifacts. While modeling of crosscutting behaviors has been addressed in litera-
ture, the modeling of crosscutting constraints remains a problem. Presence of
crosscutting constraints makes it difficult to maintain constraints defined on the
models of large-scale industrial systems. Multiple elements in a model may
share common crosscutting constraints with minor variation. Aspect orientation
is well-established approach to model crosscutting behavior. Current OCL spe-
cification does not support writing crosscutting constraints separately as
aspects. In this paper, we propose an extension of OCL language that brings
benefits of aspect orientation to OCL constraints. In our language, crosscutting
constraints are specified as aspects, which can be woven in OCL constraints.
We demonstrate our proposed language through application on a published
open source case study. Results show that specifying crosscutting constraints as
aspects can reduce the number of constraints to be specified.

Keywords: Model driven software engineering · Crosscutting constraints ·
Object constraint language · Aspect orientation · Unified modeling language

1 Introduction

Constraints play an important role in Model Driven Software Engineering (MDSE)
[1, 2]. When used with UML models, they enable the models to be complete, consis-
tent and precise by providing information about models that cannot otherwise be
incorporated [3]. Object Constraint Language (OCL) [3, 4] is the OMG standard lan-
guage for specifying constraints on models. OCL is being gradually adopted in indus-
try and is used in an increasing number of large-scale industrial projects [5-7].
Constraints modeled in OCL are applied across a range of design artifacts and models
for representing the system. Similar to crosscutting behaviors we can have crosscutting

 AspectOCL: Extending OCL for Crosscutting Constraints 93

constraints [7, 8]. It is entirely possible for different modeling elements to share com-
mon constraints. This results in the same constraint to be specified multiple times in
the constraints part of design artifacts often with minor variations. The problem of
crosscutting behaviors has been extensively explored in literature. Crosscutting beha-
viors make the design artifacts difficult to understand and hard to maintain [9, 10].
Aspect orientation [11-13] is considered a well-established solution to modeling and
implementing crosscutting behaviors in design models and the underlying implementa-
tion. Research has shown that while aspect-orientation adds overhead in terms of iden-
tifying crosscutting behaviors and weaving them in the underlying artifacts, it makes
the artifacts significantly easier to understand and maintain [10, 14].

This work is motivated in part from our experience of working with large-scale in-
dustrial systems [15, 16] featuring crosscutting behaviors. In our previous work, we
addressed the problem of crosscutting behaviors in design models, in particular the
UML state machines. However, in addition to crosscutting behavior, we also encoun-
tered crosscutting constraints in these systems. A number of research efforts have
targeted the modeling of crosscutting behaviors [16, 17] but modeling of crosscutting
constraints is not sufficiently explored. The few existing approaches either introduce
new constraint languages that have little to no industrial acceptance or are incompati-
ble with OCL. Our work focuses on modeling of crosscutting constraints.

In this paper, we propose an extension to OCL through AspectOCL language that
allows modeling of crosscutting constraints as aspects. Our approach is a forward
engineering approach and the crosscutting constraints can be identified and written as
aspects at design time. The rest of the constraints are specified as per normal practice
in OCL. A weaver is used to weave the crosscutting constraints (written as aspects) in
the OCL constraints. OCL is supported by a number of tools and APIs [18] and main-
taining compatibility with the existing toolset is an important consideration [15]. Un-
like some other approaches to handling crosscutting constraints [7], our approach
maintains compatibility with existing tools and APIs by requiring the weaver to pro-
duce standard OCL as output of the weaving process. Therefore existing tools and
APIs that support OCL can be used with weaved constraints.

Our main contributions in this paper are: (i) an extension of OCL to support model-
ing of crosscutting constraints. We present the proposed language constructs and
demonstrate their application; (ii) we use the proposed language to model crosscutting
constraints identified from a publicly available case study EU-Rental [19]. The case
study has been widely used as a benchmark for model-driven software engineering
and OCL [20-22]. We demonstrate that the proposed language shows a lot of promise
and can potentially reduce the constraint modeling effort by requiring fewer con-
straints to be written. We also provide an editor built on eclipse Xtext [23] open
source framework for our language. This allows our editor to be easily integrated to
modeling tools built on eclipse platform such as IBM RSA and Papyrus.

The rest of the paper is organized as follows: Section 2 presents related work and
positions our work in relation of existing literature. Section 3 presents our proposed
language extension of OCL for modeling crosscutting constraints. Section 4 demon
strates our language by modeling cross cutting constraints from a published case
study and presents the limitations of our approach. Section 5 concludes the paper.

94 M.U. Khan et al.

2 Related Work

Constraints specification languages are an active area of research. In this section we
discuss the works reported in literature that provide support for modeling crosscutting
constraints or that extend OCL to add new features.

Application of aspect orientation on various design and code artifacts to address
crosscutting behavior is well established [15, 16, 24]. Authors in [25] have used as-
pect oriented techniques for monitoring level of abstraction in software by developing
a UML based specification environment for validating software against the design
constraints specified in OCL. A number of OCL extensions have been suggested over
the years (e.g.,[26, 27]). OCLR [26] is an extension of OCL that augments the stan-
dard OCL by adding support for temporal constraints. MOF Query Language (MQL)
[27] extends OCL to support queries on MOF (Meta Object Facility) based models.
All the mentioned works have extended OCL to support features that cannot be easily
supported using OCL. However, such additions make the language non-compatible
with existing tools and APIs. In contrast, we provide an extension to OCL language to
reduce the effort required for specifying and maintaining OCL constraints by reducing
the number of constraint to be written.

The Model Constraint and Query Language (MOCQL) [28] is developed to mod-
el constraints and to define queries on underlying UML models. Empirical evaluation
is presented to show that MOCQL is easier to understand than OCL. Similar efforts to
improve the OCL syntax have been made in OCL/P [29]. One limitation of the pre-
sented works is lack of empirical evidence regarding adoption of these languages in
industry. Neither work addresses crosscutting constraints. The work by Laszlo et al
[8], presents a somewhat similar concept of modeling crosscutting concerns using
aspects. However the work is focused on handling crosscutting constraints in meta-
model based transformations. The representation of constraint as aspect contains both
the constraints written in OCL and the meta-model elements on which the constraints
are to be applied. On the other hand, we propose a generic aspect oriented extension
to OCL where the aspects have textual representation similar to OCL constraints.
Authors in [30] presents a UML profile for modeling crosscutting behavior and con-
straints. However, the presented work does not support separating crosscutting con-
straints from base OCL constraint and writing them separately as aspects. Embedded
Constraint Language (ECL) [7] supports writing crosscutting constraints as aspects.
The proposed language however uses underlying model elements as joinpoints and
therefore cannot support complex crosscutting constraints, e.g., constraints that must
be weaved in other OCL constraints. Also, constraints specification languages not
based on OCL have little acceptance by the industry.

To summarize, large-scale systems contain crosscutting behaviors as well as
crosscutting constraints. There is a lack of approaches in literature for modeling

 AspectOCL: Extending OCL for Crosscutting Constraints 95

crosscutting constraints. In this paper, we propose a new modeling language that ex-
tends OCL to support writing of crosscutting constraints. We present the language
constructs and demonstrate its applicability by using it to model crosscutting con-
straints identified from a published open source case study. Results indicate that our
language shows a lot of promise and can reduce the number of constraints to be
written by separating out crosscutting constraints as aspects. However, the overall
reduction in effort depends on the nature and the number of crosscutting constraints.

3 AspectOCL

MDSE has been successfully applied to solve a number of industry problems ranging
from automated code generation [31], automated test data generation [32] to model
driven refactoring [16]. Constraints play an important role in MDSE. In this section,
we present the AspectOCL language that extends OCL to support crosscutting con-
straints. We present the language constructs, its syntax and a number of examples to
show how the various constructs are utilized to model crosscutting constraints.

3.1 Language Constructs

Defining an aspect-oriented language requires definition of some basic aspect
oriented concepts such as joinpoint(s), pointcut, advice and introduction [12]. In the
following we describe these basic constructs along with other important elements of
the language and show their usage. The language constructs identified for AspectOCL
are partly inspired from other aspect-oriented languages such as AspectJ [12]. There-
fore we define common aspect oriented constructs such as joinpoints, pointcuts,
advice, introduction, etc. The grammar for defining an aspect (an important part of the
language) is given in Appendix.

Joinpoint. In aspect oriented programming, joinpoint(s) are locations in a program
where an advice is to be inserted [11, 12]. In order to write aspects and weave them
on OCL constraints, we must first identify well-defined locations in OCL constraints
where we can insert (weave) the crosscutting constraint(s). We identify language
constructs that can be uniquely identified in a given OCL constraint, and use them as
joinpoints. Table 1 describes our identified joinpoints in OCL constraints. Together,
these joinpoints act as weaving points in OCL constraint where we may add (or
append) a new constraint. A pointcut selects one or more of these joinpoints.

Pointcut. In an aspect-oriented language, a pointcut selects one or more joinpoints
where an advice (also a constraint in our case) is to be applied. In simple terms,
a pointcut works as a selection query, selecting one or more joinpoints. For Aspec-
tOCL, we define the following (simplified) outline for a pointcut in Fig. 1.

96 M.U. Khan et al.

Table 1. Joinpoints in AspectOCL

Joinpoint Description
<Classname> Using class name as a joinpoint allows specifying aspect constraints

on instances of class, for example, restricting number of instances for
a particular class

select select is used to pick a specific subset of data from a collection

reject reject is used to select the elements from a collection for which the
expression evaluates to false

collect collect is used to hold the values generated as a result of performing

computation on every element of a collection

forall forall is used to specify a condition that must be hold true for all the
elements of a collection. This construct allows us to traverse collec-
tions in OCL

orderby orderby is used to arrange the elements of a collection in an ascending

or descending order

isUnique isUnique specifies that each element in a collection should have a
different value for an expression

exists exists specify that at least one element of collection must meet the
specified condition

if-else
statements

All conditional OCL expressions of type if, if- else, and if- then are
also joinpoints in AspectOCL

Fig. 1. Syntax of a Pointcut

We define a syntax that closely resembles the OCL syntax to gain maximum benefit
of designer’s familiarity with OCL. The context keyword selects a class or a method
from which joinpoints are selected through the pointcut expression.

Advice. Advice determines how the cross cutting constraint is weaved at the join-
point(s) selected by the pointcut. In AspectOCL we can either use advice or introduc-
tion to insert a crosscutting constraint. We use an advice when some constraint is
already specified at the joinpoint. The common aspect oriented advices such as be-
fore, after and around found in languages like AspectJ [12] do not apply in case of
AspectOCL. In case of constraints the entire constraint must hold true, i.e., the order
in a given constraint is not important in this case. Therefore rather than the position of

pointcut <name>:

context <name of class or method>

<Pointcut Expression>

<introduction | advice>

 AspectOCL: Extending OCL for Crosscutting Constraints 97

the advice (before or after the joinpoint) the importance is given to how the constraint
is added/inserted. For example, we can use and advice to add a constraint. Table 2
presents the four advice types.

Table 2. List of possible advice type

Advice Description
or or is a type of AspectOCL advice in which a new constraint is attached

to already written constraint using or operator. This Boolean operator
can work with all of the AspectOCL pointcuts

and and is a type of AspectOCL advice in which a new constraint is attached
to already written constraint using and operator. This Boolean operator
can work with all of the AspectOCL pointcuts

xor xor is a type of AspectOCL advice in which a new constraint is attached

to already written constraint using xor operator. This Boolean operator
can work with all of the AspectOCL pointcuts

implies implies is a logical operator in OCL. In AspectOCL it can be used to
append a cross cutting constraint at a specified joinpoint selected by
pointcut. When first part of a constraint is true then second part of it must
also be true otherwise the entire constraint evaluates to false

Introduction. An introduction is a way to add a new constraint on a model element
where there are no previously defined constraints. For example, adding an invariant to
a class that does not have an invariant defined. Introduction adds a constraint at the
joinpoint(s) selected by the pointcut. Introduction can be used to add a constraint to
pre-condition of a method, post-condition of a method, or to add a new class invariant
(or a state invariant in case of state machines). The possible types of introduction are
listed in Table 3. When a constraint is already specified, we use one of the available
advices instead of introduction to add a constraint.

Context. An OCL expression or constraint is applied in a limited scope. This scope is
specified by a context. Context in AspectOCL is used in a manner similar to context
in OCL and can be a class, an interface, a method and an attribute. For example, in
Fig. 2 the first context declaration selects the class on which the crosscutting con-
straint is to be applied. The second context declaration selects an operation.

Table 3. Types of Introduction

Type Description
pre pre is used to define the conditions that must hold true before the execu-

tion of an operation

post post is used to define the conditions that must hold true after the execu-
tion of an operation

inv inv (invariant) is a type of advice that must remain true for all the in-
stances of a class declared in context

98 M.U. Khan et al.

Fig. 2. Context example

allMethods(). allmethods() is a helper function which returns all the methods of a
class. The method can be used in two different variations: pre.allmethods() and
post.allmethods(). When pre is used with allmethods(), it returns all the pre-
conditions of all the methods of a class declared as context. When post is used with
allmethods(), it returns the post-conditions of all the methods of class declared as
context.

Result. result is used in a post condition of an operation for holding its result.

Fig. 3. Usage of let in AspectOCL

Let: Use of let is similar to its usage in OCL for defining a local variable. However,
we also use let for defining a mapping between a class, methods and attributes. A
mapping allows us to define sequence wise replacements and defines a relationship
between elements of two sets. Whenever an element of first set occurs, the sequential-
ly corresponding entry from second set is selected. In case of let, these sets contain
classes, operations or attributes. The use of let is illustrated in Fig. 3. The first let
expression is used for defining classes that include the cross cutting constraint. The
second expression demonstrates the use of let for defining the mappings. The second
expression specifies the mapping among multiple variables. VarX represents a com-
posite statement that contains members from a set of classes, operations or attributes.
VarY represents the statement that contains members from a similar set. Whenever
particular variable from a set of VarX or VarY is used in the aspectual constraint, cor-
responding ClassContext or OperationContext or AttributeNames will replace it. If the
context contains the let variable name, then it can only be ClassContext or Opera-
tionContext, as OCL does not allow context to be an attribute.

3.2 Defining a Crosscutting Constraint as an Aspect in AspectOCL

We define aspects in AspectOCL using the above-defined constructs. Each crosscut-
ting constraint is specified as a separate aspect and contains a mapping, context decla-
ration, a pointcut that selects one or more joinpoints, an advice type followed by the
crosscutting constraint. The grammar of an aspect is shown in Appendix.

To better understand how we write aspects consider an example scenario where
we have four classes, Course, Student, Teacher and Seminar. Each class has some

1. let Var: ClassContext / OperationContext / AttributeContext

2. let {VarX}->{VarY}:(ClassContext/OperationContext/AttributeNames)

 -> (ClassContext/ OperationContext/ AttributeNames)

1. context ClassName
2. context ClassName:: MethodName (Arguments) : ReturnType

 AspectOCL: Extending OCL for Crosscutting Constraints 99

existing constraints as shown in Fig. 4. We consider a case where a constraint ensur-
ing uniqueness of identifiers is to be applied to all above classes. Using OCL the cur-
rent practice is to add this constraint in each of the classes shown in Fig. 4.

Repeatedly writing a crosscutting constraint multiple times (once in each affected
class) is a valid approach. However, it results in redundant constraints. Any modifica-
tions to such constraints must be applied at all locations individually and in a consis-
tent manner. Using AspectOCL we can model this constraint as a crosscutting
constraint and define an aspect for it. The aspect modeling the crosscutting constraint
is shown in Fig. 5. Separating this crosscutting constraint from the other constraints as
an aspect results in fewer constraints. The constraint specification without the cross-
cutting constraints is shown in Fig. 6. The first part of the aspect definition, defines
the mapping as previously discussed. The mapping can be a part of the aspect or can
be provided in a separate file. Any required mappings can be included through the
import keyword. The let expression inside the mapping section of the Uniqueness-
Constraint aspect defines a mapping between the classes and the attributes from those
classes that should be used during weaving. The context selects the classes that appear
in the mapping thus iteratively applying the crosscutting constraint using an advice of
type and to Course, Student, and Teacher and Seminar classes. When weaving
the constraint, var1, var2 is replaced by variables of the current class selected by the
context.

Fig. 4. Constraints on example classes

-- Course name should be unique and should be 10 to 20
characters long
context Course inv:

courseName.size() >= 10 and courseName.size() <=20
 and Course.allInstances()->isUnique(courseCode)

-- Student must pay fee to get registered and student
roll no should be unique
context Student inv:

 feespaid= false implies registersFor ->isEmpty()
and Student.allInstances() ->isUnique(rollNo)

-- Teacher age should be greater than 50 and teacher Id
should be unique
context Teacher inv:

 Teacher.allInstances() ->select (
 t:Teacher | t.age> 50) ->isEmpty()
 and Teacher.allInstances()->isUnique(teacherId)

-- No of attendees in seminar should be greater than 30
and seminar Id should be unique.
context Seminar inv:

 Seminar.allInstances() ->forall (
 s1 | s1.noOfAttendees > 30)
 and Seminar.allInstances() ->isUnique(SeminarId)

100 M.U. Khan et al.

3.3 Writing and Weaving Crosscutting Constraints in OCL

We provide an editor to support writing crosscutting constraints as aspects. The editor is
built using Xtext open source framework that provides support for developing tools for
domain specific language. This allows our language editor to work as a plugin of EMF
modeling tools that can be easily integrated with existing modeling tools such as IBM
RSA and Papyrus. Once the aspects are written, they can be weaved in OCL constraints
using the aspect weaver. The output of the weaving process is standard OCL constraints.
For our language, we rely mostly on text matching for weaving. Fig. 7, Fig. 9 and Fig. 10
show three significant aspects for the EU-Rental case study written in the developed
AspectOCL editor. Text matching is used to match each location. String operations are
used to insert or add new constraints. The let expression requires a more refined ap-
proach. The let expression is expanded to obtain each individual mapping. A new
instance of aspect is produced for each mapping (intermediate, not visible outside the
weaver). Each instance of aspect is then weaved like a separate aspect with the exception

Fig. 5. Aspect UniquenessConstraint

Fig. 6. Constraint specification without crosscutting constraints

context Course inv:

courseName.size() >= 10

 and courseName.size() <=20

context Student inv:

 feespaid= false implies registersFor ->isEmpty()

context Teacher inv:

 Teacher.allInstances() ->select (

 t | t.age> 30) ->isEmpty()

context Seminar inv:

 Seminar.allInstances() ->forall (

 s1 | s1.noOfAttendees > 30)

mapping mapUniquenessConstraint
{

let T -> A: {Course -> Course :: courseCode,
 Student -> Student :: rollNo,
 Teacher -> Teacher :: teacherId,

 Seminar -> Seminar :: seminarID}
}
aspect UniqunessConstraint
{
 import_mapping mapUniquenessConstraint

pointcut selectUniquenessTarget
context T
advice inv:

and selectUniquenessTarget
T.allInstances() ->isUnique(A)

}

 AspectOCL: Extending OCL for Crosscutting Constraints 101

that now the context in each instance selects only one class or method. While this is not
the most efficient approach, it serves the purpose for this initial case study. For mappings
defined separately, a pre-processor fetches the mappings and inserts them in the aspect
file. A more optimized weaver may be developed in future.

4 Case Study

4.1 Description of Case Study

In this section we discuss modeling crosscutting constraints identified from an exist-
ing open source case study the EU-Rent a Car Rental specifications [33]. The case
study is a publicly available case study that models a Car Rental System with over
1000 branches in different countries. The EU-Rent specifications was initially devel-
oped by Model Systems, Ltd [19] and then extended by Frias et al. [33]. EU-Rent
Specifications is considered as a modeling benchmark and has been used in multiple
studies for evaluation and demonstration [20-22]. Specifications of the case study are
developed using various UML 2.0 diagrams and OCL 2.0 constraints. The case study
comprises of four class diagrams and 246 OCL constraints are defined on them.

4.2 Application of AspectOCL

We apply the proposed approach to a case study to demonstrate that there are cross-
cutting constraints in existing systems that can be modeled using our approach in-
stead. For this reason, we identified the possible crosscutting concerns from the EU
Rent case study. The OCL constraints from the case study were manually analyzed to
identify crosscutting constraints. Our manual analysis of 246 constraints revealed 44
constraints that are crosscutting constraints. Against these 44 crosscutting constraints,
we write 16 aspects that fully specify these 44 constraints, completely capturing the
intent of the designers. Essentially this means that if the modeler used AspectOCL
approach, she will need to write 26 fewer constraints out of a total of 246 constraints.
Given the amount of effort required to manage the constraints, minimizing the redun-
dancy in these constraints can significantly reduce the maintenance effort. The extent
to which we can reduce the number of constraints in a given system using our pro-
posed language is something that depends on the nature of the system being modeled
and the nature of constraints it must adhere to. However, from the EU Rent case study
it can be inferred that when a number of crosscutting constraints are present, a signifi-
cant reduction can be achieved in using aspects. Following we discuss three signifi-
cant aspects that correspond to highest number of crosscutting concerns from the case
study. The first aspect is the NameUniqueness aspect shown in Fig. 7.

The aspect defines a name uniqueness constraint on the method nameIsKey(). In
the case study this method has a post condition indicating that no two names can be
same. The constraint appears with slight variation (name of the containing class is
different) in different classes and can be modeled as a cross cutting constraint. We use

102 M.U. Khan et al.

Fig.

Fig

the let expression to map m
is inserted in post condition
by let. As the method do
introduce a new post condit

. 7. Constraint-AspectNameUniqueness

g. 8. Uniqueness crosscutting constraint

multiple classes as context, i.e., when weaving the constra
n of nameIsKey() method of each class in the set defi
oes not have any other post condition, we use intro
tion.

aint
ned

o to

 AspectOCL: Extending OCL for Crosscutting Constraints 103

Fig. 8 shows the crosscutting uniqueness constraint in the original specification.
The constraint appears on nameIsKey() method across seven different classes.

Fig. 9 presents the second aspect that we discuss from the case study. The bestPrice-
Limit aspect captures a crosscutting constraint that specifies a time related constraint
on bestprice() method of RerservationWithSpecialDiscount and RentalAgreement
classes. For this constraint we use and advice to append a new constraint to previously
existing post conditions of the selected method.

Finally Fig. 10 presents the third and last aspect that we discuss in this paper. The
aspect ExistingGroup fully demonstrates the power of the language’s let construct that
allows us to define complex mappings.

The constraint captures six post conditions defined on the methods car(), carG(),
carM(), discount(), duration() and perfInd() of classes ExistingCar, ExistingCarGroup,
ExistingCarModel, ExistingDiscount, ExistingRentalDuration and ExistingPerformance
Indicator. Let expression in the constraint defines a mapping between classes, operations
and attributes. Variable S in let statement defines class context in a similarly way as in
OCL, variable A defines the attribute registrationNumber of class Car, variable B defines
the attribute regNumber of class ExistingCar and variable TT defines a class only. When
weaving the aspect, the context in the constraint will be replaced by value of possible
mappings of variable S defined in let expression; variable A will be replaced by the car
attribute, variable ‘B’ will be replaced by ExistingCar attribute and variable ‘TT’ will be
replaced by the class Car.

4.3 Limitations

We have presented our proposed extension to OCL for handling crosscutting con-
straints. This paper focuses mostly on presenting the language constructs and show-
casing its applicability on large-scale systems. In this paper we mainly discuss the
reduction in number of constraints. While this is important, this is not the sole factor
that determines the effort required to model constraints using our language. The lan-
guage shows itself to be promising but we do not have empirical evaluation of its
readability and understandability. Aspect orientation has shown to improve the un-
derstandability and readability of models [10]. Though the definition of context is

Fig. 9. Constraint-aspect bestPriceTimeLimit

104 M.U. Khan et al.

detailed, we believe that the effort is still less than repeating and maintaining the same
constraints scattered throughout the models.

Another limitation can be that the constraint specifications are decoupled from the
modeling elements on which they are applied on. To address this limitation, AspectOCL
editor is built as a plugin of the EMF modeling tools and the ‘weaved constraints’ are
also visible with the modeling elements that they are applied on.

Our proposed language currently does not support writing composite aspects. Also,
we only support weaving aspects at the identified joinpoints only. In case the designer
wants to add a predicate inside a constraint that is not a joinpoint, the designer has to
rewrite the crosscutting constraint. Finally, our proposed language lacks formal se-
mantics. While not directly applicable, in a way, lack of formalism of AspectOCL can
be side stepped as the woven constraints are in standard OCL. These can still benefit
from the formalisms proposed for OCL even though our intermediate representation
(aspects) is not formalized.

Fig. 10. Constraint-aspect ExisitingGroup

5 Conclusion

Constraints play a vital part of modeling and engineering of large-scale industrial
systems. In our experience of working with such systems and from the literature, such

 AspectOCL: Extending OCL for Crosscutting Constraints 105

systems are often seen exhibiting crosscutting behaviors in various design artifacts.
Crosscutting behaviors in various design artifacts such as UML class diagrams, state
machines and the underlying implementations have all received a lot of attention from
the researchers. However, few approaches exist to deal with crosscutting constraints. All
problems identified as a result of crosscutting behavior in models or code also exist in
case of crosscutting constraints. None of the existing approaches offer support for generic
modeling of crosscutting constraints while keeping compatibility with OCL. Such com-
patibility is important as designers often utilize OCL due to wide range of tools and APIs
available. Aspect orientation is a well-established technique to handle crosscutting fea-
tures. In this paper, we proposed an extension of OCL language to support writing of
crosscutting constraints in the form of aspects. Cross cutting constraints are specified as
aspects, which can be woven in OCL constraints. Our language keeps compatibility with
OCL by requiring the weaver to produce standard OCL output. We demonstrate our
proposed language through application on a published open source case study. Results
show that specifying crosscutting constraints as aspects can reduce the number of
constraints to be specified. While our proposed language shows a lot of promise, we
currently do not have empirical evaluation on diverse set of industrial systems. Such an
evaluation is considered an important future consideration.

Acknowledgement. This work was supported by ICT R&D Fund, Pakistan under the project
ICTRDF/MBTToolset/2013. Muhammad Zohaib Iqbal was partly supported by National
Research Fund, Luxembourg (FNR/P10/03).

Appendix

Fig. 11. Snapshot of AspectOCL Grammar

Aspect ::= <Mapping> <AspectDefinition>
<Mapping> ::= ‘mapping’ ‘{‘ <letExpression> ‘}’
<AspectDefinition> ::= ‘aspect’ ‘{’‘import_mapping’ <MappingName>

 <Pointcut> <AI> ‘}’
<letExpression> ::= null

| ‘let’<varName> ‘:’ ‘{’ (<ClassifierContextCS>
| <OperationContextCS>) ‘}’
| ‘let’ (<letVarName>) ‘->’ (<letVarName>)+ ‘:’
 <COA> ‘->’ <COA>

<MappingName> ::= <NameChar>
<ClassifierContextCS> ::= <NameChar>
<letVarName> ::= <NameChar>

| <NameChar> (‘,’ <NameChar>)*
<NameChar> ::= ([A – Z] | [a – z] | [0 – 9])+
<COA> ::= <SCOA>

| ‘{’ <DCOA> ‘}’
<SCOA> ::= <ClassifierContextCS>

| <OperationContextCS>)
<DCOA> ::= <ClassifierContextCS>

| <OperationContextCS>)
<OperationContextCS> ::= <ClassifierContextCS> ‘::’ <Operation

Name> ‘(’argumentsCS ‘)’ (‘:’ typeCS)?

106 M.U. Khan et al.

References

1. Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S.: Model-driven software develop-
ment: technology, engineering, management. John Wiley & Sons (2013)

2. Brambilla, M., Cabot, J., Wimmer, M.: Model-driven software engineering in practice.
Synthesis Lectures on Software Engineering 1, 1–182 (2012)

3. Warmer, J.B., Kleppe, A.G.: The Object Constraint Language: Precise Modeling With
Uml (Addison-Wesley Object Technology Series) (1998)

4. Specification, O.M.G.A.: Object Constraint Language (May 2006)
5. Ali, S., Yue, T., Zohaib Iqbal, M., Panesar-Walawege, R.K.: Insights on the use of OCL in

diverse industrial applications. In: Amyot, D., Fonseca i Casas, P., Mussbacher, G. (eds.)
SAM 2014. LNCS, vol. 8769, pp. 223–238. Springer, Heidelberg (2014)

6. Ali, S., Iqbal, M.Z., Arcuri, A., Briand, L.: Generating Test Data from OCL Constraints
with Search Techniques. IEEE Trans. Softw. Eng. 39(10), 1376–1402 (2013)

7. Gray, J., Bapty, T., Neema, S., Tuck, J.: Handling crosscutting constraints in domain-
specific modeling. Communications of the ACM 44, 87–93 (2001)

8. Lengyel, L., Levendovszky, T., Mezei, G., Forstner, B., Charaf, H.: Metamodel-based
model transformation with aspect-oriented constraints. Electronic Notes in Theoretical
Computer Science 152, 111–123 (2006)

9. Murphy, G.C., Walker, R.J., Baniassad, E.L.A., Robillard, M.P., Lai, A., Kersten, M.A.:
Does aspect-oriented programming work? Communications of the ACM 44, 75–77 (2001)

10. Ali, S., Yue, T., Briand, L.C.: Does Aspect-Oriented Modeling Help Improve the
Readability of UML State Machines? Software & Systems Modeling, Springer 13(3),
1189–1221 (2014)

11. Clarke, S., Baniassad, E.: Aspect-oriented analysis and design. Addison-Wesley Professional
(2005)

12. Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Programming. Manning Publica-
tions (2003)

13. Elrad, T., Filman, R.E., Bader, A.: Aspect-oriented programming: Introduction. Communi-
cations of the ACM 44, 29–32 (2001)

14. Mguni, K., Ayalew, Y.: An Assessment of Maintainability of an Aspect-Oriented System.
International Scholarly Research Notices (2013)

15. Ali, S., Briand, L.C., Hemmati, H.: Modeling Robustness Behavior Using Aspect-Oriented
Modeling to Support Robustness Testing of Industrial Systems. Software and Systems
Modeling 11(4), 633–670 (2012)

16. Khan, M.U., Iqbal, M.Z., Ali, S.: A Heuristic-Based Approach to Refactor Crosscutting
Behaviors in UML State Machines. In: 2014 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp. 557–560. IEEE (2014)

17. France, R., Ray, I., Georg, G., Ghosh, S.: Aspect-oriented approach to early design
modelling. IEE Proceedings-Software 151, 173–185 (2004)

18. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: eclipse modeling frame-
work. Pearson Education (2008)

19. Wilson, B.: EU-Rent Car Rentals Case Study. Model Systems & Brian Wilson Associates
(1994)

20. Tairas, R., Cabot, J.: Cloning in DSLs: experiments with OCL. In: Sloane, A., Aßmann, U.
(eds.) SLE 2011. LNCS, vol. 6940, pp. 60–76. Springer, Heidelberg (2012)

21. Cabot, J., Gogolla, M.: Object constraint language (OCL): a definitive guide. In: Bernardo,
M., Cortellessa, V., Pierantonio, A. (eds.) SFM 2012. LNCS, vol. 7320, pp. 58–90.
Springer, Heidelberg (2012)

 AspectOCL: Extending OCL for Crosscutting Constraints 107

22. Costal, D., Gómez, C., Queralt, A., Raventós, R., Teniente, E.: Improving the definition of
general constraints in UML. Softw Syst Model 7, 469–486 (2008)

23. http://eclipse.org/Xtext/
24. Wimmer, M., Schauerhuber, A., Kappel, G., Retschitzegger, W., Schwinger, W.,

Kapsammer, E.: A survey on UML-based aspect-oriented design modeling. ACM
Computing Surveys (CSUR) 43, 28 (2011)

25. Richters, M., Gogolla, M.: Aspect-oriented monitoring of UML and OCL constraints.
In: AOSD Modeling With UML Workshop, 6th International Conference on the Unified
Modeling Language (UML), San Francisco, USA. Citeseer (2003)

26. Dou, W., Bianculli, D., Briand, L.: OCLR: a more expressive, pattern-based temporal
extension of OCL. In: Van Cabot, J., Rubin, J. (eds.) ECMFA 2014. LNCS, vol. 8569,
pp. 51–166. Springer, Heidelberg (2014)

27. Hearnden, D., Raymond, K., Steel, J.: MQL: a powerful extension to OCL for MOF que-
ries. In: Proceedings Seventh IEEE International Enterprise Distributed Object Computing
Conference, 2003. pp. 264–276. IEEE (2003)

28. Störrle, H.: MOCQL: a declarative language for ad-hoc model querying. In: Van Gorp, P.,
Ritter, T., Rose, L.M. (eds.) ECMFA 2013. LNCS, vol. 7949, pp. 3–19. Springer,
Heidelberg (2013)

29. Rumpe, B.: ≪ Java≫ OCL Based on New Presentation of the OCL-Syntax. In: Clark, T.,
Warmer, J. (eds.) ECMFA 2013. LNCS, vol. 2263, pp. 189–212. Springer, Heidelberg
(2002)

30. Aldawud, O., Elrad, T., Bader, A.: UML profile for aspect-oriented software development.
In: Proceedings of Third International Workshop on Aspect-Oriented Modeling. Citeseer
(2003)

31. Usman, M., Iqbal, M.Z., Khan, M.U.: A model-driven approach to generate mobile
applications for multiple platforms. In: 21st Asia-Pacific Software Engineering Conference
(APSEC), pp. 111–118 (2014)

32. Jilani, A.A., Iqbal, M.Z., Khan, M.U.: A search based test data generation approach for
model transformations. In: Di Ruscio, D., Varró, D. (eds.) ICMT 2014. LNCS, vol. 8568,
pp. 17–24. Springer, Heidelberg (2014)

33. Frias, L., Queralt, A., Ramon, A.O.: EU-Rent car rentals specification (2003)

Reusable Model Interfaces with Instantiation
Cardinalities

Sunit Bhalotia and Jörg Kienzle(B)

School of Computer Science, McGill University, Montreal, Canada
Sunit.Bhalotia@mail.mcgill.ca, Joerg.Kienzle@mcgill.ca

Abstract. The power of aspect-oriented modelling is that structural
and behavioural properties of a crosscutting concern can be modularized
within an aspect model. With proper care, such an aspect model can also
be made reusable. If the functionality provided by such a modularized
concern is needed repeatedly within a system, the reusable aspect model
can be applied multiple times within the same target model. This paper
reviews the pending issues related to multiple aspect model instantiations
identified in past research, and then proposes to extend the customization
interface of aspect models with instantiation cardinalities. This removes
potential customization ambiguities for the model user, and gives the
model designer fine-grained control about how many instances of each
structural and behavioural element contained in an aspect model are to
be created in the target model. The approach is illustrated by presenting
the aspect-oriented design of a behavioural, a structural and a creational
design pattern.

1 Introduction

In the context of model reuse, the artifact designer, i.e., the developer creat-
ing the reusable artifact, and the artifact user, i.e., the developer applying the
artifact to a specific application, are usually different people. The designer has in-
depth domain knowledge about the concern that the reusable artifact addresses,
and knows about the specific details of the functionality / properties / solutions
encapsulated by the artifact that he created. The user on the other hand has
in-depth domain knowledge about the application he is building, knows that the
application he is building could benefit from reusing the reusable artifact, but is
unaware of the artifacts inner working and limitations.

Aspect-orientation is a development paradigm that adds a new dimension to
modularization. In aspect-oriented modelling (AOM), aspect models encapsu-
late structural and behavioural elements related to a particular concern. With
proper care, aspect models can also be made reusable. However, the potentially
crosscutting nature of the concern requires that the structure and functionality
provided by the model can be applied several times within the same application.
Different aspect-oriented modelling approaches provide different means to apply
a reusable aspect within a target model. Some approaches require the specifica-
tion of explicit mappings [6,14,19], whereas others allow the use of wildcards in
so-called pointcut expressions [8,10,20].
c© Springer International Publishing Switzerland 2015
G. Taentzer and F. Bordeleau (Eds.): ECMFA 2015, LNCS 9153, pp. 108–124, 2015.
DOI: 10.1007/978-3-319-21151-0 8

Reusable Model Interfaces with Instantiation Cardinalities 109

To the best of our knowledge, none of the current AOM approaches specifies
precisely how a model user should go about applying a reusable aspect model
multiple times. Since the model user does not know about the inner workings and
limitations of the reusable aspect model, he is faced with multiple possibilities:
instantiating an aspect model multiple times, specifying multi-mappings or mul-
tiple individual mappings, or specifying a single complex pointcut expression vs.
using several pointcut expressions. Furthermore, it has been shown in [16] that
in practice, the model designer of a reusable aspect model needs fine-grained
control over how many instances of each reusable model element are created in
the target model when an aspect is applied.

This paper presents instantiation cardinalities, a novel concept that solves
the aforementioned ambiguity while giving the designer explicit control over
the number of instances of each model element that is created in the target
model. Our proposed approach is illustrated in this paper using the Reusable
Aspect Models notation (RAM)) [14], an aspect-oriented multi-view modelling
approach for software design modelling.

The remainder of the paper is structured as follows. Section 2 introduces
model interfaces, aspect-oriented modelling and the problem with multiple appli-
cations of the same aspect within a target model. Section 3 presents instantia-
tion cardinalities, and illustrates them by means of the Observer design pattern.
Section 4 introduces automated call forwarding, an extension to aspect-oriented
weaving that integrates polymorphism and separation of concerns in the presence
of multi-mappings. Section 5 illustrates the elegance of instantiation cardinal-
ities by showing the aspect-oriented design of two additional design patterns.
Section 6 presents related work, and the last section draws some conclusions.

2 Background

To explain the motivation behind this work, the first background subsection gives
a brief overview of units of reuse for software design and the kind of interfaces
that these units define. The next subsection introduces aspect-oriented modelling
in general and the Reusable Aspect Models approach in particular, and how it
can be used to express crosscutting software design concerns. The last subsection
illustrates the ambiguity that a software developer faces when reusing aspect
models, and highlights the need for flexible instantiation policies.

2.1 Interfaces

Units of reuse, e.g., units used in software design such as classes, components,
frameworks, design patterns [9], software product lines [18], etc..., typically either
explicitly or implicitly define interfaces that detail how the unit is supposed to
be reused. [3] classifies these interfaces into three kinds: usage, customization,
and variation interfaces.

Usage Interface: The usage interface is the interface that is most common.
For units that are used in software design, it specifies the design structure and

110 S. Bhalotia and J. Kienzle

behaviour that the unit provides to the rest of the application. In other words,
the usage interface presents an abstraction of the functionality encapsulated
within the unit to the developer. It describes how the application can trigger
the functionality provided by the unit.

For instance for classes, the usage interface is the set of all public class prop-
erties, i.e., the attributes and the operations that are visible and accessible from
the outside. For components, the usage interface is the set of services that the
component provides (i.e., the provided interface). For frameworks, design pat-
terns, and SPLs, the usage interface is comprised of the usage interfaces of all
the classes that the framework/pattern/SPL offers.

Customization Interface: Typically, a unit of reuse has been purposely cre-
ated to be as general as possible so that it can be applied to many different
contexts. As a result, it is often necessary to tailor the general design to a
specific application context. The customization interface of a reusable software
design unit specifies how to adapt the reusable unit to the specific needs of the
application under development.

For example, the customization interface of generic classes (also called tem-
plate classes) allows a developer to customize the class by instantiating it with
application-specific types. For components, the customization interface is com-
prised of the set of services that the component expects from the rest of the
application to function properly (i.e., the required interface). The developer can
use this information at configuration time to plug in the appropriate application-
specific services. The customization interface for frameworks and design patterns
is often comprised of interfaces/abstract classes that the developer has to imple-
ment/subclass to adapt the framework to perform application-specific behaviour.

Variation Interface: The variation interface of a reusable software design unit
describes the available design variations and the impact of the different variants
on high-level goals, qualities, and non-functional requirements. A variation inter-
face typically takes the form of a feature model [12] that specifies the individual
features that the unit offers. The impact of choosing a feature can be specified
with goal models [11].

A reusable software design unit needs a variation interface only if it encapsu-
lates several different design alternatives. In this paper, the focus is on improving
reuse of a single design, and hence the variation interface is out of scope.

2.2 Aspect-Oriented Modelling

Aspect-orientation adds a new dimension to modularization, because the struc-
ture and functionality that aspects define can have a crosscutting effect on the
rest of the application. In aspect-oriented modelling (AOM), aspect models
encapsulate structural and behavioural elements related to a particular con-
cern. Typically, the different elements within an aspect model need to interact
closely with each other, i.e., invoke each other’s behaviour or consult each other’s
state. The potentially crosscutting nature of the concern also requires that the

Reusable Model Interfaces with Instantiation Cardinalities 111

aspect Observer

structural view
|Subject<|modify>

|Observer<|update>

+ * |modify(..)

|Subject

+ startObserving(|Subject)
+ stopObserving(|Subject)
~ |update(|Subject)

|Observer

Usage Interface Customization Interface

Fig. 1. Observer RAM Model Interface (Customization and Usage)

structure and functionality provided by the model can be applied several times
within the same application.

To make aspect models reusable, interfaces are key. In software design mod-
elling, having an explicit model interface makes it possible to apply proper infor-
mation hiding principles [17] by concealing internal design details from the rest
of the application. Because of aspect-oriented techniques, this is possible even if
the encapsulated design details crosscut the rest of the application design. This
is exemplified by our own Reusable Aspect Models approach (RAM)) [14], where
each model has well-defined usage and customization interfaces [2].

The usage interface of a RAM model is comprised of all the public model
elements, i.e., the structural and behavioural properties, that the classes within
the design model expose to the outside. To illustrate this, the usage interface of
the RAM design of the Observer design pattern is shown in Fig. 1. The Observer
design pattern [9] is a software design pattern in which an object, called the sub-
ject, maintains a list of dependents, called observers. The functionality provided
by the pattern is to make sure that, whenever the subject’s state changes, all
observers are notified. The structural view of the Observer RAM model specifies
that there is a |Subject class that provides a public operation that modifies
its state (|modify) that can be called by the rest of the application. In addi-
tion, the |Observer class provides two operations, namely startObserving and
stopObserving, that allow the application to register/unregister an observer
instance with a subject instance.

The customization interface of a RAM model specifies how a generic design
model needs to be adapted to be used within a specific application. To increase
reusability of models, a RAM modeller is encouraged to develop models that are
as general as possible. As a result, many classes and methods of a RAM model
are only partially defined. For classes, for example, it is possible to define them
without constructors and to only define attributes relevant to the current design
concern. Likewise, methods can be defined with empty or only partial behaviour
specifications. The idea of the customization interface is to clearly highlight
those model elements of the design that need to be completed/composed with
application-specific model elements before a generic design can be used for a spe-
cific purpose. In RAM, these model elements are called mandatory instantiation
parameters, and are highlighted visually by prefixing the model element name
with a “|”, and by exposing all model elements at the top right of the RAM
model similar to UML template parameters. Fig. 1 shows that the customization

112 S. Bhalotia and J. Kienzle

structural view |Subject
|Observer

|modify
|update

~ add(|Observer a)
~ remove(|Observer a)
~ ArrayList<|Observer> getObservers()
+ * |modify(..)

|Subject

+ startObserving(|Subject)
+ stopObserving()
~ |update(|Subject)

|Observer

1
myList 0..*~ add(|Observer)

~ remove(|Observer)

<<impl>>
java.util.ArrayList

|Observer

mySubject
0..1

aspect Observer

message view |modify

target: |Subject
|modify(..)

Pointcut

|modify(..)

target: |Subject

o: |Observer
|update(..)

 observers := getObservers()

loop [o within observers]

* *

Advice

message view startObserving target: |Observer

startObserving(s)

s: |Subject

add(target)

message view startObserving target: |Observer

startObserving(s)

s: |Subject

add(target)

Fig. 2. Internal Design of Observer Aspect

interface for the Observer model comprises the class |Subject with a |modify
operation, and the class |Observer class with an |update operation.

Fig. 2 shows a possible internal design for the Observer aspect. The sub-
ject maintains an ArrayList of Observers referenced by myList. The notifica-
tion message view states that the behaviour of |modify is augmented to invoke
|update on all registered observer instances after the behaviour of |modify
completed execution.

2.3 Instantiation Ambiguities

In the object-oriented world, where classes are the main modularization unit,
generic designs are encapsulated within generic classes (also called template
classes). The customization interface of a generic class clearly specifies what
information the programmer who wishes to reuse a generic class needs to provide
in order for the class to be usable. For instance, the Java class ArrayList<E>
requires the user to specify the type of the elements that are to be stored within
the array. If the user needs two different kinds of ArrayLists in his design, she
can simply instantiate the generic class twice with different element types.

In RAM, when a modeller wants to reuse an already existing, generic RAM
model within her current design, she must also use the customization interface to

Reusable Model Interfaces with Instantiation Cardinalities 113

structural view

aspect NavalBattle

+ void moveShip(int newX, int newY)
+ void sinkShip()

- int currentXPos
- int currentYPos
- Status currentStatus

Ship

~ void shipSunk(Ship s)
~ void gameFinished(Player p)

PlayerStatsDisplay

+ void playerWins()
+ void playerLoses()

- String name
- int numberOfWins
- int numberOfLosses

Player

~ void updatePosition(Ship s)
~ void shipSunk(Ship s)

myShips

0..*

Fig. 3. Simplified Naval Battle Base Model

adapt the generic model to her specific design. This is done by providing instan-
tiation directives that map every model element in the customization interface
to a model element in the current design model. If desired, TouchRAM [1], the
modelling tool for the RAM approach, can compose the structure and behaviour
of the two models using the instantiation directives to yield the complete soft-
ware design model.

In some way, the reuse process in RAM is therefore similar to the one
of generic classes in programming languages. However, in contrast to generic
classes, RAM models typically encapsulate more than one design class, and the
functionality provided by the aspect results from interacting instances of several
different classes. Just like with classes, a modeller might want to reuse the func-
tionality provided by an aspect once or multiple times in his design. However,
since the functionality of the aspect is split over several classes, the user might
need parts of the structure or functionality provided by an aspect model multiple
times, but not all of it.

Fig. 3 illustrates such a situation. The model shows parts of the design of
a turn-based naval battle game, where players control ships that move around
on a battlefield. Lets assume that there is a BattlefieldDisplay class that
takes care of visualizing the battlefield on the screen, and there is also a
PlayerStatsDisplay class that shows the list of all players together with statis-
tics about their game performance, e.g., how many games they won, and how
many ships they sunk.

In such a design, the modeller may want to reuse the Observer concern shown
in Fig. 1 to notify the display classes whenever the state of the ships or players
change. An instantiation directive such as:

Subject → Ship
modify → moveShip

Observer → BattlefieldDisplay
update → shipMoved

would make sure that whenever a ship moves (because someone invokes the
moveShip method on a ship), the updatePosition method of any Battlefield-
Display instances that previously registered with the ship would be called.

114 S. Bhalotia and J. Kienzle

In this situation, however, one could imagine more complex reuses of the
Observer design that are not trivial to express. For instance, when a ship
sinks (because someone invokes the sinkShip method on a ship), all registered
BattlefieldDisplay instances and registered PlayerStatsDisplay instances
should be notified by a call to their respective shipSunk methods. The modeller
might be tempted to multi-map the Observer class, i.e., to write an instantiation
directive such as:

Subject → Ship
modify → sinkShip

Observer → BattlefieldDisplay, PlayerStatsDisplay
update → shipSunk

to achieve the desired effect. Unfortunately, the implementation of the Observer
design shown in Fig. 2 does not support such a multi-mapping, since the generic
java.util.ArrayList class can only be parameterized with one type. To solve
this problem, and in order to be able to reach both BattlefieldDisplay and
PlayerStatsDisplay with a call to shipSunk, a superclass needs to be intro-
duced and shipSunk must be transformed into a polymorphic call.

Without these changes, the only way to achieve the desired effect is to
reuse Observer twice, i.e., to map Observer in one instantiation directive to
BattlefieldDisplay, and to map Observer in the second instantiation direc-
tive to PlayerStatsDisplay. This will achieve the desired effect, but internally
we then get two array lists, one containing BattlefieldDisplay instances,
and the other one containing PlayerStatsDisplay instances. The sinkShip
method is also advised twice, i.e., after updating the ship status, a first loop
notifies all BattlefieldDisplay instances, and then a second loop notifies the
PlayerStatsDisplay instances. Although this works, using two array lists (and
looping through the observers in two separate loops) is not elegant, increases
memory use and maybe even decreases performance.

In general, the need for fine-grained control over how many instances of a
specific element defined in an aspect model should be created when the aspect
model is reused multiple times within the same target model has been already
highlighted in [16]. The authors define four so-called introduction policies. By
default, new instances of the element are created each time the aspect model was
reused (named PerPointcut-Match in [16]). It is also possible to specify that only
a single instance is created regardless of how many times the aspect model is
reused (referred to as Global). Finally, the authors also provide the possibility to
specify that new instances should be created only for a given matched set or tuple
of model elements in the target model (PerMatchedElement or PerMatchedRole).

3 Instantiation Cardinalities

This section introduces an extension to the customization interface that
addresses the issues introduced in subsection 2.3: it solves the reuse ambiguity
that the model user currently experiences in RAM and similar AOM approaches.
At the same time, this extension makes it possible for the model designer to

Reusable Model Interfaces with Instantiation Cardinalities 115

structural view
Subject<modify>

Observer<update>

+ * modify(..)

Subject

+ void startObserving(Subject s)
+ void stopObserving(Subject s)
~ void update(Subject s)

ObserverInterface{1}

{m=1..*}

{m}

~ void update(Subject s)

Observer {1..*}

aspect Observer

Fig. 4. Observer Model with Instantiation Cardinalities

have fine-grained control about how many instances of a specific model element
defined in an aspect model are introduced into the target model.

We propose to augment the customization interface of a reusable unit by
allowing the model designer to specify instantiation cardinalities for each model
element. The instantiation cardinality of a model element declares how many
times, minimally and maximally, the model element can be mapped to model
elements of the target model within one instantiation, i.e, within one reuse. The
instantiation cardinality is shown in curly brackets to the right of the name of
the model element.

Fig. 4 shows a design of the Observer pattern with instantiation cardinali-
ties. It is meant to be used for one Subject and potentially several Observers,
clearly specified by the instantiation cardinalities {1} for Subject and {1..*}
for Observer. To achieve the problematic reuse mentioned in subsection 2.3
(to notify both BattlefieldDisplay and PlayerStatsDisplay when a ship is
sunk), the modeller uses the following instantiation directive1:

Subject → Ship
modify → sinkShip

ObserverInterface → DisplayInterface
update → shipSunk

Observer<1> → BattlefieldDisplay
Observer<2> → PlayerStatsDisplay

With instantiation cardinalities, there is no need anymore for using the “|”
notation to designate mandatory instantiation parameters. Any model element
that has a non-zero minimum instantiation cardinality must be mapped. To
simplify the notation we also define a default cardinality, i.e., {0..1}.

In order to express the situation where the number of instantiations of one
model element must be equal to the number of instantiations of another model
element, it is possible to define variables within the instantiation cardinality
specification. For example, Fig. 4 states that there must be at least one modify
method within the Subject class, but there can be more than one. However,
for every modify method there should be a corresponding update method in
the ObserverInterface class. By assigning the number of instantiations to the

1 The notation “model element<x>” is used within an instantiation to refer to the xth
instantiation of the corresponding model element.

116 S. Bhalotia and J. Kienzle

variable m in the Subject class (by specifying {m=1..*}), we are able to express
this constraint on the update method of the ObserverInterface (by specifying
{m}).

In this case it is possible to write an instantiation directive such as:

Subject → Player
modify<1> → playerWins
modify<2> → playerLoses

ObserverInterface → DisplayInterface
update<1> → gameCompleted
update<2> → gameCompleted

Observer → BattlefieldDisplay

to specify that whenever playerWins or playerLoses is called on a Player
instance, gameCompleted of the registered PlayerStatsDisplay instances is
invoked.

4 Weaver Considerations

In the presence of instantiation cardinalities, the weaver can easily determine how
many instances of each model element from the reused aspect should be created
in the target model. For model elements that are explicitly mapped, the number
of instances is determined by the instantiation directive. Classes, operations and
attributes that are not explicitly mapped are created once, except for classes
that are contained in another class. In that case, the number of instances of the
class is equal to the number of instances of the containing class.

Handling of relationships between classes, i.e., associations, aggregations,
compositions and generalization-specialization, are more interesting. Assuming
that class A and class B are related with relationship r, the different cases are
handled as follows:
• If the instantiation multiplicity of class A is {0}, {0..1} or {1}, and

the instantiation multiplicity of B is {0}, {0..1} or {1}, then one single
instance of r is created in the target model.

• If the instantiation multiplicity of class A is {q=1..*}, and the multi-
plicity of B is {0}, {0..1} or {1}, then q instances of the relationship r
are created in the target model.

• If the instantiation multiplicity of class A is {q=1..*}, and the multiplic-
ity of B is {q}, then we are in a situation where the number of instances
of B is derived from the number of instances of A. In other words, every
instance of A has its corresponding instance of B, and hence, 1 instance
of the relationship r is created in the target model.

• If the instantiation multiplicity of class A is {q=1..*}, and the multi-
plicity of B is {p=1..*}, then we are in a situation where the number of
instances of A and B are completely independent. Hence, p*q instances
of the relationship r are created in the target model.

Reusable Model Interfaces with Instantiation Cardinalities 117

4.1 Automated Call Forwarding

The rules of object-orientation dictate that in a subclass, the name for a method
that overrides a method defined in a superclass must remain the same. In AOM,
where sub- and superclasses may happen to be defined in separate aspect models,
this constraint hinders true separation of concerns. It requires a designer to chose
the method names in one concern based on name definitions of another concern.

To remedy this situation, we allow overridden methods in subclasses to
optionally be mapped to methods that do not necessarily have the same name as
the superclass method (or any of the method names in the sibling classes). The
only constraint is that the method’s parameter number and types must match.

If the model user specifies such a mapping, then the model weaver automati-
cally inserts an additional method with the name defined in the superclass, that
directly forwards all calls to the mapped method. As a result, it is possible in
the aspect model that defines the superclass to make a call that polymorphically
dispatches to a differently named method of a subclass defined in a different
aspect model.

This feature is not only convenient, it becomes essential when a high-level
aspect reuses several generic aspect models or existing implementation classes.
For instance, in the Navalbattle example from above, if the player statistics are
kept on a remote web server, then one might want to reuse the Observer aspect
model defined in Fig. 4 as follows:

Subject → Ship
modify → sinkShip

Observer<1> → BattlefieldDisplay
update → refreshWindow

Observer<2> → PlayerStatsDisplay
update → sendStatsToServer

5 Design Patterns Revisited

Section 3 introduced instantiation cardinalities by means of the Observer
behavioural design pattern. This case study section applies our ideas to two
additional design patterns, the structural design pattern Composite [9] and the
creational design pattern Abstract Factory [9], in order to demonstrate the ele-
gance of instantiation cardinalities.

5.1 Composite

The Composite design pattern is a well-known structural design pattern that
allows individual objects and collections of objects to be treated uniformly [9].
Operations are defined in a common interface, and invoking such an operation
on a collection of objects results in applying the operation to each element in
the collection.

Fig. 5 shows that the RAM structural view of the Composite pattern is
similar to the classic OO UML diagram found in [9]. Instantiation cardinalities

118 S. Bhalotia and J. Kienzle

structural view
commonOperation

Leaf
Composite

+ * operation(..)
+ ArrayList<Component> getChildren()

Component

{1..*}

+ * operation(..)
+ ArrayList<Component> getChildren()
+ void addChild(Component c)
+ void removeChild(Component c)

Composite {1}

+ * operation(..)

Leaf {1..*}

1
myComps

0..*
content

~ void add(Component c)
~ void remove(Component c)

<<impl>>
java.util.ArrayList

Component

message view operation

operation(..)

aspect Composite

loop [c within Component]

target: Composite

c: Component

operation(..)

message view Component.getChildren
r := getChildren()

target: Component

null

message view Composite.getChildren is Getter<myComps>

{1}

Fig. 5. The Composite RAM Model

have been added to each class that clearly show how the classes are intended to
be mapped. While there need to be {1..*} Leaf classes, there has to be exactly
{1} Composite class. The common Component interface is optional to map, but
at least one operation must be specified {1..*}. Mapping it multiple times
allows the model user to expose multiple leaf operations.

For example, suppose a higher-level aspect Jukebox reuses the Composite
aspect as follows:

Component → Media
operation<1> → playMedia
operation<2> → stopMedia

Leaf<1> → Song
operation<1> → playSong
operation<2> → stopSong

Leaf<2> → Video
operation<1> → playVideo
operation<2> → stopVideo

Composite → PlayList
operation<1> → playPlayList
operation<2> → stopPlayList

In the message view for Composite.operation, we define the behaviour that
loops through all the children and calls operation on each child. Note that
we need to and are allowed to define only one message view for this method,
irrespective of the number of times operation is going to be mapped in a higher-
level aspect.

The mappings in the Jukebox aspect also nicely illustrates the advantage of
automated call forwarding. The designer of Jukebox is not bound to use identical

Reusable Model Interfaces with Instantiation Cardinalities 119

+ AbstractProductA createProductA()
+ AbstractProductB createProductB()

AbstractFactory

+ commonOperation()

AbstractProductA

Concrete
Factory1

+ AbstractProductA create()

ProductA1Concrete
Factory2

+ AbstractProductA create()

ProductA2

+ commonOperation()

AbstractProductB

+ AbstractProductB create()

ProductB1

+ AbstractProductB create()

ProductB2

Fig. 6. Abstract Factory in UML

method names for the common operations defined in the different leaf classes.
This allows for a great amount of flexibility while modelling. For instance, a
user might have started creating the Jukebox aspect with the Song and Video
classes together with the playSong and playVideo operations. Only later, when
designing PlayList, she realizes that the Composite pattern is useful in this
context. Because of automated call forwarding, she can simply map the methods
to operation defined in Composite without the need to modify any existing
method names. When the two aspects are woven together by the TouchRAM
tool, the weaver will create a playMedia methods in Song and Video that forward
calls to playSong and playVideo, respectively. That way, the polymorphism
exploited in the Composite.operation message view is maintained.

5.2 Abstract Factory

Abstract Factory is a creational design pattern that provides an interface for
creating families of related or dependent objects without specifying their concrete
classes [9].

The pattern can be best described by an example. Consider two vehicle
factories: Toyota and Honda. Each factory produces three types of vehicles:
Car, Motorcycle and Truck. Toyota produces exactly one vehicle of each type:
ToyotaCar, ToyotaMotorcycle and ToyotaTruck. The same is true for Honda.

Abstract Factory allows a modeller to instantiate a factory when the appli-
cation is initialized (VehicleFactory fact = new Toyota()). Subsequently,
whenever a specific type of vehicle is needed, it can be instantiated (Car
newcar = fact.createCar()) without having to know if the application uses
ToyotaCars or HondaCars. This decouples the creation of the products from the
specific factory that actually produces them.

Figs. 6 and 7 highlight the difference between a standard Abstract Factory
UML diagram (taken from [9]) and the Abstract Factory RAM model. The
advantages of using instantiation cardinalities are obvious:
• The RAM model with instantiation cardinalities is a lot more com-

pact, while it still clearly visualizes how the model is intended to
be used. It captures the essence of Abstract Factory completely. The
standard OO diagram shows only two ConcreteFactories and two
AbstractProducts. In OO design pattern diagrams that depict mul-
tiple subclasses of a common supertype, it is typically shown by two
classes with similar names and adding a numeric suffix to the names

120 S. Bhalotia and J. Kienzle

structural view

aspect AbstractFactory createProduct
ConcreteFactory
AbstractProduct

create

+ AbstractProduct createProduct(..)

AbstractFactory

+ * operation(..)

AbstractProduct{0..1} {p=1..*}

{p} {0..*}

+ AbstractProduct createProduct(..)

ConcreteFactory {q=2..*}

+ AbstractProduct create(..)

ConcreteProduct {q}

{1}

message view createProduct target: ConcreteFactory

product = createProduct(..)

product: ConcreteProduct
product := create(..)

product

Fig. 7. Abstract Factory with Instantiation Cardinalities

(e.g., ConcreteFactory1, ConcreteFactory2). In RAM, the fact that
there can be one or more AbstractProducts {1..*} whereas there need
to be at least two ConcreteFactories {2..*} is clearly shown in the
notation.

• Similarly, since the maximum cardinality can be *, the RAM notation is
scalable. The OO diagram relies on different suffix types (numerical and
alphanumerical) to show the independence of the number of subclasses
of AbstractProduct and AbstractFactory. This technique becomes
problematic in case a third set of independent subclasses needs to be
specified. In RAM, a designer simply needs to introduce a different vari-
able for every class that can exist independently multiple times, e.g.,
{q=1..*}.

• The RAM model shows the relationships between the number of classes
unambiguously. In the standard OO diagram, the same kind of suffix is
used to highlight the fact that the same number of subclasses is needed.
For instance, there are subclasses ConcreteFactory and two subclasses
ProductA. However, it is not clear whether from a design point of view
the number of ConcreteFactories is determined by the number of
ProductAs, or if it is the other way round. In RAM, since instantiation
cardinalities allow the possibility of declaring and using variables, it is
clear that:

• The number of different AbstractProducts {p=1..*} (variable
p is declared) determines the number of constructor methods in
the AbstractFactory class {p} (variable p is used).

• For each AbstractProduct, there must be as many
ConcreteProduct subclasses {q} (variable q used) than there
are ConcreteFactories {q=2..*} (variable q is declared).

• There is no direct relation between the num-
ber of ConcreteFactories {q=2..*} and AbstractProducts
{p=1..*} (they declare different variables p and q).

Reusable Model Interfaces with Instantiation Cardinalities 121

• In one message view it is possible to define the behaviour for all
createProduct operations of all ConcreteFactories, i.e., for p*q meth-
ods! Because of the different variable declarations, the weaver knows that
when generating the message view for createProduct¡i,j¿, it is supposed
to call the create method of the jth mapping of the ConcreteProduct
subclass of the ith mapping of the AbstractProduct class. For exam-
ple, given the instantiation in Fig. 8, the weaver can, for example,
generate the message view ToyotaFactory.createTruck that calls
ToyotaTruck.create.

AbstractFactory → VehicleFactory
createProduct<1> → createCar
createProduct<2> → createTruck

ConcreteFactory<1> → Toyota
ConcreteFactory<2> → Honda
AbstractProduct<1> → Car

operation → drive
AbstractProduct<2> → Truck

operation<1> → drive
operation<2> → load

ConcreteProduct<1,1> → ToyotaCar (the first mapping dimension refers to
create → buildToyotaCar the mapping of the superclass)

ConcreteProduct<1,2> → HondaCar
create → buildHondaCar

ConcreteProduct<2,1> → ToyotaTruck
create → buildToyotaTruck

ConcreteProduct<2,2> → HondaTruck
create → buildHondaTruck

Fig. 8. Example Instantiation of AbstractFactory

6 Related Work

To the best of our knowledge, none of the well-known AOM approaches provide
customization interfaces for aspect models that expose information equivalent
to what instantiation cardinalities provide.

For example, in Theme/UML [6], the models that contain crosscutting struc-
ture and behaviour are called themes. A theme is a parameterized UML package,
and it exposes the generic model elements that must be bound to application
specific elements in the form of UML template parameters. Just like in RAM
before the introduction of instantiation cardinalities, it is not obvious for a mod-
eller to know if she can bind a parameter to several model elements (similar to
multi-mapping in RAM), or rather bind a theme multiple times to elements in
a target model.

MATA [20] is a graph-based approach for composing UML diagrams that sup-
ports pattern matching to determine where an aspect model is to be applied. If in
the aspect model a model element is tagged with the stereotype <<create>>, it
means that this model element is created in the target model whenever the pat-
tern matches. This is equivalent to the instantiation policy PerPointcut-Match
described in [16]. [5] later extended the notation with additional stereotypes
<<create++>> for introducing new model elements into a package common to all
aspect models (equivalent to the Global policy described in [16]), <<create+>>

122 S. Bhalotia and J. Kienzle

to introduce new model elements into a package common to all pattern matches,
and <<create->> to introduce new model elements into a new package that is
specific to each parameter binding. Although this allows for more fine-grained
control over how many times model elements are introduced when an aspect is
applied, it does not help the model user decide on whether to write one complex
pattern match or several specific ones.

We believe that the AOM approaches presented above, and even others such
as HiLA [10], GeKo [15] or the Motorola WEAVR [7], could benefit from adding
instantiation cardinalities to their models in a way that is similar to how we
extended RAM.

At a programming level, some aspect-oriented programming languages have
introduced features that give the programmer fine-grained control over the num-
ber of instantiations of aspects. In AspectJ [13] for example, an aspect has per
default only one instance that cuts across the entire program. Consequently,
because the instance of the aspect exists at all join points in the running of
a program (once its class is loaded), its advice is run at all such join points.
However, AspectJ also proposes some elaborate aspect instantiation directives,
such as: 1) perthis(pointcut) aspects, meaning that an instance of the aspect is
created for every different object that is executing when the specified pointcut
is reached; pertarget(pointcut), meaning that an instance of the aspect is created
for every object that is the target object of the join points matched by pointcut;
3) percflow(pointcut), meaning that an instance of the aspect is created for each
flow of control of the join points matched by the specified pointcut. These elabo-
rate aspect instantiations are all dynamic, i.e., they are based on the execution of
a program, and might become relevant in future AOM approaches that support
execution of models.

Many other AOP approaches, such as package templates [4], provide means
to instantiate crosscutting aspects/modules/templates multiple times and to
resolve arising inconsistencies by specifying renamings/mappings. However, this
does not solve the problem in the context of reuse, where the designer needs to
communicate to the user how and how many times the elements in the reusable
aspect were intended to be applied.

7 Conclusion

In this paper we have presented instantiation cardinalities, a new concept useful
in the context of aspect-orientation in general and aspect-oriented modelling in
particular. It allows the designer of a reusable aspect that comprises multiple
structural entities to a) specify the customization interface of the module, i.e.,
highlight which entities are generic and need to be completed with application-
specific structure in order for the reusable aspect to be usable in a specific con-
text, and b) clearly specify maximally how many times each structural entity
can be mapped to application-specific entities. By declaring and using vari-
ables within the instantiation cardinality specification, dependencies between
the number of mappings of structural entities can be expressed in a precise way.

Reusable Model Interfaces with Instantiation Cardinalities 123

This solves the inherent ambiguity that model users face with most aspect-
oriented approaches when it comes to reusing existing aspects within an applica-
tion, and gives the model designer fine-grained control over how many instances
of each model element are created in the target model when it is applied. As a
result, the designer of the reusable aspect is able to specify all the instantiation
policies identified in [16].

In order to allow for true separation of concerns, we have proposed to extend
the TouchRAM weaver with automated call forwarding. As a result, it is pos-
sible to maintain polymorphic treatment of a set of subclasses in one aspect,
while not requiring uniform naming of polymorphically related operations in
each individual subclass.

For illustration purpose, the paper presented how instantiation cardinalities
integrate with the Reusable Aspect Models approach. Furthermore, the practi-
cality and elegance of the approach was demonstrated by showing the detailed
aspect-oriented design models of a behavioural design pattern (Observer), a
structural design pattern (Composite) and a creational design pattern (Abstract
Factory).

References

1. Al Abed, W., Bonnet, V., Schöttle, M., Yildirim, E., Alam, O., Kienzle, J.:
TouchRAM: a multitouch-enabled tool for aspect-oriented software design. In:
Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS, vol. 7745, pp. 275–285. Springer,
Heidelberg (2013)

2. Al Abed, W., Kienzle, J.: Information hiding and aspect-oriented modeling. In:
14th Aspect-Oriented Modeling Workshop, Denver, CO, USA, Oct. 4th, 2009,
pp. 1–6, October 2009

3. Alam, O., Kienzle, J., Mussbacher, G.: Concern-oriented software design. In:
Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013.
LNCS, vol. 8107, pp. 604–621. Springer, Heidelberg (2013)

4. Axelsen, E.W., Sørensen, F., Krogdahl, S., Møller-Pedersen, B.: Challenges in the
design of the package template mechanism. T. Aspect-Oriented Software Develop-
ment 7271, 268–305 (2012)

5. Barreiros, J., Moreira, A.: Reusable model slices. In: 14th Aspect-Oriented
Modeling Workshop, Denver, CO, USA, Oct. 4th, 2009, October 2009

6. Carton, A., Driver, C., Jackson, A., Clarke, S.: Model-driven theme/UML. In:
Katz, S., Ossher, H., France, R., Jézéquel, J.-M. (eds.) Transactions on Aspect-
Oriented Software Development VI. LNCS, vol. 5560, pp. 238–266. Springer,
Heidelberg (2009)

7. Cottenier, T., van den Berg, A., Elrad, T.: Motorola WEAVR: Aspect and
model-driven engineering. Journal of Object Technology 6(7), 51–88 (2007).
http://dx.doi.org/10.5381/jot.2007.6.7.a3

8. Cottenier, T., Berg, A.V.D., Elrad, T.: The motorola weavr: model weaving in a
large industrial context. In: AOSD 2006 Industry Track. ACM, March 2006

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison Wesley,
Reading, MA (1995)

http://dx.doi.org/10.5381/jot.2007.6.7.a3

124 S. Bhalotia and J. Kienzle

10. Hölzl, M., Knapp, A., Zhang, G.: Modeling the car crash crisis management sys-
tem using HiLA. In: Katz, S., Mezini, M., Kienzle, J. (eds.) Transactions on
Aspect-Oriented Software Development VII. LNCS, vol. 6210, pp. 234–271.
Springer, Heidelberg (2010)

11. International Telecommunication Union (ITU-T): Recommendation Z.151 (10/12):
User Requirements Notation (URN) - Language Definition, October 2012

12. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-oriented domain
analysis (FODA) feasibility study. Tech. Rep. CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, November 1990

13. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An overview of AspectJ. In: Lindskov Knudsen, J. (ed.) ECOOP 2001. LNCS,
vol. 2072, pp. 327–354. Springer, Heidelberg (2001)

14. Kienzle, J., Al Abed, W., Klein, J.: Aspect-Oriented Multi-View Modeling. In:
AOSD 2009. pp. 87–98. ACM Press, March 2009

15. Kramer, M.E., Klein, J., Steel, J.R.H., Morin, B., Kienzle, J., Barais, O., Jézéquel,
J.-M.: Achieving practical genericity in model weaving through extensibility. In:
Duddy, K., Kappel, G. (eds.) ICMB 2013. LNCS, vol. 7909, pp. 108–124. Springer,
Heidelberg (2013)

16. Morin, B., Klein, J., Kienzle, J., Jézéquel, J.-M.: Flexible model element introduc-
tion policies for aspect-oriented modeling. In: Petriu, D.C., Rouquette, N., Haugen,
Ø. (eds.) MODELS 2010, Part II. LNCS, vol. 6395, pp. 63–77. Springer, Heidelberg
(2010)

17. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Communications of the Association of Computing Machinery 15(12), 1053–1058
(1972)

18. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag New York Inc, Secaucus,
NJ, USA (2005)

19. Reddy, Y.R., Ghosh, S., France, R.B., Straw, G., Bieman, J.M., McEachen, N.,
Song, E., Georg, G.: Directives for composing aspect-oriented design class models.
In: Rashid, A., Akşit, M. (eds.) Transactions on Aspect-Oriented Software Devel-
opment I. LNCS, vol. 3880, pp. 75–105. Springer, Heidelberg (2006)

20. Whittle, J., Jayaraman, P., Elkhodary, A., Moreira, A., Araújo, J.: MATA: a
unified approach for composing UML aspect models based on graph transfor-
mation. In: Katz, S., Ossher, H., France, R., Jézéquel, J.-M. (eds.) Transactions
on Aspect-Oriented Software Development VI. LNCS, vol. 5560, pp. 191–237.
Springer, Heidelberg (2009)

© Springer International Publishing Switzerland 2015
G. Taentzer and F. Bordeleau (Eds.): ECMFA 2015, LNCS 9153, pp. 125–136, 2015.
DOI: 10.1007/978-3-319-21151-0_9

A Model-Based Approach for the Integration
of Configuration Fragments

Azadeh Jahanbanifar1(), Ferhat Khendek1, and Maria Toeroe2

1 Concordia University, Montreal, Canada
{az_jahan,khendek}@encs.concordia.ca

2 Ericsson Inc., Montreal, Canada
Maria.Toeroe@ericsson.com

Abstract. A complex system configuration often consists of different fragments
developed separately and integrated later to relate them in a consistent manner.
The integration process follows certain rules, which relate the elements from
the different fragments and ensure certain properties for the complete system
configuration. In this paper we propose a model driven approach based on the
concept of model weaving. It integrates the configuration fragments into a sys-
tem configuration while targeting some specific system properties. Our
approach is discussed and illustrated within the context of the Service Availa-
bility Forum (SA Forum) middleware, where we integrate the Availability
Management Framework (AMF) configuration of an application that provides
services to the users with the Platform Management Service (PLM) configura-
tion of the platform, which represents the lower layer entities such as the oper-
ating systems, virtual machines, hypervisors and hardware elements.

Keywords: Configuration fragments · System configuration · Model integration ·
Model weaving · Constraints · SA Forum middleware · Availability

1 Introduction

The utilization of reusable commercial off-the-shelf (COTS) components promises a
reduction in time and cost of software development as well as higher quality, more
reliable and maintainable software. A system (e.g. new composite applications or a
system of systems such as in the cloud architectures) is built by putting together such
independently developed COTS components. Each of these components/sub-systems
may have its own perspective of the system described as a configuration. This configu-
ration specifies the organization and the characteristics of the resources the compo-
nent/sub-system is aware of and potentially manages. Thus, the composite system is
described through various independently developed partial configurations - also known
as configuration fragments. One of the main challenges of such composite systems
is the integration of these configuration fragments in a consistent manner that reflects
the relations and constraints between the elements of the different fragments and
ensures that the resulting system meets the required properties such as availability,
performance and security. The complexity of this integration task stems from the

126 A. Jahanbanifar et al.

overlapping elements of the different configuration fragments (i.e. different logical
representation of the same physical entity) and from the complex relationships among
the elements of the different configuration fragments. We tackle these challenges in
this paper.

We propose a model driven approach which is based on model weaving [1] to inte-
grate the configuration fragments. Model weaving allows one to interrelate different
models – in our case representing configuration fragments – by defining links be-
tween their elements. These links form a weaving model, which itself conforms to a
weaving metamodel. To extend the generic core weaving metamodel special link
types can be defined that capture the relations between the elements of the different
models [1]. The definition of these abstract links is a design decision and depends on
the application domain. Model weaving has been widely used for model integration,
model transformation, model merging, etc. [2, 3, 4, 5], however so far it has focused
primarily on the static mapping of elements without considering the semantics of
these relations. In our approach we take into account the semantics of these relations
and target some desired properties of the resulting system configuration. We illustrate
our integration approach in the context of the Service Availability Forum (SA Forum)
middleware [6], which has been developed by a consortium of telecommunication and
computing companies to support the development of Highly Available (HA) systems.
It consists of several services and frameworks, which represent and control specific
aspects of the system and collaborate with each other [6, 7]. Many of these services
and frameworks that we refer to as services in the rest of this paper, require a configu-
ration that specifies the organization and the characteristics of the system and/or ap-
plication resources under their control. We focus on the configurations of two SA
Forum services: the Availability Management Framework (AMF) [8], which manages
the redundant software entities for maintaining the service availability, and the Plat-
form Management (PLM) service [9] which is responsible for providing a logical
view of the platform entities (hardware and low level software entities) of the system.
Thus, they represent different aspects of a system and should be considered as frag-
ments of the system configuration. The configurations for these services are described
using UML profiles. We capture the structure and semantics of the relations between
these profiles in a weaving model, which is later used to generate the system configu-
ration. Defining the relations between the profiles at a higher level of abstraction
through a weaving model has several advantages such as reusability of the link types,
increasing the extensibility (by allowing more models to be added) and automating
the integration process [1, 14].

The rest of this paper is organized into five sections. In Section 2 we review AMF
and PLM services, their respective configurations and configuration metamodels.
Section 3 introduces our approach for integrating configuration fragments (configura-
tion models) and its application. In Section 4 we briefly discuss the implementation
and results. Related work is reviewed in Section 5 before concluding in Section 6.

 A Model-Based Approach for the Integration of Configuration Fragments 127

2 SA Forum Middleware for Service High Availability

The SA Forum middleware is a standardized solution defined and developed by a
consortium of computing and telecommunications companies to enable the develop-
ment of highly available applications from COTS components and ensure their porta-
bility [6]. As mentioned earlier, in this paper we focus on the AMF and PLM services
and their respective configurations.

2.1 Availability Management Framework (AMF)

AMF is responsible for maintaining the availability of application services by manag-
ing and coordinating the redundant software entities that compose the application
under its control [8]. This management is based on the AMF configuration of the
application. A simplified example of an AMF configuration of an application is
shown in the left side of Fig. 1. In an AMF configuration a component is the smallest
service provider entity. A combination of collaborating components forms a Service
Unit (SU) and the workload provisioned by an SU is represented as a Service Instance
(SI). A group of redundant SUs capable of providing the same SIs forms a Service
Group (SG). An application may consist of a number of SGs. At runtime to protect
each SI, AMF assigns it in the active and standby roles to the SUs of the SG. In case
of the failure of the SU with the active assignment AMF dynamically moves the ac-
tive assignment from the faulty SU to the standby. Each SU is instantiated on an
AMF Node, which is a logical container of the AMF components and SUs. SUs (and
SGs) can be configured to be hosted on a particular group of AMF nodes referred to
as a Node Group (NG). This means that such SU/SG (the SUs of the SG) can be in-
stantiated only on the Nodes of that Node Group [7, 8]. An AMF configuration con-
sists of these entities, their types and their attributes.

AMF
Node2

AMF
Node1

SU1 SU2

SG1

App1
SI1

Active Stand by

Fig. 1. A simplified AMF configuration and a portion of the AMF configuration metamodel

AmfSG

AmfSU

AmfNode

AmfApp

AmfSI
Protects

Configured on Instantiated on

Assigned to

0..*

0..*

0..*

AmfNG

128 A. Jahanbanifar et al.

A complete description of AMF configurations is out of the scope of this paper, we
only introduced the elements required for the rest of the paper. Accordingly, the com-
ponents and the workload they can protect also have been omitted from the example
of Fig. 1 for the sake of simplicity as they will not be used in our approach. More
information on AMF configurations can be found in [8].

The concepts in an AMF configuration, their relationships, and the related con-
straints have been captured in an AMF configuration metamodel. A portion of this
metamodel is shown in the right side of Fig.1. Subsequently, an AMF UML profile
has been defined by mapping the AMF configuration metamodel to the UML meta-
model [11]. The complete definitions of the AMF configuration metamodel and the
respective AMF UML profile are discussed in [12]. In our configuration integration
approach we use this AMF UML profile as an input.

2.2 Platform Management (PLM)

The PLM service is responsible for providing a logical view of the platform entities of
the system, which includes the Hardware Elements (HEs) and the low level software
entities also known as the Execution Environments (EEs) [9]. A PLM configuration
represents their logical view. The PLM service manages the platform entities and acts
as a mediator between the low level software and the hardware part of the system. A
simple example of a PLM configuration is shown in the left side of Fig. 2.

In a PLM configuration PLM EEs represent software environments that can ex-
ecute other software. A PLM EE can be an Operating System (OS), a Virtual Machine
Monitor (VMM) or a Virtual Machine (VM) [7, 9]. A PLM HE with computational
capabilities can host a VMM or an OS. An OS can be parent of other PLM EEs, e.g.
VMMs and VMs can be hosted on VMMs.

As for the AMF we have defined a PLM metamodel, which captures the PLM con-
figuration concepts, their relationships and their constraints. The PLM metamodel is
based on the PLM specification in [9], but further refines the standard PLM concepts
and their relationships. For instance, the PlmEE is specialized into PlmEEVM,

Fig. 2. A simplified PLM configuration and a portion of the PLM configuration metamodel

0...*

PlmDomain

PlmEntity

PlmEE

PlmHE

Plm
Dependency

PlmEEVM PlmEEVMM PlmEEOS

1...*

Hosts

Hosted on

0...1 0...1

HE2

EEVMM2

PLM Domain

HE1

EEVMM1

EEVM1 EEVM2 EEVM3

HE3

EEVMM3

EEOS1

EEVM4

 A Model-Based Approach for the Integration of Configuration Fragments 129

PlmEEVMM, and PlmEEOS. The relationship among these concepts has also been
redefined: The relationship between the PlmEEVM and the PlmEEVMM is now de-
fined through the PlmDependency. The PlmEEVM has an association with its
PlmEEOS. The PlmEEOS may have an association with a PlmEEVMM, i.e. host it.

These refinements are required to handle appropriately virtualized environments
and cloud architectures. A portion of the PLM configuration metamodel is shown in
the right side of Fig. 2. Following the same approach as for the AMF UML profile,
we defined the PLM UML profile by mapping the PLM configuration metamodel to
the UML metaclasses, with the closest semantics.

2.3 Overlapping Elements in Multiple Configurations

The configuration fragment defined for each service (such as AMF or PLM)
represents a logical view of the physical entities of the system used/managed by that
service. In this sense multiple services may use or manage the same physical entity
and therefore different logical representations of this same entity will exist in multiple
configuration fragments. For instance the virtual machine (VM) as a physical entity in
the system is represented in both AMF and PLM configurations by different logical
entities. In the AMF configuration it is known as an AMF Node while in the PLM
configuration it is seen as EEVM. In a cloud architecture where a cloud controller
such as OpenStack [24] is used for providing and managing platform services, the
same VM is also managed by the cloud controller service (e.g. Nova in OpenStack)
and represented in its configuration (Nova database).

Different logical representations of the same physical entity will certainly lead to
inconsistency if they are handled and modified independently in the different configu-
ration fragments. In order to avoid any inconsistency in the system, the relation be-
tween the configuration fragments need to be defined according to the requirements
of the domain (or aspect) such as security, availability, performance, etc. These rela-
tions should be further captured during the integration of the configuration fragments
to guarantee a consistent view of the system i.e. the system configuration.

3 Generation of System Configuration through Weaving

In this section we describe our approach for the integration of configuration fragments
(represented as models) using model weaving [1]. We illustrate our approach through
the integration of AMF and PLM configurations. Our goal is to integrate these two
fragments in such a way that it ensures certain properties for the system configuration.

A weaving model captures the mapping between the elements of the source pro-
files (the AMF, and PLM UML profiles) and the target profile, i.e. the system confi-
guration UML profile. The system configuration profile at this stage is a combination
(union) of the AMF and PLM profiles without any relationship between the elements
of these two profiles.

The weaving model should also conform to a weaving metamodel, which describes
the types of mapping (link types) that are valid in the weaving model. Once the weav-
ing model is defined with the mappings between the elements of the source and target
profiles, to be able to apply it, it needs to be translated into an executable format.

130 A. Jahanbanifar et al.

This translation can be achieved using a Higher Order Transformation (HOT) [10],
which translates the weaving model into a “Final Transformation” model. The system
configuration model is then generated by executing the “Final Transformation” with
the AMF and PLM configuration models as input. Fig. 3 shows the overall process of
the system configuration generation. In the following we summarize these steps.

3.1 The Relation between the AMF and PLM Configurations

According to the SA Forum specifications [8, 9], each AMF Node is eventually
hosted on (mapped to) a PLM EE so that the software entities of the AMF Node can
be executed and provide services. This is basically the connection point between the
two configuration fragments. In this paper we assume that this PLM EE is an OS
instance installed on a VM instance. Therefore, an AMF Node is mapped to a VM,
and this is how the two configurations are put into relation. The question that arises
here is whether any mapping between the AMF Nodes and the PLM EEs is adequate
in an HA system?

Let us consider the AMF and PLM configurations introduced in the previous sec-
tion and let us assume that AMFNode1 and AMFNode2 from the AMF configuration
are mapped to PLM EEs EEVM1 and EEVM2, respectively. These two VMs are
running on the same PLM HE (HE1). At this point the PLM HE as well as the VMM
will be single points of failure. If this HE crashes both service providers, SU1 and
SU2, will be lost and service outage will be inevitable. So, to avoid the single point of
failure due to the hosting hardware, we need to make sure that the service providers
(SUs) of an SG will never be hosted on the same PLM HE.

AMF Profile

PLM Profile

Weaving
Metamodel

System
Configuration Profile

?

AMF Profile

PLM Profile

AMF
Configuration Model

PLM
Configuration Model

Weaving
Model

System
Configuration Model

HOT
WModel2Final

Final
Transformation

Input/Output
Conforms to

Fig. 3. The system configuration model generation through model weaving

 A Model-Based Approach for the Integration of Configuration Fragments 131

This simple example shows that the distribution of redundant software entities on
the hardware elements requires a more elaborated mapping between the elements of
these configuration fragments. One would like to relate these configuration fragments
in such a way that the AMF nodes on which the SUs of an SG are deployed are never
mapped to PLM EEs that may be hosted on the same PLM HE.

To solve this problem we proposed a method [13] that classifies the VMs into
hardware-disjoint VM Groups (VMGs). The VMs inside each VMG can be hosted on
a set of HEs and this HE set has no intersection with the HE sets of other VMGs.
Mapping these VMGs to AMF NGs and selecting an AMF NG for each SU of the SG
will guarantee that those SUs will never end up on the same PLM HE. This way we
are not only protecting the service by redundant software entities, but we also guaran-
tee the hardware redundancy for these redundant software entities.

This feature of ensuring hardware redundancy in the system configuration is an ex-
ample of a property that one can target using our approach. Other properties can be
considered as well, such as the affinities between SUs of different SGs, which target
the optimization of communications between resources.

3.2 Extending the Generic Weaving Metamodel

The identified mappings between the elements of the configuration fragments should
be formally represented. They are captured in a weaving model [1]. This consists of
a set of links, which depict the relationship (or mappings) between the elements of the
source and target metamodels (UML profiles). The links may carry different mean-
ings based on their types. The link types and their linked element types are defined in
the weaving metamodel. To introduce the link types required for the integration of the
configurations (e.g. AMF and PLM) we extended the AMW generic weaving meta-
model [14]. The extended elements are shown in darker color in Fig. 4.

The first link type required in our work is called “EqualCorrespondence”. This link
type, inspired by [4], represents the mapping of elements of the source metamodels to
the identical element of the target metamodel since many elements from the source

WElement
- name
- description

WRef
- ref

WElementRef

WLink

LedLink
WLinkEnd

SourceElement TargetElement

Leader Follower

DisjointDistribution

EqualCorrespondence
child

0..*

end1..*

element

Fig. 4. AMW generic metamodel extended with new LinkTypes and LinkEnds

132 A. Jahanbanifar et al.

models are just copied to the target model. The “EqualCorrespondence” link can do
this task by simply mapping the identical elements of these metamodels.

The second link type we added to the generic weaving metamodel is called
“LedLink”. This link type is used when more than one source elements are involved
in a mapping and some of these source elements can influence the other source ele-
ments. In other words, some source elements (called “Leader” elements) affect or lead
other source elements (called “Follower” elements). Therefore, the SourceElement
(which is itself an extension of the WLinkEnd) is extended to the “Leader” and
“Follower” elements. “DisjointDistribution” link type is an extension of the
“LedLink”. “DisjointDistribution” link type captures the hardware-disjointness prop-
erty we are aiming at for the target system configuration.

3.3 Creating the Links in the Weaving Model and Transformation Generation

Once the required link types have been defined in the weaving metamodel, they can
be used in the weaving model for relating elements of the source metamodels (UML
profiles) to the elements of the target metamodel (UML profile).

The “EqualCorrespondence” is used to map all the elements of the source profiles
to the elements of the target one. As mentioned earlier the UML profile of the system
configuration is a union of the elements of the PLM and AMF UML profiles, there-
fore both link end elements of this link type have the same name. Some semi-
automated methods such as the technique introduced in [5] can be applied for
optimization and thus semi-automate the creation of the mappings based on the simi-
larity (such as string or type similarity) of the elements.

The “DisjointDistribution” link type of the weaving metamodel is used to represent
the HW-disjointness mapping between the relevant elements of the AMF and PLM
UML profiles. We assumed that we have a fixed PLM configuration and according to
the information we have about the platform entities (such as VMs and HEs) we force
AMF entities to keep the HW-disjointness for its software entities (i.e. AMF SUs).
Thus, in this mapping the PlmEEVM is the Leader source element and the AmfNode
is the follower source element and AmfSU is the target element. The application of
this link type for mapping the AmfNode, and PlmEEVM as source elements to the
AmfSU as the target element is as follows:

<<WLink>> DisjointDistribution HEDisjointSUs
 <Source>
 <<Right>> Leader PlmEEVM
 <<Left>> Follower AmfNode
 <Target>
 <<Target>> TargetElement AmfSU

In more details this link will group the elements of the Leader SourceElement of
the right profile, i.e. the PlmEEVMs, based on the HW-disjoint algorithm in [13].
Based on the established groups, the elements of the Follower SourceElement of the
left profile are affected (grouped) and mapped to the TargetElement, i.e. the AmfSU.
These groups are set for the different SUs of an SG therefore guaranteeing hardware
redundancy.

 A Model-Based Approach for the Integration of Configuration Fragments 133

The translation of a weaving model into an executable format is done using an
HOT, which itself is a transformation model. Basically, each defined link in the
weaving model will be translated to one or more transformation rules of the “Final
Transformation” model. The “WModel2Final” of Fig.3 is the HOT, which takes the
weaving model as input and transforms it into an executable transformation model
represented as Final Transformation.

In our case we defined the HOT for the two new link types (i.e. “EqualCorrespon-
dence” and “DisjointDistribution”) to generate the “Final Transformation”. It takes
the AMF and PLM configuration models as input and generates the system configura-
tion model as the output. The generated configuration will have all the elements of
both input models and also the mapping between the AMF Node and PLM EE that
captures the HW-disjointness property.

4 Implementation and Discussion

We have implemented our approach of integrating configuration fragments using the
Atlas Model Weaver (AMW) [14, 15, 16], which is being developed as a plugin for
the Eclipse Modeling Framework (EMF) [17]. We extended the generic weaving
metamodel of the AMW defined in KM3 [18] with the extensions discussed in
Section 3. We used ATL [19] for the implementation of the HOT. The “Final Trans-
formation” generated automatically from the HOT includes the implementation of the
algorithm defined in [13].

Although we explained our approach in the context of the SA Forum middleware
configuration fragments, we believe it is applicable to other domains where the inte-
gration of configuration fragments is required. Our approach is based on the model
weaving technique and focusses on the semantics of the relations in the weaving such
as the HW-disjointness property to ensure hardware redundancy for redundant soft-
ware entities to increase the availability of the system. Other properties such as HW-
affinity, performance or security may be targeted using the same technique.

Moreover defining special link types in the weaving metamodel allows for the de-
velopment of more abstract mappings. Abstracting concepts is an intrinsic feature of
metamodeling, which is discussed widely in the literature. This advantage becomes
bolder in the case of configuration integration from two perspectives: First it increases
the reusability of link types since the defined link types can be used in future map-
pings when other configuration fragments need to be added. As those configuration
fragments belong to the same system, there is a fair chance that they require similar
link types for their mappings (e.g. using the “EqualCorrespondence” link type). The
second advantage of the abstract definition of link types is that it allows for the selec-
tion of the desirable interpretation and implementation for the mapping. This means
that the declarative definition of the link types can be translated according to the
features of the system. Let us consider again the “DisjointDistribution” link type. We
interpreted this link with the assumption that we have a predefined PLM configura-
tion with specific elements that are fixed and cannot be modified; on the other hand
we forced the AMF to use the newly defined VM groups by changing the AMF confi-
guration. While another interpretation of the “DisjointDistribution” may consider the
AMF configuration as fixed and unchangeable model and using other heuristics try to

134 A. Jahanbanifar et al.

change the PLM configuration in a way to still provide hardware redundancy for re-
dundant software entities.

The fact that model transformation is eventually used to translate the weaving mod-
el into an executable format does not fade away the benefits of the weaving model. The
reason is that the links of the weaving model help us to capture the transformation
patterns and reuse them rather than defining all the rules manually. Another reason for
selecting the model weaving technique over the direct model transformation is the
extensibility of the weaving for integrating additional models with less manual effort.
With model weaving we can simply add more models as input into the weaving
process and the respective transformation rules will be generated automatically, while
adding more models directly into a transformation requires considerable time and ef-
fort to develop the new transformations rules.

5 Related Work

The idea of data mapping and data integration has been widely investigated in the
literature [21, 22, 23]. Defining the mapping between the models and model integra-
tion can be seen as the successor of the data mapping research. A number of
approaches have defined model management operations (such as merging, subtract-
ing, integration, etc.) focusing on the mapping definition between the models and
proposing the operations for manipulating the model mappings and the models for
different scenarios.

In Rondo [20] the model management operators, such as merge, match, extract, are
defined for solving the mapping problem of metadata in XML schemata format.
However the defined operators can only create mappings with respect to fixed seman-
tics and they are not flexible enough to represent domain specific mappings. A set of
generic model management operations are introduced in [3] and the author explains
how these operations can be applied to the models and their mappings for different
application scenarios. The operations are defined in algebra, while the implementation
and execution of the abstract operators are left to the users. A more specific study on
defining model management operations for model integration is discussed in [2]. The
authors consider a set of operators for integrating heterogeneous models with the
possibility of specifying integration constraints that are considered as pre/post condi-
tions for dealing with overlapping concepts.

Model weaving [1], our choice for model integration, in contrast to the previously
mentioned work allows for the definition of the extensible mappings which can then
be executed with model transformations. In [4, 5], model weaving is used for integrat-
ing software architecture models. The mapping links between the elements of the
models are created and then filtered based on some similarities, such as type or name,
between the linked elements. Basically the links are used to map similar elements. In
our work the links between model elements are more complex and target system
properties such HW-redundancy for redundant software entities in the case of AMF
and PLM configuration models. The links not only define the structural relationships
between the elements, but also complex properties of the target system configuration.

 A Model-Based Approach for the Integration of Configuration Fragments 135

6 Conclusion

In component based systems the system is developed by putting together COTS
components from different vendors, each of which may have its own configuration
reflecting the organization and the characteristics of the system resources from the
component’s perspective. This results in having multiple partial configurations (or
configuration fragments) for the system that were developed independently even
though they are now interrelated as they represent and potentially act on the same
system entities. Therefore, these configuration fragments need to form together a
consistent system configuration to be able to ensure different system properties such
as availability, performance. The integration of these configuration fragments is a
challenging task because of the overlap and the complex relations that may exist.

We tackled this problem with a model driven approach using model weaving. We
used the SA Forum middleware to illustrate our approach. This middleware consists
of several services among which we focused only on AMF and PLM. The proposed
approach to integrate configuration fragments takes into account the properties of the
target system configuration. We used the weaving model to capture the mapping be-
tween the elements of the different configuration profiles. We introduced new link
types to capture the special relationship between the elements of these profiles in a
weaving model, i.e. they were added to the weaving metamodel. Using a set of ATL
transformations we can generate a system configuration from the weaving, AMF and
PLM configuration models.

Our approach for integrating configuration fragments allows for the reuse and the
extension of the system configuration generation process as the link types were de-
fined once and reused for the mapping of different elements of the configuration
fragments. In the future other profiles can also be added to the process using the same
or new link types. The automated generation of system configurations from different
input configurations is another advantage, which results in saving time and efforts
needed for the task. The work reported in this paper is part of a larger project aiming
at the integration of configuration fragments and maintaining the properties of the
integrated model through auto-adjustments in the face of runtime modifications.

Acknowledgment. This work has been partially supported by Natural Sciences and Engineer-
ing Research Council of Canada (NSERC) and Ericsson.

References

1. Del Fabro, M.D., M., Bézivin, J., Jouault, F., Valduriez, P.: Applying generic model man-
agement to data mapping. In: Journées Bases de Données Avancés (BDA) (2005)

2. Reiter, T., Kapsammer, E., Retschitzegger, W., Wimmer, M.: Model integration through
mega operations. In: Workshop on MDWE 2005 (2005)

3. Bernstein, P.A.: Applying model management to classical meta data problems. In: The
Conference on Innovative Data Systems Research (CIDR) (2003)

136 A. Jahanbanifar et al.

4. Jossic, A., Del Fabro, M.D., Lerat, J.P., Bezivin, J., Jouault, F.: Model integration with
model weaving: a case study in system architecture. In: The International Conference on
Systems Engineering and Modeling (ICSEM), pp. 79–84. IEEE CS Press (2007)

5. Del Fabro, M.D., Valduriez, P.: Semi-automatic model integration using matching trans-
formations and weaving models. In: ACM SAC, pp. 963–970 (2007)

6. Service Availability Forum, http://www.saforum.org
7. Toeroe, M., Tam, F.: Service Availability: Principles and Practice. Wiley and Sons (2012)
8. SA Forum, AIS, Availability Management Framework, SAI-AIS-AMF-B.04.01,

http://www.saforum.org/HOA/assn16627/images/SAI-AIS-AMF-B.04.01.pdf
9. SA Forum, AIS, Platform Management Service, SAI-AIS-PLM-A.01.02, http://www.

saforum.org/HOA/assn16627/images/SAI-AIS-PLM-A.01.02.pdf
10. Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the use of higher-order model

transformations. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA 2009.
LNCS, vol. 5562, pp. 18–33. Springer, Heidelberg (2009)

11. Object Management Group: Unified Modeling Language – Superstructure Version 2.4.1,
formal/2011-08-05, http://www.omg.org/spec/UML/2.4.1/

12. Salehi, P., Hamou-Lhadj, A., Colombo, P., Khendek, F., Toeroe, M.: A UML-Based Do-
main Specific Modeling Language for the Availability Management Framework. In: 12th
IEEE International High Assurance Systems Engineering Symposium, San Jose (2010)

13. Jahanbanifar, A., Khendek, F., Toeroe, M.: Providing Hardware Redundancy for Highly
Available Services in Virtualized Environments. In: 8th IEEE International conference on
Software Security and Reliability (SERE), San Francisco (2014)

14. Del Fabro, M.D., Bézivin, J., Jouault, F., Breton, E., Gueltas G.: AMW: a generic model
weaver. In: The 1ère Journée sur l’Ingénierie Dirigée par les Modèles (2005)

15. Del Fabro, M.D., Bézivin, J., Valduriez, P.: Weaving models with the eclipse AMW
plugin. In: Eclipse Modeling Symposium, Eclipse Summit Europe (2006)

16. Atlas Model Weaver (AMW), http://www.eclipse.org/gmt/amw/
17. Eclipse Modeling Framework, EMF, http://www.eclipse.org/emf
18. Jouault, F., Bézivin, J.: KM3: a DSL for metamodel specification. In: Gorrieri, R.,

Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 171–185. Springer,
Heidelberg (2006)

19. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A Model Transformation Tool. Sci.
Comput. Program. 72(1–2), 31–39 (2008)

20. Melnik, S., Rahm, E., Bernstein, P.: Rondo: A programming platform for generic model
management. In: SIGMOD conference, pp 193–204 (2003)

21. Omelayenko, B.: A mapping meta-ontology for business integration. In: The workshop
on Knowledge Transformation for the Semantic Web (KTSW 2002) at the 15th European
conference on artificial intelligence. Lyon, France, pp. 76–83 (2002)

22. Maedche, A., Motik, B., Silva, N., Volz, R.: MAFRA—A MApping FRAmework for
Distributed Ontologies. In: 13th International Conference on Knowledge Engineering and
Knowledge Management, pp. 235–50 (2002)

23. Spaccapietra, S., Parent, C.: View Integration: A Step Forward in Solving Structural Con-
flicts. IEEE Transactions on Data and Knowledge Engineering 6(2), 258–274 (1994)

24. Open Stack Cloud Software, http://www.openstack.org/

Towards Incremental Updates in Large-Scale
Model Indexes

Konstantinos Barmpis(B), Seyyed Shah, and Dimitrios S. Kolovos

Department of Computer Science, University of York,
Heslington, York YO10 5DD, UK

{kb,s.shah,dkolovos}@cs.york.ac.uk

Abstract. Hawk is a modular and scalable framework that supports
monitoring and indexing large collections of models stored in diverse
version control repositories. As such models are likely to evolve over
time, responding to change in an efficient manner is of paramount impor-
tance. This paper presents the incremental update process in Hawk and
discusses the efficiency challenges faced. The paper also reports on the
evaluation of Hawk against an existing large-scale benchmark, focusing
on the observed efficiency benefits in terms of update time; it compares
the time taken when using this approach against the naive approach
used beforehand, and discusses the benefits of combining the two, gain-
ing improvements averaging a 70.7% decrease in execution time.

1 Introduction

As discussed in [9,11], the ability of modelling and model management tools to
scale up in a collaborative development environment is essential for the wider
adoption of MDE. This paper contributes to the study of scalable techniques for
collaborative modelling, by presenting and empirically evaluating an incremental
approach for indexing evolving models stored in file-based repositories (such as
Git or SVN). Section 2 introduces the rationale behind model indexing and
provides a brief overview of an existing model indexing framework (Hawk [1]).
Section 3 presents a naive and an incremental approach for updating model
indexes in response to changes to models stored in file-based repositories that
Hawk monitors. Section 4 evaluates their performance on various mutants of
models from an existing large-scale benchmark. Section 5 discusses related work
and Section 6 concludes the paper and identifies directions for further work.

2 Background

This section overviews model indexing, providing motivation for using it in this
domain, and introduces the reader to Hawk, our model indexing framework.

c© Springer International Publishing Switzerland 2015
G. Taentzer and F. Bordeleau (Eds.): ECMFA 2015, LNCS 9153, pp. 137–153, 2015.
DOI: 10.1007/978-3-319-21151-0 10

138 K. Barmpis et al.

2.1 Model Indexing

In a collaborative environment, models need to be version-controlled and shared
among many developers. The default approach for doing this is to use a file-
based version control system such as Git or SVN. This has certain advantages
as such version control systems are robust, widely-used and orthogonal to mod-
elling tools, the vast majority of which persist models as files. On the downside,
since such version control systems are unaware of the contents of model files,
performing queries on models stored in them requires developers to check these
models out locally first. This can be particularly inefficient for global queries
(e.g. is there a UML model in my repository that contains a class named “Cus-
tomer”?) that need to be executed on a large number of models. Also, file-based
version control systems do not provide support for model-element level opera-
tions such as locking or change notifications. To address these limitations, sev-
eral open-source and proprietary model-specific version control systems such as
CDO, EMFStore and MagicDraw’s TeamServer have been developed over the
last decade. As discussed in detail in Section 5, while such systems address some
of the limitations above, they require tight coupling with modelling tools, they
impose an administration overhead, and they lack the maturity, robustness and
wide adoption of file-based version-control systems.

In what can be seen as a happy medium between the two approaches to
model version control, model indexing is an approach that enables efficient global
model-element-level queries on collections of models stored in file-based version
control systems. To achieve this, a separate system is introduced which moni-
tors file-based repositories and maintains a fine-grained read-only representation
(graph) of models of interest, which is amenable to model-element-level querying.
Previous work [2,3] has demonstrated promising results with regards to query
execution times, with up to 95.1% decrease in execution time for querying model
indexes [2], compared to direct querying of their constituent EMF XMI-based
models, and up to a further 71.7% decrease in execution time, when derived
(cached) attributes were used [3]. This motivates us to improve upon this tech-
nology by improving the efficiency of handling model evolution in such model
indexes.

2.2 Hawk

Hawk is a model indexing system that can work with diverse file-based version
control systems (VCS) and model persistence formats whilst providing a com-
prehensive API through which modeling and model management tools can issue
queries. Hawk needs to be scalable so that it can accommodate large sets of
models, and non-invasive (the VCS repositories, where the primary copies of the
monitored models are stored, should not need to be modified or configured). In
order for Hawk to be able to index heterogeneous models in a back-end agnostic
manner, it provides two abstraction layers:

– Model Abstraction Layer This layer provides a set of abstractions for
representing heterogeneous models and metamodels in memory. Inspired

Towards Incremental Updates in Large-Scale Model Indexes 139

by EMF’s respective abstractions, metamodel resources contain types/meta-
classes (grouped in packages), which have typed attributes and references,
as well as annotations. Model resources contain objects representing model
elements, which have values for the attributes and references of their type.

– Graph Database Abstraction Layer Extensive benchmarking showed that
graph databases such as Neo4J and OrientDB perform significantly better
than other technologies (e.g. relational databases) [2,14] for the types of
queries of interest to a system like Hawk. To avoid coupling with a specific
graph database, this layer aims at providing a uniform interface for querying
and manipulating graph databases in an implementation-independent man-
ner. It is worth noting that implementations of this layer can conceptually be
used to connect to any back-end technology, but will suffer in performance if
the data model is not similar with the graph model used here.

Fig. 1. Overview of the relevant Hawk architecture

Hawk comprises components which can monitor a set of version control repos-
itories, parse and index models of interest stored in them. Figure 1 shows some
of the key components of Hawk and their interactions; in the figure, M1–M3 rep-
resent model files and MR1–MR3 represent in-memory model resources obtained
by parsing M1–M3. Below is a brief description of these components:

At the center of Hawk lies the Controller of the system, which knows which
Hawk components are currently active and is responsible for synchronizing with
any changes made to monitored files.

Resource Factories are used to parse metamodel and model files and create
the relevant metamodel and model resources described above, which are given
to the Controller to be propagated to the index. They know which files they can
parse and also provide a way to give any statically available metamodels to the
Controller (such as a UML metamodel – without them having to be manually
registered).

Version Control Managers are used to poll monitored version control systems
in order to get any changes (deltas) to model files of interest. If any such delta
is found, it passes it on to the Controller so that the changes can be propagated
to the model index.

Metamodel Updaters are used to insert metamodel resources to the index. As
Hawk does not currently deal with metamodel evolution, only the first version
of a metamodel is indexed. Model Updaters are used to update the index with
a new version of a model. In the sequel we examine how such updates can be
optimized, focusing on the components found inside the dashed box of Figure 1.

140 K. Barmpis et al.

Prototype implementations of the various components exist as Java plugins1

and support: XMI EMF, BIM2 EMF and Modelio3 UML models and meta-
models, monitoring of folders on the local machine and on SVN version control
repositories, using Neo4J (version 2) Graph NoSQL database for persistence and
using Epsilon’s EOL [10] as a query engine.

Fig. 2. High-level overview of the contents of a library model index (persisted in a
NoSQL graph database), adapted from [3]

Overview of a Hawk Model Index. An example of a Hawk index, containing
a simple library metamodel and a model that conforms to it, is illustrated in
Figure 2. In general, a model index typically contains the following entities [3]:

– Repository nodes. These represent a VCS repository and contain its URL
and last revision. They are linked with relationships to the Files they contain.

– File nodes. These represent files in a repository and contain information on
the file such as the path, current revision and type. They are linked with
relationships to the Elements they contain.

– Metamodel nodes. These represent metamodels and contain their names
and their unique namespace URIs (in EMF, these would be EPackages4).
They are linked with relationships to the (metamodel) Types they contain.

– Type nodes. These represent metamodel types (EClasses in EMF termi-
nology) and contain their name. They are linked with relationships to their
(model) Element instances.

1 https://github.com/kb634/mondo-hawk
2 http://www.openbim.org/
3 http://www.modelio.org/
4 We choose to draw parallels with concepts from EMF as they are well-understood.

https://github.com/kb634/mondo-hawk
http://www.openbim.org/
http://www.modelio.org/

Towards Incremental Updates in Large-Scale Model Indexes 141

– Element nodes. These represent model elements (EObjects in EMF termi-
nology) and contain their attributes (as properties) and their references (to
other model elements) as relationships to them.

– Database Indexes. Metamodel nodes and File nodes are indexed5 in the
store, so that their nodes can be efficiently accessed for querying (commonly
used as starting points for complex graph traversal queries).

It is worth noting that a model index such as the one presented above may
end up being a full copy of the actual models found on the relevant version control
system but it does not have to be. In principle, if some contents of the model
are not deemed useful they can be omitted in order to gain an improvement in
injection and possibly query time.

2.3 Updating Model Indexes

As models can evolve over time, appropriate mechanisms need to be in place for
efficiently synchronizing the index with any changes in models it monitors. Two
alternative approaches that can be used for this:

Naive Synchronization. In this approach, when a model file changes in a
repository, Hawk propagates this change by removing all its model elements in
the model index and then re-inserting them.

This approach, while seeming inefficient, has various potential benefits:
– The overhead of comparing the contents of the two versions (in two different

formats) is avoided. In order to perform an incremental update an element-
by-element comparison of the old and new versions of the models has to be
performed, which can be very costly.

– The index is expected to be capable of performing massive naive inserts effi-
ciently (such “mass inserts” are used by various database technologies in order
to rapidly store an initial version of the data, they may make the model index
unavailable during this process). When performing changes to elements in the
index (such as when performing an incremental update), this cannot happen,
so the time for each individual change to be propagated can substantially
increase.

The drawbacks of this approach are:
– The lack of knowledge about changes means that even a change in a single

element will require all elements in the model file to be removed and re-inserted
into the index. This gets more costly the smaller the change and the larger
the model file gets.

– The act of performing a “mass insert” into the index will require heavy usage
of its resources and may also limit its availability for use while the update
happens. Furthermore, if the index is inefficient in deleting elements, then
deleting such large contents may become a bottleneck.

5 http://components.neo4j.org/neo4j-lucene-index/snapshot/

http://components.neo4j.org/neo4j-lucene-index/snapshot/

142 K. Barmpis et al.

Incremental Synchronization. In this approach, model changes are identi-
fied on a model element level by performing a comparison of the old version
found in the index with the new version found in the repository. As such, only
affected elements (added, removed, changed) have to be updated in the index
for achieving synchronization.

The benefits of this approach are:
– As each change is identified on a model element level, avoiding having to delete

and insert the entire model file into the index can potentially compensate for
the overhead of performing a full model comparison. Hence it can be more
efficient both in terms of time as well as resources and availability, as only the
relevant subsets of the index will be touched.

The drawbacks of this approach are:
– The overhead of model comparison may be larger than the gain of a fine-

grained update if the update is relatively large when compared to the model.
– Such updates impose various requirements on the model files, in order to

enable the required comparison (such as the need for model elements to have
a unique (non-volatile per file) identifier), which may not be satisfied by some
model representation formats.

3 Updates in Hawk

This section presents the process used for updating Hawk model indexes when
monitored models change, a combination of naive insertion and incremental
updates (using model element signatures – described below), and discusses how
this improves the efficiency of updates performed in large model indexes.

3.1 Overview of Hawk Updates

Hawk performs Algorithm 1 every time it finds a changed (added, removed,
updated) model file from any of its monitored repositories. As demonstrated in
the sequel, using this incremental updating when a model file is already indexed
provides a large performance gain when compared to naively deleting and re-
indexing it every time it is modified.

3.2 Signature Calculation

In order to update a model, an efficient way to determine whether a model
element has changed is needed. A signature of a model element is a lightweight
proxy to its current state. In order to calculate a meaningful signature for model
elements indexed in Hawk (in order to enable support for incremental updates
of the model index, as models in it evolve), every mutable feature of the element
needs to be accounted for. As such, the following features are used to calculate
the signature of each element:

Towards Incremental Updates in Large-Scale Model Indexes 143

if model file already indexed then
if change of type added/updated then

incremental update (see Section 3.4)
else if change of type removed then

delete indexed elements of file, keeping cross-file references to these
elements as proxies

end
else

if change of type added/updated then
naive insertion (see Section 3.3)

end
end

Algorithm 1. Hawk Update Overview

– all of the names and values of its attributes
– all of the names and the IDs (of the target elements) of its references

This works under the assumption that model elements cannot be re-typed during
model evolution, which is the case for the popular modeling technologies such
as EMF, as well as that model elements have immutable and unique IDs.

A signature can be represented as either a String containing the concate-
nation of the values listed above or as a hash-code of this String. The String
representation ensures that a unique signature exists for any model state, but
suffers in terms of comparison performance as potentially very long Strings will
have to be compared. On the other hand, the hash-code (Integer) representation
allows for rapid comparisons but has a chance (albeit small) for clashes, which
show different model states as having the same signature. We decided to use
the integer representation as this identifier, to allow rapid comparisons. This
signature is used to efficiently find changes in model elements, as detailed below.

3.3 Naive Insertion

For a naive insertion of a model file into Hawk a process outlined in Algorithm 2
is followed. In this process, the elements of the model file are firstly loaded into
memory as a model resource. Then, for each such element a node is created in
the index graph with its attributes as properties, and linked (using relationships)
to its file and type/supertypes. Finally, for each element its references are used
to link the node with other nodes in the graph.

As this process often requires intense resource consumption, the batch mode
of Hawk’s back-end is used (if the specific back-end used supports it). This mode
makes the database unavailable until the process is completed, but Neo4J has
at least an order of magnitude better performance in terms of execution time
when compared to on-line (transactional) updating.

3.4 Incremental Updating

For incremental updating of a model file into Hawk, the process outlined in Algo-
rithm 3 is followed. In this process the signatures of each element are used to

144 K. Barmpis et al.

use relevant factory to parse the file into a model resource
foreach element in the model resource do

create model element node in graph
create signature attribute in node
create a relationship from this node to its file node
create a relationship from this node to its type node (and relationships to
all its supertype nodes)

end
foreach element in the model resource do

foreach reference in the references of the element do
if reference of element is set then

foreach referenced element do
if referenced element is not a proxy then

create relationship from this node to the node of the
referenced element

else
add new proxy reference

end
end

end
end

end
Algorithm 2. Naive (batch) insertion algorithm

efficiently determine which elements have changed. Then, for each new element
a node is created, for each changed element its properties and relevant references
are updated (keeping dangling cross-file references as proxies in Hawk for consis-
tency), and for each removed element its node is deleted. The complexity of this
algorithm is O(m + n + d× r) where m is the number of model elements in the
updated model file, n is the number of model nodes in the model index linked to
the (previous version of the) updated file, d is the number of changed elements
and r is the number of target elements referenced by the changed element.

This process only alters the part of the model index which has actually
changed and as such, it does not need to use more resources than required by
the magnitude of the change, potentially saving on memory and execution time.

3.5 Derived Attributes

Derived attributes are used in Hawk in order to speed up certain types of queries
[2]. Such attributes are computed using expressions formed in the expression
language of a known Query Engine. A query engine in Hawk allows for expression
languages (such as OCL or Epsilon’s EOL [10]) to be used as a query mechanism
for a Hawk model index. Such derived attributes are hence pre-computed and
cached at indexing time and need to be maintained as the model index evolves.

A simple example is shown in Figure 3; here, the number of books each
author has published (named numberOfBooks) is pre-computed (using the EOL
expression return self.books.size()) and stored in a new DerivedAttribute node6

with the attribute name as the relationship linking it to its parent Element node.

6 A new node is used for overcoming a limitation found during incremental updating
of derived attributes; further information on this can be found in Section 3.6.

Towards Incremental Updates in Large-Scale Model Indexes 145

let nodes be the set containing the ids and pointers to all the nodes (in the model
index – linked with the updated file)

let signatures be the set containing the ids and signatures of the nodes
let delta be the set containing changed elements
let added be the set containing new elements (to be added to the model index)
let unchanged be the set containing elements which are the same
foreach node from all nodes in the model index that are linked with the updated file do

add node to nodes
add signature of node to signatures

end
foreach element in elements of model resource do

if element id exists in signatures then
if element signature not equal to current signature then

add element to delta
else

add element to unchanged
end

else
add element to added

end
end
/* add new nodes to model index */
foreach element in added do

add this new element in model file to model index
end
/* delete obsolete nodes and change altered node attributes */
foreach node in nodes do

if node id exists in delta then
remove current properties of node
set all model attributes of node as properties

else if node id does not exist in unchanged then
de-reference node (keeping dangling cross-file references as proxies)
delete node

end
end
/* change altered references */
foreach element in delta do

foreach reference in references of element do
if reference is set then

foreach referenced element in referenced elements of reference do
if referenced element is not proxy then

add id of referenced element to targetIds
else

add new proxy reference to model index
end

end
foreach relationship in relationships of node linked with the element do

if relationship target has id which exists in targetIds then
remove target from targetIds

else
delete relationship as new model does not have it

end
end
foreach id in targetIds do

add new relationship to model index
end

else
foreach relationship in relationships of node, with the same name as the
reference name do

delete this relationship
end

end
end

end

Algorithm 3. Incremental update algorithm

146 K. Barmpis et al.

Fig. 3. Pre-computing the number of books of each author

This derived attribute is handled seamlessly with regards to querying, hence an
EOL query used to get the number of books of a specific author a would change
from a.books.size() to a.numberOfBooks (in both cases returning an integer).

Expressions of arbitrary complexity are expected to be used in practice so
that pre-caching the results of such expressions is actually worthwhile. A more
realistic example (but one too complex to present in detail) would be to calculate
(for each author) the names of the authors which have co-written at least three
books with the author in question. This query can be presented in EOL as:

var coauthors = self.books.collect(a|a.authors.name);

var authormap = coauthors.flatten.excluding(self.name).asSet().mapBy(

a|coauthors.select(s|s.contains(a)).size());

var atLeastThreeBooks : Sequence;

for(a in authormap.keySet()){

if(a>=3) atLeastThreeBooks.add(authormap.get(a)); }

return atLeastThreeBooks.flatten();

This would return a Sequence of names of the other authors in ques-
tion. Caching such complex expressions during inserts/updates can significantly
reduce query execution time of relevant queries, as shown in [2].

3.6 Updating of Derived Attributes

A naive approach for maintaining such attributes would involve having to fully
re-compute each one, every time any change happens to the model index. This
is due to the fact that any such attribute can potentially depend upon any
model element in the index, thus any change can potentially affect any derived
attribute. Such an approach would be extremely inefficient and resource con-
suming.

As such, an incremental approach for updating derived attributes in Hawk
has been used. In this approach, which is an adaptation of the incremental OCL
evaluation approach discussed in [5], only attributes affected by a change made
to the model index are re-computed when an update happens. In order to know
which elements affect which derived attributes, the scope of a derived attribute
needs to be calculated. The scope of a derived attribute comprises the current
model elements (and/or features) in the model index this attribute needs to

Towards Incremental Updates in Large-Scale Model Indexes 147

access in order to be calculated. When a derived attribute is added/updated in
the model index, the query engine used to calculate this attribute also publishes
an AccessListener to Hawk, providing the collection of Accesses this attribute
performed. By recording these accesses (element and/or feature accesses), Hawk
updates only the derived attributes which access an element altered during an
incremental update. As the incremental update changes the minimal number of
elements during model evolution, the updating of derived attributes can be seen
to be as efficient as possible with respect to the magnitude of the change.

In more detail, every time an update process happens in Hawk, it records the
changes it has made to the model index. A change can be one of the following:

– A model element has been created / deleted
– A property of a model element has been altered
– A reference of a model element (to another one) has been created / deleted
• Note: complex changes (like move) are broken down to these simple changes.

Furthermore, every time a derived attribute is added or updated, it records the
accesses it requires in order to be computed. An access can be one of:

– Access to a property / reference of a model element
– Access to the collection of model elements of a specific type / kind

By having recorded the above mentioned changes and accesses, Hawk can
calculate which derived attributes need to be re-computed during a model update
using Algorithm 4. As the derived attribute is a node itself, it can be directly
referenced and updated if necessary; if the derived attribute was located inside
its parent Element node, that node would have to be referenced instead and
hence all derived attributes in it would have to be updated, as there would not
be a way to distinguish which ones need updating and which ones do not.

In the example above, for the derived attribute numberOfBooks of node a1,
the access would read as follows: The derived attribute numberOfBooks needs
to access node a1 for its feature books. Hence anytime the feature books changes
for node a1 (ie: if a member of this reference is added or removed), the derived
attribute numberOfBooks will have to be recomputed (and only then). As demon-
strated by [6], this approach works for expressions of arbitrary complexity as long
as they are deterministic (they do not introduce any randomness using random
number generators, hash-maps or other genuinely unordered collections). As
EOL defaults to using Sequences for collections and does not inherently use ran-
dom number generators, as long as the expressions provided do not specifically
introduce non-determinism, this approach is sound [6].

4 Evaluation

In this section, an existing large-scale benchmark is used to conduct performance
tests for updating a Hawk model index. The sample models are mutated in order
to simulate changes that are picked up by Hawk.

148 K. Barmpis et al.

let nodesToBeUpdated be the set containing the derived attribute nodes which
will have to be updated – initially empty

foreach change in the collection of changes do
if the change is a model element change then

add any derived attribute which accesses this element (or any of its
structural features) to nodesToBeUpdated

else if the change is a structural feature change then
add any derived attribute which accesses this structural feature to
nodesToBeUpdated

end

end
foreach node in nodesToBeUpdated do

re-compute the value of the (derived attribute) node
update the accesses to the new elements/features this node now requires

end
Algorithm 4. Derived attribute incremental update algorithm

4.1 The GraBaTs 2009 Case Study

For evaluating query execution performance in Hawk we use large-scale models
extracted by reverse engineering existing Java code. The updated version of the
JDTAST metamodel used in the SharenGo Java Legacy Reverse-Engineering
MoDisco use case7, presented in the GraBaTs 2009 contest [7] described below,
as well as the five models provided in the contest, are used for this purpose.
In JDTAST TypeDeclarations are used to define Java classes and interfaces,
MethodDeclarations are used to define methods and Modifiers are used to define
modifiers (e.g static, synchronized) for Java classes and methods. Figures of the
relevant subset of the JDTAST metamodel are found in works like [2,12].

The GraBaTs 2009 contest provided five models, Set0–Set4 (of progressively
larger models, with 70,447, 198,466, 2,082,841, 4,852,855 and 4,961,779 model
elements, respectively), conforming to the JDTAST metamodel. These models
are injected into Hawk and then mutated using various heuristics in order to
test and evaluate its update procedure. In the following sections we use this case
study as a running example to illustrate the implementation and to evaluate it.

4.2 Execution Environment

Performance figures that have been measured on a PC with Intel(R) Core(TM)
i5-4670K CPU @ 3.40GHz, with 32GB of physical memory, a Solid State Drive
(SSD) hard disk, and running the Windows 7 (64 bits) operating system are pre-
sented. The Java Virtual Machine (JVM) version 1.8.0 20-b26 has been restarted
for each measure as well as for each repetition of each measure. In each case,
20GB of RAM has been allocated to the JVM (which includes any virtual mem-
ory used by the embedded Neo4J database server running the tests).

7 http://www.eclipse.org/gmt/MoDisco/useCases/JavaLegacyRE/

http://www.eclipse.org/gmt/MoDisco/useCases/JavaLegacyRE/

Towards Incremental Updates in Large-Scale Model Indexes 149

4.3 Model Manipulation

In order to perform model manipulation operations, we used Epsilon’s EOL
language [10]. EOL is an imperative OCL dialect which supports model
modification. We decided to perform five model mutations (changes), which are
representative of modifications performed in Java code. These mutations are per-
formed by five EOL operations (available online8). By using these operations in
an EOL script we can change the model it is run on in a realistic9 yet sufficiently
random manner10.

4.4 Model Update Execution Time

Table 1 shows the average time taken to complete an update for the models
produced by performing the model mutations presented in Section 4.3 on the
original GraBaTs models. M(INS) represents the initial insert of the original
GraBaTs models into an empty Hawk index (using the naive insert process)
and M(0%)–M(50%) represent the update time (from the original model) to
one containing 0% to 50% content mutations. These mutations contain an equal
degree of each mutation operation found in Section 4.3 so that the total change
to the model ends up being N% of the original model contents. As such, each
of the five mutation operations performs changes equal to N

5 % of the original
model elements; since some changes are addition/removal operations on model
elements, the size of the resulting model is not the same as that of the original.

Table 1. Update Execution Time Results

Mutation
Execution Time (in seconds)

Set0 Set1 Set2 Set3 Set4
Naive Inc. Naive Inc. Naive Inc. Naive Inc. Naive Inc.

M(INS) 9.96 n/a 18.69 n/a 118.19 n/a 291.06 n/a 346.46 n/a

M(0%) 16.61 2.70 45.72 6.07 - 63.96 - 162.52 - 224.85

M(10%) 16.82 3.94 47.71 10.45 - 94.59 - 247.94 - 292.86

M(20%) 17.76 4.71 48.22 11.53 - 115.86 - 364.94 - 417.50

M(30%) 18.93 5.66 50.60 15.04 - 145.56 - 440.78 - 622.51

M(40%) 21.84 7.04 54.73 18.79 - 165.48 - 781.35 - -

M(50%) 22.09 7.97 60.21 20.92 - 193.41 - - - -

For each case both the incremental and naive updates were tested and com-
pared with one another. The naive update follows the process described in the
prequel for naive insertion, after having had the currently indexed elements

8 https://github.com/kb634/mondo-hawk/blob/master/model manipulations.eol
9 Operations often used in manipulation of Java code, such as deleting a Java class

10 For example, by randomizing which Java class is deleted each time.

https://github.com/kb634/mondo-hawk/blob/master/model_manipulations.eol

150 K. Barmpis et al.

deleted from the index. As the naive update process failed to terminate for the
larger sets (Set2–Set4), figures for these models are not presented for the naive
update process. The reason for this failure is that the Neo4J back-end runs out
of memory when trying to delete the entire contents of the model index. This is
an unforeseen limitation in the Neo4J database, as we require of it to perform
a single transaction to delete the entire contents (as it does not support nested
transactions but only flattened nested transactions, which only commit when the
top-level transaction is closed) in order to maintain consistency between model
versions. We also note that the incremental update fails to complete for 50% of
Set3, 40% of Set4 and 50% of Set4. This is due to the fact that the magnitude of
the change is so large that not enough memory is available for Neo4J to be able
to fit this change in a transaction. The aim is to test the limits of Hawk, as such
a system typically aims at collecting a large amount of fragmented models and
not large monolithic ones; in the former case memory would not be an issue as
it can be flushed after each file is updated. Furthermore, a 40% or 50% change
on a model with millions of elements is not an expected use-case and again is
presented to test the limits of the system.

These results suggest that the incremental update process is substantially
faster than the naive approach, while also not compromising availability of the
index11. This can be largely attributed to there being no support for “mass
deletes” in the index, which ends up taking the majority of time needed for
a naive update. The actual time taken for the incremental updates is promis-
ing as it scales linearly with the magnitude of the change in the model, giving
us improvements of up to 78.10% decrease in execution time for a 10% model
change and up to 65.25% for a 50% model change, averaging a 70.7% decrease
in execution time over all of the comparable results12.

4.5 Derived Attribute Update Execution Time

Results for the execution time of altering derived attributes are not presented
as they would have to be compared to a baseline. Such a baseline would have
been to use a naive approach whereby all derived attributes in the model index
would have to be updated any time any model element or feature gets updated.
As this approach would have been inefficient compared to the incremental one,
it was never implemented so a meaningful comparison cannot be made.

4.6 Threats to Validity

There are five observed threats to the validity of this approach:

– The model mutations performed may have influenced the results. We tried to
limit this by performing multiple mutations in each case, all of which contain
a random factor in them.

11 As it does not block any incoming queries which may need to be performed.
12 The 10 results from set0 and set1 that both naive and incremental approaches com-

pleted, disregarding the 0% change values as they are presented as a baseline.

Towards Incremental Updates in Large-Scale Model Indexes 151

– The percentage change of each model may not be indicative of real model
change. We tried to limit this by exploring a large variety of changes ranging
from zero to fifty percent of the original model.

– The model sizes used for empirical evaluation may not be indicative. Hawk
aims at handling large fragmented models, thus we anticipate that the size of
each fragment will not be orders of magnitude greater than the test models.

– Using an integer representation for the signatures has a chance for collisions;
this chance tends to 1 in 4.29 billion for non-trivial Strings. In all of the
empirical tests performed no clashes have been observed, which gives us some
confidence that the approach should be used for performance reasons.

– The last one is regarding the correctness of the incremental algorithm. While
this is not formally proven, empirical tests comparing the index state after an
incremental update with that of the original naive update, previously used in
Hawk (for the same changes), provided the same results for all of the mutated
models where both the incremental and naive updates completed.

5 Related Work

Aiming at tackling versioned collaborative development of models, proprietary
model repositories such as MagicDraw’s TeamServer13 have been developed; they
allow for model-element-level versioning, comparison and querying and support
multiple concurrent users. Nevertheless, such systems are highly-coupled with
the respective vendors’ modelling tools and hence have limited flexibility as they
bind the user to a specific technology.

Similarly, open-source model repositories such as CDO14 and EMFStore [8]
have arguably gained little traction while commonly supporting a wide variety
of back-end technologies. In our view, there are several valid reasons for this.
From a practitioner’s point of view, choosing a model-specific version control
system supported by a small open-source community over a robust and widely-
used and supported file-based version control system for storing business-critical
models is not a straightforward decision. Also, using two version control systems
in parallel (e.g. Git for code and CDO for models) can introduce fragmentation
as models and code changed in the context of the same conceptual commit, will
need to be manually distributed over two unconnected version control systems.

Various model persistence mechanisms have been developed in the past few
years as a scalable alternative to the XMI file-based model persistence used in
popular modeling technologies such as EMF. Many of these, such as NeoEMF
[4], Morsa [12], MongoEMF15 and EMF fragments [13] use NoSQL databases like
Neo4J or MongoDB as a back-end and deliver promising results with respect to
model traversal and querying. On the other hand such systems do not handle
version control of models stored in them.

13 http://www.nomagic.com/products/teamwork-server.html
14 http://www.eclipse.org/cdo/documentation/index.php
15 https://github.com/BryanHunt/mongo-emf/

http://www.nomagic.com/products/teamwork-server.html
http://www.eclipse.org/cdo/documentation/index.php
https://github.com/BryanHunt/mongo-emf/

152 K. Barmpis et al.

6 Conclusions and Further Work

In this work we presented an incremental approach to updating model indexes,
using lightweight model element signatures. From the empirical data collected we
can conclude that incremental updates seem to outperform a naive approach to
achieving synchronization in model indexes. As availability can be important in
this context, the fact that the solution which does not compromise availability is
the most performant is noteworthy. We also discussed an incremental approach
for updating derived attributes which uses model changes and accesses to only
update derived attributes affected by a model change.

Obtaining these results motivates us to further this work by investigating the
use of derived references in model indexes, by providing better support for meta-
model evolution, and by providing support for scoping queries to limit results to
elements found in specific files in an efficient manner.

Acknowledgments. This research was part supported by the EPSRC, through the
Large-Scale Complex IT Systems project (EP/F001096/1) and by the EU, through the
MONDO FP7 STREP project (#611125).

References

1. Barmpis, K., Kolovos, D.S.: Hawk: towards a scalable model indexing architecture.
In: Proceedings of the Workshop on Scalability in Model Driven Engineering, pp.
6:1–6:9. BigMDE 2013, ACM, New York, NY, June 2013

2. Barmpis, K., Kolovos, D.S.: Evaluation of contemporary graph databases for effi-
cient persistence of large-scale models. Journal of Object Technology 13–3(3), 1–26
(2014)

3. Barmpis, K., Kolovos, D.S.: Towards Scalable Querying of Large-Scale Models. In:
Cabot, J., Rubin, J. (eds.) ECMFA 2014. LNCS, vol. 8569, pp. 35–50. Springer,
Heidelberg (2014)

4. Benelallam, A., Gómez, A., Sunyé, G., Tisi, M., Launay, D.: Neo4EMF, a scalable
persistence layer for EMF Models. In: Cabot, J., Rubin, J. (eds.) ECMFA 2014.
LNCS, vol. 8569, pp. 230–241. Springer, Heidelberg (2014)

5. Egyed, A.: Instant consistency checking for the uml. In: Proc. of the 28th Interna-
tional Conference on Software Engineering, pp. 381–390. ICSE 2006. ACM (2006)

6. Egyed, A.: Automatically detecting and tracking inconsistencies in software design
models. IEEE Transactions on Software Engineering 37(2), 188–204 (2011)

7. GraBaTs: 5th Int. Workshop on Graph-Based Tools (2009). http://is.tm.tue.nl/
staff/pvgorp/events/grabats2009/

8. Koegel, M., Helming, J.: Emfstore: a model repository for emf models. In: Proceed-
ings of the 32nd ACM/IEEE International Conference on Software Engineering-vol.
2, pp. 307–308. ACM (2010)

9. Kolovos, D.S., Paige, R.F., Polack, F.A.: Scalability: The Holy Grail of Model
Driven Engineering. In: Proc. Workshop on Challenges in MDE, collocated with
MoDELS 2008. Toulouse, France (2008)

10. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon object language (EOL). In:
Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142.
Springer, Heidelberg (2006)

http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/

Towards Incremental Updates in Large-Scale Model Indexes 153

11. Mougenot, A., Darrasse, A., Blanc, X., Soria, M.: Uniform random generation
of huge metamodel instances. In: Paige, R.F., Hartman, A., Rensink, A. (eds.)
ECMDA-FA 2009. LNCS, vol. 5562, pp. 130–145. Springer, Heidelberg (2009)

12. Pagán, J.E., Cuadrado, J.S., Molina, J.G.: A repository for scalable model man-
agement. Software & Systems Modeling, 1–21 (2013)

13. Scheidgen, M., Zubow, A.: Map/reduce on emf models. In: Proceedings of the 1st
International Workshop on Model-Driven Engineering for High Performance and
Cloud Computing, pp. 7:1–7:5. MDHPCL 2012 (2012)

14. Shah, S.M., Wei, R., Kolovos, D.S., Rose, L.M., Paige, R.F., Barmpis, K.: A frame-
work to benchmark nosql data stores for large-scale model persistence. In: Proc.
15th Conf. on Model-Driven Engineering Lang, and Systems, Models 2014 (2014)

A Model Management Imperative:
Being Graphical Is Not Sufficient,

You Have to Be Categorical

Zinovy Diskin1,2(B), Tom Maibaum1, and Krzysztof Czarnecki2

1 NECSIS, McMaster University, Hamilton, Canada
{diskinz,maibaum}@mcmaster.ca

2 University of Waterloo, Waterloo, Canada
{zdiskin,kczarnec}@gsd.uwaterloo.ca

Abstract. Graph-based modeling is both common in and fundamen-
tal for Model Driven Engineering (MDE). The paper argues that sev-
eral important model management (MMt) scenarios require an essential
extension of graphical models. We show that different versions of model
merge and sync, including many-to-many correspondences between mod-
els, can be treated in a uniform, compact and well-defined mathematical
way if we specify graphical models as directed graphs with associative
arrow composition and identity loops, that is, as categories.

1 Introduction

Graph-based modeling is common in and fundamental for MDE. Such graphical
models as Class and ER-diagrams in structural modeling, and Labeled Transition
Systems (LTSs) and Sequence Diagrams in behavioral modeling, are real assets
to software engineering. The goal of the paper is to argue that several important
model management scenarios require an essential extension of graphical models.
We show that different versions of model merge and sync (choice and paral-
lel composition in the context of behavior modeling), including many-to-many
correspondences between models, can be treated in a uniform, compact and well-
defined mathematical way if we specify graphic models as directed graphs with
associative arrow composition and identity loops, i.e., as categories.

This is not the first call for categories from the model management (MMt)
domain. Formalizing model merge as colimit in the respective categories of
models and mappings is well known [3,19,22,26], the category-theory based
graph transformation framework for model transformations is in active devel-
opment [14,17,18,21], and a broad categorical view of MMt can be found in
[10,24]. In these papers, MMt operations are formalized as operations over (typed
attributed) graphs, and MMt scenarios thus live within a suitable category of
graphs. We can say that this work advocates the use of categories-in-the-large. In
contrast, in the present paper we show that an accurate mathematical modeling
of complex MMt scenarios, like merging LTSs modulo complex many-to-many
correspondences between them, or synchronized parallel composition of LTSs,
c© Springer International Publishing Switzerland 2015
G. Taentzer and F. Bordeleau (Eds.): ECMFA 2015, LNCS 9153, pp. 154–170, 2015.
DOI: 10.1007/978-3-319-21151-0 11

A Model Management Imperative 155

require models themselves to be considered as categories—we refer to this idea
as to the use of categories-in-the-small.. Importantly, categories we need may be
subject to non-trivial commutativity constraints and thus are not free categories
generated by the respective graphs. That is, they are “real” categories rather
than categorical completions of graphs. We thus show that a full realization of
the known categories-in-the-large framework needs categories-in-the-small.

The paper makes three contributions to the literature. The first one is
methodological as described above. The second is technical: we propose a novel
extension of the classical notion of LTS based on ideas of the enriched category
theory. Our LTSs as categories carry an additional structure of partial order
between “parallel” (having the same source and target) transitions. Moreover,
this order is actually a semi-lattice carrying OR (and perhaps partially defined
AND) operations on transitions. Third, we explain how model merge and com-
position can be specified using (co)limits in a tutorial-like manner, and specially
focus on adequacy of the mathematical models we build for the subject matter:
constructs included into the models are motivated by the domain to be modelled
rather than by mathematical completeness.

Our plan for the paper is as follows. In Sect. 2 we consider several scenarios
of LTS merge, and motivate the necessity to include into the LTS formalism
sequential and or/and-parallel composition of transitions. In Sect. 3 we show
that adding to the LTS formalism identity (idling) loops allows us to treat syn-
chronized parallel composition of LTSs via a limit operation. In these sections,
considerations are accurate but not formal. In Sect. 4 we formally define an LTS
as a functor from a category of states and transitions (enriched over the category
of posets) to a category of labels (similarly enriched). This defines a category in
which our merge-as-colimit and sync-as-limit scenarios are unravelled. Section 5
presents a summarizing discussion, and Section 6 concludes.

2 Model Merge and Colimit

We use model merge to refer to the following scenario. Several models expressing
local views of the system are first matched by linking elements of the models
that correspond to the same system element. Then models are integrated into a
single global model, which includes all data from the local models but without
redundancy, in accordance with the match. We will consider three typical cases
of intermodel relationships and show that if the complexities of intermodel rela-
tionships are properly modeled, then the merge procedure as such is given by
the same simple colimit operation. However, the universe in which the merge-
as-colimit idea works well for complex intermodel correspondences is a category
of graphs with a suitable additional structure of sequential and parallel arrow
composition, i.e., the universe of enriched categories.

2.1 Getting Started: Simple Match and Merge

Figure 1 presents two consumption models. Model M1 states that buying an
apple is a wise way of spending your dollar, but first you need to work and
earn it. Model M2 suggests spending the dollar earned on buying a cake.

156 Z. Diskin et al.

Fig. 1. Model-based merge (case 1)

Suppose we want to merge the two models
into an integrated model U without data
redundancy and loss. For this, we first spec-
ify correspondences between the models by
bidirectional links rx (x = 0, $, w) connect-
ing (we also say matching) elements consid-
ered to be “the same” as shown in Fig. 1(a).
Then we (disjointly) merge the two graphs
and glue together matched elements (and
only them). Such merge is easily performed
“by hand”, resulting in model U = (M1 +
M2)/R in Fig. 1(b) (read “merge of models M1 and M2 modulo correspondence
R = {r0, rw, r$}”).

Fig. 2. Map-based merge (case 1)

The merge procedure can be for-
mally specified as calculating the col-
imit of the correspondence span in the
category of graphs as shown in Fig. 2.
In this figure, the correspondence links
rx (x = 0, $, w) from Fig. 1(a) are rei-
fied as, resp., states (for x = 0, $) and
transitions (x = w), which constitutes
LTS R. The special nature of R’s ele-
ments is formalized by two projection
mappings ri: R → Mi, i = 1, 2.1 Thus,
matching models results in a correspon-
dence span (in the sequel, corr-span)
(r1, R, r2). Taking the colimit of the
corr-span results in a model U together
with two mappings ui: Mi → U , i =
1, 2, specifying how local models are
embedded into the merge.

For Fig. 2 and subsequently, we use the following shading/color schema.
Given models and mappings are shaded, while algebraically computed ones are
blank (and additionally blue with a color display; the blue color is assumed
to recall mechanical computation). Although the elements of the corr-span are
produced by the procedure of model matching, this procedure cannot be consid-
ered a formal algebraic operation taking two models and returning a corr-span
between them. Indeed, correspondences are derived using various contextual and
heuristic information about the models rather than immediately contained in
them; moreover, model matching may require an input from the user. Thus,
speaking algebraically, the corr-span is a given datum and hence shaded. How-
ever, its color is green rather than black to recall the special nature of the

1 To avoid clutter in Fig. 2 and other our figures, in order to specify a mapping between
graphs, we only show links between arrows and assume that their sources and targets
are linked respectively, and those links are omitted.

A Model Management Imperative 157

heuristics-based model match quasi-operation. Constraints are shown in red; if
a constraint is a postcondition of an operation, its name is typed in blue but
enclosed by red brackets.

Thus, the colimit operation takes a span and produces a cospan (two map-
pings with a common target). Importantly, the colimit cospan can be uniquely
defined (up to isomorphism) by a set of constraints (postconditions) {C1, ..., C4}
it must satisfy. Moreover, these constraints well correspond to natural require-
ments for model merging. Constraint C1 requires mappings u1, u2 to be total:
nothing from models Mi is lost in the merge U . In our diagrams, all mappings
are assumed to be total (and single-valued) by default, and the corresponding
multiplicity constraints are omitted. Constraints C2, C3 specify properties of the
quadruple (r1, r2, u1, u2). Constraint C2 is commutativity [=]: x.r1.u1 = x.r2.u2

for any element x∈R (note the closed contours formed by links starting at R in
Fig. 2), which ensures that elements linked by the corr-span are glued in U . On
the other hand, constraint C3 (disjointness) requires non-linked elements not to
be glued: if an element x∈M1 is outside the range of mapping r1, then element
x.u1 ∈ U must be outside the range of u2, and if x.u1 = x′.u1 then x = x′.
Similar conditions are required for any y∈M2 outside the range of r2. Finally,
constraint C4 states that two mappings ui jointly cover the graph U , and hence
every element in U has come from either M1, or M2, or both. It can be proven [8]
that in the universe of graphs and graph mappings, given a corr-span (R, r1, r2),
there is one and only one (up to isomorphism) cospan (U, u1, u2) satisfying the
four constraints above. This cospan is called the colimit of the span, and it can
be computed by a simple algorithm (see, e.g., [1] or [8]). Thus, the colimit oper-
ation in the category of graphs accurately captures the requirements for merge
in the case of simple one-one correspondences between the models.

Our next goal is to analyse whether the simple pattern above works for more
complex cases of intermodel relationships.

2.2 Complex Match and Merge via Derived Transitions

Fig. 3. Model-based merge (case 2)

Practical intermodel relationships
are often more complex than the one-
to-one matches considered above. A
simple one-to-many match is shown
in Fig. 3(a). Model M1 says you can
convert a dollar into a smile by either
buying and eating an apple, or by
buying and eating a cake. Model M2

is more abstract and says you can
convert a dollar into a smile by fir-
ing either healthyLife or happyLife transitions, but is not specific about details
of what should be done. Suppose we know that by healthyLife model M2 actually
means buying and eating an apple, so that transition healthyLife matches two
transitions in M1. Similarly, transition happyLife matches buying and eating a
cake. Hence, corr-links in Fig. 3(a) must be accompanied with equations (E1)

158 Z. Diskin et al.

healthyLife = buyA; eatA and (E2) happyLife = buyC ; eatC specifying details of
the relationships. Such constraints are often called (correspondence) expressions
in the literature on model match and merge [2].

The merge can easily be produced by hand Fig. 3(b), but now LTS U as shown
is underspecified: constraints (E1), (E2) are not shown. To take such expres-
sions into account, the merge algorithm has to be more intelligent and actually
more complicated than for one-to-one matching. Managing corr-expressions was
declared as one of the big problems of model management in [2].

Fig. 4. Map-based merge (case 2)

Let us see how the prob-
lem can be treated categori-
cally. A key observation is that
a one-to-many relationship is
replaced by a one-to-one relation-
ship to a respective derived tran-
sition, buyA; eatA for healthyLife
and buyC ; eatC for happyLife, as
shown in Fig. 4. Derived transi-
tions are shown by dashed arrows
(blue with a color display), and
the respective triangle diagrams
are marked with symbol [;] refer-
ring to the operation of arrow
composition. The left marker [;]
says that the left unnamed tran-
sition is buyA; eatA, and analo-
gously for the right [;].

Use of derived transitions allows us to reduce one-to-many to one-to-one
matching, and then the simple merge algorithm described above can be directly
applied and produces the result shown in the lower part of Fig. 4. The main merge
principle of copying all data from original models into the merge is realized,
and operation labels [;] are copied to U as well, but as derived transitions are
named in U and hence appear there as basic rather than derived elements, their
definitions in M1 amount to equational constraints [=] in U . Thus, constraints
E1, E2 specified above for the match, are now transferred to the merge. Note
that disjointness [disj] of (r1, r2, u1, u2) amounts to injectivity of u1 and u2.

Fig. 5. Model-based merge (case 3)

The same idea is applicable for
other operations on transitions, e.g.,
their AND (parallel) or OR (choice)
composition, as the example below
demonstrates. Suppose that model
M2 has only one transition beHappy,
which can mean either buying and
eating an apple, or, perhaps, buying
and eating a cake. With the naive

A Model Management Imperative 159

Fig. 6. Map-based merge (case 31)

expression-based approach, we would have a match in Fig. 5(a) accompanied
with expression (E) specifying the relationship:
(E) beHappy = buyA; eatA or buyC ; eatC .

We can specify this relationship by a one-to-one match as shown in Fig. 6.
We first derive two composed transitions in model M1 as above, and then apply
to them the binary choice operation [or]. The result is the vertical transition
in M1, which is matched to the beHappy-transition in M2. Now we apply the
same simple colimit procedure as above, and produce model U as shown in the
figure. As the middle transition now has a name, we replace its definition in
model M1 by a constraint [OR] specified by the expression E above. Similarly,
if transition beHappy in M2 assumes, in terms of model M1, buying and eating
both apples and cakes, we introduce a binary operation [and] on transitions, and
match beHappy with derived transition buyA;eatA[and]buyC;eatC. The result is
again a one-one match involving derived transitions.2

2.3 Non-injective Match and Merge

There is a different interpretation of the naive match in Fig. 5. We may assume
that transition beHappy in M2 is not a choice between healthyLife and happyLife,
but rather their abstraction that simply does not distinguish between them. A
direct way of modeling this interpretation is specified by the corr-span in Fig. 7,
in which the right leg r2 maps two transitions to the same target. The colimit

2 To make operation [and] feasible, we need to interpret state $ as providing enough
money for the concurrent execution of all transition leaving the state, and similarly
the smile-state means a holistic happiness rather than a number of “happiness units”.

160 Z. Diskin et al.

of this span is shown in the lower half of the figure; note that two different
transitions in model M1 are glued together in the merged model U .

At first sight, this gluing in the merge can seem bizarre, but let us consider
the case in more detail. The match says that transition beHappy is “equal” to
buyA;eatA and to buyC;eatC as well. Hence, buyA;eatA=buyC;eatC, so that the
match reveals a new constraint on model M1 not initially declared in model M1.

Fig. 7. Map-based merge (case 32)

This is not a rare situation: some
properties of an object are only
revealed (emerge) when this object
is related to other objects (and this
is what category theory is about).
As model merge should preserve
all input information, the constraint
about M1 stated by the corr-span
is to be respected in the merged
model U , and this is exactly what
the colimit does. Note how accu-
rately this situation is treated cat-
egorically: neither of the original
models is changed, but everything
needed is captured by a properly
specified corr-span.

3 Parallel Composition and Limits

Parallel composition of executable components (or behaviors) is a fundamental
operation of behavior modeling. It assumes that several (local) components run
simultaneously so that global states and transitions are tuples of local states and
transitions. Some local transitions from different components may be synchro-
nized, i.e., be always executed simultaneously (as a handshake). We will show
that parallel composition can be specified categorically by an operation called
limit, or else synchronized product, which places it into the realm of categorical
methods and ideas. In particular, as limits are dual to colimits in some precise
sense, model merge and parallel composition appear as dual scenarios; we will
often call the former additive, and the latter multiplicative (or parallel) merge.

Fig. 8. Interleaving

Suppose that the two models from Sect. 2.1 spec-
ify behaviors of two consumers acting in parallel (fol-
lowing a similar example in the textbook [20, p.42], we
call them Ben and Bill). We assume that Ben and Bill
work together on a joint project to earn their dollars,
but buy their snacks separately and independently, i.e.,
concurrently. In our case, a concurrent composition can
be easily constructed by hand, and is often described by
diagrams like in Fig. 8 explaining the name interleaving
concurrency.

A Model Management Imperative 161

Fig. 9. Synchronized parallel composition

To consider the example
in more detail, we add to
both models idle-loop tran-
sitions as shown in Fig. 9
(ignore links to and from
the models for a moment).
That is, every state in a
LTS is endowed with a loop
denoting the do-nothing
transition from the state
to itself. Independence of
Ben’s and Bill’s buying can
now be expressed precisely:
irrespective of what Ben is
doing (idling or buying),
Bill can idle or buy. The
joint behavior is shown by
LTS U in the right-lower
corner of Fig. 9 (Expression
U = (M1×M2)\R refers to
U as a product of M1 and M2 modulo correspondence R, which we will consider
later.) States in U are pairs of local states, and transitions are pairs of local
transitions. Horizontal and vertical transitions in U are those in which one com-
ponent is idling, whereas diagonal transitions combine two non-idle actions (and
idle loops in the product are pairs of idle loops, only one such loop is shown).
Thus, idle transitions are fundamental for modeling parallel composition. Note
also that both triangle diagrams are declared to be commutative: from the global
viewpoint, it does not matter how the system transitions from two dollars to two
snacks—all paths are equal. This commutativity appears to be a precise formal
counterpart of Ben’s and Bill’s independence in buying snacks.

As U ’s elements are pairs, each of them is supplied with a pair of links to
the respective elements in M1 and M2. To avoid clutter, these links are not
shown but can be easily restored as horizontal and vertical projections of U ’s
elements; they constitute a pair of mappings ui: U → Mi, and the constraint [key]
states that any element e ∈ U is uniquely identified by pair [u1(e), u2(e)]. Both
mappings ui: U → Mi are surjective. This captures simultaneity of the parallel
composition: any local element (state or transition) must become a component
of a global element.

So far, we have built the composed behavior U by reasonable “physical”
considerations. Remarkably, the same LTS U can be automatically computed
by an operation called limit, if synchronization between the models is properly
specified. This specification is given by mappings ri: Mi → R, (i = 1, 2) from
the local models to a common model R representing the global (synchronized)
view of the behavior. We call the triple (r1, R, r2) a synchronizing cospan. The
global view should evidently contain a global transition work, composed of two

162 Z. Diskin et al.

local instances of work acting in parallel (note the corresponding links in the
ri). Further, there are two global idle loops. The first, id0, is a pair of local idle
transitions, shown by the respective links in the cospan (r1, r2). The second, id1,
is much more interesting. It is the common target of several local transitions from
both sides, meaning that, from the global viewpoint, the differences between the
respective states are non-essential, and all actions are globally considered as
idling, i.e., changes they cause are abstracted away in the global view.

Now the desired result of synchronized composition can be formally defined
by a simple formula: U

def= {(e1, e2) ∈ M1×M2 : r1(e1) = r2(e2)}, which gives
exactly the LTS U in Fig. 9 motivated “physically”; mappings u1, u2 are
canonic projections. Note the commutativity of square (r1, r2, u1, u2): paired
local transitions should be globally indistinguishable. The operation produc-
ing span (U, u1, u2) specified by the formula above from a cospan (R, r1, r2) is
called the limit (in the category of LTSs). We denote the result by expression
U = (M1 ×M2)\R (read “product of Mi modulo sync-cospan R”), and also call
it the synchronized product. Thus, the MMt operation of LTS parallel merge can
be formally defined as the LTS sync-product, but the latter requires having in
the LTS formalism sequential composition of transitions and idle transitions.

4 LTSs: From Graphs to Categories to Enriched
Categories

We formalize constructions described above in a categorical way. We first moti-
vate state labels and make labeling a functor from a category of transitions to
a category of labels; then we specify model merge and parallel composition as
operations over functors (Sect. 4.1 and 4.2). We then consider how to model OR-
and AND-composition of transitions as operations over arrows, and come to the
notion of an enriched LTS (Sect. 4.3). We assume that elementary notions of
category theory are known to the reader (see, e.g., [1]), but to fix notation and
terminology, we provide several basic definitions in the footnotes.

4.1 Labeling as a Functor

A (directed) graph G comprises a set G• of nodes, a set
−→
G of arrows, and two

functions, so:
−→
G → G• and ta:

−→
G → G•. Given nodes X,Y , we write a: X → Y

if X = so(a) and Y = ta(a), and denote the set of all arrows from X to Y by−→
G(X,Y). We write e ∈ G to say that e ∈ G•∪−→

G is an element of graph G.
A classical LTS is a graph T whose nodes are called states and arrows are

transitions; the latter are labeled via a function λ:
−→
T → L into a predefined set

L of (action) labels. As our examples of LTS merge and sync showed, we need
to have in the LTS formalism sequential composition of transitions and idle
transitions. Moreover, in the behavioral modeling context, associativity of com-
posing transitions, and identity equations for idling, are very natural conditions.

A Model Management Imperative 163

In other words, the transition graph should be a category.3 However, labels form
a set and, thinking categorically, mapping a category (even a graph) to a set is
not natural. Hence, we assume that states also have labels. Indeed, as a rule,
applying a transition to a state requires the latter to satisfy some pre-conditions,
and the result of transition execution satisfies some post-conditions. These pre-
and post-conditions can be encoded by state labels, which together with tran-
sition labels form a graph, even a category, and labeling should be compatible
with those categorical structures. Thus, an LTS becomes a triple M = (T, λ, L)
with T a category of (states and) transitions, L a category of labels, and labeling
λ: T → L a mapping of categories, i.e., a functor.4 For example, the category of
labels for our model of buying and eating apples and cakes could consist of three
nodes $, snack , and . .

� (see model L1 in Fig. 10); two arrows buy: $→snack and
eat: snack→ . .

�, their composition life, and three idle loops (omitted in Fig. 10).

Fig. 10. Labeling

Fig. 10 also shows an accurate
specification of labeling: in model T1,
elements’ names before colons refer
to states and transitions, while names
after colons refer to their labels. The
latter can be considered as types,
and the former as their instances.
Importantly, labeling preserves arrow
composition and idle loops. Simi-
larly, for model M2, the category of
labels could be taken to be a sin-
gle arrow life: $ → . .

� (plus two idle
loops), while the transition category
has two non-trivial arrows healthy
and happy. Note that the classical
LTS notion is subsumed if we require
the set L• of state labels to be a sin-
gleton: then there is only one state
label, and a transition can be always
applied to a state.

An important property of the transition category T1 of model M1 in Fig. 1
is that it is freely generated by the respective base graph by adding to it all idle
loops and all possible arrow compositions (subject to associativity and identity
equations). This is how we specified this category in Fig. 4: the basic transitions

3 A category is a graph with (i) an associative arrow composition and (ii) identity
loops. Point (i) means that for any pair (a, b) of consecutive arrows, an arrow a; b is
defined, and (a; b); c = a; (b; c). Point (ii) means that every node X ∈ G• is assigned
with identity arrow idX : X → X, and idX ; a = a = a; idY for any a: X → Y .

4 Given categories C1, C2, a functor f : C1 → C2 is a graph morphism that preserves
composition and identity loops. That is, f(a; b) = f(a); f(b) for any pair of consecu-
tive arrows a, b in C1, and f(idX) = idf(X) for any node X in C1. In its turn, being
a graph morphism provides preservation of incidence between nodes and arrows:
so(f(a)) = f(so(a)) and ta(f(a)) = f(ta(a)) for any arrow a ∈ C1.

164 Z. Diskin et al.

are shown by black solid arrows while derived composed transitions are dashed
(and blue with a color display); idle loops were omitted.

Importantly, even if local transition categories are freely generated, LTS
merge can result in categories with non-trivial equations. Consider, for instance,
our example in Fig. 7: even if we ignore the name of the middle transition in the
merged LTS, and hence can remove it from the model (it can be restored by com-
position if needed), the commutativity constraint buyA;eatA = buyC;eatC must
be kept. Thus, the universe of LTS merge is the universe of “real” categories
rather than graphs and freely generated categories. This discussion motivates
the following definition.

Definition 1. An LTS is a triple M = (T, λ, L) with T and L categories of
transitions and labels resp., and λ: T → L a functor. ��

4.2 Model Management for LTSs

Our examples in Sections 2 and 3 show that the notion of LTS morphism is
fundamental for LTS model management. As an LTS is a two-layer structure,
their morphisms are also two-layered.

Definition 2. An LTS morphism m: M → M ′ is a pair of functors, mT : T → T ′

and mL: L → L′, which commute with labeling: mT ;λ′ = λ;mL. ��
For example, matching LTSs results in two corr-spans, between labels and

between transitions, such that commutativity between matches and labeling
holds as shown in Fig. 10, where we use bidirectional arrows as a succinct nota-
tion for triples (left link, corr-object, right link). Our diagrams in Sections 2
and 3 were not quite accurate by leaving labels implicit. An accurate descrip-
tion would be to leave diagrams as is, but provide the possibility to zoom-in
and reveal the two-layer picture shown in Fig. 10. Correspondingly, operations
over LTSs we considered are also two-layered: they begin with a two-layer (par-
allel) match followed by a two-layer (parallel) merge. As we argued, it makes
sense to formally define these operations as colimit (for merge) and limit (for
parallel merge/composition). After that, category theory provides the respective
machinery roughly sketched below.

Let Cat denote the category of all (small) categories. Then, according to
our formal definitions of LTSs and their morphisms, the category of all LTSs
is nothing but the arrow category Cat→ over Cat: its objects are Cat-arrows,
i.e., functors, and their morphisms are commutative squares described in Defi-
nition 2. It is well known that such an arrow category has all (two-layer) limits
and colimits with well known simple algorithms computing them [1]. (A simple
description of these algorithms can be found in our TR [8].)

4.3 Parallel Composition of Transitions

The most immediate way to formalize OR- and AND-parallel composition moti-
vated in Sect. 2 is to enrich the set of transitions T (X,Y) for any pair of states
X,Y with a partial order �XY (we will often omit the subindex), and define

A Model Management Imperative 165

binary OR and AND operations as taking the least upper bound (LUB) and
the greatest lower bound (GLB) of two transitions w.r.t. �. A natural “physi-
cal” interpretation of relation � is that stating t1 � t2 means that transition t1
is a specialization of transition t2, for example, stating happy � healthy (both
of type Life) means that happy:Life assumes healthy:Life (but needs more than
that). Particularly, firing transition t1: X → Y automatically implies transition
t2: X → Y (but not necessarily the converse). Categorically, specialization can
be seen as a special 2-arrow between transitions (1-arrows); in structural model-
ing, such arrows are often called isA-arrows. Now OR-composition of transitions
t1, t2: X → Y is defined to be their LUB: firing any of ti automatically means
firing t1 ∨ t2. Similarly, we could define AND-composition of transitions (true
concurrency) as taking their GLB wrt. �: firing t1∧ t2 means firing both t1 and
t2. This operation makes perfect sense in our context if we interpret state $ as
having as much money as necessary for buying all snacks, and correspondingly
state . .

� as happiness provided by eating any number of snacks.
There is an essential difference between OR and AND compositions. It is

reasonable to assume that any two transitions can be OR-composed—this is an
explication of the fact that choice is inherited in the notion of LTS. In contrast,
AND-composition (which means the concurrent execution) may exist for some
transitions, but may not exist for others (which cannot run concurrently).

An immediate formalization of these ideas is provided by the notion of a
category enriched over the category of posets Pos.5

Definition 3. An OR-enriched LTS is a triple (T, λ, L) with T and L cate-
gories of transitions and labels resp. enriched over Pos+, and λ: T → L an Pos+-
enriched functor. The notion of an (OR,AND)-enriched LTS is defined similarly.

Specifically if we have transitions t1 and t2 with labels l1 and l2 resp., then
OR-composition of t1 and t2 must be labeled by OR-composition of i1 and
l2; and similarly for AND (because we require functor λ to be enriched). Note
that the category of labels can be trivially enriched: t1 � t2 iff t1 = t2. Then
enrichedness of the labeling functor λ implies that only transitions with the same
label can be OR- or AND-composed. In this way enriched labeling brings a strict
type discipline to modeling with LTSs.

Colimits of enriched LTSs are computed componentwise: objects, arrows, 2-
arrows. For instance, if in our merge scenario in Fig. 4, model M2 would have a
2-arrow from happyLife to healthyLife (i.e., we state happy � healthy over label
Life), then the merged LTS would also have this 2-arrow, which together with
commutativity constraints implies buyC;eatC � buyA;eatA. This is yet another

5 A category C is enriched over Pos if for any two objects X,Y ∈C•, collection
of all arrows C(X,Y) from X to Y is a poset. Moreover, arrow composition
; : C(X,Y) × C(Y, Z) → C(X,Z) is a poset morphism (i.e., an order-preserving

mapping) for all triples X,Y, Z. A functor f : C1 → C2 between Pos-enriched cate-
gories is Pos-enriched, if fXY : C1(X,Y) → C2(f(X), f(Y)) is a poset morphism for
all pairs X,Y . In a similar way we can define enrichedness over category Pos+ of all
posets with finite LUBs, or Pos× of all posets with finite GLBs, or category Pos+×

of all lattices by requiring preservation of, resp., LUBs, GLBs, or both.

166 Z. Diskin et al.

illustration of how one model (M2 in this case) imposes a constraint on another
model (M1). Also note that even if local LTSs are freely enriched over Pos+

(OR-compositions are added for all pairs of transitions), their colimit can be
enriched non-freely. For example, in Fig. 6, the merged model U satisfies con-
straint beHappy = buyA;eatA ∨ buyC;eatC denoted by [OR].

5 Observations, Discussions, Future and Related Work

We will first discuss briefly several possible practical and theoretical applications
of the framework, and then consider related work.

Universality of (co)limits and Specifications for MMt Tools. Categori-
cal formalization of merge as colimit, and parallel composition as limit, reveals
a remarkable duality between these two types of model management scenarios.
The general patterns of the two operations are shown in Fig. 11. Colimit takes a
corr-span and produces a cospan, while limit takes a sync-cospan and produces a
span: the diagrams are mutually convertible by inverting directions of all arrows.
Importantly, both operations can be uniquely defined by the respective post-
conditions. We discussed them for colimit in Sect. 2.1, and similar conditions
can be formulated for limit as well. In addition to constraints [=] and [key],

Fig. 11. Duality

we need to require the limit span to
be maximal in some precise technical
sense, which ensures that all glob-
ally indistinguishable pairs are col-
lected in U . Dually, properties [cover]
and [disj] provide minimality of the
colimit cospan. Thus, the existence of
(co)limits is a property of the universe
of models and mappings rather than
a user-defined superstructure (details
can be found in any category theory
textbook, e.g., [1]). In the categorical literature, defining (co)limits via their
postconditions (minimality or maximality) is referred to as their universality.

Universality of (co)limits may be important for the proper design and use
of MMt tools. As shown in [16], miscommunication between tool users and tool
builders can be a major problem in MDE practice (see [9] for a detailed dis-
cussion). The possibility of defining model merge and parallel composition via
(co)limit operations, which in their turn can be defined universally via postcon-
ditions, opens the door for specifying semantics of MMt tools in an unambiguous
and precise way. We do not want to say that, e.g., any model merge scenario
can be reduced to colimit, but colimit is a core concept of model merge to which
specific merge scenarios and tools should be related. Considering a particular
model merge scenario as either a particular case of an incomplete colimit, or
the complete colimit, or a particular way of postprocessing the colimit (e.g.,
to resolve conflicts produced by the colimit), can guide the tool design, and

A Model Management Imperative 167

facilitate communication between the tool users and tool builders. We plan a
comparative study of model merge tools w.r.t. the colimit “yardstick” for future
work.

MMt Colors and Tools. Either type of model merge consists of two stages:
the green and the blue. The former is model match, which requires heuristics,
contextual analysis, and often some user input. After models are matched and
a corr-(co)span is produced, their merge is a routine and fully automatic (blue)
operation (colimit or limit). The green and the blue stages of model merge are
different both methodologically and technologically, and it makes sense to strictly
separate concerns in the architecture of MMt tools. For example, in [6] we argue
that schema and data integration algorithms mixing match and merge become
unnecessarily complicated; the same is true for model merge tools. In [10], we
show that the green vs. blue divide appears in other MMt scenarios, e.g., model
transformation, and in [7] we argue that mixing green and blue leads to the
inflexible architecture of model synchronization tools.

Modeling Concurrency. LTSs are considered to be well suited for modeling
sequential behavior and choice, while their expressiveness for modeling concur-
rent behavior is limited and reduces concurrency to interleaving. Our categorical
elaboration of LTSs brings new ideas to the subject. First, we distinguish between
external concurrency via parallel composition of LTSs, and internal concurrency
modeled with AND-compositions of transitions within the same LTS. In either
case, commutativity is fundamental. Second, our notions of internal OR/AND
compositions of transitions modify the understanding of what an LTS is. An
LTS appears to be a signature of basic transitions from which different behav-
iors can be composed by applying OR and AND operations. In particular, an
LTS enriched over the category Pos× (posets with GLBs) allows the concurrent
execution of any finite set of transitions, but a more practical notion would be
an LTS with only partially defined AND-composition. Applications of enriched
LTSs for modeling true concurrency can be interesting future work.

Related Work. An LTS is a classical behaviour model defined as a transition
relation T ⊂ S×L×S over sets S of states and L of labels. Adding to the for-
malism composition of labels, thus making L a monoid or even a category, was
considered by several authors: references and discussion can be found in [27].
Categorization of LTSs in these works is mainly motivated by mathematical rea-
sons of unification and elegance. In contrast, we motivate categorical constructs
by practical MMt scenarios and carefully discuss adequacy of our mathemati-
cal models. We are not aware of viewing commutativity between sequences of
transitions as a major construct for the interleaving model of concurrency.

The notion of order-enriched LTS fits in the general paradigm of STS (struc-
tured transition systems) [5] stemming from an influential paper “Petri nets are
monoids” (PNAM) [23], but there is an essential difference. For PNAM, apply-
ing AND to transitions assumes applying AND to their source and target states
(to buy a one-dollar apple and a one-dollar cake, you need two dollars, and eat-
ing both snacks results in two smiles). The corresponding categorical structure

168 Z. Diskin et al.

is a monoidal rather than enriched category. The PNAM ideas were general-
ized in STSs by adding two different (but related) superstructures to LTSs: one
for states and one for transitions, and the former is typically not poorer than
the latter. In contrast, we do not assume any superstructure for states (other
than that given by labeling). Also, the PNAM approach does not consider the
OR-monoidal structure, which for LTSs is even more fundamental than AND.
Categories combining AND- and OR-monoidal structures [4] were studied as
categorical models of linear logic—a resource-sensitive version of propositional
logic. Our order-enriched LTSs are not resource-sensitive.

Using colimits for modeling various operations of “putting widgets together”
can be traced back to Goguen’s pioneering work [13], and has often been used in
computer science, databases, and ontology engineering; annotated references rel-
evant to MDE can be found in [3,11]. Our use of colimits for merging behavioral
models with complex correspondences via derived transitions is novel (usually
more complicated methods are employed for such cases, see, e.g., [25]); its rela-
tion to semantic merge developed in [3] needs further research.

Using limits for synchronized parallel composition is less well known [15];
the closest to our setting is, probably, in [12], where they use limits for parallel
composition of alphabets seen as pointed sets. But for us, an alphabet is a cate-
gory, an LTS is a functor into this category, and we compose both alphabets (as
types) and their “instances” (states and transitions). We are also not aware of the
explicitly stated relationships between Model Management and Process Algebra:
Merge/colimit is Choice, while Synchronization/limit is Parallel composition.

6 Conclusion

We have analyzed merge and parallel merge of LTSs. The main observation is
that the merge procedures as such can be relatively simple (and formalized by
the categorical operations of (co)limit), if correspondences between LTSs are
properly specified using derived transitions. Operations needed for transition
derivation are (i) adding idle-loop transitions for all states, (ii) sequential com-
position of transitions, and (iii) their OR- and AND-parallel composition. Adding
(i) and (ii) to the LTS formalisms makes LTSs (mappings between) categories,
and adding (iii) enriches them with a 2-arrow structure.

Although in the paper we only considered one class of models, LTSs, con-
structs we used should be applicable in a much wider context. Indeed, LTSs
can be seen as a typical behavioral model and a benchmark for behavior mod-
eling. As for structural modeling, we show in [8] that ideas and constructs we
have considered in the paper are directly applicable for structural modeling with
class diagrams as well. After all, the very nature of category theory, designed
for a proper unification and generalization of different mathematical structures,
facilitates “technology transfer” from LTSs to broad model universes.

Acknowledgments. We are grateful to anonymous reviewers for useful comments and
suggestions. Financial support was provided by the Automotive Partnership Canada
via sponsoring the NECSIS project.

A Model Management Imperative 169

References

1. Barr, M., Wells, C.: Category theory for computing science. Prentice Hall (1995)
2. Bernstein, P.A.: Applying model management to classical meta data problems. In:

CIDR (2003)
3. Chechik, M., Nejati, S., Sabetzadeh, M.: A relationship-based approach to model

integration. ISSE 8(1), 3–18 (2012)
4. Cockett, J.R.B., Koslowski, J., Seely, R.A.G.: Introduction to linear bicategories.

Mathematical Structures in Computer Science 10(2), 165–203 (2000)
5. Corradini, A., Montanari, U.: An algebraic semantics for structured transition

systems and its applications to logic programs. Theor. Comput. Sci. 103(1), 51–106
(1992)

6. Diskin, Z., Easterbrook, S., Miller, R.: Integrating schema integration frameworks,
algebraically. Tech. Rep. CSRG-583, University of Toronto (2008) http://ftp.cs.
toronto.edu/pub/reports/csrg/583/TR-583-schemaIntegr.pdf

7. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Orejas, F.: From
State- to Delta-Based Bidirectional Model Transformations: The Symmetric Case.
In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981,
pp. 304–318. Springer, Heidelberg (2011)

8. Diskin, Z.: Towards category theory foundations for model management. Tech. Rep.
GSDLab-TR 2014–03-03, University of Waterloo (2014). http://gsd.uwaterloo.ca/
node/566

9. Diskin, Z., Gholizadeh, H., Wider, A., Czarnecki, K.: A Three-Dimensional Taxon-
omy for Bidirectional Model Synchronization. J. of Systems and Software (2015),
to appear

10. Diskin, Z., Kokaly, S., Maibaum, T.: Mapping-aware megamodeling: design
patterns and laws. In: Erwig, M., Paige, R.F., Van Wyk, E. (eds.) SLE 2013.
LNCS, vol. 8225, pp. 322–343. Springer, Heidelberg (2013)

11. Diskin, Z., Xiong, Y., Czarnecki, K.: Specifying overlaps of heterogeneous models
for global consistency checking. In: Dingel, J., Solberg, A. (eds.) MODELS 2010.
LNCS, vol. 6627, pp. 165–179. Springer, Heidelberg (2011)

12. Fiadeiro, J.L., Costa, J.F., Sernadas, A., Maibaum, T.S.E.: Process semantics of
temporal logic specifications. In: Bidoit, M., Choppy, C. (eds.) COMPASS/ADT.
Lecture Notes in Computer Science, vol. 655, pp. 236–253. Springer, Heidelberg
(1991)

13. Goguen, J.A.: A categorical manifesto. Mathematical Structures in Computer
Science 1(1), 49–67 (1991)

14. Golas, U., Lambers, L., Ehrig, H., Giese, H.: Toward bridging the gap between
formal foundations and current practice for triple graph grammars. In: Ehrig, H.,
Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562,
pp. 141–155. Springer, Heidelberg (2012)

15. Große-Rhode, M.: Semantic Integration of Heterogeneous Software Specifications.
Monographs in Theoretical Computer Science. An EATCS Series, Springer (2004)

16. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical
assessment of mde in industry. In: ICSE, pp. 471–480. IEEE, ACM (2011)

17. Lambers, L., Hildebrandt, S., Giese, H., Orejas, F.: Attribute handling for
bidirectional model transformations. ECEASST 49 (2012)

18. Lauder, M., Anjorin, A., Varró, G., Schürr, A.: Bidirectional model transformation
with precedence triple graph grammars. In: Vallecillo, A., Tolvanen, J.-P., Kindler,
E., Störrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp. 287–302.
Springer, Heidelberg (2012)

http://ftp.cs.toronto.edu/pub/reports/csrg/583/TR-583-schemaIntegr.pdf
http://ftp.cs.toronto.edu/pub/reports/csrg/583/TR-583-schemaIntegr.pdf
http://gsd.uwaterloo.ca/node/566
http://gsd.uwaterloo.ca/node/566

170 Z. Diskin et al.

19. Liang, H., Diskin, Z., Dingel, J., Posse, E.: A general approach for scenario
integration. In: MODELS, pp. 204–218 (2008)

20. Magee, J., Kramer, J.: Concurrency: state models and Java programs. Wiley (1999)
21. Mantz, F., Taentzer, G., Lamo, Y.: Well-formed model co-evolution with customiz-

able model migration. ECEASST 58 (2013)
22. Marchand, J., Combemale, B., Baudry, B.: A categorical model of model merging.

In: Modeling in Software Engineering, pp. 70–76. MISE, ICSE Workshop (2012)
23. Meseguer, J., Montanari, U.: Petri nets are monoids. Inf. Comput. 88(2), 105–155

(1990)
24. Muller, P., Fondement, F., Baudry, B., Combemale, B.: Modeling modeling

modeling. Software and System Modeling 11(3), 347–359 (2012)
25. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S.M., Zave, P.: Matching

and merging of statecharts specifications. In: ICSE (2007)
26. Sabetzadeh, M., Easterbrook, S.: An algebraic framework for merging incomplete

and inconsistent views. In: 13th Int. Conference on Requirement Engineering
(2005)

27. Sobociński, P.: Relational presheaves as labelled transition systems. In:
Pattinson, D., Schröder, L. (eds.) CMCS 2012. LNCS, vol. 7399, pp. 40–50.
Springer, Heidelberg (2012)

Opening the Black-Box of Model Transformation

John T. Saxon1(B), Behzad Bordbar1, and David H. Akehurst2

1 University of Birmingham, Birmingham, UK
{j.t.saxon,b.bordbar}@cs.bham.ac.uk

2 Itemis AG, 44536 Lünen, Germany
dr.david.h@akehurst.net

Abstract. The automated execution of model transformation plays a
key role within Model Driven Development. The software that exe-
cutes a transformation, commonly known as a transformation engine,
receives the meta-models of the source and destination, and a set of
transformation rules as input. Then the engine can be used to con-
vert instances of the source meta-model to produce a destination model.
Transformation engines are often seen as black boxes. In order to be sure
of the correct execution, it is crucial to understand how a transformation
engine executes a given transformation. This paper presents a method
of capturing and analysing the activities carried out within the trans-
formation engine by elaborating on existing tracing mechanisms used
by existing engines. We compare the tracing mechanisms involved in
four popular, rule-based transformation frameworks and highlight their
shortcomings. A new trace meta-model is presented to deal with some of
these shortcomings. These processes can be applied to all existing frame-
works; as a proof of concept we have extended an existing traceability
framework, based on our earlier work, to implement these mechanisms.

1 Introduction

The execution of model-to-model (M2M) transformations is often viewed as
a black box process. Transformation engines such as the Epsilon Transforma-
tion Language (ETL) [16] and the ATLAS Transformation Language (ATL)
[15] require the meta-models of the source, destination and a set of transforma-
tion rules as input. Then a transformation engine, behind the scenes, automati-
cally executes the rules and converts a source model to generate the destination
model. Even during testing and verification, all existing research focuses on cor-
rectness of rules, while treating the transformation engine as a black-box that
is assumed to execute correctly. One exception to this “black-box” routine is
the process of tracing [1,9,18]. Traceability can be supported in transformation
engines and gives access to the linkage between source and destination models
established by a transformation execution [18]. To the best of our knowledge
the first tracing mechanism, within non-graph based transformation engines,
was implemented and used by UML2Alloy [21] through the Simple Transformer
(SiTra) [2]. UML2Alloy produces Alloy models from a UML class diagram and

c© Springer International Publishing Switzerland 2015
G. Taentzer and F. Bordeleau (Eds.): ECMFA 2015, LNCS 9153, pp. 171–186, 2015.
DOI: 10.1007/978-3-319-21151-0 12

172 J.T. Saxon et al.

OCL statements via a transformation. In Shah et al. [21], the transformation
trace was used to convert a counter example produced by Alloy back to UML.

This paper is based on our study of four model transformation frameworks:
ATLAS Transformation Language (ATL) [15], Epsilon Transformation Language
(ETL) [16], Operational Query/View/Transform (QVT-O) [18], and the Simple
Transformer [2]. We have identified a number of shortcomings of the existing
frameworks with respect to traceability mechanisms implemented within them.
In this paper we focus on three issues: orphan objects, loss of information regard-
ing the ordering of execution and the dependencies between the rules. These
shortcomings and their adverse effects, which are common to most frameworks,
are described with the help of well-known examples. Then we explain a modifi-
cation to the design of transformation engines that can eliminate these deficien-
cies. We present an implementation of the design by extending SiTra. We also
describe the changes required to modify ETL to compliment the design. This
is to show that other engines can adopt our design easily. Finally we evaluate,
the approach by mapping a relational database to Apache HBase [22], a NoSQL
database, via a non-trivial transformation. This transformation is different from
most transformations specified on the relational databases as both the data is
migrated and the schemas are mapped. In particular we report on the execution
of the transformation on the so-called employee database provided by MySQL.
This dataset contains four million rows over six tables and has been successfully
transformed to HBase.

This paper is structured as follows: in section 2 we explain our preliminaries.
Section 3 provides some more detail with regards to traceability within M2M
transformation. We then illustrate the shortcomings in section 4. In section 5
we present a summary of our solution and in section 6 we fully describe our
new version of SiTra. In order to evaluate our work, we present a case study in
section 7, specifically looking at transforming a non-trivial model of a relational
database into HBase [22] (a NoSQL database). Followed by a couple of important
points regarding how this can be implemented within ETL section 8. We then
display the current related work in section 9 and conclude in section 10.

2 Preliminaries

2.1 Model Transformation Frameworks

Model transformation software tools, commonly known as model transformation
frameworks, are used to execute M2M transformations [2,7,15,16,18,24]. These
tools use a wide range of technologies and differ in the degree of support they pro-
vide and their complexity. Some model transformation frameworks have strong
GUI support for programming, support of persistence and management of mod-
els, re-factoring checking, etc. However they all support the core functionality
depicted in Figure 1 [8]. Each model transformation framework requires meta-
models of both the source and destination and a set of transformation rules as
input. Then the framework will execute the rules on an instance of the source

Opening the Black-Box of Model Transformation 173

Fig. 1. An Overview of M2M Transformation

meta-model to produce an instance of the destination meta-model. In this paper
we focus on this specific core functionality.

2.2 SiTra

The Simple Transformer (SiTra) is a Java library that supports the above
core functionality. Produced in 2006, it has been used and modified by vari-
ous groups in numerous projects and tracing activities. Among others, SiTra
is used in UML2Alloy [21], AC2Alloy [13], SD2Alloy [3], OWL-S to BPEL [4],
state machines to VHDL [26] and sequence diagrams to coloured Petri nets [5].
The emphasis of SiTra, although originally educational, is on using Java so that
developers can execute rules in lightweight frameworks. The Java implementa-
tion is available online1. There are also implementations of SiTra in C# and
Python.

Fig. 2. A rule for transforming a Class object into a Table object

The framework itself defines two interfaces: a) Rule; and Transformer. The
Rule provides an interface to create a particular output given an input and com-
prises of three simple methods that map to the guard, the instantiation phase

1 http://baserg.github.io/sitra

http://baserg.github.io/sitra

174 J.T. Saxon et al.

and the binding phase of a M2M transformation. The Transformer interface
gives the developer the bare essentials for completing an actual M2M transfor-
mation. The prime focus of SiTra is the simplicity of writing rules in an imper-
ative language without a need of specialised tool knowledge. Figure 2 shows the
popular transformation of an object orientated class to a relational table. The
interface of a rule lends itself to the standard three operations within all M2M
transformation engines.

1. The check method, line 2, is the guard of the rule, i.e. it determines whether
the rule is applicable for the given source object.

2. The build method, line 5, instantiates the target object for the source that
it relates to.

3. The setProperties method, line 8, sets the attributes of the resultant target
object; from here one may call other transformations to complete the final
model.

For further examples we refer the reader to the tutorial section of footnote 1.

3 Traceability within Model Transformation

Traceability is a technique for keeping track of rule invocations [18]. It has been
used in many applications and has been discussed at length as an important
requirement [6,11,19,23,25,27]. For a survey of traceability see ”Survey of Trace-
ability Approaches in Model-Driven Engineering” [12].

The trace instances are stored as a three tuple: (A,AtoB,B). This indicates
for each transformation of the source input A, using the transformation rule
AtoB, the target output B has been created. Thus any other attempt to rerun
this specific rule with the same source, the same output will be returned. This
happens within popular transformation tools such as the ATL [15], QVT-O [18],
the ETL [16] and SiTra.

There are however two levels of traceability: a) internal; and external as
defined by [14]. Internal traceability is a private mechanism used within a trans-
formation engine. It is used to trace what outputs are generated by what inputs.
As this is internal, the API is private so the actual trace cannot be persisted and
therefore is lost once the transformation is completed. ATL [15], Xtend [10] and
Eclipse’s implementation of QVT-O follow this mechanism. An external trace
however, remains after the transformation has been completed. This enables its
users to persist, or use the trace for further analysis and transformations. SiTra
and ETL provide a linear trace of what rules and inputs have created what
outputs.

4 Challenges of Tracing in Model Transformation

4.1 Orphans

Orphan objects are objects that are created within the M2M transformation but
are not recorded within the trace. In hybrid/imperative engines like ETL and

Opening the Black-Box of Model Transformation 175

SiTra it is possible to use the new keyword to create objects within the rule itself
whilst not as part of the definition. Hence orphans are not accounted for within
the trace, meaning if one were to attempt to find the source of this object there
is no link internally or otherwise.

To see this, consider the well-known example of mapping object orientated
models to relational database. This example used by Epsilon’s own OO2DB
example2 the rule Class2Table has a conditional statement to determine
whether it requires a foreign key to reference a parent table. Here it will create a
Column and a ForeignKey object; neither of these are recorded within the trace
due to the use of the Java allocation and not by the transformation engine.

Of course, in the above example, the ETL code can be re-factored to avoid
using this keyword by using the language’s ability to implement inheritance
between rules. This would entail three rules: a) an abstract rule containing the
basic Class2Table transformation without the if statement; a concrete, empty,
rule for Classes that do not extend another; and another concrete rule for Classes
that do, which extends the abstract to include the new elements for the foreign
key.

In the case of SiTra, due to the restrictions placed upon in Java, the definition
of a rule must only have one input and one output, i.e. Rule<Input, Output>.
A fix for this could be the use of tuples as the Output, for example a Pair<X,Y>
or Triple<X,Y,Z>.

The two solutions we provide here do not stop the developer from using the
new keyword and both can increase the complexity of the rules themselves. It
is not possible to remove the new keyword entirely. As a result, there is a clear
scope in modifying the execution engines within the transformations frameworks
to take good care of the orphans.

4.2 Ordering of Rule Execution

For the maintenance and debugging of a M2M transformation, the developers
need to recreate the transformation. Often when a set of transformation rules
is executed, there is a possibility that they are executed in a different order.
This change of order can be because of the low-level implementation choices
such as how a collection is implemented or details arising from the scheduling
within the execution environment. To demonstrate the variation in the order of
executing rules consider the OO2DB example used by various rule engines.

Suppose R1 and R2 represent the two rules that map classes and attributes
to tables and table columns, respectively:

1. The Class is associated to a collection of Attributes. The overall transfor-
mation requires the ClassToTable to transform the attributes during its
binding phase to generate the columns and assign their parent to the resul-
tant Table object. However not all iterators iterate objects in the same order

2 https://www.eclipse.org/epsilon/examples/index.php?example=org.eclipse.epsilon.
examples.oo2db

https://www.eclipse.org/epsilon/examples/index.php?example=org.eclipse.epsilon.examples.oo2db
https://www.eclipse.org/epsilon/examples/index.php?example=org.eclipse.epsilon.examples.oo2db

176 J.T. Saxon et al.

Fig. 3. A sample of rule dependencies

of which they were added. A HashSet in Java for example provides no guar-
antees as to the iteration order of the set. Thus a second execution may
result in a contrasting order of elements.

2. The Starting Object: The item that kicks off the transformation may also
change the resultant model. Given a Class Person with three attributes,
name, age and height one may not assume the resultant transformation
starting with ClassToTable would be equal to one starting with the age
attribute using AttributeToColumn. If the AttributeToColumn were to set
an order attribute within the Column it creates using a global variable which
attribute is transformed first makes a difference to the final model.

To study the execution of the transformation it is essential to capture the
correspondence between the source and destination elements as a part of tracing.
In addition, we propose existing tracing mechanisms to be extended so that the
ordering of the execution of the rules can also be captured. This would allow the
developers to study the transformation, using the execution traces, and hence
know in what order the rules are executed.

4.3 Rule Dependencies

Consider the example in Figure 3, which involves two dependent rules, R1 and
R2. The execution of the transformation via ETL consists of two stages. The
first step, initialisation, matches each rule to a specific source model element
and creates the target elements. For example if the source meta-model consists
of one class (c1) associated to five attributes (a1, . . . , a5), R1 is executed once
on the class to produce the table and subsequently R2 is executed five times
to produce the columns. Once the destination objects have been created, the
second phase, called binding, runs the body of the rule on the objects that have
been created. This part sets properties and creates the associations between
the, currently disconnected, destination model elements. This is the same for
ATL and QVT-O. The procedure for SiTra however is slightly different. All
rules are called lazily, i.e. objects are created when they are called by parent
transformations and not before. R1 would iterate through the classes attributes
to call R2 to retrieve columns and would bind them to its table when instructed.
Since ordering of the source is arbitrary, it is possible that an attribute object
is processed first by R2. This would result in starting the transformation on the
attribute and that rule transforming the class that is associated to it, i.e. the

Opening the Black-Box of Model Transformation 177

execution of R1 on the parent class. Then from R1 the remaining attributes are
transformed, i.e. the four remaining executions of R2.

A linear trace dictates what was created in relation to the execution of the
instantiation phase. For instance a trace T := t1t2 . . . tn explains that the trans-
formation t2 was instantiated after the transformation t1 and that is when the
targets were created. However it ignores the nested nature of a model transfor-
mation. The links between rules are lost, i.e. we don’t know what rule depends on
the output of another. Did, for example, t1 require the results of t3, or in imper-
ative languages did t1 transform the source of t3 to get the results. A model
transformation is a graph and this graph is lost within the standard trace.
Using our example the output of R1(c1) invoking [R2(a1), R2(a2), . . . R2(a5)]
may not be the same as R2(a5) invoking R1(c1), which subsequently invokes
[R2(a1), R2(a2), . . . R2(a4)]. In frameworks where a developer may have a global
state: it must be part of the engine to assume there is one.

Using M2M transformations to assist in a software development process, i.e.
partially generating design models from architecture models, architecture models
from analysis models, or generating tests from requirements, would require that
the traceability be retained for auditing reasons. This is especially true for safety
critical applications and in general compliance matrix generation. There is a
clear scope for identifying methods of capturing the ordering of execution and
inter-rule dependencies for assisting load balancing, profiling and validation.

5 Sketch of the Solution

In the previous section we have outlined some of the shortcomings of the exist-
ing tracing mechanisms in use within M2M transformations. To summarise, we
extend an existing framework to deal with:

1. Capturing the nested nature of a transformation
2. Capturing rule dependencies; and
3. Capturing orphan objects created within the transformation.

Our solution involves a new meta-model to capture more information regard-
ing the internals of a M2M transformation and the use of dynamic proxy classes
to capture orphan objects. The suggested methods are independent of the
model transformation frameworks and with minor alterations can be adopted
by all mainstream frameworks. We explain parts of the solution briefly and then
demonstrate, by case study, using a non-trivial example of transforming a rela-
tional database to HBase.

6 SiTra

6.1 Capturing Rule and Transformation Dependencies

The Simple Transformer (SiTra) is an imperative Java implementation of a M2M
transformation [2]. It provides two interfaces that can be used to create a trans-
formation engine and the rules for it. Additionally, the bundle comes with an

178 J.T. Saxon et al.

engine that can be used out of the box. Seyyed M. A. Shah et al. amended this
to add traceability [21]. However this, like others, has all of the issues we have
discussed in the previous section regarding traceability. In this section we will
discuss the changes we have made to solve these issues.

We have already discussed the initialisation and binding phases within M2M
transformation engines. In SiTra the initialisation phase is synonymous to the
build method and binding is the setProperties method; however the schedul-
ing differs from more declarative engines as they are called lazily rather than
upfront. These two are distinct as they allow nested transformations. If you
were to call a transformation which is dependent on itself, the initialised objects
need to be available to the lower transformations. For instance the transforma-
tion of an Attribute, from a object orientated (OO) model, to a Column, from
a relational database view, would require access to the newly transformed Table
to set its owner. Without this we would have an infinite loop. We illustrate this
inter-rule dependency with our ClassToTable rule, shown in Figure 2 and with
a cut down AttributeToColumn rule shown in Figure 4. Both transformations
call upon each other in order to set references.

Fig. 4. An example of an inter-rule dependency

Whilst exploring this we also found that SiTra would only transform a source
object, A, once. This was because another structure is being queried within the
engine, a cache. However the source object was used as the key of the map
(Map<Source, Target>). This behaviour was found in ETL as well. Using the
equivalent() method or ::= operator seemed to return the first item within
the transformation trace. You were able to transform a source object multiple
times but if a later match was required a manual filtering of transformed objects
is needed. Here we found the internal tuple needed to be amended. The map
(A,AtoB) → B uses the source object, A, and the rule, AtoB as the key, this
allowed us to request any transformation of A given a rule with ease.

The largest issue we have found within transformation traces is the verbose-
ness of the trace itself. A lot of information is lost when these elements are
created. The current state-of-the-art provides a chronological list of rules; we
never get to see the dependencies between rules and transformations. ETL uses
an equivalent structure as SiTra’s ITrace interface [21], inferred from the QVT
standard [18]. In which is contained the tuple as described in section 3. This tuple
does not take into consideration the nested nature of a transformation, and only
concerns the instantiation phase on the first run. It may also be important to

Opening the Black-Box of Model Transformation 179

Fig. 5. A new meta-model for a traceable model transformation

see what transformations actually call the build() method and which have the
object returned from the transformation trace. Fig. 5 shows the new transfor-
mation trace within SiTra. Here we have illustrated new types of trace element.
Invocation is the equivalent of the previous ITrace, it simply contains the
source, target and the rule responsible. This alone can provide the current state-
of-the-art. We have introduced two more types of traceable element within SiTra:
a) NestedInvocation; and CachedInvocation. These provide more detail to the
actual internals of the transformation. The former provides the same information
as the standard however contains two more elements: a)the calling transforma-
tion trace element (if applicable); and the trace elements generated because of
the current transformation. The latter simply provides the trace element that
represents the first run of the transformation. In order to maintain this list, and
to reduce the effect on performance by traversing it, we amended the internal
cache once more: (A,AtoB) → (B, TraceableElement). Using this latest imple-
mentation we can now see that a source element, A, and a rule, AtoB, returns the
target object B and is referenced by TraceableElement. This can be simplified
further as the TraceableElement includes B: (A,AtoB) → TraceableElement.

Our meta model provides solutions to retain the order of execution of trans-
formation rules and the ability to recreate the transformation. This is provided
by the nested nature of our meta-model as it explains what rules are completed
and what invoked them. The capability to find the actual binding phase, opposed
to a recollection, is provided by the new cached invocation type. Allowing the
user to recreate the situation at the time of creation. This cached invocation
aids in providing a graph of rule dependencies.

6.2 A Dynamic Proxy to Catch Orphans

The process of creation, specifically the binding phase, involves invoking mutator
methods to change the state of the destination object. These setters are often

180 J.T. Saxon et al.

passed new objects that need to be traced, particularly in SiTra, newly allocated
objects. In order to catch these orphans we need to intercept all mutators to
check to see if the additional objects are within the trace. For example, when
adding a foreign key to a child table, we need to intercept the list of constraints.

For each transformation of source s we get a target t. In order to intercept we
make a Proxy(t) that maintains the functionality of the original target however
the setters are modified. In each setter we check to see if the additional element
is within the trace, and if not we add it the current invocation of the trace. Once
this has been completed we then call the actual setter of the target object. To
ensure traces are added for all orphans, as well as grandchildren of the target,
instead of passing the original parameter we pass a proxy of it. This allows the
recursion of the orphan tracking.

There are two types of call to intercept:

1. Mutator methods: we define a mutator method as one that has no return
type, one parameter and begins with “set”. This allows us to catch local
attributes to the target.

2. Getter methods that return a collection: we define a getter as a method that
has no parameters and returns a collection.

The former we have explained, however the latter is slightly different. Rather
than intercepting simple set and get, we intercept collection mutators like put,
add, addAll, etc.

7 Case Study

In order to demonstrate our new framework we have created a non-trivial trans-
formation between a relational database and HBase, involving a transformation
of the schema as well as the data. We then applied this to an instance of the
relational database using the employee database provided by MySQL3, a widely
used test database for benchmarking. This dataset contains four million rows
over six related tables.

For the purpose of this case study, and due to space restraints, we shall not
delve into the rules in depth for this transformation. Instead we shall use them,
partial or otherwise, to demonstrate what happens within the black-box that is
SiTra. The M2M transformation itself will be available online4.

Meta-Model of Apache HBase. The meta-model of Apache HBase, the desti-
nation, is shown in Figure 6. Here we can see a very simple representation of
the internals of the NoSQL database engine. We have a Namespace, which is
synonymous to a Database in relational terms, but that is as far as similarities
between HBase and a relational database go. A Table in a NoSQL sense is more
of a key-value store, whereas the relational view would view its Tables as a tree

3 https://dev.mysql.com/doc/employee/en/
4 https://baserg.github.io/sitra

https://dev.mysql.com/doc/employee/en/
https://baserg.github.io/sitra

Opening the Black-Box of Model Transformation 181

Fig. 6. The meta-model of a Apache HBase

structure. A Table contains a selection of Column Families and Rows. The for-
mer enables more structure within the key store whilst the latter is the data
itself. A Row contains an id, this is the key for all related data to this Table.
Finally we have Values tied to the Rows and Column Families, each value has
its own key to differentiate itself from the other values within a Column Family.

This meta-model allows us to realise the structure and the data of Apache
HBase. In turn this is used to generate HBase shell to persist our transformation
to a real HBase server. In order to do this we use the template engine Xtend.

Fig. 7. The meta-model of a relational database

Meta-Model of a Relational Database. Since NoSQL databases generally do not
have schemas, we needed a meta-model for a relational database that includes the

182 J.T. Saxon et al.

data itself. Unlike OO2DB where we are purely transforming structure, NoSQL
database avoids creating structure unnecessarily. The primitive structures that
are created are simple buckets for string or binary data. Therefore in order to
properly transform a database we need to access the data within the relational
tables.

Figure 7 shows us the meta-model of a relational database, our source meta-
model. Here we have a Table with Constraints, Rows and Columns. Where a
Constraint is local to the Table, i.e. a Unique index, a Primary Key or a Foreign
Key. Those in turn reference Columns to enforce their Constraint and in the
case of a Foreign Key provide a mapping of a selection of Columns of one table
to another target table. In order to keep the data, we have a Value class, which
references the Column it belongs to and the Row it is part of. This latter element
allows us to have the data we require for the transformation.

7.1 Catching Orphans

In order to depict the orphan issue we take a subset of the transformation we
have created. Specifically the transformation of a Relational Table to a HBase
Table. When creating a HBase Table one must make a default column family
to hold the primitive data. For example the employee would contain a column
family called 0 and in there would have values relating to their name, age and
gender. In SiTra we would define a rule to be Rule<db.Table, hbase.Table>,
this would only execute on tables with no or more than two foreign keys, as
this would be a root table or a complex lookup table (which would need to be
referenced).

We can envisage a binding phase as shown in Figure 8. As normal, the
target would appear in the internal trace of SiTra as it would be added after
the instantiation phase, however we have introduced a new element: a column
family. This element is disconnected from the transformation trace. However
when setProperties is called, the hbase.Table is in fact a dynamic proxy
instance. This instance, as mentioned in subsection 6.2, captures getters whereby
the return is a collection and in turn returns a collection proxy, which intercepts
the lists mutators. Before the addition to the collection is made, the proxy deter-
mines whether it has seen the columnFamily before and if not adds it to the
orphan collection in the currently active trace instance (as seen in Figure 5).

Fig. 8. A sample of a scenario leading to The creation of an orphan in SiTra

Opening the Black-Box of Model Transformation 183

Our transformation of the employee database manually creates columns fam-
ilies in the same fashion as above, both the employee and department tables have
this default column family. Relationships however are treated slightly differently.
Those lookup tables aren’t transformed into different tables, instead are a group
of column families attached to the parent table. Therefore each relational child
table, the columns are converted to column families and are added to the par-
ent HBase table. This still uses the same mechanism as above, however there is
a loop to iterate the new column families. SiTra was able to retain all orphan
objects for this transformation.

7.2 The Nested Nature of Model-to-Model Transformation

Continuing the example of a relational table and an HBase table, the transfor-
mation will recurse by transforming the rows that the table has, and in turn
the values will be transformed. This natural tree structure that happens is cap-
tured within the new meta-model. Whereby an invocation depends on another,
as shown in Figure 5. In order to implement, and retain this information, we
use a simple stack. Not unlike a process stack, our stack frame is the invocation
element as it has access to all components: source, target, orphans and of course
dependencies. When an item is built a trace element is created to record this
transaction, it is then added to the top of the stack. Once the binding phase has
completed, it is then popped off the top.

Fig. 9. Depicting the nesting of rules

Figure 9 illustrates a small portion of our output model. Level one is that of
a relational table to an HBase table, level two transforms the rows, where the
rowId is the primary key of the table. Finally level three is the transformation of
the values, for the default column family. The tree for the whole transformation
is very large; however we have an implementation that can persist these links
into the graph database Neo4j (available at http://www.neo4j.org).

7.3 Deriving Rule Dependencies

Our meta-model retains the information regarding all transactions within the
transformation, particularly the recollection of previously transformed elements
of the source model, which is currently unavailable from the current state-of-the-
art. These two relationships between different transformations can be used to
derive the inter-rule dependencies. For example, when transforming a relational
table to a HBase table, the rule will attempt to transform its data, i.e. its rows.

http://www.neo4j.org

184 J.T. Saxon et al.

Once this is complete it will add the rows to itself. However the rows themselves
require the HBase table to add itself to it, its opposite. This cyclic assignment is
a must if we do not have a modelling framework to automatically set these links,
like ECORE. From this point we can derive that the first rule, in this instance,
depends on the second, and vice versus.

To gather this we need only iterate through the trace elements and generate
a graph of the rules used. If we move down a level, of NestedInvocation, we
know that the parent required it, if we find a CachedInvocation we know a) it
has been transformed before; and it has been recalled for this current execution.

8 Epsilon Transformation Language

The mechanisms described in this paper can be applied to other frameworks as
well. The meta-model described in Figure 5 can be presented in most frame-
works; however a key difference with SiTra and ETL is the scheduling. ETL flat-
tens the model, matches and instantiates all model elements before binding them
whereas SiTra is completed on the fly. However ETL can derive the dependency
links between transformations by realising the first time the bind is called on an
object, and by the way transformations are referenced, using the equivalent()
methods. The orphan capture can also be completed: if using ECORE one may
use its native notification pattern. EContentAdapter can be used on either the
first transformation or upon the ECORE resource that is tracking the output.
Opposed to intercepting calls, as is needed on regular POJOs, one may simply
interpret the notification from the change methods.

9 Related Work

Mäder explains that traceability links are rarely re-used in the maintenance
of a system despite the ever-increasing complexities that they contain [17]. He
puts partial blame to the failure of tools to provide usable functionality for
stakeholders to query and capture traceability links. The move to an integrated
traceability mechanism with a verbose trace would allow it to be persisted inside
a data store such that standard queries can be made in an attempt to solve some
of those issues.

Frédérick Jouault argues that traceability need not be part of the overall
transformation engine as a High Order Transformation (HOT) can be used,
he uses HOT, with an ATL example, to introduce trace link elements into an
existing transformation script [14]. Here an instance of ATL is transformed into
another version of ATL with additional outputs along with an imperative bind-
ing. Iván Santiago et al. also used this in order to add iTrace capabilities to
transformations so they can measure the quality degradation that the introduc-
tion of trace generation causes [20]. Here we have a decoupled the mechanism
used to implement traceability; however this is an additional step for validation.
Our approach maintains the implementation within the framework in order to
remove the additional burden it places upon the developer.

Opening the Black-Box of Model Transformation 185

10 Conclusion

The primary conclusion of this paper is that there is little in terms of built
in traceability in rule-based transformation engines. Those that do provide an
external trace are unable to provide enough information to relate to the internals
of a M2M transformation. Model transformations themselves are relational pro-
cesses, they relate the parties involved: sources, targets and rules, but also relate
to each other and generate a dependency model within rules and executions of
rules. The latter is lost in QVT’s trace instance.

We have provided a new, independent, trace meta-model that could be used
within most M2M transformations engines to maintain the tracing information.
In addition we have provided some information on how other engines may imple-
ment this functionality, particularly the ability to track orphans. To demonstrate
these mechanisms we have implemented it by extending SiTra. These changes to
SiTra have brought it up to the current state-of-the art in terms of traceability
and provide these mechanisms natively.

References

1. Aizenbud-Reshef, N., et al.: Model traceability. IBM Systems Journal 45 (2006)
2. Akehurst, D.H., Bordbar, B., Evans, M.J., Howells, W.G.J., McDonald-Maier,

K.D.: SiTra: simple transformations in java. In: Wang, J., Whittle, J., Harel, D.,
Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 351–364. Springer,
Heidelberg (2006)

3. Alwanain, M., Bordbar, B., Küster, J., Bowles, F.: Automated Composition of
Sequence Diagrams via Alloy. MODELSWARD (2014)

4. Bordbar, B., Howells, G., Evans, M., Staikopoulos, A.: Model transformation from
OWL-S to BPEL Via SiTra. In: Akehurst, D.H., Vogel, R., Paige, R.F. (eds.)
ECMDA-FA. LNCS, vol. 4530, pp. 43–58. Springer, Heidelberg (2007)

5. Bowles, J., Meedeniya, D.: Formal Transformation from Sequence Diagrams to
Coloured Petri Nets. In: 2010 17th Asia Pacific Software Engineering Conference
(APSEC) (2010)

6. Briand, L., et al.: Traceability and SysML design slices to support safety
inspections: a controlled experiment. ACM Trans. Softw. Eng. Methodol. 23 (2014)

7. Claypool, K.T., Rundensteiner, E.A.: Gangam: a transformation modeling
framework. In: 2003. (DASFAA 2003) Proceedings Eighth International Confer-
ence on Database Systems for Advanced Applications (2003)

8. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation
approaches. IBM Systems Journal 45 (2006)

9. Ebner, G., Kaindl, H.: Tracing all around in reengineering. IEEE Software 19
(2002)

10. Eclipse Foundation. Xtend (2014). URL: http://www.eclipse.org/xtend/ (visited
on 03/04/2015)

11. Fritzsche, M. et al.: Application of Tracing Techniques in Model-Driven
Performance Engineering. In: 4th ECMDA Traceability Workshop (2008)

12. Galvao, I., Goknil, A.: Survey of traceability approaches in model-driven
engineering. In: 2007 EDOC 2007 11th IEEE International Enterprise Distributed
Object Computing Conference (2007)

http://www.eclipse.org/xtend/

186 J.T. Saxon et al.

13. Geepalla, E., Bordbar, B., Last, J.: Transformation of spatio-temporal role based
access control specification to alloy. In: Abelló, A., Bellatreche, L., Benatallah, B.
(eds.) MEDI 2012. LNCS, vol. 7602, pp. 67–78. Springer, Heidelberg (2012)

14. Jouault, F.: Loosely coupled traceability for ATL. In: Proceedings of the European
Conference on Model Driven Architecture (ECMDA) Workshop on Traceability
(2005)

15. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

16. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The Epsilon Transformation Language.
In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063,
pp. 46–60. Springer, Heidelberg (2008)

17. Mäder, P.: Interactive traceability querying and visualization for coping with
development complexity. In: CoRR (2013)

18. OMG. Meta Object Facility (MOF) 2.0 Query View Transformation Specification
Version 1.1., Jan. 2011. URL: http://www.omg.org/spec/QVT/1.1/PDF/ (visited
on 03/04/2015)

19. Paige, R.F., et al.: Building model-driven engineering traceability classifications.
In: 4th ECMDA Traceability Workshop (2008)

20. Santiago, I., Vara, J.M., de Castro, V., Marcos, E.: Measuring the effect of enabling
traces generation in ATL model transformations. In: Filipe, J., Maciaszek, L.A.
(eds.) ENASE 2013. CCIS, vol. 417, pp. 229–240. Springer, Heidelberg (2013)

21. Shah, S.M.A., Anastasakis, K., Bordbar, B.: From UML to alloy and back again. In:
Ghosh, S. (ed.) MODELS 2009. LNCS, vol. 6002, pp. 158–171. Springer, Heidelberg
(2010)

22. The Apache Software Foundation. Apache HBase (2014). URL: http://hbase.
apache.org/ (visited on 03/05/2015)

23. Vara, J.M., et al.: Dealing with traceability in the MDDof model transformations.
In: IEEE Transactions on Software Engineering 40 (2014)

24. Varró, D., Balogh, A.: The model transformation language of the VIATRA2
framework. Science of Computer Programming 68 (2007)

25. Willink, E.D., Matragkas, N.: QVT Traceability: What does it really mean? (2014).
URL: http://www.eclipse.org/mmt/qvt/docs/ICMT2014/QVTtraceability.pdf
(visited on 03/04/2015)

26. Wood, S.K., et al.: A model-driven development approach to mapping UML state
diagrams to synthesizable VHDL. IEEE Transactions on Computers 57 (2008)

27. Yie, A., Wagelaar, D.: Advanced Traceability for ATL. In: Proceedings of the 1st
International Workshop on Model Transformation with ATL (MtATL 2009) (2009)

http://www.omg.org/spec/QVT/1.1/PDF/
http://hbase.apache.org/
http://hbase.apache.org/
http://www.eclipse.org/mmt/qvt/docs/ICMT2014/QVTtraceability.pdf

Property Access Traces for Source Incremental
Model-to-Text Transformation

Babajide Ogunyomi(B), Louis M. Rose, and Dimitrios S. Kolovos

Department of Computer Science, University of York, Deramore Lane, Heslington,
York YO10 5GH, UK

{bjo500,louis.rose,dimitris.kolovos}@york.ac.uk

Abstract. Automatic generation of textual artefacts (including code,
documentation, configuration files, build scripts, etc.) from models in a
software development process through the application of model-to-text
(M2T) transformation is a common MDE activity. Despite the impor-
tance of M2T transformation, contemporary M2T languages lack sup-
port for developing transformations that scale with the size of the input
model. As MDE is applied to systems of increasing size and complexity,
a lack of scalability in M2T (and other) transformation languages hin-
ders industrial adoption. In this paper, we propose a form of runtime
analysis that can be used to identify the impact of source model changes
on generated textual artefacts. The structures produced by this runtime
analysis, property access traces, can be used to perform efficient source-
incremental transformation: our experiments show an average reduction
of 60% in transformation execution time compared to non-incremental
(batch) transformation.

1 Introduction

Although MDE can reduce systems complexity and increase developer produc-
tivity [1], achieving scalability of MDE processes, practices and technologies
remains an open research challenge and is important for widespread industrial
adoption [2]. The scalability challenges in MDE are numerous, and include: per-
formant persistence of very large models, modularity and reusability in the def-
inition of very large modelling languages, and efficient propagation of change
between artefacts (including models). This paper focuses on the latter challenge,
in the context of propagating changes from models to textual artefacts (such as
source code, documentation, or build scripts).

Our primary motivation for this work stemmed from our participation in an
EC FP7 project (INESS, grant #218575) which involved applying model-to-text
transformation to generate code that was amenable to model checking. Code
generation from UML models supplied by our industrial partners took about
1 hour. Re-generation of code took 1 hour to execute even for small changes
to the source model, because all code files were being re-generated even when
the changes did not affect the content of some of them. Ideally, the execution

c© Springer International Publishing Switzerland 2015
G. Taentzer and F. Bordeleau (Eds.): ECMFA 2015, LNCS 9153, pp. 187–202, 2015.
DOI: 10.1007/978-3-319-21151-0 13

188 B. Ogunyomi et al.

time of the code-generating transformation would have been directly propor-
tional to the magnitude of the change to the source model: small changes to
the model would have resulted in significantly reduced execution time of the
code-generating transformation. This ideal is realised with a source incremental
transformation engine [3].

In this paper, we propose property access traces, an approach to achieving
source incremental model-to-text (M2T) transformation. Property access traces
use runtime analysis to capture information about the way in which a trans-
formation accesses its source models. When the source models change, a prop-
erty access trace provides an efficient means for determining which subset of
the transformation must be re-executed to propagate changes to the textual
artefacts. Crucially, a property access trace allows the transformation engine to
reduce (and ideally eliminate) execution of the parts of the transformation that
have not been affected by the changes to the source models, and the M2T trans-
formation scales better as a whole. This paper makes the following contributions:

– A design for computing and querying property access traces in order to
perform efficient propagation of changes from models to textual artefacts
(Section 3).

– An implementation of property access traces for a contemporary M2T trans-
formation language, EGL [4], including a discussion of its limitations (Sec-
tions 3 and 4).

– An empirical evaluation and discussion of the benefits of property access traces
for two existing M2T transformations (Section 4).

2 Background: M2T Transformation

This section briefly summarises contemporary approaches to M2T transforma-
tions and the different types of incrementality that are needed for effective and
efficient M2T transformation.

The majority of contemporary M2T transformation languages use an app-
roach (Listing 1.1), in which M2T transformations comprise several modular
templates, whose structure closely resembles the generated text. Any portions
of generated text that vary over model elements are replaced with dynamic (exe-
cutable) sections, which are evaluated with respect to one or more source models.
Any portions of generated text that remain the same are termed static sections.
A M2T transformation normally comprises several templates, and co-ordination
logic that invokes each template on the relevant part of the source models.

1 Hello, [%= person.name %]!

Listing 1.1. A template-based M2T transformation, in EGL syntax, which contains
a static section (“Hello, ”), a dynamic section (that outputs the value of the name
attribute of a person model element) and another static section (“!”).

Property Access Traces for Source Incremental M2T Transformation 189

Incrementality in model transformation – and in general – seeks to react to
changes in an artefact (such as a model) in a manner that minimises the need for
redundant computations. For M2T transformation, three types of incrementality
have been identified: user edit-preserving incrementality, target incrementality,
and source incrementality [3]. User-edit preserving incrementality and target
incrementality are now widely supported, but source incrementality is not [5].
In this paper, we focus on source incrementality and argue that it is an essential
feature for providing scalable M2T transformation capabilities.

Source incrementality is the capability of a M2T transformation engine to
respond to changes in its source models in a way that minimises (and ideally
eliminates) the need for re-computations that will not eventually have an impact
on its output. Our intuition, which we investigate and assess in this paper, is that
achieving a high degree of source incrementality can significantly improve the
efficiency of complex transformations, especially when they operate on large or
complex source models (e.g., with many cross-references between model elements
and/or inter-dependencies between source models).

3 Property Access Traces

In this section, we propose property access traces, which contain concise and
precise information collected during the execution of a M2T transformation and
can be used to detect which templates need to be re-executed in response to a
set of changes in the input model(s). We demonstrate how property access traces
can provide comprehensive support for source incrementality for contemporary
template-based M2T transformation engines. In contrast to existing approaches
to source incremental model-to-text and model-to-model transformation, prop-
erty access traces do not rely on model differencing or static analysis (which can
be computationally expensive and imprecise).

This section provides an overview of using property access traces for source
incremental transformation, discusses the way in which existing template-based
M2T languages can be extended with support for property access traces, and
briefly describes a prototypical implementation of property access traces for the
EGL[4] M2T language.

3.1 Overview

To provide support for source incrementality, a transformation engine must
be capable of identifying the subset of the transformation that is sensitive to
changes in its input models (impact analysis), and re-executing the subset of the
transformation to update the target (change propagation). Performing accurate
impact analysis presents arguably the greatest challenge: in a template-based
M2T transformation, a template might be sensitive to some types of change to a
model element, but not to others. In the example presented in Figure 1, student
reports are generated by a template that, clearly, is sensitive to changes to the
name of a course (e.g., “SEPR” changes to “Software Project”), but not to the

190 B. Ogunyomi et al.

name of the lecturer (e.g., “Mary Johnson” changes to “Mary Johnson-Smith”),
similarly, changes to student names should not trigger re-generation of course
reports.

Property access traces, as discussed below, provide a lightweight but effec-
tive mechanism for recording an M2T transformation’s execution information
which can be then used to detect relevant changes in the source model, and
to determine which parts of the transformation need to be re-executed against
which model elements. When a transformation is first executed, property access
traces are captured and persisted in non-volatile storage. A property access trace
records which parts of the transformation access which parts of the source mod-
els. In subsequent executions of the transformation, the property access trace is
used to detect whether the source models have changed, and to re-execute only
those parts of the transformation that are affected by source model changes.
Determining which parts of the transformation to re-execute is possible because
we require that transformation templates have two characteristics: they must be
stateless and deterministic. A stateless template takes its data only from input
models, which means that the generated text is dependent only on data that
we can observe. A deterministic template is one which when executed twice on
the same input performs the same actions and produces the same output, which
means that we can always predict which parts of the input models the tem-
plate will access. Under these conditions, property accesses alone can be used
to determine whether or not a re-invocation of a template will produce a dif-
ferent output after the input models have been changed. A similar correctness
argument is made for the incremental model consistency checking approach in
[6].

3.2 Design

In order to demonstrate the feasibility of property access traces, we extend EGL
(the Epsilon Generation Language)[4]. EGL is a template-based M2T language.
EGX is an orchestration sub-language of EGL which provides mechanisms for
co-ordinating template execution.

Before discussing the details of implementing property access traces for EGL,
we first describe the way in which transformation execution is implemented in
the language (Figure 2). An M2T transformation in EGL is specified in the form
of an EGX program, which comprises a number of rules and EGL templates.
Typically, each rule will also contain a target, which is a specification of the
destination of the output of the transformation. In its simplest form, a rule
binds an EGL template to a metamodel type and executes the template for
each model element of the correct type. The transformation engine starts by
loading the input model(s), before executing the EGX program. Transformation
execution begins by evaluating each rule in the EGX program, to determine its
metamodel type, then invokes the associated Template on every model element
of its type1, and writes the output of executing the templates to files.

1 EGX rules also support guards which can further limit their applicability

Property Access Traces for Source Incremental M2T Transformation 191

(a) Model (b) Example output

Fig. 1. Artefacts for a M2T transformation that generates reports

Fig. 2. Overview of transformation execution using EGX

Consider, for example, the M2T transformation in Listing 1.2, which pro-
duces student transcripts and course reports of the forms shown on the right-
hand side of Figure 1. This EGX program comprises two transformation rules:
StudentToTranscript (lines 1 -5), CourseToReport (lines 7 -11). EGX passes each
object of type Student to the studentToTranscript.egl template (Listing 1.3) and
each object of type Course to the courseToReport.egl template (Listing 1.4).
Additionally, in each transformation rule, a target (filename) is defined, whose
value is determined at the transformation execution time.

In a typical M2T (batch) transformation engine, execution involves eval-
uating all templates against all instances of that context type every time a
transformation is executed. In a source incremental M2T transformation engine,
transformation execution involves identifying only the templates that need to be
re-evaluated to propagate changes from the source model to the generated text.
In other words, a source incremental M2T transformation engine identifies but,

192 B. Ogunyomi et al.

1 rule StudentToTranscript
2 transform aStudent : Student {
3 template : "studentToTranscript.egl"
4 target : aStudent.name + ".txt"
5 }
6

7 rule CourseToReport
8 transform aCourse : Course {
9 template : "courseToReport.egl"

10 target : aCourse.name + ".txt"
11 }

Listing 1.2. Example of an EGX M2T program applied to input model in Figure 1(a)

1 Student name : [%= aStudent.name %]
2 Course Grade
3 [% for(grade in aStudent.grades) { %]
4 [%= grade.course.name + " " + grade.mark %]
5 [% } %]

Listing 1.3. M2T template for generating student transcripts specified in EGL syntax

crucially, does not re-evaluate templates for which the generated text is known
from a previous invocation of the transformation.

3.2.1 Extending M2T transformation languages with Property Access
Traces. Implementation of property access traces involves extending the execu-
tion engine of a M2T language with four new concepts. Property access traces
comprise transformation information that is derived from model elements and
from the templates that are invoked on those model elements. During the exe-
cution of a template, a PropertyAccessRecorder captures the properties of the
accessed model elements. The recorded PropertyAccess(es) which make up a
PropertyAccessTrace are then persisted in non-volatile storage, a PropertyAc-
cessStore. Figure 3 illustrates the conceptual organisation of the information
contained in a PropertyAccessTrace.

– A PropertyAccess is a triple ¡e, p, v¿, where e is the unique identifier of
the model element, p is the name of the property, and v is the current value
of the property. The way in which model element identifiers are computed
varies, depending on the underlying modelling technology (e.g., XMI IDs or
relative paths for EMF XMI models). There are two types of property accesses
– AttributeAccesses and ReferenceAccesses – which vary in the type of value
that they store. AttributeAccesses store a string value and are used when the
property has a primitive type. ReferenceAccesses store the unique identifiers of
the referenced model elements and are used when the property is a reference.

– A PropertyAccessTrace (Figure 3) captures which transformation rules are
invoked on which source model elements and, moreover, which PropertyAc-
cesses resulted from each invocation of a transformation rule (a RuleInvoca-
tion) in Figure 3).

– A PropertyAccessRecorder is responsible for recording PropertyAccesses
during the execution of a template, and updating the PropertyAccesses when a

Property Access Traces for Source Incremental M2T Transformation 193

1 Course Report for [%= aCourse.name %]
2 Lecturer: [%= aCourse.lecturer %]
3

4 Number of students:[%= aCourse.grades.size() %]
5 Average mark:[%=aCourse.grades.collect(mark).sum()/aCourse.grades.size() %]

Listing 1.4. M2T template for generating course reports specified in EGL syntax

Fig. 3. Overview of Property Access Trace

change in the value of a PropertyAccess is detected. It is important to note that
since property access traces contains data about input model elements only,
any other type of change to the transformation specification is not considered
(See section 4.3 for a discussion on known limitations of this approach).

– A PropertyAccessStore is responsible for storing the PropertyAccesses
passed on to it by the PropertyAccessRecorder. The PropertyAccessStore is also
responsible for making PropertyAccesses (that were stored during a previous
transformation execution) available to the transformation engine. We use an
embedded RDBMS to store property accesses, but other options (e.g., graph
databases, XML documents, etc.) are also possible. A PropertyAccessStore
must be capable of persisting, in non-volatile storage, the property access trace
information between invocations of a M2T transformation. The main require-
ment for a PropertyAccessStore is performance: any gains achieved with a
source incremental engine might be negated if the PropertyAccessStore can-
not efficiently read and write property access traces.

We now briefly describe the way in which these concepts are used to achieve
source incremental transformation, before providing an example. During the ini-
tial execution of a transformation, the PropertyAccessRecorder creates Prop-
ertyAccesses from the properties of model elements that are accessed during the
execution of each rule. The collected PropertyAccesses are organised by RuleIn-
vocation by the transformation engine to form a PropertyAccessTrace and stored
by the PropertyAccessStore. At subsequent execution of the M2T transforma-
tion, the transformation engine retrieves the previous PropertyAccessTrace from
the PropertyAccessStore. Whenever the transformation engine would ordinarily
invoke a transformation rule, it instead retrieves each relevant PropertyAccess

194 B. Ogunyomi et al.

Fig. 4. A partial property access trace for executing studentToTranscript.egl on andy
and sally, and courseToReport.egl on sepr

from the PropertyAccessTrace and queries the model to determine if the value of
any of the PropertyAccesses has changed. Only when a value has changed is the
transformation rule invoked. The PropertyAccessTrace is updated and stored if
any values have changed.

3.2.2 Example. To further demonstrate the way in which property access traces
achieve source-incremental M2T transformation, we now consider an example.
Our example uses the transformation in Listings 1.3 and 1.4, which generate stu-
dent transcripts and course reports from a university model. Executing the trans-
formation on the simple university model in Figure 1(a) causes the transcript-
generating rule to be invoked once on each student, andy and sally, and the
course report-generating rule once on course sepr. As such, the resulting prop-
erty access trace comprises three rule invocation objects (Figure 4). Each rule
invocation object comprises several property accesses, which are recorded during
the execution of the templates in Listing 1.3 and 1.4.

Let us consider the properties accessed during the invocation of the tem-
plate on sally. The sallyTranscript rule invocation (Figure 5) comprises sev-
eral attribute and reference access objects and is constructed as follows. Firstly,
the template accesses sally.name (line 1 of Listing 1.3) and creates the aa1
attribute access (Figure 5). The template then accesses sally.grades (line
3) and this creates the ra1 reference access. The grade.course.name traversal
expression in the template (line 4) creates two property accesses: the ra2 ref-
erence access for grade.course and the aa2 attribute access for course.name.
Finally, the grade.mark expression (line 5) creates the aa3 attribute access.
The boxes with a dashed border in Figure 5 reinforce the relationship between
property access objects in the trace and the expressions in the template (List-
ing 1.3). Note that each property access stores a reference to the model element
from which its value was obtained.

Property Access Traces for Source Incremental M2T Transformation 195

Fig. 5. Expansion of the property access trace for the sallyTranscript rule invocation

When the M2T transformation is executed again, the transformation engine
retrieves the property access trace (including Figures 4 and 5) and queries the
parts of the model that were previously accessed by the transformation, such as
the name of each student. Only when the value of any property differs from the
value stored in a property access is the containing rule invocation re-executed.

For example, the sallyTranscript rule invocation (Figure 5) indicates that
if all of the following constraints hold, then the rule invocation need not be
re-executed:

1. sally.name == ‘‘Sally Graham’’ – due to aa1
2. sally.grades == {g2} – due to ra1
3. g2.course == sepr – due to ra2
4. sepr.name == ‘‘SEPR’’ – due to aa2
5. g2.mark == ‘‘42’’ – due to aa3

Suppose that Sally’s grade for the SEPR course is changed: the mark
attribute of g2 is changed from 42 to 54. Note that the aa3 attribute access
(highlighted in Figure 4) stores the old value for the mark, 42. When the trans-
formation is re-executed, condition #5 above will no longer hold: g2.mark will
now evaluate to 54. Consequently, the transformation engine will re-execute the
sallyTranscript rule invocation.

We have not shown the complete property access trace for the andyTranscript
rule invocation (due to space constraints), but it is very similar in structure
to the sallyTranscript rule invocation in Figure 5. The property accesses for
andyTranscript result in the following constraints:

1. andy.name == ‘‘Andy Brown’’
2. andy.grades == {g1}
3. g1.course == sepr

196 B. Ogunyomi et al.

4. sepr.name == ‘‘SEPR’’
5. g1.mark == ‘‘88’’

From these constraints, it is clear that the change to g2.mark does not
require a re-execution of the andyTranscript rule invocation as none of the con-
straints above depend on g2.mark. If, on the other hand, our change had been
to sepr.name rather than to g2.mark, then both of the sets of constraints shown
above would be unsatisfied and both the sallyTranscript and the andyTranscript
rule invocations would be re-executed.

In general, determining whether or not a rule invocation needs to be re-
executed requires the evaluation of O(n) constraints where n is the number of
property accesses for that rule invocation.

4 Evaluation and Experience Report

In this section we report on the results of the empirical evaluation of prop-
erty access traces, in which we compare the transformation execution times in
incremental and non-incremental modes for two existing transformations. The
results of our experiment show that source incremental transformations can be
more efficient than non-incremental transformations, particularly for frequent or
relatively small changes to models.

4.1 Empirical Evaluation

To assess the performance of property access traces, we used two existing EGL
transformations: Pongo and GraphitiX. We investigated whether property access
traces are effective when used for repeated invocations of code generation over
the lifetime of an MDE project (Pongo), and whether property access traces are
effective as the proportion of change in the input model increases (GraphitiX).
We also investigated the memory and disk usage of property access traces (Pongo
and GraphitiX) to ensure that resource usage is reasonable.

4.1.1 Pongo. Pongo2 generates data mapper layers for MongoDB, a non-
relational database. Pongo takes as input an Ecore model that describes the
types and properties of the objects to be stored in the database, and generates
Java code that can be used to interact with the database via the user-defined
types and properties (without needing to use the MongoDB API).

We compared the total time taken for incremental and non-incremental code
generation over the lifetime of a real MDE project. For this purpose we used
Pongo v0.5, and 11 versions of the GmfGraph Ecore model (obtained from the
Git repository3 of the GMF team). To simulate code generation activities in
the GMF project, we ran Pongo using non-incremental and incremental EGL on
each version of the GmfGraph Ecore model.
2 https://code.google.com/p/pongo/
3 https://git.eclipse.org/c/gmf-tooling

https://code.google.com/p/pongo/
https://git.eclipse.org/c/gmf-tooling

Property Access Traces for Source Incremental M2T Transformation 197

Table 1. Results of using non-incremental and incremental M2T transformation for
the Pongo M2T transformation, applied to 11 historical versions of the GMFGraph
Ecore model

Non-Incremental Incremental
Version Changes (#) Invocations (#) Time (s) Invocations (#) Time (s; %)

1.23 - 72 1.79 72 2.29 (128%)
1.24 1 73 1.72 6 0.93 (54%)
1.25 1 73 2.01 4 0.69 (34%)
1.26 1 74 2.03 6 0.66 (33%)
1.27 10 74 1.97 44 0.78 (40%)
1.28 10 74 1.95 44 0.67 (34%)
1.29 14 74 1.94 14 0.52 (27%)
1.30 24 77 2.02 41 0.70 (35%)
1.31 1 77 1.86 0 0.40 (22%)
1.32 1 77 1.95 0 0.38 (19%)
1.33 3 79 2.00 8 0.55 (28%)

Total 21.24 8.57 (40%)

The results (Table 1) show the difference in number of template invocations
and total execution time between non-incremental and incremental execution
modes of execution, for each of the 11 versions of the GmfGraph model. Expect-
edly, during the first invocation of the transformation (version 1.23) in incremen-
tal mode, the execution took slightly longer to execute than the non-incremental
mode because the former incurs an overhead as the transformation in addition to
evaluating templates, must record and process model element properties that are
accessed in each template. However, during subsequent executions of the trans-
formation, the incremental mode of execution required between 19% and 54% of
the execution time required by the non-incremental mode. In other words, dur-
ing the execution of the transformation on all versions of the GmfGraph project,
we observed upto an 81% reduction in total execution time. Although the overall
reduction in execution time (12.67s) is modest, that is partly explained by the
relatively small size of the Pongo transformation (6 EGL templates totalling 329
lines of code), and of the GmfGraph model (averaging 65 classes).

4.1.2GraphitiX. GraphitiX4 is a Java code generator forGraphiti-based graphi-
calmodel editors.GraphitiX takes as input annotatedEcoremodels, which contain
a description of the syntax of a domain-specific modelling language. GraphitiX (23
EGL templates totalling 1689 lines of code) is much larger than Pongo.

As such, we used GraphitiX to investigate whether property access traces are
effective as the proportion of change in the input model increases. In particular,
we sought to identify how large a change to the input model was necessary
in order for incremental transformation to become slower than non-incremental
transformation due to the overhead incurred in querying a property access trace.

For this purpose we used GraphitiX (Subversion revision 1) and a synthetic
Ecore model. We executed GraphitiX on the model, made a change to the model,

4 https://code.google.com/p/graphiti-x/

https://code.google.com/p/graphiti-x/

198 B. Ogunyomi et al.

Table 2. Results of using non-incremental and incremental M2T transformation for the
GraphitiX M2T transformation, applied to increasingly larger proportions of changes
to the source model

Non-Incremental Incremental
Changes (Elements #; %) Templ. Invocations (#) Time (s) Templ. Invocations (#; %) Time (s)

- 4014 14.13 4014 20.63
1 (0.1%) 4014 12.09 9 (0.22%) 7.85
5 (0.5%) 4014 14.44 25 (0.62%) 6.92
10 (1%) 4014 14.09 45 (1.12%) 7.59
20 (2%) 4014 13.86 85 (2.11%) 7.13
100 (10%) 4014 15.01 405 (10.09%) 8.60
300 (30%) 4014 14.83 1205 (30.01%) 11.35
600 (60%) 4014 14.30 2405 (59.92%) 16.30
700 (70%) 4014 14.44 2805 (69.88%) 18.50

and re-executed GraphitiX in incremental and non-incremental modes. We varied
the proportion of change made to the model. We changed the model by modifying
a subset of all classes (by renaming the class and one of its attributes). We chose
this type of modification because, as developers of GraphitiX, we knew that that
the transformation would be sensitive to these changes. Table 2 supports this
claim: the proportion of template invocations in incremental mode is roughly
the same as the proportion of change made to the model. In other words, we
selected this type of modification to avoid changing the model in a way that had
very little impact on the generated artefacts, or vice versa.

As shown in Table 2, our results suggest that source incremental transfor-
mation using property access traces requires less computation until a significant
proportion (threshold) of the input model is changed. In this case, that threshold
was reached when approximately 60% of the input model was changed (see the
highlighted row in Table 2). This corresponds to 1200 changes, as 2 changes were
applied to each changed model element. The threshold will be different for other
transformations, and will depend on factors such as: the amount of property
accesses in templates, and the complexity of model queries in the templates.

4.1.3 Memory and Disk Utilization. To demonstrate that our approach is
feasible with respect to resource usage, we investigated the memory and disk usage
of property access traces during our experiments with Pongo and GraphitiX.

With respect to memory usage, we observed that peak memory usage for
incremental EGL was slightly higher than for non-incremental EGL. For Pongo,
peak memory usage for incremental EGL was 102% of non-incremental EGL
(200.1Mb compared to 196.7Mb). For GraphitiX, peak memory usage for incre-
mental EGL was 110% of non-incremental EGL (480Mb compared to 436Mb).

With respect to disk usage, we observed that property access traces have
modest requirements particularly for a modern development machine: the aver-
age size of the property access trace on disk was 412Kb for Pongo and 6.9Mb for
GraphitiX. We have not yet optimised our implementation of property access
traces to reduce disk space usage.

It is important to note that the memory and disk usage will vary for different
transformations, depending on the size of the input model and in particular the
amount of property accesses made by the transformation.

Property Access Traces for Source Incremental M2T Transformation 199

4.2 Discussion

Our initial experiments indicate that the use of property access traces for provid-
ing source incrementality is promising: we have demonstrated that a reduction
in execution time is observed for realistic changes to a model (e.g., the changes
made to GmfGraph Ecore model). The results also indicate that source incremen-
tality using our approach is more efficient than non-incremental transformations
when frequent, small changes are made to a model throughout the lifetime of a
project.

The results of the experiments in our previous work[7], which used signatures
for source-incremental M2T transformation suggested that source incrementality
can be used to realize upto 45% performance gain in transformation execution
time. Property access traces offer a further 15% reduction in transformation
execution time. Overall, a 60% reduction in transformation execution time was
observed using property access traces.

It is important to note that the example M2T demonstrated in section 3.2.2
was simplified for brevity. The templates (in Listings 1.3 and 1.4) did not
contain model-querying statements such as, collection-filtering operations (e.g.,
Student.all.select(s|s.name == ‘‘Andy Brown’’)). However, as
discussed in [6] and in Section 3.1, the complexity of navigation expressions
(as long as they are deterministic) is irrelevant. The two M2T transformations
we used for evaluating our approach make extensive use of complex OCL-like
collection navigation and filtering operations.

Lastly, an incremental M2T transformation is correct if it results in the re-
generation of all the required files whose contents were affected by the change(s)
to the input model. To verify the correctness of the incremental execution of the
two transformations that we used in the evaluation of property access traces, we
performed tests which compared the output of the transformations in incremen-
tal mode with the output of the transformations in non-incremental mode. The
outcome of our tests indicate that the contents of the files generated in incre-
mental mode were always the same as the contents of the same files generated
in non-incremental mode.

4.3 Limitations of Property Access Traces

Property access traces exhibit some limitations. Some of these limitations relate
to our current implementation – and will be addressed in future work – whilst
some limitations are inherent to the approach.

Our current implementation of property access traces in EGL monitors
property accesses only during the execution of templates. However, property
access traces can become over-sensitive to changes to parameters contained
in unordered collections because it cannot distinguish between unordered and
ordered collections. Consider a template (e.g., [%= Student.grades.mark
%]) that only prints out the grades of a student, the PropertyAccessRecorder
records a property access of grades on Student, whose value is a collection of
Grades, and also records a property access of mark on each Grade in the collec-
tion Student.grades. If in a change event, a Grade is removed and re-added to the

200 B. Ogunyomi et al.

collection Student.grades, these modification operations will result in the same
set of Student.grades, albeit with a different order, since the re-added Grade is
inserted at the back of the collection. This will cause the template to be re-
executed unnecessarily. The order of collections are important for accurate com-
parison of modified structural features of a model element. Our current imple-
mentation does a string comparison of the values of property accesses recorded
from calls that return a collection of structural features, and cannot detect if
mere re-ordering of collections is a significant change event. Furthermore, our
current implementation does not record the accessing of all model elements of a
specific type (e.g. Student.allInstances().size()). We currently have a prototypi-
cal implementation that extends our PropertyAccessRecorder in order to record
accesses of allInstances nature.

Inherent limitations of the property access trace approach are that the use
of non-deterministic programming constructs (e.g., random number generators,
hash-sets, hash-maps) in a template prevent source incrementality (because the
template must always be invoked to compute an appropriate result), and that
property access traces can be pessimistic: it is conceivable that a template
might access a property but not use its value in the generated text (e.g., [%
if(aGrade.mark > 70) { //do-nothing } %]). In these cases, a prop-
erty access trace would result in an unnecessary re-execution of the template.

5 Related Work

Property access traces follow the model profiling method for model consistency
checking by Egyed [6]. However, our approach differs in the sense that property
access traces detect input model changes at runtime, while Egyed’s approach
assumes notifications of input model changes (e.g., from the modelling technol-
ogy). Our approach does not rely on the model editor or the underlying modelling
framework, hence it can be readily applied to a new version of an input model
to compute model changes, with respect to the transformation, as shown in the
running example (Section 3.2).

To the best of our knowledge, Xpand5 is the only contemporary M2T lan-
guage that supports source incremental transformation. Incremental generation
in Xpand uses a combination of trace links and model differencing techniques.
Difference models are used to determine changed subset of input models, and
trace links are used to specify how source model elements are mapped to gener-
ated files. Once the difference model is constructed, impact analysis is performed
to determine which changed model elements are used in which templates. A
template is re-executed if it consumes a model element that has changed. The
efficiency of the approach to incrementality employed by Xpand is heavily depen-
dent on the effectiveness of the underlying modelling framework in performing
model differencing. For instance, calculating model diffs between all the versions
of GmfGraph models used for the Pongo transformation took about 1.3 seconds

5 http://eclipse.org/modeling/m2t/?project=xpand

http://eclipse.org/modeling/m2t/?project=xpand

Property Access Traces for Source Incremental M2T Transformation 201

Fig. 6. Example representation of a M2T as M2M metamodel

(average) using EmfCompare which is the same tool that Xpand uses to com-
pute model diffs. This figure represents the time taken to perform only a part
of the computation done by Xpand’s incremental engine exceeds the time taken
to execute each Pongo transformation (see Table 1) all versions of the Gmf-
Graph model. As model differencing is integral to Xpand’s incremental method,
there is no need to conduct a full scale comparison of property access traces and
model differencing incremental approaches. Furthermore, performance can be
impaired because model differencing requires that (at least) two versions of the
input model, along with a diff model are loaded, which requires at least three
model traversals. This might also be impractical since access to the previous
version of the model is needed and may not be available. Property access traces
as explained in section 3 do not require model differencing and hence offer a
fundamentally different approach to source incrementality.

An M2T transformation could be expressed as an M2M transformation,
where the target metamodel resembles Figure 6. As such, a Turing-complete
incremental M2M language could be used to express incremental M2T transfor-
mations. Song et. al. use model differencing and static analysis to incrementally
execute QVTr transformations [8], and as such have the same limitations as
Xpand, discussed above. Additionally, static analysis can be too pessimistic to
be useful for incremental transformation as discussed in our previous work [7].
More generally, M2M languages may be limited in their ability to handle unique
features of M2T languages (e.g., handling protected regions, white spaces, escape
direction, etc.). There has been considerable work on incrementality for triple-
graph grammars – see [9] for a recent comparison – but TGGs are generally not
Turing-complete (although some do provide fallback mechanisms). Additional
research is needed to investigate whether the restricted capabilities of incremen-
tal TGGs are sufficient to implement complex model transformations.

6 Conclusion

Despite the potential productivity and portability gains of MDE, the inability of
MDE tools and techniques to support the building of large and complex systems
through processes that scale remains an open research challenge. In this paper,
we proposed property access traces, an approach to reducing the execution time
of M2T transformations in response to changes to source models. We have con-
tributed a design for extending M2T transformation languages with support for
property access traces, and demonstrated the feasibility of property access traces
through an empirical evaluation. We have shown that the potential performance

202 B. Ogunyomi et al.

gains of source incremental transformation via property access traces are sub-
stantial: we observed an average reduction in transformation execution time of
60%. Instead of computing model differences between versions of input models
as used by Xpand’s incremental transformation technique, property access traces
employs a technique that only requires the current state of a model, whose effi-
ciency also does not depend on the effectiveness of an underlying modelling
framework to calculate model diffs.

In future work, we will improve our implementation of property access traces
to address the limitations described in Section 4.3, after which we will extend our
empirical evaluation to investigate incrementality for larger and more compli-
cated M2T transformations (such as the INESS M2T transformation described
in Section 1).

Acknowledgments. This work was partially supported by the European Commis-
sion, through the Scalable Modelling and Model Management on the Cloud (MONDO)
FP7 STREP project (grant #611125). The motivating example discussed in this paper
was taken from Rose’s work on the INESS project, which was supported by the
European Commission and co-funded under the 7th Framework Programme (grant
#218575).

References

1. Mohagheghi, P., Fernandez, M.A., Martell, J.A., Fritzsche, M., Gilani, W.: MDE
adoption in industry: challenges and success criteria. In: Chaudron, M.R.V. (ed.)
MODELS 2008. LNCS, vol. 5421, pp. 54–59. Springer, Heidelberg (2009)

2. Kolovos, D., et al.: Scalability: the holy grail of model driven engineering. In:
ChaMDE 2008 Workshop Proceedings, pp. 10–14 (2008)

3. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches.
IBM Systems Journal 45(3), 621–645 (2006)

4. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A.C.: The epsilon generation
language. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008. LNCS,
vol. 5095, pp. 1–16. Springer, Heidelberg (2008)

5. Ogunyomi, B.: Incremental model-to-text transformation (qualifying dissertation).
Technical report (2013)

6. Egyed, A.: Automatically Detecting and Tracking Inconsistencies in Software Design
Models. IEEE Transactions on Software Engineering 37(2), 188–204 (2011)

7. Ogunyomi, B., Rose, L.M., Kolovos, D.S.: On the use of signatures for source
incremental model-to-text transformation. In: Dingel, J., Schulte, W., Ramos, I.,
Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp. 84–98. Springer,
Heidelberg (2014)

8. Song, H., Huang, G., Chauvel, F., Zhang, W., Sun, Y., Shao, W., Mei, H.: Instant
and incremental QVT transformation for runtime models. In: Whittle, J., Clark, T.,
Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 273–288. Springer, Heidelberg
(2011)

9. Leblebici, E., Anjorin, A., Schürr, A., Hildebrandt, S., Rieke, J., Greenyer, J.: A
comparison of incremental triple graph grammar tools. In: Electronic Communica-
tions of the EASST, vol. 67 (2014)

Author Index

Akehurst, David H. 171
Arshad, Numra 92

Barmpis, Konstantinos 137
Baudry, Benoit 45
Bendraou, Reda 62
Berardinelli, Luca 1
Bhalotia, Sunit 108
Bordbar, Behzad 171
Bousse, Erwan 45
Bruneliere, Hugo 62

Cabot, Jordi 62
Combemale, Benoit 45
Czarnecki, Krzysztof 154

de Lara, Juan 18
Desfray, Philippe 62
Devlin, Sam 75
Di Marco, Antinisca 1
Diskin, Zinovy 154

Garcia, Jokin 62
Guerra, Esther 18

Hebig, Regina 62

Iqbal, Muhammad Zohaib 33, 92

Jahanbanifar, Azadeh 125

Khan, Muhammad Uzair 33, 92
Khelladi, Djamel Eddine 62
Khendek, Ferhat 125
Kienzle, Jörg 108
Kolovos, Dimitrios S. 75, 137, 187

Maibaum, Tom 154
Matragkas, Nicholas 75
Mayerhofer, Tanja 45

Nikolov, Nikolay 18

Ogunyomi, Babajide 187

Pace, Stefano 1
Paige, Richard F. 75
Pomante, Luigi 1

Rose, Louis M. 187
Rossini, Alessandro 18

Safdar, Safdar Aqeel 33
Saxon, John T. 171
Shah, Seyyed 137

Tiberti, Walter 1
Toeroe, Maria 125

Umar, Hafsa 92

Zolotas, Athanasios 75

	Foreword
	Preface
	Organization
	Contents
	Energy Consumption Analysis and Design of Energy-Aware WSN Agents in fUML
	1 Introduction
	2 Agilla v2.0: Energy-Aware Middleware
	3 Energy Consumption Measurements of Agilla Instructions
	3.1 Battery Behavior Analysis

	4 Case Study
	5 The Agilla Modeling Framework
	5.1 The Foundational UML and AMF Design Choices

	6 Energy Consumption Analysis
	7 Related Work
	8 Discussion
	9 Conclusion
	References

	A Comparison of Two-Level and Multi-level Modelling for Cloud-Based Applications
	1 Introduction
	2 CloudMF
	2.1 CloudML
	2.2 Models@run-time

	3 Case Study
	4 Two-Level Approach
	5 Multi-level Approach
	6 Comparison
	7 Related Work
	8 Conclusions and Future Work
	References

	Empirical Evaluation of UML Modeling Tools–A Controlled Experiment

	1 Introduction
	2 Related Work
	3 Experiment’s Planning
	3.1 Goals, Research Questions, and Hypotheses
	3.2 Participants
	3.3 Experiment Material
	3.4 Independent/Dependent Variables
	3.5 Experiment Design
	3.6 Training
	3.7 Selection of Statistical Tests

	4 Results and Analysis
	4.1 Completeness
	4.2 Effort Required for Modeling
	4.3 Learnability
	4.4 Memory Load

	5 Discussion
	6 Threats to Validity
	7 Conclusion
	�References

	A Generative Approach to Define Rich Domain-Specific Trace Metamodels
	1 Introduction
	2 Motivation and Problem Statement
	2.1 Requirements for a Trace Metamodel
	2.2 From Generic to Rich Domain-Specific Trace Metamodels

	3 From Executable Metamodeling to Execution Traces
	3.1 Executable Metamodeling
	3.2 Execution Trace

	4 Generating Rich Domain-Specific Trace Metamodels
	4.1 Observations and Challenges
	4.2 Trace Metamodel Generation
	4.3 Resulting Benefits
	4.4 Implementation

	5 Evaluation
	5.1 Semantic Differencing
	5.2 Case Study
	5.3 Results

	6 Related Work
	7 Conclusion and Perspectives
	References

	On Lightweight Metamodel Extension to Support Modeling Tools Agility
	1 Introduction
	2 Motivation and Industrial Background
	3 Defining Metamodel Extensions
	3.1 Terminology and Definitions
	3.2 A Base Set of Metamodel Extension Operators
	3.3 A Textual DSL for Metamodel Extension

	4 Architecture of a Metamodel Extension Mechanism
	4.1 Expected Characteristics
	4.2 An Eclipse/EMF Implementation

	5 An Alternative Compliant Solution
	6 Related Work
	7 Conclusion
	References

	Type Inference in Flexible Model-Driven Engineering
	1 Introduction
	2 Related Work
	3 Background: Muddles
	3.1 Overview
	3.2 Example

	4 Type Inference Approach
	4.1 Model Analysis and Feature Selection
	4.2 Training and Classification

	5 Experiment
	6 Results and Discussion
	6.1 Quantitative Analysis
	6.2 Qualitative Analysis
	6.3 Threats to Validity

	7 Conclusions and Future Work
	References

	AspectOCL: Extending OCL for Crosscutting Constraints
	1 Introduction
	2 Related Work
	3 AspectOCL
	3.1 Language Constructs
	3.2 Defining a Crosscutting Constraint as an Aspect in AspectOCL
	3.3 Writing and Weaving Crosscutting Constraints in OCL

	4 Case Study
	4.1 Description of Case Study
	4.2 Application of AspectOCL
	4.3 Limitations

	5 Conclusion
	Appendix
	References

	Reusable Model Interfaces with Instantiation Cardinalities
	1 Introduction
	2 Background
	2.1 Interfaces
	2.2 Aspect-Oriented Modelling
	2.3 Instantiation Ambiguities

	3 Instantiation Cardinalities
	4 Weaver Considerations
	4.1 Automated Call Forwarding

	5 Design Patterns Revisited
	5.1 Composite
	5.2 Abstract Factory

	6 Related Work
	7 Conclusion
	References

	A Model-Based Approach for the Integration of Configuration Fragments
	1 Introduction
	2 SA Forum Middleware for Service High Availability
	2.1 Availability Management Framework (AMF)
	2.2 Platform Management (PLM)
	2.3 Overlapping Elements in Multiple Configurations

	3 Generation of System Configuration through Weaving
	3.1 The Relation between the AMF and PLM Configurations
	3.2 Extending the Generic Weaving Metamodel
	3.3 Creating the Links in the Weaving Model and Transformation Generation

	4 Implementation and Discussion
	5 Related Work
	6 Conclusion
	References

	Towards Incremental Updates in Large-Scale Model Indexes
	1 Introduction
	2 Background
	2.1 Model Indexing
	2.2 Hawk
	2.3 Updating Model Indexes

	3 Updates in Hawk
	3.1 Overview of Hawk Updates
	3.2 Signature Calculation
	3.3 Naive Insertion
	3.4 Incremental Updating
	3.5 Derived Attributes
	3.6 Updating of Derived Attributes

	4 Evaluation
	4.1 The GraBaTs 2009 Case Study
	4.2 Execution Environment
	4.3 Model Manipulation
	4.4 Model Update Execution Time
	4.5 Derived Attribute Update Execution Time
	4.6 Threats to Validity

	5 Related Work
	6 Conclusions and Further Work
	References

	A Model Management Imperative: Being Graphical Is Not Sufficient, You Have to Be Categorical
	1 Introduction
	2 Model Merge and Colimit
	2.1 Getting Started: Simple Match and Merge
	2.2 Complex Match and Merge via Derived Transitions
	2.3 Non-injective Match and Merge

	3 Parallel Composition and Limits
	4 LTSs: From Graphs to Categories to Enriched Categories
	4.1 Labeling as a Functor
	4.2 Model Management for LTSs
	4.3 Parallel Composition of Transitions

	5 Observations, Discussions, Future and Related Work
	6 Conclusion
	References

	Opening the Black-Box of Model Transformation
	1 Introduction
	2 Preliminaries
	2.1 Model Transformation Frameworks
	2.2 SiTra

	3 Traceability within Model Transformation
	4 Challenges of Tracing in Model Transformation
	4.1 Orphans
	4.2 Ordering of Rule Execution
	4.3 Rule Dependencies

	5 Sketch of the Solution
	6 SiTra
	6.1 Capturing Rule and Transformation Dependencies
	6.2 A Dynamic Proxy to Catch Orphans

	7 Case Study
	7.1 Catching Orphans
	7.2 The Nested Nature of Model-to-Model Transformation
	7.3 Deriving Rule Dependencies

	8 Epsilon Transformation Language
	9 Related Work
	10 Conclusion
	References

	Property Access Traces for Source Incremental Model-to-Text Transformation
	1 Introduction
	2 Background: M2T Transformation
	3 Property Access Traces
	3.1 Overview
	3.2 Design

	4 Evaluation and Experience Report
	4.1 Empirical Evaluation
	4.2 Discussion
	4.3 Limitations of Property Access Traces

	5 Related Work
	6 Conclusion
	References

	Author Index

