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Abstract. In this paper we introduce additional control structures for
reconfigurable Petri nets. The main contributions are inhibitor arcs and
transition priorities for reconfigurable Petri nets. The first ensure that
a marking can inhibit the firing of a transition. Inhibitor arcs allow a
transition to fire only if the adjacent place is empty. Transition priori-
ties are given by an order of transitions and restrict the firing as well.
A transition may fire only if it has the highest priority of all enabled tran-
sitions. Both concepts are compatible with reconfigurable Petri nets. In
this paper we prove that place/transitions nets with inhibitor arcs and
with transition priorities yield M-adhesive categories. Hence, we obtain
the well-known results for M-adhesive categories. Moreover, we state the
extension of our results to other types of Petri nets.

We illustrate the new concepts within an ongoing case study concern-
ing travel agencies. This study deals with the organisation of processes
that are constantly suspended by others. The main focus of the case study
is to investigate the possibilities of small and medium travel agencies to
provide a continuous service for their customers while travelling.

Keywords: Reconfigurable Petri nets · Category of partially ordered
sets · Inhibitor arcs · Transition priorities · M-adhesive transformation
system

1 Introduction

Reconfigurable Petri nets consist of a Petri net with a marking and a set of
rules whose application modifies the net’s structure at runtime. Typical applica-
tion areas are concerned with the modelling of dynamic structures, for example
workflows in a dynamic infrastructure. They can be considered to be a family of
formal modelling techniques based on different types of Petri nets (for example in
[11,12,16,20,26]). Their motivation is the observation that in increasingly many
application areas the underlying system has to be dynamic in a structural sense.
Complex coordination and structural adaptation at run-time (e.g. mobile ad-hoc
networks, communication spaces, ubiquitous computing) are main features that
need to be modelled adequately. The distinction between the net behaviour and
the dynamic change of its net structure is the characteristic feature that makes
reconfigurable Petri nets so suitable for systems with dynamic structures.
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In a motivating example (see Sect. 3) the two possibilities of modelling change
are used for separating common processes from additional processes being intro-
duced for special purposes. The main problem is the best order of the assignment
of pending tasks to the employees. In this case study we found that the use of
transition priorities is really helpful. Reconfigurable Petri nets are given as a
transformation system, that is formulated in terms of category theory, so called
M-adhesive transformation systems. Transition priorities are easy to define but
they are difficult to integrate into M-adhesive categories. In Sect. 5 we investi-
gate the category of partial orders, prove it to be an M-adhesive category and
obtain by comma category constructions the intended category of PT nets with
transition priorities. Inhibitor arcs can be achieved by a straightforward exten-
sion of Petri nets, so they are presented in brief. Since we use algebraic high-level
nets in the case study, we discuss the transfer of results for PT nets to other
kinds of Petri nets.

The paper is organized as follows: First we summarize reconfigurable
place/transition (PT) nets (see Sect. 2). Then an example is presented in Sect. 3
motivating the addition of transition priorities. A short review of M-adhesive
transformation systems is given in Sect. 4. Subsequently, Sect. 5 extends the tran-
sitions with a partial order, describing the priorities between the transitions. We
employ the category of partial orders PoSets and obtain an M-adhesive cate-
gory of PT nets with transition priorities. Then (in Sect. 6) we add inhibitor arcs
to PT nets and show that they yield an M-adhesive category as well. Related
work concerns other kinds of control structures for reconfigurable Petri nets (see
Sect. 7) and we close with some remarks on future work.

2 Reconfigurable Petri Nets

In this section we introduce reconfigurable Petri nets, where the main focus is
on place/transition nets, but other types of Petri nets are discussed as well.

2.1 Reconfigurable Place/Transition Nets

In the algebraic approach to Petri nets a (marked) place/transition net is given
by N = (P, T, pre, post,M0) with pre- and post-domain functions pre, post : T →
P⊕ and an initial marking M0 ∈ P⊕, where P⊕ is the free commutative monoid
over the set P of places. For M1,M2 ∈ P⊕ we have M1 ≤ M2 if M1(p) ≤ M2(p)
for all p ∈ P . A transition t ∈ T is M -enabled for a marking M ∈ P⊕ if
we have pre(t) ≤ M , and in this case the follower marking M ′ is given by
M ′ = M � pre(t) ⊕ post(t) and M [t〉M ′ is called firing step.

Net morphisms map places to places and transitions to transitions. They
are given as a pair of mappings for the places and the transitions, so that
the net structure is preserved. Given two (PT) place/transition nets Ni =
(Pi, Ti, prei, posti,Mi) for i ∈ {1, 2} a net morphism f : N1 → N2 is defined
by f = (fP : P1 → P2, fT : T1 → T2), so that the following equations hold:
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1. pre2 ◦ fT = f⊕
P ◦ pre1 and post2 ◦ fT = f⊕

P ◦ post1
2. M1(p) ≤ M2(fP (p)) for all p ∈ P1

Moreover, the morphism f is called strict if both fP and fT are injective and
M1(p) = M2(fP (p)) holds for all p ∈ P1. PT nets together with net morphisms
comprise the category PT.

M-adhesive transformation systems (see Sect. 4) can be considered as a uni-
fying framework for graph and Petri net transformations providing enough struc-
ture that most notions and results from algebraic graph transformation systems
are available, as results on parallelism and concurrency of rules and transforma-
tions, results on negative application conditions and constraints, and many more
results (see [7,8]). A rule in the DPO approach is given by three nets called left
hand side L, interface K and right hand side R, respectively, and a span of two
strict net morphisms K → L and K → R.

Additionally, an occurrence morphism o : L → N is required that identifies
the relevant parts of the left hand side in the given net N . Then a transformation

step N
(r,o)
=⇒ M via rule r can be constructed in two steps. Given a rule with an

occurrence o : L → N the gluing conditions have to be satisfied in order to
apply a rule at a given occurrence . These conditions ensure the result is again
a well-defined net. It is a sufficient condition for the existence and uniqueness
of the so-called pushout complement which is needed for the first step in a
transformation.

Fig. 1. Transformation of a net

In this case, we obtain a net M leading to

a direct transformation N
(r,o)
=⇒ M consisting of

the following pushouts (1) and (2) in Fig. 1. This
construction as well as a huge amount of notion
and results are available since PT nets can be
proven to be an M-adhesive transformation cat-
egory (see [7]). Hence we can combine one net
together with a set of rules leading to reconfigurable PT nets.

Definition 1 (Reconfigurable PT Nets). A reconfigurable PT net RN =
(N,R) is given by a PT net N and a set of rules R.

2.2 Other Types of Reconfigurable Petri Nets

Decorated place/transition nets [22] extend PT nets. They are the basis for the
tool ReConNet[6] and provide additional decorations for PT nets: capacities,
names for places as well as transitions and additional transition labels that can be
changed by firing that transition. This last concept allows a better coordination of
transition firing and rule application, for example to ensure that a transition has
fired (repeatedly) before a transformation step may take place. This extension is
conservative with respect to PT nets as it does not change the net behaviour, but
it is crucial for the application of the rules and provides the possibility to control
the application of rules. Decorated PT nets together with net morphisms, which
additionally preserve the decorations, yield the category decoPT.
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Algebraic high-level (AHL) nets (as used in Sect. 3) extend PT nets by
allowing net inscriptions with terms over a given signature Σ and by inter-
preting tokens as data elements over a Σ-algebra. An AHL net AN =
(Σ,P, T, pre, post, cond, type,A,M0) consists of

– an algebraic signature Σ = (S,OP,X) with additional variables X,
– a set of places P and a set of transitions T ;
– pre- and post domain functions pre, post : T → (TΣ(X) ⊗ P )⊕;
– firing conditions cond : T → Pfin(Eqns(Σ;X));
– a type of places type : P → S;
– a (Σ,E)-algebra A and
– a marking M0 ∈ (A ⊗ P )⊕,

where TΣ(X) is the set of terms with variables over X, (TΣ(X) ⊗ P ) =
{(term, p)|term ∈ TΣ(X)type(p), p ∈ P}, (A ⊗ P ) = {(a, p)|a ∈ Atype(p), p ∈
P} and Eqns(Σ;X) are all equations over the signature Σ with variables X.
An AHL-net morphism f : AN1 → AN2 is given by f = (fP , fT ) with functions
fP : P1 → P2 and fT : T1 → T2 satisfying

(1) (id ⊗ fP )⊕ ◦ pre1 = pre2 ◦ fT and (id ⊗ fP )⊕ ◦ post1 = post2 ◦ fT ,
(2) cond2 ◦ fT = cond1 and
(3) type2 ◦ fP = type1.

and leads to the category defined by AHL nets and AHL net morphisms, denoted
by AHL.

3 Motivating Example

In this section we give a motivating example taken from a case study concerning
workflows in a small travel agency.

The increasing possibilities of the internet to plan journeys and to buy travel
product has led to a severe decline of the market for travel agencies. In Germany
there are about 9.729 travel agencies in 2013, down from 13.753 in 2004 (see [29]).
Today one of the buzz words in the travel and tourism industry is personalized
traveller journey. The main focus of the major computer reservations systems
companies, also known as global distribution systems (e.g., Galileo, Amadeus,
SABRE) shifts to delivering continually and consistently the products and ser-
vices directly to customers. Due to technological change and the demand for
more personalization many global distribution systems increasingly sell prod-
ucts to travellers directly (see e.g. [31]). This tendency is a further threat for
small and medium travel agencies. Our case study aims at supporting small and
medium travel agencies to provide direct and instantaneous personal support of
their customers. So, they can compete against larger companies by providing
truly personal support. This results in complex and suspended processes for the
employees of the travel agency, the travel agents.
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We investigate the actual processes and model them as algebraic high-level
nets. In Fig. 2 a reduced example is given. The additional tasks that arise through
the new task of personal support of travelling customers are modelled by rules
(see Fig. 3) that suspend the actual process and implement the new tasks. In
Fig. 2 an algebraic high-level (AHL) net is given, that illustrates some of the
tasks of the travel agents. The signature and the algebra are merely hinted at
and deliver the inscriptions and the data elements used in the net. The net
inscriptions comprise sorts that determine the type of the tokens in a place,
arc inscriptions with terms and firing conditions given as equations in the left
bottom of the transition box. The tokens are data elements of the algebra. A
travel agent’s role is to help customers plan, choose and arrange their travel. In
our case study the main focus is the advising of customers. This can be done via
phone, email or directly when the customer is in the agency’s office. In principle
the travel agent is either in direct contact with the customer or is concerned with

Fig. 2. Simplified model of processes in the travel agency
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tasks as booking options, confirmation by the customer, travel confirmation,
ticket issuing, ticket delivery to customers, filing, updating customer payments,
accounting organizers payment, and so on. If the agent is idle there are clear
priorities, the customer in the agency is served first, then the phone queue and
subsequently the email requests (not illustrated in Fig. 2) are processed, and
at last the tasks without customer contact are taken up. This order of tasks is
modelled by the transitions (the boxes in Fig. 2) and their priorities (the number
in the right bottom of the transition box). Since not all transitions are provided
with priorities, those without are not considered for the prioritisation.

The signature of an AHL net provides the syntax for the net inscriptions,
i.e., sorts, terms and equations. The signature TA is sketched here by
TA = Queue + Customer + TravelData+
sorts : TravelAgent, TAwithC, . . .
opns : ( , ) : TravelAgent × Customer → TAwithC

...
The TA-algebra A = (ATravelAgent, ACustomer, . . .) consists of sets and opera-
tions according to the signature:

– ATravelAgent = {Jens,Geli, Jamaine, Torsten, . . .},
– ACustomer the set of all customers and so on. . .

(a) Inserting personal support process (b) Inserting queue for personal support

Fig. 3. Exemplary rules
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This AHL net models essentially the processes that occur without the additional
tasks of supporting travelling customers. The following rules model the insertion
of processes that deal with handling the interruption by a VIP-customer that is
dealt on demand. Nevertheless, the process of advising customers in person or
by phone, cannot be suspended. Hence, the rules can only be applied to places
that are not typed with the sort TAwithC. In Fig. 3 two exemplary rules are
given, where parts of the negative application conditions NAC are omitted. The
rule in Fig. 3(a) models the insertion of the personal support process for the first
customer. The rule in Fig. 3(b) models the insertion of a queue for processing
the personal support. In both cases a transition is inserted into the AHL with a
higher priority than the other transitions in the net.

4 Review of M-Adhesive Transformation Systems

The theory of M-adhesive transformation systems1 has been developed as an
abstract framework for different types of graph and Petri net transformation sys-
tems [7,10]. They have been instantiated with various graphs, e.g., hypergraphs,
attributed and typed graphs, but also with structures, algebraic specifications
and various Petri net classes, as elementary nets, place/transition nets, Col-
ored Petri nets, or algebraic high-level nets [7]. The fundamental construct for
M-adhesive categories and systems are M-van Kampen squares [10,18]2

Definition 2 (M-Van Kampen square). A pushout (1) with m ∈ M is an
M-van Kampen square, if for any commutative cube (2) with (1) in the bottom
the back faces being pullbacks, the following holds: the top is pushout ⇔ the front
faces are pullbacks.

A m∈M ��

f

��

B

g

��
C n �� D

(1)

A′

a

��

f ′�����

������� m′
��

����
C ′

c

��

n′
��

����
B′

b

��

g′��

����������

D′

d

��

A

f��������

����
m

���

�����
C

n
���

�����
B

g�����

�������
D

(2)
M-adhesive transformation systems can be seen as an abstract transformation
systems in the double pushout approach based on M-adhesive categories [10].

Definition 3 (M-Adhesive Category). A class M of monomorphisms in C
is called PO-PB compatible, if
1 See page 2 in [9] for the relation to other types of HLR systems.
2 For a discussion of the various adhesive categories see page 6 in [9].
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1. Pushouts along M-morphisms exist and M is stable under pushouts.
2. Pullbacks along M-morphisms exist and M is stable under pullbacks.
3. M contains all identities and is closed under composition.

Given a PO-PB compatible class M of monomorphisms in C, then (C,M) is
called M-adhesive category, if pushouts along M-morphisms are M-Van Kam-
pen squares (see Definition 2). An M-adhesive transformation system AHS =
(C,M, P ) consists of an M-adhesive category (C,M) and a set of rules P .

Remark 1. The following kinds of Petri nets yield M-adhesive categories:

– PT nets and morphisms as given in Sect. 2 yield an M-adhesive category PT
(see [7]).

– Algebraic high-level nets as given in Sect. 2 have been shown in [25] to be an
M-adhesive category AHL for M being the class of strict morphisms3.

– In [22] it is shown that decorated place/transition nets yield an M-adhesive
transformation category decoPT for M being the corresponding class of strict
morphisms.

5 Transition Priorities

The set of transitions T is equipped with a partial order ≤ on the transitions.
A transition t is enabled under a marking M , if pre(t) ≥ M and if there is no
t′ being enabled under M so that t ≤ t′. As we have discussed in Sect. 3 this
allows using priorities only for a subset of transitions and extends the original
approach [2] to transition priorities.

We first need to investigate the category PoSets of partially ordered sets.
Note, it is not a partial order considered to be a category, but the category of
all partial orders with order-preserving maps as morphisms. In [5] this category
has been examined thoroughly.

Definition 4 (Category PoSets). The objects are partially ordered sets, given
by a set P and a partial order ≤ over P . The morphisms in this category are
order-preserving maps, that are maps f : P1 → P2 preserving the order, so x ≤ y
implies f(x) ≤ f(y).

Composition and identity are defined as for sets and are both order-preserving,
so PoSets is indeed a category [5]. The relation to the category of sets can be
given by an adjunction.

Lemma 1 (Adjunction between Sets and PoSets). The left adjoint func-

tor F : Sets → PoSets is given by F (S
f→ S′) = (S, IDS)

f→ (S′, IDS′)
where IDS is the identity relation over a set S. The right adjoint functor
G : PoSets → Sets is defined by G((P,≤P )

g→ (P ′,≤P ′)) = P
g→ P ′.

3 In [25] they are called AHL-systems with morphisms that are isomorphisms on the
algebra part.
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The counit is the natural transformation ε : F ◦ G → 1PoSets with εM = idM

an order-preserving map. The unit is the natural transformation η : 1Sets →
G ◦ F with ηM = idM .

Proof. Obviously, since the composition of identities leads to the identity with
εF (S) ◦ F (ηS) = idF (S) ◦ F (idS) = idF (S) and G(ε(S,R)) ◦ ηG(S,R) = idG(S,R) ◦
idG(S,R) = idG(S,R).

So, we know that F preserves colimits ans G preserves limits. As pushouts are
the most prominent construction in the DPO approach, we prove finite cocom-
pleteness by existence of initial objects and pushouts.

Lemma 2 (Initial Object and Pushouts in PoSets).

1. The initial object is (∅, ∅).

2. Given the span (P1,≤1)
f← (P0,≤0)

g→ (P2,≤2), then there exists the pushout

(P1,≤1)
g′
→ (P3,≤3)

f ′
← (P2,≤2).

Proof. 1. The initial object is (∅, ∅) as there is the empty mapping to each
partially ordered set in PoSets and it is order preserving.

2. For (P1,≤1)
f← (P0,≤0)

g→ (P2,≤2) there is in Sets the span P1
f← P0

g→ P2

and its pushout P1
g→ P3

f← P2, see pushout (PO) in Diagram 4 and the
relation R3 ⊆ P3 × P3 with

(x3, y3) ∈R3 if and only if
∃x1, y1 ∈ P1 : g(x1) = x3 ∧ g(y1) = y3 ∧ x1 ≤1 y1 (3)

∨ ∃x2, y2 ∈ P2 : f(x2) = x3 ∧ f(y2) = y3 ∧ x2 ≤2 y2

Since R3 is not a partial order4, we define the relation R3 to be the equiva-
lence closure of all symmetric pairs {(x3, y3) | (x3, y3), (y3, x3) ∈ R3} ⊆ R3.
Then we have the quotient P3 = P3|R3

with g′ := [ ] ◦ g : P1 → P3 and
f ′ := [ ] ◦ f : P2 → P3, where [ ] : P3 → P3|R3

= P3 is the natural function
mapping each element of P3 to its equivalence class.
The relation ≤3 is the transitive closure of
{(x3, y3) |

x1 ≤1 y1 for g′(x1) = x3 and g′(y1) = y3
or
x2 ≤2 y2 for f ′(x2) = x3 and f ′(y2) = y3}

≤3 is a partial order, as it is reflexive, antisymmetric and transitive and f ′

and g′ are order-preserving maps by construction.

4 For example, let P0 = {0, 5} and P1 = {0, 3, 5} with f the inclusion and P2 = {•},
then 3 ≤1 5 yields ([3], [•]) ∈ R3 and 0 ≤1 3 yields ([•], [3]) ∈ R3, but [•] = {0, 5} �=
{3} = [3].
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Subsequently we prove that (P1,≤1)
g′
→ (P3,≤3)

f ′
← (P2,≤2) is the pushout of

(P1,≤1)
f← (P0,≤0)

g→ (P2,≤2) in the category of partially ordered sets PoSets:

Obviously g′ ◦ f = f ′ ◦ g.
Given a partially ordered set
(P4,≤4) with g′′ ◦ f = f ′′ ◦ g in
PoSets, then we have h : P3 → P4

in Sets due to the pushout (PO)
in the diagram to the right. So, we
define h : P3 → P4 with h([x]) =
h(x).
To prove that h is well-defined we
show h([x3]) = h([y3]) with x3 �= y3
and with [y3] = [x3]. Since [y3] =
[x3] and x3 �= y3 there is (x3, y3) ∈
R3 and so (x3, y3) ∈ R3 and (y3, x3) ∈ R3. Due to the definition of R3 there are
four cases:

P0
f ��

g

��
(PO)

P1

g

��

g′:=[ ]◦g

��

g′′

��

P2
f

��

f ′:=[ ]◦f

��

f ′′

��

P3 [ ] ��

h
�������

		�������

P3

h



�
��

��
��

�

P4

(4)

1. ∃x1, y1 ∈ P1 : x1 ≤1 y1 ∧ g(x1) = x3 ∧ g(y1) = y3
∧ ∃x2, y2 ∈ P2 : y2 ≤2 x2 ∧ f(x2) = x3 ∧ f(y2) = y3:
Then we have g′′(x1) = h◦g(x1) = h◦f(x2) = f ′′(x2) and g′′(y1) = h◦g(y1) =
h ◦ f(y2) = f ′′(y2). This yields g′′(x1) ≤4 g′′(y1) and g′′(y1) = f ′′(y2) ≥4

f ′′(x2) = g′′(x1). Since ≤4 is a antisymmetric we have g′′(x1) = g′′(y1).
Hence, we have h([x3]) = h(x3) = h ◦ g(x1) = g′′(x1) = g′′(y1) = h ◦ g(y1) =
h(y3) = h([y3]).

2. ∃x1, y1 ∈ P1 : y1 ≤1 x1 ∧ g(x1) = x3 ∧ g(y1) = y3
∧ ∃x2, y2 ∈ P2 : x2 ≤2 y2 ∧ f(x2) = x3 ∧ f(y2) = y3 analogously.

3. ∃x1, y1 ∈ P1 : x1 ≤1 y1 ∧ g(x1) = x3 ∧ g(y1) = y3
∧ ∃x′

1, y
′
1 ∈ P1 : y′

1 ≤1 x′
1 ∧ g(x′

1) = x3 ∧ g(y′
1) = y3:

So, we have g(x1) = x3 = g(x′
1) and g(y1) = y3 = g(y′

1). and x1 ≤1 y1 and
y′
1 ≤1 x′

1. This yields g′′(x1) ≤4 g′′(y1) and g′′(y1) = g′′(y′
1) ≤4 g′′(x′

1) =
g′′(x1). Since ≤4 is a antisymmetric we have g′′(x1) = g′′(y1). Hence, we have
h([x3]) = h(x3) = h ◦ g(x1) = g′′(x1) = g′′(y1) = h ◦ g(y1) = h(y3) = h([y3]).

4. ∃x2, y2 ∈ P2 : x2 ≤2 y2 ∧ f(x2) = x3 ∧ f(y2) = y3
∧ ∃x′

2, y
′
2 ∈ P2 : y′

2 ≤2 x′
2 ∧ f(x′

2) = x3 ∧ f(y′
2) = y3 analogously.

Moreover, h ◦ g′ = h ◦ [ ] ◦ g = h ◦ g = g′′ and h ◦ f ′ = h ◦ [ ] ◦ f = h ◦ f = f ′′.

Next we introduce the subclass of monomorphisms M. Monomorphisms in
PoSets are the injective order preserving maps [5] and order embeddings – those
mappings that satisfy item 1 in Definition 5 – are regular monomorphisms [5].

Definition 5 (Class M). The class M is given by the class of strict order
embeddings, that are order preserving mappings f : (P,≤P ) → (P ′,≤P ′) that
additionally are

1. order reflecting: x ≤P y if and only if f(x) ≤P ′ f(y) for x, y ∈ P
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2. and order strict: for each z′ ∈ P ′ with f(x) ≤P ′ z′ ≤P ′ f(y) there exists some
z ∈ P with f(z) = z′ (and hence x ≤P z ≤P y).

Class M leads to pushouts that are constructed the same way as in the category
Sets, hence the right adjoint functor G : PoSets → Sets preserves pushouts.

Lemma 3 (M-Pushouts in PoSets). Given (P1,≤1)
f← (P0,≤0)

g→ (P2,≤2)

with f ∈ M then there is the pushout (P1,≤1)
g′
→ (P3,≤3)

f ′
← (P2,≤2), such that

in Sets P1
g′
→ P3

f ′
← P2 is the pushout of P1

f← P0
g→ P2.

Moreover, M is stable under pushouts.

Proof. Obviously, the construction of R3 in the proof of Lemma2 yields for
f ∈ M that R3 = ID the identity relation. Hence , P3 = P3|R3

= P3.
Moreover, it is M-stable:
For f ∈ M in Diagram 4 we know that f ′ is injective, as pushouts in Sets
preserve monomorphisms, i.e., injective mappings, and f ′ is order-preserving by
construction.
f ′ is an order embedding. For x2, y2 ∈ P2 and f ′(x2) ≤3 f ′(y2) we have due to
the construction of ≤3 four cases:

1. There are x1, y1 ∈ P1 with x1 ≤1 y1 so that g′(x1) = f ′(x2) and g′(y1) =
f ′(y2). Due to the pushout construction there are x0, y0 ∈ P0 with x0 ≤0 y0
so that f(x0) = x1 and g(x1) = x2 and f(y0) = y1 and g(y1) = y2. Since g is
order preserving, we have x2 ≤2 y2.

2. There is x2 ≤2 y2.
3. There is z3 ∈ P3 with f ′(x2) ≤3 z3 ≤3 f ′(y2), so that there are x1 ≤1 z1 with

g′(x1) = f ′(x2) and g′(z1) = z3 and z2 ≤2 y2 and f ′(z2) = z3.
Due to the pushout construction there are x0, z0 ∈ P0 with x0 ≤0 z0 so that
f(x0) = x1 and g(x1) = x2 and f(z0) = z1 and g(z0) = z2. Since g is order
preserving, we have x2 ≤2 z2 ≤ y2.

4. There is z3 ∈ P3 with f ′(x2) ≤3 z3 ≤3 f ′(y3), so that there are z1 ≤1 y1 with
g′(y1) = f ′(y2) and g′(z1) = z3 and x2 ≤ z2 and f ′(z2) = z3 analogously.

f ′ is a strict order embedding:
Let be x2, y2 ∈ P2 and f ′(x2) ≤3 z3 ≤3 f ′(y2) given for z3 ∈ P3. Either z3 ∈
f ′(P2) and hence there is f ′(z2) = z3 with x2 ≤2 y2 or z3 �∈ f ′(P2). Then there
are x1, y1, z1, z

′
1 ∈ P1 with g′(x1) = f ′(x2) and g′(y1) = f ′(y2) and g′(z1) =

z3 = g(z1) and x1 ≤ z1 and z′
1 ≤1 y1. Due to the pushout construction there are

x0, y0 ∈ P0 with f(x0) = x1 and g(x1) = x2 and f(y0) = y1 and g(y1) = y2. Since
f is a strict order embedding we have additionally, z0, z

′
0 with f(z0) = z1 and

f(z′
0) = z′

1 and x0 ≤ z0 ≤ z′
0 ≤ y0. Due to pushout construction g(z0) = g(z′

0)
and as g is order preserving we have x2 = g(x0) ≤2 g(z0) ≤2 g(y0) = y2 with
f ′(g(z0)) = z3.

Next we investigate pullbacks in PoSets.

Lemma 4 (Pullbacks in PoSets). Given (P1,≤1)
g→ (P0,≤0)

f← (P2,≤2)

then there is the pullback (P1,≤1)
f ′
← (P3,≤3)

g′
→ (P2,≤2). Moreover, M is

stable under pullbacks.
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Proof. There is the pullback P1
f ′
← P3

g′
→ P2 of P1

g→ P0
f← P2 in Sets.

(P1,≤1)
f ′
← (P3,≤3)

g′
→ (P2,≤2) with the partial order – given by x3 ≤3 y3 if and

only if f ′(x3) ≤1 f ′(y3) and g′(x3) ≤1 g′(y3) – is pullback in PoSets. Obviously,
f ′ and g′ are order-preserving mappings.
M-morphisms are monomorphisms and hence are preserved by pullbacks.

Theorem 1 (PoSets is an M-Adhesive Category).

Proof. 1. The class M in PoSets is PO-PB compatible, since
– pushouts along M-morphisms exist and M is stable under pushouts,
– pullbacks along M-morphisms exist and M is stable under pullbacks

and
– obviously, M contains all identities and is closed under composition.

2. In PoSets pushouts along M-morphisms are M-VK squares: In PoSets let
be given a pushout as (1) in Definition 2 with m ∈ M and some commutative
cube as (2) in Definition 2 with (1) being the bottom square and the back
faces being pullbacks, then we have:
⇒: Let the top of (2) in Definition 2 be a pushout in PoSets. Pullbacks pre-

serve M-morphisms, so m′ ∈ M and hence the top square is a pushout
in Sets as well. As the category Sets is M-adhesive, the front faces are
pullbacks in Sets as well. Since the construction of pullbacks coincides
in Sets and PoSets, the front faces are pullbacks in PoSets.

⇐: Let the front faces be pullbacks in PoSets, and hence pullbacks in Sets.
Since m ∈ M (1) in Definition 2 is pushout in Sets as well. So, Sets being
adhesive, we have the top square being a pushout in Sets. Moreover,
m′ ∈ M as the back face is a pullback preserving M-morphisms. So, the
top is a pushout along M is PoSets.

Hence, (PoSets,M) is an M-adhesive category.

Next we use Theorem 1 to prove that place/transition nets with transition pri-
orities yield an M-adhesive category. The definition of priorities allows a partial
prioritisation. If several transitions have the highest priority, then the choice is
again non-deterministic.

Definition 6. The category of place/transition nets with transition priorities
PTp is given by

– PT nets N = (P, (T,≤T ), pre, post,M0) with pre, post : G(T,≤T ) → P⊕ for
G defined in Lemma 1 and

– net morphisms f = (fP , fT ) : N1 → N2 where fP is a mapping and fT is an
order-preserving map.

A transition t ∈ T is enabled under a marking M if pre(t) ≥ M and if there is
no t′ being enabled under M so that t ≤ t′.

In the following we assume that M is the class of net morphisms where fP is
strict and fT is a strict order embedding.
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Theorem 2 ((PTp,M) is an M-adhesive category).

Proof. The proof applies the construction for weak adhesive HLR categories
(see Theorem 1 in [27]): We know that (Sets,M) with M being the injec-
tive mappings is an M-adhesive category and that ( )⊕ : Sets → Sets pre-
serves pullbacks along injective morphisms. As shown above (PoSets,M) with
M being the strict order embeddings is an M-adhesive category and that
G : PoSets → Sets preserves pushouts along M-morphisms. So, the cate-
gory PTp is isomorphic to the comma category ComCat(G, ( )⊕; I) with I =
1,2, where G : PoSets → Sets is the right adjoint (see Lemma 1) from partial
ordered sets to sets and ( )⊕ is the free commutative monoid functor and hence
an M-adhesive category.

Lemma 5 (The category of decorated PT nets with priorities is an
M-adhesive category).

Proof. See [23]; similar to the proof of Theorem2 using decoPT instead of PT
as the basis.

Lemma 6 (The category of AHL nets with priorities is an M-adhesive
category).

In [23] the result has been formulated in terms of abstract Petri nets [21], so
that these extensions are valid for other types of Petri. In Example 3.5.1 in [21]
it has been shown that AHL nets are an instantiation of abstract Petri nets.

6 Inhibitor Arcs

We now introduce inhibitor arcs [15], that allow places to inhibit a transition’s
firing. To that purpose a transition is mapped to its set of inhibiting places. So,
inhibitor arcs are given as a function from transitions to the powerset of places.

Definition 7 (Inhibitor arcs). Given a place/transition net N = (P, T, pre,
post,M0) inhibitor arcs are given by inh : T → P(P ).

A transition is then enabled under a marking M if additionally we have
M(p) = 0 for all p ∈ inh(t).

Lemma 7. The category of place/transition (PT) nets with inhibitor arcs PTi
is an M-adhesive category with M being the class of strict net morphisms.

Proof. The proof applies the construction for weak adhesive HLR categories (see
Theorem 1 in [27]): Constructing the category PTi using comma categories, we
use the functor F : PT → Sets yielding the transition set T and the power set
functor P : Sets → Sets. The category of PT nets is an M-adhesive category
(see [7]). Then the comma category PTi := CommCat(F,P, {inh}) yields the
category of PT nets with inhibitor arcs and is a weak adhesive category as F
preserves pushouts and P pullbacks of injective morphisms. Hence, we have an
M-adhesive category, see [10].
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Remark 2. Decorated place/transition nets with inhibitor arcs and algebraic
high-level netswith inhibitor arcs also yield M-adhesive categories (see [23]).
Since the proofs of Theorem2 and Lemma 7 are independent of each other, we
can also obtain reconfigurable Petri nets with both inhibitor arcs and priorities.

7 Related Work

The focus of this section covers control structures in M-adhesive transformation
systems and Petri nets. In [24] a survey over control structures for reconfigurable
Petri nets is given.

The control structures introduced in this paper for reconfigurable Petri nets
have been introduced first for Petri nets, as labels, names, capacities. Inhibitor
arcs as defined in [15] as well as priorities [2,30] are well-known concepts in Petri
nets. In contrast to [2,30] where priorities are based on a mapping to the natural
number, we define merely a partial order on the transitions. Inhibitor arcs in
[4,15] are defined as a relation I ⊆ P × T , but this is equivalent to Definition 7
in Sect. 6. Changing transition labels allow the coordination between firing of
transitions and application of rules [22].

Control structures in M-adhesive transformation systems are required to
specify the application of the rules more precisely. These control structures may
determine the application of rules. They concern the situation that may or may
not be given or they concern the order of the rules to be applied, namely net
transformation units, rule priorities and application conditions. Negative appli-
cation conditions have been formulated in terms of M-adhesive transformation
systems in [25]. Negative application conditions (NAC) for reconfigurable Petri
nets have been introduced in [28] and provide the possibility to forbid certain
rule applications. These conditions restrict the application of a rule forbidding
a certain structure to be present before or after applying a rule in a certain
context. Such a constraint influences thus each rule application or transforma-
tion and therefore changes significantly the properties of the net transformation
system. A substantial extension of negative application conditions providing a
much greater expressiveness are nested application conditions [8,9,19] that have
been given in the framework of M-adhesive transformation systems.

Graph transformation units have been introduced to graph grammars as the
basic units for graph programming [1]. Control conditions can be given by regu-
lar expressions, describing in which order and how often the rules and imported
units are to be applied. A large body of results has been developed since then
[3,13,14], see also [17]. The formulation in terms of M-adhesive transforma-
tion systems yields an abstract formulation of transformation units in terms of
category theory [3].

8 Conclusion

In this paper we have introduced new control structures to reconfigurable Petri
nets. In our case study the need to order the travel agents actions triggered the



118 J. Padberg

use of priorities for transitions. That is a well-known concept in Petri nets, but
has not been available for reconfigurable Petri nets. To obtain all the results of
M-adhesive transformation system for reconfigurable Petri nets with priorities
we need to ensure that the corresponding category is again M-adhesive. More-
over, we have shown that Petri nets with inhibitor arcs yield an M-adhesive
category. We have given the proofs in terms of place/transition nets and have
argued that the results are valid for other kinds of Petri nets as well. These
results allow a better control and hence a simplified and more precise modelling
with reconfigurable Petri nets.

Future work concerns the realization of these concepts for decorated Petri
nets in the tool ReConNet [6]. ReConNet provides possibilities to edit, to
simulate and to verify reconfigurable Petri nets. The introduction of control
structures has obviously a strong impact on these operations and needs to be
integrated into the existing implementation. Ongoing work is the implementation
of negative application conditions, so that control structures for the transforma-
tion part soon become available. The next task is the realization of transition
priorities as ell as inhibtor arcs.
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