
Predictive Top-Down Parsing for Hyperedge
Replacement Grammars

Frank Drewes1, Berthold Hoffmann2(B), and Mark Minas3

1 Ume̊a Universitet, Ume̊a, Sweden
drewes@cs.umu.se

2 DFKI Bremen and Universität Bremen, Bremen, Germany
hof@informatik.uni-bremen.de

3 Universität der Bundeswehr München, Neubiberg, Germany
Mark.Minas@unibw.de

Abstract. Graph languages defined by hyperedge replacement gram-
mars can be NP-complete. We invent predictive top-down (PTD) parsers
for a subclass of these grammars, similar to recursive descent parsers for
string languages. The focus of this paper lies on the grammar analysis
that computes neighbor edges of nonterminals, in analogy to the first
and follow symbols used in SLL(1) parsing. The analysis checks whether
a grammar is PTD parsable and yields all information for generating a
parser that runs in linear space and quadratic time.

1 Introduction

It is well known that hyperedge replacement (HR, see [8]) can generate NP-
complete graph languages [1]. In other words, even for fixed HR languages pars-
ing is hard. Moreover, even if restrictions are employed that guarantee L to be
in P, the degree of the polynomial usually depends on L; see [11].1 Only under
rather strong restrictions the problem is known to become solvable in cubic time
[4,17]. In this paper, we develop a parsing technique, called predictive top-down
(PDT) parsing, which extends the SLL(1) string parsers of [12] to HR grammars
and yields parsers that run in quadratic time, and in many cases in linear time.
Of course, not all grammars are suitable for PDT parsing. As the requirements
are not easy to check, an algorithm for the structural analysis of a given gram-
mar is developed. This analysis is the focus of the present paper. It determines
whether the grammar is PDT parsable and, if so, constructs a PDT parser. The
basic idea is to determine the edges that can potentially be neighbors of the
attached nodes of nonterminals. This information is computed approximatively
by solving equations on semilinear sets of edge literals. It determines at which
nodes of the input graph the parser has to start, and by which rule a nonterminal
has to be expanded in a particular situation.
1 Lautemann’s result has been exploited for parsing natural language in the system
Bolinas [2].

c© Springer International Publishing Switzerland 2015
F. Parisi-Presicce and B. Westfechtel (Eds.): ICGT 2015, LNCS 9151, pp. 19–34, 2015.
DOI: 10.1007/978-3-319-21145-9 2

20 F. Drewes et al.

The remainder of this paper is structured as follows. In Sect. 2 we give the
basic definitions of HR grammars. In Sect. 3, we recall SLL(1) parsing and sketch
what is needed to extend it to HR grammars. In Sect. 4 we introduce predic-
tive top-down parsers for HR grammars, prove that they have quadratic time
complexity, and show that they can indeed be considered as extensions of SLL(1)
parsers of string grammars. In Sect. 5, we sketch the analysis of HR grammars
in order to determine whether a grammar is PTD parsable or not, and discuss
how complex the analysis is. Further work is outlined in Sect. 6.

2 Hyperedge Replacement Grammars

In this paper, N denotes all non-negative integers. A∗ denotes the set of all finite
sequences over a set A; the empty sequence is denoted by ε, the length of a string
w by |w|. For a function f : A → B, its extension f∗ : A∗ → B∗ to sequences is
defined by f∗(a1 · · · an) = f(a1) · · · f(an), for all ai ∈ A, 1 ≤ i ≤ n, n ≥ 0.

We consider an alphabet Σ that contains symbols for labeling edges, and
comes with an arity function arity : Σ → N. The subset N ⊆ Σ is the set of
nonterminal labels.

A labeled hypergraph G = 〈Ġ, Ḡ, attG, �G〉 over Σ (a graph, for short) consists
of disjoint finite sets Ġ of nodes and Ḡ of hyperedges (edges, for short) respec-
tively, a function attG : Ḡ → Ġ∗ that attaches sequences of nodes to edges, and
a labeling function �G : Ḡ → Σ so that |attG(e)| = arity(�G(e)) for every edge
e ∈ Ḡ. Edges are said to be nonterminal if they carry a nonterminal label, and
terminal otherwise; the set of all graphs over Σ is denoted by GΣ . G − e shall
denote the subgraph of a graph G obtained by removing an edge e ∈ Ḡ. A han-
dle graph G for A ∈ N consists of just one edge x and pairwise distinct nodes
n1, . . . , narity(A) such that �G(x) = A and attG(x) = n1 . . . narity(A).

Given graphs G and H, a morphism m : G → H is a pair m = 〈ṁ, m̄〉 of
functions ṁ : Ġ → Ḣ and m̄ : Ḡ → H̄ that preserves labels and attachments:
�H ◦ m̄ = �G, and attH ◦ m̄ = ṁ∗ ◦ attG (where “◦” denotes function compo-
sition). A morphism m : G → H is injective and surjective if both ṁ and m̄
have the respective property. If m is injective and surjective, it makes G and H
isomorphic. We do not distinguish between isomorphic graphs.

Definition 1 (HR Rule). A hyperedge replacement rule (rule, for short) r =
(L,R, m̃) consists of graphs L and R over Σ such that the left-hand side L is a
handle graph, and m̃ : (L−x) → R is a morphism from the discrete graph L−x
to the right-hand side R. We call r a merging rule if m̃ is not injective.

Let r be a rule as above, and consider some graph G. A morphism m : L → G
is called a matching for r in G. The replacement of m(x) by R (via m) is then
given as the graph H, which is obtained from the disjoint union of G−m(x) and
R by identifying, for every node v ∈ L̇, the nodes m(v) ∈ Ġ and m̃(v) ∈ Ṙ. We
then write G ⇒r,m H (or just G ⇒r H) and say that H is derived from G by r.

The notion of rules introduced above gives rise to the class of HR grammars.

Predictive Top-Down Parsing for Hyperedge Replacement Grammars 21

Definition 2 (HR Grammar [8]). A hyperedge-replacement grammar (HR
grammar, for short) is a triple Γ = 〈Σ,R, Z〉 consisting of a finite labeling
alphabet Σ, a finite set R of rules, and a start graph Z ∈ GΣ .

We write G ⇒R H if G ⇒r,m H for some rule r ∈ R and a matching
m : L → G, and denote the transitive-reflexive closure of ⇒R by ⇒∗

R. The
language generated by Γ is given by L(Γ) = {G ∈ GΣ\N | Z ⇒∗

R G}.

Without loss of generality, and if not mentioned otherwise, we assume that the
start graph Z is a handle graph for a nonterminal label S ∈ N with arity 0. We
furthermore assume that S is not used in the right-hand side of any rule.

Graphs are drawn as in Examples 1 and 2. Circles represent nodes, and boxes
of different shapes represent edges. The box of an edge contains its label, and
is connected to the circles of its attached nodes by lines; these lines are ordered
clockwise around the edge, starting to its left. Terminal edges with two attached
nodes are usually drawn as arrows from their first to their second attached
node, and the edge label is ascribed to that arrow (but omitted if there is just
one label, as in Example 1 below). In rules, identifiers like “xi” at nodes identify
corresponding nodes on the left-hand and right-hand sides; in merging rules,
several identifiers may be ascribed to a node on the right-hand side.

Example 1 (HR Grammars for Trees). With start symbol S, the HR grammar
below derives n-ary trees like the graph on the right:

Strings w = a1 · · · an ∈ A∗ can be uniquely represented by string graphs consist-
ing of n + 1 nodes x0, . . . , xn and n binary edges e1, . . . , en where ei is labeled
with ai and connects xi−1 to xi for 1 ≤ i ≤ n. (The empty string ε with n = 0
is represented by an isolated node.)

Example 2 (HR Grammar for anbncn). The language of string graphs given by
the well-known non-context-free language anbncn (for n > 0) is generated by

3 Predictive Top-Down Parsing: From Strings to Graphs

We discuss how the idea of top-down parsing can be transferred from string
grammars to HR grammars.

Example 3 (SLL(1)-Parsing for Tree Strings). The Dyck language of balanced
parentheses can be generated by the context-free string grammar with four rules

S:: = T T :: = (B) B:: = T B | ε

22 F. Drewes et al.

The strings of the language generated by this grammar correspond to trees. For
instance, the string “((()())()(()))” corresponds to the tree shown in Example 1.

Rules can be considered as abstract definitions of top-down parsers: Nonter-
minals act as a procedures that expand their rules, by matching terminal symbols
(i.e., comparing them with the next input symbol, and consuming it in case of
success) and by calls to procedures of other nonterminals. So the parser for T
expands “(B)” by matching “(”, calling the parser for B, and matching “)”. It
fails as soon as a match or one of the called parsers fails. If a nonterminal has
alternative rules, backtracking is used to find the first alternative that succeeds.
If the parser for B fails to expand “TB”, it tries to expand “ε” instead, and fails
if that does not succeed either. The parser for the start symbol initializes the
input, expands its rule, and succeeds if the entire string has been consumed.

SLL(k) parsers [12] avoid backtracking by pre-computing k ≥ 0 terminal
symbols of lookahead in order to predict which alternative of a nonterminal must
be expanded. For B, and k = 1, we obtain First(T B) = {(} and First(ε) = {ε}.
For a lookahead “ε”, the followers of the left-hand side nonterminal have to be
determined, by inspecting occurrences of that nonterminal in other rules. Since
B only occurs in the rule T :: = (B), we obtain Follow(B) = {)}. A grammar
is SLL(k)-parsable if the lookahead allows to predict which alternative must be
expanded. Our example is SLL(1); we can make the parser for B predictive by
adding conditions for expanding rules:

B :: = T B if lookahead = (
| ε if lookahead =)

Pre-computation makes sure that every other lookahead lets the parser fail – no
backtracking is needed.

We shall now transfer the basic ideas of top-down parsing to HR grammars.
While the set of edges in a graph is inherently unordered, our parsing procedure
must follow a prescribed search plan. For this reason, we generally assume that
the edges in the right-hand side of each rule (L,R, m̃) are ordered. We therefore
use a convenient representation for graphs: such a graph G can be represented
as a pair u = 〈s, Ġ〉, called (graph) clause of G, where s is a sequence of edge
literals a(x1, . . . , xk) such that there is an edge e ∈ Ḡ with �G(e) = a, and
attG(e) = x1 . . . xk. The order of the edge literals defines the order to be used
by the parsing procedure if this graph is the right-hand side of a rule.2 We let
u• = G and u̇ = Ġ and call u terminal if u• contains no nonterminal edge, and a
handle clause if u• is a handle. Let CΣ and TΣ denote the set of all graph clauses
and terminal clauses, respectively, for a given alphabet Σ. When writing down
u, we usually omit Ġ and write just s if Ġ is given by the context. We define
the concatenation uv of two graph clauses u = 〈sG, Ġ〉 and v = 〈sH , Ḣ〉 so that
it represents the union of u• and v•: uv = 〈sGsH , Ġ ∪ Ḣ〉.

Transferring the notion of derivations to clauses u, v we write u ⇒r v iff
u• ⇒r v•, where the ordering of edge literals is preserved, i.e., there are clauses
2 We assume that the order of edges in a right-hand side is provided with the HR

grammar. Finding an appropriate order automatically is left to future work.

Predictive Top-Down Parsing for Hyperedge Replacement Grammars 23

α, β, γ and a nonterminal edge literal N such that u = αNβ, v = αγβ and γ
corresponds to the order of the right-hand side of r. We call such a derivation a
left-most derivation, written u

L⇒rv, iff α is a terminal clause.
Top-down parsing for HR grammars uses the same ideas as for string gram-

mars. A PTD parser consists of parsing procedures; each of them expands a
nonterminal edge whose attached nodes are passed as parameters. We augment
the rules with conditions under which they are chosen, and use them as abstract
parsers. This is illustrated in the following examples:

Example 4 (PTD Parsing for Trees). The rules of the tree grammar (Example 1)
are written down as

S():: = T (x) T (x):: = edge(x, y) T (x) T (y) | ε

The empty sequence ε representing the right-hand side of the third rule is just
a short-hand for the clause 〈ε, {x}〉. This can be turned into a PTD parser for
trees:

p1 : S() :: = T (x) where ¬edge(–, x)
p2 : T (x) :: = edge(x, y) T (x) T (y) if edge(x, –)
p3 : | ε .

(Here, we use where- and if -clauses whose meaning will shortly be explained.)

Example 4 exhibits a clear similarity to SLL(1) parsers. However, there are four
major differences:

Firstly, expanding the edges of a right-hand side means, either to call the
procedure for a nonterminal edge like T (x) with its nodes as parameters, or to
match a terminal edge like edge(x, y). The latter means to select some matching
edge that is correctly attached to the nodes bound to identifiers in the edge
literal. This binds identifiers that were previously unbound, e.g., y to the target
node of the matched edge. Each edge and node selected that way is marked as
consumed. Consumed edges must not be matched again later, and all nodes and
edges must have been consumed when the parser terminates.

Note that the ordering of the right-hand side specifies a search plan. Following
this plan, the parser for the tree grammar will look for the terminal edge(x, y)
before trying to parse T (y) in p2. Thus, when invoking T (y), node y has already
been determined. Ordering the right-hand side by T (x) edge(x, y) T (y) would
make the rule left-recursive. By the proof of Lemma 1 such a grammar is not
PTD parsable.

Secondly, conditions are written down in if -clauses. The right-hand side of
the first rule whose if -clause evaluates to true is expanded, i.e., all if -clauses of
the previous rules must have evaluated to false.

If -clauses represent conditions that the yet unconsumed part of the input
graph must satisfy. This is analogous to SLL(k) parsers examining a prefix of
the yet unconsumed substring. In Examples 4 and 5, we use graph patterns as
a simplified version of the more general conditions described in Sect. 5. Graph
patterns are written down as extended graph clauses in which the ordering of

24 F. Drewes et al.

the literals is considered to be irrelevant. Nodes may be identifiers referring to
already bound nodes, such as x, or they may be –, which matches any node
that has not yet been bound by an identifier. A preceding ¬ indicates that the
edge must not be present, i.e., this specifies a negative context. In our example,
a nonterminal T (x) is expanded by p2 if the node bound by x has an outgoing
edge that has not yet been consumed by the parser.

The third difference is that a graph parser must autonomously identify where
the processing starts. In particular, the nodes generated by start rules are
unknown in the beginning. Some (or all) of them — they are called start nodes
in the following — can be uniquely determined by graph conditions which are
written down as where-clauses. Where-clauses again employ extended graph
clauses in our examples. However, note the difference to if -clauses: If -clauses
are used to select rule alternatives, but do not bind identifiers, whereas where-
clauses do not select rule alternatives, but specify how to bind identifiers such
that a valid match is found. In p1, x is bound to some node without an incom-
ing edge.

A fourth distinguishing feature is that terminal edges are consumed by select-
ing matching edges. However, the parser must usually choose between several
edges. In p2, this holds for edge(x, y), which is matched by any yet unconsumed
edge leaving x. It is clear in this simple example that it does not make a dif-
ference which edge is chosen first. Since not every HR grammar has this prop-
erty, grammar analysis must check that choosing an arbitrary edge from a set
is insignificant for the outcome of the parse; if the parser fails for a particu-
lar choice, it must fail for every other choice as well, thus making backtracking
unnecessary.

Example 5 (PTD Parsing for anbncn). By choosing an ordering for the right-
hand sides of rules, we turn the grammar of Example 2 into a PTD parser:

p1 : S() :: = a(n1, n2) A(n2, n3, n4, n5) b(n3, n4) c(n5, n6)
where a(n1, –),¬a(–, n1), b(–, n4), c(n4, –),

c(–, n6),¬c(n6, –)
p2 : A(x1, x2, x3, x4) :: = a(x1, n1) A(n1, n2, x3, n3) b(n2, x2) c(n3, x4)

if a(x1, –)
p3 : | x2 ← x1;x4 ← x3

The example illustrates that it is not always possible to determine all nodes
of a nonterminal edge before its procedure is called. Nonterminals may even
have different profiles; each profile represents a certain subset of nodes that have
already been determined prior to the procedure call. These nodes, called profile
nodes in the following, are passed as parameters to the procedure. The other
nodes are determined during the invocation and can be considered as “call by
reference”-parameters. Therefore, different profiles require different procedures.

In our example, A has just one profile: only the first and the third node
are determined when its procedure is called in p1 or p2; the second and the
fourth node are yet unknown and must be determined by the procedure. The
corresponding parameters x2 and x4 are underlined to illustrate this fact.

Predictive Top-Down Parsing for Hyperedge Replacement Grammars 25

The example also demonstrates merging rules, which correspond to explicit
assignments in the parser, here p3: It is known from the A-profile that identifiers
x1 and x3 are bound to profile nodes, and x2 and x4 are set accordingly by the
procedure. This cannot cause any conflict because neither x2, nor x4 have been
bound earlier, which is also known from the profile.

Figure 1 shows a trace of parsing the graph representing aabbcc. Each line of
the trace consists of an action and the resulting bindings of identifiers to nodes
after completion of the action. The currently active bindings are shown with a
white background whereas the bindings of the calling procedures are shown with
a gray background. Yet unbound identifiers are marked with a dash; new bindings
are written in bold face. An identifier is bound to a node either by identifying
start nodes (line 2), by explicit assignment (line 9), or by edge matching. An
example of the latter is shown in line 3, which corresponds to edge a(n1, n2) in
p1 of the parser. The matching edge is a(1, 2) because n1 is already bound to
node 1. As a result, n2 is bound to node 2. Note that the second and fourth
parameter of the invocations of procedure A in line 4 and 7 are yet unknown.
They are passed “by reference” and bound to nodes when the procedure binds
their corresponding “formal parameters”. For instance, the edge matching in
line 10 assigns node 4 to x2, but also to n3. Finally note the selection of rule
alternatives in line 5 and 8. The parser selects p2 in line 5 because it finds edge
a(2, 3), and it selects p3 in line 8 because there is no a-edge leaving node 3.

Fig. 1. A trace of parsing

4 Predictive Top-Down Parsability

PTD parsers create left-most derivations for an input graph if such a derivation
exists. More precisely, let Γ be a fixed HR grammar, z the start graph clause and

26 F. Drewes et al.

H a graph in the language of Γ . At each point of time, the parser has consumed
some subgraph H ′ of H, represented as a terminal clause α, α• = H ′. The yet
unexpanded or unmatched edges of the current stack of procedure invocations
correspond to a graph clause x such that z

L⇒∗αx. The clause x represents the
remaining goal; parsing will continue to build αx

L⇒∗αβ such that (αβ)• = H.
For instance, when the A-procedure is called first in line 4 of Fig. 1, then

x = A(2, n3, 5, n5) b(n3, 5) c(n5, 7) since S() ⇒ a(1, 2)A(2, 4, 5, 6) b(4, 5) c(6, 7).
Note, however, that the parser was not yet able to bind n3 and n5. Edges b(4, 5)
and c(6, 7) will be matched in lines 12 and 13.

The parser terminates successfully if x• is the empty graph. Otherwise, x =
ey for an edge e. The parser continues with expanding e if e is nontermial, or
with matching e if it is terminal:

Case 1 (e is nonterminal). The parser then calls the parsing procedure that
corresponds to e with the profile nodes P = α̇ ∩ ė.

We use line 4 of Fig. 1 as an example again. Nodes 1, 5, and 7 have been
determined as start nodes in line 2, and node 2 has been determined by matching
a(1, 2) in line 3. Therefore, α = 〈a(1, 2), {1, 2, 5, 7}〉. In the procedure call in
line 4, only nodes 2 and 5 of A(2, n3, 5, n5) are in α̇ and, therefore, profile nodes.

The procedure must choose a rule r that can continue the current derivation
of the input graph, i.e., there must be a derivation z

L⇒∗αey
L⇒rαuy

L⇒∗αβ where
β• is the remainder of the input graph, which we call the rest graph in the
following. For a given set P of profile nodes, let Rest(e, P, r) denote the set of
all such rest graphs, taken over all possible input graphs in the language:

Rest(e, P, r) = {β• | ∃α, β ∈ TΣ and u, y ∈ CΣ such that
z

L⇒∗αey
L⇒rαuy

L⇒∗αβ and P = α̇ ∩ ė}.

The procedure, therefore, must choose the rule r which satisfies

β• ∈ Rest(e, P, r). (1)

For instance, when A(x1, x2, x3, x4) has been called with profile nodes P =
{x1, x3} in lines 4 and 7 of Fig. 1, the parser has already consumed at least one
a-edge, but no other edge. Thus, Rest(e, P, p2) consists of all graphs

with k > 0 a-edges and m > k b-edges and as many c-edges, whereas Rest(e, P, p3)
consists of all graphs

with m > 0 b-edges and as many c-edges.
The parsing procedure cannot predict which alternative rule has to be chosen

if there are rules r �= r′ that allow to continue the derivation with the same rest
graph, i.e., predictive parsing requires that Rest(e, P, r) and Rest(e, P, r′) are
disjoint for all rules r �= r′. Moreover, the parsing procedure needs an actual

Predictive Top-Down Parsing for Hyperedge Replacement Grammars 27

indicator of the right choice. (1) does not result in a practical test, because it
requires a parsing procedure (see Sect. 5). The if -clauses of the rules are supposed
to be such an indicator. To make this more precise, let Sel(e, P, r) denote the
set of all rest graphs that satisfy the if -clause of rule r. It is easy to see that the
if -clauses of the rules are an actual indicator of the right choice iff the following
two conditions are satisfied, because they imply Rest(e, P, r) ∩ Rest(e, P, r′) = ∅
for all rules r �= r′ with the same left-hand side.

Condition 1. Rest(e, P, r) ⊆ Sel(e, P, r) for each e, P , and each rule r.

Condition 2. Sel(e, P, r) ∩ Sel(e, P, r′) = ∅ for each e, P , and rules r �= r′.

We continue our example when procedure A has been called for an edge e =
A(x1, x2, x3, x4) and profile nodes P = {x1, x3}. Instead of checking a condition
that evaluates to true iff the rest graph β• is in Rest(e, P, p2) or Rest(e, P, p3)
when p2 or p3 is chosen, respectively, we simply check whether there is an a-edge
leaving x1, i.e., we check whether β• ∈ Sel(e, P, p2) or β• ∈ Sel(e, P, p3) where
Sel(e, P, p2) is the set of all graphs with an a-edge leaving x1, and Sel(e, P, p3)
is its complement. Conditions 1 and 2 are obviously satisfied.

Section 5 will outline how one can construct if -conditions that can be checked
in linear time in the size of the rest graph. The graph patterns used in Examples 4
and 5 are optimizations of such conditions that can be checked in constant time.

Case 2 (e is terminal). The parser chooses a yet unmatched edge. In doing so, it
must consider its edge label and the nodes already determined by α̇. For instance,
the parser in Example 4 can freely choose between any edge leaving node x when
edge(x, y) must be matched. This free choice must not lead to backtracking: it
must not be possible that one choice results in a parser failure while a different
choice results in a successful parse. More precisely, a PTD parsable HR grammar
must satisfy the following condition:

Condition 3. For all derivations z
L⇒∗αey

L⇒∗αeβ and z
L⇒∗αe′y′ where y, y′ ∈

CΣ and α, α′, e, e′ ∈ TΣ such that e and e′ consist of just one edge each, and (αe′)•

is a subgraph of H = (αeβ)•, there exists a derivation y′ L⇒∗β′ and H = (αe′β′)•.

Apparently, one can create a PTD parser if one can predict correct rule alterna-
tives and matching terminal edges does not require backtracking. This leads to
the following definition:

Definition 3 (Predictive Top-Down Parsability). An HR grammar is called
predictively top-down (PTD) parsable if one can augment rules with conditions,
which can be decided in linear time, under which a rule is chosen such that Con-
ditions 1, 2, and 3 are satisfied.

Note that Conditions 1 and 2 must be satisfied for all profiles that may occur,
which depends on the start nodes that can be identified at the beginning. Profiles
can be computed using a data flow analysis of the grammar rules (see Sect. 5).

Let us call a rule r useful if it occurs in a derivation Z ⇒∗ G ⇒r G′ ⇒∗ H
such that H is a terminal graph. A rule r is called useless if it is not useful.

28 F. Drewes et al.

Lemma 1. For every PTD parsable HR grammar without useless rules there
exists a constant k such that the following holds: For every handle clause h, if
h

L⇒kv then v• contains at least one node or terminal edge not in h•.

Proof. Let us assume the contrary, i.e., a PTD parsable HR grammar without
useless rules and a handle clause h such that for each i, there is a clause w without
terminal edges, ẇ = ḣ, and h

L⇒iw. Because the set of nonterminal labels is finite
and there are no useless rules, there must be a handle clause g and rules r �= r′

such that g
L⇒ru

L⇒∗gv and g
L⇒r′x

L⇒∗β for some terminal clause β and a clause
v without terminal edges, v̇ ⊆ ġ. Therefore, there must be a derivation, where
z is the start graph clause, z

L⇒∗αgy
L⇒rαuy

L⇒∗αgvy
L⇒r′αxvy

L⇒∗αβvy
L⇒∗αγ

for terminal clauses α, γ and a graph clause y. In this derivation, g must be
expanded using rule r and r′ with the same rest graph γ•, i.e., γ• ∈ Rest(g, P, r)∩
Rest(g, P, r′) with P = α̇ ∩ ġ. Therefore, the grammar is not PTD parsable. ��

In particular, the proof shows that HR grammars with left-recursive rules are
not PTD parsable. In fact, by Lemma1 the number of procedure invocations in
a PTD parser depends linearly on the size of the input graph. This yields the
following theorem.

Theorem 1 (Complexity of PTD Parsing). PTD parsers have time com-
plexity O(n2) and space complexity O(n) where n is the size of the input graph.

Proof. Parsers work without backtracking, and the number of procedure calls
depends linearly on the size of the input graph, by Lemma1. Each parsing proce-
dure must choose a rule for expansion and, for this purpose, check the conditions
of a fixed number of if -clauses, and match a fixed number of terminal edges,
which has linear time complexity. Considering space complexity, each node and
edge must carry a flag such that they can be marked as consumed. Moreover,
the depth of recursion is linear in the size of the input graph. ��

Note that this is a worst-case time complexity. If one can choose among alterna-
tive rules in constant time, which is possible for the tree-parser and the anbncn-
parser, time complexity is actually linear in the size of the input graph. We
presume that this is the case for many parsers, but we have not yet identified
the conditions under which this is the case.

Theorem 2 (Relation to SLL(1)-Parsing). String-generating HR grammars
for SLL(1) grammars are PTD parsable, and there exist PTD parsable HR gram-
mars for context-free string languages which are not SLL(k)-parsable.

Proof. For the first statement, consider an SLL(1) grammar. Then every rule can
be turned into a corresponding HR rule; ε-rules n:: = ε are turned into a merging
rule n(v0, v1):: = v0 = v1. Now consider two alternative rules n:: = α | α′ (where
α, α′ ∈ Σ∗). Since the grammar is SLL(1), the sets of possible starts are disjoint
for these rules, say F and F ′. Then the clause c = {a(v0, –) | a ∈ F} and
c′ = {a(v0, –) | a ∈ F ′} are such that the correct rule alternative of

n(v0, vk):: = . . . if c | . . . if c′

Predictive Top-Down Parsing for Hyperedge Replacement Grammars 29

can be predicted in constant time. The where-clause determining the start node
is {¬a(–, v0) | a ∈ Σ} which determines the start node in linear time. It is easy
to see that the so defined PTD parser recognizes string graphs corresponding to
those recognized by the original SLL(1) grammar.

As for the second statement, palindromes over {a, b} form a context-free
language, but there is no SLL(k) parser (k ∈ N) because it would have to look
ahead until the end of the input, which grows beyond any fixed k. However, one
can easily construct a string-generating HR grammar and a PTD parser that
“reads” the input simultaneously from the left and from the right. ��

The possibility to have ε-rules is important for some SLL(1) string grammars.
While one can transform every context-free string grammar into an equivalent
one without ε-rules (except a possible ε-rule as a start rule), these grammars are
in general no longer SLL(1), and the corresponding HR grammar is not PTD
parsable. A direct translation of an SLL(1) grammar with ε-rules into a PTD
parsable HR grammar is possible only with merging rules. This has actually been
the reason for allowing merging rules in HR grammars in this paper.

5 Grammar Analysis

Figure 2 describes all the tasks (drawn as rectangles with rounded corners) that
must be performed in order to check PTD parsability of an HR grammar, called
original grammar, and to create a PTD parser for it; some tasks depend on
results (drawn as rectangles) of other tasks. Note that Fig. 2 omits the code
generator, which creates the actual parser from the results of the earlier tasks.

Original
grammar

Clean
grammar

Start nodes
&

where-clauses
Profiles if-clauses

Normalize
grammar

Neighbor-
determined
start nodes

Determine
profiles

Neighbor-
determined
rule choice

Free edge choice

Fig. 2. Steps taken to check PTD parsability.

The first task, Normalize grammar, transforms the original grammar into
an equivalent normalform that we call “clean”, as it contains neither merging
rules nor nonterminals with repetitions among their attached nodes. Although
PTD parsers can deal with merging rules without any effort, as seen in Exam-
ple 5, many grammar analysis tasks require a clean HR grammar. Such a task
is Neighbor-determined start nodes; it identifies the start nodes that can be
uniquely recognized in a syntactically correct graph by checking just their inci-
dent edges, and creates the where-clauses in the generated parser.

30 F. Drewes et al.

Profiles specify which attached nodes have already been matched to nodes in
the input graph when a parsing procedure is invoked. Task Determine profiles
computes all profiles using a data flow analysis of the grammar rules. It begins
with the start nodes and continues by examining the matching of terminal edges
as well as expanding nonterminal edges. A nonterminal label may actually have
multiple profiles. The profiles are then used by task Neighbor-determined rule
choice that tries to find if -clauses as conditions under which rules are chosen
so that Conditions 1 and 2 are satisfied. Each profile gives rise to a parsing
procedure. Finally, Conditions 3 is checked in task Free edge choice.

We now discuss details of task Neighbor-determined rule choice when an
HR grammar Γ is given. The task tries to determine, for each rule r and each
profile, an if -clause as a condition under which r has to be chosen in its parsing
procedure. Case 1 in Sect. 4 already describes the situation. We now assume that
a parsing procedure has been invoked for a specific nonterminal edge, i.e., a
handle clause a, and a set P of profile nodes. The other nodes of a have not
yet been determined; this is left to the procedure (see Fig. 1). We first show
that the set Rest(a, P, r) of all rest graphs in this situation is an HR language.
This is trivially true if a is the start graph clause z. Let us, therefore, assume
that a does not represent the start graph and that a ⇒r u. A terminal graph
β• belongs to Rest(a, P, r) iff there is a derivation a0 ⇒r1 x1a1y1 ⇒r2 · · · ⇒rk

x1 . . . xkakyk . . . y1 for some k > 0, rules r1, . . . , rk and handle clauses a0, . . . , ak

with a0 = z and ak = a such that uyk . . . y1 ⇒∗ β, x1 . . . xk ⇒∗ α ∈ TΣ , and
P = α̇ ∩ ȧ. One can now construct an HR grammar, called follower grammar
Γ f(a, P, r), that generates Rest(a, P, r). Its derivations are of the form zf ⇒
uaf

k ⇒ uykaf
k−1 ⇒ · · · ⇒ uyk . . . y1a

f
0 ⇒ uyk . . . y1 ⇒∗ β, starting from a start

graph handle zf with some new nonterminal label S′ that is attached to the
profile nodes P . We introduce a new nonterminal label Af for each original
nonterminal label A. Let each handle clause ai have a nonterminal label Ai;
handle clause af

i then has label Af
i and is attached to the same nodes as ai.

Γ f(a, P, r) has the rules of Γ as rule set, extended by a new rule that derives
zf ⇒ uaf

k and new rules for af
0 ⇒ ε and af

i ⇒ yia
f
i−1 for i = 1, . . . , k.

Example 6. We illustrate the construction of a follower grammar for p2 in Exam-
ple 4. Let us assume that a = T (x) and P = {x}. Γ f(a, P, p2) has the start graph
S′(x), its rule set consists of p1, p2, p3 and the following rules:

S′(x) :: = edge(x, y) T (x) T (y) T f(x)
Sf() :: = ε
T f(x) :: = Sf() | T (y) T f(x) | T f(y)

A parsing procedure can choose the rule alternative whose follower grammar has
the rest graph in its language. While this question is decidable, it does not result
in a practical test, because we need an actual indicator of the right choice that
we can check in a given situation without presupposing a parsing procedure.
Similar to SLL(1), which looks ahead just one symbol, we examine unconsumed
nodes and edges only within the neighborhood of the profile nodes P : Let u be
a graph clause and e = s(v1, . . . , vn) be an edge literal in u. The nodes vi are

Predictive Top-Down Parsing for Hyperedge Replacement Grammars 31

either profile nodes, vi ∈ P , or other nodes, vi ∈ Ġ \ P . We do not distinguish
those other nodes, but map them to the “don’t care” node – and define the
neighborhood literal nhP (e) = s(x1, . . . , xn), where xi = vi if vi ∈ P , and xi = –
otherwise. The neighborhood clause nhP (u) is obtained by replacing each literal
in u by the corresponding neighborhood literal.

It is easy to see that the set of all possible neighborhood clauses (up to
permutation of its literals) in the language of Γ f(a, P, r) is a context-free string
language because each derivation zf ⇒r1 g1 ⇒r2 · · · ⇒rk

gk in Γ f(a, P, r) can
be transformed into a derivation nhP (zf) ⇒p1 nhP (g1) ⇒p2 · · · ⇒pk

nhP (gk) of
neighborhood clauses. The finite set of all neighborhood literals with a terminal
(nonterminal) label forms the set of terminal (nonterminal) symbols. The start
symbol is nhP (zf). The resulting string grammar is called neighborhood grammar.

Example 7. We continue Example 6. The neighborhood grammar of Γ f(a, P, p2)
has the start symbol S′(x) and the following rules:

S′(x) :: = edge(x, –) T (x) T (–) T f(x) Sf() :: = ε
T (x) :: = edge(x, –) T (x) T (–) | ε T f(x) :: = Sf() | T (–) T f(x) | T f(–)
T (–) :: = edge(–, –) T (–) T (–) | ε T f(–) :: = Sf() | T (–) T f(–) | T f(–)

It is well-known that Parikh images of context-free languages are semilinear [15].
Let us briefly recapitulate the necessary notions: A Parikh mapping ψ : Σ∗ →
N

n for an ordered vocabulary T = {a1, . . . , an} ⊆ Σ is defined by ψ(w) =
(#a1(w), . . . ,#an

(w)), where #ai
(w) denotes the number of occurrences of ai

in w. The Parikh image of a string w ∈ Σ∗ is the vector ψ(w), and the Parikh
image of a language L ⊆ Σ∗ is the set of Parikh images of its elements: ψ(L) =
{ψ(w) | w ∈ L}. A set M ⊆ N

n is linear if there are k + 1 vectors x0, . . . , xk ∈
N

n such that M = {x0 +
∑k

i=1 cixi | c1, . . . , ck ∈ N}.3 We also write M =
x0 +{x1, . . . , xk}∗ and call x0 the tip and {x1, . . . , xk} the span of M . S ⊆ N

n is
semilinear if it is the union of a finite number of linear sets. Parikh’s theorem [15]
states that ψ(L) is semilinear for every context-free language L.

We now view the set of terminal neighborhood literals as an ordered vocabu-
lary and represent neighborhood clauses by their Parikh image, called the neigh-
borhood vector. The set of all rest graphs, when a rule shall be chosen for a given
set of profile nodes, therefore, has a semilinear set of neighborhood vectors.

Example 8. The Parikh image of the neighborhood grammar in Example 7 is the
semilinear set (1, 0) + {(1, 0), (0, 1)}∗ for the vocabulary {edge(x, –), edge(–, –)}.
This means that the rest graph, when rule p2 shall be chosen by parsing proce-
dure T (x), must contain at least one edge leaving x.

There are algorithms that, given a context-free Chomsky grammar G, create
the Parikh image of L(G) as its semilinear set, but our experiments have shown
that they are far too inefficient. Instead, we employ the following procedure that
determines a useful approximation of such semilinear sets and a finite description.
Details of this procedure are omitted due to space restrictions:
3 On N

k, sums and scalar products are defined component-wise as usual.

32 F. Drewes et al.

The neighborhood grammar is represented by an analysis graph that has
all nonterminal and terminal symbols as well as rules as nodes; a rule A:: =
x1 . . . xk has an incoming edge from A and outgoing edges to each xi. Each node
representing a terminal or nonterminal symbol can be associated with the Parikh
image of the language that can be generated from the corresponding symbol. The
analysis graph defines a system of equations, and the Parikh images form the
least fixed-point of this system of equations. It is computed by determining the
strongly connected components of the analysis graph, contracting each strongly
connected component to a single node, and evaluating the obtained DAG in a
bottom-up fashion. Nevertheless, we compute only approximations of the Parikh
images: Instead of computing general linear sets, which have arbitrary vectors in
their span, we restrict span vectors to be 0 at every position but one, where it is 1.
These sets are called simple in the following. Approximating linear sets by simple
ones considerably simplifies computations. Nevertheless, the approximation is
precise in the sense that the computed simple semilinear sets and the exact sets
actually have the same tips in their linear sets.

Each parsing procedure defines a handle clause a and profile nodes P by its
input parameters. We can now compute, for each parsing procedure and each
rule alternative, a simple semilinear set of neighborhood vectors, which contains
the neighborhood vectors of all possible rest graphs as a subset. These simple
semilinear sets actually define the conditions under which the corresponding
rule alternative is chosen: As soon as a parsing procedure is called, one com-
putes the neighborhood vector of the current rest graph. This can be easily done
in linear time. The parsing procedure then chooses the rule alternative whose
simple semilinear set contains this vector. In Examples 4 and 5, we have actually
written down graph patterns in the corresponding if -clauses, but this is just an
optimization that allows a constant-time check.

This approach makes checking Conditions 1 and 2 for PTD parsability easy:
Sel(a, P, r) is just the set of rest graphs whose neighborhood vectors are members
of the corresponding simple semilinear set. Therefore, Conditions 1 is satisfied
by construction, and Conditions 2 is easy to check.

A similar approach can be used in task Neighbor-determined start nodes. Task
Free edge choice also creates analysis graphs, and checks whether edges that must
be matched by the corresponding parsing procedure occur as competing nodes in
the analysis graph. Edges can be freely chosen if there are no competing nodes.

The table below summarizes test results of the PTD analysis of some HR
grammars. The columns under “Grammar” indicate the size of the grammar
in terms of the maximal arity of nonterminals (A), number of nonterminals
(N), and number of rules (R). Column “Profiles” shows the maximal number
of profiles of nonterminals. Column “PTD” indicates whether the respective
grammar is PTD parsable. In all cases the parsers actually run in linear time.
The columns under “Analysis” report on the time in milliseconds that the tasks
Neighbor-determined start nodes (SN), Neighbor-determined rule choice (RC),
and Free edge choice (FC) took on a MacBook Air (2 GHz Intel Core i7, Java
1.8.0). Of course, as mentioned in the introduction, many HR languages are

Predictive Top-Down Parsing for Hyperedge Replacement Grammars 33

not PTD parsable. In fact, this includes polynomial time parsable languages
such as structured flowcharts and series-parallel graphs [8]. They require to
inspect the neighborhood in unbounded depth in order to choose between rules.

Grammar Pro- Analysis [ms]
Example A N R files PTD SN RC FC
Trees (Example 1) 1 2 3 1 yes 96 19 11
anbncn (Example 2) 4 2 3 1 yes 133 25 22
Palindromes (Theorem 2) 2 2 5 1 yes 129 23 14
Arithmetic expression 2 6 9 2 yes 351 90 52
Nassi-Shneiderman diagrams [14] 4 4 7 3 yes 440 80 85
Series-parallel graphs 2 2 4 2 no 132 34 24
Structured flowcharts 2 4 7 2 no 326 60 50

6 Conclusions

We have introduced predictive top-down parsing for HR grammars, in analogy to
SLL(1) string parsers, and shown that these parsers are of quadratic complexity.
The analysis of HR grammars for PTD parsabilty has been implemented, and
evaluated with several examples, including the grammars presented in this paper.

Related work on parsing includes precedence graph grammars based on node
replacement [6,10]. These parsers are linear, but fail for some PTD parsable lan-
guages, e.g., the trees in Example 1. According to our knowledge, early attempts
to implement LR-like graph parsers [13] have never been completed. Positional
grammars [3] are used to specify visual languages, but can also describe certain
HR grammars. They can be parsed in an LR-like fashion, but many decisions are
deferred until the parser is actually executed. The CYK-style parsers for unre-
stricted HR grammars (plus edge-embedding rules) implemented in DiaGen [14]
work for practical languages, although their worst-case complexity is exponential.
It is unclear whether more general grammars, like layered graph grammars [16] can
be used in practice, even with the improved parser proposed in [7].

Future work has already started: the analysis of PTD parsability can actu-
ally check the contextual HR grammars studied in [5], where the left-hand side
of a rule may contain isolated (“contextual”) nodes that can be used on the
right-hand side. Contextual HR grammars allow to generate languages such as
the set of all connected graphs and all acyclic graphs, which cannot be defined
by HR grammars and are more useful for practical modeling of graph languages.
See [5] for further examples, which all turn out to be PTD-parsable. We also
conjecture that it is possible to handle contextual HR rules equipped with pos-
itive or negative application conditions involving path expressions, as discussed
in [9], without loosing too much of the efficiency of PTD parsing. Finally, we
hope that deterministic bottom-up parsers of contextual HR grammars (in anal-
ogy to SLR(1) string parsing) can be developed using concepts similar to those
presented in this paper.

34 F. Drewes et al.

References

1. Aalbersberg, I., Ehrenfeucht, A., Rozenberg, G.: On the membership problem for
regular DNLC grammars. Discrete Appl. Math. 13, 79–85 (1986)

2. Chiang, D., Andreas, J., Bauer, D., Hermann, K. M., Jones, B., Knight, K.: Parsing
graphs with hyperedge replacement grammars. In: Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics, Sofia, Bulgaria. Long
Papers, vol. 1, pp. 924–932, August 2013

3. Costagliola, G., De Lucia, A., Orefice, S., Tortora, G.: A parsing methodology for
the implementation of visual systems. IEEE Trans. Softw. Eng. 23(12), 777–799
(1997)

4. Drewes, F.: Recognising k-connected hypergraphs in cubic time. Theor. Comput.
Sci. 109, 83–122 (1993)

5. Drewes, F., Hoffmann, B.: Contextual hyperedge replacement. Acta Informatica,
31 (2015, accepted for publication). doi:10.1007/s00236-015-0223-4

6. Franck, R.: A class of linearly parsable graph grammars. Acta Informatica 10(2),
175–201 (1978)

7. Fürst, L., Mernik, M., Mahnič, V.: Improving the graph grammar parser of Rekers
and Schürr. IET Softw. 5(2), 246–261 (2011)

8. Habel, A. (ed.): Hyperedge Replacement: Grammars and Languages. LNCS, vol.
643. Springer, Heidelberg (1992)

9. Hoffmann, B., Minas, M.: Defining models - meta models versus graph grammars.
In: Proceedings of the 6th Workshop on Graph Transformation and Visual Mod-
eling Techniques (GT-VMT 2010), Electronic Communications of the EASST, 29,
Paphos, Cyprus (2010)

10. Kaul, M.: Practical applications of precedence graph grammars. In: Ehrig, H., Nagl,
M., Rozenberg, G., Rosenfeld, A. (eds.) Graph-Grammars and Their Application
to Computer Science. LNCS, vol. 291, pp. 326–342. Springer, Heidelberg (1986)

11. Lautemann, C.: The complexity of graph languages generated by hyperedge
replacement. Acta Informatica 27, 399–421 (1990)

12. Lewis II, P.M., Stearns, R.E.: Syntax-directed transduction. JACM 15(3), 465–488
(1968)

13. Ludwigs, H.J.: A LR-like analyzer algorithm for graphs. In: Wilhelm, R. (ed.) GI
- 10. Jahrestagung: Saarbrücken, 30. September - 2. Oktober 1980. Informatik-
Fachberichte, vol. 33, pp. 321–335. Springer, Heidelberg (1980)

14. Minas, M.: Diagram editing with hypergraph parser support. In: Proceedings of
1997 IEEE Symposium on Visual Languages (VL 1997), Capri, Italy, pp. 226–233
(1997)

15. Parikh, R.J.: On context-free languages. JACM 13(4), 570–581 (1966)
16. Rekers, J., Schürr, A.: Defining and parsing visual languages with layered graph

grammars. J. Vis. Lang. Comput. 8(1), 27–55 (1997)
17. Vogler, W.: Recognizing edge replacement graph languages in cubic time. In: Ehrig,

H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph Grammars and Their Application
to Computer Science. LNCS, vol. 532, pp. 676–687. Springer, Heidelberg (1991)

	Predictive Top-Down Parsing for Hyperedge Replacement Grammars
	1 Introduction
	2 Hyperedge Replacement Grammars
	3 Predictive Top-Down Parsing: From Strings to Graphs
	4 Predictive Top-Down Parsability
	5 Grammar Analysis
	6 Conclusions
	References

