
Local Search-Based Pattern Matching Features
in EMF-IncQuery

Márton Búr1,2, Zoltán Ujhelyi1,2(B), Ákos Horváth1,2, and Dániel Varró1

1 Department of Measurement and Information Systems,
Budapest University of Technology and Economics, Magyar Tudósok krt. 2,

Budapest 1117, Hungary
marton.bur@inf.mit.bme.hu, varro@mit.bme.hu

2 IncQuery Labs Ltd., Bocskai út 77-79, Budapest 1113, Hungary
{ujhelyi,horvath}@incquerylabs.com

Abstract. Graph patterns provide a declarative formalism to describe
model queries used for several important engineering tasks, such as
well-formedness constraint validation or model transformations. As
different pattern matching approaches, such as local search or incre-
mental evaluation, have different performance characteristics (smaller
memory footprint vs. smaller runtime), a wider range of practical prob-
lems can be addressed. The current paper reports on a novel feature
of the EMF-IncQuery framework supporting local search-based pat-
tern matching strategy to complement the existing incremental pattern
matching capabilities. The reuse of the existing pattern language and
query development environment of EMF-IncQuery enables to select the
most appropriate strategy separately for each pattern without any modi-
fications to the definitions of existing patterns. Furthermore, a graphical
debugger component is introduced that visualizes the execution of the
search process, helping to understand how complex patterns behave. This
tool paper presents the new pattern matching feature from an end users
viewpoint while the scientific details of the pattern matching strategy
itself are omitted. The approach is illustrated on a case study of auto-
mated identification of anti-patterns over program models created from
Java source code.

Keywords: Local search-based pattern matching · EMF-IncQuery ·
Integrated development environment

1 Introduction

Model queries form the underpinning of various engineering tasks, such as model
transformation, code generation or well-formedness validation. Declarative query
formalisms (such as graph patterns or OCL constraints) define queries at a high
level of abstraction allowing the use of different execution strategies such as local
search-based or incremental pattern matching.

This work was partially supported by the MONDO (EU ICT-611125) project.

c© Springer International Publishing Switzerland 2015
F. Parisi-Presicce and B. Westfechtel (Eds.): ICGT 2015, LNCS 9151, pp. 275–282, 2015.
DOI: 10.1007/978-3-319-21145-9 18



276 M. Búr et al.

Experimental evaluations of the two strategies (like in [1]) demonstrated
that incremental approaches, which rely on caching the result sets of queries,
provide an order of magnitude faster re-evaluation time, but they also result in
larger memory footprint and longer initialization phase compared to local search-
based pattern matching. These different performance characteristics makes var-
ious strategies or approaches most useful for different kinds of problems.

While EMF-IncQuery has traditionally been tailored to provide incremen-
tal evaluation over graphs captured as EMF models, these experimental find-
ings have triggered us to extend the EMF-IncQuery framework with a new
feature to support local search based evaluation for queries integrated to the
query development environment, which is reported in the current paper. The
reuse of the existing pattern language and query development environment of
EMF-IncQuery enables to select the most appropriate strategy separately for
each pattern without any modifications to the definitions of existing patterns. In
addition, we also report on a prototype graphical debugger to trace local search
based evaluation. The novel features will be presented in the context of a case
study aiming to detect anti-patterns in Java programs [1].

The rest of the paper is structured as follows. Sect. 2 gives a brief overview of
graph patterns and EMF-IncQuery that is followed in Sect. 3 by an overview
of local search based pattern matching. Then Sect. 4 presents the graphical
debugger for pattern matching. Sect. 5 summarizes related work, and Sect. 6
concludes the paper discussing directions for future work.

2 Model Queries with EMF-IncQuery

2.1 Running Example: Anti-pattern Detection in Java Programs

In the current paper we will use the automated detection of coding anti-patterns
over Java programs to demonstrate the local search support. As metamodel, the
Java metamodel of the Columbus framework is used, together with a set of
anti-patterns introduced in [1].

Example 1. Figure 1a presents a Java code snippet. The code consists of a public
method called equals with a single parameter and a call of this method using a
Java variable srcVar. This snippet shows an anti-pattern: the call equals can
result in an exception if the variable srcVar is null. However, by swapping the
literal parameter with the variable operand, no such exception could occur.

The model representation of this snippet is depicted in Fig. 1b as a typed
graph. Each node represents an element of the abstract syntax graph of the Java
model. To ease readability, several attribute values were omitted which are not
required to understand the contributions and examples in this paper (such as
the final flag of parameter definitions).

2.2 Graph Patterns

A graph pattern consists of structural constraints prescribing the interconnec-
tion between nodes and edges of given types and expressions to define attribute



Local Search-Based Pattern Matching Features in EMF-IncQuery 277

Fig. 1. ASG representation of Java code

constraints. Both constraints can be illustrated as a graph where the nodes are
typed as classes from the metamodel, while the edges prescribe the required
connections of selected types between them. Pattern parameters are a subset of
nodes and attributes interfacing the model elements interesting from the per-
spective of the pattern user. A match of a pattern in a model M is a binding
of all pattern parameters to model elements of M that satisfies all constraints
expressed by the pattern.

Complex patterns may reuse other patterns by different types of pattern com-
position constraints. A (positive) pattern call identifies a subpattern (or called
pattern) that is embedded as an additional set of constraints while a negative
pattern call invalidates cases when a match of the referred pattern is found.

Example 2. Figure 2 captures the “String Literal as Compare Parameter” prob-
lem as a graph pattern using the textual syntax of EMF-IncQuery that
describes a case when a String literal is used as the argument of an equals
call.

Fig. 2. Graph pattern representation of the string literal compare anti-pattern

The pattern consists of four variables : inv (of type MethodInvocation), m (of
type NormalMethod), op (of type Expression) and arg (of type StringLiteral).
The constraint in Line 6 represents a typed reference invokes between the model
elements selected by inv and m, and a similar operand reference is required
between variables m and op. Variable m is part of an attribute constraint in Line 8:
its name attribute has to be the literal "equals". To ensure that the operand op
of the method invocation is not a Literal, a negative pattern call is used in Line
9. Finally, to confirm that the invoked method has only a single parameter, the



278 M. Búr et al.

number of arguments are counted in Line 11 by counting the number of matches
of the subpattern argument and checking if it equals to 1.

2.3 The Query Development Environment of IncQuery

EMF-IncQuery provides an integrated development environment where graph
patterns can be created and debugged [2]. The environment consists of three
major components: (1) a pattern editor to create queries, (2) the Query Explorer
to display the results of various queries, and (3) a code generator creating a
pattern matcher that can be integrated into existing Java (EMF) applications.

The Xtext-based pattern editor helps query development with advanced fea-
tures such as syntax highlighting, code completion and well-formedness valida-
tion rules that check for common developer mistakes.

The Query Explorer is the main debugging component of EMF-IncQuery
as it continuously evaluates the developed queries with changes of the model
from a model editor, it is possible to find problematic cases of complex queries
by modifying the models in the existing model editors, and watching for the
expected query result changes. The Query Explorer relies on the pattern inter-
preter support of EMF-IncQuery instead of the generated code itself. This
eases the development and debugging of graph patterns, as changes in the pat-
terns can be evaluated in the development environment directly.

3 Local-Search Pattern Matching in IncQuery

3.1 Executing a Local Search Based Matching Strategy

Local search based pattern matching (LS) is commonly used in graph transfor-
mation tools [3,4] starting the match process from a single node and extending
it step-by-step with the neighboring nodes and edges following a search plan.

Local search based pattern matching consists of four steps. (1) At first, in a
preprocessing step the patterns are normalized : the constraint set is minimized,
variables that are always equal are unified and positive pattern calls are flat-
tened. These normalized patterns are evaluated by (2) the query planner, using
a specified cost estimation function to provide search plans [5]: totally ordered
lists of search operations used to ensure that the constraints from the pattern
definition hold. From a single pattern specification multiple search plans can be
derived, thus pattern matching includes (3) plan selection based on the input
parameter binding and model-specific metrics. Finally, (4) the search plan is
executed by a plan interpreter evaluating the different operations of the plans.
If an operation fails, the interpreter backtracks; if all operations are executed
successfully, a match is found.

Example 3. To evaluate the String Literal Compare pattern from Fig. 2, a pos-
sible 8-step search plan is presented in Fig. 3a. First, (1) all NormalMethod
instances are iterated over to (2) check for their name. Then a (3) backward
navigation operation is executed to find all corresponding method invocations



Local Search-Based Pattern Matching Features in EMF-IncQuery 279

to check (4–6) its argument and (7) operand references. At the last step, (8)
a negative pattern call is executed by starting a new plan execution for the
negative subplan, but only looking for a single solution. Note that the positive
pattern call from Line 10 is flattened, resulting in operation (5), while the match
counter and negative pattern calls from Line 11 and Line 9 are represented by
pattern calls in operations (4) and (8), respectively.

Figure 3b illustrates the execution of the search plan on the simple instance
model introduced previously. First, the NormalMethod is selected, then its name
attribute is validated, followed by the search for the MethodInvocation. At this
point, following the argument reference made it sure that only a single element
is available, then the StringLiteral is found and checked. Finally, the operand
reference is followed, and a NAC check is executed using a different search plan.

Fig. 3. A search plan for the string literal compare pattern

3.2 Local Search Support in IncQuery

The local search feature of EMF-IncQuery relies on the existing features cre-
ated for incremental pattern matching as much as possible. This includes the
reuse of both the pattern language (together with its editor), pattern interpreter
and the code generator framework itself. Furthermore, the generated local search
based matchers provide code that is a drop-in replacement for existing, incre-
mental ones (with the notable exception of not providing change notifications for
the result set). The reuse of the pattern language with a common runtime API
allows to specify the patterns once, while being able to select the corresponding
strategy later based on the constraints of the created applications.

The search planner component relies on a cost function that estimates how
expensive is to evaluate a selected constraint based on the already bound vari-
ables. Currently, only a simplistic cost function is implemented, but it was
designed to be extensible with additional strategies, such as the dynamic pro-
gramming based approach in [5].

Additionally, the local search-based pattern matcher can optionally reuse
the model indexer of EMF-IncQuery for iterating over all instances of model



280 M. Búr et al.

elements or traverse model edges backwards. This option allows fine-grained
performance tuning of pattern matching, as reusing model indexes can greatly
reduce search time, while requiring much less memory than Rete-based incre-
mental matcher. In [1] we have evaluated the performance of search-based and
incremental approaches, and found that incremental graph pattern matching can
outperform other approaches in case of repeated execution of the same pattern,
as search times are an order of magnitude smaller, at the cost of a longer initial-
ization period and additional increase in memory cost by a factor of 10 − 15.

4 Debugging Model Queries with Local Search

The high-level, declarative nature of graph patterns sometimes results in hard
to understand corner cases. In such cases simply looking at match results, as
supported by the Query Explorer, does not provide enough details to locate the
source of the problem. To support this use case, the development environment
of EMF-IncQuery has been extended with a Local Search Debugger view that
follows through the execution of a search plan created for a pattern over a model.

As constraints of graph patterns are often not evaluated in the order of their
definitions, it is hard to see which constraints are already evaluated. On the other
hand, the ordered search operations visualize the status of pattern matching,
and can be traced back to the source query. The view can also be used for query
optimization, similar to explain plans [6] used for optimizing SQL queries.

As Fig. 4 depicts, the view has three distinct parts to display information
about the execution. At the upper left corner (a) the search plan itself is shown,
including the plans created for called patterns. Each line represents a search
operation; child nodes are operations of a called pattern. The current status
of the execution is depicted with a set of icons: check marks are assigned to
executed operations, question marks are assigned to operations not yet started,
while the current operation is denoted with the ‘Run’ symbol.

Fig. 4. The local search debugger



Local Search-Based Pattern Matching Features in EMF-IncQuery 281

In the bottom left corner (b) a set of tables is presented summarizing the
found matches. The tables include the found matches of all patterns in different
tables, including both parameters and local variables. Finally, in the right side
(c) of the view, a graph representation is provided for the currently evaluated
(partial) match, showing the current substitutions for the pattern variables along
with the relationships between them.

Finally, to control the execution, standard debugging operations are avail-
able [7]: breakpoints can be assigned to search operations, and both step-by-step
and continuous execution modes are available.

This view complements the debugging capabilities of the Query Explorer,
as the latter one is useful for identifying problematic cases by providing live
feedback when the model changes, the debugger visualizes the detailed execution
of the search. The local search algorithm, in our experience, works similarly as a
query developer reasons about a graph pattern, thus it eases the understanding
of complex graph patterns.

5 Related Work

Local search-based pattern matching is commonly used in graph transformation
tools, such as FUJABA [3], GrGen.NET [4] or FunnyQT [8]. The main difference
between the various approaches are the supported modeling backends, the search
planner algorithm and the cost estimation used during planning. For example,
in [5] an adaptive algorithm is proposed that uses dynamic programming to
estimate plan costs.

The debugging of graph transformations is already well-researched [7];
GrGen.NET [4] already incorporates a visual debugger for its transformation,
that can visualize the models being transformed, and can highlight elements
matched by a graph pattern; however, it does not support stepping through the
pattern matching process manually.

The Eclipse OCL tool [9] reuses the debugger interface of Eclipse for stepping
through models, including following the search steps directly in the OCL editor.
The direct reuse of this debugging approach is not optimal for graph patterns,
where, as opposed to OCL, the order of execution does not follow the order of
definitions, making it hard to understand which elements were hidden.

In the database community, several development environments were proposed
for SQL queries [6,10], providing query editing and evaluation support. Further-
more, to give insight to the performance of queries, visualizations are available
of the execution plans of the queries, such as Graphical Explain Plans in case of
Oracle Enterprise Manager.

The features of EMF-IncQuery introduced in the paper are novel in the
sense that query definitions can be evaluated using either incremental or local
search based techniques, and the corresponding tools for debugging incremental
and local search strategies nicely complement each other.



282 M. Búr et al.

6 Conclusion and Future Work

In this paper, we described a novel feature of the EMF-IncQuery framework,
the support of local search-based pattern matching in addition to the previously
available incremental evaluation. By reusing the existing pattern language and
query development environment, it is possible to select the most appropriate
strategy without modifications to already developed patterns. Furthermore, we
presented a prototype graphical debugger that helps understanding complex
patterns by visualizing the execution of the search process. Both contributions
are included in the EMF-IncQuery project.

In the future, we plan to improve the local search support by providing a
model-sensitive planner for local search [5], that is expected to enhance the per-
formance. Another promising idea is the support of hybrid pattern matching [11]:
by mixing incrementally evaluated and local search-based pattern matching, it
is possible to fine-tune the performance characteristics (memory footprint or
execution time), extending the range of problems that can be addressed.

References

1. Ujhelyi, Z., Szõke, G., Ákos Horvth, Csiszár, N.I., Vidács, L., Varró, D., Ferenc,
R.: Performance comparison of query-based techniques for anti-pattern detection.
Information and Software Technology (0) (2015) - Accepted

2. Ujhelyi, Z., Bergmann, G., Hegeds, Á., Horváth, Á., Izsó, B., Ráth, I., Szatmári, Z.,
Varró, D.: EMF-Incquery: an integrated development environment for live model
queries. Sci. Comput. Program. 98(1), 80–99 (2015)

3. Nickel, U., Niere, J., Zündorf, A.: Tool demonstration: The FUJABA environ-
ment. In: Proceedings of the 22nd International Conference on Software Engineer-
ing (ICSE 2000), pp. 742–745. ACM Press, Limerick, Ireland (2000)

4. Geiß, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A.: GrGen: a fast spo-
based graph rewriting tool. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro,
L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 383–397. Springer,
Heidelberg (2006)

5. Varró, G., Deckwerth, F., Wieber, M., Schürr, A.: An algorithm for generating
model-sensitive search plans for emf models. In: Hu, Z., de Lara, J. (eds.) ICMT
2012. LNCS, vol. 7307, pp. 224–239. Springer, Heidelberg (2012)

6. Oracle: Enterprise Manager (2015). http://www.oracle.com/technetwork/oem/
enterprise-manager/overview/index.html

7. Seifert, M., Katscher, S.: Debugging triple graph grammar-based model transfor-
mations. In: Fujaba Days, pp. 19–25 (2008)

8. Horn, T.: Model querying with funnyQT. In: Duddy, K., Kappel, G. (eds.) ICMB
2013. LNCS, vol. 7909, pp. 56–57. Springer, Heidelberg (2013)

9. Eclipse OCL Project: MDT-OCL website (2015). https://projects.eclipse.org/
projects/modeling.mdt.ocl

10. IBM Software: InfoSphere Data Architect (2015). http://www-01.ibm.com/soft
ware/data/optim/data-architect/

11. Horváth, Á., Bergmann, G., Ráth, I., Varró, D.: Experimental assessment of com-
bining pattern matching strategies with VIATRA2. Int. J. Softw. Tools Technol.
Transfer 12(3–4), 211–230 (2010)

http://www.oracle.com/technetwork/oem/enterprise-manager/overview/index.html
http://www.oracle.com/technetwork/oem/enterprise-manager/overview/index.html
https://projects.eclipse.org/projects/modeling.mdt.ocl
https://projects.eclipse.org/projects/modeling.mdt.ocl
http://www-01.ibm.com/software/data/optim/data-architect/
http://www-01.ibm.com/software/data/optim/data-architect/

	Local Search-Based Pattern Matching Features in EMF-IncQuery
	1 Introduction
	2 Model Queries with EMF-IncQuery 
	2.1 Running Example: Anti-pattern Detection in Java Programs
	2.2 Graph Patterns
	2.3 The Query Development Environment of IncQuery

	3 Local-Search Pattern Matching in IncQuery
	3.1 Executing a Local Search Based Matching Strategy
	3.2 Local Search Support in IncQuery

	4 Debugging Model Queries with Local Search
	5 Related Work
	6 Conclusion and Future Work
	References


