
Tool Support for Multi-amalgamated Triple
Graph Grammars

Erhan Leblebici(B), Anthony Anjorin, and Andy Schürr

Technische Universität Darmstadt, Darmstadt, Germany
{erhan.leblebici,anthony.anjorin,andy.schuerr}@es.tu-darmstadt.de

Abstract. We present in this paper our tool support with eMoflon
(www.emoflon.org) to incorporate the concept of multi-amalgamation
into Triple Graph Grammars (TGGs). Multi-amalgamation provides a
mechanism similar to a foreach loop for graph transformation rules by
consolidating multiple applications of rules depending on how many rule
applications are available at transformation time. TGGs are a well-known
technique used to specify bidirectional model transformation, where con-
sistency is described via triple rules that build up source, target, and
correspondence models simultaneously. Combining both techniques in
eMoflon yields a TGG implementation that can handle bidirectional con-
sistency relations between source and target elements, whose number is
unknown at design time and can only be determined at transformation
time. Our goal with this extension is to tackle transformation scenarios
that are currently beyond the capabilities of classical TGGs.

Keywords: Triple graph grammars · Multi-amalgamation · eMoflon

1 Introduction and Motivation

Triple Graph Grammars (TGGs) [14] are a declarative and rule-based technique
to specify bidirectional model transformation, which plays a crucial role in Model-
Driven Engineering (MDE). Formalizing models as graphs, a TGG comprises
triple rules that state how to build up source and target graphs connected via
a correspondence graph. Hence, a TGG is a constructive grammar for consistent
triples of graphs. From this grammar, forward and backward transformation rules
are derived to realize model transformation in the respective direction.

A crucial limitation when specifying consistency with triple rules is the fact
that they are graph patterns of fixed size, requiring and creating a constant
number of related elements in a single application of the respective rule. This
is not always sufficient in practice as the number of involved elements for the
desired notion of consistency might depend on concrete models and, therefore,
be impossible to determine at specification time. Intuitively, a foreach loop-like
feature is missing to specify consistency for an arbitrary number of elements.

The expressiveness issue with fixed rule patterns as well as a formal solution
to the problem, namely amalgamation, have already been explored in classi-
cal graph transformation. In [1], amalgamation is introduced as combining the
c© Springer International Publishing Switzerland 2015
F. Parisi-Presicce and B. Westfechtel (Eds.): ICGT 2015, LNCS 9151, pp. 257–265, 2015.
DOI: 10.1007/978-3-319-21145-9 16

www.emoflon.org


258 E. Leblebici et al.

applications of two rules (called multi-rules) over the shared application of an
embedded subrule (called kernel rule). This is generalized in [15] to combin-
ing n multi-rule applications, and is formalized in [5] as multi-amalgamation.
With multi-amalgamation, transformations are not specified via plain rules but
via interaction schemes that contain a kernel rule and an arbitrary number of
multi-rules that embed the kernel rule. Multi-rules are consolidated over the ker-
nel to a multi-amalgamated rule at transformation time depending on how many
rule applications over the same kernel are available for a concrete model.

To the best of our knowledge, existing TGG implementations neither support
multi-amalgamation nor provide a similar means to overcome the limitations of
fixed rule patterns. In this paper, we tackle this gap from a practical perspective
and report on our tool support for multi-amalgamated TGGs, i.e., TGGs that
are specified via interaction schemes. Our goal is to increase the capabilities of
our TGG implementation eMoflon (www.emoflon.org) by utilizing our formal
results from [11]. The practical challenges here are to (1) extend the visual syn-
tax appropriately for multi-amalgamation, and (2) handle multi-amalgamated
rules without a high impact on scalability. Moreover, we provide a quantitative
evaluation (runtime measurements) of our implementation and compare it with
our choice of another bidirectional tool, namely medini QVT [9]. A demo session
with our running example is available via a virtual machine1 in SHARE [6].

The rest of the paper is structured as follows: After introducing a running
example that is beyond the capabilities of classical TGGs in Sect. 2, we intro-
duce in Sect. 3 multi-amalgamated TGGs with eMoflon by solving the running
example. In Sect. 4, we discuss related work and evaluate our implementation
quantitatively with a tool comparison. Finally, Sect. 5 concludes the paper.

2 Running Example

As our running example, we use an excerpt of a transformation between class
diagrams and their HTML-like documentations (e.g., Javadoc). In particular,
we focus on transforming inheritance links in class diagrams to hyperlinks in
documents (and vice versa). The most important requirement with respect to
our contribution is that hyperlinks must be created in the documents for direct
super classes (as from now referred to as direct hyperlinks) as well as for the
transitive closure of all super classes (referred to as transitive hyperlinks). For
simplicity, we allow multiple inheritance but forbid repeated inheritance, i.e., we
assume that a transitive hyperlink is not induced over multiple ways. Figure 1
shows a class diagram and its consistent documentation.

Obviously, the number of transitive hyperlinks to be created when trans-
forming an inheritance link depends on the concrete class diagram. Consider
the inheritance link between Employee and Person in Fig. 1 and assume all other
parts of the class diagram is documented consistently. Besides creating a direct
and a transitive hyperlink from the subclass document (Employee) to the super
1 Direct link to the virtual machine: http://is.ieis.tue.nl/staff/pvgorp/share/

?page=ConfigureNewSession\&vdi=XP-TUe TGG-Comparison eMoflonEMF.vdi.

www.emoflon.org
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=XP-TUe_TGG-Comparison_eMoflonEMF.vdi
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=XP-TUe_TGG-Comparison_eMoflonEMF.vdi


Tool Support for Multi-amalgamated Triple Graph Grammars 259

Fig. 1. A class diagram and its corresponding documentation

class document (Person), three additional steps must be repeated to create addi-
tional transitive hyperlinks: (S.1) from the subclass document to all transitive
super class documents (from Employee to Serializable and Observable), (S.2) from
all transitive subclass documents to the super class document (from Worker
and Manager to Person), and (S.3) from all transitive subclass documents to all
transitive super class documents (from Worker and Manager to Serializable and
Observable). While creating ten hyperlinks in total for our concrete case, this
number ranges in general between two and arbitrarily many depending on the
class diagram, making a consistency specification with fixed patterns impossible.

3 Multi-amalgamated TGGs with eMoflon

In this section, we specify a TGG using multi-amalgamation with eMoflon, that
is indeed able to describe the consistency relation required for our example. All
diagrams except the last one in this section are specified with eMoflon’s frontend.

To the left of Fig. 2, a triple of metamodels for our running example is
depicted. The source metamodel describes class diagrams consisting of classes
with inheritance links (specified via the reference super). Accordingly, the target
metamodel describes hyperlinked documents. We distinguish between directLinks
representing hyperlinks for a direct inheritance relation and allLinks representing

Fig. 2. The metamodel triple and a triple rule for the running example



260 E. Leblebici et al.

hyperlinks for the transitive closure of inheritance relations. Finally, the hexagon-
shaped correspondences relate class diagrams with their documentation.

To the right of Fig. 2, an exemplary triple rule, namely CtoD (Class to Doc-
ument), is shown. A triple rule matches a pre-condition (depicted in black) and
extends it to a post-condition by creating new elements (depicted in green with
a ++ mark-up). The triple rule CtoD requires the root elements2, i.e., a related
pair of a class diagram and a documentation model, and creates a related pair
of a class and a document. The attribute condition eq(c.name,d.name) ensures
that the names of the class and the document are equal.

Next, we describe how an inheritance link and the
related hyperlinks, whose number depends on a con-
crete case, are created consistently. The main idea is to
specify consistency as an interaction scheme of rules
instead of plain rules. An interaction scheme, as shown
in the diagram to the right, consists of a kernel rule,
in our case ItoH 0 (Inheritance to Hyperlink), and a set
of multi-rules, in our case ItoH 1, ItoH 2, and ItoH 3, that include the kernel
rule via a so-called kernel morphism, and accomplish an additional remainder.
Figure 3 depicts the internal structures of these rules. Multi-rule nodes originat-
ing from the kernel rule can be distinguished via a gray shading. White nodes
in a multi-rule, and consequently their incident edges, represent the remainder.
While the remainders in Fig. 3 are only in the target domain, remainders over
three domains (in the same multi-rule) are possible.

Fig. 3. A kernel rule and three multi-rules

The kernel rule ItoH 0 requires two related pairs of classes and documents,
creating an inheritance in the source side and two hyperlinks in the same direc-
tion in the target side (a reference directLinks as well as a reference allLinks are

2 Due to space limitations, we omit the simple rule that creates these root elements.



Tool Support for Multi-amalgamated Triple Graph Grammars 261

created). The multi-rules ItoH 1, ItoH 2, and ItoH 3 include the kernel rule and
handle the three additional steps S.1, S.2, and S.3, respectively, as discussed in
the previous section. Each of them creates one additional transitive hyperlink in
the remainder (a reference of type allLinks) between two documents as long as
they are indirectly connected by the kernel part. That is, transitive hyperlinks
for an arbitrary depth of inheritance relations can be created.

Remark : Although a multi-rule includes the kernel rule completely according to
its formal definition [1,5], we allow a compact syntax by reducing the kernel part
of a multi-rule to a minimal interface that is sufficient to specify the remainder.
In Fig. 4, we depict ItoH 1, ItoH 2, and ItoH 3 in this way by repeating only the
target side of the kernel rule rather than its entire pattern. This is useful for
maintainability as refactorings in the kernel rule do not break the compliance of
the multi-rules as long as the changes do not concern the remainder.

Fig. 4. Compact syntax for multi-rules

At transformation time, the multi-rules of an interaction scheme are consol-
idated to a multi-amalgamated rule. The size of this consolidation depends on
how many applications of the multi-rules are available that agree on the same
kernel match. If there does not exist any multi-rule applications but only a ker-
nel rule application, the multi-amalgamated rule is identical to the kernel rule.
Considering again the repeated steps for the inheritance link between the classes
Person and Emplyoee in Fig. 1, the following multi-rule applications are avail-
able for our interaction scheme: (S.1) ItoH 1 twice while matching Serializable
and Observable in the remainder, (S.2) ItoH 2 twice while matching Worker and
Manager in the remainder, and (S.3) ItoH 3 four times while matching all four
possible combinations of Serializable and Observable with Worker and Manager in
the remainder. Figure 5 depicts the resulting multi-amalgamated rule. For pre-
sentation purposes, nodes matching the same element are merged to one node.

Note that such a (possibly very large) multi-amalgamated rule is not specified
explicitly by the transformation designer but accomplished by eMoflon at trans-
formation time given an interaction scheme and a model. From a consistency
point of view, the multi-amalgamated rule in Fig. 5 relates one inheritance link
to ten hyperlinks (nine allLinks and one directLinks). In the forward direction,
therefore, it translates one inheritance link to ten hyperlinks. Analogously, ten
hyperlinks are translated to one inheritance link in the backward direction.



262 E. Leblebici et al.

Fig. 5. The induced multi-amalgamated rule for our example

Technically, eMoflon compiles interaction schemes to programmed graph
transformation in order to realize transformations with multi-amalgamated rules.
This compilation is transparent to the user and enables the utilization of control
flow structures to find all occurrences of multi-rule matches at transformation
time. That is, the semantics of multi-amalgamated steps in eMoflon are defined
via maximal matchings comparable to a foreach loop, introduced on a formal
level in [11]. In each atomic transformation step, our governing control algorithm
applies a kernel rule and complements the remainders of all available multi-rule
applications. A plain triple rule without any interaction scheme forms therefore
the special case where there is no remainders to be complemented.

4 Related Work and Evaluation with Comparison

In this section, we discuss existing TGG implementations and other bidirectional
transformation tools with a focus on their support for a foreach construct. We
also provide a quantitative evaluation (runtime measurements) of our implemen-
tation and a comparison with one representative from the latter group.

TGG Tools: None of the TGG tools we are aware of support multi-amalgamation
or a similar means to overcome the limitations posed by fixed rule patterns. Their
different strategies when deriving forward and backward transformations have
arguably a strong impact on how multi-amalgamation can be realized with these
tools. Similar to eMoflon, MoTE [4] compiles TGGs to programmed graph trans-
formation but handles only plain rules without interaction schemes. EMorf [10]
and TGG-Interpreter [7] do not compile triple rules but interpret them directly
at transformation time. A possible support for multi-amalgamation, therefore,
requires the interpretation of multi-amalgamated rules constructed at transfor-
mation time. HenshinTGG [3], moreover, seems to be a promising TGG tool with
regard to our goals, as the underlying graph transformation engine (Henshin)
supports multi-amalgamation. This diverse tool support, beside the shared for-
mal foundation, helped TGGs gain acceptance in the context of MDE. Our aim



Tool Support for Multi-amalgamated Triple Graph Grammars 263

is to ensure that TGGs remain competitive compared to other bidirectional lan-
guages that do not necessarily suffer from the same expressiveness issues.

Bidirectional Tools with Support for Foreach : GroundTram [8], an
example for tools based on bidirectional programming, features bidirectionally
interpreted queries that are inherently not restricted to a constant number of
elements. The QVT (Query, View, Transformation) standard [13], in particular
QVT-R (QVT-Relations), features constructs such as forall, closure, or recursive
invocations to address relating arbitrarily many elements. Echo [12] and JTL [2]
support the QVT-R syntax and employ model finding techniques to explore con-
sistent pairs of models. These tools exhibit powerful expressiveness but face the
usual scalability problems of model finding. A scalable QVT-R implementation
is provided by medini QVT [9]. We managed to solve3 our example using medini
QVT with acceptable execution times and use this solution for a quantitative
comparison, evaluating the scalability of eMoflon in the process.

Runtime Measurements: In order to achieve realistic inputs for our runtime
measurements, we extracted class diagram models from the following packages in
our Eclipse installation: org.antlr, eMoflon tool suite, org.apache, OpenJDK, and
org.eclipse. We transformed our models in the forward and backward direction
with eMoflon and medini QVT, each time with a fresh Java Virtual Machine with
8 GB memory on an Intel i5@3.30 GHz. In Fig. 6, the median of 15 repetitions
is plotted for each case. The y-axis shows the time in seconds in a logarithmic
scale while the x-axis lists our models with their sizes. Note that the numbers of
inheritance links and hyperlinks represent the portion that is transformed via a
multi-amalgamated step in the forward and backward direction, respectively.

Fig. 6. Runtime measurement results with eMoflon and medini QVT

While both tools exhibit similar execution times for small and mid-sized
models, eMoflon outperforms medini QVT in big-sized models with a factor of
up to 20. In all cases, eMoflon’s backward transformations are slower than its
forward transformations. A factor of about 4 (2 min / 0.5 min) is observed for

3 Our medini QVT solution is also available in the virtual machine in SHARE.



264 E. Leblebici et al.

org.eclipse. This is explained by the greater number of elements (hyperlinks) to be
matched in the target model compared to the source model. By contrast, medini
QVT is faster in the backward direction than in the forward direction in case of
big-sized models (again, a factor of about 4 for OpenJDK). Apparently, enforcing
consistent hyperlinks is a more difficult task for the QVT-R engine than only
checking them. This contrast stresses the conceptual differences between the two
approaches. As a final remark, we believe to have closed an expressiveness gap
of TGGs with arguably good scalability. It remains to be seen via established
benchmarks how eMoflon is seated in a broader circle of bidirectional tools.

5 Conclusion and Future Work

We presented multi-amalgamated TGGs with eMoflon allowing us to specify con-
sistency of an unbounded number of elements. The achieved extension adheres
to the rule-based nature of TGGs and is at the same time scalable.

Our focus for future work is incremental model synchronization with multi-
amalgamated TGGs. We furthermore plan consistency checks via correspon-
dence creation between existing models using multi-amalgamated TGGs. Our
ultimate goal is mature tool support for concurrent engineering in an MDE con-
text.

References

1. Boehm, P., Fonio, H.R., Habel, A.: Amalgamation of graph transformations: a
synchronization mechanism. JCSS 34(2–3), 377–408 (1987)

2. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: JTL: a bidirectional and
change propagating transformation language. In: Malloy, B., Staab, S., van den
Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 183–202. Springer, Heidelberg
(2011)

3. Ermel, C., Hermann, F., Gall, J., Binanzer, D.: Visual modeling and analysis of
EMF model transformations based on triple graph grammars. ECEASST 54, 1–14
(2012)

4. Giese, H., Hildebrandt, S., Lambers, L.: Toward Bridging the Gap Between Formal
Semantics and Implementation of Triple Graph Grammars. Technical report 37,
Hasso-Plattner Institute (2010)

5. Golas, U., Ehrig, H., Habel, A.: Multi-amalgamation in adhesive categories. In:
Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol.
6372, pp. 346–361. Springer, Heidelberg (2010)

6. van Gorp, P., Mazanek, S.: SHARE: a web portal for creating and sharing exe-
cutable research papers. Procedia Comput. Sci. 4, 589–597 (2011)

7. Greenyer, J., Pook, S., Rieke, J.: Preventing information loss in incremental model
synchronization by reusing elements. In: France, R.B., Kuester, J.M., Bordbar, B.,
Paige, R.F. (eds.) ECMFA 2011. LNCS, vol. 6698, pp. 144–159. Springer, Heidel-
berg (2011)

8. Hidaka, S., Hu, Z., Inaba, K., Kato, H., Nakano, K.: GRoundTram: an integrated
framework for developing well-behaved bidirectional model transformations. In:
Alexander, P., Pasarenau, C.S., Hosking, J.G. (eds.) ASE 2011, pp. 480–483 (2011)



Tool Support for Multi-amalgamated Triple Graph Grammars 265

9. Ikv++: Medini QVT. http://projects.ikv.de/qvt
10. Klassen, L., Wagner, R.: EMorF - A tool for model transformations. ECEASST

54, 1–6 (2012)
11. Leblebici, E., Anjorin, A., Schürr, A., Taentzer, G.: Multi-Amalgamated Triple

Graph Grammars. In: Parisi-Presicce, F., Westfechtel, B., (eds.) ICGT 2015, LNCS
9151, pp. 87–103. Springer, Heidelberg (2015)

12. Macedo, N., Cunha, A.: Implementing QVT-R bidirectional model transformations
using alloy. In: Cortellessa, V., Varró, D. (eds.) FASE 2013 (ETAPS 2013). LNCS,
vol. 7793, pp. 297–311. Springer, Heidelberg (2013)

13. OMG: QVT Specification, V1.1 (2011). http://www.omg.org/spec/QVT/1.1/
14. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:

Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–
163. Springer, Heidelberg (1995)

15. Taentzer, G.: Parallel and distributed graph transformation : Formal Description
and Application to Communication-Based Systems. Ph.D. thesis (1996)

http://projects.ikv.de/qvt
http://www.omg.org/spec/QVT/1.1/

	Tool Support for Multi-amalgamated Triple Graph Grammars
	1 Introduction and Motivation
	2 Running Example
	3 Multi-amalgamated TGGs with eMoflon
	4 Related Work and Evaluation with Comparison
	5 Conclusion and Future Work
	References


