
Inductive Invariant Checking with Partial
Negative Application Conditions

Johannes Dyck(B) and Holger Giese

Hasso Plattner Institute at the University of Potsdam, Potsdam, Germany
{Johannes.Dyck,Holger.Giese}@hpi.de

Abstract. Graph transformation systems are a powerful formal model
to capture model transformations or systems with infinite state space,
among others. However, this expressive power comes at the cost of
rather limited automated analysis capabilities. The general case of
unbounded many initial graphs or infinite state spaces is only supported
by approaches with rather limited scalability or expressiveness. In this
paper we improve an existing approach for the automated verification
of inductive invariants for graph transformation systems. By employ-
ing partial negative application conditions to represent and check many
alternative conditions in a more compact manner, we can check examples
with rules and constraints of substantially higher complexity. We also
substantially extend the expressive power by supporting more complex
negative application conditions and provide higher accuracy by employ-
ing advanced implication checks. The improvements are evaluated and
compared with another applicable tool by considering three case studies.

1 Introduction

Graph transformation systems are a powerful formal model to capture model
transformations, systems with reconfiguration, or systems with infinite state
space, among others. However, the expressive power of graph transformation
systems comes at the cost of rather limited automated analysis capabilities.

While for graph transformation systems with finite state space of moder-
ate size certain model checkers can be used (e.g., [1,2]), in the general case of
unbounded many initial graphs or an infinite state space only support by tech-
niques with rather limited scalability or expressiveness exists.

There is a number of automated approaches that can handle infinite state
spaces by means of abstraction [3–6], but they are considerably limited in expres-
sive power as they only support limited forms of negative application conditions
at most. Tools only targeting invariants [7,8] also only support limited forms
of negative application conditions at most; in some cases additional limitations
concerning the graphs of the state space apply (cf. [7]). On the other hand the

This work was partially developed in the course of the project Correct Model Trans-
formations II (GI 765/1–2), which is funded by the Deutsche Forschungsgemein-
schaft.

c© Springer International Publishing Switzerland 2015
F. Parisi-Presicce and B. Westfechtel (Eds.): ICGT 2015, LNCS 9151, pp. 237–253, 2015.
DOI: 10.1007/978-3-319-21145-9 15

238 J. Dyck and H. Giese

SeekSat/ProCon tool [9,10] is able to prove correctness of graph programs with
respect to pre- and postconditions specified as nested graph constraints without
such limitations, but requires potentially expensive computations.

In this paper we present improvements of our existing approach introduced
in [8] for the automated verification of inductive invariants for graph transfor-
mation systems. Inductive invariants are properties whose validity before the
application of a graph rule implies their validity thereafter. Our general app-
roach involves the construction of a violation of the invariant after application
of a graph rule, represented in a symbolic way (target pattern), followed by
calculation of the symbolic state before rule application (source pattern). If a
violation can then be found in all such source patterns, the rule does not violate
the inductive invariant; otherwise, it does and the construction yields a witness.
Since inductive invariants are checked with respect to the capability of individ-
ual rules to violate or preserve them, this technique avoids the computationally
expensive computation of state spaces and can even handle infinite systems.

By employing partial negative application conditions to represent and check
many alternative conditions in a more compact manner, our approach is now able
to check examples with rules and constraints of substantially higher complexity.
Our improvements also provide higher accuracy by employing advanced implica-
tion checks and extend expressive power by supporting more complex negative
application conditions. While not as expressive as the general concept of nested
graph conditions [10], there is a significant number of examples [8,11,12] for
which the supported level of expressive power is sufficient. Of those, we employ
three case studies concerned with car platooning and model transformations to
evaluate our improvements and to compare them with the SeekSat/ProCon tool,
demonstrating that our approach shows better scalability for certain cases.

The paper is organized as follows: The formal foundations are introduced
in Sect. 2. Our restrictions and important constructions in our algorithms are
explained in Sect. 3. Section 4 presents the employed inductive invariant check-
ing scheme with its formal justification. Section 5 presents our evaluation, with
Sect. 6 then discussing related work. Finally, Sect. 7 provides a summary and
outlook on possible future work. Proofs and additional prerequisites concerning
the formal model can be found in the extended version [13].

2 Foundations

This section shortly describes foundations of graph transformation systems we
use in our verification approach. For additional definitions, we refer to [13].

The formalism used herein (cf. [14]) considers a graph G = (V,E, s, t) to
consist of sets of nodes, edges and source and target functions s, t : E → V .
A graph morphism f : G1 → G2 consists of two functions mapping nodes and
edges, respectively, that preserve source and target functions. In this paper we
put special emphasis on injective morphisms (or monomorphisms), denoted f :
G1 ↪→ G2, and consider typed graphs, i.e. graphs typed over a type graph TG by
a typing morphism type : G → TG and typed graph morphisms that preserve
the typing morphism. We also adopt the concept of partial monomorphisms.

Inductive Invariant Checking with Partial Negative Application Condition 239

Definition 1 (partial monomorphism ([9], adjusted)). A partial mono-
morphism is a 2-tuple p = 〈a, b〉 of monomorphisms a, b with
dom(a) = dom(b), dom(p) = codom(a), and codom(p) = codom(b). The inter-
face of p refers to the common domain of a and b, i.e., iface(p) = dom(a) =
dom(b). A partial monomorphism p = 〈a, b〉 is said to be a total monomorphism
b, if a is an isomorphism, i.e. a bijective morphism.

Thus, the partial monomorphism describes an inclu-
sion of a subgraph A′ of A in B. With partial monomorphisms
we can define partial application conditions, which, similar to
nested application conditions [10], describe conditions on mor-
phisms. Graph constraints, on the other hand, describe conditions
on graphs.

Definition 2 (partial application condition ([15], extended to partial
morphisms)). A partial application condition is inductively defined as follows:

1. For every graph P , true is a partial application condition over P .
2. For every partial monomorphism with a = 〈p, c〉 and monomor-

phisms p : P ′ ↪→ P and c : P ′ ↪→ C and every partial application condition
ac over C, ∃(a, ac) is a partial application condition over P .

3. For partial application conditions ac, aci over P with i ∈ I (for all index sets
I), ¬ac and

∧
i∈I aci are partial application conditions over P .

Satisfiability of partial application conditions is inductively defined as follows:

1. Every morphism satisfies true.
2. A morphism g : P → G satisfies ∃(a, ac) over P with with

a = 〈p, c〉 if there exists an injective q : C ↪→ G such that q ◦ c = g ◦ p and q
satisfies ac.

3. A morphism g : P → G satisfies ¬ac over P if g does not satisfy ac and g
satisfies

∧
i∈I aci over P if g satisfies each aci (i ∈ I).

We write g |= ac to denote that the morphism g satisfies ac.
Two application conditions ac and ac′ are equivalent, denoted by ac ≡ ac′,

if for all morphisms g : P → G, g |= ac if and only if g |= ac′.
If all morphisms involved in a partial application condition are total mor-

phisms we say that it is a total application condition.
∃p abbreviates ∃(p, true). ∀(p, ac) abbreviates ¬∃(p,¬ac).

Definition 3 (graph constraint [10]). A graph constraint is an application
condition over the empty graph ∅. A graph G then satisfies such a condition if
the initial morphism iG : ∅ ↪→ G satisfies the condition.

240 J. Dyck and H. Giese

Fig. 1. Partial and total conditions and graph constraint

Example 4. Figure 1 shows an example from a software refactoring context (cf.
[12]) with node types P , I, C, O standing for Package, Interface, Class, and
Operation, respectively. Although equivalent, the partial condition ac in Fig. 1(a)
is much more compact—and also less expensive in computation—when compared
to the total condition ac′ in Fig. 1(b). Both conditions describe the absence of an
implementing class and contained operation for the interface. Further, Fig. 1(c)
shows a graph constraint F , which forbids the existence of an interface without
an implementing class containing an operation.

Application conditions can also be used in graph rules, which are used to trans-
form graphs. Finally, a graph transformation system consists of a number of rules
and, in our case of typed graph transformation systems, of a type graph.

Definition 5 (rules and transformations [15]). A plain rule p = (L ←↩ K ↪→
R) consists of two injective morphisms K ↪→ L and K ↪→ R. L and R are called
left- and right-hand side of p, respectively. A rule b = 〈p, acL, acR〉 consists of a
plain rule p and a left (right) application condition acL (acR) over L (R).

L

(1) (2)

acL �

m |= acL

��

K
� r ���l��

��

R� acR

m′ |= acR

��
G D

�

r′
���

l′
�� H

A direct transformation consists of two pushouts (1) and (2) such that m |= acL

and m′ |= acR. We write G ⇒b,m,m′ H and say that m : L → G is the match of b in
G and m′ : R → H is the comatch of b in H. We also write G ⇒b,m H, G ⇒m H
or G ⇒ H to express that there exist m′, m or b such that G ⇒b,m,m′ H.

We also introduce the concept of a reduced rule, which basically is a rule with-
out certain elements irrelevant for a specific application via a match once the
applicability for that match is ensured. By using reduced rules, we can reduce
the effort necessary for verification, as will be shown later.

Definition 6 (reduced rule). Given a plain rule b = 〈L ←↩ K ↪→ R〉, we
define a reduced rule of b as a rule b∗ = 〈L∗ ←↩ K∗ ↪→ R∗〉 with injective
morphisms r+ : R∗ ↪→ R, l+ : L∗ ↪→ L, and k+ : K∗ ↪→ K such that for

Inductive Invariant Checking with Partial Negative Application Condition 241

all graphs G,H and injective morphisms m,m′ it holds that G ⇒b,m,m′ H ⇔
G ⇒b∗,m◦l+,m′◦r+ H.

Example 7. The figure above shows a plain rule describing the replacement of a
package containing an existing interface and class. In general, a corresponding
reduced rule (also depicted) can be constructed by choosing K∗ as any subgraph
of K whose images under l and r include all nodes attached to edges to be deleted
or created and then constructing L∗ and R∗ as the pushout complements of
〈k+, l〉 and 〈k+, r〉, respectively.

3 Restrictions, Constructions, and Implication

With the foundations established, we will now introduce certain restrictions that
apply to our specifications and the main constructions used by our algorithms.

The most important adjustments are concerned with the notion of rules and
application conditions. Since most application conditions that will be encoun-
tered in this paper have the same structure, we define a special kind of negative
application conditions without additional nesting. In comparison to our previous
work [8], this is a significant difference in expressive power, as [8] allowed only
negative application conditions with each having a node and an edge, at most.

Definition 8 (composed negative application condition). A composed
negative application condition is an application condition of the form
ac =

∧
i∈I ¬∃ai for partial monomorphisms ai of a common domain. An indi-

vidual condition ¬∃ai is called negative application condition. A (composed)
total negative application condition is a (composed) negative application condi-
tion including only total graph morphisms.

Our properties for verification are described by so-called forbidden patterns:

Definition 9 (pattern). A pattern is a graph constraint of the form
F = ∃(∅ ↪→ P, acP), with P being a graph and acP a composed total negative
application condition over P . A composed forbidden pattern is a graph con-
straint of the form F =

∧
i∈I ¬Fi for some index set I and patterns Fi. Patterns

Fi occurring in a composed forbidden pattern are also called forbidden patterns.

We also allow graph transformation systems to be equipped with a special vari-
ant of composed forbidden pattern called composed guaranteed pattern. Such a
pattern is a constraint whose validity is guaranteed by some external means or
additional knowledge about the system under verification.

242 J. Dyck and H. Giese

While our specification language concerning patterns and application condi-
tions is more limited than the general concept of nested application conditions [10],
the level of expressive power we support is sufficient to verify a number of case stud-
ies [8,11,12]. On the other hand, the following additional limitations in our app-
roach (except for the second) do not result in a loss of expressive power [10,14,15]:

Morphisms in application conditions (Definition 2) must be injective.
Left application conditions (Definition 5) in rules are required to be com-

posed total negative application conditions.
Right application conditions (Definition 5) in rules are required to be true.
Rule applicability (Definition 5) requires injective matches and comatches.

To conclude the definitions used in our verification approach, we introduce
our notion of inductive invariants for graph transformation systems. Informally,
all rule applications should preserve the validity of a composed forbidden pattern
F . Since the system is assumed to prevent violations of a composed guaranteed
pattern G by other means (e.g., a postprocessing step) or additional knowledge,
rule applications leading to such a violation do not need to be considered.

Definition 10 (inductive invariant). Given a composed forbbidden pattern
F and a composed guaranteed pattern G, a typed graph transformation system
GTS = (TG,B) is preserving F under G if, for each rule b in B, it holds that

∀G,H((G ⇒b H) =⇒ ((G |= F ∧ G |= G) ⇒ (H |= F ∨ H �|= G))).

A composed forbidden pattern F preserved by GTS under G is an inductive
invariant for GTS under G.

3.1 Constructions

An important part of our algorithm is the transformation of application condi-
tions over morphisms and rules. [15] presents a Shift-construction for a trans-
formation of application conditions over morphisms into equivalent application
conditions. For our restricted formal model, we use a marginally adjusted form
of the Shift-construction. Its validity is proven in Appendix B in [13].

Construction 11 (Shift-construction, adjusted from [15]). For each total
application condition ac over a graph P and for each morphism b : P → P ′,
Shift(b, ac) transforms ac via b into a total application condition over P ′ such
that, for each morphism n : P ′ ↪→ H, it holds that n◦ b |= ac ⇔ n |= Shift(b, ac).

The Shift-construction is inductively defined as follows:

P

(1)

�ac

b ��

a

��

P ′
�

a′

��
C

�

b′
�� C ′

Shift(b, true) = true.
Shift(b,∃(a, ac)) =

∨
(a′,b′)∈F ∃(a′,Shift(b′, ac)) if F =

{(a′, b′) | (a′, b′) are jointly surjective, a′, b′ are injective,
and (1) commutes (b′ ◦ a = a′ ◦ b)} �= ∅ and false,
otherwise.
Shift(b,¬ac) = ¬Shift(b, ac).
Shift(b,

∧
i∈I aci) =

∧
i∈I Shift(b, aci).

Inductive Invariant Checking with Partial Negative Application Condition 243

While this construction can be employed to equivalently transform total appli-
cation conditions, the calculation of the respective morphism pairs is compu-
tationally expensive. To avoid executing that calculation, we construct partial
application conditions instead and establish their equivalence to the result of the
Shift-construction in the following construction and lemma. As before, proof of
validity and a more detailed version can be found in Appendix B in [13].

Construction 12 (PShift-construction). For each total application condi-
tion ac over P ′ and for each morphism p′ : P ′ ↪→ P , PShift(p′, ac) transforms
ac via p′ into a partial application condition over P such that, for each morphism
n : P ↪→ H, it holds that n ◦ p′ |= ac ⇔ n |= PShift(p′, ac).

The PShift-construction is defined as follows:

Lemma 13. For each application condition ac over P and each monomorphism
p′ : P ↪→ P ′, we have Shift(p′, ac) ≡ PShift(p′, ac).

We also transform application conditions over rules using the L-construction
found in [15]. For the formal basis of this construction, we refer to [13].

Construction 14 (L-construction [10,15]). For each rule b = 〈L ←↩ K ↪→ R〉
and each total application condition ac over R, L(b, ac) transforms ac via b into
a total application condition over L such that, for each direct transformation
G ⇒b,m,m′ H, we have m |= L(b, ac) ⇔ m′ |= ac.

The L-construction is inductively defined:

L

(2)a′

��

K

(1)

� r ���l��

��

R

a

��
L′L(b′,ac)� K ′ �

r′
���

l′
�� R′ �ac

L(b, true) = true.
L(b,∃(a, ac)) = ∃(a′,L(b′, ac)) (with
b′ = 〈L′ ←↩ K ′ ↪→ R′〉 constructed
via the pushouts (1) and (2)) if 〈r, a〉
has a pushout complement (1) and
false, otherwise.
L(b,¬ac) = ¬L(b, ac).
L(b,

∧
i∈I aci) =

∧
i∈I L(b, aci).

3.2 Implication

One of the main requirements for our algorithm is the comparison of graph
constraints or, more precisely, the notion of implication of patterns.

Definition 15 (implication of patterns). Let C = ∃(∅ ↪→ P, ac) and C ′ =
∃(∅ ↪→ P ′, ac′) with composed partial negative application conditions ac and ac′

be two patterns. C ′ implies C (C ′ |= C), if the following condition holds:

∀G(G |= C ′ ⇒ G |= C).

244 J. Dyck and H. Giese

Since a pattern may be fulfilled by an infinite number of graphs, we cannot
(in general) check the above condition for all such graphs. Instead, we establish
a condition sufficient to imply implication when comparing patterns. Depending
on whether the patterns’ application conditions ac and ac′ are partial, total, or
nonexistent (i.e. true), the procedure and its computational effort varies. The
following theorem describes the most interesting case with a composed partial
(total) negative application in the implying (implied) pattern, respectively.

Theorem 16 (implication of patterns). Let C = ∃(∅ ↪→ P, ac) and C ′ =
∃(∅ ↪→ P ′, ac′) be patterns with a composed total negative application condition
ac =

∧
i∈I ¬∃(xi : P ↪→ Xi) and a composed partial negative application condi-

tion . Then C ′ |= C, if the following conditions
are fulfilled:

P �
m

���

xi

��

P ′�
m−1

��
�

〈n′
j ,nj〉=x′

j
�

Nj
�

m′

��
�

n′
j

��
�

nj����
��

��

Xi X ′
j

�
y

��

1. There exists a monomorphism m : P ↪→ P ′

such that:
2. For each i ∈ I, there exists a j ∈ J such that

n′
j(iface(x

′
j)) ⊆ m(P) and there exists a

monomorphism y : X ′
j ↪→ Xi such that

y ◦ nj = xi ◦ m′, with m′ = m−1 ◦ n′
j.

For patterns without negative application conditions, the theorem is also
applicable as the second condition is trivially true. For cases where the implying
pattern’s partial negative application conditions do not satisfy the interface con-
dition, a partial expansion of the implied pattern’s condition is required, which
requires additional computational effort.

In general, all cases can be transformed into a default case by expanding all
composed partial negative application conditions into composed total negative
application conditions with the Shift-construction. The comparison in that case
is explained in Appendix B in [13]. The desired effect of the above theorem is to
avoid this computationally expensive default case as often as possible.

This theorem only considers one implying pattern at a time. We also use an
advanced implication check considering more complex relations between forbid-
den patterns and negative application conditions, such as implication of a single
pattern by multiple patterns. The theory and implementation of such a check
for the more general concept of nested conditions have already been introduced
by Pennemann et al. in [9]. Hence, we will not discuss our implementation here.

Besides graph constraints we will also encounter application conditions over
a rule side, which can be interpreted as graph constraints as follows:

Lemma 17 (reduction to pattern). Let ac = ∃(s : L ↪→ S, acS) be an appli-
cation condition over L with acS being a composed partial negative application
condition. For the reduction to a pattern ac∅ = ∃(iS : ∅ ↪→ S, acS) of ac we
have the following property: For each graph G with a monomorphism m : L ↪→ G
such that m |= ac, we have G |= ac∅.

Inductive Invariant Checking with Partial Negative Application Condition 245

4 Inductive Invariant Checking

Our inductive invariant checking algorithm consists of four basic steps:
(1) From a composed forbidden pattern and a rule set, we create all pairs of

individual forbidden patterns and rules to be analyzed on a per-pair basis. (2)
We construct target patterns for each pair by applying the Shift- and PShift-
constructions, such that each target pattern represents a satisfaction of a forbid-
den pattern after rule application. (3) From each target pattern, we construct
a source pattern by applying the L-construction such that a source pattern is
a representation for graphs before a rule application leads to a forbidden pat-
tern. (4) We analyze source and target pattern pairs (counterexamples) for other
forbidden or guaranteed patterns, which might invalidate the counterexample.

The first step of splitting a composed forbidden patterns into forbidden pat-
terns for individual analysis is shown to be correct in the following lemma. It
also explains the analysis of source and target patterns in step 4.

Lemma 18. Given a composed forbidden pattern F =
∧

i∈I ¬Fi, a composed
guaranteed pattern G =

∧
j∈J ¬Gj and a typed graph transformation system

GTS = (TG,B), GTS is preserving F under G if, for each rule b in B it
holds that:

∀G,H((G ⇒b H) =⇒ (∃n(H |= Fn) ⇒ ∃k(H |= Gk ∨ G |= Gk ∨ G |= Fk)))

4.1 Step 2: Construction of Target Patterns

The second step in our inductive invariant checking algorithm is the creation of
target patterns for each pair of a graph rule and a forbidden pattern such that
the forbidden pattern occurs in the target pattern. Target patterns in general
represent a set of graphs with a match for the right side of a specific graph rule.

Definition 19 (target pattern). A target pattern over the right side R of a
rule b is an application condition of the form tar = false or tar = ∃(t : R ↪→
T, acT) with a composed partial negative application condition acT over T .

The set of graphs fulfilling such a target pattern is the set of graphs H with a
comatch m′ : R ↪→ H such that m′ |= tar. For a rule b in B and a forbidden
pattern F , we can create target patterns by transforming F over the morphism
iR : ∅ ↪→ R into an application condition over the right rule side R:

Lemma 20 (creation of target patterns). Let b = 〈(L ←↩ K ↪→ R), acL,
true〉 be a rule and F = ∃(iP : ∅ ↪→ P, acP) a forbidden pattern with
acP and acL being composed total negative application conditions. Let b∗ =
〈(L∗ ←↩ K∗ ↪→ R∗)〉 be a reduced rule of the plain rule in b with respective injec-
tive morphisms r+ : R∗ ↪→ R, l+ : L∗ ↪→ L, and k+ : K∗ ↪→ K. Then we
have:

1. Shift(r+,Shift(iR∗ ,∃iP)) =
∨

j∈J ∃tj.

246 J. Dyck and H. Giese

2.
∨

j∈J tarj is a set of target patterns for tarj = ∃(tj ,PShift(t+j ,Shift(t′∗k , acp))).
3. For each graph H and each monomorphism h : R ↪→ H, it holds that ∃j(j ∈

J ∧ h |= tarj) ⇔ H |= F .

∅

=

�

iR∗
��

�

iP

��

R∗
�

t∗
k

��

�

r+
�� R�

tj

��

�

h
�� H

P
�acP

�

t′∗
k

�� T ∗
k�acT∗

k

� t+j �� Tj

In other words, we shift the exterior application condition (∃iP in step (1))
of the forbidden pattern to the right rule side, but its interior composed negative
application condition (acP in step (2)) to a partial application condition using
the reduced rule. Thus, we avoid creating a large number of morphism pairs
when shifting the interior application condition to the complete right rule side.

In conclusion, for each morphism h : R ↪→ H the satisfaction of the forbidden
pattern F by a graph H is equivalent to the existence of a target pattern tarj

satisfied by h. In other words, for each result of a possible rule application
leading to a graph satisfying the forbidden pattern we have constructed a target
pattern. Since target patterns (as shown above) are disjunctively combined, we
can analyze each target pattern individually and compute its source pattern. By
construction, we always have a finite number of target patterns.

4.2 Step 3: Construction of Source Patterns

For each target pattern constructed as described above, we try to generate a
source pattern to represent the state before the application of the rule lead to
the forbidden pattern. In general, we define source patterns analogously to target
patterns as application conditions over the left side of a specific graph rule.

Definition 21 (source pattern). A source pattern over the left side L of a rule
b is an application condition of the form src = false or src = ∃(s : L ↪→ S, acS)with
a composed partial negative application condition acS over S.

To construct source patterns to our target patterns, each target pattern is
transformed into an application condition over the left rule side using the L-
construction. Due to the nature of the L-construction, we create at most one
source pattern per target pattern transformation.

Lemma 22 (creation of source patterns). Let tar = ∃(t : R ↪→ T, acT) be a
target pattern specific to a rule b = 〈(L ←↩ K ↪→ R), acL, true〉 with a reduced rule
b∗ = 〈(L∗ ←↩ K∗ ↪→ R∗)〉 of its plain rule and constructed as described above.
Further, let acT be a composed partial negative application condition acT =
PShift(t+, ac′

T) with ac′
T being a composed total negative application condition

over T ∗. Then we have:

1. L(b,∃t) is a source pattern and L(b,∃t) = false or L(b,∃t) = ∃s.

Inductive Invariant Checking with Partial Negative Application Condition 247

2. For the latter case, src = ∃(s,PShift(s+,L(b′, ac′
T))) is a source pattern, with

b′ = 〈S∗ ←↩ K ′ ↪→ T ∗〉 being the rule constructed via the pushout complement
(1) and the pushout (2) and s+ : S∗ ↪→ S such that S ⇒b′,s+,t+ T .

3. For each direct graph transformation G ⇒b,m,m′ H: m |= src ⇔ m′ |= tar.

Such a source pattern represents graphs before the application of the rule in
question which leads to graphs satisfying the forbidden pattern. To also take left
application conditions into account, they need to be transformed via Shift(s, acL)
into conditions over the source pattern. For details, we refer to [13].

In summary, the source and target patterns src and tar represent a correct
rule application of a rule b leading to the existence of the forbidden pattern F .
To represent all possible rule applications, i.e. all graphs G and H with G ⇒b H,
we need to consider all target patterns and their corresponding source patterns.

4.3 Step 4: Analysis of Source Patterns and Counterexamples

Each target pattern and corresponding source pattern specific to a rule and a
forbidden pattern specify a counterexample for our inductive invariant, i.e. a
situation where a rule application leads to the occurrence of a forbidden pattern
Fi. To investigate whether this is indeed a violation of the inductive invariant F
under G, the following three conditions are considered:

1. The target pattern also violates the composed guaranteed pattern.
2. The source pattern violates the composed guaranteed pattern.
3. The source pattern violates the composed forbidden pattern.

Theorem 23 (inductive invariant checking). Let GTS be a graph transfor-
mation system and F =

∧
i∈I ¬Fi and G =

∧
j∈J ¬Gj be a composed forbidden

and composed guaranteed pattern. Let, for each rule b ∈ B and for i ∈ I, srcb,i

(tarb,i) be the set of source (target) patterns constructed from the pair (b, Fi)
and src∅,b,i (tar∅,b,i) be the set of these source (target) patterns reduced to graph
constraints.

GTS preserves F under G if, for all reduced source patterns src∅ created from
a pair of a rule and a forbidden pattern (b, Fi) and the corresponding reduced
target pattern tar∅, one of the following conditions holds:

1. ∃k(k ∈ J ∧ tar∅ |= Gk)
2. ∃k(k ∈ J ∧ src∅ |= Gk)

248 J. Dyck and H. Giese

3. ∃k(k ∈ I ∧ src∅ |= Fk)

This shows that GTS preserves F under G, if the condition from Theorem 23
holds. In other words, F is an inductive invariant for GTS under G. The con-
struction of target and source patterns and the verification of this condition by
application of Theorem 16 is, in short, the essence of the Invariant Checking
algorithm. On the other hand, source and target patterns not discarded by that
conditions are counterexamples for the inductive invariant.

Fig. 2. Source and target pattern pair created from a rule and a forbidden pattern

Example 24. Figure 2 shows a source and target pattern pair src and tar created
from the forbidden pattern F and rule in Examples 4 and 7. In tar, the condition
∃t is one amalgamation of F and the right rule side (Lemma 20, step 1); ¬∃p is
the pattern’s application condition transformed with PShift over t+ (Lemma 20,
step 2). Since the forbidden pattern can be found in the source pattern (src∅ |= F),
this counterexample is discarded by the analysis in Theorem 23.

Because the implication checks (Theorems 16 and 23) compare only individual
patterns and disregard more complex interdependencies and satisfiability of mul-
tiple patterns, this algorithm may still produce false negatives (i.e., spurious
counterexamples). Our advanced implication check then serves to reduce this
number and may also be applied to reduce the number of forbidden patterns to
be analyzed by subsuming some of them. Since the general concept has already
been introduced by Pennemann et al. in [9], we do not discuss it here. However,
our technique is safe in the sense that all violations will be reported.

5 Evaluation and Discussion

To evaluate our results, we employ three case studies: The first example car
platooning describes rules and constraints in a car platooning system. It was
employed in the context of the SeekSat/ProCon tool [9] and was originally
described in [16]. In order to conform to our restrictions it had to be adjusted,
resulting in the addition of twelve new constraints. Our second and third case
study are a simple and complex example for verification of behavior preservation

Inductive Invariant Checking with Partial Negative Application Condition 249

of model transformations by bisimulation with the simple case initially employed
by us in [11] and both examples described in [17]. In the first case (MT - Simple),
behavioral equivalence between single lifelines and automata derived by a triple
graph grammar (TGG) is proven. In the more complex example (MT - Com-
plex), behavioral equivalence between sequence diagrams with multiple lifelines
and networks of automata is proven. In both cases the check involves two induc-
tive invariant checks: one for the TGG generating all possible model pairs and
one for the Semantics of any possible pair of models to prove bisimilarity.

The first point of reference for our evaluation is our improved inductive invari-
ant checker in its basic variant (invcheck-total). We also compare variants employ-
ing advanced implication checks (invcheck-total/impl), partial negative applica-
tion conditions (invcheck-partial), and both (invcheck-partial/impl). On the other
hand, the former version of our inductive invariant checker [8] only supported a
restricted form of negative application conditions for constraints and rules and
was thus not expressive enough for the considered case studies.

In addition, we will consider the SeekSat/ProCon tool [9,10], which is able
to prove correctness of graph programs with respect to pre- and postconditions
specified as nested graph constraints. To verify an inductive invariant (F) of a
graph transformation system (GTS) with guaranteed constraints (G), the equiv-
alent check contains a graph program nondeterministically choosing a rule from
GTS, the precondition {F ∧ G} and the postcondition {F ∨ ¬G}. While the
technique behind SeekSat/ProCon is more expressive than our approach, we use
this comparison to demonstrate the relevance of our more specialized tool for
the verification of certain cases where that level of expressiveness is not needed.

Besides the evaluation of the case studies as a whole, we also want to study the
impact of the complexity of the checking problem by considering the sum of all
possible amalgamations between a forbidden pattern and the right side of a rule
and the number of total negative application conditions for those amalgamations.
To get more fine-grained results, we separated some examples into multiple cases
by splitting postconditions (

∧
i∈I Fi) ∨ ¬G into less complex i subproblems with

postconditions Fi ∨ ¬G or by considering rules in a set separately.
The experiments were executed on a computer with an Intel Core-i7–2640M

processor with two cores at 2,8 GHz, 8 GB of main memory and running Eclipse
4.2.2 and Java 8 with a limit of 2 GB on Java heap space. All values were rounded
and values under a second were not distingiuished. Timeout refers to a forced
timeout issued by the tool (SeekSat/ProCon) or manual abortion (our tool)—
for the related cases in our tool after more than two days of calculation. Out of
memory means that memory exceeded the Java heap space limit of 2 GB.

Table 1 shows an overview of the verification of our complete examples
(marked as complete; in gray) and a more detailed list of subproblems ordered by
complexity (marked as subproblem), respectively. All algorithms perform com-
parably well for the car platooning example, with SeekSat/ProCon performing
significantly better for the unadjusted version than our algorithms. However, for
the other complete cases our tool terminates while SeekSat/ProCon does not.

250 J. Dyck and H. Giese

Table 1. Complexity of verification problems and results of evaluated algorithms

Example Check Complexity time (s) result time (s) result time (s) result time (s) result time (s) result
MT - Simple - Semantics subproblem 4 20 true <1 true <1 true <1 true <1 true
MT - Simple - Semantics subproblem 4 20 true <1 true <1 true <1 true <1 true
MT - Complex - TGG subproblem 4 <1 true <1 true <1 true <1 true <1 true
MT - Complex - TGG subproblem 4 <1 true <1 true <1 true <1 true <1 true
MT - Complex - Semantics subproblem 5 10 true <1 true <1 true <1 true <1 true
MT - Complex - Semantics subproblem 5 9 true <1 true <1 true <1 true <1 true
MT - Simple - Semantics subproblem 11 40 true <1 true <1 true <1 true <1 true
MT - Complex - TGG subproblem 11 <1 true <1 true <1 true <1 true <1 true
MT - Complex - Semantics subproblem 12 out of memory timeout <1 false negatives timeout <1 true
MT - Complex - Semantics subproblem 17 17 true <1 false negatives <1 false negatives <1 true <1 true
MT - Complex - TGG subproblem 20 timeout <1 true <1 true <1 true <1 true
MT - Simple - Semantics subproblem 30 20 true <1 true <1 true <1 true <1 true
MT - Simple - Semantics subproblem 70 40 true <1 true <1 true <1 true <1 true
MT - Complex - Semantics subproblem 72 timeout <1 false negatives 1 false negatives 1,5 true 1,5 true
MT - Simple - Semantics subproblem 78 6,5 true <1 true <1 true <1 true <1 true
MT - Complex - Semantics subproblem 188 out of memory 1,5 false negatives 2,5 false negatives <1 true <1 true
Car Platooning subproblem 258 <1 true <1 true <1 true <1 true <1 true
Car Platooning subproblem 610 <1 true <1 true <1 true <1 true <1 true
MT - Simple - Semantics subproblem 807 timeout <1 true <1 true <1 true <1 true
Car Platooning complete 947 <1 false <1 false negatives <1 false negatives 3 false 3 false
MT - Simple - TGG subproblem 2778 220 true 1,5 false negatives 1 false negatives 1,5 true 1 true
MT - Simple - TGG subproblem 2778 226 true 1,25 false negatives 1 false negatives 1,25 true 1 true
MT - Simple - Semantics complete 3870 timeout 1,5 true 1 true 1,5 true 1 true
MT - Simple - TGG complete 5556 562 true 2 false negatives 2 false negatives 2,25 true 1,75 true
MT - Complex - Semantics subproblem 607312 out of memory timeout 90 false negatives timeout <1 true
MT - Complex - Semantics complete 607500 out of memory timeout 95 false negatives timeout <1 true
MT - Complex - TGG complete 1817622 timeout timeout ~100min true timeout ~50min true

SeekSat/ProConCharacteristics
without advanced implication check with advanced implication check
Invcheck-total Invcheck-partial Invcheck-total/impl Invcheck-partial/impl

It is important to note that the inductive invariant checker without advanced
implication checks yields false negatives for certain subproblems. Even more
importantly, these false negatives do not occur when using the variant with
advanced implication checks. This demonstrates that the improvement in accu-
racy due to advancement in implication checks is indeed relevant for the case
studies.

Further, the results demonstrate that the complex model transformation case
study cannot be verified by the inductive invariant checker variants without par-
tial negative application conditions, as these attempts were aborted after more
than two days of calculation without a result. In contrast to that, a verification
time of 100 min (for the longest case) when employing partial negative appli-
cation conditions shows a drastic improvement in scalability for the considered
more complex cases. The additional use of advanced implication checks does then
not only eliminates false negatives, but, for one case, also halves the verification
time, showing another notable effect on performance.

While these case studies show both our improvements and the relevance of
verification for specifications that conform to our restrictions, the data is not
complete and heterogeneous enough to derive claims for the general case. While
SeekSat/ProCon’s more general approach is also successfully applicable for spec-
ifications that are significantly more expressive, our tool has been optimized for
a particular class of problems present in the two more complex case studies and
their verification only succeeded with our tool.

6 Related Work

As already discussed in Sect. 5, the SeekSat/ProCon tool [9,10] is more general
than our approach and thus is in principle capable of addressing the case studies.

Inductive Invariant Checking with Partial Negative Application Condition 251

However, the limited scalability of the SeekSat/ProCon tool demonstrates that
there is still a need for a tool optimized for a particular class of problems that
scales up to the presented two more complex case studies.

For all other automated approaches that approach graph transformation sys-
tems with infinite state space [3–8,18], it holds that, in contrast to the approaches
considered in the evaluation, they cannot be used for the case studies which
require unrestricted negative application conditions: The model checking app-
roach [4] employing abstraction based on the summarization in shape analysis
and the model checking approach [3] employing a neighborhood abstraction,
but both do not support negative application conditions for the constraints
or rules. The tool Uncover [5] supports well-structured graph transformation
systems that can only be established for negative application conditions which
forbid the existence of edges but not of nodes. The Augur tool [6,18], which
constructs a over-approximation in form of a so-called Petri graph, also consid-
ers only graph transformation systems without negative application conditions.
Finally, the RAVEN tool [7] can check only invariants for graph transforma-
tion systems without negative application conditions whose reachable graphs
are accepted by a finite graph automaton. Since two of our case studies describe
reachable graphs by TGGs, they cannot be covered by a finite graph automaton.

For additional discussion of related work with respect to the general concept
of inductive invariants, we refer to the respective section in [8].

7 Conclusion and Future Work

In this paper, we presented several improvements for the inductive invariant
checker for graph transformation systems introduced in [8]. Support for more
expressive negative application conditions in constraints and rules was shown to
be necessary to address the considered case studies at all. The introduction of
partial negative application conditions allowed avoiding the explicit representa-
tion of a large number of application conditions, which considerably improved
scalability. The addition of advanced implication checks improved the accuracy,
so that no false negatives are reported for the case studies.

In addition we demonstrated the outlined improvements by means of three
case studies and compared our approach for a restricted class of problems with an
existing tool that targets more general problems. For the more complex problems
considered, our approach was still able to check them; the other tool was not.

While the results are promising, the evaluation also raises a number of possi-
ble future directions such as employing even more partial shifts in our construc-
tions, and experimenting with the parallel execution of alternative strategies.

Acknowledgments. We would like to thank the group of Annegret Habel, in partic-
ular the authors of the SeekSat/ProCon tool [9], for allowing us to do the comparison
and Leen Lambers for her work on behavior preservation of model transformations.

252 J. Dyck and H. Giese

References

1. Ghamarian, A.H., de Mol, M.J., Rensink, A., Zambon, E., Zimakova, M.V.: Mod-
elling and analysis using GROOVE. Int. J. Softw. Tools Technol. Transf. 14(1),
15–40 (2012)

2. Schmidt, A., Varró, D.: CheckVML: a tool for model checking visual modeling
languages. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol.
2863, pp. 92–95. Springer, Heidelberg (2003)

3. Boneva, I.B., Kreiker, J., Kurban, M.E., Rensink, A., Zambon, E.: Graph abstrac-
tion and abstract graph transformations (Amended version). Technical report
TR-CTIT-12-26, Centre for Telematics and Information Technology, University
of Twente, Enschede (2012)

4. Steenken, D.: Verification of infinite-state graph transformation systems via
abstraction. Ph.D. thesis, University of Paderborn (2015)

5. König, B., Stückrath, J.: A general framework for well-structured graph transfor-
mation systems. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704,
pp. 467–481. Springer, Heidelberg (2014)

6. König, B., Kozioura, V.: Augur 2 - a new version of a tool for the analysis of graph
transformation systems. In: Electronic Notes in Theoretical Computer Science,
Proceedings of the Fifth International Workshop on Graph Transformation and
Visual Modeling Techniques (GT-VMT 2006), vol. 211, pp. 201–210 (2008)

7. Blume, C., Bruggink, H.J.S., Engelke, D., König, B.: Efficient symbolic implemen-
tation of graph automata with applications to invariant checking. In: Ehrig, H.,
Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562,
pp. 264–278. Springer, Heidelberg (2012)

8. Becker, B., Beyer, D., Giese, H., Klein, F., Schilling, D.: Symbolic invariant ver-
ification for systems with dynamic structural adaptation. In: Proceedings of the
28th International Conference on Software Engineering (ICSE), Shanghai, China.
ACM Press (2006)

9. Pennemann, K.-H.: Development of correct graph transformation systems. Ph.D.
thesis, Department of Computing Science, University of Oldenburg (2009)

10. Habel, A., Pennemann, K.-H.: Correctness of high-level transformation systems
relative to nested conditions. Math. Struct. Comput. Sci. 19, 1–52 (2009)

11. Giese, H., Lambers, L.: Towards automatic verification of behavior preservation for
model transformation via invariant checking. In: Ehrig, H., Engels, G., Kreowski,
H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 249–263. Springer,
Heidelberg (2012)

12. Becker, B., Lambers, L., Dyck, J., Birth, S., Giese, H.: Iterative development
of consistency-preserving rule-based refactorings. In: Cabot, J., Visser, E. (eds.)
ICMT 2011. LNCS, vol. 6707, pp. 123–137. Springer, Heidelberg (2011)

13. Dyck, J., Giese, H.: Inductive invariant checking with partial negative applica-
tion conditions, 98, Technical report, Hasso Plattner Institute at the University of
Potsdam, Germany (2015)

14. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, Secaucus (2006)

15. Ehrig, H., Golas, U., Habel, A., Lambers, L., Orejas, F.: M-Adhesive transforma-
tion systems with nested application conditions, part 1: parallelism, concurrency
and amalgamation. Math. Struct. Comput. Sci. 24(4) (2014)

Inductive Invariant Checking with Partial Negative Application Condition 253

16. Hsu, A., Eskafi, F., Sachs, S., Varaiya, P.: The design of platoon maneuver protocols
for IVHS. Technical report UCBITS-PRR-91-6, University of California, Berkley
(1991)

17. Dyck, J., Giese, H., Lambers, L.: Automatic verification of behavior preservation
for model transformation via invariant checking. Technical report, Hasso Plattner
Institute at the University of Potsdam, Germany (2015, forthcoming)

18. Baldan, P., Corradini, A., König, B.: A static analysis technique for graph trans-
formation systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS,
vol. 2154, pp. 381–395. Springer, Heidelberg (2001)

	Inductive Invariant Checking with Partial Negative Application Conditions
	1 Introduction
	2 Foundations
	3 Restrictions, Constructions, and Implication
	3.1 Constructions
	3.2 Implication

	4 Inductive Invariant Checking
	4.1 Step 2: Construction of Target Patterns
	4.2 Step 3: Construction of Source Patterns
	4.3 Step 4: Analysis of Source Patterns and Counterexamples

	5 Evaluation and Discussion
	6 Related Work
	7 Conclusion and Future Work
	References

