
Using Graph Transformations for Formalizing
Prescriptions and Monitoring Adherence

Jens H. Weber 1,2(B), Simon Diemert 1, and Morgan Price 1,2

1 Department of Computer Science, University of Victoria, Victoria, Canada
jens@uvic.ca

2 Department of Family Practice, University of British Columbia,
Vancouver, BC, Canada

Abstract. Medication prescriptions are an important class of med-
ical intervention orders. Their complexity ranges widely, depending on
the nature of the patient’s condition and the prescribed substance(s).
In today’s IT supported clinical environments, prescriptions are often
authored electronically. Patient adherence to the prescribed medica-
tion regimen is a key determinant for the outcome of the intervention.
Recently, an increasing number of information technologies are entering
the consumer market with a goal to assist patients with adhering to their
prescriptions. The effectiveness (and safety) of these technologies is lim-
ited to simplistic cases, however, because of the lack of a precise seman-
tics for more complex prescription orders. To close this gap, we present
an approach to formalize the meaning of medication prescriptions based
on a graph-transformation system. This allows for more complex and
variable prescriptions to be semantically coded and their adherence to
be automatically monitored. Our work has been implemented within a
prototypical prescribing tool and validated with domain experts.

1 Introduction

Medications are an important form of medical interventions. In modern health
care systems, medications are often and increasingly prescribed using software-
supported clinical information systems, commonly referred to as computerized
provider order entry (CPOE) systems. The user interfaces of modern CPOE sys-
tems are typically partially structured (form-based), but also allow for unstruc-
tured information entry (free text) in order to provide flexibility for complex
prescription orders and patient-specific constraints. The health outcome and
safety of prescriptions ordered in primary care relies to a large degree on clar-
ity of the instructions and the patient’s ability (and willingness) to adhere to
the prescribed medication regimen. The World Health Organization (WHO) has
identified poor adherence to medication regimens as a world-wide problem “of
striking magnitude” [3].

Recent developments in the consumer health market have created a rapidly
expanding array of technologies with the goal to help patients with adhering to
their medication regimens [6,15]. The effectiveness (and safety) of these tech-
nologies is limited by their ability to correctly capture and interpret prescription
c© Springer International Publishing Switzerland 2015
F. Parisi-Presicce and B. Westfechtel (Eds.): ICGT 2015, LNCS 9151, pp. 205–220, 2015.
DOI: 10.1007/978-3-319-21145-9 13



206 J.H. Weber et al.

orders. Unfortunately, current e-prescribing systems lack a precise, formalized
semantics for prescription orders, which may lead to ambiguities and misunder-
standings on how to interpret complex medication plans. This paper presents
an approach to address this limitation. We define a domain specific language for
writing electronic prescriptions and a graph transformation system to precisely
specify prescription semantics. The approach has been implemented in a pro-
totypical tool that connects a physician’s e-prescribing system with adherence
monitoring devices deployed in the patient’s personal environment.

The rest of this paper is structured as follows. The following section provides
the reader with a more detailed description of the health care process targeted
in this paper, i.e., the medication management process and specifically the role
of prescription in that process. We discuss related work in Sect. 3. Section 4 lays
out the proposed graph-transformation-based method to formalize and interpret
electronic prescriptions. We evaluate our approach in Sect. 5 and offer concluding
remarks in Sect. 6.

2 Medication Management Process

Medication management (MM) is a complex and multi-faceted concern with
many variations depending on the particular health context of a patient’s condi-
tion and the organization of the health care system that supports their treatment.
Given this complexity, the MM process model described here has limited applica-
bility and is not meant to be comprehensive. It specifically applies to medications
managed in primary and ambulatory care (outpatient) scenarios and models
the four main steps involved in the patient’s treatment cycle, namely (1) testing
the patient’s condition, (2) prescribing a medication intervention (after review-
ing the patient’s chart, e.g., for allergies, interactions with other existing medica-
tions, etc.), (3) dispensing the medication (at a pharmacy), and (4) administering
the medication (usually at home). These steps are usually iterated multiple times
in order to iteratively control the patient’s health condition, particularly in the
context of chronic disease management.

Figure 1 depicts an overview of this process with solid arrows representing
the typical information flows and dashed arrows representing optional informa-
tion flows, i.e., information flows that benefit medication management but may
not always be present. For example, the communication of a medication dispen-
sation event from the pharmacy back to the clinician can improve patient safety
(e.g., patients may have forgotten, lost or may want to avoid the cost of filling
prescriptions), if the system is set up to support this flow. Similarly, the commu-
nication of information about the patient’s adherence to a medication regimen
(called adherence trace in Fig. 1) helps the clinician understand to what degree
the planned intervention was actually performed. Such an adherence trace can
be generated based on automated IT devices embedded in the patient’s home
(e.g., smart pill bottles [6]) or it can be based on manual methods, e.g., patient’s
recollection or “pill counts”.

A prerequisite for automated adherence tracing (and indeed also for accurate
manual adherence and tracing) is a precise, unambiguous understanding of the



Using Graph Transformations for Formalizing Prescriptions 207

Test/
Measurement/ 
Assessment

of Patient 
Condition

Chart Review
and 

Prescription

Medication 
Review

and 
Dispensation

Medication 
Administration

(Adherence)

test results

prescription
order

dispensed
prescription

adherence
info dispensation

event

Lab

Clinic

Pharmacy
Home

Patient

Fig. 1. Medication management process

meaning of prescriptions. Unfortunately, current e-prescribing (CPOE) systems
do not commonly utilize prescribing languages with formally defined seman-
tics. While some primitives of a prescription order may be structured and can
be considered unambiguously encoded (e.g., the prescribed substance is usually
encoded with a controlled vocabulary), other prescription elements are formu-
lated in representations that lack formal semantics. It is this problem of how to
define a prescription language with machine-interpretable semantics (allowing
for automated adherence tracking) that we address in this paper.

To provide the reader with an appreciation of a typical e-prescribing inter-
face, Fig. 2 depicts the medication order screen of the OSCAR Electronic Medical
Record (EMR) software (version 12.1), a software product in use by over two
thousand primary care physicians in Canada [8]. The user interface provides for
semi-structured order entry. Medication substances are looked up from a data-
base of known drugs (top field in Fig. 2). The next field (entitled “Instructions”)
provides the clinician with a way to textually input medication instructions (such
as quantity, dose, strength, timing etc.). If the clinician uses certain conventions
or keywords when entering these instructions (cf. pop-up help displayed on the
right side of CPOE screen), the EMR software is able to extract certain pieces
of information and automatically populate some or all of the entry fields below
(e.g., quantity, repeats, route).

From a practical perspective, it is important to note that oftentimes prescrip-
tion orders are (purposefully) underspecified when entered and submitted by the
clinician. For example, physicians often prescribe generic substances (rather than
drug brand names) and doses (rather than pill sizes and quantities). This leaves
flexibility to the pharmacist to select suitable brands, pill sizes etc. based on
the pharmacy’s inventory and other considerations, such as patient preferences,
insurance coverage and medication cost. This means that the medication process
to be adhered to from a patient’s point of view is often “refined” at the phar-
macy into an actionable task plan, e.g., “take two pills a day ...” rather than



208 J.H. Weber et al.

Fig. 2. Example CPOE prescription order screen from OSCAR EMR [8]

“take 200mg a day ...”. For simplicity, our current method and tool implemen-
tation does not explicitly consider this two-step “refinement” process between
clinic and pharmacy. In other words, we treat authoring the prescription as a
single abstract process step. We note, however, that our method can naturally
be extended to account for this two-step prescription authoring process.

3 Related Work

Yeh et al. developed a machine-readable medication schedule specification (MSS)
based on a prescription algebra called APAMAT (A Prescription Algebra for
Medication Authoring Tool) [17]. A main objective of their tool is to validate
multiple prescriptions for potentially dangerous interactions (drug-drug interac-
tions or drug-allergy interactions). If no interactions are found, APAMAT creates
a schedule that can be used for adherence monitoring. Yeh et al. define the struc-
ture of their algebra (and the grammar of their corresponding domain specific
input language) formally, but their presentation lacks a formal definition of the
semantic concepts.

Varshney presents the requirements and the conceptual design of a smart med-
ication management system (SMMS) for improving adherence [15]. He discusses
a theoretical framework for adherence to medication regimes and a framework
for evaluating the effectiveness of any SMMS. Diemert et al. present SmartMed,
a prototype medication adherence system based on a smart, mobile medication



Using Graph Transformations for Formalizing Prescriptions 209

container (“pill bottle”) capable of communicating to cloud-based information sys-
tem [6]. SmartMed has been developed independently but implements several of
the design features proposed for SMMS by Varshney. The prescription language
and graph transformation-based adherence monitoring approach presented in this
paper has been developed for the SmartMed system.

Beyond the context of medication prescriptions, Yan et al. have conducted
research on formalizing a notion of adherence to general clinical work flows [16].
They use the Business Process Modeling Notation (BPMN) to specify desired
work flows and evaluate clinical adherence to these models based on captured
activity traces. While this work is related to ours, the kinds of phenomena mod-
elled in Yan et al.’s work do not align well with the problem of medication
adherence, as framed in this paper. For example, there is no consideration for
time, medication substance and strength in Yan et al.’s approach.

The research presented in this paper is related to the general research area on
domain specific languages (DSL) [10,17]. Model-based approaches are popular
among the various approaches proposed for developing DSL-based systems [2].
An important aspect in the development of DSL-based systems is the formal def-
inition of the language semantics. Popular approaches use mappings of the DSL
into precisely defined mathematical formalisms or utilize rewrite rule systems [4].
Typed graphs and graph transformations have been used extensively for defining
semantic models for DSLs [2,7]. Graph transformations are defined as rules where
the left-hand side describes the structure of a subgraph to be matched in a given
instance graph and a right-hand side which replaces the matched subgraph upon
application of the rule. Different notations and tools have been developed to sup-
port the specification and execution of graph transformations, e.g., [1,5,13,14].
The specific notation and tool used in our application is GROOVE [13].

4 A GT-Based Method to Formalize Prescriptions

Formalizing a language for medication prescriptions requires two main tasks,
namely (1) the definition of an interface language to be used by clinicians to
author prescriptions, and (2) the transformation of prescriptions authored in
this interface language to a formal model that defines the semantics of what
has been prescribed. The interface language can be textual, visual (form-based),
or hybrid, as in the case of OSCAR’s CPOE module (Fig. 2). Without loss of
generality, we elected to develop a textual interface language for our prototype.
If visual or hybrid interface languages are preferred they can be translated into
our textual representation.

We choose a graph transformation system (GTS) as a way to formally model
the semantics of prescription orders. Of course, alternative formal methods could
have been selected, e.g., Petri nets [11], temporal action logics [9], and any other
formalism capable of modeling processes. Indeed we wrote some specifications
using Petri nets, and TLA+ process models, and the Z notation [12] before
settling on the GTS approach presented here. One reason for selecting the GTS
approach was that we could use graph transformations to describe the mapping if



210 J.H. Weber et al.

the interface language to the semantic model as well as the interpretation of that
semantic model. TLA+, Z and Petri nets are primarily specification formalisms.
They do not lend themselves well to defining the mapping between a concrete
textual DSL and a formal specification. A second reason for selecting GTS was
our need to communicate the specified semantics with domain experts that were
not trained in formal methods. Graphs and graph transformation rules turned
out to be much more accessible for this purpose. A third reason for our choice was
the available tool support, which in the case of GTS tools (and Petri net tools)
encompassed specification as well as model based execution, while the tooling
for other formalisms (such as TLA+ and Z) focuses mainly on specification and
verification.

Figure 3 provides an overview of our method in form of a FlowChart. Pre-
scription orders are parsed from clinical input using a textual interface language
(DSL). The DSL parsing process populates a graph model, referred to as the “Rx
Graph Model” in Fig. 3. Since the interface language for prescription orders may
contain complex primitives, our next step compiles the Rx Graph to a simpler
representation of the prescribed medication actions, referred to as the APMA
(Atomic Prescribed Medication Action) Graph (cf. “Rx Compiler” process). This
compilation step is performed by a graph transformation system (GTS). The
compiler also validates static semantic constraints of our prescription language.

The semantics of the APMA Graph is defined by a GTS that relates
the APMA Graph model to another graph model that captures actual med-
ication administration events (the “Administration Graph Model”) in Fig. 3.

Rx Graph 
Model

DSL Parser

APMA Graph 
Model

Rx Compiler
(GTS)

Adherence 
Mapper
(GTS)

prescription 
order 

(DSL text)

Administration 
Trace

Administration 
Graph 

Generator

Administration 
Graph Model

Adherence 
Graph Model

Adherence 
View

Adherence 
View Generator

Fig. 3. Method for formalizing prescriptions and monitoring adherence



Using Graph Transformations for Formalizing Prescriptions 211

The Administration Graph is populated by sourcing medication administration
events from smart devices and sensors embedded within the patient’s environ-
ment, e.g., a smart pill bottle [6]. Finally, our system design includes an Adher-
ence View Generator that provides medication adherence information back to
the clinician and/or the patient based on the data in the Adherence Graph.
While the Adherence View Generator is not a core topic of this paper (it is not
required for defining the semantics of prescription orders), it is an important
component of the overall application, as it produces the adherence information
in the medication management process (cf. Fig. 1) and should thus be mentioned
here for completeness.

Now that we have provided an overview of our approach, we will describe
each component in more detail in the next subsections.

4.1 Interface Language

We developed the grammar of a textual interface language for creating medica-
tion prescriptions. The language is based on a literature survey as well as on
input from a domain expert. (One of the co-authors is a primary care physi-
cian.) As previously mentioned, prescriptions can be complex; to simplify our
task, the current version of the language focuses on those aspects of a medication
prescription than can be tracked with typical administration monitoring devices
available to patients in the community. These aspects are related to the medica-
tion substance, the timing and the dosing of the medication. Other aspects that
are harder to monitor have been left for future extension, e.g., the administration
route (e.g., oral, topical, rectal, etc.).

Below are five example prescription orders of different complexity written in
the developed interface language. Order 1 and 2 are simple and do not require
further explanation. Order 3 uses more complex timing (weekdays as well as time
of the day) and also varies the medication dose based on the time of the day.
Order 4 illustrates a prescription that uses two medications in strict sequence.
Order 5 varies the medication dose by applying a titrating process. Moreover, it
requires the patient to repeat the titrating process once (for a total of 20 days).

1. Take chloronapam 80 mg once daily for 60 days
2. Take adhdhesin 150 mg twice daily (8, 20) for 10 days

(specific times of day: 8 AM and 8 PM)
3. Take stalacillin (10 mg, 20 mg) three times weekly (1, 3, 5) at

(8, 20) for 10 weeks (specific days and times, varying doses)
4. Take chordazine 75 mg daily for 7 days then take chordazine

150 mg for 28 days (sequential medication)
5. Take planazipine titrate down from 50 mg to 0 mg by 10 mg per two

days once daily for 10 days (titrated medication increase or decrease
dose at each interval)

We note that the interface language below has been designed primarily for
expressiveness and as a vehicle to feed our proof-of-concepts prototype. We have



212 J.H. Weber et al.

not studied it from a usability/user experience perspective. Indeed, textual inter-
face languages used in current CPOE systems often try to minimize verbosity
and make use of abbreviations and shorthand codes (cf. right-hand side of Fig. 2
as an example). Usability research on prescription interface languages is subject
of ongoing and future work in our lab, but not the focus of this paper.

4.2 Rx Graph Model

Prescriptions written in the interface language are parsed to populate a typed
graph model, referred to as the “Rx Graph” in Fig. 3. Figure 4 shows the Rx
Graph representations for the sample prescriptions 3 and 5 above. The corre-
sponding graph model (type graph) is given in Fig. 5, using GROOVE nota-
tion [13].

Fig. 4. Rx Graph representation for sample prescription orders 3 and 5

Prescriptions are represented as attributed graph nodes specifying the type
of the action, the medication substance, a start time, a duration and a number of
“repeats”. The start time is automatically initialized to the time of prescribing
(dispensing) the medication, unless otherwise explicitly specified in the textual
interface language. The timing of a prescription is specified in a recursive graph
structure defined by a time frame, which contains one or many time points. Con-
sider our prescription order 3 from above as an example. The top part of Fig. 4
shows that the timing of that order consists of a weekly time frame with two time
points (with values 1 and 4, representing Monday and Thursday, respectively).
Each of these time points is referred to as compound as it in turn represents a
time frame (day) with two time points (8am and 8pm). The latter time points are
not further refined by time frames, i.e., they are referred to as atomic rather than
compound. Atomic time points are related to actual dosing actions, represented
by instances of “Dosing” graph notes.



Using Graph Transformations for Formalizing Prescriptions 213

Fig. 5. Rx Graph Model (type graph)

4.3 Rx Graph Compilation

The compilation of the Rx Graph into the APMA Graph is implemented as
a graph transformation system in GROOVE [13]. GROOVE was selected out
of a set of five GTS tools listed on Wikipedia’s page on graph rewriting page
as “domain neutral”1. We were particularly interested in a tool that provided
support for formal verifications of the GTS system (e.g., confluence) as well as
code generation for Java. GROOVE as well as AGG [14] met these requirements
and were considered for closer evaluation in our project. We eventually decided
to select GROOVE since the tool provides for a more compact representation of
transformation rules, i.e., a rule’s left-hand and right-hand sides are folded into
a single graph representation.

The target model for the compilation (APMA Graph) is simple. It merely
consists of a set of atomic medication actions (respectively inactions) that are
planned for absolute time intervals. Its type model is shown on the left hand side
of Fig. 6 (node types Prescription and APMA). The compilation process consists
of five main phases:

1. Static Semantic Validation. A set of graph rules are applied prior to further
processing to validate static semantic properties of prescription orders, e.g.,
to ensure that the specified frequency aligns with the specified medication
time points. Figure 7 shows a corresponding graph test in GROOVE notation.
The check counts the number of TimePoints connected to a TimeFrame and
compares it to the frequency attribute specified for the TimeFrame. Under
this graph rule, the following prescription order would be found invalid for
example: “take aspirin 81 mg once daily (8, 20) for 10 days”.

2. Time Unrolling. In this phase, the compiler computes absolute time points for
planned medication actions based on the timing description of the prescription
order. Iterations and repetitions are “unrolled” and abstract references to time
frames (e.g., “daily”, “Monday”, etc.) are replaced with absolute times (using
Unix time (en.wikipedia.org/wiki/Unix time) for simplicity). Figure 8 presents
a graph transformation rule that unrolls “day” time frames. Analogous trans-
formation rules exists for months and weeks. Obviously, this compilation step

1 http://en.wikipedia.org/wiki/Graph rewriting.

http://en.wikipedia.org/wiki/Unix_time
http://en.wikipedia.org/wiki/Graph_rewriting


214 J.H. Weber et al.

Fig. 6. Monitoring graph triplet (type graph)

Fig. 7. Example graph tests to validate static semantic constraints

may create unreasonable precision. For example, a prescription to take a certain
medication “next Monday” will be compiled to a concrete planned medication
time point at the resolution of seconds (Unix time) at noon of the following
Monday. This issue is addressed in the following compilation step.

3. Temporal Unsharpening. In this phase, absolute time points generated
previously are replaced by intervals. This is necessary because of the above
mentioned issue of unreasonable precision. The width of the generated inter-
vals created depend on the level of precision in the original prescription order.
If for example, a medication action is prescribed at the level of a “day”, the
generated interval extends 43200 seconds to both sides of the previously gen-
erated time point.

4. Plan Completion. The medication plan generated so far is partial in the
sense that it defines required actions to happen at specific times (intervals),
but it does not specify whether medication administration actions are permit-
ted outside these intervals. (This may sometimes be the case, for example in
pain medication prescriptions that specify certain minimum doses but allow
patients to add doses “as needed”.) Our current interface language does not
yet allow clinicians to specify “as needed” options. However, our graph models
have been designed to incorporate this aspect at a later time. The objective
of the last compilation phase is to create a total medication plan from the
partial plan generated thus far, by filling in planned intervals of prohibited
medication actions between planned intervals of planned medication actions.
In other words, we assume that (unless otherwise specified) clinicians do not
intend patients to take their prescribed medications outside the prescribed
times. (Of course, this is a simplifying assumption. We will discuss this limi-
tation in the last section of this paper.)



Using Graph Transformations for Formalizing Prescriptions 215

5. Dose Unit Harmonization. The final step in the compilation harmonizes
the dose unit information. While the interface language (and the Rx Graph
model allows different dose units to be used in authoring a prescription (e.g.,
milligrams, grams), the target APMA model uses a single dose unit per pre-
scription (cf. “doseunit” attribute of node type “Prescription” in Fig. 6).

Fig. 8. Example compilation rule for prescription “time unrolling”

Figure 9 shows an excerpt of an APMA graph generated for prescription 3 in
our list of examples above.

Fig. 9. Compilation result (APMA Graph) for our prescription example 3

4.4 Adherence Tracking

We use graph transformations for specifying the dynamic semantics of the APMA
Graph model. The right hand side of Fig. 6 shows the Administration Graph
model, which is used to capture actual medication administration events, as emit-
ted by a persons, a smart medication administration tool or similar monitoring
device embedded with the patient, e.g., a smart pill bottle [6]. The monitoring
device is capable of emitting two types of events: (1) a medication administration
event (which is accompanied by information about the administered dose) and
(2) a heartbeat. The heartbeat is emitted at a (customizable) regular interval
(e.g., once a day) to ensure that the monitoring device is still functioning. It is
also used in the medication adherence tracking process. We assume that monitor-
ing devices are uniquely associated with prescriptions at the time of dispensation.



216 J.H. Weber et al.

Fig. 10. Transformation rules for creating the Adherence Graph

Every time a monitoring device emits an event, that event (administration or
heartbeat) is recorded in the Administration Graph. Figure 10 shows six graph
transformations that generate the Adherence Graph, based on events recorded
from the monitoring device and compiled prescription plan in the APMA Graph.
The Adherence Graph consists of instances of mapping nodes (“Map”) that asso-
ciate planned (in)actions with actual events. Positive adherence is marked by a
Boolean attribute “adhered” that is recorded as true.

The first transformation rule in Fig. 10 covers the case when a medication
administration event is recorded during a time when the patient was asked to



Using Graph Transformations for Formalizing Prescriptions 217

take her medication. In this case, correct adherence to the prescription plan
depends on whether the correct dose was administered. Now the patient may
actually administer multiple doses during a planned prescription time frame
(e.g., she may open the smart pill bottle twice to take one pill each time). This
action will lead to two medication administration events being recorded. The
overall dose administered during the planned time interval should be computed
as the total of all administered doses. This function is performed by the second
rule in Fig. 10. (Note that the overall dose is kept in the Adherence Graph.) The
third rule (Rule C) records a non-adherence case when a heartbeat is received
after expiration of a time interval where an administration action was planned
(and none was recorded). Note that the absence of a recorded administration
event is guaranteed by the rule’s negative application condition (NAC).

Rules D-F work analogously to Rules A-C but consider planned periods of
medication inaction (as indicated by the “DON’T” value of the APMA’s action
attribute). Note that the semantics we are defining here are not a simple pro-
hibition of any medication. Rather we define a “DON’T” action to mean “don’t
take more than”. This semantics provides more flexibility and expressiveness for
prescription orders. For example, it may be the case that a physician allows
patients to take more than the prescribed medication “if needed” - but not more
than a certain maximum. Rules D and E define these semantics formally. Finally,
Rule F handles the situation where a heartbeat is mapped to a planned period
of inaction, resulting in positive adherence for that period.

Fig. 11. Screenshot of prototype medication adherence view.

The information recorded in the Adherence Graph can be aggregated to pro-
vide end-user specific view points for reflecting on medication adherence. As
presented in our overall MM process model (Fig. 1), such viewpoints may be
provided for physicians, but they may also be of interest for patients or their



218 J.H. Weber et al.

informal circle of care (family members). Figure 11 shows a screen shot of a
prototype adherence view we developed for inclusion in a physician’s clinical
information system (EMR). The view was created based on a simple scoring
system, computing the ratio of “Map” nodes in the Adherence graph that indi-
cate positive adherence divided by the total count of these nodes over a selected
time resolution. More sophisticated and differentiated adherence view metrics
could be constructed taking in consideration the difference between planned and
actual doses and/or the difference between planned and actual timings. This is
subject to future work and not the focus of this paper.

5 Evaluation

The development of a comprehensive, formalized medication prescription and
automated adherence monitoring system is a complex challenge. Our system has
several known limitations and requires further extension and validation before
we can be confident that it is fit for use in practice. As we pointed out earlier, we
did not engineer our current interface language (DSL) with an eye to usability
and efficiency. Any actual implementation of our system in practice will have to
connect the Rx Graph model with an interface language that has been optimized
(and validated) for usability.

More important for the topic of this paper is the expressiveness of the
language and the associated graph models. The expressiveness of the current
language/models have been validated by one domain expert (physician and co-
author). The choice of a GTS formalism modelling language semantics has proven
instrumental in making the semantic formalization accessible to collaborators
that have not been trained in formal methods. Our DSL language and graph
model is considered sufficient to capture a large portion of typical prescriptions
written for primary care medications. Still, we have so far ignored the aspect
of drug interactions and directions on how to recover from non-adherence. For
example, patients who are on multiple prescriptions may be asked to never take
two (or more) of their drugs at the same time. Moreover, patients who have
failed to adhere to a planned medication dose may be asked to perform different
actions for recovery, depending on their condition and the nature of the med-
ication, e.g., they may be asked to “skip” the dose, to “double up”, or to “take
ASAP - but delay the next one”. A more expressive prescription language would
allow providers to specify these additional constraints.

Another limitation of our current system is that it does not distinguish
between the physician’s act of writing the initial (loosely constrained) prescrip-
tion and the pharmacist’s subsequent act of “refining” the prescription (con-
straining it further). Still, making a distinction between the act of prescribing
and the act of dispensing does not require an extension to the theoretical frame-
work of our approach. It merely requires the development of another set of graph
transformation rules to be used for specifying the permissible refinement actions
that can be performed by pharmacists.

From a theoretical, language-engineering point of view our graph
transformation-based approach provides a partial formal semantic definition of



Using Graph Transformations for Formalizing Prescriptions 219

our interface language (DSL). However, it does not currently guarantee that all
well-formed sentences in our interface language have a unique, valid interpreta-
tion in terms of an interpretable APMA Graph. The desired property of a total
formal semantic definition of our interface language for prescriptions requires a
proof that the graph transformation system is confluent and terminating (con-
vergent) for all valid inputs. We utilized GROOVE’s state space exploration
tool to check for convergence of our rule system for all valid inputs. Our future
work will be on constructing convergence proofs for all possible sentences of our
language.

Considering the adherence tracking rules, we have made several simplifying
assumptions in our current system. First of all, we require actual measured
dosage to be exactly equal to the planned dosage to be accepted for positive
adherence. This assumption may be fine for coarse granular units such as “pills”
but will be unrealistic for other unit measures, e.g., milligrams. Some means of
“unsharpening” should be created to provide a more realistic mapping. Secondly,
we currently compile the prescription into a fixed medication plan that does not
allow readjustments, e.g., in order to react to slippage. It would be more realistic
to be able to dynamically shift the plan in case there is a delay. For example, if
the patient filled a prescription and then went on a business trip, forgetting the
drugs at home. In this case, they would likely start taking the medication after
their return. In some cases, such a delay may be permissible. Our current system
does not implement such a function, but it is possible to “shift” the timing in the
medication plan (APMA) graph accordingly and rerun the adherence mapping
rules to calculate a new adherence graph in such cases.

6 Conclusions and Future Work

Medication non-adherence is a significant health problem world-wide [3]. Health
information technologies, consumer health apps and the emerging health Inter-
net of Things (IoT) provide opportunities to pro-actively monitor (and improve)
medication adherence [15]. Adherence is a complex process that can be better
understood now that we have these new ways of feasibly measuring adherence.
Automated medication adherence monitoring requires a formalized, machine-
interpretable language for writing and representing prescription orders. Graph
transformation systems are a suitable formalism for developing such a language.
The graph transformation-based medication management (MM) system dis-
cussed in this paper is part of a larger project initiative that has also developed a
prototype “smart pill bottle”, which is capable of wirelessly emitting medication
administration events to cloud-based systems [6]. We are currently planning a
small-scale pilot deployment of the MM system to gain feedback on the cur-
rent design prior implementing more advanced features, such as the extensions
mentioned in the previous section.



220 J.H. Weber et al.

References

1. Amelunxen, C., Königs, A., Rötschke, T., Schürr, A.: MOFLON: a standard-
compliant metamodeling framework with graph transformations. In: Rensink, A.,
Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 361–375. Springer,
Heidelberg (2006)

2. Andrés, F.P., de Lara, J., Guerra, E.: Domain specific languages with graphical
and textual views. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007.
LNCS, vol. 5088, pp. 82–97. Springer, Heidelberg (2008)

3. Brown, M.T., Bussell, J.K.: Medication adherence: who cares? In: Mayo Clinic
Proceedings, vol. 86, pp. 304–314. Elsevier (2011)

4. Bryant, B.R., Gray, J., et al.: Challenges and directions in formalizing the semantics
of modeling languages. Comp. Sci. Inform. Sys. 8(2), 225–253 (2011)

5. de Lara, J., Vangheluwe, H.: AToM3: a tool for multi-formalism and meta-
modelling. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306,
pp. 174–188. Springer, Heidelberg (2002)

6. Diemert, S., Richardson, K., et al.: SmartMed: a medication management system
to improve adherence. Stud. Health Technol. Inform. 208, 125–130 (2015)

7. Heckel, R.: Graph transformation in a nutshell. ENTCS 148(1), 187–198 (2006)
8. Ruttan, J.: OSCAR. In: The Architecture of Open Source Applications. Structure,

Scale and a Few More Fearless Hacks, vol. II (2012)
9. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware

and Software Engineers. Addison-Wesley Longman Publishing Co. Inc., Amster-
dam (2002)

10. Mernik, M., Heering, J.J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. (CSUR) 37(4), 316–344 (2005)

11. Peterson, J.L.: Petri nets. ACM Comput. Surv. (CSUR) 9(3), 223–252 (1977)
12. Potter, B., Till, D., Sinclair, J.: An introduction to formal specification and Z.

Prentice Hall PTR, Upper Saddle River (1996)
13. Rensink, A.: The GROOVE simulator: a tool for state space generation. In: Pfaltz,

J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–485.
Springer, Heidelberg (2004)

14. Taentzer, G.: AGG: a graph transformation environment for modeling and valida-
tion of software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS,
vol. 3062, pp. 446–453. Springer, Heidelberg (2004)

15. Varshney, U.: Smart medication management system and multiple interventions
for medication adherence. Decis. Support Syst. 55(2), 538–551 (2013)

16. Yan, H., Van Gorp, P., et al.: Analyzing conformance to clinical protocols involving
advanced synchronizations. In: IEEE Conference on Bioinformatics and Biomedi-
cine (2013)

17. Yeh, H.-C., Hsiu, P.-C., et al.: APAMAT: a prescription algebra for medication
authoring tool. In: IEEE Conference on Systems, Man and Cybernetics (2006)


	Using Graph Transformations for Formalizing Prescriptions and Monitoring Adherence 
	1 Introduction
	2 Medication Management Process
	3 Related Work
	4 A GT-Based Method to Formalize Prescriptions
	4.1 Interface Language
	4.2 Rx Graph Model
	4.3 Rx Graph Compilation
	4.4 Adherence Tracking

	5 Evaluation
	6 Conclusions and Future Work
	References


