
Characterizing Conflicts Between Rule
Application and Rule Evolution in Graph

Transformation Systems

Rodrigo Machado1,2(B), Leila Ribeiro1,2, and Reiko Heckel1,2

1 Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
{rma,leila}@inf.ufrgs.br

2 University of Leicester, Leicester, UK
reiko@mcs.le.ac.uk

Abstract. Systems and models usually evolve with time, triggering the
question of how the introduced modifications impact their original behav-
ior. For rule-based models such as graph transformation systems, model
evolution may be represented by means of a collection of structural mod-
ifications in individual transformation rules. In this work we introduce
the notion of inter-level conflict between rule modification and rule appli-
cation, characterizing the situations where the evolution disables a tran-
sition of the original system. We discuss the confluence of the evolution
with respect to individual rewritings, and we also propose how the notion
of inter-level conflict can be used to help the modeler to foresee the effects
of model evolution.

1 Introduction

Computational systems are always evolving. Evolution may be due to correction
of errors, optimization, introduction of new features, adaptation to new technolo-
gies, languages or platforms, among others. Typically, when one version of a sys-
tem is delivered, the developers are already working on further versions to come.
In such a scenario, it is fundamental to understand how those changes impact
the system’s original behavior. If we restrict evolution to traceable structural
modifications in the description of the system behavior (for instance, rewriting
rules) it may be possible to relate these changes with the overall system exe-
cution (i.e. the application of those components over the system state), or, at
least, be warned of potential implications of some modifications.

Many systems can be modeled by an initial condition and a set of transforma-
tion rules. Graph transformation systems (GTS) [2], for instance, are essentially
a set of typed graph rewriting rules. The behavior of a GTS is given by iterated
application of rules over an initial graph. Due to the simplicity of the concept
of graph rewriting, and the availability of modeling and analysis tools such as
AGG [11] and Groove [9], GTSs have been used to describe several kinds of
model transformations for visual languages (such as the ones from the UML
family).
c© Springer International Publishing Switzerland 2015
F. Parisi-Presicce and B. Westfechtel (Eds.): ICGT 2015, LNCS 9151, pp. 171–186, 2015.
DOI: 10.1007/978-3-319-21145-9 11



172 R. Machado et al.

In this work we investigate how structural modifications in GTSs may affect
their respective behavior. For instance, augmenting the left-hand side of a given
rule has the effect of disabling its application over graphs that do not contain the
new requirements. Although this is quite obvious, we have found that deleting
some parts of the left-hand side may as well disable some of its rewritings. This
is not as obvious as adding a new requirement, and justifies the importance of
a method to help the modeler to foresee all situations where changes in rules
impact their respective rewritings.

For our discussion we will employ (typed) GTSs under the double-pushout
approach (DPO) for graph rewriting [2]. We introduce the notions of rule evolu-
tion that characterize changes in individual rules, and inter-level conflicts that
characterize the interference of evolution over a particular graph transforma-
tion. We also propose an extension to the critical pair analysis technique, whose
purpose is to calculate, for a given GTS submitted to evolution, all possible
inter-level conflicts. The aim of finding critical pairs is to detect situations in
which evolution may not succeed as expected and generate a warning for the
modeler regarding the adequacy of the evolution. This kind of static analysis
technique is very useful during the modeling stage to avoid the introduction of
undesirable behavior.

This paper is organized as follows: in Sect. 2, we present a review of graph
transformation systems under the double-pushout approach and introduce our
working example. In Sect. 3, we motivate an evolution of the example system
and we introduce a formal definition for evolutions. In Sect. 4, we define the
notion of inter-level conflict (and inter-level independence) between rule evo-
lution and rule rewriting, presenting some examples of conflicting situations.
Questions of confluence between inter-level independent evolutions and rewrit-
ings are discussed in Sect. 5, where we prove that we can obtain confluence under
specific conditions. In Sect. 6, we review the critical pair analysis algorithm, and
propose an extension to capture inter-level conflicts. In Sect. 7, we compare our
approach to related work. We conclude in Sect. 8 discussing application scenarios
and pointing towards future work.

2 Background

This section reviews the fundamentals of GTSs and present our working example.
First, we recall some basic definitions regarding graphs and graph rewriting rules.

A (directed) graph is a tuple G = (V,E, s, t) where V is a set of nodes, E is a
set of edges, and s, t are functions that map each edge to its respective source and
target node. In the following we refer as graph elements both nodes and edges
of a given graph. A graph homomorphism f : (V1, E1, s1, t1) → (V2, E2, s2, t2) is
a pair of total functions (fV , fE) where fV : V1 → V2, fE : E1 → E2, and, for all
e ∈ E1, we have fV ◦s1(e) = s2 ◦fE(e) and fV ◦t1(e) = t2 ◦fE(e). A typed graph
tg : G → T is a graph homomorphism where the elements of T (the type graph)
represent types of nodes and edges, and the elements of G (the instance graph)
have a type assignment given by the homomorphism mapping. For example,



Characterizing Conflicts Between Rule Application and Rule Evolution 173

the nodes in graph T (shown in Fig. 2) describe four kinds of nodes: messages
(envelops), clients (laptops), servers (tower-style CPUs), and data nodes (sheets
of papers). There are five kinds of edges, representing the location of messages
over servers and clients, and data over messages, clients and servers.

A morphism between two typed graphs tg1 : G1 → T and tg2 : G2 → T is
a graph homomorphism f : G1 → G2 between the instance graphs G1 and G2

such that tg2 ◦ f = tg1. In the following, we assume all graphs and morphisms
are typed over a global typed graph T , and hence, for the sake of brevity, we
omit the T -typed qualification for rules, matches and rewritings.

Under the double-pushout approach to graph transformation, a graph rule
is a span p : L

l←− K
r−→ R (a pair of typed graph morphisms l and r with the

same source) where L, K and R are graphs and both l and r have injective
mappings. Within p, the left-hand side graph L represents a pattern to be found
in order to apply the rule, the interface graph K represents the elements which
are maintained by the rule application. The right-hand side graph R presents
new nodes and edges to be added by the rule rewriting. An element of L which
does not have a pre-image in K along l is said to be deleted by p and an element
of R which does not have a pre-image in K is said to be created by p.

Fig. 1. Graph transformation rule.

Example 1. Figure 1 shows a graph rule which deletes the edge a, creates the edge
b and preserves the three nodes x, y and z (both l and r are inclusions). Since
edges are used to specify the location of messages, this production represents
the act of sending a message from a computer to a server.

A match for rule p : L
l←− K

r−→ R over a graph G is simply an homomorphism
m : L → G. The effect of modifying a graph G into a graph G′ by means of
a graph rule p and match m is a graph rewriting, which we denote G

p,m
==⇒ G′.

Informally, the rewriting consists of deleting the image along m of the elements
deleted by p, which results in an intermediate graph D. Then, we add to D the
elements created by p. In the literature of graph transformation, this double step
may be compactly described as the existence of a double-pushout diagram in the
category of typed graphs involving G, m, p and G′, as shown below (for more
details, see [2]):



174 R. Machado et al.

The double-pushout approach to graph rewriting imposes two conditions over
the match, which have to be satisfied in order for the rewriting to occur: (i) an
element deleted by the rule may not be identified in the match with any other
element of the graph (identification condition); (ii) a node may not be deleted
if there are incident arrows over it which are outside of the match (dangling
condition). Whenever these two conditions (called gluing conditions) are satisfied
for a given match, the rewriting is possible.

A graph transformation system is a tuple G = (T, P, π) where T is a type
graph, P is a set of rule names, and π is a function that associates to each rule
name a particular T -typed graph transformation rule. In the following, whenever
we refer to a rewriting of p, we mean actually a rewriting of rule π(p).

Fig. 2. Graph transformation system for clients and servers.

Example 2. Figure 2 shows a graph transformation system thats models a client-
server scenario. There are four kinds of transitions in this system: clients send-
ing a message to servers (sendMSG), obtaining data elements from the server
(getDATA), servers returning the messages to the clients (receiveMSG) and clients
obtaining data from returned messages (deleteMSG). The visual depiction of each
rule omits the interface graph, which we implicitly take to be the intersection of
the left-hand side and right-hand side graphs.

Given an initial graph G0, a derivation of G from G0 consists of a sequence
of graph rewritings G0

p1,m1=⇒ G1
p2,m2=⇒ G2

p3,m3=⇒ . . . where pi ∈ P for all i ∈ N.

Example 3. Figure 3 presents a derivation of the shown graph transformation
system over an initial situation consisting of a single client and two servers.



Characterizing Conflicts Between Rule Application and Rule Evolution 175

Fig. 3. Graph derivation.

For a given graph G, it may be possible to have several possible rewritings
G

p,m
==⇒ G′ of distinct rules or even the same rule in distinct parts of the graph.

Operationally, the simplest solution to this is to consider a non-deterministic
choice of which rule and match to apply. If there are two possible rewritings
G

p1,m1===⇒ H1 and G
p2,m2===⇒ H2 from the same graph G, we say that they are in

conflict iff one of the rewritings disables the subsequent application of the other
in the same part of the graph (usually by deleting something that the other
rewritings needed). When two rewritings are not conflicting there are said to be
parallel independent.

Fig. 4. Conflicting graph derivations.

Example 4. Figure 4 presents a conflict between two distinct application of the
rule sendMSG. Each application deletes the arrow from the message to the client
and creates a new arrow from the message to a server. Since the application of
one removes the arrow needed by the other, they cannot be both executed, and
therefore they are conflicting.

3 Evolution of Graph Transformation Systems

We now consider the case of how to represent the evolution of a graph transfor-
mation system. Changes in systems and models may occur due to very distinct
reasons, such as the correction of errors, addition of new features or simply



176 R. Machado et al.

structural reorganizations (refactorings). Either way, a generic way of framing
the evolution of a given model is to consider that some of its elements have been
removed, added or preserved. Notice that GTSs have only two components: one
which defines structural restrictions (the type graph) and one which defines the
system execution (the set of graph rewriting rules), and we need to specify in
which way those elements may be modified.

Before dealing with the formal definitions, let us introduce a simple example
of model evolution. Although very straightforward, our example graph transfor-
mation system of Fig. 2 has some behaviors that could be considered defects in
comparison with the original modeler’s intention. It is not uncommon during the
modeling stage to obtain an incorrect approximation of the intended behavior,
and to successively refine the specification until it faithfully encodes the original
concept. The next example highlights the problems with the original model.

Fig. 5. Graph derivation exposing problems in the model.

Example 5. Figure 5 presents a derivation of the example GTS over an initial
graph consisting of two clients and two servers. There are at least three potential
issues:

– The first issue can be seen in the rewriting G2
getData,m3
======⇒ G3, where a second

data node is loaded over the only message. Although this may not seem a
problem at first sight, it completely disables the subsequent application of rule
deleteMSG over the message. The reason is that the deletion of the message
node would leave a dangling edge from the data node that is not transferred
to the client. In the double-pushout approach, dangling edges prevent the
rewriting (although in other approaches, such as the single-pushout approach
[5], the rewriting would occur and the dangling edge would be deleted, leaving
the data node astray).

– The second issue is shown by rewriting G3
receiveMSG,m4
=========⇒ G4, since the message

we have sent from a particular client has returned to a different one. This is
clearly the result of not storing a reference to the original sender, which enables
the receiveMSG rule to return the message to any of the available clients.



Characterizing Conflicts Between Rule Application and Rule Evolution 177

– The third issue may be perceived by the fact that even when a given message
returns from a server to a client, nothing prevents it to be re-sent to another
server instead of being deleted and have its content delivered. This is shown
in G4

sendMSG,m5
=======⇒ G5, where a received message is re-sent (although in this

case it would not be possible to delete the message due to the first issue).

In order to correct these issues, the modeler may consider the following modifi-
cations:

– The creation of a new kind of edge from messages to clients, in order to mark
the original sender, and thus solving the second issue;

– The use of a token over messages which is removed when data is loaded. If we
assume that each message starts with at most one token, we can prevent the
loading of multiple data. Moreover, if we modify the rule sendMSG to require
messages to have tokens, we can ensure that only new messages are sent to
servers. The implementation of those tokens may be as simple as adding a
self-edge over the message.

The evolved GTS that incorporates these modifications is shown in Fig. 6. Even
if the presented evolution may seem artificial (since it would not be that hard
to build the correct model from the start), we claim this example illustrates the
nature of the modifications that also occur in more complex scenarios. Notice
also that both original and the evolved model assume some structural properties
of the graph that will be transformed by them, such that messages start with
a unique token, and that messages and data cannot be located at two or more
places simultaneously. In this particular case, all changes were in the sense of
adding new kinds of edges to the type graph, and adding edges to the left-
hand side, interface and right-hand side of rules but, in general, we can also
expect some deprecated elements of the original specification to be deleted. The
following definition formalizes what we mean by evolution.

Fig. 6. Evolved graph transformation system for clients and servers.



178 R. Machado et al.

Definition 1 (Evolution of Graph Transformation System). Given two
GTSs G1 = (T1, P, π1) and G2 = (T2, P, π2) with the same set of rule names P ,
we define an evolution between them as a pair (ET , EP ) where

– ET is an injective span T1 � TK � T2 representing a modification in the
type graph;

– EP is a function mapping each rule name p ∈ P to a commutative diagram
(in the category of graphs) with the format shown in Fig. 7, named evolution-
ary span of p, where the left rule is π1(p) = L1 ← K1 → R1 (T1-typed),
the central rule is pK = LK ← KK → RK (TK-typed), the right rule is
π2(p) = L2 ← K2 → R2 (T2-typed), and all morphisms in the top surface are
monomorphisms. By an abuse of language, we will denote the evolutionary
span EP (p) = π1(p) � pK → π2(p) as an injective span which is T1+2 typed,
where T1+2 is the object of the pushout of ET = T1 ← TK → T2.

Notice that this definition assumes that we have a fixed set of rule names which
is kept constant across the evolution (i.e. we do not add or remove new rules).

Fig. 7. Evolutionary span as a diagram in the category of graphs.

4 Inter-level Conflicts

In this section, we consider the possible interaction of an evolution over the
potential rewritings of a rule, and introduce the notion of inter-level conflict.

When we compare two possible rewritings over the same graph, we say that
they are in conflict when the execution of one disables the execution of the other
in the resulting graph. Now, instead of comparing two possible rewritings from
the same graph, we intend to compare an arbitrary graph rewriting G

p,m0===⇒ H of
a given rule p = L ← K → R with an arbitrary rule span p ← p′ → p′′ denoting
the rule evolution. This situation can be represented by the diagram shown in
Fig. 8 (in the category of T1+2-typed graphs).

We consider that there is independence (or non-interaction) between the
rewriting and the evolution when the evolution does not disable the rewriting.
In order for this to occur, we need to be able to rewrite the graph G with rule
p′′ over the same place as the original rewriting (i.e. over an equivalent match
m′′

0 of p′′ over G). This is formalized by our notion of inter-level independence.



Characterizing Conflicts Between Rule Application and Rule Evolution 179

Definition 2 (Inter-level Independence and Conflict). Let ρ = G
p,m0===⇒ H

be a graph rewriting where p = L ← K → R and let θ = p ← p′ → p′′ be a
evolutionary span of rule p. We say that ρ and θ are (inter-level) independent
iff there is a match m′′

0 : L′′ → G (as shown in Fig. 8) such that

1. m0 ◦ fL = m′′
0 ◦ gL

2. m′′
0 satisfies double-pushout gluing conditions for p′′ = L′′ l′′←− K ′′ r′′

−→ R′′

We define ρ and θ to be in (inter-level) conflict iff they are not independent.

Fig. 8. Graph rewriting and rule evolution.

In other words, we have a conflict between a rule application and a rule
evolution whenever the evolved rule does not have any match for G (that is
compatible with the original match m0) or when all compatible matches violate
some gluing condition of the evolved rule.

Example 6 (Inter-level Conflict). Figure 9 depicts four situations that cause inter-
level conflicts. We do not show the intermediate rule (of evolution) and graph
(of rewriting) to help visualization, and we consider them to be the intersection
between the shown components.

(a) This situation reflects the obvious case when we are increasing the require-
ments (left-hand side) of a rule, and thus the transformation cannot be
applied over graphs that do not have the new requirements. This particu-
lar situations shows the evolution of rule sendMSG, and the conflict arises
because we enforce that rules must contain a self-edge in order to be sent.

(b) The rule depicted in this case does not occur in our example GTS, but
allows us to illustrate another kind of inter-level conflict arising when we
consider non-injective matches. The original rule matches against two mes-
sages, creating a self-edge over each of them. We have a valid DPO rewriting
by matching both messages in the left-hand side over the single message of
the graph, and applying the transformation. If, however, we change the rule
as shown in the evolution, forcing the rule to delete one of the messages,
the rewriting would not be possible. This happens because the evolved rule
would be trying to simultaneously delete and preserve the same message,
which violates the identification condition.



180 R. Machado et al.

Fig. 9. Situations causing inter-level conflicts between evolution and rewriting.

(c) This situation is not as obvious as the first two, since it shows that conflicts
may arise even when decreasing the requirements for a rule application. The
shown rule deletes a message with self-edge located in a client. Hence, the
rule is applicable over the depicted graph, modifying it as expected. However,
if the evolution modifies the rule in such a way that it does not delete the
self-edge, the same rewriting becomes impossible because it would leave a
dangling edge in the resulting graph.

(d) This case shows that evolution may create a conflict by changing the preser-
vation of a node into deletion. Since the message node is preserved, the orig-
inal rule can be applied over messages that have incident edges. However, if
we change the rule in a way that it deletes the message, these rewritings are
not possible anymore due to the violation of the dangling condition.

In the double-pushout approach, dependencies and conflicts are dual to each
other in the sense that two rewritings δ1 : G ⇒ G1 and δ2 : G ⇒ G2 are conflict-
ing iff there is a dependency between δ−1

1 : G1 ⇒ G and δ2. In the same way,
inter-level conflicts are said to be caused by evolutions that disable some graph
rewriting, we can define that a graph rewriting depends on an evolution if it
was enabled by it, i.e., when the particular rule modification makes it possible.
For instance, consider the reverse of the situation (c) depicted in Fig. 9 (read-
ing the evolution from right-to-left, adding the self-edge to the LHS instead of
removing it). Clearly, this modification in the rule turns a match that would



Characterizing Conflicts Between Rule Application and Rule Evolution 181

violate the dangling condition over G into a valid one, allowing the respective
first-order rewriting to occur in the modified rule. This reasoning suggests that
the adequate notion of inter-level dependency may be seen as a conflict between
the inverse of the evolution and the graph rewriting, confirming that the sym-
metry we observe between conflicts and dependencies in traditional DPO graph
rewritings extends toward the inter-level scenario.

5 Inter-level Confluence

The notions of conflict and independence are usually related to the notion of
confluence. In particular, DPO rewriting satisfies local confluence (also known
as local Church-Rosser) which states that independent rewritings can be applied
in any order (or even in parallel), resulting in the same graph. Formally, if
G

p1,m1===⇒ H1 and G
p2,m2===⇒ H2 are not conflicting, then there are rewritings

H1
p′
2,m

′
2===⇒ H and H2

p′
1,m

′
1===⇒ H which result in the same graph H.

Our notion of inter-level conflict focus on applicability of a rule which may
change in a way that is not necessarily conservative of old behavior. In this
sense, confluence would mean that the final result of a rewriting would be the
same independent of the evolution having ocurred or not. This is not expected
in general, as the next example shows.

Example 7 (Inter-level Independence without Confluence). Case (a) in Fig. 10
depicts a non-confluent, inter-level independent scenario. The original rule deletes
a message over a client, and the evolution has the effect of adding another ele-
ment to be deleted (a server). In this case, the resulting graphs of the rewritings
of evolved and original rules are clearly not isomorphic.

Fig. 10. Inter-level independent evolution and rewriting with non-confluence (a) and
confluence (b).

There are some situations where the evolution adds or removes only itens
which are preserved by the rewriting, without increasing or decreasing its deleted
and created elements.



182 R. Machado et al.

Example 8 (Inter-level IndependencewithConfluence). In the scenario (b) depicted
in Fig. 10, the evolution forces the rule to delete the message in the presence of a
server, which is maintained intact by the rule. Inter-level independence ensures
that the new rule can be applied, i.e. the graph has at least one server to provide
a match for the new rule. Since both rules delete and create the same amount of
elements, we have confluence.

These conservative evolutions can be identified by the fact that, when seeing
them as a diagram in the category of T1+2-typed graphs, all squares in the
evolutionary span are pushouts. For these evolutions, we are guaranteed to have
confluence, as we demonstrate next.

Lemma 1 (Inter-level Confluence). Let ρ = G
p,m0===⇒ H be a graph rewriting

where p = L ← K → R and let θ = p ← p′ → p′′ be a evolutionary span of rule

p such that they are inter-level independent. Let us call ρ′′ = G
p′′,m′′

0====⇒ H ′′ the
rewriting of the modified rule p′′ = L′′ ← K ′′ → R′′.

If all squares in θ are pushouts in the category of T1+2-typed graph, then the
evolution and graph rewriting are confluent (the graphs H and H ′′ are isomor-
phic).

Proof. Consider the following depiction of the situation above as a diagram in
the category of T1+2-typed graphs (all squares in the top and the sides are
pushouts).

R

��

R′�� �� R′′

��

K

r��������
l

��������

��

K ′
��������

���������� �� K ′′
r′′��������

l′′
��������

��

L

m0

��

L′fL�� gL �� L′′

m′′
0

��

H H ′′∼=

D

��������

�������� D′′
��������

��������
∼=

G G
=

1. by the property of pushout composition between the pushouts on the top
and the sides, we obtain double-pushout diagrams denoting the rewritings

G
p′,m0◦fL======⇒ H and G

p′,m′′
0 ◦gL======⇒ H ′′;

2. due to inter-level independence, we know that m′
0 = m0 ◦ fL = m′′

0 ◦ gL;
3. because pushout complements are unique (up to isomorphism) in adhesive

categories such as typed graphs (Theorem 4.26 in [2]) we have D ∼= D′′;
4. because pushouts are unique (up to isomorphism) in general categories we

have H ∼= H ′′. �	

6 Inter-level Critical Pair Analysis

Critical pair analysis is a static analysis technique which shows, for a given GTS,
all possible conflicts (or dependencies) between rule applications. Usually, this



Characterizing Conflicts Between Rule Application and Rule Evolution 183

technique is available at modeling and analysis tools (such as AGG) where it
presents valuable information to the modeler regarding potential behavior of the
system.

Consider a GTS G = (T, P, π). Roughly speaking, critical pair analysis con-
sists of the following steps:

1. for each pair (p1, p2) where p1, p2 ∈ P , calculate all possible overlaps of their
LHSs (for conflicts) or all possible overlaps of the RHS of one rule with the
LHS of the other one (for dependencies);

2. for each overlap, verify if the corresponding rewritings are conflicting or not
(respectively, dependent or not);

3. present a table size(P )×size(P ) containing the number of conflicts or depen-
dencies identified between each pair of rules.

As a rule-based model grows, it becomes increasingly hard for the modeler to
identify all the possible interactions between the rewriting rules. In this way,
the information provided by critical pair analysis allows the identification and
correction of flaws at an earlier stage of the modeling process. For instance, if
we take the original system shown in Fig. 2 as an example, the problem of re-
sending loaded messages appears as a dependency between rules receiveMSG and
sendMSG. Usually, the output table of the method is interactive, and allows for
the modeler to see the conflicting or dependency situation visually.

We envision that our notion of inter-level conflict can be used in a similar
way to aid the modeler to foresee the potential effects of a given model evolution.
We propose a method for executing inter-level critical pair analysis as follows.

Definition 3 (Inter-level Critical Pair Analysis). Given a graph transfor-
mation system G1 = (T1, P, π1) and an evolution (ET , EP ) of G1 into G2 =
(T2, P, π2), we proceed as follows:

1. for each rule name p ∈ P ,
(a) take its evolution EP (p) = q ← q′ → q′′;
(b) generate a set R(p) of relevant graphs for q (see Definition 5);
(c) generate all pairs (q,m), where m : LHS(q) → G is a match for some

graph G ∈ R(p) satisfying DPO gluing conditions;
(d) for each pair (q,m), detect if the rewriting G

q,m
==⇒ H and the evolution

EP (p) are inter-level conflicting or not.
2. present a table size(P ) × 1 containing the number of inter-level conflicts for

the evolution of each rule in P .

One important part of this definition is the calculation of the relevant graphs
R(p), which need to include all possible scenarios that would lead to conflicts
after the evolution. For instance, we need to account for (i) the lack of matches
(absence of m′′

0), (ii) the violation of identification conditions and (iii) the viola-
tion of dangling conditions. The information required to build graphs that may
trigger (i) and (ii) is available in the LHSs of the rules q, q′ and q′′. The situ-
ation (iii), however, requires that we take into consideration edges which may



184 R. Machado et al.

not occur in the LHSs of the rules (as shown in case (d) of Fig. 9). For this
purpose, we define the dangling extension of the LHS of a rule, which is used in
the calculation of the set of relevant graphs.

Definition 4 (Dangling Extension). Let q : LT l← KT r→ RT be a finite
T -typed rule where τ : L → T is the typing morphism of L. Let delNodes(q) be
the set of nodes of L which are deleted by q. Given a node n of L, let S(n) be the
set of all edges e ∈ E(T ) such that source(e) = τ(n) and, respectively, let T (n)
be the set of all edges e ∈ E(T ) such that target(e) = τ(n). Define L+ as the
graph obtained from L by creating, for each n ∈ delNodes(q) and for each edge
type e ∈ S(n) 
 T (n), a new e-typed edge instance. Each new instance connects
the node n to a fresh node instance at the other end. We denote L ↪→ L+ the
obvious inclusion of L into its dangling extension.

Fig. 11. Example of dangling extension.

Example 9 (Dangling Extension). Fig. 11 depicts the dangling extension of the
LHS of a rule which deletes a message and creates a self-edge over another
message.

Definition 5 (Relevant Graphs). Given a graph transformation system G1 =
(T1, P, π1), an evolution (ET , EP ) of G1 into G2 = (T2, P, π2) and a rule name
p ∈ P , we calculate the set of relevant graphs R(p) as follows:

1. let L ← L′ → L′′ be the span of LHSs of EP (p) (as shown in Fig. 8).
2. let G be the object of the colimit of L+ ←↩ L ← L′ → L′′ ↪→ (L′′)+

3. define R(p) to be the set of all partitions of all subgraphs of G.

The presented definition for relevant graphs is conservative in the sense that it
does not focus on efficiency but rather on ensuring that every possible conflicting
situation is captured. However, implementations of inter-level critical pair analy-
sis should focus on creating the smallest subset of R(p) containing all inter-level
conflicts. As a very simple (and obvious) example of application of inter-level
critical pairs, consider that the evolution of rule sendMSG shown in Fig. 6 essen-
tially adds new elements to the rule structure, requiring the rule to preserve a
self-edge over messages. This creates an inter-level critical pair, shown in the
item (a) of Fig. 9, where the rule is not applicable. This information would be
available to the modeler as soon as the evolution is specified, and, in this partic-
ular case, would alert for the need of preparing the initial state with self-edges
in messages.



Characterizing Conflicts Between Rule Application and Rule Evolution 185

7 Related Work

Many approaches [1,4,8] represent model evolution by means of rewritings in
components of rules, generally introducing a notion of compatibility (preserva-
tion of behavior) between the original and evolved systems. In this paper we
take the evolution as an information obtained externally, either manually or via
some other mechanism (possibly rewriting), and the aim is only to characterize
the effect of evolution over the applicability of rules. Notice that the preserva-
tion of behavior is not assumed and we only present a (rather straightforward)
sufficient condition for it. On the other hand, we can employ inter-level critical
pair analysis in all situations where it is possible to obtain an evolutionary span
for rules.

The problem of extending the evolution from meta-models (e.g. type graph)
to models (e.g. typed graphs and typed rules) is considered in [12]. This is in
contrast with our approach, where the relationship between the evolution of the
type graph and the evolution of typed graph rules is encoded statically in the
definition of evolution.

In terms of structure, evolutionary spans are similar to triple graph rules [10].

8 Concluding Remarks

In this work we have addressed the issue of relating structural modifications in
rules (of GTSs) and their respective rewritings in order to detect potential con-
flicts. We introduced a way to represent the evolution of a GTS, defined a notion
of inter-level conflicts and discussed how they can be used in inter-level critical
pair analysis. Although the main contribution of this paper is conceptual, we
foresee practical applications of the introduced concepts in the implementation
of evolution assistants in tools such as AGG or Groove. Notice also that the pro-
posed notion of inter-level conflict is applicable whenever we can characterize
the rewriting as a double-pushout diagram, and evolution as a span of rules. For
instance, the same definition could be generalized towards Adhesive HLR Sys-
tems [3], since those generalize DPO graph transformation. Important instances
of this framework include algebraic specifications, Petri nets, typed attributed
graph transformation system, among others.

One aspect that could be questioned in our treatment is the fact that the
notion of evolution does not include addition or removal of rules. It would be
possible to describe deletion (resp. creation) of rules as an evolution from (resp.
to) the empty rule if we allowed extra unassigned rule names in both original
and evolved GTS. The empty rule is always applicable, and does not have any
conflict or dependency with other rules. For more on this, we refer the reader
to [6]. Regarding future work, we consider the implementation of inter-level
critical pair analysis in a graph transformation tool, the further development of
the presented theory (for instance, considering rules with negative application
conditions) and the application of these concepts to study the behavior of second-
order graph grammars [6,7].



186 R. Machado et al.

References

1. Ehrig, H., Ehrig, K., Ermel, C.: Refactoring of model transformations. Electron
Commun. EASST 18 (2009). http://dblp.uni-trier.de/rec/bib/journals/eceasst/
EhrigEE09

2. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science, An EATCS Series.
Springer, Berlin (2005)

3. Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive High-Level Replacement
Categories and Systems. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg,
G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 144–160. Springer, Heidelberg (2004)

4. Ermel, C., Ehrig, H.: Behavior-preserving simulation-to-animation model and rule
transformations. Electr. Notes Theor. Comput. Sci. 213(1), 55–74 (2008)

5. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theoret.
Comput. Sci. 109(1–2), 181–224 (1993)

6. Machado, R.: Higher-order graph rewriting systems. Ph.D. thesis, Instituto de
Informatica - Universidade Federal do Rio Grande do Sul (2012). http://hdl.
handle.net/10183/54887

7. Machado, R., Ribeiro, L., Heckel, R.: Rule-based transformation of graph rewriting
rules: towards higher-order graph grammars. Theoretical Computer Science (2015,
to appear)

8. Parisi-Presicce, F.: Transformations of graph grammars. In: Graph Gramars
and Their Application to Computer Science, 5th International Workshop,
Williamsburg, VA, USA, Selected Papers, pp. 428–442, 13–18 November 1994

9. Rensink, A.: The GROOVE simulator: a tool for state space generation. In: Pfaltz,
J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–485.
Springer, Heidelberg (2004)

10. Schürr, A., Klar, F.: 15 years of triple graph grammars. In: Ehrig, H., Heckel,
R., Rozenberg, G., Taentzer, G. (eds.) Graph Transformations. Lecture Notes in
Computer Science, vol. 5214, pp. 411–425. Springer, Berlin (2008)

11. Taentzer, G.: AGG: a tool environment for algebraic graph transformation. In:
Münch, M., Nagl, M. (eds.) AGTIVE 1999. LNCS, vol. 1779, pp. 481–488. Springer,
Heidelberg (2000)

12. Taentzer, G., Mantz, F., Lamo, Y.: Co-transformation of graphs and type graphs
with application to model co-evolution. In: Ehrig, H., Engels, G., Kreowski, H.-
J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 326–340. Springer,
Heidelberg (2012)

http://dblp.uni-trier.de/rec/bib/journals/eceasst/EhrigEE09
http://dblp.uni-trier.de/rec/bib/journals/eceasst/EhrigEE09
http://hdl.handle.net/10183/54887
http://hdl.handle.net/10183/54887

	Characterizing Conflicts Between Rule Application and Rule Evolution in Graph Transformation Systems
	1 Introduction
	2 Background
	3 Evolution of Graph Transformation Systems
	4 Inter-level Conflicts
	5 Inter-level Confluence
	6 Inter-level Critical Pair Analysis
	7 Related Work
	8 Concluding Remarks
	References


