
Francesco Parisi-Presicce
Bernhard Westfechtel (Eds.)

 123

LN
CS

 9
15

1

8th International Conference, ICGT 2015
Held as Part of STAF 2015
L'Aquila, Italy, July 21–23, 2015, Proceedings

Graph
Transformation

Lecture Notes in Computer Science 9151

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Francesco Parisi-Presicce
Bernhard Westfechtel (Eds.)

Graph
Transformation
8th International Conference, ICGT 2015
Held as Part of STAF 2015
L’Aquila, Italy, July 21–23, 2015
Proceedings

123

Editors
Francesco Parisi-Presicce
Dipartimento di Informatica
Sapienza Università di Roma
Rome
Italy

Bernhard Westfechtel
Angewandte Informatik 1
Universität Bayreuth
Bayreuth
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-21144-2 ISBN 978-3-319-21145-9 (eBook)
DOI 10.1007/978-3-319-21145-9

Library of Congress Control Number: 2015943043

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Foreword

Software Technologies: Applications and Foundations (STAF) is a federation of a
number of leading conferences on software technologies. It provides a loose umbrella
organization for practical software technologies conferences, supported by a Steering
Committee that provides continuity. The STAF federated event runs annually; the
conferences that participate can vary from year to year, but all focus on practical and
foundational advances in software technology. The conferences address all aspects of
software technology, from object-oriented design, testing, mathematical approaches to
modeling and verification, model transformation, graph transformation, model-driven
engineering, aspect-oriented development, and tools.

STAF 2015 was held at the University of L’Aquila, Italy, during July 20–24, 2015,
and hosted four conferences (ICMT 2015, ECMFA 2015, ICGT 2015 and TAP 2015),
a long-running transformation tools contest (TTC 2015), seven workshops affiliated
with the conferences, a doctoral symposium, and a project showcase (for the first time).
The event featured six internationally renowned keynote speakers, a tutorial, and
welcomed participants from around the globe.

This was the first scientific event in computer science after the earthquake that
occurred in 2009 and affected L’Aquila. It is a small, and yet big step toward the grand
achievement of restoring some form of normality in this place and its people.

The STAF Organizing Committee thanks all participants for submitting and
attending, the program chairs and Steering Committee members for the individual
conferences, the keynote speakers for their thoughtful, insightful, and engaging talks,
the University of L’Aquila, Comune dell’Aquila, the local Department of Human
Science, and CEA LIST for their support: Grazie a tutti!

July 2015 Alfonso Pierantonio

Preface

ICGT 2015 was the 8th International Conference on Graph Transformation held during
July 21–23, 2015, in L’Aquila (Italy). The conference was affiliated with STAF
(Software Technologies: Applications and Foundations) and it took place under the
auspices of the European Association of Theoretical Computer Science (EATCS), the
European Association of Software Science and Technology (EASST), and the IFIP
Working Group 1.3, Foundations of Systems Specification.

ICGT 2015 continued the series of conferences previously held in Barcelona (Spain)
in 2002, Rome (Italy) in 2004, Natal (Brazil) in 2006, Leicester (UK) in 2008,
Enschede (The Netherlands) in 2010, Bremen (Germany) in 2012, and York (UK) in
2014, following a series of six International Workshops on Graph Grammars and Their
Application to Computer Science from 1978 to 1998 in Europe and in the USA.

Dynamic structures are a major cause of complexity when it comes to modeling and
reasoning about systems. They occur in software architectures, configurations of arti-
facts such as code or models, pointer structures, databases, networks, etc. As interre-
lated elements, which may be added, removed, or may change state, they form a
fundamental modeling paradigm as well as a means to formalize and analyze systems.
Applications include architectural reconfigurations, model transformations, refactoring,
and the evolution of a wide range of artifacts, where change can happen either at design
or at run time. Dynamic structures occur also as part of semantic domains or com-
putational models for formal modeling languages.

Based on the observation that all these approaches rely on very similar notions of
graphs and graph transformations, the theory and applications of graphs, graph
grammars, and graph transformation systems have been studied in our community for
more than 40 years. The conference aims at fostering interaction within this community
as well as attracting researchers from other areas to join us, either in contributing to the
theory of graph transformation or by applying graph transformations to already known
or novel areas, such as self-adaptive systems, overlay structures in cloud or P2P
computing, advanced computational models for DNA computing, etc.

This year, the conference offered two tracks for research focusing on foundations
and on applications. For the proceedings, 18 papers were selected following a thorough
reviewing process (11 long papers on foundations, four long papers on applications,
and three short papers on tool presentations). The proceedings are structured in three
sections corresponding to the different paper categories.

In addition to the presentation of these papers, the conference program included an
invited talk, given by Gerti Kappel, as well as one joint session with ICMT 2015, the
8th International Conference on Model Transformation.

We are grateful to the University of L’Aquila and the STAF Conference for hosting
ICGT 2015, and would like to thank the invited speaker, the authors of all submitted
papers, the members of the Program Committee, as well as the additional reviewers.

Special thanks go to Detlef Plump, the organizer of the 6th International Workshop
on Graph Computation Models (GCM 2015), a satellite workshop related to ICGT
2015, affiliated with the STAF Conference.

We are also grateful to Thomas Buchmann for his support as publicity chair. Finally,
we would like to acknowledge the excellent support throughout the publishing process
by Alfred Hofmann and his team at Springer, the assistance provided by the STAF
publication managers Louis Rose and Javier Troya, and the helpful use of the Easy-
Chair conference management system.

July 2015 Francesco Parisi-Presicce
Bernhard Westfechtel

VIII Preface

Organization

Program Committee

Paolo Baldan Università di Padova, Italy
Luciano Baresi Politecnico di Milano, Italy
Gábor Bergmann Budapest University of Technology and Economics,

Hungary
Paolo Bottoni Sapienza - Università di Roma, Italy
Thomas Buchmann Universität Bayreuth, Germany
Andrea Corradini Università di Pisa, Italy
Juan de Lara Universidad Autónoma de Madrid, Spain
Rachid Echahed CNRS, Laboratoire LIG, France
Claudia Ermel Technische Universität Berlin, Germany
Holger Giese Hasso-Plattner-Institut Potsdam, Germany
Reiko Heckel University of Leicester, UK
Frank Hermann Carmeq Gmbh, Germany
Christian Krause SAP Innovation Center Potsdam, Germany
Hans-Jörg Kreowski Universität Bremen, Germany
Barbara König Universität Duisburg-Essen, Germany
Leen Lambers Hasso-Plattner-Institut Potsdam, Germany
Tihamer Levendovszky Vanderbilt University, Nashville, USA
Fernando Orejas Universitat Politècnica de Catalunya, Spain
Francesco Parisi-Presicce Sapienza - Università di Roma, Italy
Detlef Plump The University of York, UK
Arend Rensink University of Twente, The Netherlands
Leila Ribeiro Universidade Federal do Rio Grande do Sul, Brazil
Andy Schürr Technische Universität Darmstadt, Germany
Pawel Sobocinski University of Southampton, UK
Gabriele Taentzer Philipps-Universität Marburg, Germany
Matthias Tichy Chalmers University of Technology and University

of Gothenburg, Sweden
Pieter Van Gorp Eindhoven University of Technology, The Netherlands
Bernhard Westfechtel Universität Bayreuth, Germany
Albert Zündorf Universität Kassel, Germany

Additional Reviewers

Beyhl, Thomas
Dyck, Johannes
George, Tobias
Golas, Ulrike
Gottmann, Susann
Hahn, Marcel
Koch, Andreas

Nachtigall, Nico
Nolte, Dennis
Poskitt, Christopher M.
Semeráth, Oszkár
Stückrath, Jan
Vogler, Walter

X Organization

From Software Modeling to System
Modeling – Transforming the Change

(Keynote)

Gerti Kappel

Business Informatics Group, Vienna University of Technology, Austria
gerti@big.tuwien.ac.at

Abstract. Model-driven software engineering has gained momentum in aca-
demia as well as in industry for improving the development of evolving software
by providing appropriate abstraction mechanisms in terms of software models
and transformations thereof. With the rise of cyber-physical systems in general,
and cyber-physical production systems in particular, the interplay between
several engineering disciplines, such as software engineering, mechanical
engineering and electrical engineering, becomes a must. Thus, a shift from pure
software models to system models has to take place to develop the full potential
of model-driven engineering for the whole production domain. System Models
are also essential to raise the level of flexibility of production systems even
further in order to better react to changing requirements, since systems are no
longer designed to be, but they have to be designed to evolve. In this talk, we
will present ongoing work of applying and further developing model-driven
techniques, such as consistency management and co-evolution support, for the
production domain.

Contents

Foundations

Polymorphic Sesqui-Pushout Graph Rewriting . 3
Michael Löwe

Predictive Top-Down Parsing for Hyperedge Replacement Grammars 19
Frank Drewes, Berthold Hoffmann, and Mark Minas

AGREE – Algebraic Graph Rewriting with Controlled Embedding 35
Andrea Corradini, Dominique Duval, Rachid Echahed, Frederic Prost,
and Leila Ribeiro

Proving Termination of Graph Transformation Systems Using Weighted
Type Graphs over Semirings . 52

H.J. Sander Bruggink, Barbara König, Dennis Nolte, and Hans Zantema

Towards Local Confluence Analysis for Amalgamated
Graph Transformation . 69

Gabriele Taentzer and Ulrike Golas

Multi-amalgamated Triple Graph Grammars . 87
Erhan Leblebici, Anthony Anjorin, Andy Schürr, and Gabriele Taentzer

Reconfigurable Petri Nets with Transition Priorities and Inhibitor Arcs 104
Julia Padberg

Reachability in Graph Transformation Systems and Slice Languages 121
Mateus de Oliveira Oliveira

Equational Reasoning with Context-Free Families of String Diagrams 138
Aleks Kissinger and Vladimir Zamdzhiev

Translating Essential OCL Invariants to Nested Graph Constraints Focusing
on Set Operations . 155

Hendrik Radke, Thorsten Arendt, Jan Steffen Becker, Annegret Habel,
and Gabriele Taentzer

Characterizing Conflicts Between Rule Application and Rule Evolution
in Graph Transformation Systems . 171

Rodrigo Machado, Leila Ribeiro, and Reiko Heckel

http://dx.doi.org/10.1007/978-3-319-21145-9_1
http://dx.doi.org/10.1007/978-3-319-21145-9_2
http://dx.doi.org/10.1007/978-3-319-21145-9_3
http://dx.doi.org/10.1007/978-3-319-21145-9_4
http://dx.doi.org/10.1007/978-3-319-21145-9_4
http://dx.doi.org/10.1007/978-3-319-21145-9_5
http://dx.doi.org/10.1007/978-3-319-21145-9_5
http://dx.doi.org/10.1007/978-3-319-21145-9_6
http://dx.doi.org/10.1007/978-3-319-21145-9_7
http://dx.doi.org/10.1007/978-3-319-21145-9_8
http://dx.doi.org/10.1007/978-3-319-21145-9_9
http://dx.doi.org/10.1007/978-3-319-21145-9_10
http://dx.doi.org/10.1007/978-3-319-21145-9_10
http://dx.doi.org/10.1007/978-3-319-21145-9_11
http://dx.doi.org/10.1007/978-3-319-21145-9_11

Applications: Technical Papers

Graph Pattern Matching as an Embedded Clojure DSL 189
Tassilo Horn

Using Graph Transformations for Formalizing Prescriptions
and Monitoring Adherence . 205

Jens H. Weber, Simon Diemert, and Morgan Price

Towards Compliance Verification Between Global and Local
Process Models. 221

Pieter M. Kwantes, Pieter Van Gorp, Jetty Kleijn, and Arend Rensink

Inductive Invariant Checking with Partial Negative Application Conditions. . . 237
Johannes Dyck and Holger Giese

Applications: Tool Presentations

Tool Support for Multi-amalgamated Triple Graph Grammars. 257
Erhan Leblebici, Anthony Anjorin, and Andy Schürr

Uncover: Using Coverability Analysis for Verifying Graph
Transformation Systems . 266

Jan Stückrath

Local Search-Based Pattern Matching Features in EMF-INCQUERY 275
Márton Búr, Zoltán Ujhelyi, Ákos Horváth, and Dániel Varró

Author Index . 283

XIV Contents

http://dx.doi.org/10.1007/978-3-319-21145-9_12
http://dx.doi.org/10.1007/978-3-319-21145-9_13
http://dx.doi.org/10.1007/978-3-319-21145-9_13
http://dx.doi.org/10.1007/978-3-319-21145-9_14
http://dx.doi.org/10.1007/978-3-319-21145-9_14
http://dx.doi.org/10.1007/978-3-319-21145-9_15
http://dx.doi.org/10.1007/978-3-319-21145-9_16
http://dx.doi.org/10.1007/978-3-319-21145-9_17
http://dx.doi.org/10.1007/978-3-319-21145-9_17
http://dx.doi.org/10.1007/978-3-319-21145-9_18

Foundations

Polymorphic Sesqui-Pushout Graph Rewriting

Michael Löwe(B)

FHDW Hannover, Freundallee 15, 30173 Hannover, Germany
michael.loewe@fhdw.de

Abstract. The paper extends Sesqui-Pushout Graph Rewriting (SqPO)
by polymorphism, a key concept in object-oriented design. For this pur-
pose, the necessary theory for rule composition and decomposition is
elaborated on an abstract categorical level. The results are applied to
model rule extension and type dependent rule application. This exten-
sion mechanism qualifies SqPO – with its very useful copy mechanism
for unknown contexts – as a modelling technique for extendable frame-
works. Therefore, it contributes to the applicability of SqPO in software
engineering. A version management example demonstrates the practical
applicability of the combination of context-copying and polymorphism.

1 Introduction

Sesqui-Pushout Rewriting SqPO [2] is a relatively new variant of algebraic graph
rewriting. Its expressive power exceeds Double-Pushout Rewriting DPO [5] and
Single-Pushout Transformation SPO [13–15,18]. Besides deletion in unknown
contexts, SqPO supports copying of unknown contexts. This is a very useful
feature for many practical applications, compare for example [4].

In this paper, we combine Sesqui-Pushout Rewriting with polymorphism, a
key concept in object-oriented modelling. Object-oriented polymorphism allows
several methods for one operation. Which method is applied in a given situation
is decided (at runtime) by the types of the involved objects. If several methods
are applicable, the most special one is chosen. Thus, the methods implementing
the same operation are partially ordered. The method order is typically derived
from the partial order on types induced by the inheritance relation in an object-
oriented model.

In graph transformation, we have rewrite rules instead of methods. What
is missing are operations and orderings of methods. We add these features to
SqPO by a suitable concept of rule extension which we want to inherit from
Single-Pushout Rewriting, compare [21]. In SPO, a rule t′ extends another rule
t, if t is a sub-rule of t′. General SPO-results guarantee that every derivation
with an extended rule can be decomposed into a derivation with the sub-rule
followed by a derivation with a rule t′ − t which is called remainder and repre-
sents the difference between t′ and t. Thus, SPO rule extension respects Liskov’s
substitution principle [17], since extended rules extend (but do not change) the
behaviour of all sub-rules.

c© Springer International Publishing Switzerland 2015
F. Parisi-Presicce and B. Westfechtel (Eds.): ICGT 2015, LNCS 9151, pp. 3–18, 2015.
DOI: 10.1007/978-3-319-21145-9 1

4 M. Löwe

Fig. 1. Direct derivation and final pullback complement

Unfortunately, the existing body of SqPO-theory [2–4] is rather small and
the necessary theoretical results in SqPO concerning sub-rules, extension, and
amalgamation are not available yet. Therefore, Sect. 2 elaborates the theory of
Sesqui-Pushout Rewriting such that a precise definition of Sub-Rule Structured
SqPO-Systems is possible. The theory is presented on an abstract categorical
level. Section 3 interprets these results in the categories of graphs and typed
graphs in the sense of [21,22]. Structured SqPO-Systems combined with the
inheritance concept of typed graphs provide a natural model for polymorphism
in Sesqui-Pushout Rewriting. Section 4 demonstrates the applicability of the
introduced concepts by a practical example, namely a small version management
system for decomposed systems and components. Section 5 discusses related work
and sketches some further research.

Due to space limitations, the proofs for some of the new results, i. e. for
Theorem 6, Propositions 13, 21, 24, 25, and 32, and Corollary 33 are omitted.
They can be found in [20].

2 Sesqui-Pushout Rewriting Framework

In this section, we present the central notions of SqPO and new results about
rule decomposition and amalgamation which allow to precisely define sub-rule
structured graph transformation systems. The discriminating construction of
SqPO is the final pullback complement.

Definition 1 (Final Pullback Complement FPC). A pair (d, b) is final pullback
complement of a pair (c, a) in the right part of Fig. 1, if (a, b) is pullback of (c, d)
and for each collection of morphisms (x, y, z, w), where (x, y) is pullback of (c, z)
and a ◦ w = x, there is a unique w∗ with d ◦ w∗ = z and b ◦ w = w∗ ◦ y.

Fact 2. For morphism f : G → H, (idH , f) is FPC of (f, idG) and vice versa.

All results are formulated on the basis of a category C and a distinguished
collection L of its morphisms satisfying:

(C1) C has all pullbacks and pushouts.
(C2) L contains all isomorphisms and is closed under composition and prefix.1

1 Composition and prefix closure: for all f ∈ L, f ◦ g ∈ L ⇐⇒ g ∈ L.

Polymorphic Sesqui-Pushout Graph Rewriting 5

Fig. 2. Commutative cube

(C3) L-morphisms are stable under pullbacks.2

(C4) L-morphisms are stable under final pullback complements.3

(C5) In every commutative C-cube as in Fig. 2, (q′
i, i2) is pullback of (q′, i3)

and (i3, p′
i) is final pullback complement of (p′, i1), if we have the following

premises: (a) the bottom and the top faces are pushouts, (b) i1 ∈ L, (qi, i0)
is pullback of (q, i1), and (c) (i2, pi) is final pullback complement of (p, i0).4

SqPO coincides with DPO and SPO in the rule format: A rule is an L-span.5

A concrete L-span is a pair of C-morphisms (p : K → P, q : K → Q) such that
p ∈ L. Two spans (p1, q1), (p2, q2) are equivalent, if there is isomorphism i with
p1 ◦ i = p2 and q1 ◦ i = q2; [(p, q)]≡ denotes the class of spans equivalent to (p, q).

Definition 3 (Span Category). The category of abstract spans L(C) has the
same objects as C and equivalence classes of L-spans as morphisms. The identi-
ties are defined by idL(C)

A = [(idA, idA)]≡ and composition of [(p, q)]≡ and [(r, s)]≡
such that codomain(q) = codomain(r) is given by [(r, s)]≡ ◦L(C) [(p, q)]≡ =
[(p ◦C r′, s ◦C q′)]≡ where (r′, q′) is a pullback of (q, r). A span composition is
strong, written [(r, s)]≡ • [(p, q)]≡, if (r, q′) is final pullback complement of (q, r′).

Note that there is the natural and faithful embedding functor ι : C → L(C)
defined by identity on objects and (f : A → B) �→ [idA : A → A, f : A → B]
on morphisms. In the following, the composition of a span (p, q) ∈ L with a
morphism m ∈ C, i. e. (p, q)◦m (or m◦ (p, q)), is the span defined by (p, q)◦ ι(m)
(resp. ι(m) ◦ (p, q)). By a slight abuse of notation, we write [d : A → A′, f :
A′ → B] ∈ C if d is an isomorphism.

Direct derivations in SqPO are special strong compositions of spans.

Definition 4 (Rule and Derivation). A rule t = (l : K → L, r : K → R) is an
L-span. A span t 〈m〉 = (l 〈m〉 : D → G, r 〈m〉 : D → H) is a direct derivation
with rule t = (l : K → L, r : K → R) if there are morphisms m : L → G and
m 〈t〉 : R → H such that m 〈t〉•t = t 〈m〉•m with pullback (l,m 〈l〉) of (l 〈m〉 ,m)
and (r 〈m〉 , m 〈t〉) is pushout of (m 〈l〉 , r), see left part of Fig. 1. In a direct

2 If g ◦ f ′ = f ◦ g′, (g′, f ′) is pullback in C of (f, g), and g ∈ L, then g′ ∈ L.
3 If g′ ◦ f ′ = f ◦ g, (g′, f ′) is final pullback complement of (f, g), g ∈ L, then g′ ∈ L.
4 Note that (C5) also implies i0, i2, i3 ∈ L due to (C3) and (C4).
5 In SPO, L is required to be a suitable subset of the monomorphisms in C.

6 M. Löwe

derivation, G is the source, H is the target, m is called match, t 〈m〉 is the
trace, and m 〈t〉 is also referred to as co-match. We use the notation t@m for a
derivation with rule t at match m.

Note that a derivation is determined up to isomorphism by the match. This
is due to the fact that final pullback complements and pushouts are unique
up to isomorphism. Also note that every trace has the same format as a rule,
since L-morphisms are stable under final pullback complements. By contrast
to SPO, not every morphism m : L → G gives rise to a derivation for a rule
t = (l : K → L, r : K → R). This is due to the fact that the final pullback com-
plement of m and l need not exist. Nevertheless, Conditions (C1)–(C5) on page
2 provide a rich theory. A first example is the commutativity of derivations at
independent matches.

Definition 5 (Parallel Independence). Direct derivations t@m and t′@m′ start-
ing at the same source are parallel independent, if t′ 〈m′〉 ◦m is match for t and
t 〈m〉 ◦ m′ is match for t′.6,7

Theorem 6 (Local Church-Rosser-Property). If t@m and t′@m′ are par-
allel independent derivations, there are derivations t@ (t′ 〈m′〉 ◦ m) and
t′@ (t 〈m〉 ◦ m′) such that t 〈t′ 〈m′〉 ◦ m〉 • t′ 〈m′〉 = t′ 〈t 〈m〉 ◦ m′〉 • t 〈m〉.
Since SqPO-rules are spans, they can be composed and decomposed.

Theorem 7 (Decomposition of Derivations). Given t@m and (t′ ◦ t) @m, there
is t′@m 〈t〉 such that (t′ ◦ t) 〈m〉 = t′ 〈m 〈t〉〉 ◦ t 〈m〉, and m 〈t′ ◦ t〉 = m 〈t〉 〈t′〉.
Proof. Consider Fig. 3 where t = (l, r), t′ = (l′, r′), t′ ◦ t = (l ◦ l′∗, r′ ◦ r∗),
(l 〈m〉 , r 〈m〉) is the trace of t@m, and (l ◦ l′∗ 〈m〉 , r′ ◦ r∗ 〈m〉) is the trace of
(t′ ◦ t) @m. Since (l 〈m〉 ,m 〈l〉) is FPC and (l ◦ l′∗,m 〈l ◦ l′∗〉) is pullback of
(m, l ◦ l′∗ 〈m〉), there is u with l 〈m〉 ◦ u = (l ◦ l′∗) 〈m〉 and u ◦ m 〈l ◦ l′∗〉 =
m 〈l〉 ◦ l′∗. Let (v, w) be the pushout of the pair (m 〈l ◦ l′∗〉 , r∗). Then there are
the two morphisms y and z making the diagram commute.

Decomposition properties of FPCs guarantee that the pair (u,m 〈l ◦ l′∗〉)
is FPC of (m 〈l〉 , l′∗). We know, that (l′∗, r∗) is pullback. We also know that
(m 〈t〉 , r 〈m〉) and (v, w) are pushouts. By Condition (C5), (u,w) is pullback
of (r 〈m〉 , y) and (y, v) is FPC of (m 〈t〉 , l′). By decomposition of pushouts,
(z,m 〈t′ ◦ t〉) is pushout. Thus, (y, z) = t′ 〈m 〈t〉〉 and m 〈t′ ◦ t〉 = m 〈t〉 〈t′〉.
Finally, we have t′ 〈m 〈t〉〉 ◦ t 〈m〉 = (y, z) ◦ (l 〈m〉 , r 〈m〉) = (l 〈m〉 ◦ u, z ◦ w) =
(l ◦ l′∗ 〈m〉 , r′ ◦ r∗ 〈m〉) = t′ ◦ t 〈m〉. �	

6 The statement “t′ 〈m′〉 ◦ m is match” requires that t′ 〈m′〉 ◦ m ∈ C, which – being
more precise – means that t′ 〈m′〉 ◦ m = [id, f] for some f ∈ C.

7 Note that this notion of parallel independence is a conservative generalisation of
the corresponding notions in [2,5]. If the rules t = (l : K → L, r : K → R) and
t′ = (l′ : K′ → L′, r′ : K′ → R′) have monic left-hand sides l and l′, we obtain
monic morphisms l 〈m〉 and l′ 〈m′〉 in the traces for matches m and m′. In this case,
the existence of morphisms n and n′ with l′ 〈m′〉 ◦n = m and l 〈m〉 ◦n′ = m′ implies
that (n, idL) and (n′, idL′) are pullbacks of (m, l′ 〈m′〉) and (m′, l 〈m〉) resp.

Polymorphic Sesqui-Pushout Graph Rewriting 7

Fig. 3. Rule and derivation decomposition

The central mechanism for rule structuring and decomposition is provided
by the notion of rule extension and remainder.

Definition 8 (Extension/Remainder). A rule t′ = (l′, r′) is an (i, j)-extension
of a rule t = (l, r), written t′ ⊇i,j t, if i : L → L′, j : R → R′ are morphisms
such that j ◦ t = t′ ◦ i and i is a match for t. Rule t is also called sub-rule of t′.
Figure 4 depicts the construction of the (i, j)-remainder t′ −i,j t = (l′ − l, r′ − r):
(l 〈i〉 , r 〈i〉) is the trace of t@i, l∗ is the morphism into the final pullback comple-
ment D for pullback (i′, l) with l 〈i〉 ◦ l∗ = l′ and l∗ ◦ i′ = i 〈l〉, (i′′, r∗) is pushout
of (r, i′), and l′ − l and r′ − r are the morphisms making the diagram commute.

Fig. 4. Sub-rule and remainder

Proposition 9 (Extended Rule Decomposition). If t ⊆i,j t′ and t′ − t = (l′ −
l, r′ − r) is constructed as above, then (i) l 〈i〉 , l − l′ ∈ L, (ii) (r 〈i〉 , l′ − l) is
pushout of (l∗, r∗), (iii) t′ = (t′ − t)•t 〈i〉, (iv) (idR, i′′) is pullback of (l′ − l, i 〈t〉).
Proof. Property (ii) is a direct consequence of the construction. Properties (iii)
and (iv) are guaranteed by Condition (C5) and the facts that (idR, r) is FPC of
(r, idK)8, (idK , i′) is pullback of (l∗, i 〈l〉), and (i 〈t〉 , r 〈i〉) and (r∗, i′′) are push-
outs of (i 〈l〉 , r) and (r, i′) resp. Finally, l 〈i〉 ∈ L by Condition (C4), l∗ ∈ L due
to prefix closure of Condition (C2), and l′ − l ∈ L by Condition (C4) again.
8 Compare Fact 2.

8 M. Löwe

Fig. 5. Amalgamated rule

Unfortunately, we cannot apply Theorem7 to decompose arbitrary deriva-
tions with extended rules: The extension relation t′ ⊇i,j t and m being match
for t′ do not guarantee that m is also match for t and t 〈i〉, i. e. the final pullback
complement of m and l 〈i〉 need not exist.

Definition 10 (Match Extension). If t ⊆i,j t′, a match m for t′ extends i, if m
is match for t 〈i〉, i. e. there is a derivation t 〈i〉 @m.

Corollary 11 (Extension). If t ⊆i,j t′ and m is match for t′ that extends i,
then there are derivations t@ (m ◦ i) and (t′ − t)@m 〈t 〈i〉〉 such that t′ 〈m〉 =
(t′ − t) 〈m 〈t 〈i〉〉〉 • t 〈m ◦ i〉 and m 〈t′〉 = m 〈t 〈i〉〉 〈t′ − t〉.
Proof. Consequence of Theorem 7 and composition of FPCs and pushouts.

Multiple extensions can be syntactically and semantically joined:

Definition 12 (Amalgamation). If t0 ⊆i1,j1 t1 and t0 ⊆i2,j2 t2, construct the
amalgamated rule t1 +t0 t2 = (l1 +l0 l2, r1 +r0 r2) as the pair of unique mor-
phisms making the diagram in Fig. 5 commute, where (i∗1, i

∗
2), (i′1

∗
, i′2

∗), and
(j∗

1 , j∗
2) are pushouts of (i1, i2), (i′1, i

′
2), and (j1, j2) resp.

Proposition 13 (Amalgamated Rule). If t1 +t0 t2 is constructed as the amal-
gamation of t1 ⊇i1,j1 t0 ⊆i2,j2 t2 as in Fig. 5, then we have (i) l1 + l2 ∈ L,
(ii) t1 ⊆i∗1 ,j

∗
1

t1 +t0 t2 ⊇i∗2 ,j
∗
2

t2, (iii) i∗1 is match for t2 extending i2 and i∗2 is
match for t1 extending i1, and (iv)

t1 +t0 t2 = (t2 − t0) 〈(t1 − t0) 〈i∗2 〈t0 〈i1〉〉〉 ◦ i∗1 〈t0 〈i2〉〉〉 • t1 〈i∗2〉
= (t1 − t0) 〈(t2 − t0) 〈i∗1 〈t0 〈i2〉〉〉 ◦ i∗2 〈t0 〈i1〉〉〉 • t2 〈i∗1〉 .

A consequence of Theorem 7, Corollary 11, and Proposition 13 is Theorem 14.

Theorem 14 (Amalgamation). If t1 ⊆i∗1 ,j
∗
1

t3 ⊇i∗2 ,j
∗
2

t2 is amalgamation of
t1 ⊇i1,j1 t0 ⊆i2,j2 t2 and m is match for t3 that extends i∗1 for t2, i∗2 for t1,
and i∗2 ◦ i1 = i∗1 ◦ i2 for t0, then t3@m can be decomposed into a derivation with
t0 followed by two parallel independent derivations with t1 − t0 and t2 − t0.

Polymorphic Sesqui-Pushout Graph Rewriting 9

Using Amalgamation, we can obtain complex rules by composing simple ones,
compare also the example in Sect. 4. Derivations with amalgamated rules at
extending matches reflect the composition “at runtime”, since they produce the
effect of every participating rule and nothing more.

The results presented above allow the definition of Structured SqPO-Systems.
Such systems explicitly specify rule extensions.

Definition 15 (Structured SqPO-System). A Structured System (P,≤P ,MP)
consists of a finite set of rules P , a partial rule order ≤P ⊆ P ×P , and a family
MP of sub-rule specifications (lt,t′ : L → L′, rt,t′ : R → R′) for every pair of rules
(l′ : K ′ → L′, r′ : K ′ → R′) ≤P (l : K → L, r : K → R) satisfying:

Every rule has a unique root rule, i. e.

t3 ≤P t1 ∧ t3 ≤P t2 =⇒ ∃t : t1 ≤P t ∧ t2 ≤P t (1)

The sub-rule specifications are consistent with the sub-rule order, i. e.

(lt,t, rt,t) = (idL, idR) for each t = (l : K → L, r : K → R) ∈ P (2)

(lt,t′′ , rt,t′′) = (lt′,t′′ ◦lt,t′ , rt′,t′′ ◦rt,t′) and lt′,t′′ extends lt,t′ if t′′ ≤P t′ ≤P t (3)

Note that t′ ≤P t means that t′ extends t. Condition (1) states that each rule
is an extension of a unique most general rule.9 Condition (3) requires that rule
extension implies match extension for the left-hand sides of the rule embeddings.

Matches in Structured Systems shall reflect the extension of rules:

Definition 16 (Structured Match and Derivation). In a system (P,≤P ,MP), a
match m for rule t is a structured match if (i) m extends lt′,t for all t ≤P t′, and
(ii) m is a most specific match, i. e. for all rules t′, ̂t ∈ P with t′ ≤P ̂t, t ≤P ̂t
and all matches m′ for t′, we have: m′◦l

̂t,t′ = m◦l
̂t,t =⇒ t ≤P t′∧m◦lt′t = m′.

Derivations in a structured system are derivations at structured matches.

The following general result shows that the structure on rules induces a corre-
sponding structure on the derivations.

Corollary 17 (Structured Derivations). For every derivation t@m in a struc-
tured system and every subrule t′ ⊆i,j t, there is a match m′′ such that
t 〈m〉 = (t − t′) 〈m′′〉 • t′ 〈m ◦ i〉.
Definition 16 singles out most specific matches for structured systems. Note that
there can be situations in which no most specific match can be determined. In
this case, no rule is applicable.10 In many cases, amalgamation is a suitable tool
to reduce the number of such situations, compare also the example in Sect. 4.

3 Sesqui-Pushout Rewriting Instances

In this section, we present two instances of the framework presented in Sect. 2,
namely the categories of graphs and typed graphs.
9 These maximal rules model object-oriented operations.

10 Compare “Negative Application Conditions” in [12].

10 M. Löwe

3.1 Sesqui-Pushout Rewriting of Graphs

Definition 18 (Graphs). A graph G = (V ;E; s, t : E → V) consists of a set
of vertices V , a set of edges E, and two mappings s and t assigning the source
and target vertex to every edge. A graph morphism f : G → H is a pair of
mappings (fV : GV → HV , fE : GE → HE) such that fV ◦ sG = sH ◦ fE
and fV ◦ tG = tH ◦ fE. All graphs and graph morphisms with component-wise
identities and compositions constitute the category G.

Necessary and sufficient conditions for final pullback complements in G are intri-
cate. For the definitions and results below, we use the following notation.

Notation 19 (Pre-Image Set). For a graph morphism h : G → H, h � x
denotes the set of all pre-images of x ∈ H under h and, if x ∈ HE , h �v x
denotes the pre-images of x under h with source vertex v ∈ GV , h �w x denotes
the pre-images of x under h with target vertex w ∈ GV , and h �w

v x denotes
the pre-images of x under h with source v and target w.

Definition 20 (Complete and Unique Pre-Image). Given a graph morphism h :
G → H, an element11 o ∈ H is complete (or unique) under h, if o ∈ HV and
|h � o| ≥ 1 (resp. |h � o| ≤ 1) or o ∈ HE and |h �w

v o| ≥ 1 (resp. |h �w
v o| ≤

1) for each pair v, w ∈ GV of vertices with h(v) = s(o) and h(w) = t(o).

Proposition 21 (Final Pullback Complement in G). A pair (d : D → C, b :
A → D) is FPC of (c : B → C, a : A → B) in G, compare right part of Fig. 1, if
and only if (a, b) is pullback of (d, c) and the following conditions hold:

Uniqueness. Every C-object that has either no pre-image or more than one
pre-image under c is unique under d.

Completeness. Every C-object without pre-image under c is complete under d.

Proposition 21 leads to the following characterisation of matches.

Definition 22 (Joinable Objects in G). Let l : K → L be a graph morphism.
Two objects x, y ∈ L are l-joinable, written x ��l y, if x = y or (a) x �= y ∈ LV

and
|l � x| = |l � y| ≤ 1 (4)

or (b) x �= y ∈ LE and

s(x) �= s(y), t(x) �= t(y) ⇒ |l � x|= |l � y| ≤ 1 (5)
s(x)= l(v)=s(y), t(x) �= t(y) ⇒ |l �v x|= |l �v y| ≤ 1 (6)
s(x) �= s(y), t(x)= l(w)= t(y) ⇒ |l �w x|= |l �w y| ≤ 1 (7)

s(x)= l(v)=s(y), t(x)= l(w)= t(y) ⇒ x = y ∨ |l �w
v x|= |l �w

v y| ≤ 1 (8)

11 Vertex or edge.

Polymorphic Sesqui-Pushout Graph Rewriting 11

Fig. 6. Examples of the Sesqui-Pushout copy mechanism

Proposition 23 (Match Condition in G). A graph morphism m : L → G is a
match for a rule t = (l : K → L, r : K → R), if and only if it identifies joinable
objects only, i. e. m(x) = m(y) implies x ��l y.12

Note that every match m for rule t = (l, r) satisfies: x �= y and m(x) = m(y)
implies that x and y are unique under l.

Figure 6 depicts three examples for SqPO’s copy mechanism in the left part
of direct derivations, i. e. in the final pullback complement construction: The left-
hand side of the rule in (1) specifies a copy of a vertex. Note that the left part of
the trace l 〈m〉 copies all edges in the context of the copied vertex as well. The
rule in (2) also copies a vertex. Here, the match maps this vertex to a vertex with
a loop. As a consequence, the left part of the trace produces four edges. Finally,
the rule in (3) copies the white vertex and the match identifies the two edges
in the rule’s left-hand side. The match satisfies the condition of Proposition 23,
since all objects besides the white vertex are unique and complete under l.

In a sub-rule situation t ⊆i,j t′, not every match m for t′ extends i.

Proposition 24 (Match Extension in G). Let t′ = (l′, r′) be an extension of
t = (l, r), i. e. t ⊆i,j t′. A match m for t′ extends i, if and only if m(i(x)) = m(y)
implies y = i(z) or y is complete under l′.

By the next proposition, G inherits all results of Sect. 2 for arbitrary rules.

Proposition 25. G satisfies Cond. (C5), if all morphisms are allowed for L.

3.2 Sesqui-Pushout Rewriting of Typed Graphs

In this section, we recapitulate definitions and results of [22].

Definition 26 (Type Graph). A type graph T = (GT ,≤) consists of a graph
GT = (V,E, s, t) and a partial order ≤ ⊆ V × V on the vertices, which has least
upper bounds

∨

S and greatest lower bounds
∧

S for every subset S ⊆ V .

Note that the vertex set of a type graph cannot be empty, since the least element
∨ ∅ and the greatest element

∧ ∅ must be vertices. Therefore, the simplest type
graph consists of a single type vertex and no edges.
12 Compare also [19].

12 M. Löwe

At first sight and from a practical point of view, it seems strange to require
all greatest lower and all least upper bounds. But it is not. E. g. any single-
inheritance type hierarchy H can be turned into a type graph by adding
(i)

∧ ∅ =̂ Anything, if H has more than one root, and (ii)
∨ ∅ =̂ Everything as

a type for objects of every shape. Everything is a reasonable type for the null-
object which is well-known in object-oriented programming.13

Definition 27 (Typed Graph). Given a type graph T , a graph G becomes a T -
typed graph by a typing i : G → T which is a pair (iV : GV → TV , iE : GE →
TE) of mappings such that14

iV ◦ sG ≤ sT ◦ iE (9)

iV ◦ tG ≤ tT ◦ iE (10)

Condition (9) means that subtypes inherit all attributes of all their super-types.
Condition (10) formalises the fact that associations may appear polymorphic at
run-time in the type of their target.

Definition 28 (Type-Compatible Morphism). If i : G → T and j : H → T
are two typings in the same type graph T , a graph morphism m : G → H is
type-compatible, written m : i → j, if

jV ◦ mV ≤ iV (11)

jE ◦ mE = iE (12)

A morphism is called strong, if jV ◦ mV = iV .15 The typings in T together
with the type-compatible graph morphisms between them constitute the category
G

T of T -typed graphs. The functor τ : GT → G forgets the typing, i. e. maps a
G

T -morphism m : (i : G → T) → (j : H → T) to the G-morphism m : G → H.

A type-compatible morphism can map a vertex of type c to a vertex whose type
is a subtype of c. Strong morphisms do not use this flexibility.

Fact 29 (Strong Morphism). (a) Isomorphisms are strong. (b) The composition
of two strong morphisms is strong. (c) Strongness is prefix-closed, i. e. if f ◦ g is
strong, then g is strong.

Limits and colimits in G
T can be derived from limits and colimits in G.

Fact 30 (Limits and Co-Limits). For every small diagram δ : D → G
T , there is

a limit16 (lo : L → δ(o))o∈D and co-limit (co : δ(o) → C)o∈D, such that τ (lo)o∈D

and τ (co)o∈D are the limit and co-limit of the diagram τ ◦ δ : D → G resp. The
typings l : τ(L) → T and c : τ(C) → T map x ∈ τ (L)V to

∨{δ(o)(y) : y =
lo(x), o ∈ D} and x ∈ τ (C)V to

∧{δ(o)(y) : x = co(y), o ∈ D} resp.
13 For an arbitrary hierarchy H, the Dedekind/MacNeille-completion [23] provides the

smallest order closed under least upper and greatest lower bounds containing H.
14 If f, g : X → G are two mappings into a partially ordered set G = (G,≤), we write

f ≤ g if f(x) ≤ g(x) for all x ∈ X.
15 The comparison operator ≤ in (11) is replaced by =.
16 The notation o ∈ D stands here and in the following five occurrences for o ∈ ObjectD.

Polymorphic Sesqui-Pushout Graph Rewriting 13

Fig. 7. Version management system: class diagram

Strong morphisms are suitable candidates for left-hand sides in rules, since they
behave well under pullback.

Fact 31. Strong morphisms are stable under pullbacks in G
T .

The results below show that strong morphisms satisfy Cond. (C4) and (C5).

Proposition 32 (Final Pullback Complements in G
T). Let (c, a) be a compos-

able pair of morphisms17 in G
T such that a is strong. A pair (d, b) is final pull-

back complement of (c, a) in G
T , if and only if (τ (d) , τ (b)) is the final pullback

complement of (τ(c), τ(a)) in G and d is strong.

Corollary 33. G
T satisfies (C5), if L is the collection of strong morphisms.

Facts 29, 30, and 31 together with Proposition 32 and Corollary 33 turn G
T into

a category that satisfies Conditions (C1)–(C5). Thus, GT combines the concepts
“Inheritance” and “Structured Rules”. This combination can be interpreted as
polymorphism as the following section demonstrates.

4 Example: Version Management

As an example of a Structured SqPO System in G
T , we consider version man-

agement for decomposed software systems. Figure 7 depicts the underlying class
diagram. The model, on the one hand, distinguishes atomic and composite com-
ponents, i. e. objects of the classes Component and Composite resp. Atomic com-
ponents can be thought of as software modules or program texts. Composite com-
ponents are software (sub-)systems that are made up hierarchically by modules
and other subsystems. Every composite object possesses a manager (object of
class ComponentsManager) that handles the component-links to its (nonempty)
collection of parts. On the other hand, there are initial versions and successor
versions, i. e. objects of the classes Component and Successor resp. Successor
17 The composition c ◦ a exists.

14 M. Löwe

Fig. 8. Versioned components

versions cannot exist without some predecessors that are handled by an object
of class PredecessorsManager.18

By multiple inheritance, we obtain successor versions of compos-
ite components. Objects of class CompositeSucc have two managers: A
ComponentsManager for the handling of outgoing component-links and a
PredecessorsManager for the incoming successor-links. Each component in
the version management system has a state, i. e. is either Private or Published.
Only published versions can be contained in other systems and can be prede-
cessors of other versions. Published versions are “frozen”, private versions can
evolve.

The different kinds of circles in the classes provide the graphic representation
we use for objects of the respective class in object diagrams. Figure 8 shows a
sample state. There are three atomic components, namely a, b, and c. And
there are two composite components, i. e. d and e. The component d has the
parts a and b and e is decomposed into d and c. The atomic component a has
one published successor version, namely a’. For the atomic components b and
c, there are two successor versions, namely b’ and b’’ and c’ and c’’ resp.
Only c’’ is private. Note that the successor relation is transitive, such that
any version is able to access all its successors and predecessors directly.

Composite components evolve by integrating successor versions of their parts.
An example in Fig. 8 is the published composite successor version d’ which
18 Version management systems typically store a successor version of an atomic com-

ponent by some delta-information or text differences wrt. to its direct predecessor.

Polymorphic Sesqui-Pushout Graph Rewriting 15

Fig. 9. Evolution of composite successor versions

integrates a’ and b’ which are published successor versions of the parts of d.
The composite successor version e’ is private. The graph transformation rule
integrate in Fig. 9 models the evolution of a private composite version x. The
transitivity of the successor relation is very useful here: applications of the
integrate rule allow to skip some intermediate version in the evolution process.
Note that the rule is generic in the types of y and y’. The integrate rule in
Fig. 9 guarantees the consistence condition that all parts in a composite version
are successor version of the parts of its direct predecessor version, if every new
composite initially integrates the same parts as its predecessor.

This behaviour must be modelled by the rule that creates new private suc-
cessor versions for published versions. This rule is polymorphic. It is named
newVersion and depicted in Fig. 10. The middle of Fig. 10 shows the generic
rule newVersion(Component y) for arbitrary components. It simply creates a
new private version and links this version to its predecessor y. If the component
y is a composite, we have to provide the parts for the new successor version.
This is done by the refined rule newVersion(Composite y) depicted at the top
of Fig. 10. It copies the ComponentsManager of y, compare objects 2 and 3 in
Fig. 10. One of these copies, namely object 3, becomes the ComponentsManager
of the new version. This has the effect that the new version y’ integrates the
same parts as y. If the component y is a successor version itself, we provide
the additional behaviour that is depicted at the bottom of Fig. 10. This refined
rule is called newVersion(Successor y). It copies the PredecessorsManager
of y, compare objects 4 and 5 in Fig. 10. One of these copies, namely object 5,
becomes the PredecessorsManager of the created version y’. Thus, this rule
guarantees the invariant that the successor relation is transitive.

Note that the rule for arbitrary components is a subrule of the rules for
composite and successor versions in the sense of Definition 8. Thus, the rule
for composite successor versions can be constructed by amalgamation, compare
Definition 12. The resulting amalgamated rule is depicted in Fig. 11.

5 Related Work and Future Research

Most related theoretical research lines focus on inheritance but do not address
polymorphism. H. Ehrig et al. [5] introduce inheritance as an additional set of

16 M. Löwe

Fig. 10. Creation of new versions

inheritance edges between vertices in the type graph. It is not required that
this structure is hierarchical. Cycle-freeness is not necessary, since they do not
work with the original type graph. Instead they use a canonically flattened type
structure, in which inheritance edges are removed and some of the other edges
are copied to the “more special” vertices. By this reduction, they get rid of
inheritance and are able to reestablish their theoretical results. E. Guerra and
J. de Lara [11] extend this approach to inheritance between vertices and edges.

U. Golas et al. [10] avoid flattening. They require that the paths along inher-
itance edges are cycle-free (hierarchy) and that every vertex has at most one
abstraction (single-inheritance). For this set-up, they devise an adhesive cate-
gory comparable to our approach in [22] but restricted to single-inheritance.

The above mentioned related concepts do not address redefinition of rules and
“code sharing” by using super rules and polymorphism. One approach working
in this direction is the graph transformation model of object-oriented program-
ming by A. P. Lüdtke Ferreira and L. Ribeiro [7]. They allow vertex and edge
specialisations in the type graph and show that suitably restricted situations
admit pushouts of partial morphisms. Their framework is shown to be adequate
as a model for object-oriented systems. The work in [7] aims at modelling object-
oriented concepts like inheritance and polymorphism by graph rewriting. It does
not provide polymorphism for general graph rewriting systems.

Polymorphic Sesqui-Pushout Graph Rewriting 17

Fig. 11. Creation of new versions for composite successors

There are some practical approaches that allow rule extension. Two examples
are [1,16] which are both based on triple graph grammars. The operational
effects of both approaches are comparable to ours. The devised mechanisms in
[16] are described informally only. In [1], there is some set-theoretic analysis of
the refinement concept, but a compact and general theory is missing.

With this paper, our research programme to equip all algebraic approaches
to graph transformation with a concept of inheritance and polymorphism is fin-
ished. The Double-Pushout Approach has been handled in [22] and the Single-
Pushout Approach in [21]. For the time being, the elaborated theory has been a
tool to exactly define the extension mechanism for graph transformation rules.
The mechanism seems promising, since it respects Liskov’s substitution princi-
ple not only on the syntactical level but also – at least to some degree – “at
runtime”: All sub-rules are executed every time an extended rule is applied,
compare Corollary 17. What is missing so far and a task for future research, is
the extension of the existing theory, for example the critical pair analysis, from
unstructured to structured systems.

Another future research task is the elaboration of more and bigger case stud-
ies in order to demonstrate the benefits structured systems can provide in prac-
tical projects. Especially the ability to model extendable frameworks might help
to bridge the gap between graph transformation and software engineering.

References

1. Anjorin, A., Saller, K., Lochau, M., Schürr, A.: Modularizing triple graph gram-
mars using rule refinement. In: Gnesi and Rensink [9], pp. 340–354

2. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In:
Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT
2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006)

3. Danos, V., Heindel, T., Honorato-Zimmer, R., Stucki, S.: Reversible sesqui-pushout
rewriting. In: Giese and König [8], pp. 161–176

4. Duval, D., Echahed, R., Prost, F., Ribeiro, L.: Transformation of attributed struc-
tures with cloning. In: Gnesi and Rensink [9], pp. 310–324

5. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, New York (2006)

6. Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.): ICGT 2010. LNCS,
vol. 6372. Springer, Heidelberg (2010)

18 M. Löwe

7. Lüdtke Ferreira, A.P., Ribeiro, L.: Derivations in object-oriented graph grammars.
In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004.
LNCS, vol. 3256, pp. 416–430. Springer, Heidelberg (2004)

8. Giese, H., König, B. (eds.): ICGT 2014. LNCS, vol. 8571. Springer, Heidelberg
(2014)

9. Gnesi, S., Rensink, A. (eds.): FASE 2014 (ETAPS). LNCS, vol. 8411. Springer,
Heidelberg (2014)

10. Golas, U., Lambers, L., Ehrig, H., Orejas, F.: Attributed graph transformation with
inheritance: efficient conflict detection and local confluence analysis using abstract
critical pairs. Theor. Comput. Sci. 424, 46–68 (2012)

11. Guerra, E., de Lara, J.: Attributed typed triple graph transformation with inher-
itance in the double pushout approach. Technical Report UC3M-TR-CS-06-01,
Technical Report Universidad Carlos III de Madrid (2006)

12. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundam. Inform. 26(3/4), 287–313 (1996)

13. Hayman, J., Heindel, T.: On pushouts of partial maps. In: Giese and König [8],
pp. 177–191

14. Heindel, T.: Hereditary pushouts reconsidered. In: Ehrig et al.: [6], pp. 250–265
15. Kennaway, R.: Graph rewriting in some categories of partial morphisms. In:

Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph-Grammars and Their
Application to Computer Science. LNCS, vol. 532, pp. 490–504. Springer,
Heidelberg (1990)

16. Klar, F., Königs, A., Schürr, A.: Model transformation in the large. In: Crnkovic, I.,
Bertolino, A. (eds.) ESEC/SIGSOFT FSE, pp. 285–294. ACM (2007)

17. Liskov, B.H., Wing, J.M.: Family values: a behavioral notion of subtyping. Tech-
nical Report CMU-CS-93-187-1, Carnegie Mellon University (1993)

18. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theor.
Comput. Sci. 109(1&2), 181–224 (1993)

19. Löwe, M.: Graph rewriting in span-categories. In: Ehrig et al.: [6], pp. 218–233
20. Löwe, M.: Polymorphic sesqui-pushout graph transformation. Technical Report

2014/02, FHDW-Hannover (ISSN 1863–7043) (2014)
21. Löwe, M., König, H., Schulz, C.: Polymorphic single-pushout graph transformation.

In: Gnesi and Rensink [9], pp. 355–369
22. Löwe, M., König, H., Schulz, C., Schultchen, M.: Algebraic graph transformations

with inheritance. In: Iyoda, J., de Moura, L. (eds.) SBMF 2013. LNCS, vol. 8195,
pp. 211–226. Springer, Heidelberg (2013)

23. MacNeille, H.M.: Partially ordered sets. Trans. Amer. Math. Soc. 42(3), 416–460
(1937)

Predictive Top-Down Parsing for Hyperedge
Replacement Grammars

Frank Drewes1, Berthold Hoffmann2(B), and Mark Minas3

1 Ume̊a Universitet, Ume̊a, Sweden
drewes@cs.umu.se

2 DFKI Bremen and Universität Bremen, Bremen, Germany
hof@informatik.uni-bremen.de

3 Universität der Bundeswehr München, Neubiberg, Germany
Mark.Minas@unibw.de

Abstract. Graph languages defined by hyperedge replacement gram-
mars can be NP-complete. We invent predictive top-down (PTD) parsers
for a subclass of these grammars, similar to recursive descent parsers for
string languages. The focus of this paper lies on the grammar analysis
that computes neighbor edges of nonterminals, in analogy to the first
and follow symbols used in SLL(1) parsing. The analysis checks whether
a grammar is PTD parsable and yields all information for generating a
parser that runs in linear space and quadratic time.

1 Introduction

It is well known that hyperedge replacement (HR, see [8]) can generate NP-
complete graph languages [1]. In other words, even for fixed HR languages pars-
ing is hard. Moreover, even if restrictions are employed that guarantee L to be
in P, the degree of the polynomial usually depends on L; see [11].1 Only under
rather strong restrictions the problem is known to become solvable in cubic time
[4,17]. In this paper, we develop a parsing technique, called predictive top-down
(PDT) parsing, which extends the SLL(1) string parsers of [12] to HR grammars
and yields parsers that run in quadratic time, and in many cases in linear time.
Of course, not all grammars are suitable for PDT parsing. As the requirements
are not easy to check, an algorithm for the structural analysis of a given gram-
mar is developed. This analysis is the focus of the present paper. It determines
whether the grammar is PDT parsable and, if so, constructs a PDT parser. The
basic idea is to determine the edges that can potentially be neighbors of the
attached nodes of nonterminals. This information is computed approximatively
by solving equations on semilinear sets of edge literals. It determines at which
nodes of the input graph the parser has to start, and by which rule a nonterminal
has to be expanded in a particular situation.
1 Lautemann’s result has been exploited for parsing natural language in the system
Bolinas [2].

c© Springer International Publishing Switzerland 2015
F. Parisi-Presicce and B. Westfechtel (Eds.): ICGT 2015, LNCS 9151, pp. 19–34, 2015.
DOI: 10.1007/978-3-319-21145-9 2

20 F. Drewes et al.

The remainder of this paper is structured as follows. In Sect. 2 we give the
basic definitions of HR grammars. In Sect. 3, we recall SLL(1) parsing and sketch
what is needed to extend it to HR grammars. In Sect. 4 we introduce predic-
tive top-down parsers for HR grammars, prove that they have quadratic time
complexity, and show that they can indeed be considered as extensions of SLL(1)
parsers of string grammars. In Sect. 5, we sketch the analysis of HR grammars
in order to determine whether a grammar is PTD parsable or not, and discuss
how complex the analysis is. Further work is outlined in Sect. 6.

2 Hyperedge Replacement Grammars

In this paper, N denotes all non-negative integers. A∗ denotes the set of all finite
sequences over a set A; the empty sequence is denoted by ε, the length of a string
w by |w|. For a function f : A → B, its extension f∗ : A∗ → B∗ to sequences is
defined by f∗(a1 · · · an) = f(a1) · · · f(an), for all ai ∈ A, 1 ≤ i ≤ n, n ≥ 0.

We consider an alphabet Σ that contains symbols for labeling edges, and
comes with an arity function arity : Σ → N. The subset N ⊆ Σ is the set of
nonterminal labels.

A labeled hypergraph G = 〈Ġ, Ḡ, attG, �G〉 over Σ (a graph, for short) consists
of disjoint finite sets Ġ of nodes and Ḡ of hyperedges (edges, for short) respec-
tively, a function attG : Ḡ → Ġ∗ that attaches sequences of nodes to edges, and
a labeling function �G : Ḡ → Σ so that |attG(e)| = arity(�G(e)) for every edge
e ∈ Ḡ. Edges are said to be nonterminal if they carry a nonterminal label, and
terminal otherwise; the set of all graphs over Σ is denoted by GΣ . G − e shall
denote the subgraph of a graph G obtained by removing an edge e ∈ Ḡ. A han-
dle graph G for A ∈ N consists of just one edge x and pairwise distinct nodes
n1, . . . , narity(A) such that �G(x) = A and attG(x) = n1 . . . narity(A).

Given graphs G and H, a morphism m : G → H is a pair m = 〈ṁ, m̄〉 of
functions ṁ : Ġ → Ḣ and m̄ : Ḡ → H̄ that preserves labels and attachments:
�H ◦ m̄ = �G, and attH ◦ m̄ = ṁ∗ ◦ attG (where “◦” denotes function compo-
sition). A morphism m : G → H is injective and surjective if both ṁ and m̄
have the respective property. If m is injective and surjective, it makes G and H
isomorphic. We do not distinguish between isomorphic graphs.

Definition 1 (HR Rule). A hyperedge replacement rule (rule, for short) r =
(L,R, m̃) consists of graphs L and R over Σ such that the left-hand side L is a
handle graph, and m̃ : (L−x) → R is a morphism from the discrete graph L−x
to the right-hand side R. We call r a merging rule if m̃ is not injective.

Let r be a rule as above, and consider some graph G. A morphism m : L → G
is called a matching for r in G. The replacement of m(x) by R (via m) is then
given as the graph H, which is obtained from the disjoint union of G−m(x) and
R by identifying, for every node v ∈ L̇, the nodes m(v) ∈ Ġ and m̃(v) ∈ Ṙ. We
then write G ⇒r,m H (or just G ⇒r H) and say that H is derived from G by r.

The notion of rules introduced above gives rise to the class of HR grammars.

Predictive Top-Down Parsing for Hyperedge Replacement Grammars 21

Definition 2 (HR Grammar [8]). A hyperedge-replacement grammar (HR
grammar, for short) is a triple Γ = 〈Σ,R, Z〉 consisting of a finite labeling
alphabet Σ, a finite set R of rules, and a start graph Z ∈ GΣ .

We write G ⇒R H if G ⇒r,m H for some rule r ∈ R and a matching
m : L → G, and denote the transitive-reflexive closure of ⇒R by ⇒∗

R. The
language generated by Γ is given by L(Γ) = {G ∈ GΣ\N | Z ⇒∗

R G}.

Without loss of generality, and if not mentioned otherwise, we assume that the
start graph Z is a handle graph for a nonterminal label S ∈ N with arity 0. We
furthermore assume that S is not used in the right-hand side of any rule.

Graphs are drawn as in Examples 1 and 2. Circles represent nodes, and boxes
of different shapes represent edges. The box of an edge contains its label, and
is connected to the circles of its attached nodes by lines; these lines are ordered
clockwise around the edge, starting to its left. Terminal edges with two attached
nodes are usually drawn as arrows from their first to their second attached
node, and the edge label is ascribed to that arrow (but omitted if there is just
one label, as in Example 1 below). In rules, identifiers like “xi” at nodes identify
corresponding nodes on the left-hand and right-hand sides; in merging rules,
several identifiers may be ascribed to a node on the right-hand side.

Example 1 (HR Grammars for Trees). With start symbol S, the HR grammar
below derives n-ary trees like the graph on the right:

Strings w = a1 · · · an ∈ A∗ can be uniquely represented by string graphs consist-
ing of n + 1 nodes x0, . . . , xn and n binary edges e1, . . . , en where ei is labeled
with ai and connects xi−1 to xi for 1 ≤ i ≤ n. (The empty string ε with n = 0
is represented by an isolated node.)

Example 2 (HR Grammar for anbncn). The language of string graphs given by
the well-known non-context-free language anbncn (for n > 0) is generated by

3 Predictive Top-Down Parsing: From Strings to Graphs

We discuss how the idea of top-down parsing can be transferred from string
grammars to HR grammars.

Example 3 (SLL(1)-Parsing for Tree Strings). The Dyck language of balanced
parentheses can be generated by the context-free string grammar with four rules

S:: = T T :: = (B) B:: = T B | ε

22 F. Drewes et al.

The strings of the language generated by this grammar correspond to trees. For
instance, the string “((()())()(()))” corresponds to the tree shown in Example 1.

Rules can be considered as abstract definitions of top-down parsers: Nonter-
minals act as a procedures that expand their rules, by matching terminal symbols
(i.e., comparing them with the next input symbol, and consuming it in case of
success) and by calls to procedures of other nonterminals. So the parser for T
expands “(B)” by matching “(”, calling the parser for B, and matching “)”. It
fails as soon as a match or one of the called parsers fails. If a nonterminal has
alternative rules, backtracking is used to find the first alternative that succeeds.
If the parser for B fails to expand “TB”, it tries to expand “ε” instead, and fails
if that does not succeed either. The parser for the start symbol initializes the
input, expands its rule, and succeeds if the entire string has been consumed.

SLL(k) parsers [12] avoid backtracking by pre-computing k ≥ 0 terminal
symbols of lookahead in order to predict which alternative of a nonterminal must
be expanded. For B, and k = 1, we obtain First(T B) = {(} and First(ε) = {ε}.
For a lookahead “ε”, the followers of the left-hand side nonterminal have to be
determined, by inspecting occurrences of that nonterminal in other rules. Since
B only occurs in the rule T :: = (B), we obtain Follow(B) = {)}. A grammar
is SLL(k)-parsable if the lookahead allows to predict which alternative must be
expanded. Our example is SLL(1); we can make the parser for B predictive by
adding conditions for expanding rules:

B :: = T B if lookahead = (
| ε if lookahead =)

Pre-computation makes sure that every other lookahead lets the parser fail – no
backtracking is needed.

We shall now transfer the basic ideas of top-down parsing to HR grammars.
While the set of edges in a graph is inherently unordered, our parsing procedure
must follow a prescribed search plan. For this reason, we generally assume that
the edges in the right-hand side of each rule (L,R, m̃) are ordered. We therefore
use a convenient representation for graphs: such a graph G can be represented
as a pair u = 〈s, Ġ〉, called (graph) clause of G, where s is a sequence of edge
literals a(x1, . . . , xk) such that there is an edge e ∈ Ḡ with �G(e) = a, and
attG(e) = x1 . . . xk. The order of the edge literals defines the order to be used
by the parsing procedure if this graph is the right-hand side of a rule.2 We let
u• = G and u̇ = Ġ and call u terminal if u• contains no nonterminal edge, and a
handle clause if u• is a handle. Let CΣ and TΣ denote the set of all graph clauses
and terminal clauses, respectively, for a given alphabet Σ. When writing down
u, we usually omit Ġ and write just s if Ġ is given by the context. We define
the concatenation uv of two graph clauses u = 〈sG, Ġ〉 and v = 〈sH , Ḣ〉 so that
it represents the union of u• and v•: uv = 〈sGsH , Ġ ∪ Ḣ〉.

Transferring the notion of derivations to clauses u, v we write u ⇒r v iff
u• ⇒r v•, where the ordering of edge literals is preserved, i.e., there are clauses
2 We assume that the order of edges in a right-hand side is provided with the HR

grammar. Finding an appropriate order automatically is left to future work.

Predictive Top-Down Parsing for Hyperedge Replacement Grammars 23

α, β, γ and a nonterminal edge literal N such that u = αNβ, v = αγβ and γ
corresponds to the order of the right-hand side of r. We call such a derivation a
left-most derivation, written u

L⇒rv, iff α is a terminal clause.
Top-down parsing for HR grammars uses the same ideas as for string gram-

mars. A PTD parser consists of parsing procedures; each of them expands a
nonterminal edge whose attached nodes are passed as parameters. We augment
the rules with conditions under which they are chosen, and use them as abstract
parsers. This is illustrated in the following examples:

Example 4 (PTD Parsing for Trees). The rules of the tree grammar (Example 1)
are written down as

S():: = T (x) T (x):: = edge(x, y) T (x) T (y) | ε

The empty sequence ε representing the right-hand side of the third rule is just
a short-hand for the clause 〈ε, {x}〉. This can be turned into a PTD parser for
trees:

p1 : S() :: = T (x) where ¬edge(–, x)
p2 : T (x) :: = edge(x, y) T (x) T (y) if edge(x, –)
p3 : | ε .

(Here, we use where- and if -clauses whose meaning will shortly be explained.)

Example 4 exhibits a clear similarity to SLL(1) parsers. However, there are four
major differences:

Firstly, expanding the edges of a right-hand side means, either to call the
procedure for a nonterminal edge like T (x) with its nodes as parameters, or to
match a terminal edge like edge(x, y). The latter means to select some matching
edge that is correctly attached to the nodes bound to identifiers in the edge
literal. This binds identifiers that were previously unbound, e.g., y to the target
node of the matched edge. Each edge and node selected that way is marked as
consumed. Consumed edges must not be matched again later, and all nodes and
edges must have been consumed when the parser terminates.

Note that the ordering of the right-hand side specifies a search plan. Following
this plan, the parser for the tree grammar will look for the terminal edge(x, y)
before trying to parse T (y) in p2. Thus, when invoking T (y), node y has already
been determined. Ordering the right-hand side by T (x) edge(x, y) T (y) would
make the rule left-recursive. By the proof of Lemma 1 such a grammar is not
PTD parsable.

Secondly, conditions are written down in if -clauses. The right-hand side of
the first rule whose if -clause evaluates to true is expanded, i.e., all if -clauses of
the previous rules must have evaluated to false.

If -clauses represent conditions that the yet unconsumed part of the input
graph must satisfy. This is analogous to SLL(k) parsers examining a prefix of
the yet unconsumed substring. In Examples 4 and 5, we use graph patterns as
a simplified version of the more general conditions described in Sect. 5. Graph
patterns are written down as extended graph clauses in which the ordering of

24 F. Drewes et al.

the literals is considered to be irrelevant. Nodes may be identifiers referring to
already bound nodes, such as x, or they may be –, which matches any node
that has not yet been bound by an identifier. A preceding ¬ indicates that the
edge must not be present, i.e., this specifies a negative context. In our example,
a nonterminal T (x) is expanded by p2 if the node bound by x has an outgoing
edge that has not yet been consumed by the parser.

The third difference is that a graph parser must autonomously identify where
the processing starts. In particular, the nodes generated by start rules are
unknown in the beginning. Some (or all) of them — they are called start nodes
in the following — can be uniquely determined by graph conditions which are
written down as where-clauses. Where-clauses again employ extended graph
clauses in our examples. However, note the difference to if -clauses: If -clauses
are used to select rule alternatives, but do not bind identifiers, whereas where-
clauses do not select rule alternatives, but specify how to bind identifiers such
that a valid match is found. In p1, x is bound to some node without an incom-
ing edge.

A fourth distinguishing feature is that terminal edges are consumed by select-
ing matching edges. However, the parser must usually choose between several
edges. In p2, this holds for edge(x, y), which is matched by any yet unconsumed
edge leaving x. It is clear in this simple example that it does not make a dif-
ference which edge is chosen first. Since not every HR grammar has this prop-
erty, grammar analysis must check that choosing an arbitrary edge from a set
is insignificant for the outcome of the parse; if the parser fails for a particu-
lar choice, it must fail for every other choice as well, thus making backtracking
unnecessary.

Example 5 (PTD Parsing for anbncn). By choosing an ordering for the right-
hand sides of rules, we turn the grammar of Example 2 into a PTD parser:

p1 : S() :: = a(n1, n2) A(n2, n3, n4, n5) b(n3, n4) c(n5, n6)
where a(n1, –),¬a(–, n1), b(–, n4), c(n4, –),

c(–, n6),¬c(n6, –)
p2 : A(x1, x2, x3, x4) :: = a(x1, n1) A(n1, n2, x3, n3) b(n2, x2) c(n3, x4)

if a(x1, –)
p3 : | x2 ← x1;x4 ← x3

The example illustrates that it is not always possible to determine all nodes
of a nonterminal edge before its procedure is called. Nonterminals may even
have different profiles; each profile represents a certain subset of nodes that have
already been determined prior to the procedure call. These nodes, called profile
nodes in the following, are passed as parameters to the procedure. The other
nodes are determined during the invocation and can be considered as “call by
reference”-parameters. Therefore, different profiles require different procedures.

In our example, A has just one profile: only the first and the third node
are determined when its procedure is called in p1 or p2; the second and the
fourth node are yet unknown and must be determined by the procedure. The
corresponding parameters x2 and x4 are underlined to illustrate this fact.

Predictive Top-Down Parsing for Hyperedge Replacement Grammars 25

The example also demonstrates merging rules, which correspond to explicit
assignments in the parser, here p3: It is known from the A-profile that identifiers
x1 and x3 are bound to profile nodes, and x2 and x4 are set accordingly by the
procedure. This cannot cause any conflict because neither x2, nor x4 have been
bound earlier, which is also known from the profile.

Figure 1 shows a trace of parsing the graph representing aabbcc. Each line of
the trace consists of an action and the resulting bindings of identifiers to nodes
after completion of the action. The currently active bindings are shown with a
white background whereas the bindings of the calling procedures are shown with
a gray background. Yet unbound identifiers are marked with a dash; new bindings
are written in bold face. An identifier is bound to a node either by identifying
start nodes (line 2), by explicit assignment (line 9), or by edge matching. An
example of the latter is shown in line 3, which corresponds to edge a(n1, n2) in
p1 of the parser. The matching edge is a(1, 2) because n1 is already bound to
node 1. As a result, n2 is bound to node 2. Note that the second and fourth
parameter of the invocations of procedure A in line 4 and 7 are yet unknown.
They are passed “by reference” and bound to nodes when the procedure binds
their corresponding “formal parameters”. For instance, the edge matching in
line 10 assigns node 4 to x2, but also to n3. Finally note the selection of rule
alternatives in line 5 and 8. The parser selects p2 in line 5 because it finds edge
a(2, 3), and it selects p3 in line 8 because there is no a-edge leaving node 3.

Fig. 1. A trace of parsing

4 Predictive Top-Down Parsability

PTD parsers create left-most derivations for an input graph if such a derivation
exists. More precisely, let Γ be a fixed HR grammar, z the start graph clause and

26 F. Drewes et al.

H a graph in the language of Γ . At each point of time, the parser has consumed
some subgraph H ′ of H, represented as a terminal clause α, α• = H ′. The yet
unexpanded or unmatched edges of the current stack of procedure invocations
correspond to a graph clause x such that z

L⇒∗αx. The clause x represents the
remaining goal; parsing will continue to build αx

L⇒∗αβ such that (αβ)• = H.
For instance, when the A-procedure is called first in line 4 of Fig. 1, then

x = A(2, n3, 5, n5) b(n3, 5) c(n5, 7) since S() ⇒ a(1, 2)A(2, 4, 5, 6) b(4, 5) c(6, 7).
Note, however, that the parser was not yet able to bind n3 and n5. Edges b(4, 5)
and c(6, 7) will be matched in lines 12 and 13.

The parser terminates successfully if x• is the empty graph. Otherwise, x =
ey for an edge e. The parser continues with expanding e if e is nontermial, or
with matching e if it is terminal:

Case 1 (e is nonterminal). The parser then calls the parsing procedure that
corresponds to e with the profile nodes P = α̇ ∩ ė.

We use line 4 of Fig. 1 as an example again. Nodes 1, 5, and 7 have been
determined as start nodes in line 2, and node 2 has been determined by matching
a(1, 2) in line 3. Therefore, α = 〈a(1, 2), {1, 2, 5, 7}〉. In the procedure call in
line 4, only nodes 2 and 5 of A(2, n3, 5, n5) are in α̇ and, therefore, profile nodes.

The procedure must choose a rule r that can continue the current derivation
of the input graph, i.e., there must be a derivation z

L⇒∗αey
L⇒rαuy

L⇒∗αβ where
β• is the remainder of the input graph, which we call the rest graph in the
following. For a given set P of profile nodes, let Rest(e, P, r) denote the set of
all such rest graphs, taken over all possible input graphs in the language:

Rest(e, P, r) = {β• | ∃α, β ∈ TΣ and u, y ∈ CΣ such that
z

L⇒∗αey
L⇒rαuy

L⇒∗αβ and P = α̇ ∩ ė}.

The procedure, therefore, must choose the rule r which satisfies

β• ∈ Rest(e, P, r). (1)

For instance, when A(x1, x2, x3, x4) has been called with profile nodes P =
{x1, x3} in lines 4 and 7 of Fig. 1, the parser has already consumed at least one
a-edge, but no other edge. Thus, Rest(e, P, p2) consists of all graphs

with k > 0 a-edges and m > k b-edges and as many c-edges, whereas Rest(e, P, p3)
consists of all graphs

with m > 0 b-edges and as many c-edges.
The parsing procedure cannot predict which alternative rule has to be chosen

if there are rules r �= r′ that allow to continue the derivation with the same rest
graph, i.e., predictive parsing requires that Rest(e, P, r) and Rest(e, P, r′) are
disjoint for all rules r �= r′. Moreover, the parsing procedure needs an actual

Predictive Top-Down Parsing for Hyperedge Replacement Grammars 27

indicator of the right choice. (1) does not result in a practical test, because it
requires a parsing procedure (see Sect. 5). The if -clauses of the rules are supposed
to be such an indicator. To make this more precise, let Sel(e, P, r) denote the
set of all rest graphs that satisfy the if -clause of rule r. It is easy to see that the
if -clauses of the rules are an actual indicator of the right choice iff the following
two conditions are satisfied, because they imply Rest(e, P, r) ∩ Rest(e, P, r′) = ∅
for all rules r �= r′ with the same left-hand side.

Condition 1. Rest(e, P, r) ⊆ Sel(e, P, r) for each e, P , and each rule r.

Condition 2. Sel(e, P, r) ∩ Sel(e, P, r′) = ∅ for each e, P , and rules r �= r′.

We continue our example when procedure A has been called for an edge e =
A(x1, x2, x3, x4) and profile nodes P = {x1, x3}. Instead of checking a condition
that evaluates to true iff the rest graph β• is in Rest(e, P, p2) or Rest(e, P, p3)
when p2 or p3 is chosen, respectively, we simply check whether there is an a-edge
leaving x1, i.e., we check whether β• ∈ Sel(e, P, p2) or β• ∈ Sel(e, P, p3) where
Sel(e, P, p2) is the set of all graphs with an a-edge leaving x1, and Sel(e, P, p3)
is its complement. Conditions 1 and 2 are obviously satisfied.

Section 5 will outline how one can construct if -conditions that can be checked
in linear time in the size of the rest graph. The graph patterns used in Examples 4
and 5 are optimizations of such conditions that can be checked in constant time.

Case 2 (e is terminal). The parser chooses a yet unmatched edge. In doing so, it
must consider its edge label and the nodes already determined by α̇. For instance,
the parser in Example 4 can freely choose between any edge leaving node x when
edge(x, y) must be matched. This free choice must not lead to backtracking: it
must not be possible that one choice results in a parser failure while a different
choice results in a successful parse. More precisely, a PTD parsable HR grammar
must satisfy the following condition:

Condition 3. For all derivations z
L⇒∗αey

L⇒∗αeβ and z
L⇒∗αe′y′ where y, y′ ∈

CΣ and α, α′, e, e′ ∈ TΣ such that e and e′ consist of just one edge each, and (αe′)•

is a subgraph of H = (αeβ)•, there exists a derivation y′ L⇒∗β′ and H = (αe′β′)•.

Apparently, one can create a PTD parser if one can predict correct rule alterna-
tives and matching terminal edges does not require backtracking. This leads to
the following definition:

Definition 3 (Predictive Top-Down Parsability). An HR grammar is called
predictively top-down (PTD) parsable if one can augment rules with conditions,
which can be decided in linear time, under which a rule is chosen such that Con-
ditions 1, 2, and 3 are satisfied.

Note that Conditions 1 and 2 must be satisfied for all profiles that may occur,
which depends on the start nodes that can be identified at the beginning. Profiles
can be computed using a data flow analysis of the grammar rules (see Sect. 5).

Let us call a rule r useful if it occurs in a derivation Z ⇒∗ G ⇒r G′ ⇒∗ H
such that H is a terminal graph. A rule r is called useless if it is not useful.

28 F. Drewes et al.

Lemma 1. For every PTD parsable HR grammar without useless rules there
exists a constant k such that the following holds: For every handle clause h, if
h

L⇒kv then v• contains at least one node or terminal edge not in h•.

Proof. Let us assume the contrary, i.e., a PTD parsable HR grammar without
useless rules and a handle clause h such that for each i, there is a clause w without
terminal edges, ẇ = ḣ, and h

L⇒iw. Because the set of nonterminal labels is finite
and there are no useless rules, there must be a handle clause g and rules r �= r′

such that g
L⇒ru

L⇒∗gv and g
L⇒r′x

L⇒∗β for some terminal clause β and a clause
v without terminal edges, v̇ ⊆ ġ. Therefore, there must be a derivation, where
z is the start graph clause, z

L⇒∗αgy
L⇒rαuy

L⇒∗αgvy
L⇒r′αxvy

L⇒∗αβvy
L⇒∗αγ

for terminal clauses α, γ and a graph clause y. In this derivation, g must be
expanded using rule r and r′ with the same rest graph γ•, i.e., γ• ∈ Rest(g, P, r)∩
Rest(g, P, r′) with P = α̇ ∩ ġ. Therefore, the grammar is not PTD parsable. ��
In particular, the proof shows that HR grammars with left-recursive rules are
not PTD parsable. In fact, by Lemma1 the number of procedure invocations in
a PTD parser depends linearly on the size of the input graph. This yields the
following theorem.

Theorem 1 (Complexity of PTD Parsing). PTD parsers have time com-
plexity O(n2) and space complexity O(n) where n is the size of the input graph.

Proof. Parsers work without backtracking, and the number of procedure calls
depends linearly on the size of the input graph, by Lemma1. Each parsing proce-
dure must choose a rule for expansion and, for this purpose, check the conditions
of a fixed number of if -clauses, and match a fixed number of terminal edges,
which has linear time complexity. Considering space complexity, each node and
edge must carry a flag such that they can be marked as consumed. Moreover,
the depth of recursion is linear in the size of the input graph. ��
Note that this is a worst-case time complexity. If one can choose among alterna-
tive rules in constant time, which is possible for the tree-parser and the anbncn-
parser, time complexity is actually linear in the size of the input graph. We
presume that this is the case for many parsers, but we have not yet identified
the conditions under which this is the case.

Theorem 2 (Relation to SLL(1)-Parsing). String-generating HR grammars
for SLL(1) grammars are PTD parsable, and there exist PTD parsable HR gram-
mars for context-free string languages which are not SLL(k)-parsable.

Proof. For the first statement, consider an SLL(1) grammar. Then every rule can
be turned into a corresponding HR rule; ε-rules n:: = ε are turned into a merging
rule n(v0, v1):: = v0 = v1. Now consider two alternative rules n:: = α | α′ (where
α, α′ ∈ Σ∗). Since the grammar is SLL(1), the sets of possible starts are disjoint
for these rules, say F and F ′. Then the clause c = {a(v0, –) | a ∈ F} and
c′ = {a(v0, –) | a ∈ F ′} are such that the correct rule alternative of

n(v0, vk):: = . . . if c | . . . if c′

Predictive Top-Down Parsing for Hyperedge Replacement Grammars 29

can be predicted in constant time. The where-clause determining the start node
is {¬a(–, v0) | a ∈ Σ} which determines the start node in linear time. It is easy
to see that the so defined PTD parser recognizes string graphs corresponding to
those recognized by the original SLL(1) grammar.

As for the second statement, palindromes over {a, b} form a context-free
language, but there is no SLL(k) parser (k ∈ N) because it would have to look
ahead until the end of the input, which grows beyond any fixed k. However, one
can easily construct a string-generating HR grammar and a PTD parser that
“reads” the input simultaneously from the left and from the right. ��
The possibility to have ε-rules is important for some SLL(1) string grammars.
While one can transform every context-free string grammar into an equivalent
one without ε-rules (except a possible ε-rule as a start rule), these grammars are
in general no longer SLL(1), and the corresponding HR grammar is not PTD
parsable. A direct translation of an SLL(1) grammar with ε-rules into a PTD
parsable HR grammar is possible only with merging rules. This has actually been
the reason for allowing merging rules in HR grammars in this paper.

5 Grammar Analysis

Figure 2 describes all the tasks (drawn as rectangles with rounded corners) that
must be performed in order to check PTD parsability of an HR grammar, called
original grammar, and to create a PTD parser for it; some tasks depend on
results (drawn as rectangles) of other tasks. Note that Fig. 2 omits the code
generator, which creates the actual parser from the results of the earlier tasks.

Original
grammar

Clean
grammar

Start nodes
&

where-clauses
Profiles if-clauses

Normalize
grammar

Neighbor-
determined
start nodes

Determine
profiles

Neighbor-
determined
rule choice

Free edge choice

Fig. 2. Steps taken to check PTD parsability.

The first task, Normalize grammar, transforms the original grammar into
an equivalent normalform that we call “clean”, as it contains neither merging
rules nor nonterminals with repetitions among their attached nodes. Although
PTD parsers can deal with merging rules without any effort, as seen in Exam-
ple 5, many grammar analysis tasks require a clean HR grammar. Such a task
is Neighbor-determined start nodes; it identifies the start nodes that can be
uniquely recognized in a syntactically correct graph by checking just their inci-
dent edges, and creates the where-clauses in the generated parser.

30 F. Drewes et al.

Profiles specify which attached nodes have already been matched to nodes in
the input graph when a parsing procedure is invoked. Task Determine profiles
computes all profiles using a data flow analysis of the grammar rules. It begins
with the start nodes and continues by examining the matching of terminal edges
as well as expanding nonterminal edges. A nonterminal label may actually have
multiple profiles. The profiles are then used by task Neighbor-determined rule
choice that tries to find if -clauses as conditions under which rules are chosen
so that Conditions 1 and 2 are satisfied. Each profile gives rise to a parsing
procedure. Finally, Conditions 3 is checked in task Free edge choice.

We now discuss details of task Neighbor-determined rule choice when an
HR grammar Γ is given. The task tries to determine, for each rule r and each
profile, an if -clause as a condition under which r has to be chosen in its parsing
procedure. Case 1 in Sect. 4 already describes the situation. We now assume that
a parsing procedure has been invoked for a specific nonterminal edge, i.e., a
handle clause a, and a set P of profile nodes. The other nodes of a have not
yet been determined; this is left to the procedure (see Fig. 1). We first show
that the set Rest(a, P, r) of all rest graphs in this situation is an HR language.
This is trivially true if a is the start graph clause z. Let us, therefore, assume
that a does not represent the start graph and that a ⇒r u. A terminal graph
β• belongs to Rest(a, P, r) iff there is a derivation a0 ⇒r1 x1a1y1 ⇒r2 · · · ⇒rk

x1 . . . xkakyk . . . y1 for some k > 0, rules r1, . . . , rk and handle clauses a0, . . . , ak

with a0 = z and ak = a such that uyk . . . y1 ⇒∗ β, x1 . . . xk ⇒∗ α ∈ TΣ , and
P = α̇ ∩ ȧ. One can now construct an HR grammar, called follower grammar
Γ f(a, P, r), that generates Rest(a, P, r). Its derivations are of the form zf ⇒
uaf

k ⇒ uykaf
k−1 ⇒ · · · ⇒ uyk . . . y1a

f
0 ⇒ uyk . . . y1 ⇒∗ β, starting from a start

graph handle zf with some new nonterminal label S′ that is attached to the
profile nodes P . We introduce a new nonterminal label Af for each original
nonterminal label A. Let each handle clause ai have a nonterminal label Ai;
handle clause af

i then has label Af
i and is attached to the same nodes as ai.

Γ f(a, P, r) has the rules of Γ as rule set, extended by a new rule that derives
zf ⇒ uaf

k and new rules for af
0 ⇒ ε and af

i ⇒ yia
f
i−1 for i = 1, . . . , k.

Example 6. We illustrate the construction of a follower grammar for p2 in Exam-
ple 4. Let us assume that a = T (x) and P = {x}. Γ f(a, P, p2) has the start graph
S′(x), its rule set consists of p1, p2, p3 and the following rules:

S′(x) :: = edge(x, y) T (x) T (y) T f(x)
Sf() :: = ε
T f(x) :: = Sf() | T (y) T f(x) | T f(y)

A parsing procedure can choose the rule alternative whose follower grammar has
the rest graph in its language. While this question is decidable, it does not result
in a practical test, because we need an actual indicator of the right choice that
we can check in a given situation without presupposing a parsing procedure.
Similar to SLL(1), which looks ahead just one symbol, we examine unconsumed
nodes and edges only within the neighborhood of the profile nodes P : Let u be
a graph clause and e = s(v1, . . . , vn) be an edge literal in u. The nodes vi are

Predictive Top-Down Parsing for Hyperedge Replacement Grammars 31

either profile nodes, vi ∈ P , or other nodes, vi ∈ Ġ \ P . We do not distinguish
those other nodes, but map them to the “don’t care” node – and define the
neighborhood literal nhP (e) = s(x1, . . . , xn), where xi = vi if vi ∈ P , and xi = –
otherwise. The neighborhood clause nhP (u) is obtained by replacing each literal
in u by the corresponding neighborhood literal.

It is easy to see that the set of all possible neighborhood clauses (up to
permutation of its literals) in the language of Γ f(a, P, r) is a context-free string
language because each derivation zf ⇒r1 g1 ⇒r2 · · · ⇒rk

gk in Γ f(a, P, r) can
be transformed into a derivation nhP (zf) ⇒p1 nhP (g1) ⇒p2 · · · ⇒pk

nhP (gk) of
neighborhood clauses. The finite set of all neighborhood literals with a terminal
(nonterminal) label forms the set of terminal (nonterminal) symbols. The start
symbol is nhP (zf). The resulting string grammar is called neighborhood grammar.

Example 7. We continue Example 6. The neighborhood grammar of Γ f(a, P, p2)
has the start symbol S′(x) and the following rules:

S′(x) :: = edge(x, –) T (x) T (–) T f(x) Sf() :: = ε
T (x) :: = edge(x, –) T (x) T (–) | ε T f(x) :: = Sf() | T (–) T f(x) | T f(–)
T (–) :: = edge(–, –) T (–) T (–) | ε T f(–) :: = Sf() | T (–) T f(–) | T f(–)

It is well-known that Parikh images of context-free languages are semilinear [15].
Let us briefly recapitulate the necessary notions: A Parikh mapping ψ : Σ∗ →
N

n for an ordered vocabulary T = {a1, . . . , an} ⊆ Σ is defined by ψ(w) =
(#a1(w), . . . ,#an

(w)), where #ai
(w) denotes the number of occurrences of ai

in w. The Parikh image of a string w ∈ Σ∗ is the vector ψ(w), and the Parikh
image of a language L ⊆ Σ∗ is the set of Parikh images of its elements: ψ(L) =
{ψ(w) | w ∈ L}. A set M ⊆ N

n is linear if there are k + 1 vectors x0, . . . , xk ∈
N

n such that M = {x0 +
∑k

i=1 cixi | c1, . . . , ck ∈ N}.3 We also write M =
x0 +{x1, . . . , xk}∗ and call x0 the tip and {x1, . . . , xk} the span of M . S ⊆ N

n is
semilinear if it is the union of a finite number of linear sets. Parikh’s theorem [15]
states that ψ(L) is semilinear for every context-free language L.

We now view the set of terminal neighborhood literals as an ordered vocabu-
lary and represent neighborhood clauses by their Parikh image, called the neigh-
borhood vector. The set of all rest graphs, when a rule shall be chosen for a given
set of profile nodes, therefore, has a semilinear set of neighborhood vectors.

Example 8. The Parikh image of the neighborhood grammar in Example 7 is the
semilinear set (1, 0) + {(1, 0), (0, 1)}∗ for the vocabulary {edge(x, –), edge(–, –)}.
This means that the rest graph, when rule p2 shall be chosen by parsing proce-
dure T (x), must contain at least one edge leaving x.

There are algorithms that, given a context-free Chomsky grammar G, create
the Parikh image of L(G) as its semilinear set, but our experiments have shown
that they are far too inefficient. Instead, we employ the following procedure that
determines a useful approximation of such semilinear sets and a finite description.
Details of this procedure are omitted due to space restrictions:
3 On N

k, sums and scalar products are defined component-wise as usual.

32 F. Drewes et al.

The neighborhood grammar is represented by an analysis graph that has
all nonterminal and terminal symbols as well as rules as nodes; a rule A:: =
x1 . . . xk has an incoming edge from A and outgoing edges to each xi. Each node
representing a terminal or nonterminal symbol can be associated with the Parikh
image of the language that can be generated from the corresponding symbol. The
analysis graph defines a system of equations, and the Parikh images form the
least fixed-point of this system of equations. It is computed by determining the
strongly connected components of the analysis graph, contracting each strongly
connected component to a single node, and evaluating the obtained DAG in a
bottom-up fashion. Nevertheless, we compute only approximations of the Parikh
images: Instead of computing general linear sets, which have arbitrary vectors in
their span, we restrict span vectors to be 0 at every position but one, where it is 1.
These sets are called simple in the following. Approximating linear sets by simple
ones considerably simplifies computations. Nevertheless, the approximation is
precise in the sense that the computed simple semilinear sets and the exact sets
actually have the same tips in their linear sets.

Each parsing procedure defines a handle clause a and profile nodes P by its
input parameters. We can now compute, for each parsing procedure and each
rule alternative, a simple semilinear set of neighborhood vectors, which contains
the neighborhood vectors of all possible rest graphs as a subset. These simple
semilinear sets actually define the conditions under which the corresponding
rule alternative is chosen: As soon as a parsing procedure is called, one com-
putes the neighborhood vector of the current rest graph. This can be easily done
in linear time. The parsing procedure then chooses the rule alternative whose
simple semilinear set contains this vector. In Examples 4 and 5, we have actually
written down graph patterns in the corresponding if -clauses, but this is just an
optimization that allows a constant-time check.

This approach makes checking Conditions 1 and 2 for PTD parsability easy:
Sel(a, P, r) is just the set of rest graphs whose neighborhood vectors are members
of the corresponding simple semilinear set. Therefore, Conditions 1 is satisfied
by construction, and Conditions 2 is easy to check.

A similar approach can be used in task Neighbor-determined start nodes. Task
Free edge choice also creates analysis graphs, and checks whether edges that must
be matched by the corresponding parsing procedure occur as competing nodes in
the analysis graph. Edges can be freely chosen if there are no competing nodes.

The table below summarizes test results of the PTD analysis of some HR
grammars. The columns under “Grammar” indicate the size of the grammar
in terms of the maximal arity of nonterminals (A), number of nonterminals
(N), and number of rules (R). Column “Profiles” shows the maximal number
of profiles of nonterminals. Column “PTD” indicates whether the respective
grammar is PTD parsable. In all cases the parsers actually run in linear time.
The columns under “Analysis” report on the time in milliseconds that the tasks
Neighbor-determined start nodes (SN), Neighbor-determined rule choice (RC),
and Free edge choice (FC) took on a MacBook Air (2 GHz Intel Core i7, Java
1.8.0). Of course, as mentioned in the introduction, many HR languages are

Predictive Top-Down Parsing for Hyperedge Replacement Grammars 33

not PTD parsable. In fact, this includes polynomial time parsable languages
such as structured flowcharts and series-parallel graphs [8]. They require to
inspect the neighborhood in unbounded depth in order to choose between rules.

Grammar Pro- Analysis [ms]
Example A N R files PTD SN RC FC
Trees (Example 1) 1 2 3 1 yes 96 19 11
anbncn (Example 2) 4 2 3 1 yes 133 25 22
Palindromes (Theorem 2) 2 2 5 1 yes 129 23 14
Arithmetic expression 2 6 9 2 yes 351 90 52
Nassi-Shneiderman diagrams [14] 4 4 7 3 yes 440 80 85
Series-parallel graphs 2 2 4 2 no 132 34 24
Structured flowcharts 2 4 7 2 no 326 60 50

6 Conclusions

We have introduced predictive top-down parsing for HR grammars, in analogy to
SLL(1) string parsers, and shown that these parsers are of quadratic complexity.
The analysis of HR grammars for PTD parsabilty has been implemented, and
evaluated with several examples, including the grammars presented in this paper.

Related work on parsing includes precedence graph grammars based on node
replacement [6,10]. These parsers are linear, but fail for some PTD parsable lan-
guages, e.g., the trees in Example 1. According to our knowledge, early attempts
to implement LR-like graph parsers [13] have never been completed. Positional
grammars [3] are used to specify visual languages, but can also describe certain
HR grammars. They can be parsed in an LR-like fashion, but many decisions are
deferred until the parser is actually executed. The CYK-style parsers for unre-
stricted HR grammars (plus edge-embedding rules) implemented in DiaGen [14]
work for practical languages, although their worst-case complexity is exponential.
It is unclear whether more general grammars, like layered graph grammars [16] can
be used in practice, even with the improved parser proposed in [7].

Future work has already started: the analysis of PTD parsability can actu-
ally check the contextual HR grammars studied in [5], where the left-hand side
of a rule may contain isolated (“contextual”) nodes that can be used on the
right-hand side. Contextual HR grammars allow to generate languages such as
the set of all connected graphs and all acyclic graphs, which cannot be defined
by HR grammars and are more useful for practical modeling of graph languages.
See [5] for further examples, which all turn out to be PTD-parsable. We also
conjecture that it is possible to handle contextual HR rules equipped with pos-
itive or negative application conditions involving path expressions, as discussed
in [9], without loosing too much of the efficiency of PTD parsing. Finally, we
hope that deterministic bottom-up parsers of contextual HR grammars (in anal-
ogy to SLR(1) string parsing) can be developed using concepts similar to those
presented in this paper.

34 F. Drewes et al.

References

1. Aalbersberg, I., Ehrenfeucht, A., Rozenberg, G.: On the membership problem for
regular DNLC grammars. Discrete Appl. Math. 13, 79–85 (1986)

2. Chiang, D., Andreas, J., Bauer, D., Hermann, K. M., Jones, B., Knight, K.: Parsing
graphs with hyperedge replacement grammars. In: Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics, Sofia, Bulgaria. Long
Papers, vol. 1, pp. 924–932, August 2013

3. Costagliola, G., De Lucia, A., Orefice, S., Tortora, G.: A parsing methodology for
the implementation of visual systems. IEEE Trans. Softw. Eng. 23(12), 777–799
(1997)

4. Drewes, F.: Recognising k-connected hypergraphs in cubic time. Theor. Comput.
Sci. 109, 83–122 (1993)

5. Drewes, F., Hoffmann, B.: Contextual hyperedge replacement. Acta Informatica,
31 (2015, accepted for publication). doi:10.1007/s00236-015-0223-4

6. Franck, R.: A class of linearly parsable graph grammars. Acta Informatica 10(2),
175–201 (1978)

7. Fürst, L., Mernik, M., Mahnič, V.: Improving the graph grammar parser of Rekers
and Schürr. IET Softw. 5(2), 246–261 (2011)

8. Habel, A. (ed.): Hyperedge Replacement: Grammars and Languages. LNCS, vol.
643. Springer, Heidelberg (1992)

9. Hoffmann, B., Minas, M.: Defining models - meta models versus graph grammars.
In: Proceedings of the 6th Workshop on Graph Transformation and Visual Mod-
eling Techniques (GT-VMT 2010), Electronic Communications of the EASST, 29,
Paphos, Cyprus (2010)

10. Kaul, M.: Practical applications of precedence graph grammars. In: Ehrig, H., Nagl,
M., Rozenberg, G., Rosenfeld, A. (eds.) Graph-Grammars and Their Application
to Computer Science. LNCS, vol. 291, pp. 326–342. Springer, Heidelberg (1986)

11. Lautemann, C.: The complexity of graph languages generated by hyperedge
replacement. Acta Informatica 27, 399–421 (1990)

12. Lewis II, P.M., Stearns, R.E.: Syntax-directed transduction. JACM 15(3), 465–488
(1968)

13. Ludwigs, H.J.: A LR-like analyzer algorithm for graphs. In: Wilhelm, R. (ed.) GI
- 10. Jahrestagung: Saarbrücken, 30. September - 2. Oktober 1980. Informatik-
Fachberichte, vol. 33, pp. 321–335. Springer, Heidelberg (1980)

14. Minas, M.: Diagram editing with hypergraph parser support. In: Proceedings of
1997 IEEE Symposium on Visual Languages (VL 1997), Capri, Italy, pp. 226–233
(1997)

15. Parikh, R.J.: On context-free languages. JACM 13(4), 570–581 (1966)
16. Rekers, J., Schürr, A.: Defining and parsing visual languages with layered graph

grammars. J. Vis. Lang. Comput. 8(1), 27–55 (1997)
17. Vogler, W.: Recognizing edge replacement graph languages in cubic time. In: Ehrig,

H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph Grammars and Their Application
to Computer Science. LNCS, vol. 532, pp. 676–687. Springer, Heidelberg (1991)

AGREE – Algebraic Graph Rewriting
with Controlled Embedding

Andrea Corradini1, Dominique Duval2, Rachid Echahed3, Frederic Prost3,
and Leila Ribeiro4(B)

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
andrea@di.unipi.it

2 LJK - Université de Grenoble Alpes and CNRS, Grenoble, France
dominique.duval@imag.fr

3 LIG - Université de Grenoble Alpes and CNRS, Grenoble, France
{rachid.echahed,frederic.prost}@imag.fr

4 INF - Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
leila@inf.ufrgs.br

Abstract. The several algebraic approaches to graph transformation
proposed in the literature all ensure that if an item is preserved by a
rule, so are its connections with the context graph where it is embedded.
But there are applications in which it is desirable to specify different
embeddings. For example when cloning an item, there may be a need to
handle the original and the copy in different ways. We propose a conserv-
ative extension of classical algebraic approaches to graph transformation,
for the case of monic matches, where rules allow one to specify how the
embedding of preserved items should be carried out.

1 Introduction

Graphs are used to describe a wide range of situations in a precise yet intuitive
way. Different kinds of graphs are used in modelling techniques depending on
the investigated fields, which include computer science, chemistry, biology, quan-
tum computing, etc. When system states are represented by graphs, it is natural
to use rules that transform graphs to describe the system evolution. There are
two main streams in the research on graph transformations: (i) the algorithmic
approaches, which describe explicitly, with a concrete algorithm, the result of
applying a rule to a graph (see e.g. [11,14]), and (ii) the algebraic approaches
which define abstractly a graph transformation step using basic constructs bor-
rowed from category theory. In this paper we will consider the latter.

The basic idea of all approaches is the same: states are represented by graphs
and state changes are represented by rules that modify graphs. The differences
are the kind of graphs that may be used, and the definitions of when and how

This work has been partly funded by projects CLIMT (ANR/(ANR-11-BS02-
016), TGV (CNRS-INRIA-FAPERGS/(156779 and 12/0997-7)), VeriTeS (CNPq
485048/2012-4 and 309981/2014-0), PEPS égalité (CNRS).

c© Springer International Publishing Switzerland 2015
F. Parisi-Presicce and B. Westfechtel (Eds.): ICGT 2015, LNCS 9151, pp. 35–51, 2015.
DOI: 10.1007/978-3-319-21145-9 3

36 A. Corradini et al.

rules may be applied. One critical point when defining graph transformation is
that one cannot delete or copy part of a graph without considering the effect
of the operation on the rest of the graph, because deleted/copied items may be
linked to others. For example, rule ρ1 in Fig. 1(a) specifies that a node shall
be deleted and rule ρ2 that a node shall be duplicated (C indicates the copy).
What should be the result of applying these rules to the grey node of graph G
in Fig. 1(b)? Different approaches give different answers to this question.

Fig. 1. (a) Delete/Copy rules (b) resulting graphs

The most popular algebraic approaches are the double-pushout (DPO) and
the single-pushout (SPO), which can be illustrated as follows:

L

POm
��

K

PO

l��

d
��

r �� R

m′
��

G D
l′�� r′

�� H

L

POm
��

r �� R

m′
��

G
r′

�� H
Double pushout rewrite step Single pushout rewrite step

In the DPO approach [6,13], a rule is defined as a span ρ = L ← K → R and a
match is a morphism m : L → G. A graph G rewrites into a graph H using rule
ρ and match m if the diagram above to the left can be constructed, where both
squares are pushouts. Conditions for the existence and uniqueness of graph D
need to be studied explicitly, since it is not a universal construction. With DPO
rules it is easy to specify the addition, deletion, merging or cloning of items,
but their applicability is limited. For example, rule ρ1 of Fig. 1 is not applicable
to the grey node of G (as it would leave dangling edges), and a rule like ρ2 is
usually forbidden as the pushout complement D would not be unique.

In the SPO approach [12,16], a rule is a partial graph morphism ψ : L → R
and a match is a total morphism m : L → G. A graph G rewrites into a graph
H using rule ψ and match m if a square like the one above to the right can be
constructed, which is a pushout in the category of graphs and partial morphisms.
Deleting, adding and merging items can easily be specified with SPO rules, and
the approach is appropriate for specifying deletion of nodes in unknown context,
thanks to partial morphisms. The deletion of a node causes the deletion of all
edges connected to it, and thus applying rule ρ1 to G would result in graph H1
in Fig. 1(b). However, since a rule is defined as a single graph morphism, copying
of items (as in rule ρ2) cannot be specified directly in SPO.

A more recent algebraic approach is the sesqui-pushout approach (SqPO) [5].
Rules are spans like in the DPO, but in the left square of a rewriting step D
is built as a final pullback complement. This characterises D with a universal

AGREE – Algebraic Graph Rewriting with Controlled Embedding 37

property, enabling to apply rule ρ1, obtaining the same result as in the SPO
approach (H1), as well as rule ρ2, obtaining H2 as result. Also ρ2 has a side
effect: when a node is copied all the edges of the original node are copied as
well. Rules do not specify explicitly which context edges are deleted/copied, this
is determined by the categorical constructions that define rule application. In
general, in all algebraic approaches, the items that are preserved by a rule will
retain the connections they have with items which are not in the image of the
match. This holds also for items that are copied in the SqPO approach.

However, there are situations in which the designer should be able to specify
which of the edges connecting the original node should be copied when a node
is copied, depending for example on the direction of the edges (incoming or
outgoing), or on their labels, if any. For example, if the graphs of Fig. 1 represent
web pages (nodes) and hyperlinks among them (edges) it would be reasonable to
expect that the result of copying the grey page of G with rule ρ2 would be graph
H3 rather than H2, so that new hyperlinks are created only in the new page, and
not in the pages pointing to the original one. As another example, the fork and
clone system commands in Linux both generate a clone of a process, but with
different semantics. Both commands precisely differ in the way the environment
of the cloned process is dealt with: see [18] for more details.

These examples motivate the rewriting approach that we introduce in this
paper. In order to give the designer the possibility of controlling how the nodes
that are preserved or cloned by a rule are embedded in the context graph, we
propose a new algebraic approach to graph transformation where rules are triples

of arrows with the same source r = (K l→ L,K
r→ R,K

t� TK). Arrows l and r
are the usual left- and right-hand sides, while t is a mono called the embedding :
it will play a role in controlling which edges from the context are copied. The
resulting rewriting approach, called AGREE (for Algebraic Graph Rewriting
with controllEd Embedding) is presented in Sect. 3. As usual for the algebraic
approaches, AGREE rewriting will be introduced abstractly for a category sat-
isfying suitable requirements, that will be introduced in Sect. 2. For the knowl-
edgeable reader we anticipate that we will require the existence of partial map
classifiers [3]. After discussing an example of social networks in Sect. 4, in Sect. 5
we show that AGREE rewriting can simulate both SqPO rewriting (restricted
to mono matches) and rewriting with polarised cloning [8]. Finally some related
and future works are briefly discussed in Sect. 6.

2 Preliminaries

We start recalling some definitions and a few properties concerning pullbacks,
partial maps and partial map classifiers: a survey on them can be found in [2,3].
Let C be a category with all pullbacks. We recall the following properties:

– monos are stable under pullbacks, i.e. if B′ f ′
← A′ m′

→ A is the pullback of
B′ m� B

f← A and m is mono, then m′ is mono as well;
– the composition property of pullbacks: in a commutative diagram as below on

the left, if squares (a) and (b) are pullbacks, so is the composed square;

38 A. Corradini et al.

•
PB (a)

��

��
=

��•
PB (b)

��

�� •
��• ��

=
��• �� •

•
PB (c)

��

=
�������� •

��

��

PB (d)

•
��• �� • �� •

– and the decomposition property: in a commutative diagram as the one made
of solid arrows above on the right, if square (d) and the outer square are
pullbacks, then there is a unique arrow (the dotted one) such that the top
triangle commutes and square (c) is a pullback.

A stable system of monos of C is a family M of monos including all isomor-
phisms, closed under composition, and (stability) such that if (f ′,m′) is a pull-
back of (m, f) and m ∈ M, then m′ ∈ M. An M-partial map over C, denoted
(m, f) : Z ⇀ Y , is a span made of a mono m : X � Z in M and an arrow
f : X → Y in C, up to the equivalence relation (m′, f ′) ∼ (m, f) whenever there
is an isomorphism h with m′ ◦ h = m and f ′ ◦ h = f .
Category C has an M-partial map classifier
(T, η) if T is a functor T : C → C and η is
a natural transformation η : IdC

.→T , such
that for each object Y of C, the following
holds: for each M-partial map (m, f) : Z ⇀
Y there is a unique arrow ϕ(m, f) : Z →
T (Y) such that square (1) is a pullback.

In this case it can be shown (see [3]) that
ηY ∈ M for each object Y ∈ C, that T pre-
serves pullbacks, and that the natural trans-
formation η is cartesian, which means that
for each f : X → Y the naturality square (2)
is a pullback. For each mono m : X � Z in
M we will use the notation m = ϕ(m, idX),
thus m is defined by the pullback square (3).

X

PB

��

m

��

f �� Y
��

ηY

��

Z ϕ(m,f) �� T (Y)

(1)

X

PB

��

ηX

��

f �� Y
��

ηY

��

T (X) T (f) �� T (Y)

(2)

X

PB

��

m

��

idX
�� X

��

ηX

��

Z m �� T (X)

(3)
Before discussing some examples of cate-
gories that have M-partial map classifiers, let
us recall the definition of some categories of
graphs.

Definition 1 (Graphs, Typed Graphs). The category of graphs Gr is
defined as follows. A graph X is made of a set of nodes NX , a set of edges EX

and two functions sX , tX : EX → NX , called source and target, respectively. As
usual, we write n

e→ p when e ∈ EX , n = sX(e) and p = tX(e). A morphism of
graphs f : X → Y is made of two functions f : NX → NY and f : EX → EY ,

such that f(n)
f(e)→ f(p) in Y for each edge n

e→ p in X.
Given a fixed graph Type, called type graph, the category of graphs typed

over Type is the slice category Gr ↓ Type.

AGREE – Algebraic Graph Rewriting with Controlled Embedding 39

Definition 2 (Polarized Graphs [9]). A polarized graph X = (X,N+
X , N−

X) is
a graph X with a pair (N+, N−) of subsets of the set of nodes NX such that for
each edge n

e→ p one has n ∈ N+
X and p ∈ N−

X . A morphism of polarized graphs
f : X → Y, where X = (X,N+

X , N−
X) and Y = (Y,N+

Y , N−
Y), is a morphism of

graphs f : X → Y such that f(N+
X) ⊆ N+

Y and f(N−
X) ⊆ N−

Y . This defines the
category Gr± of polarized graphs.

A morphism of polarized graphs f : X → Y is strict, or strictly preserves the
polarization, if f(N+

X) = f(NX) ∩ N+
Y and f(N−

X) = f(NX) ∩ N−
Y .

2.1 Examples of Partial Map Classifiers

Informally, if (m, f) : Z ⇀ Y is a partial map, a total arrow ϕ(m, f) : Z → T (Y)
representing it should agree with (m, f) on the “items” of Z on which it is
defined, and should map any item of Z on which (m, f) is not defined in a
unique possible way to some item of T (Y) which does not belong to (the image
via ηY of) Y . For example, in Set the partial map classifier (T, η) is defined
as T (X) = X + {∗} and T (f) = f + id{∗} for functor T , while the natural
transformation η is made of the inclusions ηX : X → X + {∗}. For each partial
function (m, f) : Z ⇀ Y , function ϕ(m, f) : Z → Y +{∗} extends f by mapping
x to f(x′) when x = m(x′) and x to ∗ when x is not in the image of m.

Fig. 2. Partial map classifiers (a) in Gr (b) in Gr ↓ Type

In Gr the partial map classifier (T, η) is such that ηG : G → T (G) embeds G
into the graph T (G) made of the disjoint union of G with a node ∗ and with an
edge ∗n,p : n → p for each pair of vertices (n, p) in (NG +{∗})× (NG +{∗}). The
total morphism ϕ(m, f) is defined on the set of nodes exactly as in Set, and on
each edge similarly, but consistently with the way its source and target nodes
are mapped. Figure 2(a) shows an example of a partial map (m, f) : G1 → G2
and the corresponding extension to the total morphism ϕ(m, f) : G1 → T(G2).
In the graphical notation we use edges with double tips to denote two edges,
one in each direction; arrows and node marked with ∗ are added to G2 by the
T construction.

Set and Gr are instances of the general result that all elementary toposes
have M-partial map classifier, for M the family of all monos. These include,

40 A. Corradini et al.

among others, all presheaf categories (i.e., functor categories like SetC
op

, where
C is a small category), and the slice categories like C ↓ X where C is a topos
and X an object of C. In fact Gr is the presheaf category SetC

op
where Cop

has two objects E, N and two non-identity arrows s, t : E → N .
As a consequence also the category of typed graphs Gr ↓ Type has partial

maps classifiers for all monos. Figure 2(b) shows an example: the partial map
classifier of a graph G4 typed over Type is obtained by adding to G4 all the
nodes of Type and, for each pair of nodes of the resulting graph, one instance of
each edge that is compatible with the type graph.

The category of polarized graphs of Definition 2 (that will be used later in
Sect. 5.2), is an example of category which has M-partial map classifiers for a
family M which is a proper subset of all monos. It is easy to check that strict
monos form a stable system of monos (denoted S) for category Gr±, and that
Gr± has an S-partial map classifier (T, η). Morphism ηK embeds a polarised
graph K into T(K), which is the disjoint union of K with a node ∗ and with an
edge ∗n,p : n → p for each pair of nodes (n, p) ∈ (N+

K + {∗}) × (N−
K + {∗}). The

total morphism ϕ(m, f) is defined exactly as in the category of graphs.

3 Algebraic Graph Rewriting with Controlled Embedding

In this section we introduce the AGREE approach to rewriting, defining rules,
matches and rewrite steps. The main difference with respect to the DPO and
SqPO approaches is that a rule has an additional component t : K � TK ,
called the embedding , that enriches the interface and can be used to control the
embedding of preserved items. We assume that C is a category with all pullbacks,
with a stable system of monos M, with an M-partial map classifier (T, η), and
with pushouts along monos in M.

Definition 3 (AGREE Rules and Matches).
– A rule is a triple of arrows with the same source

ρ = (K l→ L,K
r→ R,K

t� TK), with t in M. Arr-
ows l and r are the left- and right-hand side, res-
pectively, and t is called the embedding.

L K
l�� r ��

��

t
��

R

TK

– A match of a rule ρ with left-hand-side K
l→ L is a mono L

m� G in M.

L

PB (remark)

��

m

��

��

ηL =

��

K

PO (b)

l�� r ��
��

n

��

��

t=

��

R

p

��

G

PB (a)m

��

D
g

�� h ��

n′

��

H

T (L) TK
l′=ϕ(t,l)

��

(4)

AGREE – Algebraic Graph Rewriting with Controlled Embedding 41

Definition 4 (AGREE Rewriting). Given a rule ρ = (K l→ L,K
r→ R,K

t�
TK) and a match L

m� G, an AGREE rewrite step G ⇒ρ,m H is constructed
in two phases as follows (see diagram (4)):
(a) Let l′ = ϕ(t, l) : TK → T (L) and m = ϕ(m, idL) : G → T (L), then

G
g← D

n′
→ TK is the pullback of G

m→ T (L) l′← TK .
(remark) In diagram (4) (g, n′) is a pullback of (m, l′) and (l, t) is a pullback of
(ηL, l′) because l′ = ϕ(t, l), thus by the decomposition property there is a unique
n : K → D such that n′ ◦ n = t, g ◦ n = m ◦ l and (l, n) is a pullback of (m, g).
Therefore n is a mono in M by stability.
(b) Let n be as in the previous remark. Then R

p→ H
h← D is the pushout of

D
n← K

r→ R.

Example 1. Using the AGREE approach, the web page copy operation can
be modelled using the rule shown in Fig. 3. This rule is typed over the type
graph Type. Nodes denote web pages, solid edges denote links and dashed edges
describe the subpage relation. The different node colours (gray and black) are
used just to define the match, whereas the c inside some nodes is used to indicate
that this is a copy. When this rule is applied to graph G1, only out-links are
copied because the pages that link the copied one remain the same, that is, they
only have a link to the original page, not to its copy. The subpage structure is
not copied. Note that all black nodes of G1 and D1 are mapped to ∗-nodes of
T (L1) and TK1, respectively.

Fig. 3. Rule for copying a web page and example of application

In the general case just presented, the embedding t could have a non-local effect
on the rewritten object. In the following example, based on category Set, the
rule simply preserves a single element and t : K → TK is the identity. If applied
to set G, its effect is to delete all the elements not matched by m, as shown. We
say that this rewrite step is non-local, because it modifies the complement of the
image of L in G.

42 A. Corradini et al.

In the rest of this section we present a condition on rules that ensures the
locality of the rewrite steps. In order to formulate this condition in the general
setting of a category with M-partial map classifiers, we need to consider a gen-
eralisation of the notion of complement of a subset in a set, that we call strict
complement. For instance, in category Gr, the strict complement of a subgraph
L in a graph G is the largest subgraph G \ L of G disjoint from L; thus, the
union of L and G \ L is in general smaller than G. Intuitively, we will say that
an AGREE rewrite step as in diagram (4) is local if the strict complement of L
in G is preserved, i.e., if g restricts to an isomorphism between D \K and G\L.

For the definitions and results that follow, we assume that category C, besides
satisfying the conditions listed at the beginning of this section, has a final object 1
and a strict initial object 0 (i.e., each arrow with target 0 must have 0 as source);
furthermore, the unique arrow from 0 to 1, that we denote ! : 0 → 1, belongs to
M. For each object X of C we will denote by 1X : X → 1 the unique arrow to
the final object, and by 0X : 0 → X the unique arrow from the initial object.

For each mono m : L � G in M the characteristic arrow of m is defined as
χm = ϕ(m, 1L) : G → T (1), (see pullback (a) in diagram (5)). Object T (1) is
called the M-subobject classifier.

K

PB (c)

��

n

��

l �� L

PB (a)

��

m

��

1L �� 1
��

η1true

��

D

PB (d)

g
�� G

PB (b)

χm=ϕ(m,1L)
�� T (1)

D \ K
		

D\n

		

g\l �� G \ L
		

G\m

		

1G\L
�� 1

		

false T (!)◦ !

		

(5)

By exploiting the assumption that ! ∈ M and that 0 is strict initial, it can
be shown that T (0) is isomorphic to 1, with ! = 1−1

T (0), and this yields an arrow
T (!)◦ ! : 1 → T (1). In category Set (with M the family of all injective functions)
arrows η1 and T (!) ◦ ! : 1 → T (1) are the coproduct injections of the subobject
classifier (which is a two element set), and are also known as true and false,
respectively. In Set the complement of an injective function m : L � G can be
defined as the pullback of χm : G → T (1) along false. We generalise this to the
present setting as follows.

Definition 5 (Strict Complements). Let C be a category that satisfies the
conditions listed at the beginning of Sect. 3, has final object 1, strict initial object

AGREE – Algebraic Graph Rewriting with Controlled Embedding 43

0, and such that ! ∈ M. Let m : L � G be a mono in M, and χm : G → T (1) be
its characteristic arrow defined by pullback (a) of diagram (5). Then the strict
complement of L in G (with respect to m) is the arrow G \ m : G \ L � G
obtained as the pullback of χm and false = T (!) ◦ ! : 1 → T (1), as in square (b)
of diagram (5).

Furthermore, for each pair of monos n : K � D and m : L � G in M
and for each pair of arrows l : K → L and g : D → G such that square (c) of
diagram (5) is a pullback, arrow g \ l : D \ K → G \ L as in square (d) is called
the strict complement of l in g (with respect to n and m).

It is easy to check that arrow g \ l exists and is uniquely determined by the fact
that square (b) is a pullback; furthermore square (d) is a pullback as well, by
decomposition. We will now exploit the notion of strict complement to formalize
locality of AGREE rewriting.

Definition 6 (Local Rules and Local Rewriting in AGREE). An
AGREE rule ρ = (l, r, t) is local if t : TK → T (K) is such that t \ idK :
TK \ K → T (K) \ K is an iso. An AGREE rewrite step as in diagram (4) is
local if arrow g \ l : D \ K → G \ L is an iso.

The definition of local rewrite steps is as expected, but that of local rules deserves
some comments. Essentially, in the first phase of AGREE rewriting, when build-
ing the pullback (a) of diagram (4), the shape of TK \K determines the effect of
the rule on the strict complement of L in G, which is mapped by m to T (L) \L.
It can be proved that T (L) \ L is isomorphic to T (K) \ K, therefore if the rule
is local we have that TK \ K is isomorphic to T (L) \ L, and this guarantees
that the strict complement of L in G is preserved in the rewrite step. These
considerations provide an outline of the proof of the main result of this section,
which can be found in [4].

Proposition 1 (Locality of AGREE Rewrite Steps). Let ρ = (l, r, t) be a
local rule. Then, with the notations as in diagram (4), for each match L

m� G
the resulting rewrite step G ⇒ρ,m H is local.

4 Example: Social Network Anonymization

Huge network data sets, like social networks (describing personal relationships
and cultural preferences) or communication networks (the graph of phone calls
or email correspondents) become more and more common. These data sets are
analyzed in many ways varying from the study of disease transmission to tar-
geted advertising. Selling network data set to third-parties is a significant part
of the business model of major internet companies. Usually, in order to preserve
the confidentiality of the sold data set, only “anonymized” data is released. The
structure of the network is preserved, but personal identification informations
are erased and replaced by random numbers. This anonymized network may then
be subject to further processing to make sure that it is not possible to identify

44 A. Corradini et al.

the nodes of the network (see [15] for a discussion about re-identification issues).
We are going to show how AGREE rewriting can be used for such anonymization
procedure. Of course, due to space limitations we cannot deal with a complete
example and will focus in the first task of the anonymization process: the cre-
ation of a clone of the social network in which only non-sensitive links are copied.
We model the following idealized scenario: the administrator of a social network
sells anonymized data sets to third-parties so that they can be analyzed with-
out compromising confidentiality. Our graphs are made of four kinds of nodes:
customer (grey nodes), administrator of the social network (white node), user
of the social network (black nodes) and square nodes that model the fact that
data will suffer post-processing. Links of the social network can be either public
(black solid) or private (dashed – this latter denotes sensitive information that
should not be disclosed), moreover we use another type of edges (grey), denoting
the fact that a node “knows”, or has access to another node. The corresponding
type graph Type is shown in Fig. 4.

Fig. 4. Type Graph Type, Graphs G and H

The rule depicted in Fig. 5 shows an example that anonymizes a portion of a
social network with 4 nodes (typically portions of a fixed size are sold). Graph
TK consists of a clique of all copies of matched black nodes (denoted by c) with
public links, and a graph representing the T construction applied to the rest of
K. To enhance readability, we just indicated that the graph inside the dotted
square should be completed according to T : a copy of the nodes of the type graph
should be added, together with all possible edges that are compatible with the
type graph. This allows the cloning of the subgraph defined by the match limited
to public edges. In the right hand side R a new square node is added marking
the cloned nodes for post-processing. The application of this rule to graph G in
Fig. 4 with a match not including the top black nodes produces graph H.

5 AGREE Subsumes SqPO and Polarized Node Cloning

As recalled in the Introduction, in the SqPO approach [5] a rule is a span L
l←

K
r→ R and a rewriting step for a match L

m→ G is made of a first phase where
the final pullback complement D is constructed, and next a pushout with the
right-hand side is performed.

Definition 7 (Final Pullback Complement). In diagram (6), K
n→ D

a→ G

is a final pullback complement of K
l→ L

m→ G if

AGREE – Algebraic Graph Rewriting with Controlled Embedding 45

Fig. 5. 4-Anonymize rule

1. the resulting square is a pullback, and
2. for each pullback G

m← L
d← K ′ e→ D′ f→ G

and arrow K ′ h→ K such that l ◦ h = d,
there is a unique arrow D′ g→ D such that
a ◦ g = f and g ◦ e = n ◦ h.

L

m
��

Kl��

n
��

K ′h��

e
��

d

G Da�� D′
g

��� � � �

f

��

(6)

The next result shows that in a category with a stable system of monos M and
with M-partial map classifiers, the final pullback complement of m ◦ l, with
m ∈ M, can be obtained by taking the pullback of T (l) along m. This means
that if the embedding morphism of an AGREE rule is the partial map classifier
of K, i.e., K

ηK� T (K), then the first phase of the AGREE rewriting algorithm
of Definition 4 actually builds the final pullback complement of the left-hand side
of the rule and of the match. This will allow us to relate the AGREE approach
with others based on the construction of final pullback complements.

Theorem 1 (Building Final Pullback Complements). Let C be a category
with pullbacks, with a stable system of monos M and with an M-partial map
classifier (T, η). Let K

l→ L be an arrow in C and L
m� G be a mono in M.

Consider the naturality square built over K
l→ L on the left of Fig. 6, which is

a pullback because η is cartesian, and let G
a← D

n′
→ T (K) be the pullback of

G
m→ T (L)

T (l)← T (K). Then K
n→ D

a→ G is a final pullback complement of
K

l→ L
m→ G, where n : K � D is the only arrow making everything commute.

Proof. By the decomposition property we have that K
n� D

a→ G is a pullback
complement of K

l→ L
m� G, and n ∈ M by stability. We have to show that the

pullback complement is final, i.e. that given a pullback G
m← L

d← K ′ e→ D′ f→ G

and an arrow K ′ h→ K such that l ◦ h = d, as shown on the right of Fig. 6, there
is a unique arrow D′ g→ D such that n ◦h = g ◦ e and a ◦ g = f . We present here
the existence part, while the proof of uniqueness is reported in [4].

46 A. Corradini et al.

Fig. 6. Constructing the final pullback complement of m ◦ l with a pullback

Note that K ′ e� D′ is in M by stability. By the properties of the M-partial

map classifier T , there is a unique arrow D′ ϕ(e,h)→ T (K) such that ηK ◦ h =
ϕ(e, h) ◦ e and the square is a pullback. We will show below that m ◦ f =
T (l) ◦ ϕ(e, h), hence by the universal property of the pullback (1) there is a
unique arrow D′ g→ D such that n′ ◦ g = ϕ(e, h) and a ◦ g = f . It remains to
show that n ◦ h = g ◦ e: by exploiting again pullback (1), it is sufficient to show
that (i) a ◦ n ◦ h = a ◦ g ◦ e and (ii) n′ ◦ n ◦ h = n′ ◦ g ◦ e. In fact we have, by
simple diagram chasing:

(i) a ◦ n ◦ h = m ◦ l ◦ h = m ◦ d = f ◦ e = a ◦ g ◦ e
(ii) n′ ◦ n ◦ h = ηK ◦ h = ϕ(e, h) ◦ e = n′ ◦ g ◦ e

We still have to show that m ◦ f = T (l) ◦ ϕ(e, h). This follows by comparing the
following two diagrams, where all squares are pullbacks, either by the statements
of Sect. 2 or (the last to the right) by assumption. Clearly, also the composite
squares are pullbacks, but then the bottom arrows must both be equal to ϕ(e, d),
as in Eq. (1). Therefore we conclude that m ◦ f = ϕ(e, d) = T (l) ◦ ϕ(e, h).

L

ηL

��

PB (2)

Kl��

ηK

��

PB (1)

K ′h��
��

e

��

d

��

T (L) T (K)T (l)�� D′ϕ(e,h)��

L

ηL

��

PB (3)

LidL
��

m

��

K ′l◦h��
��

e

��

d

T (L) Gm�� D′f��

5.1 AGREE Subsumes SqPO Rewriting with Injective Matches

Using Theorem 1 it is easy to show that the AGREE approach is a conservative
extension of the SqPO approach, because the two coincide if the embedding of
the AGREE rule is the arrow injecting K into its partial map classifier.

Theorem 2 (AGREE Subsumes SqPO with Monic Matches). Let C be
a category with all pullbacks, with M-partial map classifiers η : IdC

.→T for a

AGREE – Algebraic Graph Rewriting with Controlled Embedding 47

stable system of monos M, and with pushouts along arrows in M. Let ρ = L
l←

K
r→ R be a rule and m : L � G be a match in M. Then

G ⇒SqPO
ρ,m H if and only if G ⇒AGREE

(l,r,ηK),m H

In words, the application of rule ρ to match m using the SqPO approach has
exactly the same effect of applying to m the same rule enriched with the embed-
ding K

ηK� T (K) using the AGREE approach.

Proof. Since the embedding of the rule is arrow ηK : K � T (K), phase (a) of
AGREE rewriting (Definition 4) is exactly the construction that is shown, in
Theorem 1, to build K

n→ D
a→ G as a final pullback complement of K

l→ L
m→

G, therefore it coincides with the construction of the left square of the SqPO
approach. The second phase, i.e. the construction of the pushout of K

n→ D and
K

r→ R is identical for both approaches by definition.

5.2 AGREE Subsumes Polarized Node Cloning on Graphs

We now show that AGREE rewriting allows to simulate rewriting with polar-
ized cloning on graphs, which is defined in [9] by using the polarized graphs of
Definition 2. Polarization is used in rewriting to control the copies of edges not
matched but incident to the matched nodes.

Fact 1. The underlying graph of a polarized graph X = (X,N+
X , N−

X) is X. This
defines a functor Depol : Gr± → Gr which has both a right- and a left-adjoint
functor denoted Pol and Pol± : Gr → Gr±, resp., i.e. Pol± � Depol � Pol.

Functor Pol maps each graph X to the polarized graph induced by X, defined
as X = (X,NX , NX), and each graph morphism f : X → Y to itself; it is easy to
check that Pol(f) : Pol(X) → Pol(Y) is a strict polarized graph morphism. Fur-
thermore we have that Depol◦Pol = IdGr, and we denote the unit of adjunction
Depol � Pol as u : IdGr±

.→ Pol ◦ Depol, thus uX : X → Pol(Depol(X)).
Functor Pol± maps each graph X to the polarized graph X = (X,N+

X , N−
X),

where a node is in N+
X (resp. in N−

X) if and only if it has at least one outgoing
(resp. incoming) edge in X. Since Depol has a left adjoint, we have that Depol
preserves limits and in particular pullbacks.

The category Gr± has final pullback complements along strict monos: their
construction is given in [8, Appendix].

Definition 8 (PSqPO Rewriting). A PSqPO rewrite rule ρ is made of a span
of graphs L

l← K
r→ R and a polarized graph K = (K,N+

K , N−
K) with underlying

graph K. A PSqPO match of the PSqPO rewrite rule ρ is a mono m : L � G
in Gr. A PSqPO rewriting step G ⇒PSqPO

ρ,m H is constructed as follows:

(a) The left-hand-side l of the rule ρ gives rise to a morphism ̂l = Pol(l) ◦ uK :
K → Pol(L) in Gr±. The match m gives rise to a strict mono Pol(m) :
Pol(L) � Pol(G) in Gr±.

48 A. Corradini et al.

Then K
n→ D

g→ Pol(G) is constructed as the final pullback complement of

K
̂l→ Pol(L)

Pol(m)→ Pol(G) in category Gr±.
(b) Since Depol(K) = K, we get Depol(n) : K → Depol(D) in Gr.

Then R
p→ H

h← D is built as the pushout of R
r← K

Depol(n)→ Depol(D) in
category Gr.

Recall that, as observed in Sect. 2.1, category Gr± has an S-partial map classifier
(T, η). This will be exploited in the next result.

Theorem 3 (AGREE Subsumes Polarized Node Cloning on Graphs).

Let ρ be a PSqPO rule made of span L
l← K

r→ R and polarized graph
K = (K,N+

K , N−
K). Consider the component on K of the natural transformation

η : IdGr±
.→T, and let TK = Depol(T(K)) and t = Depol(ηK) : Depol(K) →

Depol(T(K)), thus t : K → TK . Furthermore, let m : L � G be a mono. Then

G ⇒PSqPO
ρ,m H if and only if G ⇒AGREE

(l,r,t),m H

Proof. The first phase of PSqPO rewriting consists of building the final pull-
back complement of (Pol(m),̂l) in category Gr±. According to Theorem 1, since
Pol(m) is strict such final pullback complement can be obtained as the top
square in the diagram below to the left, where both squares are pullbacks in
Gr±. The second phase consists of taking the pushout of morphisms K

r→ R
and Depol(n) : K → Depol(D) in Gr.

By applying functor Depol to the left diagram we obtain the diagram below
to the right in Gr, where both squares are pullbacks because Depol preserves
limits. In fact, recall that Depol ◦ Pol = idGr, that K = Depol(K) and that
t = Depol(ηK); the fact that T (L) = Depol(T(Pol(L))) can be checked easily by
comparing the construction of the (S-)partial map classifiers in Gr and in Gr±.

Pol(L)

PB

��

Pol(m)
��

ηPol(L) =

��

K
̂l��

��

n
��

��

ηK
=

Pol(G)

PBPol(m)
��

D
g

��

q=n
��

T(Pol(L)) T(K)
T(̂l)

��

L

PB

��

m
��

��

ηL
=

��

K
l��

��

Depol(n)
��

��

t
=

��

G

PBm
��

Depol(D)��

��

T (L) TK
��

Now, the first phase of AGREE rewriting with rule (l, r, t) and match m
consists of taking the pullback in Gr of m and the only arrow Tk → T (L) that
makes the outer square of the right diagram a pullback. This arrow is precisely
Depol(T(̂l)), and therefore the pullback is exactly the lower square of the right
diagram. The second phase consists of taking the pushout of K

r→ R and of the
only arrow K → Depol(D) that makes the diagram commute; but Depol(n) is
such an arrow, thus the pushout is the same computed by the PSqPO approach
and this concludes the proof.

AGREE – Algebraic Graph Rewriting with Controlled Embedding 49

6 Related Work and Discussion

In this paper we presented the basic definitions of a new approach to alge-
braic graph rewriting, called AGREE. We showed that this approach subsumes
other algebraic approaches like SqPO (Sesqui-pushout) with injective matches
(and therefore DPO and SPO under mild restrictions, see [5, Propositions 12
and 14]), as well as its polarised version PSqPO. The main feature provided
by this approach is the possibility, in a rule, of specifying which edges shall be
copied as a side effect of the copy of a node. This feature offers new facilities to
specify applications in which copy of nodes shall be done in an unknown context,
and thus it is not possible to describe in the left-hand side of the rule all edges
that shall be copied together with the node. As an example, the anonymization
of parts of a social network was described in Sect. 4.

The idea of controlling explicitly in the rule how the right-hand side should
be embedded in the context graph is not new in graph rewriting, as it is a stan-
dard ingredient of the algorithmic approaches. For example, in Node Label Con-
trolled (NLC) graph rewriting and its variations [14] productions are equipped
with embedding rules, which allow one to specify how the right-hand side of a
production has to be embedded in the context graph obtained by deleting the
corresponding left-hand side. The name of our approach is reminiscent of those
older ones.

Adaptive star grammars [7] is another framework where node cloning is per-
formed by means of rewrite rules of the form S:: = R where graph S has a
shape of a star and R is a graph. Cloning operation, see [7, Definitions 5and 6],
shares the same restrictions as the sesqui-pushout approach: nodes are cloned
with all their incident edges.

In [17] a general framework for graph transformations in span-categories,
called contextual graph rewriting, briefly CR, has been proposed. Using CR,
thanks to the notions of rule and of match that are more elaborated than in other
approaches, it is possible to specify cloning as in AGREE rewriting, and even
more general transformations: e.g., one may create multiple copies of nodes/edges
as a side effect, not only when cloning items. The left-hand sides of CR rules
allow to specify elements that must exist for the rule to be applicable, called
E, and also a context for E, i.e. a part of the graph that will be universally
quantified when the rule is applied, called U . A third component plays the role
of embedding the context U in the rest of the graph. The rule for copying a web
page shown in Fig. 3 could be specified using CR as rule E � U � L ← K → R,
where E = L1, U = L = T (L1) and K = R = TK1. Finding a match for a rule
in a graph G involves finding a smallest subgraph of G that contains E and its
complete context. Thus, even if CR is more general, our approach enhances the
expressiveness of classical algebraic approaches with a form of controlled cloning
using simpler and possibly more natural rules.

Bauderon’s pullback approach [1] is also related to our proposal. It was pro-
posed as an algebraic variant of the above mentioned NLC and ed-NLC algo-
rithmic approaches. Bauderon’s approach is similar, in part, to the pullback
construction used in our first phase of a rewriting step, but a closer analysis is

50 A. Corradini et al.

needed and is planned as future work. We also intend to explore if there are
relevant applications where AGREE rewriting in its full generality (i.e., with
possibly non-local rules) could be useful.

Concerning the applicability of our approach to other structures, in prac-
tice the requirement of existence of partial maps classifiers looks quite demand-
ing. AGREE rewriting works in categories of typed/colored graphs, which are
used in several applications, because they are slice categories over graphs, and
thus toposes. But even more used are the categories of attributed graphs [10],
which are not toposes. Under which conditions our approach can be extended or
adapted to such structures is an interesting topic that we intend to investigate.

Acknowledgments. We are grateful to the anonymous reviewers of former versions
of this paper for the insightful and constructive criticisms.

References

1. Bauderon, M., Jacquet, H.: Pullback as a generic graph rewriting mechanism. Appl.
Categorical Struct. 9(1), 65–82 (2001)

2. Cockett, J., Lack, S.: Restriction categories I: categories of partial maps. Theor.
Comput. Sci. 270(12), 223–259 (2002)

3. Cockett, J., Lack, S.: Restriction categories II: partial map classification. Theor.
Comput. Sci. 294(12), 61–102 (2003)

4. Corradini, A., Duval, D., Echahed, R., Prost, F., Ribeiro, L.: AGREE - alge-
braic graph rewriting with controlled embedding. CoRR abs/1411.4597 (2014).
http://arxiv.org/abs/1411.4597

5. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In:
Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT
2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006)

6. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic
approaches to graph transformation - part I: basic concepts and double pushout
approach. In: Rozenberg [19], pp. 163–246

7. Drewes, F., Hoffmann, B., Janssens, D., Minas, M.: Adaptive star grammars and
their languages. Theor. Comput. Sci. 411(34–36), 3090–3109 (2010)

8. Duval, D., Echahed, R., Prost, F.: Graph rewriting with polarized cloning. CoRR
abs/0911.3786 (2009). http://arxiv.org/abs/0911.3786

9. Duval, D., Echahed, R., Prost, F.: Graph transformation with focus on incident
edges. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012.
LNCS, vol. 7562, pp. 156–171. Springer, Heidelberg (2012)

10. Duval, D., Echahed, R., Prost, F., Ribeiro, L.: Transformation of attributed struc-
tures with cloning. In: Gnesi, S., Rensink, A. (eds.) FASE 2014 (ETAPS). LNCS,
vol. 8411, pp. 310–324. Springer, Heidelberg (2014)

11. Echahed, R.: Inductively sequential term-graph rewrite systems. In: Ehrig, H.,
Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp.
84–98. Springer, Heidelberg (2008)

12. Ehrig, H., Heckel, R., Korff, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A.:
Algebraic approaches to graph transformation - part II: single pushout approach
and comparison with double pushout approach. In: Rozenberg [19], pp. 247–312

http://arxiv.org/abs/1411.4597
http://arxiv.org/abs/0911.3786

AGREE – Algebraic Graph Rewriting with Controlled Embedding 51

13. Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: an algebraic approach.
In: 14th Annual Symposium on Switching and Automata Theory, Iowa City, Iowa,
USA, October 15–17 1973, pp. 167–180. IEEE Computer Society (1973)

14. Engelfriet, J., Rozenberg, G.: Node replacement graph grammars. In: Rozenberg
[19], pp. 1–94

15. Hay, M., Miklau, G., Jensen, D., Towsley, D.F., Li, C.: Resisting structural re-
identification in anonymized social networks. VLDB J. 19(6), 797–823 (2010)

16. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theor.
Comput. Sci. 109(1&2), 181–224 (1993)

17. Löwe, M.: Graph rewriting in span-categories. In: Ehrig, H., Rensink, A., Rozen-
berg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 218–233. Springer,
Heidelberg (2010)

18. Mitchell, M., Oldham, J., Samuel, A.: Advanced Linux Programming. Landmark
Series. Landmark, New Riders (2001)

19. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformations. Foundations, vol. 1. World Scientific, Singapore (1997)

Proving Termination of Graph Transformation
Systems Using Weighted Type Graphs over

Semirings

H.J. Sander Bruggink1, Barbara König2, Dennis Nolte2(B),
and Hans Zantema3

1 GEBIT Solutions, Düsseldorf, Germany
sander.bruggink@gebit.de

2 Universität Duisburg-Essen, Duisburg, Germany
{barbara koenig,dennis.nolte}@uni-due.de

3 Technische Universiteit Eindhoven and Radboud Universiteit Nijmegen,
Nijmegen, Netherlands
h.zantema@tue.nl

Abstract. We introduce techniques for proving uniform termination of
graph transformation systems, based on matrix interpretations for string
rewriting. We generalize this technique by adapting it to graph rewrit-
ing instead of string rewriting and by generalizing to ordered semirings.
In this way we obtain a framework which includes the tropical and arctic
type graphs of [6] and a new variant of arithmetic type graphs. These type
graphs can be used to assign weights to graphs and to show that these
weights decrease in every rewriting step in order to prove termination.
We present an example involving counters and discuss the implementa-
tion in the tool Grez.

1 Introduction

For every computational formalism, the question of termination is one of the
most fundamental problems, consider for instance the halting problem for Tur-
ing machines. For graph transformation systems there has been some work on
termination, but this problem has received less attention than, e.g., confluence or
reachability analysis. There are several applications where termination analysis is
essential: one scenario is termination of graph programs, especially for programs
operating on complex data structures. Furthermore, model transformations, for
instance of UML models, usually require functional behaviour, i.e., every source
model should be translated into a unique target model. This requires termination
and confluence of the model transformation rules.

There is a huge body of termination results in string and term rewriting [2]
from which one can draw inspiration. Still, adapting these techniques to graph
transformation is often non-trivial. A helpful first step is often to modify these
techniques to work with cycle rewriting [16,20], which imagines the two ends of
a string to be glued together, so that rewriting is indeed performed on a cycle.

Research partially supported by DFG project GaReV.

c© Springer International Publishing Switzerland 2015
F. Parisi-Presicce and B. Westfechtel (Eds.): ICGT 2015, LNCS 9151, pp. 52–68, 2015.
DOI: 10.1007/978-3-319-21145-9 4

Proving Termination of Graph Transformation Systems 53

In this paper we focus exclusively on uniform termination, i.e., there is only
a set of graph transformation rules, but no fixed initial graph, and the question
is whether the rules terminate on all graphs. All variants of the termination
problem, termination on all graphs as well as termination on a fixed set of initial
graphs, are undecidable [15].

In [6] we have shown how to adapt methods from string rewriting [13,18] and
to develop a technique based on weighted type graphs, which was implemented
in the tool Grez. Despite its simplicity the method is quite powerful and finds
termination arguments also in cases which are difficult for human intuition. How-
ever, there are some examples (see for instance the example discussed in Sect. 5)
where this technique fails. The corresponding techniques in string rewriting can
be seen as matrix interpretations of strings in certain semirings, more specifically
in the tropical and arctic semiring. Those semirings can be replaced by the arith-
metic semiring (the natural numbers with addition and multiplication) in order
to obtain a powerful termination analysis method for string rewriting [10,12].

Here we generalize this method to graphs. Due to their non-linear nature,
we have to abandon matrices and instead state a different termination criterion
that is based on weights of morphisms of the left-hand and right-hand sides of
rules into a type graph. Type graphs [7] are a standard tool for typing graph
transformation systems, but we are not aware of any case where they have been
used for termination analysis before [6].

By introducing weighted type graphs we generalize matrix interpretations
for string rewriting in two ways: first, we transform graphs instead of strings
and second, we consider general semirings. Our techniques work for so-called
strictly and strongly ordered semirings, which have to be treated in a slightly
different way. After introducing the theory we will discuss an extended example,
followed by a presentation of the implementation in the termination tool Grez.1

All proofs can be found in [4].

2 Preliminaries

2.1 Graphs and Graph Transformation

We first introduce graphs, morphisms, and graph transformation, in particular
the double pushout approach [8]. In the context of this paper we use edge-
labeled, directed graphs, but it is straightforward to generalize the results to
hypergraphs.

Definition 1 (Graph). Let Λ be a fixed set of edge labels. A Λ-labeled graph
is a tuple G = 〈V,E, src, tgt , lab〉, where V is a finite set of nodes, E is a finite
set of edges, src, tgt : E → V assign to each edge a source and a target, and
lab : E → Λ is a labeling function.

As a notational convention, we will denote, for a given graph G, its components
by VG, EG, srcG, tgtG and labG, unless otherwise indicated.

1 http://www.ti.inf.uni-due.de/research/tools/grez/.

http://www.ti.inf.uni-due.de/research/tools/grez/

54 H.J.S. Bruggink et al.

Definition 2 (Graph morphism). Let G,G′ be two Λ-labeled graphs. A graph
morphism ϕ : G → G′ consists of two functions ϕV : VG → VG′ and ϕE : EG →
EG′ , such that for each edge e ∈ EG it holds that srcG′(ϕE(e)) = ϕV (srcG(e)),
tgtG′(ϕE(e)) = ϕV (tgtG(e)) and labG′(ϕE(e)) = labG(e).

We will often drop the subscripts V,E and simply write ϕ instead of ϕV , ϕE . We
work with standard double-pushout (DPO) graph transformation [8]. Note that
our termination results would still hold if we restricted to injective matches.

Definition 3 (Graph transformation). A graph transformation rule ρ con-
sists of two morphisms L ← ϕL − I − ϕR → R, consisting of the left-hand side
L, the right-hand side R and the interface I. We require that I is discrete.

A match of a left-hand side in a graph G is a morphism
m : L → G. Given a rule ρ and a match m : L → G, a graph
H is the result of applying the rule at the match, written
G ⇒m,ρ H (or G ⇒ρ H if m is arbitrary or clear from the
context), if there exists a graph C and morphisms such that
the two squares in the diagram on the right are pushouts in
the category of graphs and graph morphisms.

L I R

G C H

ϕL ϕR

m (po) (po)

A graph transformation system R is a finite set of graph transformation
rules. For a graph transformation system R, ⇒R is the rewriting relation on
graphs induced by those rules.

Intuitely in a graph transformation step from G to H, the images of all
elements of the left-hand side L, which are not present in the interface I are
deleted, and the right-hand side R is added, by gluing it to the interface.

Although the graph transformation systems themselves are untyped, our
method for termination analysis is based on type graphs [7]. For given graphs
G,T , where T is considered as a type graph, we say that G is typed over T when-
ever there is a morphism t : G → T . The morphism t will also be called typing
morphism. We need a way to compose and decompose typing morphisms.

Lemma 1. Let a pushout PO consisting of objects G0, G1, G2, G be given. Then
there exists a bijection between pairs of commuting morphisms t1 : G1 → T ,
t2 : G2 → T and morphisms t : G → T (see diagram below).

G0

G1

G2

G T

ψ1

ψ2

ϕ1

ϕ2

t

t1

t2

(po)

For each t we obtain a unique pair of morphisms t1, t2 by composing with ϕ1 and
ϕ2, respectively. Conversely, for each pair t1, t2 of morphisms with t1◦ψ1 = t2◦ψ2

we obtain a unique t : G → T as mediating morphism. In this case we will write
medPO(t1, t2) = t and med−1

PO(t) = 〈t1, t2〉.

Proving Termination of Graph Transformation Systems 55

2.2 Matrix Interpretations for String Rewriting

Our technique is strongly influenced by matrix interpretations for proving termi-
nation in string, cycle and term rewriting systems [10,12,16]. We will generalize
this technique, resulting in a technique for graph transformation systems that
has a distinctly different flavour than the original method. In order to point out
the differences later and motivate our choices, we will introduce matrix interpre-
tations first.

We are working in the context of string rewrite systems, where a rule is of the
form � → r, where �, r are both strings over a given alphabet Σ. For instance,
consider the rule aa → aba, which rewrites aaa ⇒ abaa ⇒ ababa 	⇒.

We first start with some preliminaries: let A,B be two square matrices A,B
over N0 of equal dimension n. We write A > B if A1,1 > B1,1 and Ai,j ≥ Bi,j for
all indices i, j with 1 ≤ i, j ≤ n, i.e., we require that the entries in the upper left
corner are strictly ordered, whereas the remaining entries may also be equal. It
holds that A > B implies A · C > B · C and C · A > C · B for a matrix2 C > 0
of appropriate dimension.

As always in termination analysis strings are assigned to elements in a well-
founded set and it has to be shown that each rule application leads to a decrease
within this order.

Here, every letter of the alphabet a ∈ Σ is associated with a square matrix
A = [a] > 0 (where all matrices have the same dimension n). Similarly every
word w = a1 . . . an is mapped to a matrix [w] = [a1] · · · · · [an], which is obtained
by taking the matrices of the single letters and multiplying them. If we can show
[�] > [r] for every rule � → r, then termination is implied by the considerations
above and by the fact that the order ≤ on N0 is well-founded, i.e., there are no
infinite strictly decreasing chains.

For the example above take the following matrices (as in [12]):

[a] =
(

1 1
1 0

)

[b] =
(

1 0
0 0

)

with [aa] =
(

2 1
1 1

)

>

(

1 1
1 1

)

= [aba]

For cycle rewriting a similar argument can be given, which is based on the
idea that the trace, i.e., the sum of the diagonal, of a matrix decreases [16].

A natural question to ask is how such matrices can be obtained. We will
later discuss how SMT solvers can be employed to automatically generate the
required weights.

In the following, we will generalize this method in two ways: we will replace
the natural numbers by an arbitrary semiring – an observation that has already
been made in the context of string rewriting – and we will make the step from
string to graph rewriting.

2.3 Ordered Semirings

We continue by defining semirings, the algebraic structures in which we will
evaluate the graphs occurring in transformation sequences, and orders on them.
2 Here 0 denotes the matrix with all entries zero.

56 H.J.S. Bruggink et al.

A (partial) order is a reflexive, transitive and antisymmetric relation. If ≤
is an order, then we denote by < its strict subrelation e.g. x < y if and only
if x ≤ y ∧ x 	= y. An order is well-founded if it does not allow infinite, strictly
decreasing sequences x0 > x1 > x2 > · · · .
Definition 4. A semiring is a tuple 〈S,⊕,⊗, 0, 1〉, where S is the (finite or
infinite) carrier set, 〈S,⊕, 0〉 is a commutative monoid, 〈S,⊗, 1〉 is a monoid,
⊗ distributes over ⊕ and 0 is an annihilator for ⊗. That is, the following laws
hold for all x, y, z ∈ S:

(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) 0 ⊕ x = x x ⊗ 0 = 0
(x ⊗ y) ⊗ z = x ⊗ (y ⊗ z) x ⊕ 0 = x 0 ⊗ x = 0
(x ⊕ y) ⊗ z = (x ⊗ z) ⊕ (y ⊗ z) 1 ⊗ x = x x ⊕ y = y ⊕ x

z ⊗ (x ⊕ y) = (z ⊗ x) ⊕ (z ⊗ y) x ⊗ 1 = x

A semiring 〈S,⊕,⊗, 0, 1〉 is commutative if ⊗ is commutative (that is, if x⊗y =
y ⊗ x, for all x, y ∈ S).

We will often confuse a semiring with its carrier set, that is, S can refer to
both the semiring 〈S,⊕,⊗, 0, 1〉 and the carrier set S.

In order to come up with termination arguments, we need a partial order on
the semirings that has to be compatible with its operations.

Definition 5. A structure 〈S,⊕,⊗, 0, 1,≤〉 is an ordered semiring if
〈S,⊕,⊗, 0, 1〉 is a semiring and ≤ ∈ S × S is a partial order on S such that
for all x, y, u, z ∈ S:

– x ≤ y implies x ⊕ u ≤ y ⊕ u, x ⊗ z ≤ y ⊗ z and z ⊗ x ≤ z ⊗ y for z ≥ 0.

The ordered semiring S is strongly ordered, if

– x < y, z < u implies x ⊕ z < y ⊕ u; and
– z > 0, x < y implies x ⊗ z < y ⊗ z and z ⊗ x < z ⊗ y.

The ordered semiring S is strictly ordered, if in addition x < y implies x ⊕ z <
y ⊕ z.

Example 1. Examples of semirings which play a role in termination proving are:

– The natural numbers form a semiring 〈N0,+, ·, 0, 1,≤〉, where ≤ is the stan-
dard ordering of the natural numbers. We will call this semiring the arithmetic
semiring (on the natural numbers). This is a strictly ordered semiring because
both < and ≤ are monotone in + and ·

– The tropical semiring (on the natural numbers) is:

TN0 = 〈N0 ∪ {∞},min,+,∞, 0,≤〉,
where ≤ is the usual ordering of the natural numbers. The tropical semiring
is not strictly ordered, because, for example, 2 < 3 but min(1, 2) 	< min(1, 3).
It is however still strongly ordered.

Proving Termination of Graph Transformation Systems 57

– The arctic semiring (on the natural numbers) is

TN0 = 〈N0 ∪ {−∞},max,+,−∞, 0,≤〉,
where ≤ is the normal ordering of the natural numbers. Like the tropical
semiring, the arctic semiring is not strictly ordered, but strongly ordered.

All semirings above are commutative. We will in the following restrict ourselves
to commutative semirings, since we are assigning weights to graphs by multiply-
ing weights of nodes and edges, and nodes and edges are typically unordered.

3 Weighted Type Graphs

Similarly to mapping a word to a matrix, we will associate weights to graphs,
by typing them over a type graph with weights from a semiring.

Definition 6. Let an ordered semiring S be given. A weighted type graph T
over S is a graph with a weight function wT : ET → S and a designated flower
node ✲T ∈ V , such that for each label A ∈ Λ there exists a designated edge eA

with srcT (eA) = ✲T , tgtT (eA) = ✲T , labT (eA) = A and wT (eA) > 0.
For a graph G, we denote with flT (G) (or just fl(G) if T is clear from the

context) the unique morphism from G to T that maps each node v ∈ VG of G to
the flower node ✲T and each edge e ∈ EG, with labT (e) = A, to eA. Note that,
for a morphism c : G → H, it is always the case that flT (H) ◦ c = flT (G).

Note that every matrix A of dimension n can be associated with an (unlabelled)
type graph with n nodes, where an edge from node i to j is assigned weight
Ai,j (or does not exist if Ai,j = 0). Hence our idea of weighted type graphs is
strongly related with the matrices of Sect. 2.2.

The node ✲T is also called the flower node, since the loops attached to it look
like a flower. Those loops correspond to the matrix entries at position (1, 1) and
similar to those entries they play a specific role. Note that the flower structure
also ensures that every graph can be typed over T (compare with the terminal
object in the category of graphs, which is exactly such a flower).

With a bit of notation overloading, we assign a weight to each morphism
t : D → T with codomain T and arbitrary domain D as follows:

wT (t) =
∏

e∈ED

wT (t(e)).

That is, we multiply the weights of all edges in the image of t with respect to ⊗.
Finally, the weight of a graph G with respect to T is defined by summing up

the weights of all morphisms from G to T with respect to ⊕:

wT (G) =
∑

tG : G→T

wT (tG).

The subscript T of wT will be omitted if clear from the context.

Example 2. We give a small example for the weight of a graph.

58 H.J.S. Bruggink et al.

Consider for instance the type graph T . Edges are
labelled a, b and the weights, in this case natural num-
bers, are given as superscripts. Consider also the left-
hand side L of rule ρ below, consisting of two a-edges
(the graph rewriting analogue of the string rewriting
rule aa → aba considered in Sect. 2.2). There are five morphisms L → T , each
having weight 1, as they are calculated by multiplying the weights of two a-
edges which also have weight 1. Hence the weight of L with respect to T is
wT (L) = 1 + 1 + 1 + 1 + 1 = 5. More details on this are given in Example 3.

If we glue two graphs G1, G2 in order to obtain G, the weight of G can be
obtained from the weights of G1, G2.

Lemma 2 (Properties of weighted type graphs). Let S be an ordered com-
mutative semiring and T a weighted type graph over S.

(i) Whenever S is strongly ordered, for all graphs G,
flT (G) : G → T exists and wT (flT (G)) > 0.

(ii) Given the following diagram, where the square is a
pushout and G0 is discrete, it holds that wT (t) =
wT (t ◦ ϕ1) ⊗ wT (t ◦ ϕ2).

Since property (ii) above only holds if G0 is discrete we restrict to discrete
graphs I in the rule interface.3

While the process of obtaining the weight of a graph corresponds to calculat-
ing the matrix of a word and summing up all its entries, we also require a way
to be more discriminating, i.e., to access separate matrix entries. Evaluating a
string-like graph would mean to fix its entry and exit node within the type graph
(similarly to fixing two matrix indices). However, in graph rewriting, we have
interfaces of arbitrary size. Hence, we do not index over pairs of nodes, but over
arbitrary interface graphs, and compute the weight of a graph L with respect to
a typed interface I.

Definition 7 Let ϕ : I → L and t : I → T be graph morphisms, where T is a
weighted type graph. We define:

wt(ϕ) =
∑

tL : L→T
tL◦ϕ=t

wT (tL).

Finally, we can define what it means that a rule is decreasing, analogous
to the condition [�] > [r] introduced in Sect. 2.2. In addition we also introduce
non-increasingness, a concept that will be needed in the following for so-called
relative termination arguments.
3 Compare also with the “stable under pushouts” property of [6].

Proving Termination of Graph Transformation Systems 59

Definition 8 Let a rule ρ = L�ϕL−I−ϕR�R, an ordered commutative semiring
S and a weighted type graph T over S be given.

(i) The rule ρ is non-increasing if for all tI : I → T it holds that wtI (ϕL) ≥
wtI (ϕR).

(ii) The rule ρ is decreasing if it is non-increasing, and wfl(I)(ϕL) > wfl(I)(ϕR).

Example 3. We come back to Example 2 and check whether rule ρ is decreasing.
For this we have to consider the following four morphisms t : I → T from the
two-node interface into the weighted type graph T :

– The flower morphism fl(I) which maps both interface nodes to the left node
of T . In this case we have wfl(I)(ϕL) = 2 > 1 = wfl(I)(ϕR).

– Furthermore there are three other morphisms t1, t2, t3 : I → T mapping the
two interface nodes either both to the right node of T , or the first interface
node to the left and the second interface node to the right node of T , or vice
versa. In all these cases we have wti(ϕL) = 1 = wti(ϕR).

Hence, the rule is decreasing. Note also that these weights correspond exactly
to the weights of the multiplied matrices in Sect. 2.2.

Finally, we have to show that applying a decreasing rule also decreases the overall
weight of a graph. For a non-increasing rule the weight might also remain the
same.

Lemma 3. Let S be a strictly ordered commutative semiring and T a weighted
type graph over S. Furthermore, let ρ be a rule such that G ⇒ρ H.

(i) If ρ is non-increasing, then wT (G) ≥ wT (H).
(i) If ρ is decreasing, then wT (G) > wT (H).

From this lemma we can prove our main theorem that is based on the well-known
concept of relative termination [11,19]: if we can find a type graph for which some
rules are decreasing and the rest is non-increasing, we can remove the decreasing
rules without affecting termination. We are then left with a smaller set of rules
for which termination can either be shown with a different type graph or with
some other technique entirely.

Theorem 1. Let S be a strictly ordered commutative semiring with a well-
founded order ≤ and T a weighted type graph over S. Let R be a set of graph
transformation rules, partitioned in two sets R< and R=. Assume that all rules
of R< are decreasing and all rules of R= are non-increasing. Then R is termi-
nating if and only if R= is terminating.

A special case of the theorem is when R= = ∅. Then the statement of the
theorem is that a graph transformation system R is terminating if all its rules
are decreasing with respect to a strictly ordered commutative semiring S and
type graph T over S.

60 H.J.S. Bruggink et al.

4 Using Strongly Ordered Semirings

In the last section the semirings were required to be strictly ordered. In this
section we consider what happens when we weaken this requirement and also
allow non-strictly ordered semirings, which must however be strongly ordered.
This allows us to work with the tropical and arctic semiring. It turns out that
we obtain similar results to above if we strengthen the notion of decreasing.

Definition 9. Let a rule ρ = L�ϕL−I−ϕR�R, an ordered commutative semiring
S and a weighted type graph T over S be given. The rule ρ is strongly decreasing
(with respect to T) if for all tI : I → T it holds that wtI (ϕL) > wtI (ϕR).

Using this new notion of decreasingness we can also formulate a termination
argument, which is basically equivalent to the termination argument we pre-
sented in [6].

Lemma 4. Let S be a strongly ordered commutative semiring and T a weighted
type graph over S. Furthermore, let ρ be a rule such that G ⇒ρ H.

(i) If ρ is non-increasing, then wT (G) ≥ wT (H).
(ii) If ρ is strongly decreasing, then wT (G) > wT (H).

Now it is easy to prove a theorem analogous to Theorem 1, using Lemma 4
instead of Lemma 3.

Theorem 2. Let S be a strongly ordered commutative semiring with a well-
founded order ≤ and T a weighted type graph over S. Let R be a set of graph
transformation rules, partitioned in two sets R< and R=. Assume that all rules
of R< are strongly decreasing and all rules of R= are non-increasing. Then R is
terminating if and only if R= is terminating.

In this way we have recovered the termination analysis from one of our earlier
papers [6], however spelt out differently. In order to explain the connection, let
us consider what it means for a rule ρ = L �ϕL− I −ϕR� R to be non-increasing
in the tropical semiring where ⊕ is min and ⊗ is +: for each t : I → T into a
weighted type graph T it must hold that

min
tL : L→T
tL◦ϕL=t

wT (tL) ≥ min
tR : R→T
tR◦ϕR=t

wT (tR)

where wT (tL) is the weight of the morphism tL, obtained by summing up (via
+) the weights of all edges in the image of tL.

A different way of expressing that the minimum of the first set is larger or
equal than the minimum of the second set, is to say that for each morphism
tL : L → T with tL ◦ϕL = t there exists a morphism tR : R → T with tR ◦ϕR = t
and wT (tL) ≥ wT (tR). And this is exactly the notion of tropically non-increasing
of [6].

Comparing the results of Theorems 1 and 2 we notice the following: as under-
lying semiring S we can take either a strictly ordered or a strongly ordered one,

Proving Termination of Graph Transformation Systems 61

but if we choose a strongly ordered semiring, the termination argument becomes
slightly weaker because for every morphism from the left-hand side to the type
graph there must exist a compatible, strictly smaller morphism from the right-
hand side to the type graph.

5 Examples

We give examples to show that with a weighted type graph over a strictly ordered
semiring (such as the arithmetic semiring), we can prove termination on some
graph transformation systems where strongly ordered semirings fail. We start
with a graph transformation system for which a termination argument can be
found using both variants. Then we will modify some rules and explain why
weighted type graphs over strongly ordered semirings can not find a termination
argument for the modified system.

Example 4. As an example we take a system consisting of several counters, which
represent their current value by a finite number of bits. Each counter may possess
an incr marker, that can be consumed to increment the counter by 1.

One possible graph describ-
ing a state of such a system is
given by G. This is just one pos-
sible initial graph, since we really
show uniform termination, i.e.,
termination on all initial graphs,
even those that do not conform
to the schema indicated by G.

We consider the graph transformation system {ρ1, ρ2, ρ3, ρ4}, adapted from
[16], consisting of the following four rules:

Each counter may increment at most once. Rules ρ1 and ρ2 specify that a
counter (represented by a count-labelled edge) may increment its least significant
bit by 1 if an incr marker was not consumed yet. If the least significant bit is 1,
the bit is marked by a label c, to remember that a carry bit has to be passed to
the following bit. Rule ρ3 increments the next bit of the counter by 1 (if it was
0 before), while rule ρ4 shifts the carry bit marker over the next 1.

62 H.J.S. Bruggink et al.

The fact that this graph transformation system
is uniformly terminating can be shown using a
weighted type graph over either a strictly or strongly
ordered semiring. For example, using a non-relative
termination argument, we evaluate the rules with
respect to the weighted type graph Ttrop over the tropical semiring.

A relative termination argument is even easier: the rules ρ1 and ρ2 can be
removed due to the decreasing number of incr -labelled edges. Then we can
remove ρ3 due to the decreasing number of c-labelled edges (which remain con-
stant in ρ4) and afterwards remove ρ4 since it decreases 1-labelled edges. With
all rules removed, the graph transformation system has been shown to terminate
uniformly.
We now consider the arithmetic semiring and again
use a non-relative termination argument: we evalu-
ate the rules with respect to the weighted type graph
Tarit, where all weights are just increased by one
with respect to Ttrop. That is due to the fact, that
we are working in the arithmetic semiring and hence have to make sure that all
weights of flower edges are strictly larger than 0.

Example 5. We will now modify rules ρ1 and ρ2 in order to give an example
where weighted type graphs over tropical and arctic semirings fail to find a
termination argument.

Consider the graph transformation system {ρ′
1, ρ

′
2, ρ

′
3, ρ

′
4} consisting of rules

ρ3 and ρ4 from Example 4 with two additional new rules:

With respect to Example 4, the counter may increment its value not only once
but several times, until the least significant bit is permanently marked by the
carrier bit label c. This will eventually happen, since counters are never extended
by additional digits and carry bits finally accumulate and can not be processed.

We now give a relative termination argument, to show uniform termination of
this graph transformation system. The termination of this system is not obvious
as the numbers of the labels c, 0 and 1 increase and decrease depending on the
rules used for the derivation.

Proving Termination of Graph Transformation Systems 63

First, we evaluate the rules with respect
to the following weighted type graph T ′

over the arithmetic semiring. Consider for
instance rule ρ′

1 and the following four
interface morphisms:

– t0 = fl(I) : I → T ′ is the flower morphisms and maps both interface node to
the left node of T ′. In this situation we have wt0(ϕL) = 1 · 1 + 1 · 2 = 3 >
2 = 1 · 1 + 1 · 1 = wt0(ϕR) (there are two ways to map the left-hand side in
such a way that both interface nodes are mapped to the left node, resulting
in weight 3; similar for the right-hand side, where we obtain weight 2).

– t1 : I → T ′ is the morphism that maps the first interface node to the right
node of T ′ and the second interface node to the left node of T ′. In this case
we have wt1(ϕL) = 1 · 2 = 2 ≥ 2 = 1 · 2 = wt1(ϕR).

– t2 : I → T ′ is the morphism that maps the first interface node to the left node
of T ′ and the second interface node to the right node of T ′. In this case we
have wt2(ϕL) = 0 ≥ 0 = wt2(ϕR), since there are no possibilities to map
either the left-hand or the right-hand side.

– t3 : I → T ′ is the morphisms that maps both interface node to the right node
of T ′. Here we have wt3(ϕL) = 0 ≥ 0 = wt3(ϕR) (again, there are no fitting
matches of the left-hand and right-hand side).

Hence ρ′
1 is decreasing. Similarly we can prove that ρ′

2 is decreasing and ρ′
3, ρ

′
4 are

non-increasing, which means that ρ′
1, ρ

′
2 can be removed. To show termination

of the remaining rules ρ′
3, ρ

′
4 we can simply use the weighted type graph Tarit

from Example 4 again.
We found a relative termination argument for Example 5 using a weighted

type graph over the arithmetic semiring. However, there is no way to obtain a
termination argument with a weighted type graph over either tropical or arctic
semirings: in these cases the weight of any graph is linear in the size of the graph
(since we use only addition and minimum/maximum to determine the weight of
a graph). If we have an interpretation where at least one rule is decreasing,
and the other rules are non-increasing, then in any derivation, the number of
applications of the decreasing rules is at most linear in the size of the initial
graph. However, if we start with a counter which consists of n bits (all set to 0),
we obtain a derivation in which all of the rules are applied at least 2n times.

This means that it is principally impossible to find a proof with weighted
type graphs over the tropical or arctic semiring, even using relative termination.

The last two examples were inspired by string rewriting and the example rules
could easily be encoded into a string grammar. We give another final example
and prove termination using a weighted type graph over the arithmetic semiring.
We now switch from strings to trees, staying with a scenario where reductions of
exponential length are possible. In addition we discard the count-label as each
counter will be represented by a node with no incoming edge and we will exploit
the dangling edge condition.

64 H.J.S. Bruggink et al.

Example 6. In the next example we interweave our counters into a single treelike
structure. Each path from a root node to a leaf can be interpreted as a counter.

One possible graph describing a state
of the modified system is given by ̂G. Each
counter shares a number of bits with other
counters, where the least significant bit is
shared by all counters. Again this is just
one possible initial graph, since we prove
uniform termination.
Let the following graph transformation system {ρ̂1, ρ̂2, ρ̂3, ρ̂4, ρ̂5, ρ̂6} be given:

The rules ρ̂1 and ρ̂2 increment the shared least significant bit by 1. These
two rules can only be applied at the root of the tree (due to the dangling edge
condition of the DPO approach), as long as the edge is either labelled 0 or 1. By
applying the rules ρ̂3, . . . , ρ̂6, a carrier bit can be passed to the next bit. Proving
termination of this graph transformation system is non-trivial. By applying for
instance ρ̂6, the value of the counters containing interface node 1 does not change,
while other counter values decrease.
We evaluate the rules with respect to the
following weighted type graph ̂T over the
arithmetic semiring. We can prove that ρ̂1
and ρ̂2 are decreasing and ρ̂3, . . . , ρ̂6 are
non-increasing, which means that ρ̂1, ρ̂2
can be removed using a relative termination argument.

The rules ρ̂3 and ρ̂4 can be removed due to the decreasing number of c-labelled
edges, which remain constant in ρ̂5 and ρ̂6. Afterwards we can remove ρ̂5, ρ̂6 since
they decrease the number of 1-labelled edges. The graph transformation system
has been shown to terminate uniformly, since there are no rules left.

6 Finding Weighted Type Graphs and Implementation

The question of how to find suitable weighted type graphs has been left open so
far. Instead of manually searching for a suitable type graph we employ a satisfi-
able modulo theories (SMT) solver (in this case Z3) that can solve inequations
over the natural numbers.

Proving Termination of Graph Transformation Systems 65

We fix a number n of nodes in the type graph and proceed as follows: take
a complete graph T with n nodes, i.e., a graph with an edge for every pair
i, j ∈ {1, . . . , n} of nodes and every edge label a ∈ Λ. Every edge e in this graph
is associated with a variable xe. The task is to assign weights to those variables
such that rules can be shown as either decreasing or non-increasing.

Now, for every rule ρ = L�ϕL− I −ϕR�R and every map t : I → T we obtain
an inequation:

∑

tL : L→T
tL◦ϕL=t

∏

e∈EL

xtL(e) ≥
∑

tR : R→T
tR◦ϕR=t

∏

e∈ER

xtR(e)

If we want to show that ρ is decreasing and t is the flower morphism ≥ has to
be replaced by >.

Doing this for each rule and every map t gives us equations that can be used as
input for an SMT-solver. We consider the weights as natural numbers only up to a
given bound by restricting the length of the corresponding bit-vectors. Note that
we would be outside the decidable fragment of arithmetics otherwise since the
equations would contain multiplication of variables (as opposed to multiplication
of constants and variables). By using a bit-vector encoding the SMT-solver Z3 can
reliably find a solution (if it exists) and especially such solutions are found for the
examples discussed in Sect. 5. Any solution gives us a valid weighted type graph.

A prototype Java-based tool, called Grez, has been written and was intro-
duced in [6]. Given a graph transformation system R, the tool tries to automat-
ically find a proof for the uniform termination of R. The tool supports relative
termination and runs different algorithms (which are chosen by the user) con-
currently to search a proof. If one algorithm succeeds in finding a termination
argument for at least one of the rules, all processes are interrupted and the cor-
responding rule(s) will be removed from R. The algorithms are then executed
on the smaller set of rules and this procedure is repeated until all rules have
been removed. Afterwards Grez generates the full proof which can be saved as
a PDF-file.

Grez provides both a command-line interface and a graphical user interface.
The tool supports the integration of external tools, such as other termination
tools or SMT-solvers. Grez can use any SMT-solver which supports the SMT-
LIB2 format [1]. Grez generates the inequation described above in this format
and passes it, either through a temporary file or via direct output stream, to the
SMT-solver. The results are parsed back into the termination proof, as soon as
the SMT-solver terminates and produces a model for the formula.

We ran the tool on all examples of this paper using a Windows workstation
with a 2, 67 Ghz, 4-core CPU and 8 GB RAM. All proofs were generated in less
than 1 second. The tool, a user manual [5] and the examples from this paper can be
downloaded from the Grez webpage: www.ti.inf.uni-due.de/research/tools/grez.

7 Conclusion

We have shown how to generalize the tropical and arctic weighted type graphs
of [6] to weighted type graphs over general semirings and their application to the

www.ti.inf.uni-due.de/research/tools/grez.

66 H.J.S. Bruggink et al.

termination analysis of graph transformation systems. This enables us to work
in the arithmetic semiring and to prove termination of systems that could not
be handled with previous approaches. Note that arithmetic type graphs do not
subsume previous termination analysis methods, but rather complement them.
In practice one should always try several methods in parallel threads, as it is
done in our termination tool Grez.
Related Work. As already mentioned in the introduction, there is some work
on termination analysis for graph transformation systems, often using rather
straightforward counting arguments. Some work is specifically geared to the
analysis of model transformations, taking for instance layers into account.

The paper [3] considers high-level replacement units (hlru), which are trans-
formation systems with external control expressions. The paper introduces a
general framework for proving termination of such hlrus, but the only concrete
termination criteria considered are node and edge counting, which are subsumed
by the weighted type graph method (for more details see [6]).

In [9] layered graph transformation systems are considered, which are graph
transformation systems where interleaving creation and deletion of edges with
the same label is prohibited and creation of nodes is bounded. The paper shows
such graph transformation systems are terminating.

Another interesting approach encodes graph transformation systems into
Petri nets [17] by introducing one place for every edge label and transform-
ing rules into transitions. Whenever the Petri net terminates on all markings,
we can conclude uniform termination of the original graph transformation rules.
Note that the second example of Sect. 5 can not be handled in this way by Petri
nets.4 On the other hand [17] can handle negative application conditions in a
limited way, a feature we did not consider here.

Another termination technique via forward closures is presented in [14]. Note
that the example discussed in this paper (termination of a graph transformation
system based on the string rewriting rules ab → ac, cd → db) can be handled by
our tool via tropical type graphs.
Future Work. Naturally, integration of (negative) application condition is an
interesting direction for future work. Furthermore we have already started to
work on techniques for pattern counting. Here we are interested in deciding,
whether a given rule ρ always decreases the number of occurrences of a given
subgraph P .

Another area of future research that might be of great interest is non-uniform
termination analysis, i.e., to analyse whether the rules terminate only on a
restricted set of graphs. In applications it is often the case that rules do not
always terminate, but they terminate on all input graphs of interest (lists, cycles,
trees, etc.). For this, it will be necessary to find a suitable way to characterize
graph languages that is useful for the application areas and integrates well with
termination analysis.

4 Starting with three edges labelled 0, 1, count , rule ρ′
2 transforms them into three

labels 0, c, count , which, via rule ρ′
3, are again transformed into 0, 1, count .

Proving Termination of Graph Transformation Systems 67

References

1. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard - version 2.0. In: Pro-
ceedings of the 8th International Workshop on Satisfiability Modulo Theories (SMT
2010), Edinburgh, Scotland, July 2010

2. Bezem, M., Klop, J.W., de Vrijer, R. (eds.): Term Rewriting Systems. Cambridge
University Press, London (2003)

3. Bottoni, P., Hoffman, K., Presicce, F.P., Taentzer, G.: High-level replacement units
and their termination properties. J. Vis. Lang. Comput. 16(6), 485–507 (2005)

4. Bruggink, H.J.S., König, B., Nolte, D., Zantema, H.: Proving termination of
graph transformation systems using weighted type graphs over semirings (2015).
arXiv:1505.01695

5. Bruggink, H.J.S.: Grez user manual (2015). www.ti.inf.uni-due.de/research/tools/
grez

6. Bruggink, H.J.S., König, B., Zantema, H.: Termination analysis for graph trans-
formation systems. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS,
vol. 8705, pp. 179–194. Springer, Heidelberg (2014)

7. Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundam. Informaticae
26(3/4), 241–265 (1996)

8. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic
approaches to graph transformation-part I: basic concepts and double pushout
approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Comput-
ing by Graph Transformation. Foundations, vol. 1, pp. 163–245. World Scientific,
Singapore (1997)

9. Ehrig, H., Ehrig, K., de Lara, J., Taentzer, G., Varró, D., Varró-Gyapay, S.: Termi-
nation criteria for model transformation. In: Cerioli, M. (ed.) FASE 2005. LNCS,
vol. 3442, pp. 49–63. Springer, Heidelberg (2005)

10. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving ter-
mination of term rewriting. J. Autom. Reasoning 40(2–3), 195–220 (2008)

11. Geser, A.: Relative termination. Ph.D. thesis, Universität Passau (1990)
12. Hofbauer, D., Waldmann, J.: Termination of string rewriting with matrix interpre-

tations. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 328–342. Springer,
Heidelberg (2006)

13. Koprowski, A., Waldmann, J.: Arctic termination..below zero. In: Voronkov, A.
(ed.) RTA 2008. LNCS, vol. 5117, pp. 202–216. Springer, Heidelberg (2008)

14. Plump, D.: On termination of graph rewriting. In: Nagl, M. (ed.) WG 1995. LNCS,
vol. 1017, pp. 88–100. Springer, Heidelberg (1995)

15. Plump, D.: Termination of graph rewriting is undecidable. Fundam. Informaticae
33(2), 201–209 (1998)

16. Sabel, D., Zantema, H.: Transforming cycle rewriting into string rewriting. In: Pro-
ceedings of RTA 2015, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2015)

17. Varró, D., Varró–Gyapay, S., Ehrig, H., Prange, U., Taentzer, G.: Termination
analysis of model transformations by petri nets. In: Corradini, A., Ehrig, H.,
Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178,
pp. 260–274. Springer, Heidelberg (2006)

18. Zantema, H.: Termination of term rewriting by semantic labelling. Fundam. Infor-
maticae 24(1/2), 89–105 (1995)

http://arxiv.org/abs/1505.01695
www.ti.inf.uni-due.de/research/tools/grez
www.ti.inf.uni-due.de/research/tools/grez

68 H.J.S. Bruggink et al.

19. Zantema, H.: Termination. In: Bezem, M., Klop, J.W., de Vrijer, R. (eds.) Term
Rewriting Systems, Chap. 6, pp. 181–259. Cambridge University Press, London
(2003)

20. Zantema, H., König, B., Bruggink, H.J.S.: Termination of cycle rewriting. In:
Dowek, G. (ed.) RTA-TLCA 2014. LNCS, vol. 8560, pp. 476–490. Springer,
Heidelberg (2014)

Towards Local Confluence Analysis
for Amalgamated Graph Transformation

Gabriele Taentzer1(B) and Ulrike Golas2

1 Philipps-Universität Marburg, Marburg, Germany
taentzer@informatik.uni-marburg.de

2 Humboldt-Universität Zu Berlin and Zuse Institut Berlin, Berlin, Germany
ulrike.golas@hu-berlin.de, golas@zib.de

Abstract. Amalgamated graph transformation allows to define schemes
of rules coinciding in common core activities and differing over additional
parallel independent activities. Consequently, a rule scheme is specified
by a kernel rule and a set of extending multi-rules forming an interac-
tion scheme. Amalgamated transformations have been increasingly used
in various modeling contexts.

Critical Pair Analysis (CPA) can be used to show local confluence of
graph transformation systems. It is an open challenge to lift the CPA
to amalgamated graph transformation systems, especially since infinite
many pairs of amalgamated rules occur in general. As a first step towards
an efficient local confluence analysis of amalgamated graph transforma-
tion systems, we show that the analysis of a finite set of critical pairs
suffices to prove local confluence.

Keywords: Amalgamated graph transformation · Parallel indepen-
dence · Critical pair analysis

1 Introduction

In model-based software development, models play a primary role w.r.t. require-
ments elicitation, software design and software validation. Model changes can
be well specified as model transformations. Algebraic graph transformation has
been shown to be a suitable underlying formal framework of model transforma-
tions, especially of in-place transformations [4]. If several developers work on the
same model concurrently, they may run into conflicts that have to be resolved.
To analyze such conflicts as early as possible, critical pair analysis has been used
to check transformation rules at specification time, i.e., before run time.

While simple model changes can be well specified by the application of sim-
ple rules, this is usually not sufficient for more complex model changes. Amal-
gamated graph transformation has been used to specify core activities equipped
with a number of optional or context-dependent activities (e.g., [2,3,7,12]).

This work is partly supported by a Humboldt Post-Doc Fellowship as part of the
Excellence Initiative by the German federal and state governments.

c© Springer International Publishing Switzerland 2015
F. Parisi-Presicce and B. Westfechtel (Eds.): ICGT 2015, LNCS 9151, pp. 69–86, 2015.
DOI: 10.1007/978-3-319-21145-9 5

70 G. Taentzer and U. Golas

A typical example of such complex model changes are model refactorings where,
e.g., equal attributes in subclasses are pulled up to one attribute in their super
class. Concurrently working developers aim to understand when model changes
can be applied in parallel and when they are a potential source for conflicts.
Being in conflict, it would be interesting to analyze if and how these conflicts
can be resolved. Hence, the notions of parallel independence, conflict and conflict
resolution have to be lifted to amalgamated graph transformation.

An amalgamated graph transformation is specified by a so-called interaction
scheme containing a kernel rule and a set of extending multi-rules. While the ker-
nel rule is intended to be matched exactly once, each multi-rule may be matched
arbitrarily often. An amalgamated rule over an interaction scheme contains at
least the kernel rule and arbitrary many copies of multi-rules overlapping at the
kernel rule. Hence, an interaction scheme specifies infinitely many amalgamated
rules in general.

While the check for parallel independence of rules and transformations is
well-known and used to support parallel model changes, parallel independence
of amalgamated rules and transformations has hardly been investigated. In [8,9],
the parallel independence of amalgamated graph transformations has been char-
acterized as transformations that can be executed sequentially in either order.
This semantic characterization cannot be checked at specification time, i.e., on
the level of rule schemes. An easy-to-check criterion for the parallel independence
on the basis of interaction schemes is the first contribution of this paper: If two
interaction schemes are parallel and sequentially independent, all their induced
amalgamated transformations are parallel independent and can be sequential-
ized in any order. We assume that the occurring matches are maximal, i.e., that
always the largest possible amalgamated rules are applied.

The second contribution of this paper is concerned with the analysis and
resolution of conflicts between rule schemes. It is based on the well-known critical
pair analysis [6,13]: If a critical pair can be restricted to a smaller one showing
the same kind of conflict and resolving it in the same way, then this pair does
not have to be considered during conflict analysis. We show that only finitely
many critical pairs cannot be further restricted. Thus, the usually infinite set
of critical pairs for rule schemes can be reduced to a finite set being enough to
show local confluence of the transformation system.

The paper is organized as follows: Sect. 2 presents the necessary basic notions
on amalgamated graph transformation. Most of them are recalled from or similar
to [8,9]. Parallel independence is considered in Sect. 3 while the conflict analysis
of rule schemes is presented in Sect. 4. The paper is concluded in Sect. 5.

2 Amalgamated Graph Transformation

In this section, we review the formal foundations of amalgamated graph trans-
formation based on the well-known double-pushout approach. We assume the
reader to be familiar with this approach (see, e.g., [6] for an introduction and a
large number of theoretical results). We concentrate on the presentation of only

Towards Local Confluence Analysis for Amalgamated Graph Transformation 71

those concepts and results needed for the confluence analysis. For simplicity, here
we present the theory without application conditions and attributes. In fact, the
theory in [8,9] is presented in the categorical framework of M-adhesive transfor-
mation systems for rules with nested application conditions in the sense of [11].
In particular, this means that in the following the graphs and morphisms can
be any objects from M-adhesive categories, e.g., any kinds of (labeled, typed,
attributed) graphs.

Formally, a kernel morphism describes how the kernel rule is embedded into
a multi-rule (recall the definition of [9]).

Definition 2.1 (Rule and Kernel Morphism). Given rules p0 = (L0
l0←−

K0
r0−→ R0) and p1 = (L1

l1←− K1
r1−→ R1) with injective morphisms li, ri for

i ∈ {0, 1}, a rule morphism s : p0 → p1, s = (sL, sK , sR) consists of injective
morphisms sL : L0 → L1, sK : K0 → K1, and sR : R0 → R1 such that in the
following diagram (1) and (2) commute. s is an isomorphism, if sL, sK , and sR
are isomorphisms. A rule is finite, if all occurring objects are finite.

If (1) and (2) are pullbacks and (1) has
a pushout (PO) complement for sL◦l0, s is
called kernel morphism. Then p0 is called
kernel rule and p1 multi-rule.

The technical preconditions ensure that
the multi-rule is consistent w.r.t. the kernel rule: The requirement of (1) and
(2) being pullbacks ensures that the multi-rule deletes and creates the elements
matched by the kernel rule in the same way. The existence of the PO complement
of (1) makes sure that p0 can be applied to L1. This condition is needed to
construct the complement rule later.

Example 2.2 (Specification of refactoring “Push Down Attribute”). As running
example, we consider a graph representation of simple class models and some
refactorings to improve their structure. Our class models contain classes (typed
by “C”), attributes (typed by “A”), a generalization relation between classes
(typed by “G”), and references between classes (typed by “R”).

In Fig. 1, we show the kernel and a multi-rule for the refactoring “Push Down
Attribute”. The kernel rule takes an attribute in a super class (being target of
a generalization) and pushes it down to one of its subclasses (being source of
the connecting generalization). The multi-rule specifies that the attribute in the
super class is also pushed down to any other subclass. This refactoring is useful if
a common attribute shall be individually changed in the subclasses. Note that the
intermediate graph K of each depicted rule can be deduced from the graphical
notation by considering the overlapping graph of the left- and right-hand sides.
The overlapping graph is exactly that subgraph which is enhanced by numbers
occurring in both sides. These numbers specify the morphisms going to the left-
and right-hand sides as well as the kernel morphisms. Note that we only number
those elements that are actually mapped.

72 G. Taentzer and U. Golas

Fig. 1. Kernel and multi-rules for refactoring “Push Down Attribute”

This rule morphism satisfies the additional conditions for a kernel morphism:
The relation between kernel and multi-rules is characterized by two pullbacks
which means that all kernel actions are reflected in the multi-rule. Moreover,
the required PO complement exists being the left-hand side of the multi-rule
without the A-node and its adjacent edge. Although it is the intermediate graph
of the multi-rule here, this is not generally the case.

Inverting the kernel and multi-rules in Fig. 1, we get a specification of the
refactoring “Pull Up Attribute” assuming that all the attributes in the subclasses
have the same name and type (which is not specified here). In this simple exam-
ple, we just check if each subclass has an attribute. In that case, one attribute of
each subclass is deleted and a new one is created in their superclass. This refac-
toring is usually applied to lift common attributes to superclasses and hence, to
reduce redundancy.

To obtain a kernel morphism also for these rules, we have to check that the
right-hand side has a PO complement as well. Actually, this is the case using
the right-hand side of the multi-rule without the upper attribute. Note that this
graph is not the intermediate one of the multi-rule.

For a given kernel morphism, the complement rule is the remainder of the
multi-rule after the application of the kernel rule, i.e. it describes what the multi-
rule does in addition to the kernel rule. Intuitively, the complement rule is the
smallest rule that extends K0 such that it creates and deletes all those elements
handled by the multi- but not by the kernel rule. It is important to decompose
amalgamated transformations into kernel and complement rule applications (see
Corollary 2.13). There is a canonical way to construct the complement rule for a
given kernel morphism; due to its complex construction, we only give an example
here and refer to [8,9].

Example 2.3 (Complement rule). Fig. 2 shows the complement rule of the kernel
and multi-rules in Fig. 1. Note that the general attribute is deleted by the kernel
rule, which also inserts an attribute into one subclass. All other subclasses can
be equipped by a new attribute applying the complement rule thereafter.

A bundle of kernel morphisms over a common kernel rule forms an interaction
scheme. An interaction scheme instance contains copies of kernel morphisms for
different matches of multi-rules of a chosen interaction scheme.

Towards Local Confluence Analysis for Amalgamated Graph Transformation 73

Fig. 2. Complement rule for refactoring “Push Down Attribute”

Definition 2.4 (Interaction scheme (instance)). Given a rule set Basic =
{pi = (Li

li←− Ki
ri−→ Ri), i = 0, . . . , n}, an interaction scheme s over Basic

is a bundle of kernel morphisms s = (si : p0 → pi)i=0,...,n with s0 = idp0 . For
n = 0, s consists of the rule p0 only. An interaction scheme instance sinst over
s is an interaction scheme where each kernel morphism of sinst is isomorphic to
some kernel morphism of s. An interaction scheme s′ = (s′

i : p′
0 → p′

i)i=0,...,n is
more parallel than s if p′

0 is a subrule of p0 with inclusion i0 : p′
0 → p0, p′

i = pi
for i > 0, and s′

i = si ◦ i0 for all i = 0, . . . , n.

Example 2.5 (Interaction schemes for refactorings). In Fig. 3, an interaction
scheme for replacing an inheritance relation with a delegation is shown. This
classical refactoring is defined for all attributes of a super class being copied
to its subclass as soon as the generalization relation between these classes is
replaced by a reference. This is necessary since after the refactoring the class is
not a subclass anymore. Note that the conditions for kernel morphisms are also
satisfied here.

Fig. 3. Interaction scheme for refactoring “Replace Inheritance With Delegation”

Figure 4 shows the specification of refactoring “Remove All Inheritances”
which detaches all subclasses from their super class. The refactoring shall only be
applied if the superclass is empty, i.e., does not have any references or attributes.

Figure 5 shows a simple rule which deletes a class. It can be considered as
an interaction scheme over n = 0. Combining this rule with the interaction
scheme “Remove all inheritances” would be an approach to specify the refactor-
ing “Delete Super Class”. Imagine similar rules as in Fig. 4 but without Class
1:C on the right-hand side. Unfortunately, they would not form an interaction
scheme since there is no PO complement on the left. The problem is that, once

74 G. Taentzer and U. Golas

Fig. 4. Interaction scheme for refactoring “Remove All Inheritances”

Fig. 5. Interaction scheme for refactoring “Delete Class”

the super class is deleted, we do not find a complement rule deleting all inher-
itance relations. It follows that these have to be deleted first. Hence, two steps
are required to delete a super class with all incoming inheritance relations.

Given an interaction scheme s which describes the basic actions in its kernel
rule and a set of multi-rules, we need to construct an interaction scheme instance
over s for a given graph and kernel rule match. This interaction scheme instance
contains a certain number of multi-rule copies for each multi-rule of the basic
scheme. To do so, we search for all different multi-rule matches which overlap in
the kernel match only. The number of different multi-rule matches determines
how many copies are included in the graph-specific interaction scheme instance
which is the starting point for the amalgamated rule construction defined in
Definition 2.7.

Example 2.6 (Construction of amalgamated rule). To illustrate the construction
of an amalgamated rule consider Fig. 6 as an example. The basic interaction
scheme is given on the left. It consists of a kernel rule r0 which adds a loop.
Moreover, it contains one multi-rule r1 modeling that object 2 being connected
to object 1 is deleted and a new object is created and connected to object 1
which has a loop now. Note that the left-hand part of this kernel morphism has
a PO complement (not being depicted). Given graph G, there are obviously three
different matches of the multi-rule r1 to G which overlap in the match of the
kernel rule to G. Hence, the multi-rule can be applied three times. Thus, we need
three copies of the multi-rule in the interaction scheme instance, all with kernel
morphisms from kernel rule r0. In our example, the interaction scheme instance
is shown on the right. Gluing all its multi-rules at their common kernel rule, we
get the amalgamated rule with respect to G, shown at the bottom of Fig. 6.

In the following definition, we clarify how to construct an amalgamated rule
from a given interaction scheme.

Definition 2.7 (Amalgamated rule). Given an interaction scheme s and
an interaction scheme instance sinst = (si : p0 → pi)i=0,...,n over s with

rules pi = (Li
li←− Ki

ri−→ Ri) for i = 0, . . . , n, then the amalgamated rule

Towards Local Confluence Analysis for Amalgamated Graph Transformation 75

Fig. 6. Construction of an amalgamated rule

p(n)sinst
= (L̃ l̃←− K̃

r̃−→ R̃) is the colimit over the kernel morphisms of sinst
being constructed as stepwise pushouts over i ≥ 1.

For an interaction scheme s,
Amalg(s) denotes the set of all amal-
gamated rules over all interaction
scheme instances over s. Given two
amalgamated rules p, p′ ∈ Amalg(s),
p is smaller than p′, written p <h p′,
if there is a non-isomorphic rule mor-
phism h : p → p′. We write p ≤h p′ if
there is a rule morphism h : p → p′.

We sketch the idea how to construct the stepwise pushout for n = 3 for the
L-component given morphisms s1,L–s3,L:

1. Construct the pushout (1a) of s1,L
and s2,L.

2. Construct the pushout (1b) of s1 ◦
s1,L and s3,L.

3. L3 is the resulting left-hand side L̃
for the amalgamated rule.

76 G. Taentzer and U. Golas

This construction is unique, independent of the order of i, and can be done
similarly for the K- and R-components. By pushout properties (see [6]), we
obtain unique morphisms l̃ and r̃.

Example 2.8 (Amalgamated rule for pushing down an attribute to 3 subclasses).
Figure 7 shows an amalgamated rule built up over the interaction scheme consist-
ing of the kernel morphism in Fig. 1 and two copies of the multi-rule. It specifies
the push down of an attribute to three subclasses.

Fig. 7. Amalgamated rule for refactoring “Push Down Attribute”

Definition 2.9 (Transformation). Given
a rule p = (L l←− K

r−→ R) and
a match m : L → G of p to a graph
G, a transformation step t : G =

p,m
==⇒

H consists of the following diagram where
(1) and (2) are pushouts, and m is called
co-match. If p is an amalgamated rule, t

is also called amalgamated transformation step. Let der(t) = (G
g←− D

h−→ H)

be the derivation of t. An amalgamated transformation t : G = G0 =
p1(k1),m1======⇒

. . . =
pn(kn),mn======⇒ Gn = H, short t : G =

[pn]==⇒∗ H, consists of n ≥ 0 transformation
steps each of which may apply an amalgamated rule pi(ki). This means that [pn]
is defined by a list of applied amalgamated rules (p1(k1), . . . , pn(kn)) with n ≥ 0.
Note that [p0] is the empty list.

When given an interaction scheme, we want to apply as many multi-rules as
often as possible over a certain kernel rule match. This is ensured by maximal
matches.

Definition 2.10 (Maximal Match). Given an interaction scheme s, an amal-
gamated rule p = (L l←− K

r−→ R) over s and a graph G, a morphism m : L →
G of p to G is called match if there is a PO complement of p and m. A match m

is called maximal if there is no amalgamated rule p′ = (L′ l′←− K ′ r′
−→ R′) over

s with a match m′ : L′ → G such that p <t p
′ with m′ ◦ tL = m for t : p → p′.

The derivation of a transformation sequence t is defined by the derived span as
in, e.g., [6]. Note that in general, the match of an amalgamated rule does not
have to be maximal. However, this match strategy is often intended.

Towards Local Confluence Analysis for Amalgamated Graph Transformation 77

Definition 2.11 (Maximized Transformation). Given a set of interaction

schemes S and a transformation sequence t : G =
[pn]==⇒∗ H with [pn] being a

list of applied amalgamated rules (p1(k1), . . . , pn(kn)), n ≥ 0. The maximized

transformation max(t) : G =
max([pn])======⇒∗ H ′ applies max([pn]) being the list

(p1(k′
1), . . . , pn(k′

n)) of amalgamated rules with maximal matches only. Hence,
px(k′

x) = px(kx) if px(kx) has already a maximal match or px(k′
x) > px(kx) with

px(k′
x) having a maximal match, for all 1 ≤ x ≤ n.

If we have a bundle of direct transformations of a graph G, where for each
transformation one of the multi-rules is applied, we want to analyze if the amal-
gamated rule is applicable to G combining all the single transformation steps.
These transformations are compatible, i.e. multi-amalgamable, if the matches
agree on the kernel match, and are independent outside.

Definition 2.12 (Multi-Amalgamable). Given an interaction scheme s =
(si : p0 → pi)i=0,...,n, a bundle of direct transformations steps (G =

pi,mi===⇒
Gi)i=1,...n is multi-amalgamable over s, if

– it has consistent matches, i.e.,
mi ◦ si,L = mj ◦ sj,L =: m0 for
all i, j = 1, . . . , n and

– it has weakly independent mat-
ches, i.e., mi(Li)∩mj(Lj) ⊆ m0

(L0)∪(mi(li(Ki))∩mj(lj(Kj)))
for all 1 ≤ i �= j ≤ n
which means that the elements in the intersection of the matches mi and mj

are either preserved by both transformations, or are also matched by m0.

If a bundle of direct transformations of a graph G is multi-amalgamable then we
can apply the amalgamated rule directly to G leading to a parallel execution of
all the changes performed also by the single transformation steps. This is stated
by the Multi-Amalgamation Theorem in [8,9]. This theorem can also be used to
decompose an amalgamated rule into a smaller amalgamated transformation and
the complement transformation containing all complement rules not yet applied.
The following corollary states this result; its proof is given in [16].

Corollary 2.13 (Multi-Amalgamation). Given a bundle of multi-amalgam-
able transformations (G =

pi,mi===⇒ Gi)i=1,...,n over an interaction scheme s and a

sub-bundle s′ for i = 1, . . . , k < n, then there is a transformation G =
ps′ ,m̃′
====⇒ H

amalgamating the sub-bundle and a transformation H =
q⇒ H over some rule q

such that G =
ps′ ,m̃′
====⇒ H =

q⇒ H is a decomposition of G =
ps,m̃===⇒ H.

Note that q is constructed as a gluing of the complement rules of pk+1, . . . , pn.

78 G. Taentzer and U. Golas

3 Parallel Independence of Rule Schemes

Two graph transformation steps are parallel independent if one transformation
step does not delete any graph item being used by the other one. In this case,
both transformation steps can be executed in either order. This is stated by
the well-known Church–Rosser-Property [6]. Even if both transformation steps
intend to delete a common graph item, this is considered as a dependency since
one transformation step cannot be executed anymore after the other has been
executed and has deleted that item.

Parallel independent amalgamated graph transformations have already been
considered in [8] in the context of bundles of amalgamable transformations, but
without maximal matches. In the following, we characterize the parallel and
sequential independence of amalgamated transformation steps on the level of
interaction schemes.

Definition 3.1 (Parallel Independence). Two transformation steps G =
p,m
==⇒

H and G =
p′,m′
===⇒ H ′ with derivations (G

g←− D
h−→ H) and (G

g′
←− D′ h′

−→ H ′)
are parallel independent iff there exist morphisms ld : L → D′ and ld′ : L′ → D
such that g′ ◦ ld = m and g ◦ ld′ = m′.

Two rules p and p′ are parallel independent if all pairs of transformation
steps over p and p′ are parallel independent.

Two interaction schemes s = (si : p0 → pi)i=0,...,n and s′ = (s′
j : p′

0 →
p′
j)j=0,...,n′ are parallel independent if pi and p′

j are parallel independent for all
pairs (i, j) with 0 ≤ i ≤ n and 0 ≤ j ≤ n′.

Example 3.2 (Parallel independent interaction schemes). Considering the inter-
action schemes in Sect. 2, they are all parallel independent from the interaction
scheme “Delete Class” which just consists of the kernel rule. This rule can only
be applied to classes being disconnected from others, hence they cannot be in the
match of any other refactoring rule. Any other two interaction schemes, however,
can be applied such that they are not parallel independent.

Definition 3.3 (Sequential Independence). Two transformation steps

G =
p,m
==⇒ H and H =

p′,m′
===⇒ X with derivations (G

g←− D
h−→ H) and (H h′

←−
D′ x−→ X) are sequentially independent iff there exist morphisms rd : R → D′

and ld′ : L′ → D such that h′ ◦rd = m and h◦ ld′ = m′ with m bein the co-match
of m.

Two rules p and p′ are sequentially independent if all pairs of transformation
steps over p and p′ are sequentially independent.

Two interaction schemes s = (si : p0 → pi)i=0,...,n and s′ = (s′
j : p′

0 →
p′
j)j=0,...,n′ are sequentially independent if pi and p′

j are sequentially independent
for all pairs (i, j) with 0 ≤ i ≤ n and 0 ≤ j ≤ n′.

Theorem 3.4 (Independence of Interaction Schemes). Two interaction
schemes s = (si : p0 → pi)i=0,...,n and s′ = (s′

j : p′
0 → p′

j)j=0,...,n′ are parallel
(sequentially) independent iff p and p′ are parallel (sequentially) independent for
all pairs of amalgamated rules p over s and p′ over s′.

Towards Local Confluence Analysis for Amalgamated Graph Transformation 79

This result allows us to formulate the Local Church–Rosser property not only
for arbitrary, but also for maximal matches of amalgamated transformations.
Intuitively, this means that in case of both parallel and sequential independence,
the application of one transformation step does not lead to new matches of the
other interaction scheme.

Theorem 3.5 (Church–Rosser Property for Interaction Schemes).
Given two interaction schemes s = (si : p0 → pi)i=0,...,n and s′ = (s′

j : p′
0 →

p′
j)j=0,...,n′ , the following statements hold:

1. If s and s′ are parallel independent, then any two amalgamated transforma-
tions G =

p,m
==⇒ H and G =

p′,m′
===⇒ H ′ applying amalgamated rules p over s and

p′ over s′ can be completed by amalgamated transformations H =
p′,m̄′
===⇒ X and

H ′ =
p,m̄
==⇒ X.

2. If s and s′ are parallel and sequentially independent, then any two amalga-
mated transformations G =

p,m
==⇒ H and G =

p′,m′
===⇒ H ′ applying amalgamated

rules p over s and p′ over s′ at maximal matches m and m′ can be completed
by amalgamated transformations H =

p′,m̄′
===⇒ X and H ′ =

p,m̄
==⇒ X at maximal

matches m̄ and m̄′.

The proofs of both theorems can be found in [16].

4 Conflict Analysis for Rule Schemes

The critical pair analysis (CPA) is a well-known technique to analyze potential
conflicts and dependencies of transformation systems. It has first been intro-
duced for term rewriting and later generalized to graph transformation [6,13].
A critical pair describes a minimal conflicting situation that may occur in the
transformation system. It is well-known that if all critical pairs can be shown to
be strictly confluent, the transformation system is locally confluent. A transfor-
mation system is locally confluent if each pair of direct transformation steps can
be resolved by arbitrary many steps to a common graph. The notion of strict
confluence means that the jointly preserved part of a critical pair is also pre-
served by its resolution [14]. Up to now, this theory has been shown for simple
rules. In the following, we extend it to interaction schemes such that the CPA
can also be used for amalgamated rules. The main problem we have to deal with
is that, in general, there is an infinite set of critical pairs for all amalgamated
rules over an interaction scheme.

Definition 4.1 (Critical Pair). A critical pair, short CP, consists of two
transformation steps ti : G =

pi,mi===⇒ Hi applying rules pi = (Li
li←− Ki

ri−→ Ri) at
matches mi for i ∈ {1, 2} such that G is minimal, i.e., m1 and m2 are jointly
surjective. Given two interaction schemes s1 and s2, CP (s1, s2) denotes the set
of all critical pairs over transformation steps t1 and t2 as above, applying amal-
gamated rules p1 ∈ Amalg(s1) and p2 ∈ Amalg(s2). Given a set S of interaction
schemes, CP (S) =

⋃

s1,s2∈S CP (s1, s2).

80 G. Taentzer and U. Golas

Example 4.2 (Critical pair). Figure 8 shows a critical pair applying the ker-
nel rule PDA(0) of the refactoring “Push down Attribute” and the multi-
rule RIWD(1) of the refactoring “Replace Inheritance With Delegation”. Since
PDA(0) deletes attribute 4:A while RIWD(1) is reading and preserving it, this
critical pair reports a delete-use-conflict. It can be resolved by applying the
refactoring “Pull Up Attribute” taking back the previous refactoring and then
applying RIWD(1) as on the right. Hence, the common graph will be isomorphic
to H2.

Fig. 8. Critical pair between “Push Down Attribute” and “Replace Inheritance With
Delegation”

Corollary 4.3 (Confluence of Interaction Schemes). A set S of interaction
schemes is locally confluent if, for all s, s′ ∈ S and for all rule pairs (al, ar) with
al ∈ Amalg(s) and ar ∈ Amalg(s′), all critical pairs over (al, ar) are strictly
confluent.

This corollary directly follows from the Local Confluence Theorem and Critical
Pair Lemma (see, e.g., Theorem 3.34 in [6]) since we can consider amalgamated
rules as normal rules.

Although this corollary yields a result on the confluence of interaction
schemes, it can hardly be used to check confluence since the set of amalga-
mated rules over an interaction scheme is infinite in general. Hence, infinite
many critical pairs have to be checked in general. The key idea for reducing the
set of critical pairs is to take out those critical pairs that do not specify any new
conflicting situation. We continue to develop a characterization for critical pairs
being redundant in that sense.

Definition 4.4 (Extraction of Critical Pairs). Given a set CP (sl, sr) of
critical pairs with cp1 = (G1 =

p1l,m1l====⇒ H1l, G1 =
p1r,m1r=====⇒ H1r) and cp2 =

(G2 =
p2l,m2l====⇒ H2l, G2 =

p2r,m2r=====⇒ H2r) ∈ CP (sl, sr) being two critical pairs with
p1l, p2l ∈ Amalg(sl), p1r, p2r ∈ Amalg(sr), p2l ≥ p1l, and p2r ≥ p1r. The
critical pair cp2 is larger than cp1, short cp2 > cp1, if there are injective graph
morphisms g : G1 → G2, dl : D1l → D2l, hl : H1l → H2l, dr : D1r → D2r,
and hr : H1r → H2r such that corresponding diagrams commute and cp2 is a
proper extension of cp1, i.e., at least one of morphisms g, hl and hr is not sur-
jective. We can also say that cp1 is smaller than cp2. If g(m1l(L1l − l1l(K1l))∪

Towards Local Confluence Analysis for Amalgamated Graph Transformation 81

m1r(L1r − l1r(K1r))) ⊆ m2l(L2l − l2l(K2l)) ∪ m2r(L2r − l2r(K2r)) holds in
addition, cp1 is called an extraction of cp2.

In the following, we characterize under which conditions a critical pair cp1 is
considered to be restricted w.r.t. another critical pair cp2. Note that the restric-
tion of critical pairs is more than cutting away unnecessary context. In general,
both critical pairs coincide w.r.t. the interaction schemes applied but differ in the
size of the actual amalgamated rules. This applies to the resolving interaction
schemes as well.

Definition 4.5 (Restricted critical pair).
Consider a set of interaction schemes S

and critical pairs cp1 = (G1 =
p1l,m1l====⇒

H1l, G1 =
p1r,m1r=====⇒ H1r) and cp2 =

(G2 =
p2l,m2l====⇒ H2l, G2 =

p2r,m2r=====⇒ H2r) apply-
ing rules of Amalg(S) such that cp1 is an
extraction of cp2 and cp1 is strictly conflu-
ent; this means (among others) that there are

transformations t1l : H1l =
[rn]==⇒ X1 and t1r :

H1r =
[sm]
==⇒ X1. The critical pair cp1 is more

restricted than cp2 if there are transformations
tl : H2l =

max([rn])======⇒ X2 and tr : H2r =
max([sm])
======⇒ X2 and an injective morphism

x : X1 → X2 compatible with the derivations of tl and tr. We also say that cp2
is redundant wrt. cp1. Given the set CP of critical pairs over S, Res(CP) ⊆ CP
contains all critical pairs not being redundant of another one of CP .

Example 4.6 (Restricted critical pairs). Figures 9 and 10 show two critical pairs
cp2 and cp3 both being strictly confluent. We will consider these critical pairs
first and then argue why cp2 is more restricted than cp3.

In Fig. 9, the multi-rules of the refactorings “Push Down Attribute” and
“Replace Inheritance With Delegation” are applied such that they overlap in
conflicting elements: The attribute 4:A is deleted by PDA(1) and preserved by
RIWD(1), and the generalization 6:G is preserved by PDA(1) and deleted by
RIWD(1). Both refactorings can be applied one after the other such that these
conflicts can be resolved. This critical pair is called cp2.

Figure 10 shows a similar critical pair cp3 where the same multi-rule PDA(1)
is applied on the left but a slightly larger rule on the right. It is an amalga-
mated rule applying the multi-rule of the refactoring “Replace Inheritance With
Delegation” twice. The same kinds of conflicts are reported here but this time
two attributes are in the super class 3:C. The resolution of this critical pairs
resembles very much the one in cp2. The only difference is that the multi-rule
RIWD(1) is applied on the left, instead of the kernel rule RIWD(0).

The critical pair cp2 is an extraction of cp3 since cp3 has larger graphs with
compatible embeddings of corresponding graphs G2 and G3, H2l and H2r, and
H3l and H3r as well as RIWD(1) < RIWD(2). Moreover, all elements being

82 G. Taentzer and U. Golas

Fig. 9. Critical pair between “Push Down Attribute” and “Replace Inheritance With
Delegation”

deleted from G2 have corresponding elements that are deleted from G3. Consid-
ering the conflict resolutions in both critical pairs, the one in cp3 is the maximized
version of the one in cp2. Furthermore, there is an injective morphism from X2
to X3 being compatible with the corresponding derivations. Hence, cp2 is more
restricted than cp3. It is straight forward to show for all critical pairs cp′ distin-
guishing from cp2 just by the number of attributes at super class 3:C that cp2
is more restricted than cp′.

Fig. 10. Another critical pair between “Push Down Attribute” and “Replace Inheri-
tance With Delegation”

Towards Local Confluence Analysis for Amalgamated Graph Transformation 83

In the following, we show that the reduction of critical pair sets is sound,
i.e., that strict confluence of the reduced set of critical pairs still induces strict
confluence of the whole set.

Theorem 4.7 (Reduction of CP Set). Given a set S of interaction schemes
and two critical pairs cp1, cp2 ∈ CP (S) such that cp1 is more restricted than cp2,
the following holds: If all critical pairs of CP (S) − {cp2} are strictly confluent
then all critical pairs of CP (S) are strictly confluent.

Proof idea: Since cp1 is confluent and more restricted than cp2, it is straight
forward to show that cp2 is confluent. Let H1l be the embedded result graph after
applying pl1 (see diagram in Definition 4.5). Since the match of the complement
rule pl2 is allowed to overlap with the embedding hl : H1l → H2l in preserved
items only, strict confluence of cp2 can be shown based on the strict confluence
of cp1 as well as using pushout and pullback properties.

Proposition 4.8 (Transitive Restriction of Critical Pairs). Given a set
CP (S) of critical pairs it holds: If cp1 ∈ CP (S) is more restricted than cp2 ∈
CP (S) and cp2 is more restricted than cp3 ∈ CP (S) then cp1 is more restricted
than cp3 as well.

The proof is straight forward along the definition of restricted critical pairs.
The following example shows that conflict resolutions for smaller rules over

two selected interaction schemes cannot always be transfered to larger rules of
the same schemes, even if the same conflicts are reported. The resolution is
dependent on the available context. In some cases, the context is too large to
apply a rule (violating the dangling condition) and in other cases, the context is
not large enough to apply rules.

Example 4.9 (Non-redundant critical pairs). In Fig. 11, a critical pair between
the multi-rules of “Remove All Inheritances” and “Replace Inheritance With
Delegation” is depicted. Both delete the only generalization relation. This con-
flict is resolved by deleting the isolated class on the left while on the right,
the separate class is inlined into the referred class (taking back the previous
refactoring). This resolution works here since class 1:C is the only subclass.

Figure 12 shows a different critical pair between an amalgamated rule of
“Remove All Inheritances” and the multi-rule of “Replace Inheritance With
Delegation”. Since graphs H1 and H2 of this critical pair have more context
than in the previous example, the reported conflict cannot be resolved as before.
While “Delete Class” has to be applied twice on the left, “Inline Class” is again
applied on the right, together with “Delete Empty Subclass”. This interaction
scheme is not applicable in a too small context (as in the critical pair above).

This example points to a general problem that can occur in conflict resolution:
The rule DC is applied dependent on how many subclasses are considered, i.e.,
the resolution is performed sequentially and larger critical pairs cannot become
redundant. If DC were an interaction scheme with an empty kernel rule and the
original rule as multi-rule, i.e., a more parallel interaction scheme, this problem
can be solved.

84 G. Taentzer and U. Golas

Fig. 11. Critical pair between “Remove All Inheritances” and “Replace Inheritance
With Delegation”

Fig. 12. Another critical pair between “Remove All Inheritances” and “Replace Inher-
itance With Delegation”

The example shows that it is not enough to consider critical pairs over kernel
and multi-rules, but smaller amalgamated rules have to be considered as well.
Larger amalgamated rules, however, have recurring parts (multi-rule copies) that
do not lead to new kinds of resolutions, i.e., lead to redundant critical pairs.
The following theorem states that the set of non-redundant critical pairs is in
fact finite. It may happen that conflict resolutions result in applying interaction
schemes in loops. In those cases, we consider more parallel interaction schemes
where resolutions are performed in parallel.

Theorem 4.10 (Finite set of restricted critical pairs). Given a finite set
S of interaction schemes consisting of finite rules only. Then the set Res(CP) ⊆
CP (Spar) is finite for an interaction scheme Spar being more parallel than S (see
Definition 2.4).

Proof idea: We consider a pair of interaction schemes s, s′ ∈ S and the set
CP (s, s′) of all their critical pairs. We show that the set Res(CP (s, s′)) of all

Towards Local Confluence Analysis for Amalgamated Graph Transformation 85

critical pairs without redundant ones is finite. The main idea is that there are
numbers c and d such that the following condition holds: Let R be the set of all
kernel and multi-rules of all interaction schemes in S. Consider the set M of all
partial matches of all rules in R w.r.t. all critical pairs (t1, t2) over amalgamated
rules with at most c and d multi-rule instantiations for t1 and t2, respectively.
Then there is no critical pair that leads to a match being non-equivalent to any
match in M . c and d exist since copies of complement rules are applied parallel
independently and hence, derive isomorphic graph parts in H2l and H2r. We
have to change to Spar if S contains interaction schemes that are applied in loops
to resolve critical pairs, but still obtain the same result.

Full proofs of all the theorems above can be found in [16].

5 Related Work and Conclusion

Multi-objects and other variants of matching graph parts as often as possi-
ble have been considered in several graph transformation approaches, in tool
environments such as PROGRES [15] and Fujaba [1] as well as in conceptual
approaches by Grönmo [10] and Drewes et al. [5]. Amalgamated graph trans-
formation has been used to specify activities with some variabilities [2,3,7,12].
Although being applied in different contexts and formalized in [8,9], the critical
pair analysis has not yet been extended to this kind of graph transformation.
It turns out that the CPA can be reused by considering only a finite set of
critical pairs of smaller amalgamated rules to decide the local confluence of the
whole transformation system. Future work is needed to develop an efficient algo-
rithm for enumerating all non-redundant critical pairs and for evaluating the
extended CPA in practice. Furthermore, the extension to a more sophisticated
graph transformation approach with types, attributes, and application condi-
tions is worthwhile to consider.

Acknowledgment. We thank Yngve Lamo and Kristopher Born for their valuable
comments to this paper.

References

1. The Fujaba tool suite. www.fujaba.de
2. Biermann, E., Ehrig, H., Ermel, C., Golas, U., Taentzer, G.: Parallel indepen-

dence of amalgamated graph transformations applied to model transformation. In:
Engels, G., Lewerentz, C., Schäfer, W., Schürr, A., Westfechtel, B. (eds.) Nagl
Festschrift. LNCS, vol. 5765, pp. 121–140. Springer, Heidelberg (2010)

3. Biermann, E., Ermel, C., Taentzer, G.: Lifting parallel graph transformation con-
cepts to model transformation based on the eclipse modeling framework. ECEASST
26, 19 (2010)

4. Biermann, E., Ermel, C., Taentzer, G.: Formal foundation of consistent emf model
transformations by algebraic graph transformation. Softw. Syst. Model. 11(2), 227–
250 (2012)

www.fujaba.de

86 G. Taentzer and U. Golas

5. Drewes, F., Hoffmann, B., Janssens, D., Minas, M.: Adaptive star grammars and
their languages. Theor. Comput. Sci. 411(34–36), 3090–3109 (2010)

6. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, Heidelberg (2006)

7. Golas, U., Biermann, E., Ehrig, H., Ermel, C.: A visual interpreter semantics
for statecharts based on amalgamated graph transformation. ECEASST 39, 1–
24 (2011)

8. Golas, U.: Analysis and correctness of algebraic graph and model transformations.
Ph.D. thesis, Berlin Institute of Technology (2011)

9. Golas, U., Habel, A., Ehrig, H.: Multi-amalgamation of rules with application
conditions in M-adhesive categories. Math. Struct. Comput. Sci. 24(4), 51 (2014)

10. Grønmo, R., Krogdahl, S., Møller-Pedersen, B.: A collection operator for graph
transformation. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 67–82.
Springer, Heidelberg (2009)

11. Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems
relative to nested conditions. Math. Struct. Comput. Sci. 19(2), 245–296 (2009)

12. Mantz, F., Taentzer, G., Lamo, Y., Wolter, U.: Co-evolving meta-models and their
instance models: a formal approach based on graph transformation. Sci. Comput.
Program. 104, 2–43 (2015)

13. Plump, D.: Critical Pairs in Term Graph Rewriting. In: Pŕıvara, I., Rovan, B.,
Ruzička, P. (eds.) MFCS. LNCS, vol. 841, pp. 556–566. Springer, Heidelberg (1994)

14. Plump, D.: On termination of graph rewriting. In: Nagl, M. (ed.) GTCS. LNCS,
vol. 1017, pp. 88–100. Springer, Heidelberg (1995)

15. Schürr, A., Winter, A., Zündorf, A.: The PROGRES approach: language and envi-
ronment. In: Handbook of Graph Grammars and Computing by Graph Transfor-
mation, pp. 487–550. World Scientific (1999)

16. Taentzer, G., Golas, U.: Towards Local Confluence Analysis for Amalga-
mated Graph Transformation: Long Version. Technical report, pp. 15–29, Zuse
Institute Berlin (2015). https://opus4.kobv.de/opus4-zib/frontdoor/index/index/
docId/5494

https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/5494
https://opus4.kobv.de/opus4-zib/frontdoor/index/index/docId/5494

Multi-amalgamated Triple Graph Grammars

Erhan Leblebici1(B), Anthony Anjorin1, Andy Schürr1,
and Gabriele Taentzer2

1 Technische Universität Darmstadt, Darmstadt, Germany
{erhan.leblebici,anthony.anjorin,andy.schuerr}@es.tu-darmstadt.de

2 Philipps-Universität Marburg, Marburg, Germany
taentzer@mathematik.uni-marburg.de

Abstract. Triple Graph Grammars (TGGs) are a well-known technique
for rule-based specification of bidirectional model transformation. TGG
rules build up consistent models simultaneously and are operationalized
automatically to forward and backward rules describing single transfor-
mation steps in the respective direction. These operational rules, how-
ever, are of fixed size and cannot describe transformation steps whose size
can only be determined at transformation time for concrete models. In
particular, transforming an element to arbitrary many elements depend-
ing on the transformation context is not supported. To overcome this
limitation, we propose the integration of the multi-amalgamation concept
from classical graph transformation into TGGs. Multi-Amalgamation
formalizes the combination of multiple transformations sharing a com-
mon subpart to a single transformation. For TGGs, this enables repeating
certain parts of a forward or backward transformation step in a for each
loop-like manner depending on concrete models at transformation time.

Keywords: Triple graph grammars · Amalgamation · Model transfor-
mation

1 Introduction and Motivation

Model-Driven Engineering (MDE) has established itself as a viable means for
dealing with the increasing complexity of modern software systems. Models in
MDE provide suitable abstractions of a system, serve as both design and imple-
mentation artifacts, and facilitate the communication between domain experts.
In most cases, several models co-exist and contain related information to describe
a system from different perspectives, tools, or domains. Important challenges in
this context are to create a related model from a given model, and to ensure
consistency between related models during their life-cycles. Bidirectional model
transformation automates these tasks and, therefore, plays a crucial role in MDE.

Triple Graph Grammars (TGGs) [17] are a declarative, rule-based technique
for specifying bidirectional model transformation. Bidirectionality in this context
means that forward (source to target) and backward (target to source) trans-
formations are derived from the same TGG specification. Formalizing models
c© Springer International Publishing Switzerland 2015
F. Parisi-Presicce and B. Westfechtel (Eds.): ICGT 2015, LNCS 9151, pp. 87–103, 2015.
DOI: 10.1007/978-3-319-21145-9 6

88 E. Leblebici et al.

as graphs, a TGG specification comprises triple rules that describe how con-
sistent source and target graphs connected by a correspondence graph evolve
simultaneously, and is thus a grammar over triple graphs.

For practical applications, TGGs are typically operationalized to deduce for-
ward and backward transformations. The main idea of the operationalization,
e.g., in the forward direction, is to decompose each triple rule into a source
part, parsing the elements of a given source model, and a forward part, creating
necessary correspondence and target model elements to perform the specified
transformation step. The same applies analogously to the backward direction.

A crucial limitation when tackling complex transformation tasks is that triple
rules are graph patterns of fixed size and cannot describe transformation steps
whose size depends on concrete models. In particular, transforming an element to
arbitrarily many elements in one step depending on the transformation context
is not possible as the context of an unknown size cannot be specified via fixed
patterns. To overcome this, we propose an extension to TGGs leveraging a formal
concept from classical graph transformation, namely amalgamation.

Amalgamation [1] combines the applications of two rules (called multi-rules)
over a shared application of a common subrule (called kernel rule). The concept
is generalized in [19] to combining n multi-rule applications, which is formalized
in [7] as multi-amalgamation within the algebraic framework for adhesive cat-
egories. Single transformation steps are specified via interaction schemes that
contain a kernel rule and multi-rules that embed this kernel rule. Depending
on a concrete model at transformation time, the multi-rules are combined over
the kernel rule to a multi-amalgamated rule. Intuitively, this provides a means
for repeating certain parts of a transformation step after a common kernel part
in a for each loop-like manner. The main challenge when incorporating multi-
amalgamation into TGGs is to revise their operationalization, i.e., to derive
forward (backward) transformations compatible with the combination process.

After discussing the shortcomings of TGGs without multi-amalgamation via
a compact but non-trivial example in Sect. 2, our contribution is to:

1. Extend the basic formalization of TGGs by multi-amalgamation in Sect. 3.
2. Operationalize multi-amalgamated TGGs in Sect. 4, yielding our main result,

namely multi-amalgamation with source-forward derivations (Theorem1).
3. Define model transformation with multi-amalgamated TGGs and its formal

properties in Sect. 5, based on our operationalization results.

Section 6 gives an overview of related work and Sect. 7 concludes the paper.
While this paper focuses on formal results, we refer to [12] for our tool support.

2 Running Example and Preliminaries

Our running example is a compact but nontrivial excerpt of a transformation
between class diagrams and a corresponding HTML-like documentation (e.g.,
Javadoc). In particular, we focus on transforming inheritance links in the class
diagrams to hyperlinks in the documents (and vice versa). Direct hyperlinks are

Multi-amalgamated Triple Graph Grammars 89

to be created for all transitive super classes. While allowing multiple inheritance,
we consider class diagrams without repeated inheritance for simplicity, i.e., a
transitive inheritance is not induced over multiple ways. An exemplary class
diagram and its consistent documentation is depicted in Fig. 1 in concrete syntax.

All Super Classes

All Super Classes

All Super ClassesAll Super Classes

All Super Classes All Super Classes

Fig. 1. A class diagram and its corresponding documentation

An inheritance link corresponds to multiple hyperlinks whose exact number
can only be determined at transformation time for a concrete class diagram.
Consider the transformation of the inheritance link between the Employee and
Person classes in Fig.1 and assume all other inheritance links are already docu-
mented. Besides creating a hyperlink from the Employee document to the Person
document, three additional steps are necessary: (i) the subclass document must
get hyperlinks to the documents for new transitive super classes (in this case
from Employee to Serializable and Observable), (ii) documents for all transitive
subclasses must get a hyperlink to the super class document (from Worker and
Manager to Person), and (iii) documents for transitive subclasses must get hyper-
links to the documents for transitive super classes (from Worker and Manager to
Serializable and Observable in all four possible combinations). The transformation
of one inheritance link in our concrete case creates 1+(2+2+4)=9 hyperlinks in
the documentation. The portion in brackets ranges between 0 and arbitrarily
many depending on concrete models.

2.1 Consistency Specification with Triple Graph Grammars

In this section, we briefly review the existing TGG formalization and look closer
at our identified challenges with the running example. In line with the algebraic
formalization in [4], we formalize models and metamodels as typed graphs and
type graphs, respectively. For presentation purposes, we provide our formaliza-
tion on the level of typed graphs. The formalization can, however, be extended
compatibly to attributed typed graphs with type inheritance [4].

Definition 1 (Typed Graph and Typed Graph Morphism). A graph G =
(V,E, s, t) is defined by a set V of vertices, a set E of edges, and two functions
s, t : E → V assigning to each edge a source and target vertex, respectively. A

90 E. Leblebici et al.

graph morphism f : G → G′, with G′ = (V ′, E′, s′, t′), is defined as a pair of
functions f := (fV , fE) such that fV : V → V ′, fE : E → E′ and fV ◦ s =
s′ ◦ fE ∧ fV ◦ t = t′ ◦ fE.

A type graph is a distinguished graph TG = (VTG, ETG, sTG, tTG). A typed
graph is a pair (G, type) of a graph G and a graph morphism type: G → TG.
Given (G, type) and (G′, type′), f : G → G′ is a typed graph morphism iff
type = type′ ◦ f . L(TG) denotes the set of all typed graphs of type TG.

We now introduce triples of graphs as we shall be dealing with source and
target models connected via a correspondence model. Normal letters denote triple
graphs while single graphs have subscripts S, C, or T indicating their domains.

Definition 2 (Typed Triple Graph, Typed Triple Graph Morphism).
A triple graph G := GS

γS← GC
γT→ GT consists of typed graphs GX ∈ L(TGX),

X ∈ {S,C, T}, and morphisms γS : GC → GS and γT : GC → GT .

A triple morphism f : G → G′ with G′ = G′
S

γ′
S← G′

C

γ′
T→ G′

T , is a triple
f : (fS , fC , fT) of typed morphisms where fX : GX → G′

X and X ∈ {S,C, T},
fS ◦ γS = γ′

S ◦ fC and fT ◦ γT = γ′
T ◦ fC . A type triple graph is a distinguished

triple graph TG = TGS
ΓS← TGC

ΓT→ TGT . A typed triple graph is a pair (G, type)
of a triple graph G and triple morphism type : G → TG. Given (G, type) and
(G′, type′), f : G → G′ is a typed triple graph morphism iff type = type′ ◦ f .
L(TG) denotes the set of all triple graphs of type TG.

Example 1. Figure 2 depicts a type triple graph on the left, and a typed triple
graph on the right. We choose class diagrams as the source domain and docu-
ments as the target domain. Hexagon-shaped vertices in the middle form the cor-
respondence domain. In our type triple graph, class diagrams consist of Classes
that might have super Classes. Accordingly, hyperlinked documents consist of
Docs (representing documents) that might reference each other via a ref edge
(representing hyperlinks). The correspondence type C2D relates Classes to Docs.
The exemplary typed triple graph to the right conforms to our type triple graph
and represents the same pair of class diagram and documentation model depicted
in Fig. 1, now with explicit correspondences in the middle. The structural differ-
ence between the documentation and its class diagram is the presence of explicit

ferrepus

Fig. 2. (a) A type triple graph and (b) A typed triple graph for the running example

Multi-amalgamated Triple Graph Grammars 91

ref edges to the documents of all transitive super classes. Note that the super
edge between the vertices 3 and 4 represents the inheritance between Employee
and Person in Fig. 1 and will be used in further examples.

Consistent source, correspondence, and target graphs are created simultan-
eously with triple rules. TGGs only support monotonic (i.e., non-deleting) rules
as they are a constructive description for a triple of graph languages. We simplify
the algebraic formalization [4] accordingly for monotonic rules. In this paper, we
consider rules without negative application conditions (NACs) [4] and leave the
lifting of all concepts to TGGs with NACs to future work.

Definition 3 (Monotonic Triple Rules and Derivations).
Given a type triple graph TG, a monotonic triple rule r :
L → R is a typed triple monomorphism with L,R ∈ L(TG).
A direct derivation, denoted as G

r@m===⇒ G′, is constructed by
building a pushout as depicted in the diagram to the right, i.e., by applying r
to a typed triple graph G ∈ L(TG) via a typed triple morphism m : L → G.
The typed triple morphisms m and m′ are referred to as match and comatch,
respectively. We call g a direct derivation morphism.

A sequence d : G
r0@m0====⇒ G1

r1@m1====⇒ . . .
rn@mn====⇒ G′ with respective direct deriva-

tion morphisms {g0, . . . , gn} is a derivation where g = gn ◦ . . . ◦ g0 denotes the
derivation morphism. The decomposition of d into derivations d1 : G

r0@m0====⇒
G1...

ri@mi====⇒ Gi and d2 : Gi
ri+1@mi+1=======⇒ Gi+1 . . .

rn@mn====⇒ G′ is denoted as (d1, d2).

Example 2. Figure 3 depicts two triple rules in an attempt to specify a TGG for
our running example. As triple rules are monotonic, we use a compact syntax
embedding L (context elements, i.e., the precondition of the rule) into R and
depicting created elements (R\L) in green with a ++ mark-up.

:Class

++

:C2D
++

:Doc
++

++

CtoD

++
:Class

++

:C2D :Doc

++

ItoR

:Class :C2D :Doc

Fig. 3. Triple rules for the running example

The first rule CtoD (Class to Document) does not require any elements as context
and creates a class and a document with a correspondence between them. The
second rule ItoR (Inheritance to Reference) requires two classes and their corre-
sponding documents. It creates an inheritance link (super) from one class to the
other, and a hyperlink (ref) between the documents in the same direction.

92 E. Leblebici et al.

A triple rule creates in general a fixed number cS and ct of source and target
elements, respectively. The rule ItoR, for example, creates an inheritance link
(cs = 1) and a hyperlink (ct = 1). As we have discussed at the beginning of
this section, however, after creating a hyperlink we need to repeat three addi-
tional steps to complement all corresponding hyperlinks. In total, the desired
consistency requires the creation of ct = 1+ct1 +ct2 +ct3 target elements, where
ct1 , ct2 , and ct3 are the numbers of hyperlinks to be created for these three cases.
They can only be determined at transformation time for a concrete model triple.

Note that specifying three further separate rules as depicted to
the right to create the missing hyperlinks in retrospect is not a solu-
tion, as the application of these rules cannot be enforced exactly
once for ct1 , ct2 , and ct3 cases. The resulting grammar would allow
missing as well as superfluous transitive hyperlinks, leading to trans-
formations that exhibit undesired behaviour. To express consistency
in situations where the number of elements that are to be related
in one step is unknown at design time of a TGG, we propose the
integration of multi-amalgamation as established in classical graph
transformation, adhering to the rule-based nature of TGGs.

3 Multi-amalgamated Triple Graph Grammars

The Amalgamation Theorem [1] combines applications of two rules (called multi-
rules) over an embedded subrule (kernel rule) application. This concept is gener-
alized to combining an arbitrary number of direct derivations via multi-rules [19],
formalized as multi-amalgamation in [7] within a categorical setting. Single trans-
formation steps in multi-amalgamation are specified as interaction schemes that
consist of a kernel rule and multi-rules that embed this kernel rule. When apply-
ing an interaction scheme to a concrete model, the multi-rules are glued over the
kernel rule depending on the collected multi-rule matches, i.e., the size of the
gluing is first determined at transformation time. With regard to TGGs, there-
fore, interaction schemes can be regarded as a generalization of triple rules with
which consistency of an unknown number of involved elements can be expressed.

Our goal in this section is to integrate multi-amalgamation into the basic
formalization of TGGs. We use the general framework of multi-amalgamation
as introduced in [7] but simplify the algebraic formalization by exploiting the
monotonicity of triple rules. As from now on, we refer to a family of morphisms
or direct derivations that start from the same typed triple graph as a bundle.

Definition 4 (Kernel Rule, Multi-Rule, Interaction
Scheme). Given triple rules r0 and r1, a kernel morphism
k1 : r0 → r1 consists of two typed triple monomorphisms
k1,L : L0 → L1 and k1,R : R0 → R1 such that the square
to the right is a pullback, i.e., r1 at least includes r0 and might
have a remainder. In this case, r0 is called the kernel rule and
r1 the multi-rule. A kernel rule r0 and a set of multi-rules {r1, . . . , rn} with the
respective kernel morphisms {k1, . . . , kn} form an interaction scheme.

Multi-amalgamated Triple Graph Grammars 93

Fig. 4. Interaction scheme ItoR

Example 3. Figure 4 depicts the interaction scheme ItoR consisting of a kernel
rule ItoR0 and three multi-rules ItoR1, ItoR2, and ItoR3 embedding the kernel rule
via the kernel morphisms k1, k2, and k3, respectively. In a multi-rule, the vertices
originating from the kernel rule are highlighted via a gray shading. Consequently,
the white vertices and their incident edges form the remainder after the kernel.
The kernel rule ItoR0 is our original rule from Fig. 3 and creates an inheritance
link between two classes and a hyperlink between the respective super class and
subclass documents. The multi-rule ItoR1 includes the kernel rule and addition-
ally creates a hyperlink from the subclass document to a transitive super class
document. Analogously, ItoR2 creates a hyperlink from a transitive subclass doc-
ument to the super class document. Finally, ItoR3 creates a hyperlink from a
transitive subclass document to a transitive super class document. The remain-
ders of these multi-rules create hyperlinks between two documents as soon as
they are indirectly connected by the kernel part. Hyperlinks for transitive inher-
itance relations of an arbitrary depth can therefore be created.

Next, we consider a bundle of direct derivations consisting of a kernel rule
application and multi-rule applications that embed this kernel rule application.
Moreover, we require maximal and unique multi-rule matches, which is essential
to achieve transformations behaving in line with a for each loop.

Definition 5 (Maximally Amalgamable). Given an interaction scheme s

and a typed triple graph G, let D : {G
rj@mj====⇒ Gj}j=0,...,t be a bundle of direct

derivations, where r0 is the kernel rule of s and {r1, . . . , rt} are multi-rules of
s with the respective kernel morphisms {k1, . . . , kt}. D is amalgamable for s if,
∀p, q ∈ {1, . . . , t} all multi-rule matches are (1) unique, i.e., p 	= q ⇒ mp 	= mq,
and (2) agree on the kernel match m0, i.e., mp ◦ kp = mq ◦ kq = m0. We say D

is maximally amalgamable for s if �dz : G
rz@mz====⇒ Gz such that (D ∪ {dz}) is

amalgamable for s.

Example 4. We now consider the interaction scheme ItoR from Fig. 4, applied to
create the inheritance link between the classes Person and Employee (the vertices

94 E. Leblebici et al.

3 and 4 in Fig. 2) with the corresponding hyperlinks. We assume that all other
inheritance links were already created with all respective hyperlinks. The maxi-
mally amalgamable bundle applies ItoR0 once in order to create the inheritance
link with the corresponding direct hyperlink, ItoR1 twice (by matching the Seri-
alizable and Observable documents as the white vertex), ItoR2 twice (by matching
the Worker and Manager documents as the white vertex), and ItoR3 four times
(by matching the Serializable and Observable documents as the upper white ver-
tex and the Worker and Manager documents as the lower white vertex).

The consolidation of a maximally amalgamable bundle results in a direct
derivation with a multi-amalgamated rule.

Definition 6 (Multi-
Amalgamated Rule). Given an
interaction scheme s, and a bun-

dle D : {G
rj@mj====⇒ Gj}j=0,...,t

of direct derivations that is maxi-
mally amalgamable for s, let K̃ :
{ki = r0 → ri}i=1,...,t be the bun-
dle of respective kernel morphisms
for D. The multi-amalgamated rule
r̃ : L̃ → R̃ is constructed by glu-
ing multi-rules over the kernel rule
via iterated pushouts with the kernel
morphisms in K̃ as depicted to the
right, where the gray region marks
the results after each iteration: The
construction starts with r̃0 = r0, i.e., the kernel rule, and ends with r̃ = r̃t. After
each iteration i ∈ {1, . . . , t}, the pushouts (i)L and (i)R construct L̃i and R̃i,
respectively. The rule morphism r̃i : L̃i → R̃i is induced via the universal prop-
erty of the pushout (i)L, i.e., r̃i◦ui,L = ui,R◦ r̃i−1 and r̃i◦ei,L = ei,R◦ri. We call

G
r̃@m̃===⇒ G′ a multi-amalgamated direct derivation where m̃ is determined by the

multi-rule matches in D, i.e., m̃◦et,L = mt and m̃◦(ut,L◦...◦uq+1,L)◦eq,L = mq,
∀q ∈ {0, . . . , t − 1}.
Example 5. The multi-amalgamated rule for the maximally amalgamable bundle
from Example 4 is constructed by gluing ItoR1 twice, ItoR2 twice, and ItoR3 four
times over ItoR0. Figure 5 depicts this multi-amalgamated rule with its match m̃
where vertices matching the same Doc are merged to one vertex.

Note that such a multi-amalgamated rule is not specified explicitly by the trans-
formation designer but induced given a triple graph at transformation time. The
multi-amalgamated direct derivation d̃ : G

r̃@m̃===⇒ G′ in this case creates one
inheritance link in the source graph and nine hyperlinks in the target graph.

Having introduced interaction schemes of triple rules and multi-amalgamated
direct derivations, we finally define multi-amalgamated TGGs.

Multi-amalgamated Triple Graph Grammars 95

++ ++

++

++

++

++
++

++

++

++

m

Fig. 5. A multi-amalgamated rule an its match for our example

Definition 7 (Multi-amalgamated Triple Graph Grammar). A multi-
amalgamated triple graph grammar TGG = (TG,S) consists of a type triple
graph TG and a set S of interaction schemes. The generated language L(TGG) ⊆
L(TG) is defined as follows:

L(TGG) := {G∅} ∪ {G | ∃d̃ : G∅
r̃1@m̃1====⇒ G1

r̃2@m̃2====⇒ . . .
r̃n@m̃n====⇒ G}, where G∅

is the empty triple graph, each r̃i with i ∈ {1, . . . , n} is a multi-amalgamated
rule derived from an interaction scheme si ∈ S and Gi−1. LS(TGG) denotes all
source graphs in L(TGG), LT (TGG) analogously all target graphs.

Example 6. For a uniform handling, we consider CtoD from Fig. 3 also as an
interaction scheme with an empty set of multi-rules. The interaction schemes
CtoD and ItoR (Fig.4) together with the type triple graph in Fig. 2 consti-
tute a multi-amalgamated TGG, which is indeed able to generate class dia-
grams with multiple inheritance and corresponding documents with all necessary
hyperlinks.

4 Operationalizing Multi-amalgamated TGGs

In this section, our goal is to operationalize interaction schemes in order to
deduce forward and backward transformation steps from a multi-amalgamated
TGG. From an interaction scheme s, we derive source and forward rules to
achieve forward transformation steps that are equivalent to a multi-amalgamated
direct derivation via s. All concepts apply analogously to the backward
direction.

We apply two decompositions to interaction schemes, making use of the Con-
currency Theorem [5], which states that two sequential direct derivations can
be composed to (or decomposed from) a direct derivation with a so-called E-
concurrent rule. The following definition of an E-concurrent rule is a special
case of Definition 5.21 in [4]. We only consider the E-concurrent rule of two

96 E. Leblebici et al.

monotonic rules rx : Lx → Rx and ry : Ly → Ry, where Rx can be embedded
in Ly.

Definition 8 (E-Concurrent Rule). Given triple rules rx :
Lx → Rx and ry : Ly → Ry, a triple morphism e : Rx → Ly,
as depicted to the right, is an E-dependency relation over rx

and ry if the pushout complement (i.e., e∗ : Lx → L and
r∗
x : L → Ly) exists. The corresponding E-concurrent rule

rx ∗E ry is defined as ry ◦ r∗
x : L → Ry

First, we derive so-called complement rules from the multi-rules. A complement
rule accomplishes the remainder of a multi-rule after its kernel [1], i.e., a multi-
rule is an E-concurrent rule of its kernel and complement rule.

As discussed in Sect. 3, multi-amalgamated rules are dynamically constructed
and are used to define the semantics of an interaction scheme for a particular
triple graph at transformation time. Complement rules, by contrast, are statically
constructed to realise multi-amalgamated direct derivations via repeated appli-
cation, representing a practical means of implementing multi-amalgamation [12].

Definition 9 (Complement Rule). Given a kernel
morphism k1 : r0 → r1, the respective complement
rule r1 : L1 → R1 is constructed, as depicted to the
right, such that L1 is a pushout over r0 and k1,L and
R1 = R1. The rule morphism r1 is induced uniquely
via the universal property of the pushout.

Example 7. Figure 6 depicts the complement rules of the interaction scheme ItoR
from Fig. 4. The complement rules ItoR1, ItoR2, and ItoR3 correspond to the
multi-rules ItoR1, ItoR2, and ItoR3, respectively, and only create the transitive
hyperlinks for an existing pair of an inheritance link and a direct hyperlink.

Fig. 6. Complement rules for ItoR

Complement rules allow us to decompose multi-amalgamated direct deriva-
tions into a kernel direct derivation and a sequence of complement direct deriva-
tions. Having required maximal multi-matches in Definition 6, we now define the
analogous characterization for decomposed derivations with complement rule
matches.

Multi-amalgamated Triple Graph Grammars 97

Definition 10 (Maximally Complemented Bundle). Given an interaction
scheme s with the respective set CR of complement rules and kernel rule r0, and
a typed triple graph G, let d0 : G

r0@m0====⇒ G0 be a direct derivation via r0 with
comatch m′

0 and D : {G0
ri@mi====⇒ Hi}i=1,...,t a bundle of direct derivations where

(ri : Li → Ri) ∈ CR with ei : R0 → Li.
D is complemented for d0, if, ∀p, q ∈ {1, . . . , t}, all complement matches

are (1) unique, i.e., p 	= q ⇒ mp 	= mq, and (2) agree on the kernel comatch
m′

0, i.e., mp ◦ ep = mq ◦ eq = m′
0. D is maximally complemented for d0 if

�dz : G0
rz@mz====⇒ Hz such that (D ∪ {dz}) is complemented for d0.

The following lemma states the equivalence of a multi-amalgamated direct
derivation (Definition 6) to a derivation with a kernel and subsequent com-
plement rule applications. The complement rule applications form a maximal
bundle (Definition 10). This yields our first decomposition to operationalize a
multi-amalgamated TGG.

Lemma 1 ((De-)composition of Multi-amalg. Direct Derivations).

Given an interaction scheme s and a typed triple graph G, ∃(d̃ : G
r̃@m̃===⇒ G′) ⇔

∃(d : G
r0@m0====⇒ G0

r1@m1====⇒ G1 . . .
rt@mt====⇒ Gt = G′), where d̃ is a multi-amal-

gamated direct derivation with s and the bundle D : {G0
ri@mi====⇒ Hi}i=1,...,t is

maximally complemented for d0 : G
r0@m0====⇒ G0.

Proof. Using the Multi-Amalgamation Theorem [7], as depicted
to the right, d̃ can be decomposed into (or composed from) a
direct derivation d0 : G

r0@m0====⇒ G0 via the kernel rule r0, and
a subsequent direct derivation q that accomplishes the remain-
der of d̃ via the complement rules of s. As d̃ is constructed via a maximally

amalgamable bundle D : {G
rj@mj====⇒ Hj}j=0,...,t (Definition 5), the remainder q

corresponds to the maximally complemented bundle D : {G0
ri@mi====⇒ Hi}i=1,...,t

applied in one step. Moreover, all direct derivations in D are pairwise parallel
independent as they only require d0. The Parallelism Theorem [6] leads to the
equivalence of q with the sequence G0

r1@m1====⇒ G1 . . .
rt@mt====⇒ Gt. That is, d is

equivalent to (d0, q), and thus to d̃. ��
Definition 11 (Maximally Complemented Derivation). Given a multi-
amalgamated direct derivation d̃ : G

r̃@m̃===⇒ G′ via an interaction scheme s, we
refer to d : G

r0@m0====⇒ G0
r1@m1====⇒ G1 . . .

rt@mt====⇒ Gt = G′, the derivation induced
according to Lemma 1, as maximally complemented for s.

Example 8. The multi-amalgamated direct derivation d̃ presented in Example 5
can be decomposed into (or composed from) a derivation d that is maximally
complemented for ItoR as follows:

98 E. Leblebici et al.

d : G
ItoR0@m0======⇒ G0

ItoR1@m1======⇒ G1
ItoR1@m2======⇒ G2

ItoR2@m3======⇒ G3
ItoR2@m4======⇒ G4

ItoR3@m5======⇒
G5

ItoR3@m6======⇒ G6
ItoR3@m7======⇒ G7

ItoR3@m8======⇒ G8 = G′

This corresponds to the creation of an inheritance link and a direct hyperlink
with the kernel rule, and eight transitive hyperlinks with complement rules.

Next, we apply basic operationalization results [3,17] for TGGs to kernel
and complement rules in order to decompose them further into their source and
forward rules. A source rule creates only source elements while the respective
forward rule creates the correspondence and target elements. Thus, each kernel
and complement rule is an E-concurrent rule of its source and forward rule. We
apply this decomposition to kernel and complement rules, yielding a static con-
struction of operationalized rules that together can achieve a multi-amalgamated
direct derivation.

Definition 12 (Source and For-
ward Rules). Given a triple rule r :
L → R with L = LS ← LC → LT

and R = RS ← RC → RT , a source
rule sr : SL → SR is constructed
such that SL = LS ← ∅ → ∅ and
SR = RS ← ∅ → ∅, and a forward rule fr : FL → FR is constructed such that
FL = RS ← LC → LT and FR = RS ← RC → RT . The rule morphisms sr
and fr are induced, as depicted in the diagram, such that r is an E-concurrent
rule (Definition 8) of sr and fr. We call the E-dependency relation e : SR → FL
source rule embedding. Given a kernel morphism k1 : r0 → r1, we call sr0 (fr0)
the kernel source (forward) rule and sr1 (fr1) the complement source (forward)
rule.

Example 9. Fig. 7 depicts the source and forward rules derived from the kernel
and complement rules of the interaction scheme ItoR. The kernel source rule
sItoR0 creates an inheritance link between two classes while the kernel forward

Fig. 7. Source and forward rules for ItoR

Multi-amalgamated Triple Graph Grammars 99

rule fItoR0 requires such an inheritance link and creates a hyperlink between
the corresponding documents. The complement source rules sItoR1, sItoR2, and
sItoR3 are identical (as ItoR1, ItoR2, and ItoR3 are identical in their source parts),
and require an inheritance link without creating any elements. The complement
forward rules fItoR1, fItoR2, and fItoR3 create a transitive hyperlink in accordance
with ItoR1, ItoR2, and ItoR3, respectively.

Source and forward rules enable us to decompose a derivation with triple
rules via the Concurrency Theorem [5] into a source and forward derivation.
The former creates the elements of a source graph via source rules while the
latter extends it to a triple via forward rules. Inversely, a derivation with triple
rules can be composed from such a source and forward derivation.

Fact 1 ((De-)composition of Derivations with Triple Rules). Given
triple rules {r0, . . . , rt} with their respective source rules {sr0, . . . , srt}, forward
rules {fr0, . . . , frt}, and source rule embeddings {e0, . . . , et},
∃(d : G

r0@m0====⇒ G0 . . .
rt@mt====⇒ Gt) ⇔ ∃(sfd : G

sr0@sm0=====⇒
Gs0 . . .

srt@smt=====⇒ Gst

fr0@fm0======⇒ Gf0 . . .
frt@fmt=====⇒ Gft

= Gt) where each for-
ward rule match fmi is determined by ei and the source rule comatch sm′

i, i.e.,
gi ◦ sm′

i = fmi ◦ ei while gi is the derivation morphism Gs0 → Gst
for i = 0 and

Gsi
→ Gfi−1 for i > 0.

Proof. For the proof we refer the interested reader to Theorem 1 in [3]. ��
Fact 1 is a general (de-)composition result for derivations with triple rules. Hav-
ing kernel and complement rules as triple rules in case of a multi-amalgamated
TGG, we apply Fact 1 to a maximally complemented derivation (Definition 11)
in order to achieve an equivalent derivation with source and forward rules derived
from the kernel and complement rules of an interaction scheme.

Definition 13 (Maximally Complemented Source-Forward Deriva-

tion). Given a derivation d : G
r0@m0====⇒ G0

r1@m1====⇒ G1 . . .
rt@mt====⇒ Gt that is

maximally complemented for an interaction scheme s, we refer to the deriva-

tion sfd : G
sr0@sm0=====⇒ Gs0

sr1@sm1=====⇒ Gs1 . . .
srt@smt=====⇒ Gst

fr0@fm0======⇒ Gf0

fr1@fm1======⇒
Gf1 . . .

frt@smt=====⇒ Gft
= Gt, induced according to Fact 1, as a maximally comple-

mented source-forward derivation for s.

Finally, both (de-)compositions from Lemma1 and Fact 1 lead to the equiva-
lence of a multi-amalgamated direct derivation (Definition 6) and a maximally
complemented source-forward derivation (Definition 13). The former describes a
canonical and multi-amalgamated step for building up consistent triples while
the latter is a conforming transformation step with source and forward rules.

100 E. Leblebici et al.

Theorem 1 (Multi-amalgamation with Source-Forward Derivations).

Given an interaction scheme s and a typed triple graph G, ∃(d̃ : G
r̃@m̃===⇒ G′) ⇔

∃(sfd : G
sr0@sm0=====⇒ Gs0

sr1@sm1=====⇒ Gs1 . . .
srt@smt=====⇒ Gst

fr0@fm0======⇒ Gf0

fr1@fm1======⇒
Gf1 . . .

frt@smt=====⇒ Gft
= G′), where d̃ is a multi-amalgamated direct derivation

with s and sfd is a maximally complemented source-forward derivation for s.

Proof. ∃d̃ ⇐⇒ ∃d (Lemma 1) and ∃d ⇐⇒ ∃sfd (Fact 1) where the intermediate
derivation d is a maximally complemented derivation for s (Definition 10). ��
Example 10. d from Example 8, whose equivalence to d̃ from Example 5 is shown
by applying Lemma1, can be further decomposed into (or composed from) the
following derivation sfd by applying Fact 1:

sfd : G
sItoR0@sm0=======⇒ Gs0

sItoR1@sm1=======⇒ Gs1

sItoR1@sm2=======⇒ Gs2

sItoR2@sm3=======⇒
Gs3

sItoR2@sm4=======⇒ Gs4

sItoR3@sm5=======⇒ Gs5

sItoR3@sm6=======⇒ Gs6

sItoR3@sm7=======⇒ Gs7

sItoR3@sm8=======⇒
Gs8

fItoR0@fm0=======⇒ Gf0

fItoR1@fm1=======⇒ Gf1

fItoR1@fm2=======⇒ Gf2

fItoR2@fm3=======⇒ Gf3

fItoR2@fm4=======⇒
Gf4

fItoR3@fm5=======⇒ Gf5

fItoR3@fm6=======⇒ Gf6

fItoR3@fm7=======⇒ Gf7

fItoR3@fm8=======⇒ Gf8 = G′.

The overall decomposition in this case corresponds to the transformation of an
inheritance link to nine hyperlinks using source and forward rules derived from
kernel and complement rules.

5 Model Transformation with Multi-amalgamated TGGs

Having discussed the (de-)composition of multi-amalgamated direct derivations,
we now apply our results to entire multi-amalgamated derivations, which gener-
ate the language of a TGG. This yields a notion of source-forward transforma-
tion, stating how a source graph GS can be created via kernel and complement
source rules and extended to a triple GS ← GC → GT via kernel and com-
plement forward rules. All results are analogously applicable in the backward
direction.

Definition 14 (Source-Forward Transformation). Given a multi- amalga-
mated TGG with a set S of interaction schemes and a source graph GS ∈
LS(TGG), a source-forward transformation for GS is a derivation SFTGS

:
(sfd1, . . . , sfdn) which (1) starts from the empty graph G∅, (2) creates a typed
triple graph G : GS ← GC → GT , i.e., GS is the source graph of G, and (3) con-
sists of maximally complemented source-forward derivations sfdi, i ∈ {1, . . . , n},
for an interaction scheme si ∈ S.

Remark: In a source-forward transformation, each maximally complemented
source-forward derivation sfdi is sorted in itself such that a source sequence is
followed by a forward sequence, yielding together one multi-amalgamated trans-
formation step (cf. Theorem 1). For readability, we do not undertake this sorting

Multi-amalgamated Triple Graph Grammars 101

across different steps. Our proofs in the following, nonetheless, remain straight-
forwardly applicable to completely sorted source-forward transformations as a
consequence of Fact 1, which holds orthogonally to multi-amalgamation.

Theorem 1 leads to the fact that a source-forward transformation can be com-
posed to a sequence of multi-amalgamated direct derivations. A source-forward
transformation thus produces a typed triple graph that is in the language of a
multi-amalgamated TGG (Definition 7), referred to as correctness.

Theorem 2 (Correctness of SFT with Multi-amalgamated TGGs).
Given a multi-amalgamated TGG, each source-forward transformation SFTGS

is correct, i.e., produces a typed triple graph G ∈ L(TGG).

Proof. Let SFTGS
: (sfd1, . . . , sfdn) where each sfdi with i ∈ {1, . . . , n} is a

maximally complemented source-forward derivation for an interaction scheme
si. Applying Theorem1 to each sfdi, we get a derivation d̃ : (d̃1, . . . , d̃n) such
that each d̃i is a multi-amalgamated direct derivation via si and d̃ is equivalent
to SFTGS

. That is, SFTGS
produces a G ∈ L(TGG) according to Definition 7.

��
Furthermore, Theorem 1 shows the decomposability of each multi-amalgamated
direct derivation, and thus guarantees a forward transformation for each source
graph GS ∈ LS(TGG), referred to as completeness.

Theorem 3 (Completeness of SFT with Multi-amalgamated TGGs).
Given a multi-amalgamated TGG, there exists a source-forward transformation
SFTGS

for each GS ∈ LS(TGG).

Proof. Having GS ∈ LS(TGG), there is a derivation d̃ : (d̃1, . . . , d̃n) such
that d̃ creates a typed graph triple G : GS ← GC → GT and every d̃i

with i ∈ {1, . . . , n} is a multi-amalgamated direct derivation for an interaction
scheme si (Definition 7). Applying Theorem 1 to each d̃i, we get a derivation
SFTGS

: (sfd1, . . . , sfdn) such that each sfdi is a maximally complemented
source-forward derivation for si. ��

6 Related Work

In the following, we consider two groups of related work: (1) alternative
approaches to multi-amalgamation, which could also have been used to extend
TGGs, and (2) other bidirectional languages and their support for “for each”.

Alternatives to Multi-amalgamation: Although different extensions to
graph transformation exist for transforming arbitrarily many occurrences of cer-
tain patterns, to the best of our knowledge none of them have been integrated
into TGGs. PROGRES [18] features set nodes that are to be matched optionally
once (or at least once) and arbitrarily often. Multi-amalgamation is more expres-
sive than set nodes as it handles multiple occurrences of graph patterns rather
than single nodes. Extensions such as collection operators [8], cloning [10], or

102 E. Leblebici et al.

rule quantification [15] indicate that certain parts of a rule can be repeated. It is,
however, challenging to determine how these extensions interact with splitting
up triple rules into source and forward rules. Multi-amalgamation is the most
natural way for TGGs to describe repetitions, as repeated parts are formalized
via morphisms between plain rules. Basic source and forward rule construction
results [3,17] remain directly applicable to kernel and complement rules. Never-
theless, rule quantification in [15] allows for hierarchical nesting of multi-rules,
demonstrated in [16] on examples beyond the capabilities of multi-amalgamation.
However, (de-)composition results such as complement rule construction and the
Multi-Amalgamation Theorem [7], which enable a viable integration into TGGs
as we discuss, are yet to be adapted for hierarchical multi-rules.

Bidirectional Languages: GRoundTram [9], a bidirectional programming app-
roach, features queries that are bidirectionally interpreted and inherently not
bounded to a constant number of elements. Similarly, the QVT (Query, View,
Transformation) standard [14], in particular QVT-R (QVT-Relations), features
language constructs (e.g., forall or closure) or recursive rule invocations to
address the consistency of an unbounded number of involved elements. Adopt-
ing the QVT-R syntax, bidirectional approaches such as Echo [13], JTL [2],
and medini QVT [11] allow for a constraint-based specification of consistency,
and find consistent models by checking and enforcing constraint satisfaction.
Although such approaches are more expressive than TGGs, TGGs have, nonethe-
less, gained acceptance due to efficient, scalable implementations and their
constructive formal foundation based on graph transformation. Increasing the
expressiveness of TGGs, however, is essential to ensure their competitiveness in
an MDE context. Our contribution takes a step towards this goal.

7 Conclusion and Future Work

In this paper, we integrated the multi-amalgamation concept into TGGs. This
enables us to derive forward and backward transformation steps that transform
and create an unbounded number of elements where the number is determined
via concrete models at transformation time. The achieved extension increase the
capabilities of TGGs while adhering to their rule-based and declarative nature.

Further tasks for future work include support for (i) incremental model syn-
chronization with multi-amalgamated TGGs, (ii) critical pair analysis [4] to
ensure efficient model synchronization, (iii) consistency checks between existing
models, (iv) hierarchical multi-rules comparable to nested for each loops and
(v) NACs in interaction schemes to further increase expressiveness.

References

1. Boehm, P., Fonio, H.R., Habel, A.: Amalgamation of graph transformations: a
synchronization mechanism. JCSS 34(2–3), 377–408 (1987)

Multi-amalgamated Triple Graph Grammars 103

2. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: JTL: a bidirectional and
change propagating transformation language. In: Malloy, B., Staab, S., van den
Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 183–202. Springer, Heidelberg
(2011)

3. Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information preserving
bidirectional model transformations. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007.
LNCS, vol. 4422, pp. 72–86. Springer, Heidelberg (2007)

4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, Heidelberg (2006)

5. Ehrig, H., Habel, A., Kreowski, H.J., Parisi-Presicce, F.: Parallelism and concur-
rency in high-level replacement systems. MSCS 1(03), 361–404 (1991)

6. Ehrig, H., Kreowski, H.J.: Parallelism of manipulations in multidimensional infor-
mation structures. In: Mazurkiewicz, A. (ed.) MFCS 76. LNCS, vol. 45, pp. 285–
293. Springer, Heidelberg (1976)

7. Golas, U., Ehrig, H., Habel, A.: Multi-amalgamation in adhesive categories. In:
Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol.
6372, pp. 346–361. Springer, Heidelberg (2010)

8. Grønmo, R., Krogdahl, S., Møller-Pedersen, B.: A collection operator for graph
transformation. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 67–82.
Springer, Heidelberg (2009)

9. Hidaka, S., Hu, Z., Inaba, K., Kato, H., Nakano, K.: GRoundTram: an integrated
framework for developing well-behaved bidirectional model transformations. In:
Alexander, P., Pasarenau, C.S., Hosking, J.G. (eds.) ASE 2011, pp. 480–483 (2011)

10. Hoffmann, B., Janssens, D., Van Eetvelde, N.: Cloning and expanding graph trans-
formation rules for refactoring. ENTCS 152, 53–67 (2006)

11. Ikv++: Medini QVT. http://projects.ikv.de/qvt
12. Leblebici, E., Anjorin, A., Schürr, A.: Tool support for multi-amalgamated triple

graph grammars. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015. LNCS,
vol. 9151, pp. 257–265. Springer, Heidelberg (2015)

13. Macedo, N., Cunha, A.: Implementing QVT-R bidirectional model transformations
using alloy. In: Cortellessa, V., Varró, D. (eds.) FASE 2013 (ETAPS 2013). LNCS,
vol. 7793, pp. 297–311. Springer, Heidelberg (2013)

14. OMG: QVT Specification, V1.1 (2011). http://www.omg.org/spec/QVT/1.1/
15. Rensink, A.: Nested quantification in graph transformation rules. In: Corradini,

A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS,
vol. 4178, pp. 1–13. Springer, Heidelberg (2006)

16. Rensink, A., Kuperus, J.H.: Repotting the geraniums : on nested graph transfor-
mation rules. In: Boronat, A., Heckel, R. (eds.) GT-VMT 2009, ECEASST, vol.
18. EASST (2009)

17. Schürr, A.: Specification of graph translators with triple graph grammars. In: Tin-
hofer, G., Schmidt, G., Ernst, W.M. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1994)

18. Schürr, A.: Programmed graph replacement systems. In: Rozenberg, G. (ed.) Hand-
book on Graph Grammars: Foundations, pp. 479–546. World Scientific (1997)

19. Taentzer, G.: Parallel and Distributed Graph Transformation : Formal Description
and Application to Communication-Based Systems. Ph.D. thesis (1996)

http://projects.ikv.de/qvt
http://www.omg.org/spec/QVT/1.1/

Reconfigurable Petri Nets with Transition
Priorities and Inhibitor Arcs

Julia Padberg(B)

Hamburg University of Applied Sciences, Hamburg, Germany
julia.padberg@haw-hamburg.de

Abstract. In this paper we introduce additional control structures for
reconfigurable Petri nets. The main contributions are inhibitor arcs and
transition priorities for reconfigurable Petri nets. The first ensure that
a marking can inhibit the firing of a transition. Inhibitor arcs allow a
transition to fire only if the adjacent place is empty. Transition priori-
ties are given by an order of transitions and restrict the firing as well.
A transition may fire only if it has the highest priority of all enabled tran-
sitions. Both concepts are compatible with reconfigurable Petri nets. In
this paper we prove that place/transitions nets with inhibitor arcs and
with transition priorities yield M-adhesive categories. Hence, we obtain
the well-known results for M-adhesive categories. Moreover, we state the
extension of our results to other types of Petri nets.

We illustrate the new concepts within an ongoing case study concern-
ing travel agencies. This study deals with the organisation of processes
that are constantly suspended by others. The main focus of the case study
is to investigate the possibilities of small and medium travel agencies to
provide a continuous service for their customers while travelling.

Keywords: Reconfigurable Petri nets · Category of partially ordered
sets · Inhibitor arcs · Transition priorities · M-adhesive transformation
system

1 Introduction

Reconfigurable Petri nets consist of a Petri net with a marking and a set of
rules whose application modifies the net’s structure at runtime. Typical applica-
tion areas are concerned with the modelling of dynamic structures, for example
workflows in a dynamic infrastructure. They can be considered to be a family of
formal modelling techniques based on different types of Petri nets (for example in
[11,12,16,20,26]). Their motivation is the observation that in increasingly many
application areas the underlying system has to be dynamic in a structural sense.
Complex coordination and structural adaptation at run-time (e.g. mobile ad-hoc
networks, communication spaces, ubiquitous computing) are main features that
need to be modelled adequately. The distinction between the net behaviour and
the dynamic change of its net structure is the characteristic feature that makes
reconfigurable Petri nets so suitable for systems with dynamic structures.
c© Springer International Publishing Switzerland 2015
F. Parisi-Presicce and B. Westfechtel (Eds.): ICGT 2015, LNCS 9151, pp. 104–120, 2015.
DOI: 10.1007/978-3-319-21145-9 7

Reconfigurable Petri Nets with Transition Priorities and Inhibitor Arcs 105

In a motivating example (see Sect. 3) the two possibilities of modelling change
are used for separating common processes from additional processes being intro-
duced for special purposes. The main problem is the best order of the assignment
of pending tasks to the employees. In this case study we found that the use of
transition priorities is really helpful. Reconfigurable Petri nets are given as a
transformation system, that is formulated in terms of category theory, so called
M-adhesive transformation systems. Transition priorities are easy to define but
they are difficult to integrate into M-adhesive categories. In Sect. 5 we investi-
gate the category of partial orders, prove it to be an M-adhesive category and
obtain by comma category constructions the intended category of PT nets with
transition priorities. Inhibitor arcs can be achieved by a straightforward exten-
sion of Petri nets, so they are presented in brief. Since we use algebraic high-level
nets in the case study, we discuss the transfer of results for PT nets to other
kinds of Petri nets.

The paper is organized as follows: First we summarize reconfigurable
place/transition (PT) nets (see Sect. 2). Then an example is presented in Sect. 3
motivating the addition of transition priorities. A short review of M-adhesive
transformation systems is given in Sect. 4. Subsequently, Sect. 5 extends the tran-
sitions with a partial order, describing the priorities between the transitions. We
employ the category of partial orders PoSets and obtain an M-adhesive cate-
gory of PT nets with transition priorities. Then (in Sect. 6) we add inhibitor arcs
to PT nets and show that they yield an M-adhesive category as well. Related
work concerns other kinds of control structures for reconfigurable Petri nets (see
Sect. 7) and we close with some remarks on future work.

2 Reconfigurable Petri Nets

In this section we introduce reconfigurable Petri nets, where the main focus is
on place/transition nets, but other types of Petri nets are discussed as well.

2.1 Reconfigurable Place/Transition Nets

In the algebraic approach to Petri nets a (marked) place/transition net is given
by N = (P, T, pre, post,M0) with pre- and post-domain functions pre, post : T →
P⊕ and an initial marking M0 ∈ P⊕, where P⊕ is the free commutative monoid
over the set P of places. For M1,M2 ∈ P⊕ we have M1 ≤ M2 if M1(p) ≤ M2(p)
for all p ∈ P . A transition t ∈ T is M -enabled for a marking M ∈ P⊕ if
we have pre(t) ≤ M , and in this case the follower marking M ′ is given by
M ′ = M � pre(t) ⊕ post(t) and M [t〉M ′ is called firing step.

Net morphisms map places to places and transitions to transitions. They
are given as a pair of mappings for the places and the transitions, so that
the net structure is preserved. Given two (PT) place/transition nets Ni =
(Pi, Ti, prei, posti,Mi) for i ∈ {1, 2} a net morphism f : N1 → N2 is defined
by f = (fP : P1 → P2, fT : T1 → T2), so that the following equations hold:

106 J. Padberg

1. pre2 ◦ fT = f⊕
P ◦ pre1 and post2 ◦ fT = f⊕

P ◦ post1
2. M1(p) ≤ M2(fP (p)) for all p ∈ P1

Moreover, the morphism f is called strict if both fP and fT are injective and
M1(p) = M2(fP (p)) holds for all p ∈ P1. PT nets together with net morphisms
comprise the category PT.

M-adhesive transformation systems (see Sect. 4) can be considered as a uni-
fying framework for graph and Petri net transformations providing enough struc-
ture that most notions and results from algebraic graph transformation systems
are available, as results on parallelism and concurrency of rules and transforma-
tions, results on negative application conditions and constraints, and many more
results (see [7,8]). A rule in the DPO approach is given by three nets called left
hand side L, interface K and right hand side R, respectively, and a span of two
strict net morphisms K → L and K → R.

Additionally, an occurrence morphism o : L → N is required that identifies
the relevant parts of the left hand side in the given net N . Then a transformation

step N
(r,o)
=⇒ M via rule r can be constructed in two steps. Given a rule with an

occurrence o : L → N the gluing conditions have to be satisfied in order to
apply a rule at a given occurrence . These conditions ensure the result is again
a well-defined net. It is a sufficient condition for the existence and uniqueness
of the so-called pushout complement which is needed for the first step in a
transformation.

Fig. 1. Transformation of a net

In this case, we obtain a net M leading to

a direct transformation N
(r,o)
=⇒ M consisting of

the following pushouts (1) and (2) in Fig. 1. This
construction as well as a huge amount of notion
and results are available since PT nets can be
proven to be an M-adhesive transformation cat-
egory (see [7]). Hence we can combine one net
together with a set of rules leading to reconfigurable PT nets.

Definition 1 (Reconfigurable PT Nets). A reconfigurable PT net RN =
(N,R) is given by a PT net N and a set of rules R.

2.2 Other Types of Reconfigurable Petri Nets

Decorated place/transition nets [22] extend PT nets. They are the basis for the
tool ReConNet[6] and provide additional decorations for PT nets: capacities,
names for places as well as transitions and additional transition labels that can be
changed by firing that transition. This last concept allows a better coordination of
transition firing and rule application, for example to ensure that a transition has
fired (repeatedly) before a transformation step may take place. This extension is
conservative with respect to PT nets as it does not change the net behaviour, but
it is crucial for the application of the rules and provides the possibility to control
the application of rules. Decorated PT nets together with net morphisms, which
additionally preserve the decorations, yield the category decoPT.

Reconfigurable Petri Nets with Transition Priorities and Inhibitor Arcs 107

Algebraic high-level (AHL) nets (as used in Sect. 3) extend PT nets by
allowing net inscriptions with terms over a given signature Σ and by inter-
preting tokens as data elements over a Σ-algebra. An AHL net AN =
(Σ,P, T, pre, post, cond, type,A,M0) consists of

– an algebraic signature Σ = (S,OP,X) with additional variables X,
– a set of places P and a set of transitions T ;
– pre- and post domain functions pre, post : T → (TΣ(X) ⊗ P)⊕;
– firing conditions cond : T → Pfin(Eqns(Σ;X));
– a type of places type : P → S;
– a (Σ,E)-algebra A and
– a marking M0 ∈ (A ⊗ P)⊕,

where TΣ(X) is the set of terms with variables over X, (TΣ(X) ⊗ P) =
{(term, p)|term ∈ TΣ(X)type(p), p ∈ P}, (A ⊗ P) = {(a, p)|a ∈ Atype(p), p ∈
P} and Eqns(Σ;X) are all equations over the signature Σ with variables X.
An AHL-net morphism f : AN1 → AN2 is given by f = (fP , fT) with functions
fP : P1 → P2 and fT : T1 → T2 satisfying

(1) (id ⊗ fP)⊕ ◦ pre1 = pre2 ◦ fT and (id ⊗ fP)⊕ ◦ post1 = post2 ◦ fT ,
(2) cond2 ◦ fT = cond1 and
(3) type2 ◦ fP = type1.

and leads to the category defined by AHL nets and AHL net morphisms, denoted
by AHL.

3 Motivating Example

In this section we give a motivating example taken from a case study concerning
workflows in a small travel agency.

The increasing possibilities of the internet to plan journeys and to buy travel
product has led to a severe decline of the market for travel agencies. In Germany
there are about 9.729 travel agencies in 2013, down from 13.753 in 2004 (see [29]).
Today one of the buzz words in the travel and tourism industry is personalized
traveller journey. The main focus of the major computer reservations systems
companies, also known as global distribution systems (e.g., Galileo, Amadeus,
SABRE) shifts to delivering continually and consistently the products and ser-
vices directly to customers. Due to technological change and the demand for
more personalization many global distribution systems increasingly sell prod-
ucts to travellers directly (see e.g. [31]). This tendency is a further threat for
small and medium travel agencies. Our case study aims at supporting small and
medium travel agencies to provide direct and instantaneous personal support of
their customers. So, they can compete against larger companies by providing
truly personal support. This results in complex and suspended processes for the
employees of the travel agency, the travel agents.

108 J. Padberg

We investigate the actual processes and model them as algebraic high-level
nets. In Fig. 2 a reduced example is given. The additional tasks that arise through
the new task of personal support of travelling customers are modelled by rules
(see Fig. 3) that suspend the actual process and implement the new tasks. In
Fig. 2 an algebraic high-level (AHL) net is given, that illustrates some of the
tasks of the travel agents. The signature and the algebra are merely hinted at
and deliver the inscriptions and the data elements used in the net. The net
inscriptions comprise sorts that determine the type of the tokens in a place,
arc inscriptions with terms and firing conditions given as equations in the left
bottom of the transition box. The tokens are data elements of the algebra. A
travel agent’s role is to help customers plan, choose and arrange their travel. In
our case study the main focus is the advising of customers. This can be done via
phone, email or directly when the customer is in the agency’s office. In principle
the travel agent is either in direct contact with the customer or is concerned with

Fig. 2. Simplified model of processes in the travel agency

Reconfigurable Petri Nets with Transition Priorities and Inhibitor Arcs 109

tasks as booking options, confirmation by the customer, travel confirmation,
ticket issuing, ticket delivery to customers, filing, updating customer payments,
accounting organizers payment, and so on. If the agent is idle there are clear
priorities, the customer in the agency is served first, then the phone queue and
subsequently the email requests (not illustrated in Fig. 2) are processed, and
at last the tasks without customer contact are taken up. This order of tasks is
modelled by the transitions (the boxes in Fig. 2) and their priorities (the number
in the right bottom of the transition box). Since not all transitions are provided
with priorities, those without are not considered for the prioritisation.

The signature of an AHL net provides the syntax for the net inscriptions,
i.e., sorts, terms and equations. The signature TA is sketched here by
TA = Queue + Customer + TravelData+
sorts : TravelAgent, TAwithC, . . .
opns : (,) : TravelAgent × Customer → TAwithC

...
The TA-algebra A = (ATravelAgent, ACustomer, . . .) consists of sets and opera-
tions according to the signature:

– ATravelAgent = {Jens,Geli, Jamaine, Torsten, . . .},
– ACustomer the set of all customers and so on. . .

(a) Inserting personal support process (b) Inserting queue for personal support

Fig. 3. Exemplary rules

110 J. Padberg

This AHL net models essentially the processes that occur without the additional
tasks of supporting travelling customers. The following rules model the insertion
of processes that deal with handling the interruption by a VIP-customer that is
dealt on demand. Nevertheless, the process of advising customers in person or
by phone, cannot be suspended. Hence, the rules can only be applied to places
that are not typed with the sort TAwithC. In Fig. 3 two exemplary rules are
given, where parts of the negative application conditions NAC are omitted. The
rule in Fig. 3(a) models the insertion of the personal support process for the first
customer. The rule in Fig. 3(b) models the insertion of a queue for processing
the personal support. In both cases a transition is inserted into the AHL with a
higher priority than the other transitions in the net.

4 Review of M-Adhesive Transformation Systems

The theory of M-adhesive transformation systems1 has been developed as an
abstract framework for different types of graph and Petri net transformation sys-
tems [7,10]. They have been instantiated with various graphs, e.g., hypergraphs,
attributed and typed graphs, but also with structures, algebraic specifications
and various Petri net classes, as elementary nets, place/transition nets, Col-
ored Petri nets, or algebraic high-level nets [7]. The fundamental construct for
M-adhesive categories and systems are M-van Kampen squares [10,18]2

Definition 2 (M-Van Kampen square). A pushout (1) with m ∈ M is an
M-van Kampen square, if for any commutative cube (2) with (1) in the bottom
the back faces being pullbacks, the following holds: the top is pushout ⇔ the front
faces are pullbacks.

A m∈M ��

f

��

B

g

��
C n �� D

(1)

A′

a

��

f ′�����

������� m′
��

����
C ′

c

��

n′
��

����
B′

b

��

g′��

����������

D′

d

��

A

f��������

����
m

���

�����
C

n
���

�����
B

g�����

�������
D

(2)
M-adhesive transformation systems can be seen as an abstract transformation
systems in the double pushout approach based on M-adhesive categories [10].

Definition 3 (M-Adhesive Category). A class M of monomorphisms in C
is called PO-PB compatible, if
1 See page 2 in [9] for the relation to other types of HLR systems.
2 For a discussion of the various adhesive categories see page 6 in [9].

Reconfigurable Petri Nets with Transition Priorities and Inhibitor Arcs 111

1. Pushouts along M-morphisms exist and M is stable under pushouts.
2. Pullbacks along M-morphisms exist and M is stable under pullbacks.
3. M contains all identities and is closed under composition.

Given a PO-PB compatible class M of monomorphisms in C, then (C,M) is
called M-adhesive category, if pushouts along M-morphisms are M-Van Kam-
pen squares (see Definition 2). An M-adhesive transformation system AHS =
(C,M, P) consists of an M-adhesive category (C,M) and a set of rules P .

Remark 1. The following kinds of Petri nets yield M-adhesive categories:

– PT nets and morphisms as given in Sect. 2 yield an M-adhesive category PT
(see [7]).

– Algebraic high-level nets as given in Sect. 2 have been shown in [25] to be an
M-adhesive category AHL for M being the class of strict morphisms3.

– In [22] it is shown that decorated place/transition nets yield an M-adhesive
transformation category decoPT for M being the corresponding class of strict
morphisms.

5 Transition Priorities

The set of transitions T is equipped with a partial order ≤ on the transitions.
A transition t is enabled under a marking M , if pre(t) ≥ M and if there is no
t′ being enabled under M so that t ≤ t′. As we have discussed in Sect. 3 this
allows using priorities only for a subset of transitions and extends the original
approach [2] to transition priorities.

We first need to investigate the category PoSets of partially ordered sets.
Note, it is not a partial order considered to be a category, but the category of
all partial orders with order-preserving maps as morphisms. In [5] this category
has been examined thoroughly.

Definition 4 (Category PoSets). The objects are partially ordered sets, given
by a set P and a partial order ≤ over P . The morphisms in this category are
order-preserving maps, that are maps f : P1 → P2 preserving the order, so x ≤ y
implies f(x) ≤ f(y).

Composition and identity are defined as for sets and are both order-preserving,
so PoSets is indeed a category [5]. The relation to the category of sets can be
given by an adjunction.

Lemma 1 (Adjunction between Sets and PoSets). The left adjoint func-

tor F : Sets → PoSets is given by F (S
f→ S′) = (S, IDS)

f→ (S′, IDS′)
where IDS is the identity relation over a set S. The right adjoint functor
G : PoSets → Sets is defined by G((P,≤P)

g→ (P ′,≤P ′)) = P
g→ P ′.

3 In [25] they are called AHL-systems with morphisms that are isomorphisms on the
algebra part.

112 J. Padberg

The counit is the natural transformation ε : F ◦ G → 1PoSets with εM = idM

an order-preserving map. The unit is the natural transformation η : 1Sets →
G ◦ F with ηM = idM .

Proof. Obviously, since the composition of identities leads to the identity with
εF (S) ◦ F (ηS) = idF (S) ◦ F (idS) = idF (S) and G(ε(S,R)) ◦ ηG(S,R) = idG(S,R) ◦
idG(S,R) = idG(S,R).

So, we know that F preserves colimits ans G preserves limits. As pushouts are
the most prominent construction in the DPO approach, we prove finite cocom-
pleteness by existence of initial objects and pushouts.

Lemma 2 (Initial Object and Pushouts in PoSets).

1. The initial object is (∅, ∅).

2. Given the span (P1,≤1)
f← (P0,≤0)

g→ (P2,≤2), then there exists the pushout

(P1,≤1)
g′
→ (P3,≤3)

f ′
← (P2,≤2).

Proof. 1. The initial object is (∅, ∅) as there is the empty mapping to each
partially ordered set in PoSets and it is order preserving.

2. For (P1,≤1)
f← (P0,≤0)

g→ (P2,≤2) there is in Sets the span P1
f← P0

g→ P2

and its pushout P1
g→ P3

f← P2, see pushout (PO) in Diagram 4 and the
relation R3 ⊆ P3 × P3 with

(x3, y3) ∈R3 if and only if
∃x1, y1 ∈ P1 : g(x1) = x3 ∧ g(y1) = y3 ∧ x1 ≤1 y1 (3)

∨ ∃x2, y2 ∈ P2 : f(x2) = x3 ∧ f(y2) = y3 ∧ x2 ≤2 y2

Since R3 is not a partial order4, we define the relation R3 to be the equiva-
lence closure of all symmetric pairs {(x3, y3) | (x3, y3), (y3, x3) ∈ R3} ⊆ R3.
Then we have the quotient P3 = P3|R3

with g′ := [] ◦ g : P1 → P3 and
f ′ := [] ◦ f : P2 → P3, where [] : P3 → P3|R3

= P3 is the natural function
mapping each element of P3 to its equivalence class.
The relation ≤3 is the transitive closure of
{(x3, y3) |

x1 ≤1 y1 for g′(x1) = x3 and g′(y1) = y3
or
x2 ≤2 y2 for f ′(x2) = x3 and f ′(y2) = y3}

≤3 is a partial order, as it is reflexive, antisymmetric and transitive and f ′

and g′ are order-preserving maps by construction.

4 For example, let P0 = {0, 5} and P1 = {0, 3, 5} with f the inclusion and P2 = {•},
then 3 ≤1 5 yields ([3], [•]) ∈ R3 and 0 ≤1 3 yields ([•], [3]) ∈ R3, but [•] = {0, 5} �=
{3} = [3].

Reconfigurable Petri Nets with Transition Priorities and Inhibitor Arcs 113

Subsequently we prove that (P1,≤1)
g′
→ (P3,≤3)

f ′
← (P2,≤2) is the pushout of

(P1,≤1)
f← (P0,≤0)

g→ (P2,≤2) in the category of partially ordered sets PoSets:

Obviously g′ ◦ f = f ′ ◦ g.
Given a partially ordered set
(P4,≤4) with g′′ ◦ f = f ′′ ◦ g in
PoSets, then we have h : P3 → P4

in Sets due to the pushout (PO)
in the diagram to the right. So, we
define h : P3 → P4 with h([x]) =
h(x).
To prove that h is well-defined we
show h([x3]) = h([y3]) with x3 �= y3
and with [y3] = [x3]. Since [y3] =
[x3] and x3 �= y3 there is (x3, y3) ∈
R3 and so (x3, y3) ∈ R3 and (y3, x3) ∈ R3. Due to the definition of R3 there are
four cases:

P0
f ��

g

��
(PO)

P1

g

��

g′:=[]◦g

��

g′′

��

P2
f

��

f ′:=[]◦f

��

f ′′

��

P3 [] ��

h
�������

		�������

P3

h

�
��

��
��

�

P4

(4)

1. ∃x1, y1 ∈ P1 : x1 ≤1 y1 ∧ g(x1) = x3 ∧ g(y1) = y3
∧ ∃x2, y2 ∈ P2 : y2 ≤2 x2 ∧ f(x2) = x3 ∧ f(y2) = y3:
Then we have g′′(x1) = h◦g(x1) = h◦f(x2) = f ′′(x2) and g′′(y1) = h◦g(y1) =
h ◦ f(y2) = f ′′(y2). This yields g′′(x1) ≤4 g′′(y1) and g′′(y1) = f ′′(y2) ≥4

f ′′(x2) = g′′(x1). Since ≤4 is a antisymmetric we have g′′(x1) = g′′(y1).
Hence, we have h([x3]) = h(x3) = h ◦ g(x1) = g′′(x1) = g′′(y1) = h ◦ g(y1) =
h(y3) = h([y3]).

2. ∃x1, y1 ∈ P1 : y1 ≤1 x1 ∧ g(x1) = x3 ∧ g(y1) = y3
∧ ∃x2, y2 ∈ P2 : x2 ≤2 y2 ∧ f(x2) = x3 ∧ f(y2) = y3 analogously.

3. ∃x1, y1 ∈ P1 : x1 ≤1 y1 ∧ g(x1) = x3 ∧ g(y1) = y3
∧ ∃x′

1, y
′
1 ∈ P1 : y′

1 ≤1 x′
1 ∧ g(x′

1) = x3 ∧ g(y′
1) = y3:

So, we have g(x1) = x3 = g(x′
1) and g(y1) = y3 = g(y′

1). and x1 ≤1 y1 and
y′
1 ≤1 x′

1. This yields g′′(x1) ≤4 g′′(y1) and g′′(y1) = g′′(y′
1) ≤4 g′′(x′

1) =
g′′(x1). Since ≤4 is a antisymmetric we have g′′(x1) = g′′(y1). Hence, we have
h([x3]) = h(x3) = h ◦ g(x1) = g′′(x1) = g′′(y1) = h ◦ g(y1) = h(y3) = h([y3]).

4. ∃x2, y2 ∈ P2 : x2 ≤2 y2 ∧ f(x2) = x3 ∧ f(y2) = y3
∧ ∃x′

2, y
′
2 ∈ P2 : y′

2 ≤2 x′
2 ∧ f(x′

2) = x3 ∧ f(y′
2) = y3 analogously.

Moreover, h ◦ g′ = h ◦ [] ◦ g = h ◦ g = g′′ and h ◦ f ′ = h ◦ [] ◦ f = h ◦ f = f ′′.

Next we introduce the subclass of monomorphisms M. Monomorphisms in
PoSets are the injective order preserving maps [5] and order embeddings – those
mappings that satisfy item 1 in Definition 5 – are regular monomorphisms [5].

Definition 5 (Class M). The class M is given by the class of strict order
embeddings, that are order preserving mappings f : (P,≤P) → (P ′,≤P ′) that
additionally are

1. order reflecting: x ≤P y if and only if f(x) ≤P ′ f(y) for x, y ∈ P

114 J. Padberg

2. and order strict: for each z′ ∈ P ′ with f(x) ≤P ′ z′ ≤P ′ f(y) there exists some
z ∈ P with f(z) = z′ (and hence x ≤P z ≤P y).

Class M leads to pushouts that are constructed the same way as in the category
Sets, hence the right adjoint functor G : PoSets → Sets preserves pushouts.

Lemma 3 (M-Pushouts in PoSets). Given (P1,≤1)
f← (P0,≤0)

g→ (P2,≤2)

with f ∈ M then there is the pushout (P1,≤1)
g′
→ (P3,≤3)

f ′
← (P2,≤2), such that

in Sets P1
g′
→ P3

f ′
← P2 is the pushout of P1

f← P0
g→ P2.

Moreover, M is stable under pushouts.

Proof. Obviously, the construction of R3 in the proof of Lemma2 yields for
f ∈ M that R3 = ID the identity relation. Hence , P3 = P3|R3

= P3.
Moreover, it is M-stable:
For f ∈ M in Diagram 4 we know that f ′ is injective, as pushouts in Sets
preserve monomorphisms, i.e., injective mappings, and f ′ is order-preserving by
construction.
f ′ is an order embedding. For x2, y2 ∈ P2 and f ′(x2) ≤3 f ′(y2) we have due to
the construction of ≤3 four cases:

1. There are x1, y1 ∈ P1 with x1 ≤1 y1 so that g′(x1) = f ′(x2) and g′(y1) =
f ′(y2). Due to the pushout construction there are x0, y0 ∈ P0 with x0 ≤0 y0
so that f(x0) = x1 and g(x1) = x2 and f(y0) = y1 and g(y1) = y2. Since g is
order preserving, we have x2 ≤2 y2.

2. There is x2 ≤2 y2.
3. There is z3 ∈ P3 with f ′(x2) ≤3 z3 ≤3 f ′(y2), so that there are x1 ≤1 z1 with

g′(x1) = f ′(x2) and g′(z1) = z3 and z2 ≤2 y2 and f ′(z2) = z3.
Due to the pushout construction there are x0, z0 ∈ P0 with x0 ≤0 z0 so that
f(x0) = x1 and g(x1) = x2 and f(z0) = z1 and g(z0) = z2. Since g is order
preserving, we have x2 ≤2 z2 ≤ y2.

4. There is z3 ∈ P3 with f ′(x2) ≤3 z3 ≤3 f ′(y3), so that there are z1 ≤1 y1 with
g′(y1) = f ′(y2) and g′(z1) = z3 and x2 ≤ z2 and f ′(z2) = z3 analogously.

f ′ is a strict order embedding:
Let be x2, y2 ∈ P2 and f ′(x2) ≤3 z3 ≤3 f ′(y2) given for z3 ∈ P3. Either z3 ∈
f ′(P2) and hence there is f ′(z2) = z3 with x2 ≤2 y2 or z3 �∈ f ′(P2). Then there
are x1, y1, z1, z

′
1 ∈ P1 with g′(x1) = f ′(x2) and g′(y1) = f ′(y2) and g′(z1) =

z3 = g(z1) and x1 ≤ z1 and z′
1 ≤1 y1. Due to the pushout construction there are

x0, y0 ∈ P0 with f(x0) = x1 and g(x1) = x2 and f(y0) = y1 and g(y1) = y2. Since
f is a strict order embedding we have additionally, z0, z

′
0 with f(z0) = z1 and

f(z′
0) = z′

1 and x0 ≤ z0 ≤ z′
0 ≤ y0. Due to pushout construction g(z0) = g(z′

0)
and as g is order preserving we have x2 = g(x0) ≤2 g(z0) ≤2 g(y0) = y2 with
f ′(g(z0)) = z3.

Next we investigate pullbacks in PoSets.

Lemma 4 (Pullbacks in PoSets). Given (P1,≤1)
g→ (P0,≤0)

f← (P2,≤2)

then there is the pullback (P1,≤1)
f ′
← (P3,≤3)

g′
→ (P2,≤2). Moreover, M is

stable under pullbacks.

Reconfigurable Petri Nets with Transition Priorities and Inhibitor Arcs 115

Proof. There is the pullback P1
f ′
← P3

g′
→ P2 of P1

g→ P0
f← P2 in Sets.

(P1,≤1)
f ′
← (P3,≤3)

g′
→ (P2,≤2) with the partial order – given by x3 ≤3 y3 if and

only if f ′(x3) ≤1 f ′(y3) and g′(x3) ≤1 g′(y3) – is pullback in PoSets. Obviously,
f ′ and g′ are order-preserving mappings.
M-morphisms are monomorphisms and hence are preserved by pullbacks.

Theorem 1 (PoSets is an M-Adhesive Category).

Proof. 1. The class M in PoSets is PO-PB compatible, since
– pushouts along M-morphisms exist and M is stable under pushouts,
– pullbacks along M-morphisms exist and M is stable under pullbacks

and
– obviously, M contains all identities and is closed under composition.

2. In PoSets pushouts along M-morphisms are M-VK squares: In PoSets let
be given a pushout as (1) in Definition 2 with m ∈ M and some commutative
cube as (2) in Definition 2 with (1) being the bottom square and the back
faces being pullbacks, then we have:
⇒: Let the top of (2) in Definition 2 be a pushout in PoSets. Pullbacks pre-

serve M-morphisms, so m′ ∈ M and hence the top square is a pushout
in Sets as well. As the category Sets is M-adhesive, the front faces are
pullbacks in Sets as well. Since the construction of pullbacks coincides
in Sets and PoSets, the front faces are pullbacks in PoSets.

⇐: Let the front faces be pullbacks in PoSets, and hence pullbacks in Sets.
Since m ∈ M (1) in Definition 2 is pushout in Sets as well. So, Sets being
adhesive, we have the top square being a pushout in Sets. Moreover,
m′ ∈ M as the back face is a pullback preserving M-morphisms. So, the
top is a pushout along M is PoSets.

Hence, (PoSets,M) is an M-adhesive category.

Next we use Theorem 1 to prove that place/transition nets with transition pri-
orities yield an M-adhesive category. The definition of priorities allows a partial
prioritisation. If several transitions have the highest priority, then the choice is
again non-deterministic.

Definition 6. The category of place/transition nets with transition priorities
PTp is given by

– PT nets N = (P, (T,≤T), pre, post,M0) with pre, post : G(T,≤T) → P⊕ for
G defined in Lemma 1 and

– net morphisms f = (fP , fT) : N1 → N2 where fP is a mapping and fT is an
order-preserving map.

A transition t ∈ T is enabled under a marking M if pre(t) ≥ M and if there is
no t′ being enabled under M so that t ≤ t′.

In the following we assume that M is the class of net morphisms where fP is
strict and fT is a strict order embedding.

116 J. Padberg

Theorem 2 ((PTp,M) is an M-adhesive category).

Proof. The proof applies the construction for weak adhesive HLR categories
(see Theorem 1 in [27]): We know that (Sets,M) with M being the injec-
tive mappings is an M-adhesive category and that ()⊕ : Sets → Sets pre-
serves pullbacks along injective morphisms. As shown above (PoSets,M) with
M being the strict order embeddings is an M-adhesive category and that
G : PoSets → Sets preserves pushouts along M-morphisms. So, the cate-
gory PTp is isomorphic to the comma category ComCat(G, ()⊕; I) with I =
1,2, where G : PoSets → Sets is the right adjoint (see Lemma 1) from partial
ordered sets to sets and ()⊕ is the free commutative monoid functor and hence
an M-adhesive category.

Lemma 5 (The category of decorated PT nets with priorities is an
M-adhesive category).

Proof. See [23]; similar to the proof of Theorem2 using decoPT instead of PT
as the basis.

Lemma 6 (The category of AHL nets with priorities is an M-adhesive
category).

In [23] the result has been formulated in terms of abstract Petri nets [21], so
that these extensions are valid for other types of Petri. In Example 3.5.1 in [21]
it has been shown that AHL nets are an instantiation of abstract Petri nets.

6 Inhibitor Arcs

We now introduce inhibitor arcs [15], that allow places to inhibit a transition’s
firing. To that purpose a transition is mapped to its set of inhibiting places. So,
inhibitor arcs are given as a function from transitions to the powerset of places.

Definition 7 (Inhibitor arcs). Given a place/transition net N = (P, T, pre,
post,M0) inhibitor arcs are given by inh : T → P(P).

A transition is then enabled under a marking M if additionally we have
M(p) = 0 for all p ∈ inh(t).

Lemma 7. The category of place/transition (PT) nets with inhibitor arcs PTi
is an M-adhesive category with M being the class of strict net morphisms.

Proof. The proof applies the construction for weak adhesive HLR categories (see
Theorem 1 in [27]): Constructing the category PTi using comma categories, we
use the functor F : PT → Sets yielding the transition set T and the power set
functor P : Sets → Sets. The category of PT nets is an M-adhesive category
(see [7]). Then the comma category PTi := CommCat(F,P, {inh}) yields the
category of PT nets with inhibitor arcs and is a weak adhesive category as F
preserves pushouts and P pullbacks of injective morphisms. Hence, we have an
M-adhesive category, see [10].

Reconfigurable Petri Nets with Transition Priorities and Inhibitor Arcs 117

Remark 2. Decorated place/transition nets with inhibitor arcs and algebraic
high-level netswith inhibitor arcs also yield M-adhesive categories (see [23]).
Since the proofs of Theorem2 and Lemma 7 are independent of each other, we
can also obtain reconfigurable Petri nets with both inhibitor arcs and priorities.

7 Related Work

The focus of this section covers control structures in M-adhesive transformation
systems and Petri nets. In [24] a survey over control structures for reconfigurable
Petri nets is given.

The control structures introduced in this paper for reconfigurable Petri nets
have been introduced first for Petri nets, as labels, names, capacities. Inhibitor
arcs as defined in [15] as well as priorities [2,30] are well-known concepts in Petri
nets. In contrast to [2,30] where priorities are based on a mapping to the natural
number, we define merely a partial order on the transitions. Inhibitor arcs in
[4,15] are defined as a relation I ⊆ P × T , but this is equivalent to Definition 7
in Sect. 6. Changing transition labels allow the coordination between firing of
transitions and application of rules [22].

Control structures in M-adhesive transformation systems are required to
specify the application of the rules more precisely. These control structures may
determine the application of rules. They concern the situation that may or may
not be given or they concern the order of the rules to be applied, namely net
transformation units, rule priorities and application conditions. Negative appli-
cation conditions have been formulated in terms of M-adhesive transformation
systems in [25]. Negative application conditions (NAC) for reconfigurable Petri
nets have been introduced in [28] and provide the possibility to forbid certain
rule applications. These conditions restrict the application of a rule forbidding
a certain structure to be present before or after applying a rule in a certain
context. Such a constraint influences thus each rule application or transforma-
tion and therefore changes significantly the properties of the net transformation
system. A substantial extension of negative application conditions providing a
much greater expressiveness are nested application conditions [8,9,19] that have
been given in the framework of M-adhesive transformation systems.

Graph transformation units have been introduced to graph grammars as the
basic units for graph programming [1]. Control conditions can be given by regu-
lar expressions, describing in which order and how often the rules and imported
units are to be applied. A large body of results has been developed since then
[3,13,14], see also [17]. The formulation in terms of M-adhesive transforma-
tion systems yields an abstract formulation of transformation units in terms of
category theory [3].

8 Conclusion

In this paper we have introduced new control structures to reconfigurable Petri
nets. In our case study the need to order the travel agents actions triggered the

118 J. Padberg

use of priorities for transitions. That is a well-known concept in Petri nets, but
has not been available for reconfigurable Petri nets. To obtain all the results of
M-adhesive transformation system for reconfigurable Petri nets with priorities
we need to ensure that the corresponding category is again M-adhesive. More-
over, we have shown that Petri nets with inhibitor arcs yield an M-adhesive
category. We have given the proofs in terms of place/transition nets and have
argued that the results are valid for other kinds of Petri nets as well. These
results allow a better control and hence a simplified and more precise modelling
with reconfigurable Petri nets.

Future work concerns the realization of these concepts for decorated Petri
nets in the tool ReConNet [6]. ReConNet provides possibilities to edit, to
simulate and to verify reconfigurable Petri nets. The introduction of control
structures has obviously a strong impact on these operations and needs to be
integrated into the existing implementation. Ongoing work is the implementation
of negative application conditions, so that control structures for the transforma-
tion part soon become available. The next task is the realization of transition
priorities as ell as inhibtor arcs.

References

1. Andries, M., Engels, G., Habel, A., Hoffmann, B., Kreowski, H., Kuske, S., Plump,
D., Schürr, A., Taentzer, G.: Graph transformation for specification and program-
ming. Sci. Comput. Program. 34(1), 1–54 (1999)

2. Best, E., Koutny, M.: Petri net semantics of priority systems. Theor. Comput. Sci.
96(1), 175–215 (1992)

3. Bottoni, P., Hoffmann, K., Parisi-Presicce, F., Taentzer, G.: High-level replace-
ment units and their termination properties. J. Vis. Lang. Comput. 16(6), 485–507
(2005)

4. Busi, N.: Analysis issues in petri nets with inhibitor arcs. Theor. Comput. Sci.
275(1–2), 127–177 (2002)

5. Codara, P.: A theory of partitions of partially ordered sets. Ph.D. thesis, Universita
degli Studi die Milano (2007)

6. Ede, M., Hoffmann, K., Oelker, G., Padberg, J.: Reconnet: a tool for modeling and
simulating with reconfigurable place/transition nets. Electronic Communications
of the EASST 54, 10 (2012)

7. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in TCS. Springer, Heidelberg (2006)

8. Ehrig, H., Golas, U., Habel, A., Lambers, L., Orejas, F.: M-Adhesive transforma-
tion systems with nested application conditions. part 2: embedding, critical pairs
and local confluence. Fundam. Inform. 118(1–2), 35–63 (2012)

9. Ehrig, H., Golas, U., Habel, A., Lambers, L., Orejas, F.: M-adhesive transforma-
tion systems with nested application conditions. part 1: parallelism, concurrency
and amalgamation. Mathematical Structures in Computer Science 24(4), 48 (2014)

10. Ehrig, H., Golas, U., Hermann, F.: Categorical frameworks for graph transforma-
tion and HLR systems based on the DPO approach. Bull. EATCS 102, 111–121
(2010)

Reconfigurable Petri Nets with Transition Priorities and Inhibitor Arcs 119

11. Ehrig, H., Hoffmann, K., Padberg, J., Prange, U., Ermel, C.: Independence of
net transformations and token firing in reconfigurable place/transition systems.
In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 104–123.
Springer, Heidelberg (2007)

12. Ehrig, H., Padberg, J.: Graph grammars and petri net transformations. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets.
LNCS, vol. 3098, pp. 496–536. Springer, Heidelberg (2004)

13. Ermler, M., Kreowski, H.-J., Kuske, S., von Totth, C.: From graph transformation
units via minisat to grgen.net. In: Schürr, A., Varró, D., Varró, G. (eds.) AGTIVE
2011. LNCS, vol. 7233, pp. 153–168. Springer, Heidelberg (2012)

14. Hölscher, K., Klempien-Hinrichs, R., Knirsch, P.: Undecidable control conditions
in graph transformation units. Electron. Notes Theor. Comput. Sci. 195, 95–111
(2008)

15. Janicki, R., Koutny, M.: Semantics of inhibitor nets. Inf. Comput. 123(1), 1–16
(1995)

16. Kahloul, L., Chaoui, A., Djouani, K.: Modeling and analysis of reconfigurable sys-
tems using flexible Petri nets. In: 4th IEEE International Symposium on Theoret-
ical Aspects of Software Engineering, pp. 107–116 (2010)

17. Kreowski, H.-J., Kuske, S., Rozenberg, G.: Graph transformation units – an
overview. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs
and Models. LNCS, vol. 5065, pp. 57–75. Springer, Heidelberg (2008)

18. Lack, S., Sobocinski, P.: Adhesive and quasiadhesive categories. ITA 39(3), 511–
545 (2005)

19. Lambers, L.: Certifying rule-based models using graph transformation. Ph.D. the-
sis, Berlin Institute of Technology (2009)

20. Llorens, M., Oliver, J.: Structural and dynamic changes in concurrent systems:
reconfigurable Petri nets. IEEE Trans. Comput. 53(9), 1147–1158 (2004)

21. Padberg, J.: Abstract Petri nets: a uniform approach and rule-based refinement.
Ph.D. thesis, Technical University Berlin, Shaker Verlag (1996)

22. Padberg, J.: Abstract interleaving semantics for reconfigurable Petri nets. Electron.
Commun. EASST 51, 1–14 (2012)

23. Padberg, J.: Reconfigurable decorated PT nets with inhibitor arcs and transition
priorities. CoRR abs/1409.6856 (2014). http://arxiv.org/abs/1409.6856

24. Padberg, J., Hoffmann, K.: A survey of control structures for reconfigurable Petri
nets. J. Comput. Commun. 3(2), 20–28 (2015)

25. Prange, U.: Towards algebraic high-level systems as weak adhesive HLR categories.
Electron. Notes Theor. Comput. Sci. 203(6), 67–88 (2008)

26. Prange, U., Ehrig, H., Hoffmann, K., Padberg, J.: Transformations in reconfig-
urable place/transition systems. In: Degano, P., De Nicola, R., Meseguer, J. (eds.)
Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 96–113. Springer, Heidel-
berg (2008)

27. Prange, U., Ehrig, H., Lambers, L.: Construction and properties of adhesive and
weak adhesive high-level replacement categories. Appl. Categorical Struct. 16(3),
365–388 (2008)

28. Rein, A., Prange, U., Lambers, L., Hoffmann, K., Padberg, J.: Negative application
conditions for reconfigurable place/transition systems. Electron. Commun. EASST
10, 1–14 (2008)

29. Reiseverband, D.: Fakten und Zahlen 2013 zum deutschen Reisemarkt (2013).
https://www.drv.de/fileadmin/user upload/Fachbereiche/Statistik und Marktfor
schung/Fakten\ und\ Zahlen/14-03-17\ DRV\ Zahlen\ Fakten2013\ V2.pdf, last
visited: 03/24/2015 15:54

http://arxiv.org/abs/1409.6856
https://www.drv.de/fileadmin/user_upload/Fachbereiche/Statistik_und_Marktforschung/Faktenprotect unhbox voidb@x kern .06emvbox {hrule width.3em}undprotect unhbox voidb@x kern .06emvbox {hrule width.3em}Zahlen/14-03-17protect unhbox voidb@x kern .06emvbox {hrule width.3em}DRVprotect unhbox voidb@x kern .06emvbox {hrule width.3em}Zahlenprotect unhbox voidb@x kern .06emvbox {hrule width.3em}Fakten2013protect unhbox voidb@x kern .06emvbox {hrule width.3em}V2.pdf
https://www.drv.de/fileadmin/user_upload/Fachbereiche/Statistik_und_Marktforschung/Faktenprotect unhbox voidb@x kern .06emvbox {hrule width.3em}undprotect unhbox voidb@x kern .06emvbox {hrule width.3em}Zahlen/14-03-17protect unhbox voidb@x kern .06emvbox {hrule width.3em}DRVprotect unhbox voidb@x kern .06emvbox {hrule width.3em}Zahlenprotect unhbox voidb@x kern .06emvbox {hrule width.3em}Fakten2013protect unhbox voidb@x kern .06emvbox {hrule width.3em}V2.pdf

120 J. Padberg

30. Werner, M., Popova-Zeugmann, L., Richling, J.: A method to prove non-
reachability in priority duration Petri nets. Fundam. Inform. 61(3–4), 351–368
(2004)

31. www.amadeus.com: The global travel ecosystem: a more personalized traveler jour-
ney (2014). http://www.amadeus.com/media/130by2020/index.html#, last vis-
ited: 03/17/2015 12:58

http://www.amadeus.com/media/130by2020/index.html

Reachability in Graph Transformation Systems
and Slice Languages

Mateus de Oliveira Oliveira(B)

Institute of Mathematics - Academy of Sciences of the Czech Republic,
Praha, Czech Republic

mateus.oliveira@math.cas.cz

Abstract. In this work we show that the reachability problem for graph
transformation systems is in the complexity class XP when parameter-
ized with respect to the depth of derivations and the cutwidth of the
source graph. More precisely, we show that for any set R of graph
transformation rules, one can determine in time f(c, d) · |G| · |H|g(c,d)
whether a graph G of cutwidth c can be transformed into a graph H in
depth at most d by the application of graph transformation rules from
R. In particular, our algorithm runs in polynomial time when c and d
are constants. On the other hand, we show that the problem becomes
NP-hard if we allow c = O(|G|) and d = 5. In the case in which all
transformation rules are monotone we get an algorithm running in time
f(c, d) · |G|O(c) · |H|. To prove our main theorems we will establish an
interesting connection between graph transformation systems and regu-
lar slice languages. More precisely, we show that if A is a slice automaton
representing a set LG(A) of graphs, then one can construct in time lin-
ear in |A| a slice automaton N (A) representing the set of all graphs that
can be obtained from graphs in LG(A) by the application of one layer of
transformation rules in R.

Keywords: Graph transformation systems · Reachability · Slice lan-
guages

1 Introduction

The notion of graph transformation has been influential in several subfields
of computer science, such as programming languages [1], program verification
[2,17,18], concurrency theory [8,15], and software engineering [3]. Despite the
widespread applicability of graph transformation systems, many important ques-
tions, such as reachability, confluence and coverability are undecidable. For this
reason, most of the theoretic research in the field has been focused into classifying
subclasses of graph transformation systems according to their expressiveness and
decidability/undecidability properties [5]. In this work we study the reachability
problem for graph transformation systems from the perspective of parameter-
ized complexity theory [12]. In particular, we show that this problem is in the

c© Springer International Publishing Switzerland 2015
F. Parisi-Presicce and B. Westfechtel (Eds.): ICGT 2015, LNCS 9151, pp. 121–137, 2015.
DOI: 10.1007/978-3-319-21145-9 8

122 M. de Oliveira Oliveira

complexity class XP1 when parameterized with respect to the depth of deriva-
tions and with the cutwidth of the source graph.

Our formal framework for graph transformation systems is the double
pushout approach introduced in [14]. Within this framework, a graph trans-
formation rule is a triple r = 〈L ←↩ K ↪→ R〉 where L, R and K are graphs and
K ↪→ L and K ↪→ R are inclusions. The application of a rule r into a graph
G is determined by an injective morphism μ that maps the left side L of the
rule to a subgraph of G, that is to say, a redex in G. After the transformation
process has taken place, we are left with a graph H which is intuitively obtained
by deleting from G all vertices and edges in the image of L − K and by adding
to it all vertices and edges in R − K. We write G

r,μ−→ H to indicate that H is
obtained from G by the application of the r according to μ. We say that the pair
(r, μ) is a transformation for G.

To define the notion of depth of a transformation, we need to consider
the possibility of applying several rules simultaneously. We say that a set
l = {(r1, μ1), ..., (rk, μk)} of transformations for G is a layer if the redexes
μ1(L1), ..., μk(Lk) are pairwise disjoint subgraphs of G, where Li is the left-side
of the rule ri. We write G

l=⇒ H to indicate that H is obtained from G by apply-
ing all transformations in l. Since the redexes μi(Li) are pairwise disjoint, we
may consider that all these transformations occur simultaneously. We say that
G can be transformed into H in depth d if there exist d graphs G1, ..., Gd and
layers l1, ..., ld such that Gd = H and G

l1=⇒ G1
l2=⇒ ...Gd−1

ld=⇒ Gd. We write

G
R,d
=⇒ H to denote that the graph H can be derived from G in depth at most d

by the application of transformation rules in R. The next proposition says that
the reachability problem in depth d = 5 is already NP-complete.

Proposition 1. There is a set of graph transformation rules R such that the
problem of determining whether a graph G can be transformed into a graph H
in depth d = 5 by the application of transformation rules in R is NP-complete.

Therefore, Proposition 1 is a strong indication that reachability in depth d ≥ 5
cannot be solved in polynomial time. Nevertheless, in this work we show that for
any constant d, this problem can be solved in polynomial time if the cutwidth
of the source graph G is also bounded by a constant. Before stating our main
theorem, we define the notion of cutwidth of a graph. Let G = (V,E) be a graph
and V1 and V2 be two subsets of vertices of G. We denote by E(V1, V2) the set
of all edges of G with one endpoint in V1 and another endpoint in V2. If ω =
(v1, ...vn) is a total ordering of the vertices of G then the cutwidth of ω is defined
as cw(G,ω) = maxi |E({v1, ..., vi}, {vi+1, ..., vn})|. The cutwidth of G, denoted
cw(G) is the minimum width of an ordering of G. More precisely, cw(G) =
minω cw(G) [20]. We say that a transformation rule r = 〈L ↪→ K ↪→ R〉 is
connected if the left graph L is connected. We observe that in a connected rule
the graphs K and R are allowed to be disconnected.

1 XP is the class of problems that can be solved in time f(p) ·ng(p) where n is the size
of the input, f and g are computable functions, and p is a list of parameters.

Reachability in Graph Transformation Systems and Slice Languages 123

Theorem 2 (Reachability). Let R be a set of connected graph transformation
rules and G and H be connected (Γ1, Γ2)-labeled graphs. One can determine

whether G
R,d
=⇒ H in time 2cw(G)·2O(d) · |G| · |H|cw(G)·2O(d)

.

Note that the running time in Theorem 2 is linear on the size of G. We say that
a graph transformation rule r = 〈L ←↩ K ↪→ R〉 is monotone if L = K. In other
words, the application of a monotone graph transformation rule does not delete
vertices or edges. The next theorem says that in the case of monotone graph
transformation systems, an algorithm which is linear on the size of H can be
obtained at the expense of a moderate increase in running time with respect to
the size of G.

Theorem 3 (Monotone Reachability). LetR be a set of connected monotone
graph transformation rules and G and H be connected (Γ1, Γ2)-labeled graphs. One

can determine whether G
R,d
=⇒ H in time 2cw(G)·2O(d) · |G|O(cw(G)) · |H|.

We will prove our main results using the framework of slice languages. This
framework was introduced in [9,10] and used to solve several problems in the par-
tial order theory of concurrency. Subsequently, slice languages were generalized
to the context of digraphs and used to provide the first algorithmic metatheorem
for digraphs of constant directed pathwidth [11]. Intuitively, a slice is a digraph
S with special in-frontier and out-frontier vertices which can be used for com-
position. A slice S1 can be glued to a slice S2 if the out-frontier of S1 can be
coherently matched with the in-frontier of S2. In this case, the glueing gives rise
to a bigger slice S1 ◦ S2 which is obtained by matching the out-frontier of S1

with the in-frontier of S2. A sequence U = S1S2...Sn where each two consec-
utive slices can be glued is called a slice decomposition. After gluing each two
consecutive slices in U we obtain a digraph

◦
U= S1 ◦ S2 ◦ ... ◦ Sn. Therefore,

slices may be regarded as the basic constituents of digraphs in the same way
that letters are the basic constituents of words. We may define infinite families
of digraphs via finite automata that concatenate slices. We call these automata,
slice automata. With a slice automaton A one can associate two languages. The
first, the slice language L(A), is simply the set of all sequences of slices accepted
by A. The second, the graph language LG(A), is the set of all graphs obtained
by glueing the slices in each sequence accepted by A.

In order to prove our main theorems we will prove two technical results that
may be of independent interest. Our first technical result, Theorem 6, establishes a
close connection between slice languages represented by slice automata and graph
transformation systems. More precisely, we will show that for any set R of graph
transformation rules, and any slice automaton A, one can construct in linear time
on |A| a slice automaton N (A) representing precisely the set of graphs that can be
obtained from graphs in LG(A) by the application of one layer of graph transfor-
mation rules. In other words, we will show that the relation R=⇒ preserves recog-
nizability. Our second technical result, Theorem 11, states that given any graph H
of cutwidth at most c, one can construct in time |H|O(c) a slice automaton A(H, c)
representing precisely the set of unit decompositions that give rise to H. In other

124 M. de Oliveira Oliveira

words, the slice automaton A(H, c) provides a concise representation of all ways
of decomposing the graph H into slices of width at most c.

2 Graph Transformations

In this section we describe the notion of graph transformation according to the
double push-out approach approach [13,14,19].

Graph. A (Γ1, Γ2)-labeled graph is a tuple G = (VG, EG, sG, tG, ρG, ξG) where
VG is a set of vertices, EG is a set of edges, sG : EG → VG is a function that
associates with each edge e ∈ EG a source vertex sG(e) and tG is a function that
associates with each edge e ∈ EG a target vertex tG(e). The function ρG : VG →
Γ1 labels the vertices in VG with elements from Γ1 and the function ξG : EG → Γ2

labels the edges in EG with elements from Γ2.

Graph Morphism. Let G and H be two (Γ1, Γ2)-labeled graphs. A morphism
from G to H is a pair of functions μ = (·μ: VG → VH , μ : EG → EH) that
preserves sources, targets and labels. More precisely, for each vertex v ∈ VG,
ρG(v) = ρH(·μ (v)), for each edge e ∈ EG, ξG(e) = ξH(μ(e)), for each edge
e ∈ EG and each vertex v ∈ VG, sG(e) = v if and only if sH(μ(e)) =·μ (v)
and tG(e) = v if and only if tH(μ(e)) =·μ (v). A graph morphism μ = (·μ, μ) is
injective (surjective) if both ·μ and μ are injective (surjective). An isomorphism
is a morphism that is both injective and surjective.

Rule. A (Γ1, Γ2)-labeled rule is a triple r : 〈L ←↩ K ↪→ R〉 where L, K and R
are (Γ1, Γ2)-labeled graphs and K ↪→ L and K ↪→ R are inclusions. Intuitively
L, the left side of r, is a graph that is supposed to be matched, while R is the
graph that will be substituted for L. The graph K is the interface of the rule
which is a subgraph of both L and R. We say that a rule r = 〈L,R〉 is connected
if the graph L is connected. We note that we allow the interface graph K or
the right-graph to be disconnected. In this work we will always assume that the
graph transformation rules are connected.

Match. Let r : 〈L ←↩ K ↪→ R〉 be a (Γ1, Γ2)-labeled rule and G be a (Γ1, Γ2)-
labeled graph. We say that an injective morphism μ : L → G is a match for
r if no edge in G − μ(L) is incident with a node in μ(L − K). In other words,
μ : L → G is a match if whenever a vertex v belongs to μ(L − K), then all
edges of G incident with v are also in μ(L − K), and therefore are deleted along
with v. Intuitively, this condition ensures that no “dangling” edge remains in
G − μ(L − K) after the application of the rule r. We say that the pair (r, μ) is
a transformation.

Graph Rewriting. Given a graph G, a rule r : 〈L ←↩ K ↪→ R〉, and a match
μ : L ↪→ G, we write G

r,μ−→ H to indicate that H
 M where M is defined as
follows:

Reachability in Graph Transformation Systems and Slice Languages 125

1. Remove from G all vertices and edges in μ(L − K), obtaining in this way a
graph D.

2. Add disjointly to D all nodes and edges from R − K retaining their labels.
In this way we obtain a graph D′. For e ∈ ER − EK we set sM (e) = sR(e) if
sR(e) ∈ VR − VK . Otherwise, we set sM (e) = μV (sG(e)). the target function
tM is defined analogously.

Independent Rewriting Rules. Let R be a set of graph transformation rules,
and G be a graph. We say that a set l = {(r1, μ1), ..., (rk, μk)} is a R-layer of
transformations for G if for each i ∈ {1, ..., k}, ri = 〈Li ←↩ Ki ↪→ Ri〉 is a rule in
R and if for each i, j ∈ {1, ..., k}, the subgraphs μi(Li) and μj(Lj) are disjoint
in G. Intuitively a layer of transformation rules describes a way of applying
several transformation rules simultaneously to a graph G. Note that one layer
may have as many as O(|G|) transformations. We write G

l=⇒ H to indicate
that the graph H is obtained from G by the application of all transformations
in l. We write G

R=⇒ H to indicate that there is a layer l of transformations
such that G

l=⇒ H. We say that G can be transformed into H in depth d
if there exist d graphs G1, ..., Gd and layers l1, ..., ld such that Gd = H and
G

l1=⇒ G1
l2=⇒ ...Gd−1

ld=⇒ Gd. We write G
R,d
=⇒ H to denote that the graph G

can be transformed into the graph H, in depth at most d, by the application of
transformation rules in R.

3 Slices and Slice Languages

In this section we define slices and slice automata. We note that these two
concepts can be related to several formalisms such as, multi-pointed graphs
[16], co-span decompositions [7], graph automata [6], graph expressions [4] and
graph acceptors [21]. However, notions such as unit slices, unit decompositions,
sub-decompositions, permutation slices, dilation, saturation and tensor product,
which are crucial for the development of our work, do not do not appear together
in any of the formalisms mentioned above.

A slice S = (V,E, ρ, ξ, s, t, [C, I,O]) is a digraph comprising a set of vertices
V , a set of edges E, a vertex labeling function ρ : V → Γ1 for some finite set of
symbols Γ1, an edge labeling function ξ : E → Γ2 for some finite set of symbols
Γ2 and total functions s, t : E → V associating with each edge e ∈ E a source
vertex es and a target vertex et. Alternatively, we say that es and et are the
endpoints of e. The vertex set V is partitioned into three disjoint subsets: an
in-frontier I, a center C, and an out-frontier O. A slice is subject to the following
restrictions:

1. The frontier vertices of S are labeled by ρ with natural numbers in such a way
that no two vertices in the same frontier are labeled with the same number.

2. Each frontier vertex in I ∪ O is the endpoint of exactly one edge.
3. No edge has both endpoints in the same frontier.

126 M. de Oliveira Oliveira

Fig. 1. A unit decomposition U = S1S2S3 and the digraph
◦
U= S1 ◦ S2 ◦ S3 which is

obtained by gluing each two adjacent slices in U. All slices in U are normalized. The
in-frontier of S1 is empty and the out-frontier of S3 is empty. The slices S4 and S5 and
ε are permutation slices. S4 is additionally an identity slice. ε is the empty slice.

From now on we let the source and target functions implicit when defining a
slice. When referring to a slice S = (V,E, ρ, ξ) with frontiers (I,O) we mean that
S has in-frontier I and out-frontier O. We say that a slice S with frontiers (I,O)
is normalized if ρ(I) = {1, ..., |I|} and ρ(O) = {1, ..., |O|}. Non-normalized slices
will play an important role later in this section when we introduce the notion
of sub-decomposition. Let i ∈ ρ(I). We say that a slice S is a unit slice if S has
at most one center vertex (Fig. 1). Unit slices will play a very important role in
this work. We denote by e(I, i) the unique edge that has as one endpoint the
vertex of I labeled with i. Analogously, e(O, i) denotes the unique edge that
has as one endpoint the vertex in O labeled with i. A slice S1 = (V1, E2, ρ1, ξ1)
with frontiers (I1, O1) can be glued to a slice S2 = (V2, E2, ρ2, ξ2) with frontiers
(I2, O2) provided the following conditions are satisfied.

1. ρ1(O1) = ρ2(I2),
2. for each i ∈ ρ1(O1), ξ1(e(O1, i)) = ξ2(e(I2, i)),
3. for each i ∈ ρ1(O1), either the target of e(O1, i) lies in O1 and the source of

e(I2, i) in I2, or the source of e(O1, i) lies in O1 and the target of e(I2, i) in I2.

Intuitively, S1 can be glued to S2 if for each i ∈ ρ1(O1), the edge e(O1, i) can be
matched with the edge e(I2, i) in such a way that the two edges agree both in
labeling (Condition 2) and direction (Condition 3). If S1 can be glued to S2, then
we let e(i,S1,S2) denote the edge that is obtained by fusing e(O1, i) with e(I2, i).
More precisely, if the target of e(O1, i) lies in O1 then we set e(S1,S2, i)s =
e(O1, i)s and e(S1,S2, i)t = e(I2, i)t. Otherwise, if the source of e(O1, i) lies in
O1, then we set e(S1,S2, i)s = e(I2, i)s and e(S1,S2, i)t = e(O1, i)t. If S1 can be
glued to S2 then the gluing gives rise to the slice S1 ◦ S2 = (V3, E3, ρ3, ξ3) with
frontiers (I1, O2) where the vertex set is V3 = (V1 ∪ V2)\(O1 ∪ I2), and the edge
set is

E3 = [(E1 ∪ E2)\{e(O1, i), e(I2, i) | i ∈ ρ(O1)}] ∪ {e(S1,S2, i) | i ∈ ρ(O1)}.

The labels of vertices and edges are inherited from the slice they come from.
More precisely for j ∈ {1, 2}, ρ3|V3∩Vj

= ρj |V3∩Vj
, ξ3|E3∩Ej

= ξj |E3∩Ej
and

ξ(e(S1,S2, i)) = ξ1(e(O1, i)) for each i ∈ ρ1(O1). We note that in the glueing
process the frontier vertices belonging to the glued frontiers disappear.

Reachability in Graph Transformation Systems and Slice Languages 127

3.1 Slice Languages

The width w(S) of a slice S with frontiers (I,O) is defined as max{|I|, |O|}.
A slice alphabet is any finite set Σ of slices. In particular for any natural num-
bers c, q, ν with c ≤ q, and any finite sets of labels Γ1, Γ2 we let Σ(c, q, ν, Γ1, Γ2)
be the slice alphabet formed by all slices of width at most c, with at most ν cen-
ter vertices, whose center vertices are labeled with elements from Γ1, edges are
labeled with elements from Γ2 and whose frontier vertices are labeled with num-
bers in {1, ..., q}. We write Σ(c, q, Γ1, Γ2) as an abbreviation for Σ(c, q, 1, Γ1, Γ2)
and Σ(c, Γ1, Γ2) for the set of all unit normalized slices in Σ(c, c, 1, Γ1, Γ2).

If Σ is a slice alphabet, we denote by Σ∗ the free monoid generated by Σ.
In other words Σ∗ is simply the set of all sequences of slices taken from Σ. The
operation of the monoid is simply concatenation and should not be confused
with glueing. The identity of the monoid is simply the empty string λ for which
Sλ = S = λS and should not be confused with the empty slice ε. We say that
a slice is initial if its in-frontier is empty and final if its out-frontier is empty.
A slice decomposition is a sequence D = S1S2...Sn of slices such that S1 is initial,
Sn is final and such that Si can be glued to Si+1 for each i ∈ {1, ..., n − 1}. The
width w(D) of D is defined as the maximum width of a slice in D. We let L(Σ)
denote the set of all slice decompositions in Σ∗. A slice language is any subset
L ⊆ L(Σ). Any slice decomposition D = S1S2...Sn in a slice language L gives
rise to a digraph

◦
D= S1 ◦ S2 ◦ ... ◦ Sn which is obtained by gluing each two

consecutive slices in D. Thus slice languages may be regarded as a syntactic way
of representing possibly infinite families of digraphs. Namely, the graph language
derived from L is defined as

LG = { ◦
D | D ∈ L}. (1)

In this work we will only be concerned with slice languages that can be effec-
tively represented. In particular we will be concerned with the class of regular
slice languages, which are those languages that can be represented via finite
automata over slice alphabets. We call these automata slice automata.

Definition 4 (Slice Automaton). A slice automaton over a slice alphabet Σ
is a finite automaton A = (Q,R, Q0, F) where Q is a set of states, Q0 ⊆ Q is
a set of initial states, F ⊆ Q is a set of final states, and R ⊆ Q × Σ × Q is a
transition relation such that for every r, r′, r′′ ∈ Q and every S ∈ Σ:

1. if (r,S, r′) ∈ R and r ∈ Q0 then S is an initial slice,
2. if (r,S, r′) ∈ R and r′ ∈ F , then S is a final slice,
3. if (r,S, r′) ∈ R and (r′,S′, r′′) ∈ R, then S can be glued to S′.

We denote by L(A) the slice language accepted by A and by LG(A) the graph
language derived from L(A) according to Eq. 1. We say that a slice language
L ⊆ L(Σ) is saturated if for each two unit decompositions U,U′ ∈ L(Σ) with
◦
U=

◦
U′, U ∈ L if and only if U′ ∈ L. In other words, L is saturated if for each

graph H ∈ LG , all unit decomposition of H over Σ are present in L. We say
that a slice automaton A is saturated if L(A) is saturated.

128 M. de Oliveira Oliveira

3.2 Sub-Slices and Sub-Decompositions

A sub-slice of S is a subgraph S′ of S which is itself a slice. Note that the
numbering in the frontier vertices of S′ is inherited from the numbering of the
frontier vertices of S. Thus even if S is a normalized slice, S′ may not be nor-
malized. Let D = S1S2...Sn be a slice decomposition. A sub-decomposition of
D is a decomposition D′ = S′

1S
′
2...S

′
n such that S′

i is a sub-slice of Si for each
i ∈ {1, ..., n}. Note one more time that if D is a normalized decomposition then
a sub-decomposition D′ of D may not be normalized.

4 Elementary Slice Languages Operations

In this section we will define several elementary operations on slice languages,
all of which can be realized on slice automata (Lemma 5). These operations
will be used in Sect. 5 to construct the slice automaton A(R, G, d) whose graph
language consists of all graphs that can be obtained from G in depth d by the
application of rules in R.

Concatenation: If L and L′ are two slice languages over Σ(c, q, ν, Γ1, Γ2), then
the concatenation L · L′ is the slice language over Σ(c, q, ν, Γ1, Γ2) obtained by
concatenating slice decompositions in L with slice decompositions in L′.

L · L′ = {S1S2...SnS′
1S

′
2...S

′
m | m,n ∈ N, S1S2...Sn ∈ L, S′

1S
′
2...S

′
m ∈ L′}

Observe that the composition S1S2...SnS′
1S

′
2...S

′
m above is well defined since

Sn has empty out-frontier and S′
1 has empty in-frontier.

Tensor Product: If S1 = (V1, E1, ρ1, ξ1) is a slice in Σ(c1, q1, ν1, Γ1, Γ2) and
S2 = (V2, E2, ρ2, ξ2) is a slice in Σ(c2, q2, ν2, Γ1, Γ2) then the tensor product
S1 ⊗ S2 is the slice in Σ(c1 + c2, q1 + q2, ν1 + ν2, Γ1, Γ2) obtained by piling S1

over S2. Formally, the tensor product of S1 with S2 gives rise to the slice

S1 ⊗ S2 = (V1∪̇V2, E1∪̇E2, ρ, ξ, [C1 ∪ C2, I1 ∪ I2, O2 ∪ O2])

where
ξ|E1 = ξ1 ξ|E2 = ξ2 ρV1 = ρ1|V1

ρ|C2 = ρ2|C2 ρ|I2 = |I1| + ρ2|I2 ρ|O2 = |O2| + ρ|O2 .

In other words, the slice S1 ⊗ S2 is obtained by taking the disjoint union of
S1 and S2 and by adding the value |I1| to the label of each vertex in I2, and
the value |O1| to the label of each vertex in O2. The tensor product of two slice
languages is defined as follows.

L⊗L′ = {(S1⊗S′
1)(S2⊗S′

2)...(Sn⊗S′
n) | n ∈ N, S1S2...Sn ∈ L, S′

1S
′
2...S

′
n ∈ L′}

In other words the language L⊗L′ is obtained by piling each unit decompo-
sition in L over each unit decomposition of same length in L′.

Reachability in Graph Transformation Systems and Slice Languages 129

Dilation: A permutation slice is a slice π with no center vertex, in which both
frontiers have the same size and such that each frontier vertex shares an edge
with a unique out-frontier vertex and vice-versa (Fig. 1). An identity slice is a
permutation slice ι where the endpoints of each edge are labeled with the same
number. In other words, in an identity slice all edges are “parallel”, even though
their orientations may differ (Fig. 1). The empty slice ε, which is the slice with
no vertices at all, is regarded as an identity slice. Let ι(S) denote the unique
identity slice such that S ◦ ι(S) = S. The dilation Δ(L) of a slice language L is
defined as follows.

Δ(L) =
⋃

S1S2...Sn∈L
ε∗ · S1 · ι(S1)∗ · S2 · ι(S2)∗ · ... · Sn · ε∗

In other words Δ(L) is obtained by intercalating an arbitrary number
(possibly zero) of appropriate identity slices between each two consecutive slices
in each unit decomposition of L. We observe that dilating a unit decomposition
does not change the digraph it represents. Therefore we have that [Δ(L)]G = LG .

Let π be a permutation slice. Then we denote by π−1 the permutation slice
which is obtained by mirroring π along its out-frontier, and reversing the direc-
tion of the edges (so that the directions of π−1 become coherent with the direc-
tions of π). In other words, the inverse of a permutation slice π is the unique
permutation slice π−1 such that the composition π ◦ π−1 is an identity slice.
Below we define the vertical saturation of a slice language.

vsat(L) = {(S1◦π1)(π−1
1 ◦S2◦π2)...(π−1

n−1◦Sn) | S1S2...Sn ∈ L,πi◦π−1
i =ι(Si)}

We observe that the graph language [vsat(L)]G represented by vsat(L) is
equal to graph language LG represented by L.

Projection: A slice projection between alphabets Σ and Σ′ is a function α : Σ →
Σ′ that preserves glueing of slices, initial slices and final slices. In other words,
α(S) is initial/final whenever S is initial/final and α(S1) can be glued to α(S2)
whenever S1 can be glued to S2. If L is a slice language over Σ, then we denote
by α(L) the slice language over Σ′ defined as

α(L) = {α(S1)α(S2)...α(Sn) | S1S2...Sn ∈ L}. (2)

An important example of slice projection is the normalizing projection η
which adjusts the labels of a slice S with frontiers (I,O) in such a way that
the numbers associated to in-frontier vertices lie in {1, ..., |I|} and the numbers
associated to the out-frontier vertices lie in {1, ..., |O|}. More precisely, if S =
(V,E, ρ, ξ) is a slice with frontiers (I,O), then η(S) = (V,E, ρ′, ξ′) where ρ′|C =
ρ|C , ρ′|I = {1, ..., |I|}; ρ′|O = {1, ..., |O|}; ρ′(v) < ρ′(v′) if and only if ρ(v) < ρ(v′)
for each two vertices v, v′ ∈ I; and ρ(v) < ρ(v′) if and only if ρ(v) < ρ(v′) for
each two vertices v, v′ ∈ O.

130 M. de Oliveira Oliveira

Inverse Homomorphism: Let α : Σ1 → Σ2 be a slice projection. If L is a slice
language over Σ2 then the inverse homomorphic image of L under α is the
set α−1(L) = {D ∈ L(Σ1) | ∃D′ ∈ L, α(D) = D′}. Observe however that
α−1(L) is not necessarily a slice language, since it may contain sequences of
slices that are not unit decompositions. To eliminate these undesired sequences
of slices, we intersect α−1(L) with the slice language L(Σ1) consisting of all
unit decompositions over the alphabet Σ1. More precisely, we define the inverse
homomorphic image of α as the slice language inv(L,α) = α−1(L) ∩ L(Σ1).

Realizing Operations on Slice Automata: The next lemma says that all oper-
ations defined above, together with the operations of intersection, union and
Kleene star, can be efficiently realized on slice automata.

Lemma 5. Let A = (Q,R, Q0, F) be a slice automaton over Σ =
Σ(c, q, ν, Γ1, Γ2) and A′ = (Q,R, Q0, F) be a slice automaton over Σ′ =
Σ(c′, q′, ν′, Γ1, Γ2).

1. One can construct a slice automaton A ∪ A′ over Σ ∪ Σ′ on |A| + |A′| states
such that L(A ∪ A′) = L(A) ∪ L(A′).

2. One can construct a slice automaton A ∩ A′ over Σ ∩ Σ on |A| · |A′| states
such that L(A ∩ A′) = L(A) ∩ L(A′).

3. One can construct a slice automaton A+ over Σ on |A| states such that
L(A+) = L(A)+.

4. For any slice projection α : Σ → Σ′ one can construct a slice automaton
α(A) over Σ on |A| states such that L(α(A)) = α(L(A)).

5. One can construct a slice automaton vsat(A) over Σ on |Σ| · |A| states such
that L(vsat(A)) = vsat(L(A)).

6. One can construct a slice automaton A ⊗ A′ over Σ ⊗ Σ′ on |A| · |A′| states
such that L(A ⊗ A′) = L(A) ⊗ L(A′).

7. One can construct a slice automaton Δ(A) over Σ on O(|A|) states such that
L(Δ(A)) = Δ(L(A)).

8. Let α : Σ′ → Σ be a slice projection. One can construct an automaton
inv(A,α) on O(|Σ| · |A|) states such that L(inv(A,α)) = inv(L(A),α).

5 Next Step Automaton

In this section we will show that given any slice automaton A and any set of
transformation rules R, one can construct in time linear in |A|, a slice automaton
N (A) representing all graphs that can be obtained from graphs in LG(A) by the
application of one layer of independent transformation rules. In other words,
we will show that the relation

R,1
=⇒ preserves recognizability by slice automata.

Additionally, in the case of monotone graph transformation systems, we will show
that if A is saturated, then so is N (A). This result is formalized in Theorem 6
below. If r = 〈L ←↩ K ↪→ R〉 is a (Γ1, Γ2)-labeled rule, then we denote by |r| the
number of edges plus the number of vertices in the graph L ∪ K ∪ R. Given a
graph transformation system R we let ‖R‖ = maxr∈R |r| the size of the largest
rule in R.

Reachability in Graph Transformation Systems and Slice Languages 131

Theorem 6. Let A be a slice automaton over Σ(c, Γ1, Γ2), and let R be a set of
(Γ1, Γ2)-labeled transformation rules. One can construct in time 2O(c·‖R‖ log ‖R‖) ·
|A| a slice automaton N (A) over Σ(c · ‖R‖, Γ1, Γ2) such that

LG(N (A)) = {H | There exists some G ∈ LG(A) for which G
R=⇒ H}. (3)

Additionally, if R is monotone and A is saturated, then N (A) is also saturated.

Observe that the width of the slices representing graphs in L(N (A)) increases
at most by a factor of ‖R‖, where ‖R‖ is the size of the largest rule in R. If we
apply Theorem 6, d times, we get an automaton N d(A) representing all graphs
that can be obtained from graphs in LG(A) in depth at most d. Additionally, as
before, if A is saturated, then N d(A) is also saturated.

Corollary 7. Let A be a slice automaton over Σ(c, Γ1, Γ2), and let R be a set
of (Γ1, Γ2)-transformation rules. One can construct in time 2O(c·‖R‖d·log |R|) · |A|
a slice automaton N d(A) over Σ(c · ‖R‖d, Γ1, Γ2) such that

LG(N d(A)) = {H | There exists some G ∈ LG(A) for which G
R,d
=⇒ H} (4)

Additionally, if R is monotone and A is saturated, then N d(A) is also saturated.

We dedicate the next three subsections to the proof of Theorem 6. The proof
consists of three main steps. In the first step we show how to map graph trans-
formation rules to unit decompositions. In the second step, we show how to map
layers of transformations into unit decompositions. Finally, in the third step,
we show that unit decompositions corresponding to layers of transformations
can be combined with unit decompositions representing graphs in order to sim-
ulate the simultaneous application of these transformations. It turns out that
using the elementary slice language operations defined in Sect. 4 the transforma-
tion process can be transposed to slice automata. In particular, the automaton
N (A) can be defined using the automaton A, some other auxiliary automata of
constant size, and a constant number of elementary slice language operations.

5.1 Mapping Rules to Slice Decompositions

In this section we show how to encode rules from a graph transformation system
into unit decompositions. We start by defining the notion of graph associated
with a rule. Let r : 〈L ↪→ K ←↩ R〉 be a (Γ1, Γ2)-labeled rule. We can represent r
compactly by a graph G(r) that is defined as follows. First, we take the union of
all vertices and edges in L ∪ R, preserving labels. Subsequently, for each vertex
and edge in L − K we add the label l. Analogously, for each vertex and edge
in K, add the label m, and finally, for each vertex and edge in R − K add the
label r.

In Fig. 2 we depict the graph of a rule that intuitively transforms a trian-
gle into a square. For visual convenience, vertices and edges belonging to K
are respectively represented by circles with empty interior and by solid lines,

132 M. de Oliveira Oliveira

Fig. 2. The graph G(r) of a transformation rule r, and a unit decomposition of G(r).

indicating that these vertices and edges should remain untouched. Vertices and
edges belonging to L−K are respectively represented by � and by dashed lines,
which indicate that these vertices and edges should be removed. Finally, vertices
and edges belonging to R − K are respectively represented by ⊕ and by curvy
lines, indicating that these vertices and edges should be inserted.

Note that if r is a (Γ1, Γ2)-labeled rule, then the graph G(r) is a (Γ1 ×
{l,m, r}, Γ2 × {l,m, r})-labeled graph. From now on, we let Γ̂1 and Γ̂2 denote
respectively the sets of vertex labels Γ1 × {l,m, r} and edge labels Γ2 × {l,m, r}.
In the next proposition we show how to construct a slice automaton A(r) rep-
resenting all unit decompositions of the graph G(r).

Proposition 8. Let r be a (Γ1, Γ2)-labeled rule. One can construct in time
2O(|r| log |r|) a slice automaton A(r) over the slice alphabet Σ(|r|, Γ̂1, Γ̂2) such
that

L(A(r)) = {U ∈ L(Σ(|r|, Γ̂1, Γ̂2)) | ◦
U= G(r)} (5)

Proof. Let A be a slice automaton that generates, for each ordering ω of the
vertices of G(r), an undilated unit decomposition Uω of G(r) compatible with
ω. Such an automaton A can be constructed in time O(|r|!) = 2O(|r|·log |r|),
since there are at most r! permutations of the vertex set of G(r). Now we set
A(r) = vsat ◦ Δ(A). By Lemma 5, the automaton A(r) also has 2O(|r|·log |r|)

states. The slice automaton A(r) is saturated over Σ(|r|, Γ̂1, Γ̂2) and therefore
generates all unit decompositions of G(r) over Σ(|r|, Γ̂1, Γ̂2).

5.2 Mapping Layers of Rewriting Rules into Unit Decompositions

Our next step is to show how to represent layers of transformation rules via unit
decompositions and slice languages. Let R = {r1, ..., rk} be a set of graph trans-
formation rules. We define the following slice automaton over the slice alphabet
Σ(‖R‖, Γ̂1, Γ̂2).

A(R) = [A(r1) ∪ ... ∪ A(rk)]+ (6)

Intuitively, the slice automaton A(R) generates all possible concatenations
of unit decompositions of rules in R. Note that A(R) can be constructed in time
2O(k·‖R‖ log ‖R‖).

Before proceeding, we will consider a colored version of the slice alphabet
Σ(c, Γ̂1, Γ̂2). Let ξ be a color and G be a (Γ̂1, Γ̂2)-labeled graph. The ξ-colored
version of G, denoted by Gξ, is obtained by assigning the color ξ to each edge and
vertex of G. Therefore Gξ is a (Γ̂1 ×{ξ}, Γ̂2 ×{ξ})-labeled graph. Analogously, if
S is a slice in Σ(c, Γ̂1, Γ̂2) then the colored version of S is the slice in Σ(c, Γ̂1 ×
{ξ}, Γ̂2 × {ξ}) obtained by assigning the color ξ to each edge of S and to the

Reachability in Graph Transformation Systems and Slice Languages 133

center vertex of S (but not to the frontier vertices, which remain labeled with
their original numbers). Let αξ : Σ(c, Γ̂1, Γ̂2) → Σ(c, Γ̂1 × {ξ}, Γ̂2 × {ξ}) be a
projection that sends each slice S ∈ Σ(c, Γ̂1, Γ̂2) to its ξ-colored version αξ(S).
The colored version of the automaton A(R) is defined as A(R, ξ) = αξ(A(R)).
In other words, A(R, ξ) generates all ξ-colored versions of unit decompositions
accepted by A(R).

Now let {ξ1, ξ2, ..., ξk} be a set of colors. We denote by Σ(c, Γ̂1, Γ̂2, ξ1, ..., ξk)
the set of all slices which are obtained from slices in Σ(c, Γ̂1, Γ̂2) by coloring
its edges and vertices with colors from {ξ1, ..., ξk}. We note that the edges and
vertices of slices in Σ(c, Γ̂1, Γ̂2, ξ1, ..., ξk) may be colored with different colors.
Finally, we define the following automaton:

A(R, ξ1, ..., ξk) = [Δ(A(R, ξ1)) ⊗ ... ⊗ Δ(A(R, ξc))] ∩ A(Σ(c · Γ̂1, Γ̂2, ξ1, ..., ξk)).
(7)

Intuitively, the slice language L(A(R, ξ1, ..., ξk)) consists of all unit decom-
positions of the form U1 ⊗ U2 ⊗ ...Uk where Ui is a dilated version of a unit
decomposition in A(R, ξi). We note that each unit decomposition Ui is mono-
chromatic, i.e., all edges and vertices arising in its slices are colored with the
color ξi. The intersection with the slice automaton A(Σ(c · Γ̂1, Γ̂2, ξ1, ..., ξk)) is
performed in order to eliminate slice decompositions whose slices may contain
more than one center vertex. In the next section we will use the automaton
A(R, ξ1, ..., ξk) in the construction of the automata A(R, G, d, c) which repre-
sents the set of all graphs that can be obtained from G in depth at most d by
the application of rules in R.

5.3 Applying Sliced Layers of Rules to Unit Decompositions

Let αun : Σ(c, Γ̂1, Γ̂2, ξ1, ..., ξk) → Σ(c, Γ1, Γ2) that erases from each vertex
and edge label the coordinate corresponding to a color in {ξ1, ..., ξk} and the
coordinate corresponding a tag in {l,m, r}. If A is a slice automaton over the
slice alphabet Σ(c, Γ1, Γ2), then the inverse homomorphic image inv(A,αun) is a
slice automaton over the alphabet Σ(c, Γ̂1, Γ̂2, {ξ1, ..., ξk}) whose slice language
L(inv(A,αun)) consists of all unit decompositions U = S1S2...Sn which can be
obtained from unit decompositions in L(A) by coloring arbitrarily its vertices
and edges with elements from {ξ1, ..., ξk} and by marking these vertices and
edges arbitrarily with elements from {l,m, r}. From all these decompositions, we
will only be interested in those which are colored coherently, in the sense that if
we delete all vertices and edges that are not labeled with some label in {l,m},
then the remaining vertices should give rise to a sub-decomposition that is the
disjoint union of decompositions.

Lemma 9. Let R be a set of (Γ1, Γ2)-labeled rules and let U be a unit decom-
position in L(Σ(c, Γ1, Γ2)). There is a projection

such that for each unit decomposition U over the slice alphabet Σ(c, Γ1, Γ2),
and each (Γ1, Γ2)-labeled graph H, we have that H can be obtained from

◦
U by

134 M. de Oliveira Oliveira

the application of one layer of transformation rules if and only if there exists
unit decompositions U1 ∈ L(A(R, ξ1, ..., ξc)) and U2 ∈ Δ(inv(U,αun)) such
that α(U1 ⊗ U2) is a unit decomposition of H.

The proof of Lemma 9, which is lengthy and technically involved, will be
available in the full version of this paper. Recall that if A is a slice automaton,
then N (A) denotes the slice automaton whose graph language consists of all
possible graphs that can be obtained from graphs in LG(A) by the application
of one layer of transformation rules (See Theorem 6). As a corollary of Lemma 9
we have that the slice automaton N (A) can be defined from A by the application
of a constant number of elementary slice language operations.

Corollary 10. Let R be a set of graph transformation rules, αun be the uncol-
oring projection defined in the beginning of this section, and α be the projection
of Lemma 9. Let N (A) be the slice automaton defined in Theorem 6. Then

N (A) = A ∪ α[A(R, ξ1, ...ξc) ⊗ Δ(inv(A,αun))] ∩ A(Σ(c · ‖R‖, Γ1, Γ2)).

Finally, by combining Corollary 10 with Lemma 5 we have that the automaton
N (A) can be constructed in time 2O(c·‖R‖ log ‖R‖) · |A|. This proves Theorem 6.

��

6 Proofs of Our Main Results

We start by proving Proposition 1 which says that it is NP-complete to determine
whether a given graph G of unbounded cutwidth can be transformed into a given
graph H in depth d = 5.

Proof of Proposition 1. We show that the problem of determining whether a
graph H can be derived from a graph G in depth d = 5 is NP-complete. The
proof is by reduction from the Hamiltonian path problem. It is well known that
determining whether a graph G has a Hamiltonian path is NP-complete even if
G has maximum degree 3. On the other hand, by Vising’s theorem, the edges of
any graph of degree 3 can be colored with 4 colors in such a way that no two
adjacent edges have the same color. Now let G have n vertices, and let H be the
graph consisting of a line with n vertices. Then we have that G has a Hamiltonian
path if and only if H is a subgraph of G. Our transformation system consists of
8 transformation rules r1, ..., r4 and r′

1, ..., r
′
4. For each i ∈ {1, ..., 4}, ri takes an

edge e and colors it with the color i. In the opposite direction, each r′
i takes an

edge e of color i, and deletes it, leaving only its endpoints in the graph. Then
the process of testing whether G has a Hamiltonian path can be determined in
the following way. Assume G has a Hamiltonian path p = v1v2...vn. First, we
color into a single transformation step all edges of G not belonging to p in such a
way that no two adjacent edges have the same color. Subsequently we apply four
parallel transformation steps. At step i, we erase all edges colored with i. Since
no two edges with the same color are adjacent, such operation is well defined.
At the end of this process, only the edges of the Hamiltonian path p remain in

Reachability in Graph Transformation Systems and Slice Languages 135

the graph. Therefore, since H is isomorphic to p we have that H can be derived
from G in 5 parallel steps. ��
Before proceeding with the proofs of Theorems 2 and 3, we state a theorem
which says that for any connected graph H of cutwidth at most c, one can con-
struct in time 2O(c log c) · |H|O(c) a normalized saturated slice automaton A(H, c)
generating precisely the unit decompositions of H of width at most c.

Theorem 11. Let H be a connected (Γ1, Γ2)-labeled digraph of cutwidth at
most c. One can construct in time 2O(c log c) · |H|O(c) a normalized saturated
slice automaton A(H, c) over the slice alphabet Σ(c, Γ1, Γ2) such that

L(A(H, c)) = {U ∈ L(Σ(c, Γ1, Γ2)) | ◦
U= H}.

Note that the graph language of A(H, c) has a unique graph, which is H itself.
In other words, LG(A(H, c)) = {H}. The importance of Theorem 11 for our
framework stems from the fact that that it allows us to verify in polynomial time
whether a graph H belongs to the graph language of an arbitrary normalized
slice automaton A. We observe that if A is not saturated, then some graphs in
the graph language LG(A) may correspond to few unit decompositions in the
slice language L(A). In this way to verify whether a graph H belongs to LG(A)
we have test for each unit decomposition U of H whether U ∈ L(A). If this
test is positive for one unit decomposition, then H is in the graph language
represented by A. However, enumerating all unit decompositions of a graph H
may take exponential time. Theorem 11 allows us to circumvent this problem.
Since A(H, c) is saturated, we have that H ∈ LG(A) if and only if the slice
language generated by A ∩ A(H, c) is non-empty. This non-emptiness test can
be performed in time |A| · |A(H, c)| = |A| · HO(c).

Proof of Theorem 2. Let G be a (Γ1, Γ2)-labeled graph of cutwidth at most
c. Using the results in [20] one can find, in time 2O(c) · |G|, an ordering ω =
(v1, v2, ..., vn) of the vertex of V such that maxi |E({v1, ..., vi}, {vi+1, ..., vn})| ≤
c. Now we can construct in time linear in |G| a unit decomposition U = S1S2...Sn

of G over the alphabet Σ(c, Γ1, Γ2) by letting vi be the center vertex of Si.
Now let A(U) be the slice automaton over Σ(c, Γ1, Γ2) which accepts a

unique unit decomposition, which is U itself. Then we have that |A| = O(|G|),
L(A(U)) = {U} and LG(A) = {G}. By Corollary 7 we can construct in time
2O(c·‖R‖d·log |R|) · |G| a slice automaton A(R, G, d) = N d(A) over the slice alpha-
bet Σ(c · ‖R‖d, Γ1, Γ2) whose graph language LG(A(R, G, d)) consists precisely
of the set of graphs that can be obtained from LG(A) by the application of one
layer of transformation rules.

Now let H be a another (Γ1, Γ2)-labeled graph, and let c′ = c · ‖R‖d If the
cutwidth of H is greater than c′, then H cannot be reached from G in depth
at most d, and thus in this case our algorithm returns No. On the other hand,
if the cut-width of H is at most c′, then by Theorem 11, one can construct
in time 2O(c′ log c′) · |H|O(c′) a saturated slice automaton A(H, c′) over the slice
alphabet Σ(c′, Γ1, Γ1) such that the graph language LG(A(H, c)) = {H}. There-
fore, since A(H, c) is saturated, we have that H belongs to the graph language

136 M. de Oliveira Oliveira

LG(A(R, G, d)) if and only if A(H, c) ∩ A(R, G, d) is non-empty. Since the size
of A(H, c) is at most 2O(c′ log c′) · |H|c′

and the size of A(R, G, d) is at most
2O(c·‖R‖d·log |R|) · |G|, we have that we can test whether A(H, c)∩A(R, G, d) �= ∅
in time 2O(c′ log c′) · |H|c′ · 2O(c·‖R‖d·log |R|) · |G|. Since ‖R‖ is fixed, we have that
this time is of the order 2cw(G)·2O(d) · |G| · |H|cw(G)·2O(d)

. ��
Proof of Theorem 3. In the case of reachability for monotone transformation
systems, we can significantly improve the running time with respect to the size
of |H| by a moderate increase in the running time with respect to the size of
G. Let G be a (Γ1, Γ2)-labeled graph of cutwidth at most c. By theorem 11 one
can construct in time 2O(c log c) · |G|O(c) a saturated slice automaton A(G, c) such
that LG(A(G, c)) = {G}. Since R is monotone, we have that by Corollary 7 the
automaton A(R, G, d) = N d(A(G, c)) is saturated and can be constructed in time
2O(c·‖R‖d log c) · |G|O(c). Now we have that if H has cutwidth greater than c · ‖R‖d

then H cannot be reached from G in depth at most d. On the other hand, if the
cutwidth of H is at most c · ‖R‖d, then one can obtain in time 2O(c·‖R‖d) · |H| a
unit decomposition U of H of width at most O(c · ‖R‖d). Now, since A(R, G, d)
is saturated, we have that H ∈ LG(A(R, G, d)) if and only if U is accepted by
A(R, G, d). This can be tested in time 2O(c·‖R‖d log c) · |G|O(c) · |H|. Since ‖R‖ is
constant, we have that this time is 2cw(G)·2O(d) · |G|O(cw(G)) · |H|. ��

7 Conclusion

In this work we have established connections between the framework of slice
languages and the double pushout approach for graph transformations. We have
shown that given a slice automaton A and a set of graph transformation rules
R, one can construct in time linear in |A| an slice automaton N (A) representing
precisely those graphs that can be obtained from some graph in LG(A) by the
application of one layer of transformation rules. Using this result we showed that
for any constants c, d ∈ N, the problem of determining whether a graph G of
cutwidth c can be transformed into a graph H by the application of transfor-
mation rules from R is in polynomial time with respect to the sizes of G and
H. On the other hand, we showed that even for d = 5, the problem becomes
NP-complete if G is allowed to have unbounded cutwidth.

Acknowledgements. I gratefully acknowledge financial support from the European
Research Council, ERC grant agreement 339691, within the context of the project
Feasibility, Logic and Randomness (FEALORA).

References

1. Andries, M., Engels, G., Habel, A., Hoffmann, B., Kreowski, H.-J., Kuske, S.,
Plump, D., Schürr, A., Taentzer, G.: Graph transformation for specification and
programming. Sci. Comput. Program. 34(1), 1–54 (1999)

Reachability in Graph Transformation Systems and Slice Languages 137

2. Baldan, P., Corradini, A., König, B.: A framework for the verification of infinite-
state graph transformation systems. Inf. Comput. 206(7), 869–907 (2008)

3. Baresi, L., Heckel, R.: Tutorial introduction to graph transformation: a software
engineering perspective. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg,
G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 431–433. Springer, Heidelberg (2004)

4. Bauderon, M., Courcelle, B.: Graph expressions and graph rewritings. Math. Syst.
Theory 20(2–3), 83–127 (1987)

5. Bertrand, N., Delzanno, G., König, B., Sangnier, A., Stückrath, J.: On the decid-
ability status of reachability and coverability in graph transformation systems. In:
Rewriting Techniques and Applications, vol. 12, pp. 101–116 (2012)

6. Brandenburg, F.-J., Skodinis, K.: Finite graph automata for linear and boundary
graph languages. Theor. Comput. Sci. 332(1–3), 199–232 (2005)

7. Bruggink, H.S., König, B.: On the recognizability of arrow and graph languages.
In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS,
vol. 5214, pp. 336–350. Springer, Heidelberg (2008)

8. Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundamenta Informaticae
26(3), 241–265 (1996)

9. de Oliveira Oliveira, M.: Hasse diagram generators and petri nets. Fundamenta
Informaticae 105(3), 263–289 (2010)

10. de Oliveira Oliveira, M.: Canonizable partial order generators. In: Dediu, A.-H.,
Mart́ın-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 445–457. Springer, Hei-
delberg (2012)

11. de Oliveira Oliveira, M.: Subgraphs satisfying MSO properties on z -topologically
orderable digraphs. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246,
pp. 123–136. Springer, Heidelberg (2013)

12. Downey, R.G., Fellows, M.R.: Fixed parameter tractability and completeness. In:
Complexity Theory: Current Research, pp. 191–225 (1992)

13. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, Berlin (2006)

14. Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: an algebraic approach.
In: Switching and Automata Theory, pp. 167–180. IEEE Computer Society (1973)

15. Ehrig, H., Rosen, B.K.: Parallelism and concurrency of graph manipulations. The-
oret. Comput. Sci. 11(3), 247–275 (1980)

16. Engelfriet, J., Vereijken, J.J.: Context-free graph grammars and concatenation of
graphs. Acta Informatica 34, 773–803 (1997)

17. Poskitt, C.M., Plump, D.: Verifying total correctness of graph programs. Electron.
Commun. EASST 61, 1–20 (2013)

18. Rensink, A.: Explicit state model checking for graph grammars. In: Degano, P.,
De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS, vol.
5065, pp. 114–132. Springer, Heidelberg (2008)

19. Rozenberg, G., Ehrig, H.: Handbook of graph grammars and computing by graph
transformation, vol. 1. World Scientific Publishing, Singapore (1999)

20. Thilikos, D.M., Serna, M., Bodlaender, H.L.: Cutwidth I: a linear time fixed para-
meter algorithm. J. Algorithms 56(1), 1–24 (2005)

21. Thomas, W.: Finite-state recognizability of graph properties. Theorie des Auto-
mates et Applications 176, 147–159 (1992)

Equational Reasoning with Context-Free
Families of String Diagrams

Aleks Kissinger and Vladimir Zamdzhiev(B)

University of Oxford, Oxford, UK
{aleks.kissinger,vladimir.zamdzhiev}@cs.ox.ac.uk

Abstract. String diagrams provide an intuitive language for expressing
networks of interacting processes graphically. A discrete representation of
string diagrams, called string graphs, allows for mechanised equational
reasoning by double-pushout rewriting. However, one often wishes to
express not just single equations, but entire families of equations between
diagrams of arbitrary size. To do this we define a class of context-free
grammars, called B-ESG grammars, that are suitable for defining entire
families of string graphs, and crucially, of string graph rewrite rules. We
show that the language-membership and match-enumeration problems
are decidable for these grammars, and hence that there is an algorithm
for rewriting string graphs according to B-ESG rewrite patterns. We also
show that it is possible to reason at the level of grammars by providing
a simple method for transforming a grammar by string graph rewriting,
and showing admissibility of the induced B-ESG rewrite pattern.

1 Introduction

A string diagram (Fig. 1(a)) consists of a collection of boxes (typically used to
represent certain maps, processes, machines, etc.) connected by wires.

They are essentially labelled directed graphs, but with one important differ-
ence: wires, unlike edges, can be left open at one or both ends to form inputs
and outputs, so they have an inherently compositional nature. Joyal and Street
showed in 1991 that compositions of morphisms in any symmetric monoidal
category can be represented using string diagrams [12], and recently there has
been much interest in applying string diagram-based techniques in a wide vari-
ety of fields. In models of concurrency, they give an elegant presentation of Petri
nets with boundary [20], in computational linguistics, they are used to compute
compositional semantics for sentences [8], and in control theory, they represent
signal-flow diagrams [3,4]. Equational reasoning for string diagrams has been
used extensively in the program of categorical quantum mechanics [1], which
provides elegant solutions to problems in quantum computation, information,
and foundations using purely diagrammatic methods [5,7,9,11].

All of these applications make heavy use of proofs by diagram rewriting.
These are proofs whereby some fixed set of string diagram equations are used
to derive new equations by cutting out the LHS and gluing in the RHS. For
example, the following string diagram equation:
c© Springer International Publishing Switzerland 2015
F. Parisi-Presicce and B. Westfechtel (Eds.): ICGT 2015, LNCS 9151, pp. 138–154, 2015.
DOI: 10.1007/978-3-319-21145-9 9

Equational Reasoning with Context-Free Families of String Diagrams 139

D

C

A

E

B

F

A B

f f

C

D

g

(a)

g

DE

F

F

h
h

F

(b)

Fig. 1. A string diagram and its encoding as a string graph

can be applied to rewrite a larger diagram as follows:

There are two things to note here. First, the LHS and RHS of string diagram
equations always share a common boundary. In other words, we could think
of the boundary as an invariant sub-diagram that embeds into the LHS and
the RHS of the rule. Secondly, it is this invariant sub-diagram that is used to
glue in the RHS once the LHS is removed. We can formalise this process using
double-pushout (DPO) rewriting.

We begin by representing (directed) string diagrams as certain labelled,
(directed) graphs called string graphs (see Fig. 1). Wires are replaced by chains
of edges containing special dummy vertices called wire-vertices. By contrast, the
‘real’ vertices, labelled here f, g and h are called node-vertices. String graphs—
originally introduced under the name ‘open graphs’ in [10]—have the advantage
that they are purely combinatoric objects, as opposed to the geometric objects
like string diagrams. As such, they form a suitable category for performing DPO
rewriting. The DPO diagram associated with the rewrite (1.2) is given in Fig. 2,
where the top row is the string graph rewrite rule for (1.1), the left square is
the pushout complement removing the LHS, and the right square is the pushout
gluing in the RHS.

This technique has been used to mechanise proofs involving string diagrams,
and forms the foundation of the diagrammatic proof assistant Quantomatic [15].
However, proving equations between single string diagrams is just half the story.
Typically, one wishes to prove properties about entire families of diagrams. For

140 A. Kissinger and V. Zamdzhiev

Fig. 2. DPO example

example, suppose we have a node that serves as an n-fold ‘copy’ process. Then,
one might require, as in Fig. 3(a), that connecting another node to the ‘copy’
node would result in n copies. Thus, we have an infinite family of (very similar)
equations, one for each n.

(a) (b)

Fig. 3. An n-fold copy rule, and its formalisation using !-box notation.

Such a family of equations can be easily captured using a graphical syn-
tax called !-box notation. Here, we can indicate that a subgraph (along with its
adjacent edges) on the LHS and RHS of a rule can be repeated any number of
times by wrapping a box around it, as in Fig. 3(b). This rewrite pattern can
then be instantiated to a concrete rewrite rule by fixing the number of copies of
each !-box to retain. A formal description of this instantiation process is given
in [13]. This procedure is straightforward to mechanise, and is the main mecha-
nism Quantomatic uses for reasoning about string diagram families. However, the
types of string graph languages representable using !-box notation is quite lim-
ited. For example, the languages produced by string graphs with !-boxes always
have finitely-bounded diameter and chromatic number.1 Thus many naturally-
occurring languages containing chains or cliques of arbitrary size are not possible.

In [14], we showed that the languages generated by string graphs with
(non-overlapping) !-boxes can always be generated using a context-free vertex
1 For colourability and cliques in string diagrams, we treat chains of wire-vertices as
single edges.

Equational Reasoning with Context-Free Families of String Diagrams 141

replacement grammar. Thus, we conjectured that a general notion of a context-
free grammar for string graphs and string graph rewrite rules could produce a
more expressive language for reasoning about families of string diagrams. In this
paper, we will show that this is indeed the case.

We begin by defining a context-free grammar for string graphs which is built
on the well-known B-edNCE class of grammars. We call these grammars bound-
ary encoded string graph (B-ESG) grammars, where ‘boundary’ here means the
grammar satisfies the same boundary condition as B-edNCE grammars. An
encoded string graph is a slight generalization of a string graph, where certain
fixed subgraphs can be encoded as a single edge with a special label. A B-ESG
grammar consists of a B-edNCE grammar for producing encoded string graphs,
and a set of decoding rules for replacing these special edges. For example, this
grammar:

produces a complete graph of n ≥ 2 white node-vertices, connected by wires,
which would not be possible in the !-box language. We define B-ESG rules anal-
ogously as two grammars with identical non-terminals, and a 1-to-1 correspon-
dence between their productions. Consider, for example, the following rule:

It will rewrite any complete graph of white node-vertices into a star with
white node-vertices on every outgoing wire:

In this paper, we will define a family of context-free grammars suitable for
equational reasoning with string diagrams. After giving formal definitions for
string graphs in Sect. 2, we will define encoded string diagrams and B-ESG
grammars in Sect. 3, as well as prove that a B-ESG grammar always yields a
language consisting of well-formed string graphs. We also show that the B-ESG
membership problem is decidable as well as the match enumeration problem.
In Sect. 4 we will extend to B-ESG rewrite rules and show that these always
form a language of well-formed string graph rewrite rules (i.e. the generated
rules always have corresponding inputs/outputs). In Sect. 5, we give a simple
example of meta-level reasoning with B-ESG grammars, whereby string graph

142 A. Kissinger and V. Zamdzhiev

rewrite rules can be lifted to admissible transformations of B-ESG grammars,
thus proving entire families of diagram equations simultaneously. We then gener-
alise this result to show how basic B-ESG on B-ESG rewriting is possible. In the
conclusion, we discuss how these principles might be extended to more powerful
versions of B-ESG on B-ESG rewriting and structural induction.

2 Preliminaries

Definition 1 (Graph [17]). A graph over an alphabet of vertex labels Σ and
an alphabet of edge labels Γ is a tuple H = (V,E, λ), where V is a finite set of
vertices, E ⊆ {(v, γ, w)|v, w ∈ V, v �= w, γ ∈ Γ} is the set of edges and λ : V → Σ
is the node labelling function. The set of all graphs with labels Σ,Γ is denoted
GRΣ,Γ .

Note that this notion of graphs forbids self-loops. This is a standard (and con-
venient) assumption in the vertex-replacement grammar literature. It will not
get in our way, since we always use chains of wire-vertices to encode self-loops in
string diagrams. Also, this notion of graph allows parallel edges only if they
have different types. Again, this isn’t problematic for our use case, because
string graphs cannot have parallel edges (but they do allow parallel wires, cf.
Definition 7).

2.1 B-edNCE Grammars

We will focus on neighbourhood-controlled embedding (NCE) grammars. This
is a type of graph grammar where non-terminal vertices are replaced by graphs
according to a set of productions, each endowed with a set of connection instruc-
tions which determine how the new graph should be connected to the neigh-
bourhood of the non-terminal. edNCE grammars are NCE grammars, with edge
labels and directions, and B-edNCE grammars additionally impose the ‘bound-
ary’ condition [18] which guarantees confluence for applications of productions.
They form an important subclass of all confluent edNCE grammars (C-edNCE
grammars) that is particularly easy to characterise.

Definition 2 (Graph with Embedding [17]). A graph with embedding over
labels Σ,Γ is a pair (H,C), where H is a graph over Σ,Γ and C ⊆ Σ ×
Γ × Γ × VH × {in, out}. C is called a connection relation and its elements are
called connection instructions. The set of all graphs with embedding over Σ,Γ
is denoted by GREΣ,Γ .

Graph grammars operate by substituting a graph (with embedding) for a non-
terminal vertex of another graph. Connection instructions are used to introduce
edges connected to the new graph based on edges connected to the non-terminal.
A connection instruction (σ, β/γ, x, d) says to add an edge labelled γ connected
to the vertex x in the new graph, for every β-labelled edge connecting a σ-
labelled vertex to the non-terminal. d then indicates whether this rule applies
to in-edges or out-edges of the non-terminal. For the formal definition of this
substitution operation, see e.g. [17].

Equational Reasoning with Context-Free Families of String Diagrams 143

Definition 3 (edNCE Graph Grammar [17]). An edNCE Graph Grammar
is a tuple G = (Σ,Δ, Γ,Ω, P, S), where Σ is the alphabet of vertex labels,
Δ ⊆ Σ is the alphabet of terminal vertex labels, Γ is the alphabet of edge labels,
Ω ⊆ Γ is the alphabet of final edge labels, P is a finite set of productions and
S ∈ Σ − Δ is the initial nonterminal. Productions are of the form X → (D,C),
where X ∈ Σ − Δ is a non-terminal vertex and (D,C) ∈ GREΣ,Γ is a graph
with embedding.

A derivation in an edNCE grammar is a sequence of substitutions of non-
terminals starting from the the graph which just contains the single starting
non-terminal S. The set of all graphs (not containing non-terminals) isomorphic
to some graph reachable in this manner is called the language of the grammar.
edNCE grammars with the additional property that the order in which non-
terminals are expanded is irrelevant are called confluent edNCE, or C-edNCE,
grammars. We will focus on a special case:

Definition 4 (B-edNCE grammar). A boundary edNCE, or B-edNCE, gram-
mar is a grammar such that for all productions p : X → (D,C), D contains no
adjacent non-terminal nodes and C contains no connection instructions of the
form (σ, β/γ, x, d) where σ is a non-terminal label.

2.2 String Graphs and Rewriting

Definition 5 (String Graph). For disjoint sets N = {Nf , Ng, . . .}, W =
{WA,WB , . . .}, a (directed) string graph is a directed graph labelled by the set
N ∪ W, where vertices with labels in N are called node-vertices and vertices
with labels in W are called wire-vertices, and the following conditions hold: (1)
there are no edges directly connecting two node-vertices (2) the in-degree of
every wire-vertex is at most one and (3) the out-degree of every wire-vertex is
at most one.

The category SGraph has as its objects string graphs and its morphisms string
graph homomorphisms (i.e. graph homomorphisms respecting labels). In full
generality, string graphs also allow one to restrict which node-vertices can be
connected to which wire-vertices, and allow for an ordering on in- and out-edges
(e.g. for non-commutative maps), but for simplicity, we will consider the case
where any node-vertex can be connected to any wire-vertex and the ordering is
irrelevant.

We will depict wire-vertices as small black dots and node-vertices as larger
nodes of various shapes and colours. We can define undirected string graphs
analogously, by replacing the last two conditions with the requirement that each
wire-vertex have degree at most 2. To avoid excessive duplication we will state
all of our results for the directed case, but similar results carry through to the
undirected case. Thus, we will occasionally give undirected examples when they
are more convenient than their directed counterparts.

Definition 6 (Inputs, Outputs and Boundary Vertices). A wire-vertex of
a string graph G is called an input if it has no incoming edges. A wire-vertex

144 A. Kissinger and V. Zamdzhiev

with no outgoing edges is called an output. The boundary of G consists of all of
its inputs and outputs.

Wires in string diagrams are geometric in nature. They are encoded in string
graphs as chains of wire-vertices.

Definition 7. A wire is a maximal connected subgraph of a string graph con-
sisting of only wire-vertices and at least one edge. There are three cases: (a) it
forms a simple directed cycle, which is called a circle, (b) it is a chain where one
or both endpoints are connected to node-vertices, which is called an attached
wire, or (c) it is a chain not connected to any node-verties, which is called a bare
wire (Fig. 4).

(a) (b) (c)

Fig. 4. Types of wires: (a) circle, (b) attached wire, (c) bare wire

In particular, when considering embeddings of string diagrams into each
other, wires are allowed to be sub-divided arbitrarily. To accommodate this
behaviour with string graphs, we represent wires as chains of wire-vertices. Of
course, this choice is not unique, as we can represent a single wire with a chain of
wire-vertices of any length. Being isomorphic up to the number of wire-vertices
representing each wire is a natural notion of ‘sameness’ for string diagrams,
which is called wire-homeomorphism.

Definition 8 (Wire-Homeomorphic String Graphs). Two string graphs
G and G′ are called wire-homeomorphic, written G ∼ G′ if G′ can be obtained
from G by either merging two adjacent wire-vertices (left) or by splitting a wire-
vertex into two adjacent wire-vertices (right) any number of times:

Two string graphs G ∼ G′ are ”semantically” the same and only differ
by the length of some of its wires. Note, that for any string graph G, its
wire-homeomorphism class has a unique minimal representative, which can
be obtained from G by just contracting wires as much as possible, so wire-
homeomorphism is decidable.

In order to rewrite a string graph using a string graph rewrite rule, one first
finds a matching of the LHS. Note we say an edge is incident to a subgraph
K ⊆ G if it connects a vertex in K to a vertex in G\K.

Definition 9. Let L be a string graph with boundary B ⊆ L. Then a matching
of L onto a string graph H is an injective string graph homomorphism m : L → ˜H
where H ∼ ˜H and the only edges incident to the image m(L) ⊆ ˜H are also
incident to m(B).

Equational Reasoning with Context-Free Families of String Diagrams 145

In other words, a matching satisfies the ‘no dangling wires’ condition with respect
to the boundary of L. Note that matching is done modulo wire-homeomorphism.
This allows wires in the target graph to grow if necessary to injectively embed
the pattern. In the example below, the embedding on the left fails, but the
embedding into a wire-homeomorphic graph (right) succeeds:

As usual, string graph rewrite rules are encoded as spans L ← B → R, where
B is the common boundary of L and R.

Definition 10. A rewrite of a string graph G by a rule L ← B → R using a
matching m : L → ˜G (for ˜G ∼ G) consists of a pushout complement (1) followed
by a pushout (2) in SGraph:

It was shown in [10] that for any matching of the LHS of a string graph rewrite
rule, the pushout complement (1) and the pushout (2) exist and are unique, so
DPO rewriting for string graph rewrite rules is well-defined.

3 Encoded String Graphs and B-ESG Grammars

We will introduce a type of context-free graph grammar suitable for defining
families of string graphs, which is essentially a restriction of the class of B-
edNCE grammars. However, to squeeze out a bit more expressive power, rather
than using such grammars to generate string graphs themselves, we use them
to generate encoded string graphs. An encoded string graph allows us to ‘fold’
some collection of fixed subgraphs into single edges, which will allow us more
flexibility when it comes to the types of languages we can produce.

Definition 11 (Encoded String Graph). Let E = {α, β, . . .} be a finite set of
encoding symbols. An encoded string graph is a string graph where we additionally
allow edges labelled by encoding symbols α ∈ E to connect pairs of node-vertices.

Definition 12 (Decoding System). A decoding system T is a set of DPO
rewrite rules of the form:

146 A. Kissinger and V. Zamdzhiev

one for every triple (α,N1, N2) ∈ E × N × N , where the LHS consists of a
single edge labeled α connecting an N1-labelled node-vertex to an N2-labelled
node-vertex, and the RHS is a connected string graph that contains no inputs,
outputs, or encoding labels.

Note, the invariant part of (3.1) consists of the two shared node-vertices. Thus,
by construction T is confluent (since no two rules apply in the same location)
and terminating (since no encoding labels occur in the RHS of a rule). Thus,
decoding an encoded string graph consists of normalising with respect to T .

Throughout the rest of the paper, we assume that all of our grammars use the
same vertex and edge label alphabets, Σ and Γ respectively, and also the same
initial non-terminal S. The alphabet for terminal vertex labels is Δ := N ∪ W.
We do not allow any non-final edge labels. We assume E ⊂ Γ and any edge with
label in E will be called an encoding edge.

Definition 13 (B-ESG Grammar). A B-ESG grammar is a pair B = (G,T),
where T is a decoding system and G = (Σ,Δ, Γ, Γ, P, S) is a B-edNCE grammar,
such that for every production X → (D,C) ∈ P , the following conditions are
satisfied:

N1: An edge carries an encoding label if and only if it connects a pair of node-
vertices.

N2: Any connection instruction of the form (N,α/β, x, d) where N is a node-
vertex label and x is a node-vertex, must have β ∈ E .

W1: Every wire-vertex in D has in-degree at most one and out-degree at most
one.

W2: There are no connection instructions of the form (σ, α/β, x, d) where σ is
any vertex label and x is a wire-vertex.

W3: For W a wire-vertex label and each γ and d, there is at most one connection
instruction of the form (W,γ/δ, x, d) and we must have δ �∈ E .

W4: Let y be a non-terminal vertex with label Y in D. If y is adjacent to a
wire-vertex labelled W via an edge with direction d and label β or there’s
a connection instruction of the form (W,α/β, y, d), then all productions Y
must contain a connection instruction of the form (W,β/γ, z, d).

The conditions N1 and N2 guarantee that node-vertices never become directly
connected by an edge, unless that edge has an encoding label. W1-3 ensure that
wires never ‘split’, i.e. wire-vertices always have at most one input or output.
The final condition, which won’t be necessary until the next section, ensures that
inputs stay inputs and outputs stay outputs in a sentential form throughout the
course of the derivation.

Definition 14 (B-ESG Concrete Derivation). A concrete derivation for a
B-ESG grammar B = (G,T) with S the initial non-terminal for G, consists of
a derivation S =⇒G

∗ H1 in G, where H1 contains no non-terminals, followed by
a decoding H1 =⇒T

∗ H2. We will denote such a concrete derivation as S =⇒G
∗

H1 =⇒T
∗ H2 or simply with S =⇒B

∗ H2 if the graph H1 is not relevant for the
context.

Equational Reasoning with Context-Free Families of String Diagrams 147

Note that in the above definition S refers to both the initial non-terminal label,
but also to a graph with a single vertex with label S which is the starting graph
for a derivation. As usual, the language of a B-ESG grammar B is given by
L(B) := {H | S =⇒B

∗ H}.

Theorem 1. Every graph in the language of a B-ESG grammar is a string
graph.

Proof. Let B = (G,T) be a B-ESG grammar. Decoding an encoded string graph
will always produce a string graph, so it suffices to show that any derivation from
G produces an encoded string graph. We call a sentential form an ESG-form if
it is an encoded string graph, which possibly has some additional non-terminals
that are either connected to node-vertices or are connected to wire-vertices in
such a way that all wire-vertices have at most 1 in-edge and 1 out-edge. We
show that any derivation starting from an ESG-form is an encoded string graph.
This can be done by induction on the length of derivations. If the derivation is
length 0, the sentential form has no non-terminals, so it is an encoded string
graph. Otherwise, consider a derivation of length n. After the first step, any
newly-introduced wire-vertices will have in-degree and out-degree at most 1 by
W1 and W2, whereas the degrees of any already existing wire-vertices will not
increase by W3. N1 and N2 will ensure that any resulting node-vertices will
only be connected by edges with encoding labels, so the result is an ESG-form.
Thus we can apply the induction hythothesis. Noting that S is, in particular, an
ESG-form completes the proof. �
Lemma 1. For every B-ESG grammar B = (G,T), there exists n ∈ N, such
that if H ∈ L(B) then H does not contain a wire with size bigger than n.

Proof. Let n be the length of the longest wire in the bodies of the productions
in G and T , and consider an arbitrary sentential form obtained from S =⇒G

∗ H ′.
From condition W2, we see that expanding any of the non-terminals cannot
create a new edge between an already established wire-vertex and a newly created
wire-vertex. Therefore, a concrete derivation in G will produce an encoded string
graph with maximum length of any wire n. Then, while doing the decoding, T
will only replace edges between node-vertices and therefore a wire longer than
n cannot be established. �
Naturally, we want to be able to decide if a given string graph is in a B-ESG gram-
mar. Since there should be no distinction between wire-homeomorphic string
graphs, we state the membership problem as follows:

Problem 1 (Membership). Given a string graph H and a B-ESG grammar B,
does there exist a string graph ˜H ∼ H, such that ˜H ∈ L(B)? In such a case,
construct a derivation sequence S =⇒∗ ˜H.

Theorem 2. The membership problem for B-ESG grammars is decidable.

148 A. Kissinger and V. Zamdzhiev

Proof. First, we show that exact membership (i.e. not up to wire-
homeomorphism) is decidable. From Theorem 1, we know that any concrete B-
ESG derivation produces an encoded string graph which is then decoded to a
string graph. Since the decoding sequence can only increase the size of a graph,
we can limit the problem to considering all graphs of size smaller than H. How-
ever, there are finitely many graphs whose size is smaller than H. For each such
graph H ′, we can then decide if H ′ ∈ L(G) (this is the membership problem
for B-edNCE grammars). Finally, we check if H ′ =⇒T

∗ H which is also clearly
decidable. If no such graph H ′ exists, then the answer is no and otherwise the
answer is yes.

We now generalise to the wire-homeomorphic case. There may be infinitely
many string graphs ˜H such that ˜H ∼ H, but by using Lemma 1, it suffices to
consider only those ˜H which do not have wires longer than some fixed n ∈ N.
There are finitely many of these, so we can check if at least one of them is in
L(B) as before. Finally, since derivation sequences are recursively enumerable,
if ˜H ∈ L(B), we can also construct a concrete derivation sequence S =⇒∗ ˜H. �
In Sect. 5, we will show how to use B-ESG grammars for rewriting. To do this,
we must show that the grammar produces some graphs which can be matched
onto a given string graph, and ideally that the set of all matchings is finite, so
that we can enumerate all of the relevant equalities. This is not true in general,
but it is true whenever the B-ESG grammar satisfies some simple conditions:

Definition 15 (Match-Exhaustive B-ESG Grammar). We say that a B-
ESG grammar B = (G,T) is match-exhaustive, if (1) any production X →
(D,C) which contains a bare wire in D has a finite bound on the number of
times it can be expanded in any sentential form (2) no production contains an
isolated wire-vertex in its body (3) there are no empty productions and (4) there
are no productions consisting of a single node which is non-terminal.

Note that condition (1) can be easily decided by examining all productions which
could possibly lead back to themselves via non-terminals, and seeing if they
contain any bare wires. In [17] it was furthermore shown that any grammar can
be transformed into an equivalent grammar satisfying conditions (3) and (4).

Problem 2 (Match-enumeration). Given a string graph H and a B-ESG grammar
B, enumerate all of the B-ESG concrete derivations S =⇒B

∗ K, such that there
exists a matching m : K → ˜H for some ˜H ∼ H.

Theorem 3. The match-enumeration problem for a B-ESG grammar B is
decidable if B is a match-exhaustive grammar.

Proof. Let W be the number of wires in a string graph H. Then, for any ˜H ∼ H,
we know that ˜H must have the same number of wires and node-vertices as H.
However, the number of wire-vertices in ˜H may be arbitrarily large.

Condition (1) of Definition 15 implies that there exists n ∈ N, such that, for
any K ∈ L(B), K has at most n bare wires. Any matching of string graphs will
map at most two non-bare wires onto a single wire. So, if K has a matching

Equational Reasoning with Context-Free Families of String Diagrams 149

on ˜H, then it can have at most 2W non-bare wires. Therefore, K can have at
most 2W + n wires. From Lemma 1 we know that the length of any such wire
is bounded. Condition (2) of Definition 15 implies that any wire-vertex in K is
part of some wire, thus there is a bound on the number of wire-vertices in K
and we already know the number of node-vertices is also bounded. Thus, there
are finitely many K ∈ L(B) which could possibly have a matching onto some
˜H ∼ H, so we can enumerate them.

Finally, conditions (3) and (4) from Definition 15 imply that the sentential
forms of B can only increase in size and therefore for any K satisfying the above
conditions there are finitely many concrete derivations S =⇒B

∗ K which we can
enumerate. �

4 B-ESG Rewrite Patterns

In the previous section we introduced a new type of grammar which generates
string graphs and which has some important decidability properties. Thus, we
can use a single B-ESG grammar to represent a single family of string graphs.
However, we still have not described how to encode equalities between families
of string graphs. This is the primary contribution of this section. We introduce
the notions of B-ESG rewrite pattern and B-ESG pattern instantiation which
show how this can be achieved in a formal way and then we give examples of
important equalities which cannot be encoded using the !-graph formalism, but
are expressible using B-ESG rewrite patterns.

Definition 16 (B-ESG Rewrite Pattern). A B-ESG rewrite pattern is a
pair of B-ESG grammars B1 = (G1, T) and B2 = (G2, T), where G1 =
(Σ,Δ, Γ, Γ, P1, S) and G2 = (Σ,Δ, Γ, Γ, P2, S), such that there is a bijective cor-
respondence between the productions in P1 and P2 given by X → (D1, C1) ∈ P1

iff X → (D2, C2) ∈ P2 and the corresponding pairs of productions satisfy the
following conditions:

NT: There is a bijection between the non-terminal nodes in D1 and the non-
terminal nodes in D2 which also preserves their labels.

IO: There is a bijection between the inputs (resp. outputs) in D1 and the inputs
(resp. outputs) in D2.

Condition NT ensures that we can perform identical derivation sequences on
both grammars G1 and G2 in the sense that we can apply the same order of
productions to corresponding non-terminal vertices. This should become more
clear from Definition 17. When working with B-ESG rewrite patterns, without
loss of generality, we will assume that the corresponding inputs/outputs/non-
terminal nodes are identified between the two grammars by sharing the same
name, instead of using a bijective function explicitly.

Definition 17 (B-ESG Pattern Instantiation). Given a B-ESG rewrite pat-
tern (B1, B2), a B-ESG pattern instantiation is given by a pair of concrete deriva-
tions:

150 A. Kissinger and V. Zamdzhiev

S =⇒B1
v1,p1

H1 =⇒B1
v2,p2

H2 =⇒B1
v3,p3 · · · =⇒B1

vn,pn
Hn =⇒T

∗ F

and
S =⇒B2

v1,p1
H ′

1 =⇒B2
v2,p2

H ′
2 =⇒B2

v3,p3 · · · =⇒B2
vn,pn

H ′
n =⇒T

∗ F ′

In other words, we use an identical derivation sequence in the two B-edNCE
grammars to get two encoded string graphs, which are then uniquely decoded
using the productions of T . These ideas are similar to the pair grammars app-
roach presented in [16], but different in that we are using a more general notion
of grammar, our extension to the context-free grammars is more limited and our
focus is on string diagram reasoning rather than computer program representa-
tion. These ideas have been further generalised in [19].

Theorem 4. Every B-ESG pattern instantiation is a string graph rewrite rule.

Proof. Consider a concrete derivation as in Definition 17. From Theorem 1, we
know that F and F ′ are string graphs. We have to show that they have the same
set of inputs/outputs. Note, that the decoding process using the productions
of T cannot establish any new inputs or outputs and thus we can reduce the
problem to showing that Hn and H ′

n have the same sets of inputs/outputs.
Setting H0 := S := H ′

0, we can prove by induction that any pair of sentential
forms (Hi,H

′
i), has the same set of inputs. This is trivially true for (H0,H

′
0).

Assuming that (Hk,H ′
k) have the same set of inputs, observe that (Hk+1,H

′
k+1)

is obtained by applying a corresponding pair of productions to (Hk,H ′
k). These

productions satisfy all of the listed conditions in Definition 13 and Definition 16.
In particular, conditions W3 and W4 guarantee that the in-degree of all wire-
vertices in both Hk and H ′

k won’t be affected. Condition W2 implies that the
newly created wire-vertices in Hk+1 and H ′

k+1 are not connected to any of the
previously established vertices in Hk and H ′

k respectively. Combining this with
condition IO ensures that any newly created wire-vertices are inputs in Hk+1 iff
they are inputs in H ′

k+1. Thus, Hk+1 and H ′
k+1 have the same set of inputs. In

particular, Hn and H ′
n have the same inputs. By symmetry, Hn and H ′

n have
the same output vertices. �
As mentioned in the introduction, we now gain previously non-existent expressive
power for families of string graph rewrite rules. For instance, we can write a rule
that merges a chain of white node-vertices, each with 1 input, into a single white
node-vertex with n inputs as follows:

In the introduction, we also gave an example of a rule involving clique-like
graphs. In fact, a minor modification to (1.4) yields a rule that is directly relevant
for quantum computation. The following rule, called local complementation:

Equational Reasoning with Context-Free Families of String Diagrams 151

is crucial to establishing the completeness of a rewrite system called the ZX-
calculus, which has been used extensively for reasoning about quantum cir-
cuits and measurement-based quantum computation. This rule uses a non-trivial
decoding system, where the h-labelled edges are interpreted as wires containing
a single node-vertex. Here we are using ‘∗’ to mean ‘any node-vertex label’. The
node-vertices labelled ±π

2 represent quantum phase gates, whereas the H is a
Hadamard gate. The interested reader can find a detailed description of the ZX-
calculus in e.g. [6] the completeness theorem based on local complementation
in [2].

5 Transforming B-ESG Grammars

In the previous section, we showed how a B-ESG rewrite pattern can encode
(infinitely) many equalities between string diagrams, where we represent the
equalities as string graph rewrite rules. Thus, we can use B-ESG rewrite patterns
to encode axioms and axiom schemas of a string diagram theory. However, in
order to perform equational reasoning between families of string diagrams, we
need to show how we can use such axioms in our formalism in order to obtain
new equalities. This is the primary contribution of this section. In particular, we
show how we can transform a B-ESG rewrite pattern into another one using a
string graph rewrite rule in an admissible way. Finally, we generalise this result
by showing how we can transform B-ESG rewrite patterns using another B-ESG
rewrite pattern in an admissible way.

Definition 18 (Final Subgraph). Given a production X → (D,C) in a B-
edNCE grammar, we say that a subgraph S of D is final if S is a string graph
which is not adjacent to any non-terminals in D and no vertex of S has associated
connection instructions in C.

Definition 19 (B-ESG Transformation Step). We say that a given gram-
mar B = (G,T) can be transformed into another grammar B′ = (G′, T) using a
given string graph rewrite rule SR = L ← I → R, if (1) there exists a production
p = X → (D,C) in G, such that L can be matched into a final subgraph of D
(2) G′ has the same productions as G, except for p which has been modified to
p′ := (D′, C) where D′ is the result of applying the rewriting rule SR to the
matching of (1).

Theorem 5. Given a B-ESG grammar B, the pair (B,B′) is a B-ESG rewrite
pattern, where B′ is the result of a B-ESG transformation step applied to B.

152 A. Kissinger and V. Zamdzhiev

Proof. Let B′ = (G′, T). Assume that the modified production is p = X →
(D,C) of B = (G,T) and the corresponding production in G′ is p′ = X →
(D′, C). Rewriting D � D′ only affects a final subgraph S of D and thus it can-
not establish any edges between non-terminals or modify the connection instruc-
tions. Therefore, G′ is a B-edNCE grammar and conditions N2,W2,W3,W4 and
NT are satisfied. Conditions W1 and N1 are also preserved, because we are
replacing a string graph S with another string graph and the edges between ver-
tices in D\S and S are preserved. Thus, B′ is a B-ESG grammar. Finally, con-
dition IO is satisfied, because string graph rewriting does not create or remove
inputs/outputs. �
Theorem 6. Let B be a B-ESG grammar, let SR be a string graph rewrite
rule and let (B,B′) be the B-ESG rewrite pattern induced by B and SR as per
Theorem 5. Then, (B,B′) is admisible in the sense that any pattern instantiation
S =⇒B

∗ F together with S =⇒B′
∗ F ′ are such that the string graph F ′ can be

obtained from F via repeated applications of SR.

Proof. Let p be the production of B which is modified by SR and let p′ be the
result of the modification. Because the modification is done on a final subgraph
S of p, as p is expanded, a copy of S is created which is not adjacent to any
previously established vertices. Moreover, the copy S is not adjacent to any non-
terminals and thus its neighbourhood won’t change in the following sentential
forms. Therefore, to obtain F ′ from F , we have to apply the rule SR exactly n
times, where n is the number of times the production p appears in the pattern
instantiation. �
Corollary 1. If B is a B-ESG grammar and (B1, B2) is a B-ESG rewrite pattern
with B1 match-exhaustive, then we can enumerate the pattern instantiations of
(B1, B2) which induce an admisible rewrite pattern (B,B′).

Proof. From Theorem 4, any pattern instantiation of (B1, B2) is a string graph
rewrite rule. If such a string graph rewrite rule matches a final subgraph in some
production of B, then it induces an admisible rewrite pattern (B,B′) as shown in
Theorem 6. Finally, by Theorem3, we can enumerate all of those instantiations
and thus all such B′. �

6 Conclusion and Future Work

In this paper, we have defined a family of grammars that is suitable for describing
languages of string graphs and string graph rewrite rules. We have also showed
that these languages admit nice decidability properties. There are two natural
directions in which to extend this work. Firstly, the conditions of a B-ESG
grammar are sufficient, but not necessary to obtain a language consisting of only
string graphs. One might ask if there exist other natural and easily-decidable
conditions yielding such languages, and how those conditions relate to the B-
ESG conditions.

Equational Reasoning with Context-Free Families of String Diagrams 153

The second, and more compelling direction for future work is the develop-
ment of tools for reasoning with B-ESG rewrite patterns and, most importantly,
deriving new patterns. We took the first step in this direction in Sect. 5, where
we described a fairly limited technique whereby grammars can be transformed
by using string graph rewrite rules to rewrite the final parts of some productions.
However, in the case string graph patterns based on !-boxes, which we briefly
discussed in the introduction, we additionally have the ability to do geniune
pattern-on-pattern rewriting, and derive new !-box rules using !-box induction.
We expect both of these techniques to extend to the context-free case. Thus,
we would ultimately like a much richer notion of rewriting, whereby B-ESG
patterns can be used to rewrite non-final parts of grammars, where e.g. non-
terminals are allowed to match on non-terminals, subject to suitable consistency
conditions. Similarly, we intend to extend !-box induction to a more general
structural induction principle that can be used to derive B-ESG rewrite patterns
from basic string graph rules. This will provide a method for deriving infinite
families of rules which is both extremely powerful and capable of producing
machine-checkable diagrammatic proofs.

Acknowledgements. We would like to thank the anonyomous reviewers for their
feedback. We also gratefully acknowledge financial support from EPSRC, the Scatcherd
European Scholarship, and the John Templeton Foundation.

References

1. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Pro-
ceedings of 19th IEEE Symposium on Logic in Computer Science (2004)

2. Backens, M.: The zx-calculus is complete for stabilizer quantum mechanics. In:
Proceedings of 9th Workshop on Quantum Physics and Logic QPL 2012 (2012)

3. Baez, J.C., Erbele, J.: Categories in control (2014). arXiv:1405.6881
4. Bonchi, F., Sobociński, P., Zanasi, F.: Full abstraction for signal flow graphs. In:

Principles of Programming Languages POPL 2015 (2015)
5. Coecke, B.: Quantum picturalism. Contemp. Phys. 51(1), 59–83 (2010)
6. Coecke, B., Duncan, R.: Interacting quantum observables: categorical algebra and

diagrammatics. New J. Phys. 13(4), 043016 (2011)
7. Coecke, B., Duncan, R., Kissinger, A., Wang, Q.: Strong complementarity and

non-locality in categorical quantum mechanics. In: Proceedings of the 27th Annual
IEEE Symposium on Logic in Computer Science (2012)

8. Coecke, B., Grefenstette, E., Sadrzadeh, M.: Lambek vs. lambek: functorial vector
space semantics and string diagrams for lambek calculus. Ann. Pure Appl. Log.
164(11), 1079–1100 (2013)

9. Coecke, B., Kissinger, A.: The compositional structure of multipartite quantum
entanglement. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide,
F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 297–308. Springer,
Heidelberg (2010)

10. Dixon, L., Kissinger, A.: Open-graphs and monoidal theories. Math. Struct. Com-
put. Sci. 23(4), 308–359 (2013)

http://arxiv.org/abs/1405.6881

154 A. Kissinger and V. Zamdzhiev

11. Duncan, R., Perdrix, S.: Graph states and the necessity of euler decomposition.
In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds.) CiE 2009. LNCS, vol. 5635, pp.
167–177. Springer, Heidelberg (2009)

12. Joyal, A., Street, R.: The geometry of tensor calculus, i. Adv. Math. 88(1), 55–112
(1991)

13. Kissinger, A., Merry, A., Soloviev, M.: Pattern graph rewrite systems. In: 8th
International Workshop on Developments in Computational Models (2012)

14. Kissinger, A., Zamdzhiev, V.: !-graphs with trivial overlap are context-free. In:
Rensink, A., Zambon, E. (eds.) Proceedings Graphs as Models, GaM 2015, London,
UK, 11-12 April 2015, vol. 181. pp. 16–31 (2015). doi:10.4204/EPTCS.181.2

15. Kissinger, A., Zamdzhiev, V.: Quantomatic: a proof assistant for diagrammatic
reasoning (2015). arXiv:1503.01034

16. Pratt, T.W.: Pair grammars, graph languages and string-to-graph translations. J.
Comput. Syst. Sci. 5(6), 560–595 (1971)

17. Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Trans-
formation, vol. 1. World Scientific, Singapore (1997)

18. Rozenberg, G., Welzl, E.: Boundary NLC graph grammars-basic definitions, normal
forms, and complexity. Inf. Control 69(1–3), 136–167 (1986)

19. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) GTTCCS. LNCS. Springer, Heidelberg
(1995)

20. Sobociński, P.: Representations of petri net interactions. In: Gastin, P., Laroussinie,
F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 554–568. Springer, Heidelberg
(2010)

http://dx.doi.org/10.4204/EPTCS.181.2
http://arxiv.org/abs/1503.0103

Translating Essential OCL Invariants to Nested
Graph Constraints Focusing on Set Operations

Hendrik Radke1(B), Thorsten Arendt2, Jan Steffen Becker1,
Annegret Habel1, and Gabriele Taentzer2

1 Universität Oldenburg, Oldenburg, Germany
{radke,jan.steffen.becker,habel}@informatik.uni-oldenburg.de

2 Philipps-Universität Marburg, Marburg, Germany
{arendt,taentzer}@informatik.uni-marburg.de

Abstract. Domain-specific modeling languages (DSMLs) are usually
defined by meta-modeling where invariants are defined in the Object
Constraint Language (OCL). This approach is purely declarative in
the sense that instance construction is not incorporated but has to
added. In contrast, graph grammars incorporate the stepwise construc-
tion of instances by applying transformation rules. Establishing a for-
mal relation between meta-modeling and graph transformation opens up
the possibility to integrate techniques of both fields. This integration
can be advantageously used for optimizing DSML definition. Generally,
a meta-model is translated to a type graph with a set of nested graph
constraints. In this paper, we consider the translation of Essential OCL
invariants to nested graph constraints. Building up on a translation of
Core OCL invariants, we focus here on the translation of set operations.
The main idea is to use the characteristic function of sets to translate set
operations to corresponding Boolean operations. We show that a model
satisfies an Essential OCL invariant iff its corresponding instance graph
satisfies the corresponding nested graph constraint.

Keywords: Meta modeling · Essential OCL · Graph constraints · Set
operations

1 Introduction

Model-based software development causes the need for new, often domain-
specific modeling languages (DSMLs) to carry high-level knowledge about the
software. Nowadays, DSMLs are typically defined by meta-models following
purely the declarative approach. In this approach, language properties are
specified by the Object Constraint Language (OCL) [1]. Constructive aspects,
however, such as generating instances [2,3] for, e.g., testing of model transfor-
mations, and recognizing applied edit operations [4] are useful as well to obtain

This work is partly supported by the German Research Foundation (DFG), Grants
HA 2936/4-1 and TA 2941/3-1 (Meta modeling and graph grammars: integration of
two paradigms for the definition of visual modeling languages).

c© Springer International Publishing Switzerland 2015
F. Parisi-Presicce and B. Westfechtel (Eds.): ICGT 2015, LNCS 9151, pp. 155–170, 2015.
DOI: 10.1007/978-3-319-21145-9 10

156 H. Radke et al.

a comprehensive language definition. A constructive way to specify languages,
especially textual ones, are grammars. Graph grammars have shown to be suit-
able and natural to specify (domain-specific) visual languages in a constructive
way [5]. They can be used for instance generation, for example.

DSML definition should come along with supporting tools such as model
editors and model version management tools. The use of graph grammars for
language definition has lead to the idea of generating edit operations from meta-
models. In [4], model change recognition as well as model patching are lifted to
recognizing and packaging edit operations to patches. To adapt such a general
approach to domain-specific needs, complete sets of edit operations have to be
specified being able to build up and destroy all models of a DSML. The automatic
generation of edit operations from a given meta-model would be of great help.

Given a meta-model, instance generation has been considered by several
approaches in the literature. Most of them are logic-oriented as, e.g., [2,6].
They translate class models with OCL constraints into logical facts and formu-
las. Logic approaches such as Alloy [7] can be used for instance generation, as
done, e.g., in [6]: After translating a class diagram to Alloy, an instance can be
generated or it can be shown that no instances exist. This generation relies on
the use of SAT solvers and can also enumerate all possible instances. All these
approaches have in common that they translate class models with OCL con-
straints into logical facts and formulas forgetting about the graph properties of
class models and their instances.

In contrast, graph-based approaches translate OCL constraints to graph
patterns or graph constraints. Following this line, models and meta-models
(without OCL constraints) are translated to instance and type graphs. I.e.,
graph-based approaches keep the graph structure of models as units of abstrac-
tion, hence, graph axioms are satisfied by default. In [8], we started to formally
translate OCL constraints to nested graph constraints [9]. In this paper, we con-
tinue this translation and focus on set operations such as select, collect, union
and size. Resulting graph constraints can be further translated to application
conditions of transformation rules [9]. Especially this work can be advantageously
used to translate meta-models (with OCL constraints) to edit operations with all
necessary pre-conditions. Meanwhile, Bergmann [10] has implemented a trans-
lator of OCL constraints to graph patterns. The focus of that work, however, is
not a formal translation but an efficient implementation of constraint checking.

Since graph-based approaches rely on (type and object) graphs, they sup-
port flat object sets as the only form of OCL collections to be translated to.
In language definition, however, often neither a specific order nor the number
of duplicate values is crucial, but the collection of distinct values (see also [6]).
Moreover, OCL translation is restricted to a simpler form of meta-model spec-
ified by EMOF [11], hence OCL considerations are restricted to Essential OCL
being closer to supporting technologies such as the Eclipse Modeling Framework.
Furthermore, considerations are restricted to a first-order, two-valued logic, as
done for graph constraints, i.e., the translation is straitened to the correspond-
ing OCL features. However, existing meta-model specifications have shown that

Translating Essential OCL Invariants to Nested Graph Constraints Focusing 157

this sub-language covers the substantial part to specify well-formedness rules in
OCL that are first-order. Since the focus of OCL usage is DSML definition, we
further restrict our translation to OCL invariants.

The contributions of this paper are the following:

(1) We continue the translation of OCL started in [8] and focus on set operations
such as select, collect, union and size. The main idea for translating
constraints with set operations is to use the characteristic function of sets
which assigns each set operation its corresponding Boolean operation.

(2) We introduce a compact notion of graph conditions, so-called lax conditions.
They permit the translation of a substantial part of Essential OCL invari-
ants to graph constraints of comparable complexity. Hence, they present a
new graphical representation of OCL invariants being slightly more abstract
since several navigation paths can be combined in graphs and set operations
are reduced to Boolean operations. Lax conditions are extensively used in
the OCL translation.

(3) The translation of Essential OCL invariants to nested graph constraints is
shown to be correct, i.e., a model satisfies an Essential OCL invariant iff
its corresponding instance graph satisfies the corresponding nested graph
constraint. The aim of this work is to establish a formal relation between
meta-modeling and the theory of graph transformation. New contributions
in modeling language engineering may be expected by advantageously com-
bining concepts and techniques from both fields.

This paper is structured as follows: The next section presents Essential OCL
focusing on set operations. Section 3 recalls typed attributed graphs and graph
morphisms as well as nested graph conditions. It also introduces lax conditions
as compact notion of graph conditions. Section 4 presents our main contribu-
tion of this paper, the translation of Essential OCL invariants to nested graph
constraints, more precisely to lax conditions. Section 5 compares to related work
and Sect. 6 concludes the paper. Note that this paper comes along with a long
version [12] containing further information about this work, especially the cor-
rectness proof.

2 Essential OCL Invariants

In this section, we recall Essential OCL presenting a small example first and
formally defining the syntax and semantics thereafter. For illustration purposes,
we use the following meta-model for Petri nets.

Example 1. A Petri net (PetriNet) is composed of several places (Place) and
transitions (Transition). Arcs between places and transitions are explicit. PTArc
and TPArc are respectively representing place-to-transition arcs and transition-
to-place ones. An arc is annotated with a weight. A place can have an arbitrary
number of incoming (preArc) and outgoing (postArc) arcs. In order to model
dynamic aspects, places need to be marked with tokens (Token).

158 H. Radke et al.

Despite of multiplicities, this meta-model allows to build inappropriate instances,
e.g., one can model a Petri net without any tokens. Therefore, the meta-model
has to be complemented with invariants formulated in OCL, e.g.: There is at
least one place in a Petri net having at least one token.

1. context PetriNet inv: self.place -> exists(p:Place | p.token ->
notEmpty()) or alternatively

2. context PetriNet inv: self.place -> select(p:Place | p.token ->
notEmpty()) -> notEmpty() or alternatively

3. context PetriNet inv: self.place -> collect(p:Place | p.token)
-> notEmpty().

Essential OCL. The Object Constraint Language (OCL) [1] is a formal lan-
guage used to describe expressions on object-oriented models being consistent to
either the Meta Object Facility (MOF) [11] or the Unified Modeling Language
(UML) specifications of the OMG. These expressions typically specify invari-
ant conditions that must hold for the system being modeled (see Example 1)
or queries over objects described in a model. Whereas our preceding work [8]
concentrates on a restricted version of OCL, called Core OCL, that addresses
the OCL type system, navigation concepts, and the usage of invariants, we now
widen our approach to Essential OCL. According to [1], Essential OCL is “. . . the
minimal OCL required to work with EMOF”. Essential MOF (EMOF) is a sub-
set of MOF that allows to define simple meta-models using simple concepts.

The translation presented in this paper covers a substantial part the OCL
specification. Compared to [8], we now support a significant number of set opera-
tions (e.g., select, collect, includesAll, and union). In contrast to the OCL
specification, we use a two-valued logic. Furthermore, and the only kind of collec-
tions we consider are sets which seem to conform well with using OCL for meta-
modeling (i.e., we do not consider bags, sequences, ordered sets, and tuples).

Formalization. We describe the semantics of Essential OCL based on the for-
mal definitions included in the OCL specification [1], Annex A being based on
the doctoral thesis by Richters [13]. Due to space limitations, we recall the main
definitions and concepts only. For deeper considerations, we refer to the long
version of this paper [12] as well as to the documents mentioned above. As a
first preliminary step, we define an object model representing the EMOF-based
meta-model types as follows.

Translating Essential OCL Invariants to Nested Graph Constraints Focusing 159

Definition 1 (Object Model). Let DSIG = (S,OP) be a data signature
with S = {Integer,Real, Boolean, String} and corresponding operation sym-
bols OP . An object model over DSIG is a structure M = (CLASS,ENUM,ATT,
ASSOC, associates, rsrc, rtgt,multiplicities,≺) consisting of finite sets of classes
(CLASS), enumerations (ENUM), and associations between classes (ASSOC),
a family of attributes for each class (ATT), functions for mapping each associ-
ation to a pair of participating classes (associates), to a source respectively
target role name (rsrc and rtgt), and to a multiplicity specification for each asso-
ciation end (multiplicities), and finally a partial order on CLASS reflecting its
generalization hierarchy (≺).

Since the evaluation of an OCL invariant requires knowledge about the complete
context of an object model at a discrete point in time, we recall the definition
of a system state of an object model M as follows.

Definition 2 (System State). A system state of an object model M is a
structure σ(M) = (σCLASS , σATT , σASSOC) consisting of a finite set of class
objects (σCLASS), functions assigning attribute values to each class object for
each attribute (σATT), and a finite set of links connecting class objects (σASSOC).
The set States(M) consists of all system states σ(M) of M .

Based on the formal definition of an object model, the underlying type system
(signature) for expressions in Essential OCL is defined as follows:

Definition 3 (Signature). A signature over an object model M is a structure
ΣM = (TM ,≤M , ΩM). TM is a set of types consisting of basic types S, all
class types CLASS, all enumeration types ENUM , the collection type Set(t)
for an arbitrary t ∈ TM , and OclAny as super type of all other types except
for Set(t). ≤M is partial order on TM representing a type hierarchy. ΩM is a
set of operations on TM consisting of OP , ATT , appropriate association end
operations, set operations such as isEmpty, includesAll, size, and union, and
operations equality (=) and non-equality (�=) for all types t ∈ TM . The semantics
of a data signature is based on sets and functions. It is fully presented in [12].

Definition 4 (Essential OCL Expressions). Let ΣM = (TM ,≤M , ΩM) be a
signature over an object model M . Let V ar = {V art}t∈TM

be a family of variable
sets indexed by types t ∈ TM . The family of Essential OCL expressions over ΣM

is given by Expr = {Exprt}t∈TM
representing sets of expressions. Expressions

in Expr are VariableExpressions v ∈ Exprt for each variable v ∈ V art,
OperationExpressions e := ω(e1, · · · , en) ∈ Exprt for each operation symbol
ω : t1 × · · · × tn → t ∈ ΩM and for all ei ∈ Exprti(1 ≤ i ≤ n), IfExpressions:
e := if e1 then e2 else e3 ∈ ExprBoolean for all e1, e2, e3 ∈ ExprBoolean,
TypeExpressions such as e.oclIsTypeOf(t′) ∈ ExprBoolean for e ∈ Exprt and
some types t′ and t, and IteratorExpressions such as s → forAll(v | b) ∈
ExprBoolean and s → select(v | b) ∈ ExprSet(t) for s ∈ ExprSet(t), v ∈ V art, and
b ∈ ExprBoolean. The semantics of an Essential OCL expression e ∈ Exprt is a

160 H. Radke et al.

function I �e� : Env → I(t) with Env being pairs of system states and variable
assignments and I(t) the set of elements of type t. The complete semantics
definition can be found in the long version of this paper [12].

As mentioned above, we concentrate on invariants being formulated in Essential
OCL. Therefore, we consider invariants and OCL constraints as synonyms in the
remainder of this paper.

Definition 5 (Essential OCL Invariant). An Essential OCL invariant is a
Boolean OCL expression with a free variable v ∈ V arC where C is a classifier
type. The concrete syntax of an invariant is: context v:C inv : <expr>. The
set InvariantM denotes the set of all Essential OCL invariants over M .

Remark 1. An invariant context v:C inv: expr is equivalent to expression
C.allInstances -> forAll(v|expr). Consequently, the semantics of an invari-
ant is equal to the semantics of the equivalent Essential OCL expression.

3 Nested Graph Constraints

In the following, we recall the main ingredients of typed, attributed graphs. Their
formal definition is presented in [14] and recalled in [12]. They form the basis to
define typed attributed nested graph constraints. Attributed graphs as considered
here allow to attribute nodes only while the original version [14] supports also the
attribution of edges.

Definition 6 (Attributed Graph). An A-graph G = (GV , GD, GE , GA, srcG,
tgtG, srcA, tgtA) consists of sets GV and GD, called graph and data nodes (or ver-
tices), respectively, GE and GA, called graph and node attribute edges, respec-
tively, and source and target functions for graph and attribute edges. A-graph
morphisms are defined componentwise. Let DSIG = (S,OP) be a data signature
with a family X of variables, and TDSIG(X) the term algebra w.r.t. DSIG and
X. An attributed graph is is a tuple AG = (G,D,Φ) where G is an A-graph, D
is a DSIG-algebra with

∑

s∈S Ds = GD, and Φ is a finite set of DSIG-formulas1

with free variables in X. An attributed graph morphism between two attributed
graphs consists of an A-graph morphism and a DSIG-homomorphism such that
codomain formulas follow from corresponding domain formulas.

This definition is closely related to symbolic graphs [15]. Attributed graphs in
the sense of [16] correspond to attributed graphs with an empty sets of formulas.

Definition 7 (Typed Attributed Graph). An attributed type graph ATGI =
(TG,Z, I) consists of an A-graph TG and a final DSIG-algebra Z and a simple
(i.e. containing neither multiple edges nor loops) inheritance graph I. The (inher-
itance) clan of a type is the set of all its sub-types (including itself); the clan
1 DSIG-formulas are meant to be DSIG-terms of sort BOOL.

Translating Essential OCL Invariants to Nested Graph Constraints Focusing 161

clan(v) of a node v is the clan of its type. A typed attributed graph (AG, type)
over ATGI, short ATGI-graph, consists of an attributed graph AG and a mor-
phism type : AG → ATGI. Given two ATGI-graphs AG1 = (G1, type1) and
AG2 = (G2, type2), an ATGI-morphism f : AG1 → AG2 is an attributed graph
morphism such that type2 ◦ f = type1.

Typed attributed graphs and morphisms form a category. In [8], attributed
graphs over attributed type graphs with inheritance [14] are considered as well.

Graph conditions [17,18] are nested constructs which can be represented
as trees of morphisms equipped with quantifiers and Boolean connectives.
In the following, we introduce ATGI-conditions as injective conditions over
ATGI-graphs2, closely related to attributed graph constraints [15] and E-
conditions [19]. Graph conditions are implemented e.g. in the systems AGG,
GROOVE, and GrGen.

Definition 8 (Nested Graph Conditions). A (nested) graph condition on
typed attributed graphs, short condition, over a graph P is of the form true or
∃(a, c) where a : P → C is an injective morphism and c is a condition over C.
Boolean formulas over conditions over P yield conditions over P , that is, for
conditions c, ci (i ∈ I) over P , ¬c and

∧

i∈I ci are conditions over P . Conditions
over the empty graph ∅ are called constraints. In the context of rules, conditions
are called application conditions.

Notation. Graph conditions may be written in a more compact form: ∃a
abbreviates ∃(a, true), ∀(a, c) abbreviates ¬∃(a,¬c), false abbreviates ¬true,
∨

i∈I ci abbreviates ¬∧

i∈I ¬ci, c ⇒ c′ abbreviates ¬c ∨ c′, c ⇔ c′ abbreviates
(c ⇒ c′) ∧ (c′ ⇒ c), and c � c′ abbreviates (c ∧ ¬c′) ∨ (¬c ∧ c′).

The satisfaction of a condition is established by the presence and absence of
certain morphisms from the graphs within the condition to the tested graph. The
presented injective satisfiability notion restricts these morphisms to be injective:
no identification of nodes and edges is allowed. In this way, explicit counting
such as the existence/non-existence of n nodes is easily expressible.

Definition 9 (Semantics). Satisfiability of a condi-
tion over P by an injective morphism p : P → G is
inductively defined as follows: p satisfies true. p : P →
G satisfies ∃(P a→C, c) if there exists an injective mor-
phism q : C → G such that p = q ◦ a and q satisfies c.

For Boolean formulas over conditions, the semantics is as usual: p satisfies ¬c if
p does not satisfy c, and p satisfies

∧

i∈I ci if p satisfies each ci (i ∈ I). We write
p |= c if p : P → G satisfies the condition c over P . Satisfiability of a constraint,
i.e. a condition over the empty graph ∅, by a graph is defined as follows: A graph
G satisfies a constraint c, short G |= c, if the injective morphism p : ∅ → G

2 A graph condition is injective if it is built by injective morphisms.

162 H. Radke et al.

satisfies c. Two conditions c and c′ over P are equivalent, denoted c ≡ c′, if, for
all injective morphisms p : P → G, p |= c iff p |= c′.

The definition of conditions is very rigid. In the following, we will be more
flexible and consider so-called lax conditions based on inclusions.

Definition 10 (Lax Conditions). A lax condition on typed attributed graphs
is of the form true or ∃(C, c) where C is a graph and c is a lax condition. Boolean
formulas over lax conditions yield lax conditions. ∃(C) abbreviates ∃(C, true).

Convention. Lax conditions are drawn as follows: Graphs in lax conditions are
drawn in a standard way: Nodes are depicted by rectangles v : T carrying the
node name v (or, more general, a set of names) and its type T inside. In the
case of {u, v}, we write u = v inside the rectangle. Edges are drawn by arrows
pointing from the source to the target node and the edge label is placed next to
the arrow. Inclusions are given by the names of the nodes: Two occurrences of v
in different graphs of the lax condition, e.g. ∃(v ,∃(v , c)) or ∃(u ,∃(u = v)),
mean that they are in inclusion relation.

The semantics of lax conditions is defined by the semantics of conditions. For
this purpose, we “complete” lax conditions to conditions.

Construction (From Lax Conditions to Conditions). For a graph P and a
lax condition d, Complete(P, d) denotes the condition over P , inductively defined
as follows:

Complete(P, true) = true.
Complete(P,∃(C ′, c)) =

∨

(a,b)∈F ∃(P a→ C,Complete(C, c))
where F = {(a, b) | (a, b) jointly surjective, a, b inclusions.}.3
Complete(P,¬c) = ¬Complete(P, c).
Complete(P,∧i∈Jci) = ∧i∈JComplete(P, ci).

Definition 11 (Semantic of Lax Conditions). Satisfiability of a lax condi-
tion is defined by the satisfiability of the corresponding condition: For an injec-
tive morphism p : P → G and a lax condition c, p |= c iff p |= Complete(P, c).
Two lax conditions c and c′ are equivalent, denoted c ≡ c′, if, the corresponding
conditions are equivalent.

By definition, lax conditions and nested graph conditions have the same expres-
sive power.

Example 2. The lax condition (u , (v , (u vrole))) means that there exist
two nodes and an edge of type role in between. Its completion over the empty
graph ∅ yields the condition ∃(∅ → x ,∃(u → u v ,∃(u v → u vrole)) ∨
∃(u → u=v , false)) ≡ ∃(∅ → u ,∃(u → u v ,∃(u v → u vrole))). It is

equivalent to lax conditions and ∃(u v ,∃(u vrole)) and ∃(u vrole).

3 A pair of morphisms (a, b) is jointly surjective if, for each x ∈ C, there is a preimage
y ∈ P with a(y) = x or a preimage z ∈ C′ with b(z) = x.

Translating Essential OCL Invariants to Nested Graph Constraints Focusing 163

Since lax conditions can be transformed into conditions automatically, lax con-
ditions are also called conditions somewhat ambiguously.

The following equivalences can be used to simplify lax conditions.

Fact 1 (Equivalences). Let C1 ⊕P C2 denote the gluing or pushout of C1 and
C2 along P and let P denote the set of all intersections of C1 and C2.

(E1) (a) ∃(C1,∃(C2)) ≡ ∨

P∈P ∃(C1 ⊕P C2).
(b) ∃(C1,∃(C2)) ≡ ∃(C1+C2) if C1 and C2 are clan-disjoint4.
(c) ∃(C1,∃(C2)) ≡ ∃(C2) if C1 ⊆ C2 and ≡ ∃(C1) if C2 ⊆ C1.

(E2) (a) ∃(C1,∃(C2)∧∃(C3)) ≡ ∃(C1,
∨

P∈P ∃(C2⊕P C3)), if for all node names
occuring in both C2 and C3, a node with that name already exists
in C1.

(b) ∃(C1) ∧ ∃(C2) ≡ ∃(C1 + C2) if C1 and C2 are clan-disjoint and have
disjoint sets of node names.

(E3) ∃(u : T ,∃(C)∧∃(u=v : T)) ≡ ∃(u : T ,∃(C[u=v])) provided that either
u or v does not exist in C and C[u=v] is the graph obtained from C by
renaming u by u = v.

4 Translation of Essential OCL Invariants

To translate Essential OCL invariants, we first show how to translate the type
information of meta-models, i.e. object models, to attributed type graphs with
inheritance [14]. Thereafter, system states are translated to typed attributed
graphs. Having these ingredients available, our main contribution, the translation
of Essential OCL invariants is presented and illustrated by several examples.
Finally, the correctness of the translation is

Type and State Correspondences. To translate Essential OCL invariants
to nested graph constraints, we relate an object model M to an attributed type
graph ATGI. Correspondence relation corrtype relates classes of M to graph
vertices of ATGI, attributes to attribute vertices and associations to graph edges
of ATGI. Data signatures of M and ATGI are almost the same. The only
difference are enumerations of M which are mapped to new sorts for type graphs
as well as to new equality and inequality operations.

Given such a type correspondence corrtype, a system state σ(M) corresponds
to an attributed graph AG typed over ATGI if there is a state correspon-
dence relation corrstate bijectively relating classes to graph vertices, attributes
to attribute vertices, and links to graph edges of AG.

The formal definitions for these correspondences can be found in [12].

4 Two graphs C1 and C2 are clan-disjoint if the clans of the types of C1 and C2 are
disjoint. For graphs C1 and C2, C1+C2 denotes the disjoint union.

164 H. Radke et al.

Methodology of the Translation. In the following, we present the translation
of a substantial part of Essential OCL to nested conditions. This translation is
shown to correspond to the one given earlier in [8] and furthermore, it is proven
to be correct in [12].

– The translation proceeds along the abstract syntax tree of the OCL constraint.
For example, given a->union(b)->notEmpty(), we first translate notEmpty,
followed by union and then its arguments a and b.

– The set operations themselves are translated with the characteristic function
in mind, e.g., the characteristic function of a->union(b) is the disjunction of
the characteristic functions of a and b: v ∈ A∪B iff v ∈ A∨v ∈ B. Navigation
expressions, which yield a single object, are treated like single-element sets.

– When translating an OCL operation which yields a set of objects (translation
trS), we pass a single node as an extra parameter serving as representative of
the set: trS(a->union(b), v : T) := trS(a, v : T) ∨ trS(b, v : T).

Representing sets by their characteristic function allows us to translate OCL set
operations without a special set construct in the conditions. For example, we
can express expr1->exists(v:T | expr2) as “there exists an object v of type
T such that v is element of the set described by expr1 and v satisfies expr2”,
and expr1->forall(v:T | expr2) as “for all nodes v of type T, if v is in the
set described by expr1 then v also satisfies expr2”. Sets A and B are equal if
every node v is in A iff it is in B. The idea behind select is to restrict the set of
nodes described by expr1 such that each node v′ satisfying expr1 also satisfies
expr2. trS(expr1->collect(v:T|expr2), v′ : T′) is true iff there is a node v
that is (a) contained in the set described by expr1 and (b) the relation between
v and v′ given by expr2 is satisfied. For T.allInstances(), the characteristic
function is true for all nodes which are of type T.

Without loss of generality, we assume variable names to be unique in
OCL expressions. This can easily be ensured by giving each variable a dif-
ferent name, e.g. self.a->collect(v | v.b)->exists(v | expr) becomes
self.a->collect(v | v.b)->exists(v’ | expr).

The translation consists of several parts: Invariants are translated by function
trI . OCL expressions yielding a Boolean as result are translated by trE . We
use trN for expressions yielding single objects and trS for expressions yielding
collections (i.e., sets) of objects.

Definition 12 (Constraint Translation). Let M be an object model as
defined above with ATGI = corrtype(M) being the corresponding attributed
type graph. Let t : Expr → T be a typing function which returns the type of
an OCL expression. Let InvariantM be the set of Essential OCL invariants over
M and GraphConditionATGI be the set of all graph constraints as defined in
Definition 8. The translation functions

– invariant translation trI : InvariantM → GraphConditionATGI,
– expression translation trE : ExprBoolean → GraphConditionATGI,

Translating Essential OCL Invariants to Nested Graph Constraints Focusing 165

– navigation translation trN : ExprC×GraphATGI → GraphConditionATGI with
C ∈ CLASS,

– and set translation trS : ExprSet × GraphATGI → GraphConditionATGI

are defined as follows:
Let expr, expr1 and expr2 be OCL expressions, u, v, v′ names of nodes (i.e.

variables), T = t(v) denote the type of v and likewise T′ = t(v′), attr1 and
attr2 be attribute names, op ∈ {<,>,≤,≥,=, <>} a comparison operator,
and role be a role of a class. Then

1. (a) trI(context C inv: expr) := ∀(self : C , trE(expr))
(b) trI(context var:C inv: expr) := ∀(var : C , trE(expr))

2. Translation of Boolean operators is unambiguous: trE(not expr) :=
¬trE(expr), trE(expr1 and expr2) := trE(expr1) ∧ trE(expr2) and simi-
lar for operators true, or, implies and if.

3. (a) trE(expr1->exists(v:T | expr2)) :=
∃(v : T , trS(expr1, v : T) ∧ trE(expr2))

(b) trE(expr1->forall(v:T|expr2)) :=
∀(v : T , trS(expr1, v : T) ⇒ trE(expr2))

4. trE(expr1->includesAll(expr2)) :=
∀(v : T , trS(expr2, v : T) ⇒ trS(expr1, v : T))

where t(expr1) = t(expr2) = Set(T).
The translation of excludesAll is analogous.

5. trE(expr->notEmpty()) := ∃(v : T , trS(expr, v : T))
6. trE(expr->size() >= n) := ∃(v1 : T · · · vn : T ,

∧n
i=1 trS(expr, vi : T))

where n is an integer constant ≥ 0, t(expr) = Set(T) and v1, . . . , vn are fresh
variables of type T.

7. (a) trE(expr1 = expr2) :=∃(v : T , trN (expr1, v : T)∧ trN (expr2, v : T))
if t(expr1) = t(expr2) = T for some class T,

(b) trE(expr1 = expr2) :=∀(v : T , trS(expr1, v : T)⇔ trS(expr2, v : T))
if t(expr1) = t(expr2) = Set(T) for some class T.

8.
trE(expr.attr1 op con) := ∃(v:T , trN (expr, v:T) ∧ ∃(

v:T
attr1 op con))

where con is a constant and t(expr) = T for some class T.
9. trE(expr1.attr1 op expr2.attr2) :=

∃(v:T , trN (expr1,
v:T

attr1 op x) ∧ trN (expr2,
v:T

attr2 = x)) ∨5

∃(v:T v’:T’ , trN (expr1,
v:T

attr1 op x) ∧ trN (expr2,
v’:t(v’)

attr2 = x))

where t(expr1) = T, t(expr2) = T′, t(x) = t(attr1) = t(attr2) and x, v
and v’ are fresh variables.

5 The part before ∨ is omitted if clan(t(expr1)) ∩ clan(t(expr2)) = ∅, and the part
after ∨ is omitted if expr1 = expr2.

166 H. Radke et al.

10. (a) trE(expr.oclIsKindOf(T)) := ∃(v : T′ ↪→ v : T , trN (expr, v : T′))
(b) trE(expr.oclIsTypeOf(T)) :=

∃(v : T′ ↪→ v : T ,
∧T ′′ �=T

T ′′∈clan(T) ¬∃(v : T ↪→ v : T′′)∧trN (expr, v : T′))
where T′ = t(expr) and T ∈ clan(T′).

11. trN (expr.oclAsType(T), v : T):=∃(v : T′ ↪→ v : T , trN (expr, v : T′))
where T′ = t(expr) and T ∈ clan(T′)

12. (a) trN (v, v′ : T) := ∃(v = v′ : T) if v is a variable,
(b) If role has a multiplicity of 1, trN (expr.role, v : T) :=

∃(v’:T’ v:Trole
, trN (expr, v’:T’)) if T′ �∈ clan(T) and

∃(v’:T’ v:Trole
, trN (expr, v’:T’)) ∨ ∃(v:T role, trN (expr, v:T)) else.

(c) If role has a multiplicity > 1, trS(expr.role, v : T) :=
∃(v’:T’ v:Trole

, trN (expr, v’:T’))
if T′ �∈ clan(T) and

∃(v’:T’ v:Trole
, trN (expr, v’:T’)) ∨ ∃(v:T role, trN (expr, v:T)) else,

where v’ is a fresh variable and t(expr) = T′6.
13. trS(expr1->select(v:T | expr2), v′ : T) :=

trS(expr1, v′ : T) ∧ trE(expr2){v/v′} where expr2{v/v′} means replac-
ing v in expr2 with v′.
The translation of reject proceeds analogously.

14. (a) trS(expr1->collect(v:T | expr2), v′ : T′) :=

∃(v : T , trS(expr1, v : T) ∧ trS(expr2, v′ : T′)) if expr2 yields a
set, and

(b) trS(expr1->collect(v:T | expr2), v′ : T′) :=

∃(v : T , trS(expr1, v : T)∧ trN (expr2, v′ : T′)) if expr2 yields an
object.

15. trS(expr1->union(expr2), v : T):=trS(expr1, v : T)∨trS(expr2, v : T)
Transformations for intersect, - (set difference) and symmetric
Difference are analogous, using a ∧ b, a ∧ ¬b and a � b instead of a ∨ b,
respectively.

16. trS(T.allInstances(), v : T) := ∃(v : T)
17. trS(Set{expr1, ..., exprN}, v : T) :=

trN (expr1, v : T) ∨ · · · ∨ trN (exprN, v : T)
where expr1, . . . , exprN are OCL expressions of type T.

Further translations of Essential OCL constraints can be derived from equiv-
alences of OCL expressions. Most of these equivalences follow from basic set

6 Case (a) presents the final step in a chain of navigations, while cases (b) and (c)
present the navigation to single nodes and sets of nodes, respectively. Translations
(b) and (c) are identical, since single nodes are treated as single-element sets.

Translating Essential OCL Invariants to Nested Graph Constraints Focusing 167

theory and logic axioms, cf. Richters [13]. Such equivalences include operations
includes, excludes, including, excluding, <>, isEmpty, expr->size op n
for op in >,=,<=,<,<>, any and one.

Example 3. To demonstrate our approach, we translate the second alternative
of invariant There is at least one place in a Petri net having at least one token
presented in Example 1. Note that translating each alternative leads to the same
graph constraint, as shown in [12].

trI(context PetriNet inv:

self.place->select(p:Place|p.token->notEmpty())->notEmpty()) =1

∀(self:PN , trE(self.place->select(p:Place|p.token->notEmpty())->notEmpty())) =5

∀(self:PN ,∃(p:Pl , trS(self.place->select(p:Place|p.token->notEmpty()), p:Pl))) =13

∀(self:PN ,∃(p:Pl , trS(self.place, p:Pl) ∧ trE(p.token->notEmpty()))) =5

∀(self:PN ,∃(p:Pl , trS(self.place, p:Pl) ∧ ∃(t:Tk , trS(p.token, t:Tk)))) =12

∀(self:PN ,∃(p:Pl ,∃(self:PN p:Plplace
) ∧ ∃(t:Tk ,∃(p:Pl t:Tktoken)))) ≡E1,E2

∀(self:PN ,∃(self:PN p:Pl t:Tkplace token))

An index above the = sign refers to the translation rule used; an index at the
equivalence sign ≡ refers to the used equivalence rule of Proposition 1.

Example 4 (Further invariant translations).
The name of a transition is not empty.

trI(context Transition inv: self.name <> ’’) = ∀(self:Tr , ∃(
self:Tr

name <> ’ ’))

There is no isolated place.

trI(context Place inv:self.preArc->notEmpty() or self.postArc->notEmpty()) =

∀(self:Pl , ∃(self:Pl v:TPArc
preArc

) ∨ ∃(self:Pl w:PTArc
postArc

))

Each two places of a Petri net have different names.

trI(context PetriNet inv:

self.place->forAll(p1,p2:Place | p1<>p2 implies p1.name <> p2.name)) =

∀(self:PN , ∃(self:PN
p1:Plplace

p2:Plplace
) ⇒ ∃(

p1:Pl

name<>x

p2:Pl

name=x))

The translations of Core OCL constraints in [8] (in this paper denoted tr′)
and the translation tr of Essential OCL constraints are closely related, as stated
by the following proposition.

Proposition 1 (Translations of Core and Essential OCL). For every Core
OCL constraint expr, tr′(expr) ≡ tr(expr).

168 H. Radke et al.

Proof. The proof of this proposition is given in [12]. ��
To show that the translation of Essential OCL invariants is correct, we consider
their semantics and the semantics of graph constraints. If an invariant holds for a
system state, the corresponding graph constraint is fulfilled by the corresponding
graph.

Theorem 1 (Correct Translation of Essential OCL invariants). Given
an object model M and its corresponding attributed type graph ATGI =
corrtype(M), for all Essential OCL invariants inv ∈ dom(trI) and all envi-
ronments (σ, β) ∈ Env,

I[[inv]](σ, β) = true iff G = corrstate(σ) |= trI(inv).

Proof. The proof of this theorem is given in [12]. ��

Limitations. Since we focus on the use of OCL within DSML definitions, we
restrict our translation to invariants. Therefore, we do not consider expression
oclIsNew that is mainly used within post-condition specifications of operations.

Because graph-based approaches rely on (type and object) graphs, they sup-
port flat object sets as the only form of OCL collections to be translated. Conse-
quently, we do not translate expressions related to further collection types (e.g.,
Sequence) such as sortedBy and isUnique as well as expressions related to
hierarchical sets (e.g., flatten) and sets of primitive values (e.g., sum).

Since graph constraints are restricted to a first-order, two-valued logic, our
OCL translation is straightened to corresponding OCL features, focusing on the
equivalence of constraints to true in our proofs. Therefore, we do not consider
types void and invalid as well as expressions like oclIsUndefined and iterate
which is not first order.

Finally, there are a few additional OCL features which have not been covered
by our OCL translation but will be in future work. These are, e.g., non-recursive
operation calls, as used in model queries, and LetExpressions which may be
iteratively replaced by their bodies with potential variable replacement.

5 Related Work

In the literature, there are several approaches to translate OCL to formal frame-
works. Most of them are logic-oriented; they translate class models with OCL
invariants into logical facts and formulas. An overview on the significant logic-
oriented approaches is given in [8]. The advantage of the logic-oriented approaches
is that there are a number of established theorem provers which can be used.

In contrast to logic-oriented approaches, graph-based approaches translate
OCL constraints to graph patterns or graph constraints. Pennemann has shown
in [20] that a theorem prover for graph conditions works more efficient than
theorem provers for logical formulas being applied to graph conditions. The
key idea is here that graph axioms are always satisfied by default when using

Translating Essential OCL Invariants to Nested Graph Constraints Focusing 169

a theorem prover for graph conditions. Lambers and Orejas [21] have shown
that this theorem prover is also complete. Bergmann [10] has translated OCL
constraints to graph patterns. He considers a pretty similar subset of OCL than
we do (except of OCL expression not being first-order), and in fact, the way of
translation shows a lot of similarities. The focus of that work, however, is not a
formal translation but an efficient implementation of constraint checking which
is tested at example constraints.

6 Conclusion

The contributions of this paper are the following:

(1) Introduction of a compact notion of graph conditions: lax conditions.
(2) Translation of Essential OCL invariants to nested graph constraints
(3) Correctness of the translation.

Translating Essential OCL invariants to nested graph constraints opens up a way
to construct application conditions of transformation rules ensuring consistency
already during transformations [9]. This missing link between meta-modeling and
transformation systems may be advantageously used by new applications such as
test model generation as well as recognition and auto-completion of model editing
operations. The backward translation of graph conditions to OCL may also be
interesting, e.g., to weakest pre-conditions in OCL as proposed in [22]. In future
work, we plan to implement the presented translation of OCL to application
conditions in the context of the Eclipse Modeling Framework and Henshin [23],
a model transformation environment based on graph transformation concepts,
and to apply it in various forms.

Acknowledgement. We are grateful to the anonymous referees for their helpful com-
ments on a draft version of this paper.

References

1. OMG: Object Constraint Language. http://www.omg.org/spec/OCL/
2. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a tool for the formal verification of

UML/OCL models using constraint programming. In: 22nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), pp. 547–548 (2007)

3. Ehrig, K., Küster, J.M., Taentzer, G.: Generating instance models from meta mod-
els. Softw. Syst. Model. 8(4), 479–500 (2009)

4. Kehrer, T., Kelter, U., Taentzer, G.: Consistency-preserving edit scripts in model
versioning. In: Denney, E., Bultan, T., Zeller, A. (eds.) 2013 28th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2013, Silicon
Valley, CA, USA, 11–15 November 2013, pp. 191–201. IEEE (2013)

5. Bardohl, R., Minas, M., Schürr, A., Taentzer, G.: Application of Graph Transfor-
mation to Visual Languages. In: Handbook of Graph Grammars and Computing
by Graph Transformation. Vol. 2, pp. 105–180. World Scientific (1999)

http://www.omg.org/spec/OCL/

170 H. Radke et al.

6. Kuhlmann, M., Gogolla, M.: From UML and OCL to relational logic and back. In:
France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS,
vol. 7590, pp. 415–431. Springer, Heidelberg (2012)

7. Jackson, D.: Alloy Analyzer website (2012). http://alloy.mit.edu/
8. Arendt, T., Habel, A., Radke, H., Taentzer, G.: From core OCL invariants to nested

graph constraints. In: Giese, H., König, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp.
97–112. Springer, Heidelberg (2014)

9. Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems
relative to nested conditions. Math. Struct. Comput. Sci. 19, 245–296 (2009)

10. Bergmann, G.: Translating OCL to graph patterns. In: Dingel, J., Schulte, W.,
Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp.
670–686. Springer, Heidelberg (2014)

11. OMG: Meta Object Facility. http://www.omg.org/spec/MOF/
12. Radke, H., Arendt, T., Becker, J.S., Habel, A., Taentzer, G.: Translating Essen-

tial OCL Invariants to Nested Graph Constraints Focusing on Set Opera-
tions: Long version (2015). http://www.uni-marburg.de/fb12/forschung/berichte/
berichteinformtk/pdfbi/bi2015-01.pdf

13. Richters, M.: A Precise Approach to Validating UML Models and OCL Constraints.
Ph.D. thesis, Universität Bremen, Logos Verlag, Berlin (2002)

14. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamental theory of typed
attributed graph transformation based on adhesive HLR categories. fundamenta
Informaticae 74(1), 31–61 (2006)

15. Orejas, F.: Symbolic graphs for attributed graph constraints. J. Symb. Comput.
46(3), 294–315 (2011)

16. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, Heidelberg (2006)

17. Rensink, A.: Representing first-order logic using graphs. In: Ehrig, H., Engels, G.,
Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 319–335.
Springer, Heidelberg (2004)

18. Habel, A., Pennemann, K.-H.: Nested constraints and application conditions for
high-level structures. In: Kreowski, H.-J., Montanari, U., Orejas, F., Rozenberg,
G., Taentzer, G. (eds.) Formal Methods in Software and Systems Modeling. LNCS,
vol. 3393, pp. 293–308. Springer, Heidelberg (2005)

19. Poskitt, C.M., Plump, D.: Hoare-style verification of graph programs. Fundamenta
Informaticae 118(1–2), 135–175 (2012)

20. Pennemann, K.H.: Development of Correct Graph Transformation Systems. Ph.D.
thesis, Universität Oldenburg (2009)

21. Lambers, L., Orejas, F.: Tableau-based reasoning for graph properties. In: Giese,
H., König, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp. 17–32. Springer, Heidelberg
(2014)

22. Richa, E., Borde, E., Pautet, L., Bordin, M., Ruiz, J.F.: Towards testing model
transformation chains using precondition construction in algebraic graph transfor-
mation. In: AMT 2014-Analysis of Model Transformations Workshop Proceedings,
pp. 34–43 (2014)

23. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced
concepts and tools for in-place EMF model transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp.
121–135. Springer, Heidelberg (2010)

http://alloy.mit.edu/
http://www.omg.org/spec/MOF/
http://www.uni-marburg.de/fb12/forschung/berichte/berichteinformtk/pdfbi/bi2015-01.pdf
http://www.uni-marburg.de/fb12/forschung/berichte/berichteinformtk/pdfbi/bi2015-01.pdf

Characterizing Conflicts Between Rule
Application and Rule Evolution in Graph

Transformation Systems

Rodrigo Machado1,2(B), Leila Ribeiro1,2, and Reiko Heckel1,2

1 Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
{rma,leila}@inf.ufrgs.br

2 University of Leicester, Leicester, UK
reiko@mcs.le.ac.uk

Abstract. Systems and models usually evolve with time, triggering the
question of how the introduced modifications impact their original behav-
ior. For rule-based models such as graph transformation systems, model
evolution may be represented by means of a collection of structural mod-
ifications in individual transformation rules. In this work we introduce
the notion of inter-level conflict between rule modification and rule appli-
cation, characterizing the situations where the evolution disables a tran-
sition of the original system. We discuss the confluence of the evolution
with respect to individual rewritings, and we also propose how the notion
of inter-level conflict can be used to help the modeler to foresee the effects
of model evolution.

1 Introduction

Computational systems are always evolving. Evolution may be due to correction
of errors, optimization, introduction of new features, adaptation to new technolo-
gies, languages or platforms, among others. Typically, when one version of a sys-
tem is delivered, the developers are already working on further versions to come.
In such a scenario, it is fundamental to understand how those changes impact
the system’s original behavior. If we restrict evolution to traceable structural
modifications in the description of the system behavior (for instance, rewriting
rules) it may be possible to relate these changes with the overall system exe-
cution (i.e. the application of those components over the system state), or, at
least, be warned of potential implications of some modifications.

Many systems can be modeled by an initial condition and a set of transforma-
tion rules. Graph transformation systems (GTS) [2], for instance, are essentially
a set of typed graph rewriting rules. The behavior of a GTS is given by iterated
application of rules over an initial graph. Due to the simplicity of the concept
of graph rewriting, and the availability of modeling and analysis tools such as
AGG [11] and Groove [9], GTSs have been used to describe several kinds of
model transformations for visual languages (such as the ones from the UML
family).
c© Springer International Publishing Switzerland 2015
F. Parisi-Presicce and B. Westfechtel (Eds.): ICGT 2015, LNCS 9151, pp. 171–186, 2015.
DOI: 10.1007/978-3-319-21145-9 11

172 R. Machado et al.

In this work we investigate how structural modifications in GTSs may affect
their respective behavior. For instance, augmenting the left-hand side of a given
rule has the effect of disabling its application over graphs that do not contain the
new requirements. Although this is quite obvious, we have found that deleting
some parts of the left-hand side may as well disable some of its rewritings. This
is not as obvious as adding a new requirement, and justifies the importance of
a method to help the modeler to foresee all situations where changes in rules
impact their respective rewritings.

For our discussion we will employ (typed) GTSs under the double-pushout
approach (DPO) for graph rewriting [2]. We introduce the notions of rule evolu-
tion that characterize changes in individual rules, and inter-level conflicts that
characterize the interference of evolution over a particular graph transforma-
tion. We also propose an extension to the critical pair analysis technique, whose
purpose is to calculate, for a given GTS submitted to evolution, all possible
inter-level conflicts. The aim of finding critical pairs is to detect situations in
which evolution may not succeed as expected and generate a warning for the
modeler regarding the adequacy of the evolution. This kind of static analysis
technique is very useful during the modeling stage to avoid the introduction of
undesirable behavior.

This paper is organized as follows: in Sect. 2, we present a review of graph
transformation systems under the double-pushout approach and introduce our
working example. In Sect. 3, we motivate an evolution of the example system
and we introduce a formal definition for evolutions. In Sect. 4, we define the
notion of inter-level conflict (and inter-level independence) between rule evo-
lution and rule rewriting, presenting some examples of conflicting situations.
Questions of confluence between inter-level independent evolutions and rewrit-
ings are discussed in Sect. 5, where we prove that we can obtain confluence under
specific conditions. In Sect. 6, we review the critical pair analysis algorithm, and
propose an extension to capture inter-level conflicts. In Sect. 7, we compare our
approach to related work. We conclude in Sect. 8 discussing application scenarios
and pointing towards future work.

2 Background

This section reviews the fundamentals of GTSs and present our working example.
First, we recall some basic definitions regarding graphs and graph rewriting rules.

A (directed) graph is a tuple G = (V,E, s, t) where V is a set of nodes, E is a
set of edges, and s, t are functions that map each edge to its respective source and
target node. In the following we refer as graph elements both nodes and edges
of a given graph. A graph homomorphism f : (V1, E1, s1, t1) → (V2, E2, s2, t2) is
a pair of total functions (fV , fE) where fV : V1 → V2, fE : E1 → E2, and, for all
e ∈ E1, we have fV ◦s1(e) = s2 ◦fE(e) and fV ◦t1(e) = t2 ◦fE(e). A typed graph
tg : G → T is a graph homomorphism where the elements of T (the type graph)
represent types of nodes and edges, and the elements of G (the instance graph)
have a type assignment given by the homomorphism mapping. For example,

Characterizing Conflicts Between Rule Application and Rule Evolution 173

the nodes in graph T (shown in Fig. 2) describe four kinds of nodes: messages
(envelops), clients (laptops), servers (tower-style CPUs), and data nodes (sheets
of papers). There are five kinds of edges, representing the location of messages
over servers and clients, and data over messages, clients and servers.

A morphism between two typed graphs tg1 : G1 → T and tg2 : G2 → T is
a graph homomorphism f : G1 → G2 between the instance graphs G1 and G2

such that tg2 ◦ f = tg1. In the following, we assume all graphs and morphisms
are typed over a global typed graph T , and hence, for the sake of brevity, we
omit the T -typed qualification for rules, matches and rewritings.

Under the double-pushout approach to graph transformation, a graph rule
is a span p : L

l←− K
r−→ R (a pair of typed graph morphisms l and r with the

same source) where L, K and R are graphs and both l and r have injective
mappings. Within p, the left-hand side graph L represents a pattern to be found
in order to apply the rule, the interface graph K represents the elements which
are maintained by the rule application. The right-hand side graph R presents
new nodes and edges to be added by the rule rewriting. An element of L which
does not have a pre-image in K along l is said to be deleted by p and an element
of R which does not have a pre-image in K is said to be created by p.

Fig. 1. Graph transformation rule.

Example 1. Figure 1 shows a graph rule which deletes the edge a, creates the edge
b and preserves the three nodes x, y and z (both l and r are inclusions). Since
edges are used to specify the location of messages, this production represents
the act of sending a message from a computer to a server.

A match for rule p : L
l←− K

r−→ R over a graph G is simply an homomorphism
m : L → G. The effect of modifying a graph G into a graph G′ by means of
a graph rule p and match m is a graph rewriting, which we denote G

p,m
==⇒ G′.

Informally, the rewriting consists of deleting the image along m of the elements
deleted by p, which results in an intermediate graph D. Then, we add to D the
elements created by p. In the literature of graph transformation, this double step
may be compactly described as the existence of a double-pushout diagram in the
category of typed graphs involving G, m, p and G′, as shown below (for more
details, see [2]):

174 R. Machado et al.

The double-pushout approach to graph rewriting imposes two conditions over
the match, which have to be satisfied in order for the rewriting to occur: (i) an
element deleted by the rule may not be identified in the match with any other
element of the graph (identification condition); (ii) a node may not be deleted
if there are incident arrows over it which are outside of the match (dangling
condition). Whenever these two conditions (called gluing conditions) are satisfied
for a given match, the rewriting is possible.

A graph transformation system is a tuple G = (T, P, π) where T is a type
graph, P is a set of rule names, and π is a function that associates to each rule
name a particular T -typed graph transformation rule. In the following, whenever
we refer to a rewriting of p, we mean actually a rewriting of rule π(p).

Fig. 2. Graph transformation system for clients and servers.

Example 2. Figure 2 shows a graph transformation system thats models a client-
server scenario. There are four kinds of transitions in this system: clients send-
ing a message to servers (sendMSG), obtaining data elements from the server
(getDATA), servers returning the messages to the clients (receiveMSG) and clients
obtaining data from returned messages (deleteMSG). The visual depiction of each
rule omits the interface graph, which we implicitly take to be the intersection of
the left-hand side and right-hand side graphs.

Given an initial graph G0, a derivation of G from G0 consists of a sequence
of graph rewritings G0

p1,m1=⇒ G1
p2,m2=⇒ G2

p3,m3=⇒ . . . where pi ∈ P for all i ∈ N.

Example 3. Figure 3 presents a derivation of the shown graph transformation
system over an initial situation consisting of a single client and two servers.

Characterizing Conflicts Between Rule Application and Rule Evolution 175

Fig. 3. Graph derivation.

For a given graph G, it may be possible to have several possible rewritings
G

p,m
==⇒ G′ of distinct rules or even the same rule in distinct parts of the graph.

Operationally, the simplest solution to this is to consider a non-deterministic
choice of which rule and match to apply. If there are two possible rewritings
G

p1,m1===⇒ H1 and G
p2,m2===⇒ H2 from the same graph G, we say that they are in

conflict iff one of the rewritings disables the subsequent application of the other
in the same part of the graph (usually by deleting something that the other
rewritings needed). When two rewritings are not conflicting there are said to be
parallel independent.

Fig. 4. Conflicting graph derivations.

Example 4. Figure 4 presents a conflict between two distinct application of the
rule sendMSG. Each application deletes the arrow from the message to the client
and creates a new arrow from the message to a server. Since the application of
one removes the arrow needed by the other, they cannot be both executed, and
therefore they are conflicting.

3 Evolution of Graph Transformation Systems

We now consider the case of how to represent the evolution of a graph transfor-
mation system. Changes in systems and models may occur due to very distinct
reasons, such as the correction of errors, addition of new features or simply

176 R. Machado et al.

structural reorganizations (refactorings). Either way, a generic way of framing
the evolution of a given model is to consider that some of its elements have been
removed, added or preserved. Notice that GTSs have only two components: one
which defines structural restrictions (the type graph) and one which defines the
system execution (the set of graph rewriting rules), and we need to specify in
which way those elements may be modified.

Before dealing with the formal definitions, let us introduce a simple example
of model evolution. Although very straightforward, our example graph transfor-
mation system of Fig. 2 has some behaviors that could be considered defects in
comparison with the original modeler’s intention. It is not uncommon during the
modeling stage to obtain an incorrect approximation of the intended behavior,
and to successively refine the specification until it faithfully encodes the original
concept. The next example highlights the problems with the original model.

Fig. 5. Graph derivation exposing problems in the model.

Example 5. Figure 5 presents a derivation of the example GTS over an initial
graph consisting of two clients and two servers. There are at least three potential
issues:

– The first issue can be seen in the rewriting G2
getData,m3
======⇒ G3, where a second

data node is loaded over the only message. Although this may not seem a
problem at first sight, it completely disables the subsequent application of rule
deleteMSG over the message. The reason is that the deletion of the message
node would leave a dangling edge from the data node that is not transferred
to the client. In the double-pushout approach, dangling edges prevent the
rewriting (although in other approaches, such as the single-pushout approach
[5], the rewriting would occur and the dangling edge would be deleted, leaving
the data node astray).

– The second issue is shown by rewriting G3
receiveMSG,m4
=========⇒ G4, since the message

we have sent from a particular client has returned to a different one. This is
clearly the result of not storing a reference to the original sender, which enables
the receiveMSG rule to return the message to any of the available clients.

Characterizing Conflicts Between Rule Application and Rule Evolution 177

– The third issue may be perceived by the fact that even when a given message
returns from a server to a client, nothing prevents it to be re-sent to another
server instead of being deleted and have its content delivered. This is shown
in G4

sendMSG,m5
=======⇒ G5, where a received message is re-sent (although in this

case it would not be possible to delete the message due to the first issue).

In order to correct these issues, the modeler may consider the following modifi-
cations:

– The creation of a new kind of edge from messages to clients, in order to mark
the original sender, and thus solving the second issue;

– The use of a token over messages which is removed when data is loaded. If we
assume that each message starts with at most one token, we can prevent the
loading of multiple data. Moreover, if we modify the rule sendMSG to require
messages to have tokens, we can ensure that only new messages are sent to
servers. The implementation of those tokens may be as simple as adding a
self-edge over the message.

The evolved GTS that incorporates these modifications is shown in Fig. 6. Even
if the presented evolution may seem artificial (since it would not be that hard
to build the correct model from the start), we claim this example illustrates the
nature of the modifications that also occur in more complex scenarios. Notice
also that both original and the evolved model assume some structural properties
of the graph that will be transformed by them, such that messages start with
a unique token, and that messages and data cannot be located at two or more
places simultaneously. In this particular case, all changes were in the sense of
adding new kinds of edges to the type graph, and adding edges to the left-
hand side, interface and right-hand side of rules but, in general, we can also
expect some deprecated elements of the original specification to be deleted. The
following definition formalizes what we mean by evolution.

Fig. 6. Evolved graph transformation system for clients and servers.

178 R. Machado et al.

Definition 1 (Evolution of Graph Transformation System). Given two
GTSs G1 = (T1, P, π1) and G2 = (T2, P, π2) with the same set of rule names P ,
we define an evolution between them as a pair (ET , EP) where

– ET is an injective span T1 � TK � T2 representing a modification in the
type graph;

– EP is a function mapping each rule name p ∈ P to a commutative diagram
(in the category of graphs) with the format shown in Fig. 7, named evolution-
ary span of p, where the left rule is π1(p) = L1 ← K1 → R1 (T1-typed),
the central rule is pK = LK ← KK → RK (TK-typed), the right rule is
π2(p) = L2 ← K2 → R2 (T2-typed), and all morphisms in the top surface are
monomorphisms. By an abuse of language, we will denote the evolutionary
span EP (p) = π1(p) � pK → π2(p) as an injective span which is T1+2 typed,
where T1+2 is the object of the pushout of ET = T1 ← TK → T2.

Notice that this definition assumes that we have a fixed set of rule names which
is kept constant across the evolution (i.e. we do not add or remove new rules).

Fig. 7. Evolutionary span as a diagram in the category of graphs.

4 Inter-level Conflicts

In this section, we consider the possible interaction of an evolution over the
potential rewritings of a rule, and introduce the notion of inter-level conflict.

When we compare two possible rewritings over the same graph, we say that
they are in conflict when the execution of one disables the execution of the other
in the resulting graph. Now, instead of comparing two possible rewritings from
the same graph, we intend to compare an arbitrary graph rewriting G

p,m0===⇒ H of
a given rule p = L ← K → R with an arbitrary rule span p ← p′ → p′′ denoting
the rule evolution. This situation can be represented by the diagram shown in
Fig. 8 (in the category of T1+2-typed graphs).

We consider that there is independence (or non-interaction) between the
rewriting and the evolution when the evolution does not disable the rewriting.
In order for this to occur, we need to be able to rewrite the graph G with rule
p′′ over the same place as the original rewriting (i.e. over an equivalent match
m′′

0 of p′′ over G). This is formalized by our notion of inter-level independence.

Characterizing Conflicts Between Rule Application and Rule Evolution 179

Definition 2 (Inter-level Independence and Conflict). Let ρ = G
p,m0===⇒ H

be a graph rewriting where p = L ← K → R and let θ = p ← p′ → p′′ be a
evolutionary span of rule p. We say that ρ and θ are (inter-level) independent
iff there is a match m′′

0 : L′′ → G (as shown in Fig. 8) such that

1. m0 ◦ fL = m′′
0 ◦ gL

2. m′′
0 satisfies double-pushout gluing conditions for p′′ = L′′ l′′←− K ′′ r′′

−→ R′′

We define ρ and θ to be in (inter-level) conflict iff they are not independent.

Fig. 8. Graph rewriting and rule evolution.

In other words, we have a conflict between a rule application and a rule
evolution whenever the evolved rule does not have any match for G (that is
compatible with the original match m0) or when all compatible matches violate
some gluing condition of the evolved rule.

Example 6 (Inter-level Conflict). Figure 9 depicts four situations that cause inter-
level conflicts. We do not show the intermediate rule (of evolution) and graph
(of rewriting) to help visualization, and we consider them to be the intersection
between the shown components.

(a) This situation reflects the obvious case when we are increasing the require-
ments (left-hand side) of a rule, and thus the transformation cannot be
applied over graphs that do not have the new requirements. This particu-
lar situations shows the evolution of rule sendMSG, and the conflict arises
because we enforce that rules must contain a self-edge in order to be sent.

(b) The rule depicted in this case does not occur in our example GTS, but
allows us to illustrate another kind of inter-level conflict arising when we
consider non-injective matches. The original rule matches against two mes-
sages, creating a self-edge over each of them. We have a valid DPO rewriting
by matching both messages in the left-hand side over the single message of
the graph, and applying the transformation. If, however, we change the rule
as shown in the evolution, forcing the rule to delete one of the messages,
the rewriting would not be possible. This happens because the evolved rule
would be trying to simultaneously delete and preserve the same message,
which violates the identification condition.

180 R. Machado et al.

Fig. 9. Situations causing inter-level conflicts between evolution and rewriting.

(c) This situation is not as obvious as the first two, since it shows that conflicts
may arise even when decreasing the requirements for a rule application. The
shown rule deletes a message with self-edge located in a client. Hence, the
rule is applicable over the depicted graph, modifying it as expected. However,
if the evolution modifies the rule in such a way that it does not delete the
self-edge, the same rewriting becomes impossible because it would leave a
dangling edge in the resulting graph.

(d) This case shows that evolution may create a conflict by changing the preser-
vation of a node into deletion. Since the message node is preserved, the orig-
inal rule can be applied over messages that have incident edges. However, if
we change the rule in a way that it deletes the message, these rewritings are
not possible anymore due to the violation of the dangling condition.

In the double-pushout approach, dependencies and conflicts are dual to each
other in the sense that two rewritings δ1 : G ⇒ G1 and δ2 : G ⇒ G2 are conflict-
ing iff there is a dependency between δ−1

1 : G1 ⇒ G and δ2. In the same way,
inter-level conflicts are said to be caused by evolutions that disable some graph
rewriting, we can define that a graph rewriting depends on an evolution if it
was enabled by it, i.e., when the particular rule modification makes it possible.
For instance, consider the reverse of the situation (c) depicted in Fig. 9 (read-
ing the evolution from right-to-left, adding the self-edge to the LHS instead of
removing it). Clearly, this modification in the rule turns a match that would

Characterizing Conflicts Between Rule Application and Rule Evolution 181

violate the dangling condition over G into a valid one, allowing the respective
first-order rewriting to occur in the modified rule. This reasoning suggests that
the adequate notion of inter-level dependency may be seen as a conflict between
the inverse of the evolution and the graph rewriting, confirming that the sym-
metry we observe between conflicts and dependencies in traditional DPO graph
rewritings extends toward the inter-level scenario.

5 Inter-level Confluence

The notions of conflict and independence are usually related to the notion of
confluence. In particular, DPO rewriting satisfies local confluence (also known
as local Church-Rosser) which states that independent rewritings can be applied
in any order (or even in parallel), resulting in the same graph. Formally, if
G

p1,m1===⇒ H1 and G
p2,m2===⇒ H2 are not conflicting, then there are rewritings

H1
p′
2,m

′
2===⇒ H and H2

p′
1,m

′
1===⇒ H which result in the same graph H.

Our notion of inter-level conflict focus on applicability of a rule which may
change in a way that is not necessarily conservative of old behavior. In this
sense, confluence would mean that the final result of a rewriting would be the
same independent of the evolution having ocurred or not. This is not expected
in general, as the next example shows.

Example 7 (Inter-level Independence without Confluence). Case (a) in Fig. 10
depicts a non-confluent, inter-level independent scenario. The original rule deletes
a message over a client, and the evolution has the effect of adding another ele-
ment to be deleted (a server). In this case, the resulting graphs of the rewritings
of evolved and original rules are clearly not isomorphic.

Fig. 10. Inter-level independent evolution and rewriting with non-confluence (a) and
confluence (b).

There are some situations where the evolution adds or removes only itens
which are preserved by the rewriting, without increasing or decreasing its deleted
and created elements.

182 R. Machado et al.

Example 8 (Inter-level IndependencewithConfluence). In the scenario (b) depicted
in Fig. 10, the evolution forces the rule to delete the message in the presence of a
server, which is maintained intact by the rule. Inter-level independence ensures
that the new rule can be applied, i.e. the graph has at least one server to provide
a match for the new rule. Since both rules delete and create the same amount of
elements, we have confluence.

These conservative evolutions can be identified by the fact that, when seeing
them as a diagram in the category of T1+2-typed graphs, all squares in the
evolutionary span are pushouts. For these evolutions, we are guaranteed to have
confluence, as we demonstrate next.

Lemma 1 (Inter-level Confluence). Let ρ = G
p,m0===⇒ H be a graph rewriting

where p = L ← K → R and let θ = p ← p′ → p′′ be a evolutionary span of rule

p such that they are inter-level independent. Let us call ρ′′ = G
p′′,m′′

0====⇒ H ′′ the
rewriting of the modified rule p′′ = L′′ ← K ′′ → R′′.

If all squares in θ are pushouts in the category of T1+2-typed graph, then the
evolution and graph rewriting are confluent (the graphs H and H ′′ are isomor-
phic).

Proof. Consider the following depiction of the situation above as a diagram in
the category of T1+2-typed graphs (all squares in the top and the sides are
pushouts).

R

��

R′�� �� R′′

��

K

r��������
l

��������

��

K ′
��������

���������� �� K ′′
r′′��������

l′′
��������

��

L

m0

��

L′fL�� gL �� L′′

m′′
0

��

H H ′′∼=

D

��������

�������� D′′
��������

��������
∼=

G G
=

1. by the property of pushout composition between the pushouts on the top
and the sides, we obtain double-pushout diagrams denoting the rewritings

G
p′,m0◦fL======⇒ H and G

p′,m′′
0 ◦gL======⇒ H ′′;

2. due to inter-level independence, we know that m′
0 = m0 ◦ fL = m′′

0 ◦ gL;
3. because pushout complements are unique (up to isomorphism) in adhesive

categories such as typed graphs (Theorem 4.26 in [2]) we have D ∼= D′′;
4. because pushouts are unique (up to isomorphism) in general categories we

have H ∼= H ′′. �	

6 Inter-level Critical Pair Analysis

Critical pair analysis is a static analysis technique which shows, for a given GTS,
all possible conflicts (or dependencies) between rule applications. Usually, this

Characterizing Conflicts Between Rule Application and Rule Evolution 183

technique is available at modeling and analysis tools (such as AGG) where it
presents valuable information to the modeler regarding potential behavior of the
system.

Consider a GTS G = (T, P, π). Roughly speaking, critical pair analysis con-
sists of the following steps:

1. for each pair (p1, p2) where p1, p2 ∈ P , calculate all possible overlaps of their
LHSs (for conflicts) or all possible overlaps of the RHS of one rule with the
LHS of the other one (for dependencies);

2. for each overlap, verify if the corresponding rewritings are conflicting or not
(respectively, dependent or not);

3. present a table size(P)×size(P) containing the number of conflicts or depen-
dencies identified between each pair of rules.

As a rule-based model grows, it becomes increasingly hard for the modeler to
identify all the possible interactions between the rewriting rules. In this way,
the information provided by critical pair analysis allows the identification and
correction of flaws at an earlier stage of the modeling process. For instance, if
we take the original system shown in Fig. 2 as an example, the problem of re-
sending loaded messages appears as a dependency between rules receiveMSG and
sendMSG. Usually, the output table of the method is interactive, and allows for
the modeler to see the conflicting or dependency situation visually.

We envision that our notion of inter-level conflict can be used in a similar
way to aid the modeler to foresee the potential effects of a given model evolution.
We propose a method for executing inter-level critical pair analysis as follows.

Definition 3 (Inter-level Critical Pair Analysis). Given a graph transfor-
mation system G1 = (T1, P, π1) and an evolution (ET , EP) of G1 into G2 =
(T2, P, π2), we proceed as follows:

1. for each rule name p ∈ P ,
(a) take its evolution EP (p) = q ← q′ → q′′;
(b) generate a set R(p) of relevant graphs for q (see Definition 5);
(c) generate all pairs (q,m), where m : LHS(q) → G is a match for some

graph G ∈ R(p) satisfying DPO gluing conditions;
(d) for each pair (q,m), detect if the rewriting G

q,m
==⇒ H and the evolution

EP (p) are inter-level conflicting or not.
2. present a table size(P) × 1 containing the number of inter-level conflicts for

the evolution of each rule in P .

One important part of this definition is the calculation of the relevant graphs
R(p), which need to include all possible scenarios that would lead to conflicts
after the evolution. For instance, we need to account for (i) the lack of matches
(absence of m′′

0), (ii) the violation of identification conditions and (iii) the viola-
tion of dangling conditions. The information required to build graphs that may
trigger (i) and (ii) is available in the LHSs of the rules q, q′ and q′′. The situ-
ation (iii), however, requires that we take into consideration edges which may

184 R. Machado et al.

not occur in the LHSs of the rules (as shown in case (d) of Fig. 9). For this
purpose, we define the dangling extension of the LHS of a rule, which is used in
the calculation of the set of relevant graphs.

Definition 4 (Dangling Extension). Let q : LT l← KT r→ RT be a finite
T -typed rule where τ : L → T is the typing morphism of L. Let delNodes(q) be
the set of nodes of L which are deleted by q. Given a node n of L, let S(n) be the
set of all edges e ∈ E(T) such that source(e) = τ(n) and, respectively, let T (n)
be the set of all edges e ∈ E(T) such that target(e) = τ(n). Define L+ as the
graph obtained from L by creating, for each n ∈ delNodes(q) and for each edge
type e ∈ S(n)
 T (n), a new e-typed edge instance. Each new instance connects
the node n to a fresh node instance at the other end. We denote L ↪→ L+ the
obvious inclusion of L into its dangling extension.

Fig. 11. Example of dangling extension.

Example 9 (Dangling Extension). Fig. 11 depicts the dangling extension of the
LHS of a rule which deletes a message and creates a self-edge over another
message.

Definition 5 (Relevant Graphs). Given a graph transformation system G1 =
(T1, P, π1), an evolution (ET , EP) of G1 into G2 = (T2, P, π2) and a rule name
p ∈ P , we calculate the set of relevant graphs R(p) as follows:

1. let L ← L′ → L′′ be the span of LHSs of EP (p) (as shown in Fig. 8).
2. let G be the object of the colimit of L+ ←↩ L ← L′ → L′′ ↪→ (L′′)+

3. define R(p) to be the set of all partitions of all subgraphs of G.

The presented definition for relevant graphs is conservative in the sense that it
does not focus on efficiency but rather on ensuring that every possible conflicting
situation is captured. However, implementations of inter-level critical pair analy-
sis should focus on creating the smallest subset of R(p) containing all inter-level
conflicts. As a very simple (and obvious) example of application of inter-level
critical pairs, consider that the evolution of rule sendMSG shown in Fig. 6 essen-
tially adds new elements to the rule structure, requiring the rule to preserve a
self-edge over messages. This creates an inter-level critical pair, shown in the
item (a) of Fig. 9, where the rule is not applicable. This information would be
available to the modeler as soon as the evolution is specified, and, in this partic-
ular case, would alert for the need of preparing the initial state with self-edges
in messages.

Characterizing Conflicts Between Rule Application and Rule Evolution 185

7 Related Work

Many approaches [1,4,8] represent model evolution by means of rewritings in
components of rules, generally introducing a notion of compatibility (preserva-
tion of behavior) between the original and evolved systems. In this paper we
take the evolution as an information obtained externally, either manually or via
some other mechanism (possibly rewriting), and the aim is only to characterize
the effect of evolution over the applicability of rules. Notice that the preserva-
tion of behavior is not assumed and we only present a (rather straightforward)
sufficient condition for it. On the other hand, we can employ inter-level critical
pair analysis in all situations where it is possible to obtain an evolutionary span
for rules.

The problem of extending the evolution from meta-models (e.g. type graph)
to models (e.g. typed graphs and typed rules) is considered in [12]. This is in
contrast with our approach, where the relationship between the evolution of the
type graph and the evolution of typed graph rules is encoded statically in the
definition of evolution.

In terms of structure, evolutionary spans are similar to triple graph rules [10].

8 Concluding Remarks

In this work we have addressed the issue of relating structural modifications in
rules (of GTSs) and their respective rewritings in order to detect potential con-
flicts. We introduced a way to represent the evolution of a GTS, defined a notion
of inter-level conflicts and discussed how they can be used in inter-level critical
pair analysis. Although the main contribution of this paper is conceptual, we
foresee practical applications of the introduced concepts in the implementation
of evolution assistants in tools such as AGG or Groove. Notice also that the pro-
posed notion of inter-level conflict is applicable whenever we can characterize
the rewriting as a double-pushout diagram, and evolution as a span of rules. For
instance, the same definition could be generalized towards Adhesive HLR Sys-
tems [3], since those generalize DPO graph transformation. Important instances
of this framework include algebraic specifications, Petri nets, typed attributed
graph transformation system, among others.

One aspect that could be questioned in our treatment is the fact that the
notion of evolution does not include addition or removal of rules. It would be
possible to describe deletion (resp. creation) of rules as an evolution from (resp.
to) the empty rule if we allowed extra unassigned rule names in both original
and evolved GTS. The empty rule is always applicable, and does not have any
conflict or dependency with other rules. For more on this, we refer the reader
to [6]. Regarding future work, we consider the implementation of inter-level
critical pair analysis in a graph transformation tool, the further development of
the presented theory (for instance, considering rules with negative application
conditions) and the application of these concepts to study the behavior of second-
order graph grammars [6,7].

186 R. Machado et al.

References

1. Ehrig, H., Ehrig, K., Ermel, C.: Refactoring of model transformations. Electron
Commun. EASST 18 (2009). http://dblp.uni-trier.de/rec/bib/journals/eceasst/
EhrigEE09

2. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science, An EATCS Series.
Springer, Berlin (2005)

3. Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive High-Level Replacement
Categories and Systems. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg,
G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 144–160. Springer, Heidelberg (2004)

4. Ermel, C., Ehrig, H.: Behavior-preserving simulation-to-animation model and rule
transformations. Electr. Notes Theor. Comput. Sci. 213(1), 55–74 (2008)

5. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theoret.
Comput. Sci. 109(1–2), 181–224 (1993)

6. Machado, R.: Higher-order graph rewriting systems. Ph.D. thesis, Instituto de
Informatica - Universidade Federal do Rio Grande do Sul (2012). http://hdl.
handle.net/10183/54887

7. Machado, R., Ribeiro, L., Heckel, R.: Rule-based transformation of graph rewriting
rules: towards higher-order graph grammars. Theoretical Computer Science (2015,
to appear)

8. Parisi-Presicce, F.: Transformations of graph grammars. In: Graph Gramars
and Their Application to Computer Science, 5th International Workshop,
Williamsburg, VA, USA, Selected Papers, pp. 428–442, 13–18 November 1994

9. Rensink, A.: The GROOVE simulator: a tool for state space generation. In: Pfaltz,
J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–485.
Springer, Heidelberg (2004)

10. Schürr, A., Klar, F.: 15 years of triple graph grammars. In: Ehrig, H., Heckel,
R., Rozenberg, G., Taentzer, G. (eds.) Graph Transformations. Lecture Notes in
Computer Science, vol. 5214, pp. 411–425. Springer, Berlin (2008)

11. Taentzer, G.: AGG: a tool environment for algebraic graph transformation. In:
Münch, M., Nagl, M. (eds.) AGTIVE 1999. LNCS, vol. 1779, pp. 481–488. Springer,
Heidelberg (2000)

12. Taentzer, G., Mantz, F., Lamo, Y.: Co-transformation of graphs and type graphs
with application to model co-evolution. In: Ehrig, H., Engels, G., Kreowski, H.-
J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 326–340. Springer,
Heidelberg (2012)

http://dblp.uni-trier.de/rec/bib/journals/eceasst/EhrigEE09
http://dblp.uni-trier.de/rec/bib/journals/eceasst/EhrigEE09
http://hdl.handle.net/10183/54887
http://hdl.handle.net/10183/54887

Applications: Technical Papers

Graph Pattern Matching as an Embedded
Clojure DSL

Tassilo Horn(B)

Institute for Software Technology, University of Koblenz-Landau,
Mainz, Germany

horn@uni-koblenz.de

Abstract. FunnyQT is a Clojure library supplying a comprehensive set
of model querying and transformation services to the user. These are pro-
vided as APIs and embedded DSLs. This paper introduces FunnyQT’s
embedded graph pattern matching DSL which allows users to define pat-
terns using a convenient textual notation that can be applied to graphs.
The result of applying a pattern to a graph is the lazy sequence of all
matches of the pattern in the graph. FunnyQT’s pattern matching DSL
is quite expressive. It supports positive and negative application condi-
tions, arbitrary constraints, patterns with alternatives, nested patterns,
and more. In case a pattern is defined to be evaluated eagerly instead of
lazily, the search induced by the pattern is automatically parallelized on
multi-core machines for improved performance.

1 Introduction

Domain-Specific Languages (DSLs, [4]) are one of the current trends in software
engineering. In contrast to a general-purpose programming language (GPL) such
as Java, their aim is to focus on exactly one application domain and provide users
with tailor-made constructs for accomplishing the tasks relevant there. Some
well-known and standardized DSLs in the model-driven engineering (MDE) field
are KM3 [10] for defining metamodels textually, OCL [15] for defining constraints
and queries, and QVT [14] for specifying transformations. Next to these well-
known DSLs, there are many DSLs which are specific to some concrete tool, insti-
tution, or even project. This is due to the fact that excellent DSL-development
tools like Xtext1 have made it much easier to create such mini-languages.

The major advantage of a DSL is that it provides users with expressive
and convenient constructs with an appropriate abstraction level for realizing
the tasks relevant in a concrete domain. One single statement in an artifact
written in a DSL (or a simple diagram in a visual DSL) might otherwise need
to be implemented in hundreds of lines of complex code in a GPL where the
important concepts relevant in the concrete domain are frequently blurred by
infrastructural code (boilerplate code). Because DSLs are limited to a specific
purpose by design, they are also easier to learn and provide less possibilities for

1 https://eclipse.org/Xtext/.

c© Springer International Publishing Switzerland 2015
F. Parisi-Presicce and B. Westfechtel (Eds.): ICGT 2015, LNCS 9151, pp. 189–204, 2015.
DOI: 10.1007/978-3-319-21145-9 12

https://eclipse.org/Xtext/

190 T. Horn

introducing bugs. However, their limited nature is also their tender spot. There
is a risk that a DSL starts out small and functional but over time incorporates
auxiliary concepts required in some scenarios until it has effectively grown into a
GPL. At that point in time, the trade-off between the advantages of a DSL and
the burden to maintain an own language including its toolset (parser, editor,
interpreter/compiler) becomes at least questionable.

A special kind of DSLs are embedded or internal DSLs [4]. Such an embedded
DSL enhances a GPL, called its host language, with domain-specific constructs.
For this purpose, it uses only features provided by its host language itself, i.e.,
code written in an embedded DSL is also valid code in the host language.

Embedded DSLs combine the advantages of their general-purpose host lan-
guage, e.g., maturity, flexibility/generality, and tool-support, with the advan-
tages of DSLs, e.g., expressiveness and ease-of-use in a clean-cut domain. They
don’t require custom tools like parsers and editors but instead rely on the tool-
ing available to their host language, and whenever the constructs provided by
an embedded DSL don’t suffice in a certain scenario, one can always retract to
the host language to fill in the missing pieces.

FunnyQT2 [8] is a model querying and transformation library for the func-
tional Lisp dialect Clojure3. It provides APIs and embedded DSLs for model
querying and transformation tasks such as pattern matching, in-place trans-
formations, out-place transformations, bidirectional transformations, and co-
evolution transformations. FunnyQT has built-in support for JGraLab4 TGraph
models and EMF [17] models, and it is designed with openness and extensibil-
ity in mind, so support for other model representations can be added without
having to touch FunnyQT’s internals.

In this paper, FunnyQT’s feature-rich and performant pattern matching DSL
is introduced in Sect. 2. Built upon that, there is an embedded in-place transfor-
mation DSL which is discussed in Sect. 3. Section 4 then compares FunnyQT
with other transformation approaches realized as embedded DSLs and with
other approaches supplying graph pattern matching and in-place transformation
services. Finally, Sect. 5 concludes this paper.

2 Pattern Matching

Like all Lisp dialects, Clojure is a homoiconic language which means that Clo-
jure code is represented using Clojure data structures, e.g., symbols, keywords5,
numbers, strings, and lists, vectors, and maps thereof. In the Clojure compilation
cycle, the first step is to read (parse) the code into these data structures which
then represent the abstract syntax tree of the code. Any snippet of code which
can be read is called a form. For example, 1 is a form resulting in the number

2 http://funnyqt.org.
3 http://clojure.org.
4 http://jgralab.uni-koblenz.de.
5 A keyword is a symbolic identifier which always evaluates to itself. Keywords start

with a colon, e.g. :this-is-a-keyword.

http://funnyqt.org
http://clojure.org
http://jgralab.uni-koblenz.de

Graph Pattern Matching as an Embedded Clojure DSL 191

1 when being read, [1 2 3] is a form resulting in a vector with three numbers,
and (foo (bar :x)) is a form resulting in the two-element list containing the
symbol foo and another two-element list containing the symbol bar and the
keyword :x.

After reading textual code to a Clojure data structure, the Clojure compiler
analyzes the latter and compiles it to JVM byte-code. During the analysis, the
compiler might determine that in the list (foo (bar :x)) foo and bar are func-
tions, so byte-code is generated which calls the bar function with the keyword :x,
and then the foo function with the result of the previous function call.

The compiler might instead determine that foo is a macro. A macro is a spe-
cial kind of function which is not called at runtime but at compile-time by the
compiler itself. It receives as arguments the unevaluated (i.e., only read) argu-
ments given to it. So here, the foo macro would be called with the unevaluated
list (bar :x). Now the macro’s job is to transform its arguments to some new
form which replaces the original macro call. That form is called the expansion
of the macro. Of course, a macro call might result in another macro call, so
the macro expansion process is performed recursively until the expansion is no
macro call anymore and is eventually compiled to byte-code.

Thus, a macro is essentially a transformation which receives the abstract
syntax tree of the forms given as arguments and return a new form taking the
place of the original macro call. Since the only restriction to macros is that
their arguments must be readable, i.e., they must be valid forms, they provide a
powerful means for realizing embedded DSLs. The key idea here is that a macro
may define a completely new domain-specific syntax which it then translates
into standard Clojure constructs. FunnyQT utilizes Clojure’s macro-facility for
implementing its pattern matching DSL.

Pattern Definitions. FunnyQT provides several pattern definition macros in its
funnyqt.pmatch namespace, namely defpattern, letpattern, and pattern.
Whereas defpattern defines a named pattern in the current namespace, the
letpattern and pattern macros are for defining local and anonymous patterns.
In this paper, only defpattern is considered. Its syntax is as follows.
(defpattern <name> <docstring?> <options-map?> [<params>]

[<pattern-spec>])

A pattern has a name, an optional documentation string, an optional map
of options, a vector of formal parameters, and a vector containing a pattern
specification. By convention, the first formal parameter must be bound to the
model the pattern is evaluated on.

In the following, the embedded DSL for notating pattern specifications is
discussed. For this purpose, example patterns are defined which are intended
to be matched on models conforming to the simple object-oriented languages
(EMF) metamodel shown in Fig. 1.

Basics. A pattern specification consists of node and edge symbols.
A node symbol has the syntax id<Type> where id is an identifier and Type

is a metamodel class name. The type name may be suffixed with an exclamation

192 T. Horn

Fig. 1. A simple metamodel for object-oriented languages

mark for restricting to only direct instances of Type. That means, with respect to
Fig. 1, c<Classifier> matches nodes of type Classifier or subtypes thereof,
and c<Classifier!> matches only elements of direct type Classifier. Here,
the latter cannot match any element because Classifier is abstract and thus
there are no direct instances. Specifying a type is optional. The node symbol
x<>, or shorter x, matches any node in the queried model regardless of its type.

Edge symbols specify that two nodes have to be connected. The syntax for
edge symbols is -<:supers>-> where supers is a reference name. The reference
name is optional, thus -<>-> or shorter --> match any reference regardless of its
name. Additionally, there are the edge symbols <:methods>-- and --<>. These
define that the nodes have to be connected by a reference with strict containment
semantics.

The following pattern example-1 receives a model g conforming to the meta-
model from Fig. 1. It matches pairs of a Classifier node c and one of its meth-
ods m where the return type of the method is c again.
(defpattern example-1 [g]

[c<Classifier> <:methods>-- m<Method> -<:type>-> c])

Such a pattern definition expands into a plain Clojure function which has
the name, documentation string, and parameters as defined by the defpattern
form. When this function is applied to a model (and possibly additional argu-
ments), it returns the lazy sequence of matches of the pattern in that model6.
A lazy sequence is a sequence where elements are not computed before they
are consumed, i.e., it encapsulates a computation in an interface of a sequential
collection. This is a very nice property because it means that applying a pat-
tern conceptually always returns all matches in the model but the performance
depends only on the number of matches one actually consumes.

Each match in the lazy sequence of matches is represented as a map
from keywords named according to the identifiers of the pattern specification’s
6 The order of matches is deterministically defined by the pattern specification and

the underlying modeling framework’s allInstances-operation.

Graph Pattern Matching as an Embedded Clojure DSL 193

node symbols to the nodes matched in the queried model. When the pattern
above is applied to a model, e.g., (example-1 oo-model), it returns the lazy
sequence of matches where every match is represented as a map of the form
{:c #<Classifier>, :m #<Method>}.

FunnyQT also supports pattern matching on models with first-class edges7

instead of only references, e.g., JGraLab TGraphs. Then, edge symbols may also
be matched and have an identifier, e.g., -e<ET>-> or <ET>e-- where e is the
identifier for the edge and ET is the edge’s type.

Constraints. In a pattern specification, arbitrary constraints can be specified
using one or more :when clauses. In order for a pattern to match, the expressions
of all :when clauses have to be true.

The following pattern example-2 matches the same as example-1 except
that the :when clause defines the additional constraint that the Classifier c’s
name must end with "Factory".

(defpattern example-2 [g]
[c<Classifier> <:methods>-- m<Method> -<:type>-> c
:when (re-matches #".*Factory$" (aval c :name))])

The FunnyQT function aval returns an attribute value of a given element,
and re-matches is a Clojure core function which returns true only if a regular
expression matches a given string.

Homomorphic vs. Isomorphic Matching. By default, FunnyQT performs homo-
morphic pattern matching which means that two distinct node symbols in the
pattern specification may be matched to the same node in the queried model. By
adding the :isomorphic keyword to a pattern specification, isomorphic match-
ing is enabled. Then, distinct node symbols must be matched to distinct nodes
in the queried model.

For example, the following pattern matches occurrences of a Class node c1,
one of its attributes a, and that attribute’s type c2 which must be a Classifier.

(defpattern example-3 [g]
[c1<Class> <:attrs>-- a<Attribute> -<:type>-> c2<Classifier> :isomorphic])

Because isomorphic matching is enabled and thus c1 and c2 must be distinct,
the pattern doesn’t match attributes whose type is the containing class.

Local Bindings. Local bindings can be established using :let clauses. The key-
word :let is followed by a vector containing one or many variable-expression
pairs. The variables are bound to the values of the expression where the expres-
sions have access to all variables bound earlier in the pattern specification. The
values bound by local bindings are automatically part of the pattern’s matches.

The following pattern example-4 matches the same as example-2, i.e., clas-
sifiers with methods whose return type is the classifier itself.

7 Edges with an identity which are typed and possibly attributed.

194 T. Horn

(defpattern example-4 [g]
[c<Classifier> <:methods>-- m<Method> -<:type>-> c
:let [class-name (aval c :name)

method-name (aval m :name)]
:when (re-matches #".*Factory$" class-name])

The difference is that the matches of example-4 contain four entries:
{:c #<Classifier>, :m #<Method>, :class-name "...", :method-name "..."}.

Application Conditions. FunnyQT’s pattern matching DSL supports (1) a simple
and (2) a sophisticated variant of positive and negative application conditions
(PACs/NACs). In the simple form, a PAC is just a node symbol without an
identifier meaning that such a node has to exist but it is not part of the matches.

For example, the pattern classifiers-with-types matches occurrences of
a classifier c together with a type t being the type of one of c’s attributes or
the return type of one of c’s methods. The attribute or method itself is not part
of the matches.

(defpattern classifiers-with-types [g]
[c<Classifier> <>-- <TypedElement> -<:type>-> t])

This form of PACs is restricted because no additional conditions with respect
to the attribute or method can be defined without having an identifier for it.

The simple form of NACs are negative edge symbols notated as edge symbols
with an exclamation mark in place of an identifier. The semantics is that such
an edge must not exist.

The marker-interfaces pattern matches interfaces i which don’t contain
any method and don’t have any super-classifiers.

(defpattern marker-interfaces [g]
[i<Interface> <:methods>!-- <>
i -!<:supers>-> <>])

Sophisticated PACs and NACs are supported by :positive and :negative
clauses. Both kinds of clauses are followed by a vector containing a pattern
specification. In there, the identifiers of the surrounding pattern may be used to
establish a context for the application condition.

The pattern example-5 below gives an example.

(defpattern example-5 [g]
[p<Package> <:classifiers>-- i<Interface>
:positive [i <:methods>-- m -<:type>-> i ;; (1)

m <:params>!-- <>]
:negative [i -<:classes>-> c --<> p ;; (2)

:when (aval c :abstract)]])

It matches occurrences of a package p containing an interface i where (1)
i has at least one parameter-less method m with return type i as enforced by
the positive application condition, and (2) where i is not implemented by an
abstract class c contained in the same package p as the interface i as forbidden
by the negative application condition. The pattern’s matches have the form
{:p #<Package>, :i #<Interface>} because node symbols which occur only
in an application condition are not part of the matches.

Graph Pattern Matching as an Embedded Clojure DSL 195

FunnyQT also supports logically combined application conditions (LCACs) in
terms of :and, :or, :xor, :nand, and :nor clauses. These keywords are followed
by a vector of arbitrary many vectors containing pattern specifications. The
usual logical semantics apply as demonstrated using the following example-6
pattern.
(defpattern example-6 [g]

[p<Package> <:classifiers>-- i<Interface>
:xor [[i <:methods>-- <> -<:type>-> i] ;; (1)

[i -<:classes>-> c --<> p]]]) ;; (2)

The pattern matches all occurrences of a package p and a contained interface
i where (1) either the interface has a method with i as return type, (1) or the
interface is implemented by a class residing in the same package p as the interface
i (but not both conditions must apply).

The difference between the simple application conditions realized by anony-
mous nodes and negative edges and the sophisticated PACs, NACs, and LCACs
lies in their evaluation. The former are evaluated as integral part of the matching
process whereas the latter define complete subpatterns which are used for filter-
ing the matches of the surrounding pattern. Therefore, the simple application
conditions perform better because they impose no additional overhead.

Alternative Patterns. To define a union of the matches of different patterns, there
are alternative patterns. In contrast to application conditions, the elements only
defined in one of the alternative patterns are also part of the matches. They are
specified using an :alternative clause which is followed by a vector of two or
many vectors containing the alternative pattern specifications.

The following pattern classifiers-using-themselves gives an example.
(defpattern classifiers-using-themselves [g]

[c<Classifier>
:alternative [[c <:methods>-- m -<:type>-> c] ;; (1)

[c <:methods>-- m <:params>-- p -<:type>-> c] ;; (2)
[c<Class> <:attrs>-- a -<:type>-> c]]]) ;; (3)

It matches all occurrences of (1) a classifier c together with one of its methods
m with return type c, (2) a classifier c together with one of its methods m which
has a parameter p whose type is c, and (3) a class c together with one of its
attributes a whose type is c.

The pattern’s result is the lazy sequence of matches which consists of all
matches of alternative (1) first, then all matches of alternative (2), and finally
all matches of alternative (3). Every match has the keys :c, :m, :p, and :a. For
the matches of alternative (1), the value of the :a and :p keys are nil, for the
matches of alternative (2), the value of the :a key is nil, and for the matches
of alternative (3), the values of the :m and :p keys are nil.

Nested Patterns. Nested patterns are matched in the context of a match of a
surrounding pattern, i.e., first the surrounding pattern is matched, and then all
occurrences of the nested patterns are matched in the context of the surrounding
pattern’s current match8. They are specified using a :nested clause which is
8 This feature is known as amalgamation in some other approaches where there is a
kernel rule and multi-rules matched in its context.

196 T. Horn

followed by a vector of alternating nested pattern variables and nested pattern
specifications. In the remainder of the pattern following the :nested clause, the
nested pattern variables are bound to the lazy sequences of matches of the nested
patterns.

The pattern packages-with-contents gives an example.

(defpattern packages-with-contents [g]
[p<Package>
:nested [sub-pkgs [p <:subpkgs>-- sp] ;; (1)

classifiers [p <:classifiers>-- c ;; (2)
:nested [methods [c <:methods>-- m]]]]]) ;; (2.1)

This pattern matches occurrences of a package p. In the context of such a
matched package p, two nested patterns are applied and their results are bound
to the variables sub-pkgs and classifiers. The nested pattern (1) matches
occurrences of a package sp which is a subpackage of package p. The nested
pattern (2) matches occurrences of a classifier c which is contained in package
p. (2) has a nested pattern (2.1) itself which gets applied in the context of the
package p and the classifier c contained in p and matches occurrences of a method
m contained by classifier c binding them to methods.

The matches of packages-with-contents have the following structure.

{:p #<Package>
:sub-pkgs ({:sp #<Package>}, ...) ;; result of (1)
:classifiers ({:c #<Classifier> ;; result of (2)

:methods ({:m #<Method>}, ...)} ;; result of (2.1)
...)}

Each match has an entry with key :p and the matched package as value. In
addition, it has one entry for each nested pattern variable whose value is the
lazy sequence of the nested pattern’s matches.

Match Representation. By default, a pattern’s matches are represented using
maps where the keys are keywords denoting the pattern’s node symbols and
the values are the elements matched in the queried model. However, the match
representation may also be defined differently using an :as clause where the
keyword :as is followed by an expression which has access to all variables of the
pattern and whose value is then used as match representation.

For example, the matches of the nested patterns sub-pkgs and methods
in the packages-with-contents pattern in the previous paragraph where rep-
resented as maps with just one single entry which is consistent but not really
reasonable. Using :as clauses, the pattern can be formulated so that both nested
patterns simply use the subpackage sp (1) and the method m (2) as complete
match representation instead of wrapping them in maps, respectively, as shown
below.

(defpattern packages-with-contents* [g]
[p<Package>
:nested [sub-pkgs [p <:subpkgs>-- sp :as sp] ;; (1)

classifiers [p <:classifiers>-- c
:nested [methods [c <:methods>-- m :as m]]]] ;; (2)

:as [p sub-pkgs classifiers]]) ;; (3)

Graph Pattern Matching as an Embedded Clojure DSL 197

Additionally, the refined packages-with-contents* pattern uses a top-
level :as clause (3) which defines that the complete pattern’s matches are rep-
resented as vectors with three elements: first the matched package p, then the
lazy sequence of p’s subpackages as defined by sub-pkgs, and lastly the lazy
sequence of matches as defined by classifiers. Thus, the pattern’s matches
have the form given in the following listing.

[#<Package> (#<Package> ...) ({:c #<Classifier>, :methods (#<Method> ...)})]

Pattern Inheritance. A pattern may extend arbitrarily many other patterns
using an :extends clause where the keyword :extends is followed by a vector of
other patterns’ names. The semantics of pattern inheritance is that the extending
pattern’s specification is composed of the pattern specifications of all extended
patterns plus whatever it defines itself in addition to the :extends clause.

For example, the pattern example-2, which has been defined early in this
section when introducing constraints, could also have been defined using pattern
inheritance instead of copying the structural part of the pattern from example-1
as shown below.

(defpattern example-2* [g]
[:extends [example-1]
:when (re-matches #".*Factory$" (aval c :name))])

Pattern inheritance may be transitive but must be acyclic. The :isomorphic
modifier and :as clauses are not propagated from extended to extending patterns
in order to allow the latter to define the matching semantics and the match
representations on their own.

An extending pattern may restrict the types of nodes to be matched inherited
from the extended patterns, and it may rename the inherited node symbols.

For example, example-2** given in the following listing extends the pattern
example-2*. In the :extends clause, the extended pattern is notated as a list
where the first element denotes the pattern to be extended and the following ele-
ments specify renamings. What is named c in the extended pattern example-2*
is to be named class in the extending pattern example-2**.

(defpattern example-2** [g]
[:extends [(example-2* :c class)]
class<Class>])

In addition, example-2** states that class must be of type Class whereas
example-2* defined it to be of the more general type Classifier.

Eager Patterns. By default, applying a pattern to a model returns the lazy
sequence of the pattern’s matches in the given model. By setting the :eager
option, a pattern may be defined to be evaluated eagerly instead as shown below.

(defpattern example-1-eager {:eager true} [g]
[c<Classifier> <:methods>-- m<Method> -<:type>-> c])

Eager evaluation gives rise to parallelization. On a machine with more than
one CPU available to the JVM process, the pattern will be evaluated in parallel.

198 T. Horn

Concretely, the pattern above will first compute the sequence of all classifiers,
then this sequence is partitioned, and the partitions are handed over to threads
in a thread-pool where each thread computes the matches of its partition. Lastly,
the matches of each partition are concatenated to provide the final result.

Implementation. FunnyQT implements pattern matching as a local search start-
ing at the elements matching the pattern’s first node symbol and then traversing
references as specified by the pattern. The search order matches exactly the order
of node and edges symbols in the pattern specification giving utmost control to
the pattern writer.

3 In-Place Transformations

On top of the patterns discussed in the previous section, FunnyQT provides a rule-
based, embedded transformation DSL mainly intended for, but not restricted to,
defining in-place transformations in its funnyqt.in-place namespace.

Rule Definitions. Similar to pattern definitions, there is a macro defrule for
defining transformation rules9. Its syntax is as follows.

(defrule <name> <docstring?> <option-map?> [<params>]
[<pattern-spec>]
<actions>)

A rule has a name, an optional documentation string, an optional map of
options, a vector of formal parameters where the first one must denote the model
the rule is executed on, a vector containing a pattern specification matching the
elements the rule is applicable to, and one or many actions.

Like pattern definitions, rule definitions expand to plain Clojure functions
with the given name, documentation string, and parameters at compile-time.
The semantics of these functions when being applied to a model is to find the
first match of the pattern defined by the rule’s pattern specification, and then
to execute the actions in the context of the match.

For example, the following rule pull-up-attribute searches for a class with
subclasses where every subclass declares an attribute of the same name and type.
In such a case, it pulls the attribute up into the superclass.

(defrule pull-up-attribute [g]
[c<Class> -<:subs>-> sub <:attrs>-- a -<:type>-> t
:nested [osubs [c -<:subs>-> osub <:attrs>-- oa -<:type>-> t

:when (and (not= sub osub)
(= (aval oa :name) (aval a :name)))]]

:when (= (+ 1 (count osubs)) (count (adjs c :subs)))] ;; (1)
(doseq [osub-match osubs] (delete! (:oa osub-match))) ;; (2)
(remove-adj! sub :attrs a)
(add-adj! c :attrs a))

9 In analogy to defpattern/letpattern/pattern, there are also macros letrule and
rule for defining local and anonymous rules.

Graph Pattern Matching as an Embedded Clojure DSL 199

Concretely, the pattern matches all occurrences of a class c with one of its
subclasses sub containing an attribute a of type t. The nested pattern osubs
matches occurrences of a c subclass osub containing an attribute oa of the
same type t. The constraint ensures that the subclass osub is different from
the subclass sub matched by the enclosing pattern10, and that the attributes
a and oa have the same name. The constraint (1) ensures that every subclass
(not only a subset) of c has an attribute with name and type equal to a. The
actions starting with (2) then delete the equally named attributes from the other
subclasses11 and pull up the attribute a from sub to c.

Since the actions of a rule are made up of arbitrary Clojure/FunnyQT code,
graph transformation terms such as double push-out (DPO) and single push-
out (SPO) are not applicable. However, FunnyQT’s delete! operation deletes
a node with all incident edges (regardless if those have been matched or not),
thus the behavior is similar to the SPO approach. For the same reason, things
like statically analyzing a set of rules for finding critical pairs is impossible in
the general case but it could be done when restricting the actions appropriately,
e.g., by only allowing sequences of create and delete operations as actions.

Rule Combinators. The semantics of applying a rule is to find a single match of
the pattern and then invoke the rule’s actions in the context of the match. Thus,
applying the above rule, i.e., (pull-up-attribute oo-model) where oo-model
is a model conforming to the metamodel in Fig. 1, may find a class whose sub-
classes all declare an attribute of the same name and type and pulls it up.

In order to define the control flow between multiple rules in a transformation,
FunnyQT defines some higher-order rule combinators which receive a rule or
many rules and return functions that apply the given rules in certain ways.

(repeated-rule n rule) ;; (1)
(iterated-rule rule) ;; (2)
(disjunctive-rule rule-1 rule-2 ...) ;; (3)
(conjunctive-rule rule-1 rule-2 ...) ;; (4)
(random-rule rule-1 rule-2 ...) ;; (5)
(interactive-rule rule-1 rule-2 ...) ;; (6)

The function returned by (1) applies the given rule n times returning the
number of successful applications, the function returned by (2) applies the given
rule as often as it can find a match returning the number of successful appli-
cations, the one returned by (3) applies the first applicable rule, the function
returned by (4) applies the given rules in sequence until the first inapplicable
one, the function returned by (5) randomly selects an applicable rule from the
given rules and applies that, and the function returned by (6) is mainly intended
as a debugging utility which allows the user to steer rule application interactively
using a GUI which shows all applicable rules and their matches and allows to
choose which rule should be applied on which match.

10 This implies that a and oa are different, too, because of the composition semantics
of the subs reference.

11 doseq is a forall-loop, (:key map) looks up the value associated with :key in the map
map, and add-adj!/remove-adj! add/remove elements to/from a given reference.

200 T. Horn

Forall Rules. Instead of applying a rule iteratively until no matches can be found
anymore, a rule may be defined with the :forall option enabled. Such a rule
evaluates its pattern eagerly (possibly using parallelization) and then applies its
actions to each match.

Forall-rules generally perform better than rules returned by the iteration
rule combinator iterated-rule because only one search for occurrences is done
in contrast to restarting the search after any match has been found. However,
they cannot find matches which are the result of the actions applied to previous
matches, and they will also be applied to matches which are invalidated by
actions applied to previous matches. Thus, using the :forall option is not
advised for rules which invalidate matches of the same rule.

Rule Modifiers. Rules can be applied as patterns with (as-pattern (rule
model)) in which case the lazy sequence matches of the rule’s pattern is
returned. Furthermore, a rule can be tested for applicability using (as-test
(rule model)). If it is applicable, this returns a closure which applies the rule’s
actions on the first match when being called. If it is inapplicable, as-test returns
false.

State Space Exploration. FunnyQT provides functions for step-wise or exhaustive
creation of the state space generated by applying a set of rules to a model. There
is also a GUI for generating and exploring the state space interactively.

4 Related Work

This section discusses the related work in two focus areas. First, Sect. 4.1 provides
an overview of other embedded DSLs in the model transformation field. Secondly,
Sect. 4.2 discusses transformation languages which are not embedded DSLs but
provide features comparable to those of the FunnyQT pattern matching and
in-place transformation DSLs discussed in Sects. 2 and 3.

4.1 Embedded Model Transformation DSLs

There are various model transformation approaches which are realized as embed-
ded DSLs in several host languages.

RubyTL [2] is a DSL for model transformations embedded in Ruby which is
conceptually similar to ATL [11], i.e., it is intended for model-to-model transfor-
mations which transform an input model conforming to some metamodel to an
output model conforming to some other metamodel. A RubyTL transformation
consists of mapping rules which take elements of a given source metamodel type
from the input model and create elements of a target metamodel type in the
output model. In addition, RubyTL is extensible using a plug-in system.

In [5], George, Wider, and Scheidgen discuss how to implement a type-safe
model transformation language as an internal DSL in Scala. Again, the approach
borrows the general transformation concepts from ATL. In contrast to RubyTL

Graph Pattern Matching as an Embedded Clojure DSL 201

which is embedded in the dynamically-typed Ruby programming language, the
Scala model transformation DSL makes use of Scala’s type inference and implicit
conversion features in order to make transformation definitions statically type-
safe. It also enables the use of Scala’s built-in pattern matching constructs by
generating case classes for all classes in a given metamodel. However, here pattern
matching only allows to test if a pattern matches a given element but it doesn’t
allow to find all occurrences of a pattern in the model.

SIGMA [13] is a model manipulation library for EMF models also imple-
mented as a set of embedded DSLs in Scala. SIGMA provides DSLs for model
manipulation, constraint checking, model-to-model transformations, and model-
to-text transformations. Its aim is to be a complete family of embedded DSLs
supporting all modeling-related tasks similar to the Epsilon [12] family of lan-
guages. Whereas the latter are non-embedded, dynamically typed, interpreted
DSLs, SIGMA’s embedded DSLs are statically typed and compiled. They provide
similar expressiveness paired with type-safety and much better performance.

NMF [7] is a modeling framework for the .NET platform implemented in C#.
It is equipped with an embedded DSL for realizing model-to-model transforma-
tions. However, here the term embedded DSL is a bit overstating. Transforma-
tions are classes extending a predefined framework class, and transformation
rules are also classes extending a predefined framework class overriding its
Transform() method. In addition, NMF transformations make heavy use of C#
lambda expressions. Thus, NMF transformations are provided more as a well-
designed C# API rather than an embedded DSL with a somewhat autonomic
syntax. Nevertheless, the typical embedded DSL goals of being task-oriented
while still retaining the host language’s flexibility are mostly achieved although
still some boilerplate code has to be written.

SDMLib [3] is a modeling framework with an emphasis on programming.
It provides Java APIs with fluent interfaces12 which allow to program meta-
models. From these metamodels, code can be generated which in turn allows
to program models conforming to these metamodels. In addition to the model
API, a metamodel-specific pattern matching API can be generated. In combi-
nation with the framework’s standard pattern matching API, patterns can be
constructed and evaluated in plain Java.

4.2 Graph Pattern Matching and Transformation Languages

There are only very few languages besides FunnyQT which provide graph pat-
tern matching as a stand-alone service. One of them is EMF-IncQuery [18] which
is an incremental pattern matching language for EMF models. In a traditional
pattern matching approach like FunnyQT, evaluating a pattern implies a search
for occurrences in the queried model. With the incremental approach, a network
data structure is created from a pattern where every node in the network repre-
sents a part of the pattern. I.e., the top nodes in such a network represent typing
constraints, and a single bottom node represents the complete pattern. Nodes in

12 http://www.martinfowler.com/bliki/FluentInterface.html.

http://www.martinfowler.com/bliki/FluentInterface.html

202 T. Horn

between model further constraints, e.g., connection constraints. Every such node
has a cache of all elements in the model matching the (sub-)pattern represented
by that node. When elements are added to or deleted from the model, the net-
work is informed about the changes which are then propagated to update the
caches accordingly. Thus, the incremental approach realized by EMF-IncQuery
is very adequate when a model gets frequently queried but rarely changed.

Epsilon [12] also provides pattern matching as stand-alone service in terms
of its Epsilon Pattern Language (EPL). It provides only basic pattern matching
capabilities, e.g., there are arbitrary constraints but there are only simple NACs
similar to FunnyQT’s negative edges but neither full NACs nor PACs, nested
patterns, or other advanced pattern matching features.

There’s a wide variety of graph transformation approaches where transforma-
tions are specified as rules. Rules consist of a pattern (the left-hand side, LHS)
used for finding occurrences in a graph and a right-hand side (RHS) rewriting
the matches. Some of these languages are textual, e.g., GrGen.NET [9] or VIA-
TRA2 [19], while others are visual, e.g., AGG [16], GROOVE [6] or Henshin [1].
In contrast to FunnyQT’s in-place transformation DSL where a rule’s RHS is
just a sequence of arbitrary actions, graph transformation languages specify both
LHS and RHS in the same pattern-like notation encoding the changes to be per-
formed. Elements occurring in both the LHS and the RHS are to be preserved,
elements only occurring in the RHS are to be created, and elements only occur-
ring in the LHS are to be deleted. The visual languages usually even notate both
LHS and RHS in the same diagram where stereotypes/annotations and colors
are used to define which elements are to be preserved, created, or deleted.

Feature-wise, the cited transformation languages are quite comparable to
FunnyQT. Basic patterns with constraints and positive and negative application
conditions are supported by all of them. Alternative patterns are available also
in GrGen.NET and VIATRA2, and nested patterns where some subpatterns are
matched in the context of a match of a surrounding pattern are available in
GrGen.NET, AGG, GROOVE and Henshin. Pattern inheritance seems to be
unique to FunnyQT but at least GrGen.NET supports composing patterns out
of existing patterns. State space generation/exploration is supported by Henshin
and GROOVE.

Out of the cited languages, Henshin is probably most similar to FunnyQT.
We implemented a proof-of-concept translator (written in FunnyQT itself) which
takes a Henshin transformation (as EMF model conforming to the Henshin meta-
model) and generates an equivalent FunnyQT transformation13. That way, one
can either reuse existing Henshin transformations, or one can use the visual
Henshin editor to specify FunnyQT transformations.

5 Conclusion

In this paper, FunnyQT’s embedded DSL for graph pattern matching has been
discussed. This DSL provides expressive means to define complex patterns which
13 https://github.com/jgralab/funnyqt-henshin.

https://github.com/jgralab/funnyqt-henshin

Graph Pattern Matching as an Embedded Clojure DSL 203

can be applied to a model in order to compute all matches. FunnyQT patterns
support arbitrary constraints, positive, negative, and logically combined applica-
tion conditions, alternative patterns, and nested patterns which are matched in
the context of a match of the surrounding pattern, and the pattern inheritance
feature allows for combining new patterns from existing patterns.

By default, a pattern returns the lazy sequence of matches, i.e., matches are
not computed until they are consumed. Alternatively, a pattern can be declared
to be evaluated eagerly. In this case, its evaluation is automatically parallelized
for best performance on multi-core machines.

Built on top of the pattern matching DSL, FunnyQT provides an embedded
in-place transformation DSL which supports the definition of rules consisting
of a pattern and actions to be applied to the pattern’s matches. To control
rule application, there are several higher-order rule combinators realizing typical
rule application strategies like as-long-as-possible iteration or non-deterministic
choice. And there are modifier macros for calling rules as patterns and testing
their applicability.

Due to space limitations, several features of both pattern matching and trans-
formation DSL have been omitted, e.g., the ability to parametrize patterns and
rules, or to overload them on arity.

The pattern matching and in-place transformation APIs are only two of
many services provided by FunnyQT. In addition, FunnyQT provides services
(1) for expressive functional model querying including regular path expressions,
(2) for model manipulation, (3) for relational, Prolog-style model querying, (4) for
defining polymorphic functions dispatching on metamodel types, (5) for defining
model-to-model transformations, (6) for defining bidirectional transformations,
(7) for defining co-evolution transformations which allow for simultaneously
evolving a model with its metamodel at runtime, and (8) for several auxiliary
tasks such as model visualization or XML processing.

This comprehensive set of services brought together in one homogeneous
approach makes FunnyQT a viable competitor in a broad range of use-cases in
the modeling domain.

References

1. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced
concepts and tools for in-place EMF model transformations. In: Petriu, D.C., Rou-
quette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp. 121–135.
Springer, Heidelberg (2010)

2. Cuadrado, J.S., Molina, J.G., Tortosa, M.M.: RubyTL: a practical, extensible
transformation language. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006.
LNCS, vol. 4066, pp. 158–172. Springer, Heidelberg (2006)

3. Eickhoff, C., George, T., Lindel, S., Zündorf, A.: The SDMLib solution to the
MovieDB case for TTC2014. In: Rose, L.M., Krause, C., Horn, T. (eds.) Proceed-
ings of the 7th Transformation Tool Contest part of the Software Technologies:
Applications and Foundations (STAF 2014). CEUR Workshop Proceedings, vol.
1305. CEUR-WS.org (2014)

204 T. Horn

4. Fowler, M.: Domain Specific Languages, 1st edn. Addison-Wesley Professional,
Boston (2010)

5. George, L., Wider, A., Scheidgen, M.: Type-safe model transformation languages
as internal DSLs in scala. In: Hu, Z., de Lara, J. (eds.) ICMT 2012. LNCS, vol.
7307, pp. 160–175. Springer, Heidelberg (2012)

6. Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling
and analysis using GROOVE. STTT 14(1), 15–40 (2012)

7. Hinkel, G., Happe, L.: Using component frameworks for model transformations by
an internal DSL. In: Ciccozzi, F., Tivoli, M., Carlson, J. (eds.) Proceedings of the
1st International Workshop on Model-Driven Engineering for Component-Based
Software Systems co-located with MODELS 2014. CEUR Workshop Proceedings,
vol. 1281, pp. 6–15. CEUR-WS.org (2014)

8. Horn, T.: Model querying with FunnyQT (extended abstract). In: Duddy, K., Kap-
pel, G. (eds.) ICMB 2013. LNCS, vol. 7909, pp. 56–57. Springer, Heidelberg (2013)

9. Jakumeit, E., Buchwald, S., Kroll, M.: GrGen.NET - The expressive, convenient
and fast graph rewrite system. STTT 12(3–4), 263–271 (2010)

10. Jouault, F., Bézivin, J.: KM3: a DSL for metamodel specification. In: Gorrieri,
R., Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 171–185. Springer,
Heidelberg (2006)

11. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

12. Kolovos, D., Rose, L., Paige, R.: The Epsilon Book, March 2013
13. Křikava, F., Collet, P., France, R.B.: SIGMA: scala internal domain-specific lan-

guages for model manipulations. In: Dingel, J., Schulte, W., Ramos, I., Abrahão,
S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp. 569–585. Springer, Hei-
delberg (2014)

14. Object Management Group: Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification, Version 1.1, January 2011

15. Object Management Group: Object Constraint Language - version 2.4, February
2014

16. Runge, O., Ermel, C., Taentzer, G.: AGG 2.0 – new features for specifying and
analyzing algebraic graph transformations. In: Schürr, A., Varró, D., Varró, G.
(eds.) AGTIVE 2011. LNCS, vol. 7233, pp. 81–88. Springer, Heidelberg (2012)

17. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2 edn. Addison-Wesley Professional, Reading (2008)

18. Ujhelyi, Z., Bergmann, G., Hegedüs, Á., Horváth, Á., Izsó, B., Ráth, I., Szatmári,
Z., Varró, D.: Emf-incquery: an integrated development environment for live model
queries. Sci. Comput. Program. 98, 80–99 (2015)

19. Varró, D., Balogh, A.: The model transformation language of the VIATRA2 frame-
work. Sci. Comput. Program. 68(3), 214–234 (2007)

Using Graph Transformations for Formalizing
Prescriptions and Monitoring Adherence

Jens H. Weber 1,2(B), Simon Diemert 1, and Morgan Price 1,2

1 Department of Computer Science, University of Victoria, Victoria, Canada
jens@uvic.ca

2 Department of Family Practice, University of British Columbia,
Vancouver, BC, Canada

Abstract. Medication prescriptions are an important class of med-
ical intervention orders. Their complexity ranges widely, depending on
the nature of the patient’s condition and the prescribed substance(s).
In today’s IT supported clinical environments, prescriptions are often
authored electronically. Patient adherence to the prescribed medica-
tion regimen is a key determinant for the outcome of the intervention.
Recently, an increasing number of information technologies are entering
the consumer market with a goal to assist patients with adhering to their
prescriptions. The effectiveness (and safety) of these technologies is lim-
ited to simplistic cases, however, because of the lack of a precise seman-
tics for more complex prescription orders. To close this gap, we present
an approach to formalize the meaning of medication prescriptions based
on a graph-transformation system. This allows for more complex and
variable prescriptions to be semantically coded and their adherence to
be automatically monitored. Our work has been implemented within a
prototypical prescribing tool and validated with domain experts.

1 Introduction

Medications are an important form of medical interventions. In modern health
care systems, medications are often and increasingly prescribed using software-
supported clinical information systems, commonly referred to as computerized
provider order entry (CPOE) systems. The user interfaces of modern CPOE sys-
tems are typically partially structured (form-based), but also allow for unstruc-
tured information entry (free text) in order to provide flexibility for complex
prescription orders and patient-specific constraints. The health outcome and
safety of prescriptions ordered in primary care relies to a large degree on clar-
ity of the instructions and the patient’s ability (and willingness) to adhere to
the prescribed medication regimen. The World Health Organization (WHO) has
identified poor adherence to medication regimens as a world-wide problem “of
striking magnitude” [3].

Recent developments in the consumer health market have created a rapidly
expanding array of technologies with the goal to help patients with adhering to
their medication regimens [6,15]. The effectiveness (and safety) of these tech-
nologies is limited by their ability to correctly capture and interpret prescription
c© Springer International Publishing Switzerland 2015
F. Parisi-Presicce and B. Westfechtel (Eds.): ICGT 2015, LNCS 9151, pp. 205–220, 2015.
DOI: 10.1007/978-3-319-21145-9 13

206 J.H. Weber et al.

orders. Unfortunately, current e-prescribing systems lack a precise, formalized
semantics for prescription orders, which may lead to ambiguities and misunder-
standings on how to interpret complex medication plans. This paper presents
an approach to address this limitation. We define a domain specific language for
writing electronic prescriptions and a graph transformation system to precisely
specify prescription semantics. The approach has been implemented in a pro-
totypical tool that connects a physician’s e-prescribing system with adherence
monitoring devices deployed in the patient’s personal environment.

The rest of this paper is structured as follows. The following section provides
the reader with a more detailed description of the health care process targeted
in this paper, i.e., the medication management process and specifically the role
of prescription in that process. We discuss related work in Sect. 3. Section 4 lays
out the proposed graph-transformation-based method to formalize and interpret
electronic prescriptions. We evaluate our approach in Sect. 5 and offer concluding
remarks in Sect. 6.

2 Medication Management Process

Medication management (MM) is a complex and multi-faceted concern with
many variations depending on the particular health context of a patient’s condi-
tion and the organization of the health care system that supports their treatment.
Given this complexity, the MM process model described here has limited applica-
bility and is not meant to be comprehensive. It specifically applies to medications
managed in primary and ambulatory care (outpatient) scenarios and models
the four main steps involved in the patient’s treatment cycle, namely (1) testing
the patient’s condition, (2) prescribing a medication intervention (after review-
ing the patient’s chart, e.g., for allergies, interactions with other existing medica-
tions, etc.), (3) dispensing the medication (at a pharmacy), and (4) administering
the medication (usually at home). These steps are usually iterated multiple times
in order to iteratively control the patient’s health condition, particularly in the
context of chronic disease management.

Figure 1 depicts an overview of this process with solid arrows representing
the typical information flows and dashed arrows representing optional informa-
tion flows, i.e., information flows that benefit medication management but may
not always be present. For example, the communication of a medication dispen-
sation event from the pharmacy back to the clinician can improve patient safety
(e.g., patients may have forgotten, lost or may want to avoid the cost of filling
prescriptions), if the system is set up to support this flow. Similarly, the commu-
nication of information about the patient’s adherence to a medication regimen
(called adherence trace in Fig. 1) helps the clinician understand to what degree
the planned intervention was actually performed. Such an adherence trace can
be generated based on automated IT devices embedded in the patient’s home
(e.g., smart pill bottles [6]) or it can be based on manual methods, e.g., patient’s
recollection or “pill counts”.

A prerequisite for automated adherence tracing (and indeed also for accurate
manual adherence and tracing) is a precise, unambiguous understanding of the

Using Graph Transformations for Formalizing Prescriptions 207

Test/
Measurement/
Assessment

of Patient
Condition

Chart Review
and

Prescription

Medication
Review

and
Dispensation

Medication
Administration

(Adherence)

test results

prescription
order

dispensed
prescription

adherence
info dispensation

event

Lab

Clinic

Pharmacy
Home

Patient

Fig. 1. Medication management process

meaning of prescriptions. Unfortunately, current e-prescribing (CPOE) systems
do not commonly utilize prescribing languages with formally defined seman-
tics. While some primitives of a prescription order may be structured and can
be considered unambiguously encoded (e.g., the prescribed substance is usually
encoded with a controlled vocabulary), other prescription elements are formu-
lated in representations that lack formal semantics. It is this problem of how to
define a prescription language with machine-interpretable semantics (allowing
for automated adherence tracking) that we address in this paper.

To provide the reader with an appreciation of a typical e-prescribing inter-
face, Fig. 2 depicts the medication order screen of the OSCAR Electronic Medical
Record (EMR) software (version 12.1), a software product in use by over two
thousand primary care physicians in Canada [8]. The user interface provides for
semi-structured order entry. Medication substances are looked up from a data-
base of known drugs (top field in Fig. 2). The next field (entitled “Instructions”)
provides the clinician with a way to textually input medication instructions (such
as quantity, dose, strength, timing etc.). If the clinician uses certain conventions
or keywords when entering these instructions (cf. pop-up help displayed on the
right side of CPOE screen), the EMR software is able to extract certain pieces
of information and automatically populate some or all of the entry fields below
(e.g., quantity, repeats, route).

From a practical perspective, it is important to note that oftentimes prescrip-
tion orders are (purposefully) underspecified when entered and submitted by the
clinician. For example, physicians often prescribe generic substances (rather than
drug brand names) and doses (rather than pill sizes and quantities). This leaves
flexibility to the pharmacist to select suitable brands, pill sizes etc. based on
the pharmacy’s inventory and other considerations, such as patient preferences,
insurance coverage and medication cost. This means that the medication process
to be adhered to from a patient’s point of view is often “refined” at the phar-
macy into an actionable task plan, e.g., “take two pills a day ...” rather than

208 J.H. Weber et al.

Fig. 2. Example CPOE prescription order screen from OSCAR EMR [8]

“take 200mg a day ...”. For simplicity, our current method and tool implemen-
tation does not explicitly consider this two-step “refinement” process between
clinic and pharmacy. In other words, we treat authoring the prescription as a
single abstract process step. We note, however, that our method can naturally
be extended to account for this two-step prescription authoring process.

3 Related Work

Yeh et al. developed a machine-readable medication schedule specification (MSS)
based on a prescription algebra called APAMAT (A Prescription Algebra for
Medication Authoring Tool) [17]. A main objective of their tool is to validate
multiple prescriptions for potentially dangerous interactions (drug-drug interac-
tions or drug-allergy interactions). If no interactions are found, APAMAT creates
a schedule that can be used for adherence monitoring. Yeh et al. define the struc-
ture of their algebra (and the grammar of their corresponding domain specific
input language) formally, but their presentation lacks a formal definition of the
semantic concepts.

Varshney presents the requirements and the conceptual design of a smart med-
ication management system (SMMS) for improving adherence [15]. He discusses
a theoretical framework for adherence to medication regimes and a framework
for evaluating the effectiveness of any SMMS. Diemert et al. present SmartMed,
a prototype medication adherence system based on a smart, mobile medication

Using Graph Transformations for Formalizing Prescriptions 209

container (“pill bottle”) capable of communicating to cloud-based information sys-
tem [6]. SmartMed has been developed independently but implements several of
the design features proposed for SMMS by Varshney. The prescription language
and graph transformation-based adherence monitoring approach presented in this
paper has been developed for the SmartMed system.

Beyond the context of medication prescriptions, Yan et al. have conducted
research on formalizing a notion of adherence to general clinical work flows [16].
They use the Business Process Modeling Notation (BPMN) to specify desired
work flows and evaluate clinical adherence to these models based on captured
activity traces. While this work is related to ours, the kinds of phenomena mod-
elled in Yan et al.’s work do not align well with the problem of medication
adherence, as framed in this paper. For example, there is no consideration for
time, medication substance and strength in Yan et al.’s approach.

The research presented in this paper is related to the general research area on
domain specific languages (DSL) [10,17]. Model-based approaches are popular
among the various approaches proposed for developing DSL-based systems [2].
An important aspect in the development of DSL-based systems is the formal def-
inition of the language semantics. Popular approaches use mappings of the DSL
into precisely defined mathematical formalisms or utilize rewrite rule systems [4].
Typed graphs and graph transformations have been used extensively for defining
semantic models for DSLs [2,7]. Graph transformations are defined as rules where
the left-hand side describes the structure of a subgraph to be matched in a given
instance graph and a right-hand side which replaces the matched subgraph upon
application of the rule. Different notations and tools have been developed to sup-
port the specification and execution of graph transformations, e.g., [1,5,13,14].
The specific notation and tool used in our application is GROOVE [13].

4 A GT-Based Method to Formalize Prescriptions

Formalizing a language for medication prescriptions requires two main tasks,
namely (1) the definition of an interface language to be used by clinicians to
author prescriptions, and (2) the transformation of prescriptions authored in
this interface language to a formal model that defines the semantics of what
has been prescribed. The interface language can be textual, visual (form-based),
or hybrid, as in the case of OSCAR’s CPOE module (Fig. 2). Without loss of
generality, we elected to develop a textual interface language for our prototype.
If visual or hybrid interface languages are preferred they can be translated into
our textual representation.

We choose a graph transformation system (GTS) as a way to formally model
the semantics of prescription orders. Of course, alternative formal methods could
have been selected, e.g., Petri nets [11], temporal action logics [9], and any other
formalism capable of modeling processes. Indeed we wrote some specifications
using Petri nets, and TLA+ process models, and the Z notation [12] before
settling on the GTS approach presented here. One reason for selecting the GTS
approach was that we could use graph transformations to describe the mapping if

210 J.H. Weber et al.

the interface language to the semantic model as well as the interpretation of that
semantic model. TLA+, Z and Petri nets are primarily specification formalisms.
They do not lend themselves well to defining the mapping between a concrete
textual DSL and a formal specification. A second reason for selecting GTS was
our need to communicate the specified semantics with domain experts that were
not trained in formal methods. Graphs and graph transformation rules turned
out to be much more accessible for this purpose. A third reason for our choice was
the available tool support, which in the case of GTS tools (and Petri net tools)
encompassed specification as well as model based execution, while the tooling
for other formalisms (such as TLA+ and Z) focuses mainly on specification and
verification.

Figure 3 provides an overview of our method in form of a FlowChart. Pre-
scription orders are parsed from clinical input using a textual interface language
(DSL). The DSL parsing process populates a graph model, referred to as the “Rx
Graph Model” in Fig. 3. Since the interface language for prescription orders may
contain complex primitives, our next step compiles the Rx Graph to a simpler
representation of the prescribed medication actions, referred to as the APMA
(Atomic Prescribed Medication Action) Graph (cf. “Rx Compiler” process). This
compilation step is performed by a graph transformation system (GTS). The
compiler also validates static semantic constraints of our prescription language.

The semantics of the APMA Graph is defined by a GTS that relates
the APMA Graph model to another graph model that captures actual med-
ication administration events (the “Administration Graph Model”) in Fig. 3.

Rx Graph
Model

DSL Parser

APMA Graph
Model

Rx Compiler
(GTS)

Adherence
Mapper
(GTS)

prescription
order

(DSL text)

Administration
Trace

Administration
Graph

Generator

Administration
Graph Model

Adherence
Graph Model

Adherence
View

Adherence
View Generator

Fig. 3. Method for formalizing prescriptions and monitoring adherence

Using Graph Transformations for Formalizing Prescriptions 211

The Administration Graph is populated by sourcing medication administration
events from smart devices and sensors embedded within the patient’s environ-
ment, e.g., a smart pill bottle [6]. Finally, our system design includes an Adher-
ence View Generator that provides medication adherence information back to
the clinician and/or the patient based on the data in the Adherence Graph.
While the Adherence View Generator is not a core topic of this paper (it is not
required for defining the semantics of prescription orders), it is an important
component of the overall application, as it produces the adherence information
in the medication management process (cf. Fig. 1) and should thus be mentioned
here for completeness.

Now that we have provided an overview of our approach, we will describe
each component in more detail in the next subsections.

4.1 Interface Language

We developed the grammar of a textual interface language for creating medica-
tion prescriptions. The language is based on a literature survey as well as on
input from a domain expert. (One of the co-authors is a primary care physi-
cian.) As previously mentioned, prescriptions can be complex; to simplify our
task, the current version of the language focuses on those aspects of a medication
prescription than can be tracked with typical administration monitoring devices
available to patients in the community. These aspects are related to the medica-
tion substance, the timing and the dosing of the medication. Other aspects that
are harder to monitor have been left for future extension, e.g., the administration
route (e.g., oral, topical, rectal, etc.).

Below are five example prescription orders of different complexity written in
the developed interface language. Order 1 and 2 are simple and do not require
further explanation. Order 3 uses more complex timing (weekdays as well as time
of the day) and also varies the medication dose based on the time of the day.
Order 4 illustrates a prescription that uses two medications in strict sequence.
Order 5 varies the medication dose by applying a titrating process. Moreover, it
requires the patient to repeat the titrating process once (for a total of 20 days).

1. Take chloronapam 80 mg once daily for 60 days
2. Take adhdhesin 150 mg twice daily (8, 20) for 10 days

(specific times of day: 8 AM and 8 PM)
3. Take stalacillin (10 mg, 20 mg) three times weekly (1, 3, 5) at

(8, 20) for 10 weeks (specific days and times, varying doses)
4. Take chordazine 75 mg daily for 7 days then take chordazine

150 mg for 28 days (sequential medication)
5. Take planazipine titrate down from 50 mg to 0 mg by 10 mg per two

days once daily for 10 days (titrated medication increase or decrease
dose at each interval)

We note that the interface language below has been designed primarily for
expressiveness and as a vehicle to feed our proof-of-concepts prototype. We have

212 J.H. Weber et al.

not studied it from a usability/user experience perspective. Indeed, textual inter-
face languages used in current CPOE systems often try to minimize verbosity
and make use of abbreviations and shorthand codes (cf. right-hand side of Fig. 2
as an example). Usability research on prescription interface languages is subject
of ongoing and future work in our lab, but not the focus of this paper.

4.2 Rx Graph Model

Prescriptions written in the interface language are parsed to populate a typed
graph model, referred to as the “Rx Graph” in Fig. 3. Figure 4 shows the Rx
Graph representations for the sample prescriptions 3 and 5 above. The corre-
sponding graph model (type graph) is given in Fig. 5, using GROOVE nota-
tion [13].

Fig. 4. Rx Graph representation for sample prescription orders 3 and 5

Prescriptions are represented as attributed graph nodes specifying the type
of the action, the medication substance, a start time, a duration and a number of
“repeats”. The start time is automatically initialized to the time of prescribing
(dispensing) the medication, unless otherwise explicitly specified in the textual
interface language. The timing of a prescription is specified in a recursive graph
structure defined by a time frame, which contains one or many time points. Con-
sider our prescription order 3 from above as an example. The top part of Fig. 4
shows that the timing of that order consists of a weekly time frame with two time
points (with values 1 and 4, representing Monday and Thursday, respectively).
Each of these time points is referred to as compound as it in turn represents a
time frame (day) with two time points (8am and 8pm). The latter time points are
not further refined by time frames, i.e., they are referred to as atomic rather than
compound. Atomic time points are related to actual dosing actions, represented
by instances of “Dosing” graph notes.

Using Graph Transformations for Formalizing Prescriptions 213

Fig. 5. Rx Graph Model (type graph)

4.3 Rx Graph Compilation

The compilation of the Rx Graph into the APMA Graph is implemented as
a graph transformation system in GROOVE [13]. GROOVE was selected out
of a set of five GTS tools listed on Wikipedia’s page on graph rewriting page
as “domain neutral”1. We were particularly interested in a tool that provided
support for formal verifications of the GTS system (e.g., confluence) as well as
code generation for Java. GROOVE as well as AGG [14] met these requirements
and were considered for closer evaluation in our project. We eventually decided
to select GROOVE since the tool provides for a more compact representation of
transformation rules, i.e., a rule’s left-hand and right-hand sides are folded into
a single graph representation.

The target model for the compilation (APMA Graph) is simple. It merely
consists of a set of atomic medication actions (respectively inactions) that are
planned for absolute time intervals. Its type model is shown on the left hand side
of Fig. 6 (node types Prescription and APMA). The compilation process consists
of five main phases:

1. Static Semantic Validation. A set of graph rules are applied prior to further
processing to validate static semantic properties of prescription orders, e.g.,
to ensure that the specified frequency aligns with the specified medication
time points. Figure 7 shows a corresponding graph test in GROOVE notation.
The check counts the number of TimePoints connected to a TimeFrame and
compares it to the frequency attribute specified for the TimeFrame. Under
this graph rule, the following prescription order would be found invalid for
example: “take aspirin 81 mg once daily (8, 20) for 10 days”.

2. Time Unrolling. In this phase, the compiler computes absolute time points for
planned medication actions based on the timing description of the prescription
order. Iterations and repetitions are “unrolled” and abstract references to time
frames (e.g., “daily”, “Monday”, etc.) are replaced with absolute times (using
Unix time (en.wikipedia.org/wiki/Unix time) for simplicity). Figure 8 presents
a graph transformation rule that unrolls “day” time frames. Analogous trans-
formation rules exists for months and weeks. Obviously, this compilation step

1 http://en.wikipedia.org/wiki/Graph rewriting.

http://en.wikipedia.org/wiki/Unix_time
http://en.wikipedia.org/wiki/Graph_rewriting

214 J.H. Weber et al.

Fig. 6. Monitoring graph triplet (type graph)

Fig. 7. Example graph tests to validate static semantic constraints

may create unreasonable precision. For example, a prescription to take a certain
medication “next Monday” will be compiled to a concrete planned medication
time point at the resolution of seconds (Unix time) at noon of the following
Monday. This issue is addressed in the following compilation step.

3. Temporal Unsharpening. In this phase, absolute time points generated
previously are replaced by intervals. This is necessary because of the above
mentioned issue of unreasonable precision. The width of the generated inter-
vals created depend on the level of precision in the original prescription order.
If for example, a medication action is prescribed at the level of a “day”, the
generated interval extends 43200 seconds to both sides of the previously gen-
erated time point.

4. Plan Completion. The medication plan generated so far is partial in the
sense that it defines required actions to happen at specific times (intervals),
but it does not specify whether medication administration actions are permit-
ted outside these intervals. (This may sometimes be the case, for example in
pain medication prescriptions that specify certain minimum doses but allow
patients to add doses “as needed”.) Our current interface language does not
yet allow clinicians to specify “as needed” options. However, our graph models
have been designed to incorporate this aspect at a later time. The objective
of the last compilation phase is to create a total medication plan from the
partial plan generated thus far, by filling in planned intervals of prohibited
medication actions between planned intervals of planned medication actions.
In other words, we assume that (unless otherwise specified) clinicians do not
intend patients to take their prescribed medications outside the prescribed
times. (Of course, this is a simplifying assumption. We will discuss this limi-
tation in the last section of this paper.)

Using Graph Transformations for Formalizing Prescriptions 215

5. Dose Unit Harmonization. The final step in the compilation harmonizes
the dose unit information. While the interface language (and the Rx Graph
model allows different dose units to be used in authoring a prescription (e.g.,
milligrams, grams), the target APMA model uses a single dose unit per pre-
scription (cf. “doseunit” attribute of node type “Prescription” in Fig. 6).

Fig. 8. Example compilation rule for prescription “time unrolling”

Figure 9 shows an excerpt of an APMA graph generated for prescription 3 in
our list of examples above.

Fig. 9. Compilation result (APMA Graph) for our prescription example 3

4.4 Adherence Tracking

We use graph transformations for specifying the dynamic semantics of the APMA
Graph model. The right hand side of Fig. 6 shows the Administration Graph
model, which is used to capture actual medication administration events, as emit-
ted by a persons, a smart medication administration tool or similar monitoring
device embedded with the patient, e.g., a smart pill bottle [6]. The monitoring
device is capable of emitting two types of events: (1) a medication administration
event (which is accompanied by information about the administered dose) and
(2) a heartbeat. The heartbeat is emitted at a (customizable) regular interval
(e.g., once a day) to ensure that the monitoring device is still functioning. It is
also used in the medication adherence tracking process. We assume that monitor-
ing devices are uniquely associated with prescriptions at the time of dispensation.

216 J.H. Weber et al.

Fig. 10. Transformation rules for creating the Adherence Graph

Every time a monitoring device emits an event, that event (administration or
heartbeat) is recorded in the Administration Graph. Figure 10 shows six graph
transformations that generate the Adherence Graph, based on events recorded
from the monitoring device and compiled prescription plan in the APMA Graph.
The Adherence Graph consists of instances of mapping nodes (“Map”) that asso-
ciate planned (in)actions with actual events. Positive adherence is marked by a
Boolean attribute “adhered” that is recorded as true.

The first transformation rule in Fig. 10 covers the case when a medication
administration event is recorded during a time when the patient was asked to

Using Graph Transformations for Formalizing Prescriptions 217

take her medication. In this case, correct adherence to the prescription plan
depends on whether the correct dose was administered. Now the patient may
actually administer multiple doses during a planned prescription time frame
(e.g., she may open the smart pill bottle twice to take one pill each time). This
action will lead to two medication administration events being recorded. The
overall dose administered during the planned time interval should be computed
as the total of all administered doses. This function is performed by the second
rule in Fig. 10. (Note that the overall dose is kept in the Adherence Graph.) The
third rule (Rule C) records a non-adherence case when a heartbeat is received
after expiration of a time interval where an administration action was planned
(and none was recorded). Note that the absence of a recorded administration
event is guaranteed by the rule’s negative application condition (NAC).

Rules D-F work analogously to Rules A-C but consider planned periods of
medication inaction (as indicated by the “DON’T” value of the APMA’s action
attribute). Note that the semantics we are defining here are not a simple pro-
hibition of any medication. Rather we define a “DON’T” action to mean “don’t
take more than”. This semantics provides more flexibility and expressiveness for
prescription orders. For example, it may be the case that a physician allows
patients to take more than the prescribed medication “if needed” - but not more
than a certain maximum. Rules D and E define these semantics formally. Finally,
Rule F handles the situation where a heartbeat is mapped to a planned period
of inaction, resulting in positive adherence for that period.

Fig. 11. Screenshot of prototype medication adherence view.

The information recorded in the Adherence Graph can be aggregated to pro-
vide end-user specific view points for reflecting on medication adherence. As
presented in our overall MM process model (Fig. 1), such viewpoints may be
provided for physicians, but they may also be of interest for patients or their

218 J.H. Weber et al.

informal circle of care (family members). Figure 11 shows a screen shot of a
prototype adherence view we developed for inclusion in a physician’s clinical
information system (EMR). The view was created based on a simple scoring
system, computing the ratio of “Map” nodes in the Adherence graph that indi-
cate positive adherence divided by the total count of these nodes over a selected
time resolution. More sophisticated and differentiated adherence view metrics
could be constructed taking in consideration the difference between planned and
actual doses and/or the difference between planned and actual timings. This is
subject to future work and not the focus of this paper.

5 Evaluation

The development of a comprehensive, formalized medication prescription and
automated adherence monitoring system is a complex challenge. Our system has
several known limitations and requires further extension and validation before
we can be confident that it is fit for use in practice. As we pointed out earlier, we
did not engineer our current interface language (DSL) with an eye to usability
and efficiency. Any actual implementation of our system in practice will have to
connect the Rx Graph model with an interface language that has been optimized
(and validated) for usability.

More important for the topic of this paper is the expressiveness of the
language and the associated graph models. The expressiveness of the current
language/models have been validated by one domain expert (physician and co-
author). The choice of a GTS formalism modelling language semantics has proven
instrumental in making the semantic formalization accessible to collaborators
that have not been trained in formal methods. Our DSL language and graph
model is considered sufficient to capture a large portion of typical prescriptions
written for primary care medications. Still, we have so far ignored the aspect
of drug interactions and directions on how to recover from non-adherence. For
example, patients who are on multiple prescriptions may be asked to never take
two (or more) of their drugs at the same time. Moreover, patients who have
failed to adhere to a planned medication dose may be asked to perform different
actions for recovery, depending on their condition and the nature of the med-
ication, e.g., they may be asked to “skip” the dose, to “double up”, or to “take
ASAP - but delay the next one”. A more expressive prescription language would
allow providers to specify these additional constraints.

Another limitation of our current system is that it does not distinguish
between the physician’s act of writing the initial (loosely constrained) prescrip-
tion and the pharmacist’s subsequent act of “refining” the prescription (con-
straining it further). Still, making a distinction between the act of prescribing
and the act of dispensing does not require an extension to the theoretical frame-
work of our approach. It merely requires the development of another set of graph
transformation rules to be used for specifying the permissible refinement actions
that can be performed by pharmacists.

From a theoretical, language-engineering point of view our graph
transformation-based approach provides a partial formal semantic definition of

Using Graph Transformations for Formalizing Prescriptions 219

our interface language (DSL). However, it does not currently guarantee that all
well-formed sentences in our interface language have a unique, valid interpreta-
tion in terms of an interpretable APMA Graph. The desired property of a total
formal semantic definition of our interface language for prescriptions requires a
proof that the graph transformation system is confluent and terminating (con-
vergent) for all valid inputs. We utilized GROOVE’s state space exploration
tool to check for convergence of our rule system for all valid inputs. Our future
work will be on constructing convergence proofs for all possible sentences of our
language.

Considering the adherence tracking rules, we have made several simplifying
assumptions in our current system. First of all, we require actual measured
dosage to be exactly equal to the planned dosage to be accepted for positive
adherence. This assumption may be fine for coarse granular units such as “pills”
but will be unrealistic for other unit measures, e.g., milligrams. Some means of
“unsharpening” should be created to provide a more realistic mapping. Secondly,
we currently compile the prescription into a fixed medication plan that does not
allow readjustments, e.g., in order to react to slippage. It would be more realistic
to be able to dynamically shift the plan in case there is a delay. For example, if
the patient filled a prescription and then went on a business trip, forgetting the
drugs at home. In this case, they would likely start taking the medication after
their return. In some cases, such a delay may be permissible. Our current system
does not implement such a function, but it is possible to “shift” the timing in the
medication plan (APMA) graph accordingly and rerun the adherence mapping
rules to calculate a new adherence graph in such cases.

6 Conclusions and Future Work

Medication non-adherence is a significant health problem world-wide [3]. Health
information technologies, consumer health apps and the emerging health Inter-
net of Things (IoT) provide opportunities to pro-actively monitor (and improve)
medication adherence [15]. Adherence is a complex process that can be better
understood now that we have these new ways of feasibly measuring adherence.
Automated medication adherence monitoring requires a formalized, machine-
interpretable language for writing and representing prescription orders. Graph
transformation systems are a suitable formalism for developing such a language.
The graph transformation-based medication management (MM) system dis-
cussed in this paper is part of a larger project initiative that has also developed a
prototype “smart pill bottle”, which is capable of wirelessly emitting medication
administration events to cloud-based systems [6]. We are currently planning a
small-scale pilot deployment of the MM system to gain feedback on the cur-
rent design prior implementing more advanced features, such as the extensions
mentioned in the previous section.

220 J.H. Weber et al.

References

1. Amelunxen, C., Königs, A., Rötschke, T., Schürr, A.: MOFLON: a standard-
compliant metamodeling framework with graph transformations. In: Rensink, A.,
Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 361–375. Springer,
Heidelberg (2006)

2. Andrés, F.P., de Lara, J., Guerra, E.: Domain specific languages with graphical
and textual views. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007.
LNCS, vol. 5088, pp. 82–97. Springer, Heidelberg (2008)

3. Brown, M.T., Bussell, J.K.: Medication adherence: who cares? In: Mayo Clinic
Proceedings, vol. 86, pp. 304–314. Elsevier (2011)

4. Bryant, B.R., Gray, J., et al.: Challenges and directions in formalizing the semantics
of modeling languages. Comp. Sci. Inform. Sys. 8(2), 225–253 (2011)

5. de Lara, J., Vangheluwe, H.: AToM3: a tool for multi-formalism and meta-
modelling. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306,
pp. 174–188. Springer, Heidelberg (2002)

6. Diemert, S., Richardson, K., et al.: SmartMed: a medication management system
to improve adherence. Stud. Health Technol. Inform. 208, 125–130 (2015)

7. Heckel, R.: Graph transformation in a nutshell. ENTCS 148(1), 187–198 (2006)
8. Ruttan, J.: OSCAR. In: The Architecture of Open Source Applications. Structure,

Scale and a Few More Fearless Hacks, vol. II (2012)
9. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware

and Software Engineers. Addison-Wesley Longman Publishing Co. Inc., Amster-
dam (2002)

10. Mernik, M., Heering, J.J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. (CSUR) 37(4), 316–344 (2005)

11. Peterson, J.L.: Petri nets. ACM Comput. Surv. (CSUR) 9(3), 223–252 (1977)
12. Potter, B., Till, D., Sinclair, J.: An introduction to formal specification and Z.

Prentice Hall PTR, Upper Saddle River (1996)
13. Rensink, A.: The GROOVE simulator: a tool for state space generation. In: Pfaltz,

J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–485.
Springer, Heidelberg (2004)

14. Taentzer, G.: AGG: a graph transformation environment for modeling and valida-
tion of software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS,
vol. 3062, pp. 446–453. Springer, Heidelberg (2004)

15. Varshney, U.: Smart medication management system and multiple interventions
for medication adherence. Decis. Support Syst. 55(2), 538–551 (2013)

16. Yan, H., Van Gorp, P., et al.: Analyzing conformance to clinical protocols involving
advanced synchronizations. In: IEEE Conference on Bioinformatics and Biomedi-
cine (2013)

17. Yeh, H.-C., Hsiu, P.-C., et al.: APAMAT: a prescription algebra for medication
authoring tool. In: IEEE Conference on Systems, Man and Cybernetics (2006)

Towards Compliance Verification Between
Global and Local Process Models

Pieter M. Kwantes1(B), Pieter Van Gorp2, Jetty Kleijn1, and Arend Rensink3

1 LIACS, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands
p.m.kwantes@liacs.leidenuniv.nl

2 Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

3 Department of Computer Science, University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract. This paper addresses the question how to verify that the
local workflow of an organisation participating in a cross-organisational
collaboration is in compliance with the globally specified rules of that
collaboration. We assume that the collaborative workflow is specified
as a BPMN Collaboration Diagram and the local workflows as BPMN
Process Diagrams. We then employ existing LTL semantics of the former
and token semantics of the latter to verify conformance. We use the
graph transformation tool GROOVE to automate the verification, and
exemplify our approach with a case study from the financial markets
domain.

1 Introduction

The development of computer network technology and distributed systems run-
ning on top of those networks has enabled a tighter integration between auto-
mated operations across organisational boundaries. Any organisation aiming
to participate effectively in a cross-organisational collaborative workflow must
ensure that the design of its internal operations complies with the rules of that
collaboration. This paper addresses the question how to verify such compliance.
We propose an approach starting from Business Process Modelling Notation
(BPMN) specifications (version 2.0, [20]) in which inter-organisational workflows
(or global behaviour) are specified as BPMN Collaboration Diagrams (BPMN
CD, for short) while intra-organisational workflows (local behaviour) are speci-
fied as BPMN Process Diagrams (BPMN PD). Note that the global behaviour of
a collaboration is the public, communicating, behaviour collectively exhibited by
all participants. The local behaviour of a participant consists of its communicat-
ing behaviour and possibly additional, private (non-communicating), behaviour.
The GROOVE — GRaphs for Object-Oriented VErification —, tool [13,23]
can be used to automate the verification process. GROOVE includes a model
checker for automated verification of state spaces against a Linear-time Temporal
Logic (LTL) formula [22]. In order to leverage that for our verification scenario,
we have to translate the BPMN CD into an LTL formula which represents a
c© Springer International Publishing Switzerland 2015
F. Parisi-Presicce and B. Westfechtel (Eds.): ICGT 2015, LNCS 9151, pp. 221–236, 2015.
DOI: 10.1007/978-3-319-21145-9 14

222 P.M. Kwantes et al.

behavioural constraint on the participants of the inter-organisational collabora-
tion. For the translation of collaboration diagrams into LTL we follow the set-up
of [4] where BPMN workflow specifications are considered as possible visual
alternatives for LTL formulae and an LTL semantics for BPMN 2.0 is provided.
On the other hand, in [14], a formal semantics of BPMN 2.0 is provided in the
form of graph transformation rules. In order to answer our research question,
we have implemented in GROOVE the rules from [14] and we have added some
rules specifically for message-driven collaborations between partner organiza-
tions. This rule set enables GROOVE to compute the state space representing
the behaviour of a participant and verify it against an LTL formula. Finally, we
apply our proposed approach to an example from the financial markets domain.

Paper outline. In Sect. 2 we discuss the syntax and semantics of BPMN Col-
laboration Diagrams and BPMN Process Diagrams to specify global and local
process models respectively. In Sect. 3 we describe an implementation allowing
automated verification of local process models against LTL-formulae derived
from global process models using the GROOVE tool. In Sect. 4 we test the pro-
posed implementation using a case study from the financial markets domain. In
Sect. 5 we discuss related work. In Sect. 6 we discuss a number of issues encoun-
tered during our research, and future work.

2 Process Modelling in BPMN

2.1 Global Behaviour

In this paper, the global aspects of an inter-organisational collaboration are spec-
ified as a BPMN Collaboration Diagram. Such a diagram describes the commu-
nicating behaviour of all participating organizations.

Syntax of BPMN Collaboration Diagrams. We discuss here only the subset
of available BPMN elements used in the example diagrams in Sect. 4. This subset
of elements is shown in Fig. 1. A BPMN CD consists of pools each delineating
the workflow of an individual participating organisation. Events and tasks are
the active elements in a workflow. Each workflow begins with a start event and
finishes with an end event. There are two types of intermediate events: a message
event (marked with a small envelope) represents the receipt of a message and a
timer event (with a clock) indicates a timing requirement or delay. In diagrams,
instances of events and tasks are usually labelled with a name describing the
activity they represent. Gateways model the flow of control. Both the exclusive-
or gateway (marked with an “X”) and the event-based gateway (displayed as
a pentagon inside a circle) indicate an exclusive choice. In the first case, the
choice is coincidental, whereas the choice of an event-based gateway is triggered
by events. Within the workflow of an organisation, active elements and gateways
are connected by sequence flows (arrows) indicating the flow of control. Message
flows represent the exchange of messages between organisations and connect
a (sending) task of one workflow with a (receiving) message event in another
workflow.

Towards Compliance Verification Between Global and Local Process Models 223

Fig. 1. BPMN Symbols used in this paper

LTL-Semantics of BPMN Collaboration Diagrams. We follow the app-
roach of [4] to translate a BPMN Collaboration Diagram into an LTL formula
[5,21,22]. We will use propositional symbols as atomic propositions, the usual
Boolean combinators (¬, ∨, ∧, →, ↔), and Until (U), Eventually (F) and Global
(G) as temporal combinators. We do not need the Next combinator [4]. The
Boolean combinator “exclusive or” denoted by xor is used as a shorthand with
Φ xor Ψ semantically equivalent with ¬(Φ ↔ Ψ). The less known past LTL-
combinator Before (B) as it appears in the translation rules described in [4] can
be replaced by an Until construct (see [4,12]). To avoid confusion and because
B is not supported by GROOVE, rather than Φ B Ψ , we will use the semantical
equivalent ¬(¬Φ U¬Ψ) which expresses that either Ψ will always hold or Φ will
hold some time before Ψ becomes false. The syntax of the LTL-fragment used
in this paper is summarized below:

Φ, Ψ ::=P1|P2|.... (atomic propositions)
|¬Φ |Φ ∧ Ψ |Φxor Ψ |Φ ∨ Ψ |Φ → Ψ |Φ ↔ Ψ (boolean combinators)
|Φ U Ψ |F Φ|G Φ (temporal combinators)

Following [4], tasks and intermediate events are activities that define atomic
propositions. The status of these activities is of interest: they are active or com-
pleted. In this way, every activity A has two atomic propositions as its coun-
terparts: atomic proposition Aa standing for A being active and atomic propo-
sition Ac standing for A being completed. We also have atomic propositions
for gateways to be able to explicitly indicate the flow of control. For Gate-
ways no distinction is made between active or completed. For readability we use
square brackets in the atomic propositions. Sequence flows are used to identify
meaningful fragments (relating tasks, events, and gateways) and form the basis
of the translation. As in [4], the translation is not based on single elements,
but on meaningful fragments of the diagram (connected by sequence flows, see

224 P.M. Kwantes et al.

Table 1). The LTL formulae derived from these fragments are combined using
conjunction. A Sequence (representing a sequence flow) combines two activities
or gateways and is translated into a formula indicating that either the second
activity (gateway) never becomes active or the first one has been completed first.
Our gateways represent exclusive choice and as such can occur as splitting or as
merging the flow of control. The start event and the end event translated in LTL
formulae indicate that the workflow will eventually begin and eventually finish.
All this gives us the set of translation rules shown in Table 1. The translation of
a BPMN-collaboration diagram into an LTL-formula, using the rules in Table 1,
involves the following steps:

1. Select the relevant part of the Collaboration Diagram: i.e. the part that cor-
responds to the local workflow that is verified.

2. Identify the BPMN model fragments included in the selected part of the
Collaboration Diagram.

3. Translate each identified BPMN model fragment into a corresponding LTL-
formula using the translation rules mentioned above.

4. The conjunction of the LTL-formulae resulting from step 3 provides us with
one single LTL-formulae, which completes the translation.

In Sect. 4.2 we give an example of this translation process.

2.2 Modelling Local Behaviour in BPMN

Syntax of BPMN Process Diagrams. The symbols and syntactical rules to
create BPMN Process Diagrams are largely the same as those given in Sect. 2.1
for BPMN Collaboration Diagrams. There are some differences however. The
number of Pools is restricted to one, as a Process Diagram represents the work-
flow of one participant and there are no Message Flows, because these always
connect two Pools. An extension is that there are non-communicating or private
activities present, represented by BPMN Tasks which are not associated with a
Message Flow. Examples of BPMN Process Diagrams are discussed in Sect. 4.

Token Based Semantics of BPMN Process Diagrams. The BPMN spec-
ification [20] contains an informal semantics definition in terms of tokens. Con-
ceptually, this is similar to Petri Nets, where executions are also modeled as
tokens that travel across net elements. A big difference though, is that Petri
Nets contain only one type of active element (i.e., the transition) while BPMN
has a multitude of elements (e.g. Gateways, Events and Tasks), all with their own
behavioural characteristics. Additionally, beyond tokens, the BPMN semantics
is defined in terms of process instances, which have their own lifecycle informa-
tion. Therefore, while the semantics of Petri Nets can be defined with just one
graph transformation rule, it requires a multitude of rules to define the BPMN
semantics formally. In [14], the largest subset of BPMN process elements so far
was formalised as visual, in-place graph transformation rules. For each supported

Towards Compliance Verification Between Global and Local Process Models 225

BPMN element, two rules were defined: one rule which activates the BPMN ele-
ment and a second rule for modeling the completion of the BPMN element. This
leads to rules with names such as “enterTask” “leaveTask”, “enterSubProcess”,
“leaveSubProcess”, etc. With this rule set, every valid execution of a specific
BPMN process can be represented as a sequence of occurrences of these rules.

In Sect. 3, we first demonstrate how a GROOVE implementation of the rule
set can be used as the basis for evaluating LTL expressions on graphs that
represent all possible occurrences of the rules, for an input BPMN model. With
that tool infrastructure in place, evaluating the LTL expression imposed by a
global collaboration diagram is just one of many possible applications.

3 Implementation in GROOVE

GROOVE is a graph transformation tool with unique verification capabilities.
It is particularly strong in evaluating LTL, CTL and even PROLOG expressions
on statespaces. Statespaces are produced by applying a graph transformation

Table 1. Translation rules based on [4]

226 P.M. Kwantes et al.

rule set non-deterministically on a given input graph. In this paper, we rely on
the LTL capabilities only.

In order to leverage the GROOVE tool for the envisioned BPMN verification
support, the rules from Sect. 2.2 have been implemented in GROOVE’s graph
transformation language. Figure 2(a) shows one of the various rules from [14]
while Fig. 2(b) shows the implementation of this rule in GROOVE syntax. The
example rule expresses when and how a token can enter a BPMN AND gateway:
when each of the incoming sequence flows hold at least one token, the rule’s pre-
conditions are satisfied. Upon applying the rule, one token should be removed
from each incoming sequence flow. Additionally, a token should be added to the
AND gateway.

Fig. 2. Implementing the “enterParallel” rule from [14] in GROOVE.

Figures 2(a) and 2(b) demonstrate some key differences in rule specification
style. First of all, Fig. 2(a) is a rewrite rule in concrete syntax while Fig. 2(b) is in
abstract syntax. Second, the conceptual rule from Fig. 2(a) explicitly separates
the left- and right-hand sides. In contrast, the GROOVE rule from Fig. 2(b)
combines the left- and right-hand sides in one rule graph. Blue elements are
parts of the left-hand side which are no part of the implicit right-hand side (i.e.,
they should be removed upon a match) while green elements are parts of the
implicit right-hand side which are no part of the left-hand side (i.e., they should
be created upon a match). Third, Fig. 2(a) shows the use of an embedded sub-
rule. Finally, it also relies on a nested double Negative Application Condition
(NAC) to express the “for each incoming flow” condition, while the rule from
Fig. 2(b) relies on the built-in GROOVE ∀ operator. Further details are outside
the scope of this paper since the focus here is on what these rules enable rather
than on how they are realized.

Figure 3 shows an example process model which we can give as input to
GROOVE and to which we can apply our GROOVE implementations of the
rules from [14]. The example model includes four tasks. Due to the BPMN
AND split and join (resp. the branching and merging gateway with the “+”
sign), tasks T2a and T2b are allowed to be executed in parallel, so they can
be activated and completed in any locally interleaved order. However, first T1
needs to be completed and only when both T2a and T2b are completed can task

Towards Compliance Verification Between Global and Local Process Models 227

T1

T2a

T2b

T3

Fig. 3. Example BPMN 2.0 model for checking LTL formulae.

T3 be activated. The following LTL formulae can be executed on the GROOVE
statespace, to demonstrate that our tool supports the automatic verification of
some related temporal properties:

1. G(′leaveTask(“T2a”)′ → F ′leaveTask(“T3”)′) is an LTL expression to check
whether in the statespace it holds that for every application of the rule “leave-
Task” to BPMN element named “T2a” it holds that some time afterwards
the rule “leaveTask” can be applied to element “T3”. When executing this
expression in GROOVE, we get the guarantee that the property is satisfied
for the input model.

2. G(′leaveTask(“T2a”)′ → F ′leaveTask(“T2b”)′) is almost the same as the
previous expression yet takes T2b as the second task. In this case, GROOVE
detects that the property is not satisfied and it gives as a counter-example a
sequence in terms of parameterised rule applications (e.g., enterTask(“T1′′),
leaveTask(“T1′′), enterParallel(), leaveParallel(), enterTask(“T2a′′),
enterTask(“T2b′′), leaveTask(“T2b′′), leaveTask(“T2a′′), enterParallel(),
leaveParallel(), enterTask(“T3′′), leaveTask(“T3′′)).

In Sect. 4, we apply this set-up for the envisioned verification of global collab-
oration constraints against locally defined process diagrams to a more realistic
example from the financial markets domain.

4 A Case Study: The Settlement Process

In this Section we discuss a case study demonstrating the approach presented
in the previous sections. In Sect. 4.1 we provide a short introduction into the
Settlement process and a BPMN Collaboration Diagram representing this Set-
tlement process. The translation of this Collaboration Diagram into an LTL-
formula is given in Sect. 4.2. The Process Diagrams representing local behaviour
in Sects. 4.3 and 4.4 are respectively in conformance and in violation of the global
behaviour represented by the LTL-formula. These Process Diagrams are subse-
quently used to demonstrate our implementation, which is discussed in Sect. 4.5.

4.1 BPMN Collaboration Diagram of the Settlement Process

The settlement process is concerned with the processing of transactions on sec-
ondary capital markets. While primary capital markets are involved in the cre-
ation or issuing of financial assets, secondary capital markets are markets where

228 P.M. Kwantes et al.

already existing financial assets are traded. The exchange of financial assets in
secondary markets is a process that is composed of a number of clearly defined
stages. The first stage is the “trading stage”, where market participants try to
close a deal. The next stage is the “clearing stage”, in which the accountability
for the exchange of funds and financial assets is determined. This might, for
instance, involve the confirmation between the trading parties of the conditions
of a transaction, or, for efficiency reasons, the netting of several transactions
over a longer period, to reduce the actual exchange of funds and assets. A third
stage is the “settlement stage”, which involves the actual exchange of funds and
assets. After the settlement stage, if all goes well, the financial asset involved is
in the possession of the rightful owner. In most cases the safe keeping of the asset
is left to a specialized financial institution called a Custodian. The settlement
of a transaction involves at least three parties: the two parties (eg. Investment
Firms, which we will use for our example) involved in the transaction and a
Custodian. Execution of the settlement process crosses the boundaries of these
parties and involves the exchange of standardized messages1 between these par-
ties. A detailed description of the settlement process is far beyond the scope and
space of this paper. A simplified and stylized account of the settlement process,
represented by the BPMN Collaboration diagram in Fig. 4, is sufficient to serve
as a useful example. For more information about the settlement process see eg.
[17] or [24].

One of these simplifications include the fact that Fig. 4 shows only two in
stead of the three parties you might expect from the explanation above. The Cus-
todian will expect both Investment Firms participating in a Financial markets
transaction to send a Settlement Instruction (SI). Adding the second Invest-
ment Firm in Fig. 4 would change the process model for the Custodian and
make it more complex, but this would not affect the interaction between each of
the Investment Firms and the Custodian. As we will focus on the behaviour of
the Investment Firm in our tool demonstration, this simplification will not affect
our conclusions.

The settlement process is initiated by one of the Investment Firms involved in
the transaction that has to be settled, by sending a Settlement Instruction to the
custodian (Task “SSI” in Fig. 4). The Custodian will expect the other Investment
Firm also to send an instruction, but as already mentioned, this is not shown in
Fig. 4. After receiving an instruction (Intermediate Message Event “S2” in Fig. 4),
the custodianwill, after a certain delay (TimerEvent “TE2” inFig. 4), try tomatch
it against instructions that have been received from other Investment Firms (not
shown). If there are two matching instructions, the exchange of securities will be
effectuated. This will subsequently be reported to the Investment Firm(s) in ques-
tion with a Settlement Confirmation (Task “SSC” in Fig. 4). Another simplifica-
tion introduced here is that we assume here that there will always be two match-
ing instructions. Before matching occurs, each of the Investment Firms can send a
Cancellation (Task “SC” in Fig. 4) to cancel the Settlement Instruction it sent ear-
lier. In that case the Custodian will cancel the instruction and send a Cancellation
1 Typically ISO15022 [25] or ISO20222 [26] standards.

Towards Compliance Verification Between Global and Local Process Models 229

Confirmation (Task “SCC” in Fig. 4) to the Investment Firm that sent the cancel-
lation. Cancellation is not allowed when matching has already occurred, because
a matched instruction involves a legally binding commitment to the transfer of the
securities.

4.2 Translation of the BPMN Collaboration Diagram into an
LTL-Formula

In this Section we discuss the translation of the BPMN Collaboration diagram
shown in Fig. 4 into an LTL-formula following the steps of the translation process
given in Sect. 2.1. In step 1 we select the part of the Collaboration Diagram rep-
resenting the public behaviour of the Investment Firm for our case study. In step
2 we identify the BPMN-fragments included in that part of the Collaboration
Diagram. The result of step 1 and 2 is shown in Fig. 5.

To proceed with step 3 we follow the notation as discussed in Sect. 2.1. So,
for example, [SSIa] is the LTL proposition to represent the active status of
the activity “SSI” (Send Settlement Instruction). The BPMN fragments are
marked with the labels Φ1 through Φ7. The translation of the fragments into
LTL-formulae is listed in Table 2. The complete LTL formula representing the
public behaviour of the Investment Firm shown in Fig. 5 is the conjunction of
the sub formulae Φ1 through Φ7 given in Table 2. This formula is a formaliza-
tion of the constraint, defined by the Collaboration Diagram in Fig. 4, on the
local behaviour of the Investment Firm. It can be used to verify models of local
behaviour of the Investment Firm. In Sects. 4.3 and 4.4 we propose two models
for the local behaviour of the Investment Firm, that can be verified for compli-
ance against the LTL-formula just derived. The actual verification is discussed
in Sect. 4.5.

Fig. 4. Collaboration diagram of the settlement process

230 P.M. Kwantes et al.

Fig. 5. Identification of BPMN-fragments for translation into LTL

Table 2. Translation of BPMN-fragments (see Fig. 5) in LTL-formulae

BPMN-fragment LTL-formula

Φ1 F [SSIa]

Φ2 ¬(¬[SSIc]U [EGW1])

Φ3 ¬(¬[EGW1]U(F [RSCa]xor F [TE1a]))

Φ4 ¬(¬[TE1c]U [SCa])

Φ5 ¬(¬[SCc]U [RCCa])

Φ6 ¬(¬([RSCa]xor [RCCa])U [J1])

Φ7 F [J1]

4.3 Example of a Correct Specification of Local Behaviour

Figure 6 shows the Process Diagram representing the local behaviour of the
Investment Firm that satisfies the required global (public) behaviour as speci-
fied by the Collaboration Diagram given in Fig. 4. The only difference between
the public behaviour of the Investment Firm represented in the BPMN Collab-
oration diagram in Fig. 4 and its behaviour represented by the BPMN Process
Diagram in Fig. 6 is that the latter includes two additional internal or private
activities: “PC” (prepare cancellation) and “PSC” (process settlement confir-
mation). These additional activities are compliant with the public behaviour of
the participant specified in Fig. 4 and therefore should not be considered as a
violation.

Towards Compliance Verification Between Global and Local Process Models 231

4.4 Example of an Incorrect Specification of Local Behaviour

Figure 7 shows a specification of the process of the Investment Firm that violates
the LTL formula given in Sect. 4.2.

The local behaviour specified in Fig. 7 is a violation of the public behaviour in
Fig. 4 because it allows to send a Cancellation of a Settlement Instruction (Task
“SC”) after receiving a Settlement Confirmation (Intermediate Message Event
“RSC”), i.e. after the custodian has matched both instructions of the Investment
Firms, which is not allowed.

4.5 Test Results

The LTL formula that defines the public behaviour cannot be evaluated directly
by GROOVE. Events such as [SSIc] are defined in terms of parameterised rule
applications, such as leaveTask(“SSI”), and the XOR operator is rewritten since
it is not supported by GROOVE. In Fig. 8, the LTL expression for our running
example, as derived in Sect. 4.2, can be seen as it is implemented in GROOVE.
Evaluating the expression on the violating process flow from Sect. 4.4 yields the
results one is expecting: GROOVE detects that the property is not satisfied
for the statespace of the BPMN model and demonstrates this by means of the
counter-example shown in Fig. 9.

The specific counter-example shown corresponds to the scenario where the
custodian has sent a Settlement Confirmation (Task “SSC”) and terminates
gracefully, after which the Investment Firm receives the Confirmation (Inter-
mediate Message Event “RSC”) but still decides to send a Cancellation (Task

Fig. 6. Process diagram in conformance to collaboration

Fig. 7. Process diagram violating the collaboration diagram

232 P.M. Kwantes et al.

Fig. 8. The LTL formula as evaluated by GROOVE

Fig. 9. The process from Fig. 7 violates the conformance contract

“SC”). This leads to waiting in vain for a cancellation confirmation (at the Inter-
mediate Message Event “RCC” in Fig. 7). Automatic verification results like this
have been computed within a few seconds on a mainstream desktop computer.

5 Related Work

Much of the research on inter-organisational workflows (see [2] for an overview)
is concerned with the construction of such workflows. We distinguish between
top-down and bottom-up approaches. An example of the first is the Public-To-
Private(P2P) approach [1] which involves the construction of a local workflow

Towards Compliance Verification Between Global and Local Process Models 233

as a subclass of a global workflow thereby inheriting the properties of the global
workflow, including correctness. An example of the second is [18] involving the
composition of local workflows represented as workflow modules, a kind of Petri
nets. In [10] service outsourcing is presented as a bottom-up approach involving
the construction and matching of process views. Bottom-up approaches are also
concerned with verification of general properties (like soundness) of the global
workflow. The problem addressed in this paper, i.e. whether the design of a local
workflow is in compliance with the design of a global workflow, is not addressed
in the above mentioned references. The concern for verification of soundness of
the global workflow is a relevant issue we will discuss in Sect. 6

Another line of research involves the development of new modelling languages
like Let’s Dance,Interaction Petri nets and the BPMN Choreography diagrams,
specifically designed to model collaborative behaviour and avoid modelling errors
(eg. deadlocks) (see eg. [6,7]). The focus of our paper is on compliance verification
using BPMN Collaboration diagrams but can easily be adapted to include other
modelling languages.

In [2] a service mining approach is proposed. This includes conformance
checking of event-logs against a choreography model. For a collaborative work-
flow in the design phase event-logs are not always available in which case our
approach seems more appropriate.

Business Process Compliance [11] is another line of related research. There
the aim is to automate compliance-checking of business process models against
regulatory requirements. See e.g. [9] where a formal approach is presented to
verify a specification of local behaviour in BPEL, against specifications in a
dedicated Compliance Request Language representing legal constraints. In [16]
this problem has been extended to include compliance of a global workflow with
rules and regulations.

Another line of related research is involved in checking compliance of a (local)
process model against its refinement or implementation. An example of the first
is [19], which discusses the automated verification of low level UML activity
diagrams against high level UML activity diagrams. The purpose is to estab-
lish behavioural containment such that the low-level diagram is a valid refine-
ment of the high-level diagram. An example of the second problem is given
in [4] which describes an approach involving derivation of the specification of
a Web-application in WebML from a (local) BPMN Process Diagram and the
subsequent verification of web execution logs against derived LTL formulae. The
problem addressed by these approaches is different from the problem addressed
in this paper, although we build on some of the techniques used by them.

In [3,15] the use of graph transformation to specify operational semantics
of UML Activity Diagrams is described. In [14] a formal semantics of BPMN
process diagrams is described using graph transformations. We extended this to
include BPMN Collaboration diagrams and implemented it in GROOVE.

234 P.M. Kwantes et al.

6 Discussion and Outlook

Organisations in the financial markets domain typically have to operate in a
global operational context which often places complex and unyielding restric-
tions on the design of their business processes. Verifying the process design of
an organisation against these restrictions is a costly, error prone and painful
manual process. A real-world example that might illustrate this problem is the
Target2Securities project [8]. This project involves a major effort (launched in
2006, spanning more than a decade and costing hundreds of millions of Euros)
of the Eurosystem, the central banking system for the euro, to migrate the
settlement process from a system of many collaborative workflows organized
along national borders to one collaborative workflow on a European scale. The
European Central Bank produces large quantities of BPMN models of the new
collaborative workflow. The financial institutions involved in this new collabora-
tive workflow are relatively autonomous in redesigning their own local workflows
but they have to be compliant with the new global workflow to stay in business.
As far as we know there is currently no approach available that directly addresses
this problem. The approach described in this paper builds on and extends exist-
ing methods and technologies to address this problem. It is based on standard
business process modelling notation, is quite generic and its application is not
restricted to the financial markets domain. The evaluation of the test cases in
Sect. 4.5 demonstrates that automated verification of local versus global process
models, as proposed in this paper, in principle, is technically feasible.

There are however still a number of issues, which we will discuss below,
that need to be addressed in our future work. The implementation described
in Sects. 3 and 4 has not yet been tested beyond the complexity of the run-
ning example in this paper. However, since the verifications require only a few
seconds of GROOVE computation time, they form a promising basis for fur-
ther work. The translation of the BPMN Collaboration diagram into an LTL-
formula described in Sect. 4.2 has been done manually. However, the procedure
as described in Sects. 2.1 and 4.2 can be automated [4] and this is included in
our agenda for future work. Another issue is, that we assign a formal seman-
tics to BPMN Process models in two different ways: the first by interpreting
BPMN as LTL-formula, as described in [4] and the second by assigning a token-
based semantics according to [14]. Finding formal proof that these two different
definitions of semantics are consistent is included in our future research.

Another issue is that we did not discuss checking the soundness of the global
workflow in this paper, but this can be included easily. The reader might in fact
have noticed that the global workflow presented in Fig. 4 is not sound. An unde-
sirable situation for example occurs when the timer events of the Custodian and
the Investment Firm occur concurrently. The Investment Firm then incorrectly
decides to send a Cancellation, but ends up in a deadlock. In our evaluations
this problem does show up as the process from Fig. 4 turns out to violate the
derived LTL expression. The reason that the constraint is not satisfied resides in
the final clause of the LTL expression, which requires that the derived processes
reach the final XOR node “J1”. That is effectively not the case when both timer

Towards Compliance Verification Between Global and Local Process Models 235

events are triggered. This means that we will have to extend our approach to
include verification of the global workflow for soundness, and resolve any viola-
tions, before checking local workflows for compliance. Our approach can easily
be extended to include soundness checking of the global workflow. Finally, an
issue that needs to be addressed in our future work is that the LTL-formula
derived following [4] seems only capable of capturing liveness requirements but
not yet safety requirements.

References

1. van der Aalst, W.M.P., Weske, M.: The P2P approach to interorganizational work-
flows. In: Dittrich, K.R., Geppert, A., Norrie, M. (eds.) CAiSE 2001. LNCS, vol.
2068, pp. 140–156. Springer, Heidelberg (2001). doi:10.1007/3-540-45341-5 10

2. van der Aalst, W.M.P., Weske, M.: Reflections on a decade of interorganizational
workflow research. In: Bubenko, J., Krogstie, J., Pastor, O., Pernici, B., Rolland,
C., Sølvberg, A. (eds.) Seminal Contributions to Information Systems Engineer-
ing: 25 Years of CAiSE, pp. 307–313. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36926-1 24

3. Bandener, N., Soltenborn, C., Engels, G.: Extending DMM behavior specifications
for visual execution and debugging. In: Malloy, B., Staab, S., van den Brand, M.
(eds.) SLE 2010. LNCS, vol. 6563, pp. 357–376. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-19440-5 24

4. Brambilla, M., Deutsch, A., Sui, L., Vianu, V.: The role of visual tools in a web
application design and verification framework: a visual notation for LTL formulae.
In: Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, pp. 557–568.
Springer, Heidelberg (2005). doi:10.1007/11531371 70

5. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2001). http://books.google.de/books?id=Nmc4wEaLXFEC

6. Decker, G., Barros, A.: Interaction modeling using BPMN. In: ter Hofstede,
A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS, vol. 4928,
pp. 208–219. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78238-4 22

7. Decker, G., Weske, M.: Local enforceability in interaction petri nets. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 305–319.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-75183-0 22

8. ECB: Target2securities. https://www.ecb.europa.eu/paym/t2s, Mar 2015
9. Elgammal, A., Turetken, O., van den Heuvel, W.J., Papazoglou, M.: Formaliz-

ing and appling compliance patterns for business process compliance. Softw. Syst.
Model., 1–28 (2014). http://dx.doi.org/10.1007/s10270-014-0395-3

10. Eshuis, R., Norta, A., Kopp, O., Pitkanen, E.: Service outsourcing with process
views. IEEE Trans. Serv. Comput. 8(1), 136–154 (2015).
http://doi.ieeecomputersociety.org/10.1109/TSC.2013.51

11. Fellmann, M., Zasada, A.: State-of-the-art of business process compliance
approaches. In: 22st European Conference on Information Systems, ECIS 2014, Tel
Aviv, Israel, 9–11 June 2014 (2014). http://aisel.aisnet.org/ecis2014/proceedings/
track06/8

12. Gabbay, D.M.: The declarative past and imperative future: executable temporal
logic for interactive systems. In: Temporal Logic in Specification, Altrincham, UK,
8–10 April 1987, Proceedings, pp. 409–448 (1987)

http://dx.doi.org/10.1007/3-540-45341-5_10
http://dx.doi.org/10.1007/978-3-642-36926-1_24
http://dx.doi.org/10.1007/978-3-642-36926-1_24
http://dx.doi.org/10.1007/978-3-642-19440-5_24
http://dx.doi.org/10.1007/978-3-642-19440-5_24
http://dx.doi.org/10.1007/11531371_70
http://books.google.de/books?id=Nmc4wEaLXFEC
http://dx.doi.org/10.1007/978-3-540-78238-4_22
http://dx.doi.org/10.1007/978-3-540-75183-0_22
https://www.ecb.europa.eu/paym/t2s
http://dx.doi.org/10.1007/s10270-014-0395-3
http://doi.ieeecomputersociety.org/10.1109/TSC.2013.51
http://aisel.aisnet.org/ecis2014/proceedings/track06/8
http://aisel.aisnet.org/ecis2014/proceedings/track06/8

236 P.M. Kwantes et al.

13. Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova,
M.: Modelling and analysis using GROOVE. STTT 14(1), 15–40 (2012).
http://dx.doi.org/10.1007/s10009-011-0186-x

14. Gorp, P.V., Dijkman, R.M.: A visual token-based formalization of BPMN 2.0
based on in-place transformations. Inf. Softw. Technol. 55(2), 365–394 (2013).
http://dx.doi.org/10.1016/j.infsof.2012.08.014

15. Hausmann, J.H.: Dynamic META modeling: a semantics description technique for
visual modeling languages. Ph.D. thesis, University of Paderborn (2005). http://
ubdata.uni-paderborn.de/ediss/17/2005/hausmann/disserta.pdf

16. Knuplesch, D., Reichert, M., Fdhila, W., Rinderle-Ma, S.: On enabling compliance
of cross-organizational business processes. In: Daniel, F., Wang, J., Weber, B. (eds.)
BPM 2013. LNCS, vol. 8094, pp. 146–154. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40176-3 12

17. Kwantes, P.M.: Design of clearing and settlement operations: a case study in busi-
ness process modelling and evaluation with petri nets. In: 7th Workshop and Tuto-
rial on Practical Use of Coloured Petri Nets and the CPN Tools (CPN 2006) (2006)

18. Martens, A.: On compatibility of web services. Petri Net Newsletter 65, 12–20
(2003)

19. Muram, F.U., Tran, H., Zdun, U.: Automated mapping of UML activity diagrams
to formal specifications for supporting containment checking. In: Proceedings 11th
International Workshop on Formal Engineering Approaches to Software Compo-
nents and Architectures, FESCA 2014, Grenoble, France, 12th April 2014, pp.
93–107 (2014), http://dx.doi.org/10.4204/EPTCS.147.7

20. OMG: Business process model and notation (BPMN) version 2.0. Technical report,
Jan 2011. http://taval.de/publications/BPMN20

21. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, Providence, Rhode Island, USA, 31 October - 1
November 1977, pp. 46–57 (1977). http://dx.doi.org/10.1109/SFCS.1977.32

22. Pnueli, A.: The temporal semantics of concurrent programs. Theor. Comput. Sci.
13, 45–60 (1981). doi:10.1016/0304-3975(81)90110-9

23. Rensink, A.: The GROOVE simulator: a tool for state space generation. In: Pfaltz,
J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–485.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-25959-6 40

24. SMPG: Securities markets practices group/market practices and documents/set-
tlement and reconciliation. http://www.smpg.info, Mar 2015

25. S.W.I.F.T.: ISO15022 financial industry message scheme. http://www.iso15022.
org, Mar 2015

26. S.W.I.F.T.: ISO20022 universal financial industry message scheme. http://www.
iso20022.org, Mar 2015

http://dx.doi.org/10.1007/s10009-011-0186-x
http://dx.doi.org/10.1016/j.infsof.2012.08.014
http://ubdata.uni-paderborn.de/ediss/17/2005/hausmann/disserta.pdf
http://ubdata.uni-paderborn.de/ediss/17/2005/hausmann/disserta.pdf
http://dx.doi.org/10.1007/978-3-642-40176-3_12
http://dx.doi.org/10.1007/978-3-642-40176-3_12
http://dx.doi.org/10.4204/EPTCS.147.7
http://taval.de/publications/BPMN20
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1016/0304-3975(81)90110-9
http://dx.doi.org/10.1007/978-3-540-25959-6_40
http://www.smpg.info
http://www.iso15022.org
http://www.iso15022.org
http://www.iso20022.org
http://www.iso20022.org

Inductive Invariant Checking with Partial
Negative Application Conditions

Johannes Dyck(B) and Holger Giese

Hasso Plattner Institute at the University of Potsdam, Potsdam, Germany
{Johannes.Dyck,Holger.Giese}@hpi.de

Abstract. Graph transformation systems are a powerful formal model
to capture model transformations or systems with infinite state space,
among others. However, this expressive power comes at the cost of
rather limited automated analysis capabilities. The general case of
unbounded many initial graphs or infinite state spaces is only supported
by approaches with rather limited scalability or expressiveness. In this
paper we improve an existing approach for the automated verification
of inductive invariants for graph transformation systems. By employ-
ing partial negative application conditions to represent and check many
alternative conditions in a more compact manner, we can check examples
with rules and constraints of substantially higher complexity. We also
substantially extend the expressive power by supporting more complex
negative application conditions and provide higher accuracy by employ-
ing advanced implication checks. The improvements are evaluated and
compared with another applicable tool by considering three case studies.

1 Introduction

Graph transformation systems are a powerful formal model to capture model
transformations, systems with reconfiguration, or systems with infinite state
space, among others. However, the expressive power of graph transformation
systems comes at the cost of rather limited automated analysis capabilities.

While for graph transformation systems with finite state space of moder-
ate size certain model checkers can be used (e.g., [1,2]), in the general case of
unbounded many initial graphs or an infinite state space only support by tech-
niques with rather limited scalability or expressiveness exists.

There is a number of automated approaches that can handle infinite state
spaces by means of abstraction [3–6], but they are considerably limited in expres-
sive power as they only support limited forms of negative application conditions
at most. Tools only targeting invariants [7,8] also only support limited forms
of negative application conditions at most; in some cases additional limitations
concerning the graphs of the state space apply (cf. [7]). On the other hand the

This work was partially developed in the course of the project Correct Model Trans-
formations II (GI 765/1–2), which is funded by the Deutsche Forschungsgemein-
schaft.

c© Springer International Publishing Switzerland 2015
F. Parisi-Presicce and B. Westfechtel (Eds.): ICGT 2015, LNCS 9151, pp. 237–253, 2015.
DOI: 10.1007/978-3-319-21145-9 15

238 J. Dyck and H. Giese

SeekSat/ProCon tool [9,10] is able to prove correctness of graph programs with
respect to pre- and postconditions specified as nested graph constraints without
such limitations, but requires potentially expensive computations.

In this paper we present improvements of our existing approach introduced
in [8] for the automated verification of inductive invariants for graph transfor-
mation systems. Inductive invariants are properties whose validity before the
application of a graph rule implies their validity thereafter. Our general app-
roach involves the construction of a violation of the invariant after application
of a graph rule, represented in a symbolic way (target pattern), followed by
calculation of the symbolic state before rule application (source pattern). If a
violation can then be found in all such source patterns, the rule does not violate
the inductive invariant; otherwise, it does and the construction yields a witness.
Since inductive invariants are checked with respect to the capability of individ-
ual rules to violate or preserve them, this technique avoids the computationally
expensive computation of state spaces and can even handle infinite systems.

By employing partial negative application conditions to represent and check
many alternative conditions in a more compact manner, our approach is now able
to check examples with rules and constraints of substantially higher complexity.
Our improvements also provide higher accuracy by employing advanced implica-
tion checks and extend expressive power by supporting more complex negative
application conditions. While not as expressive as the general concept of nested
graph conditions [10], there is a significant number of examples [8,11,12] for
which the supported level of expressive power is sufficient. Of those, we employ
three case studies concerned with car platooning and model transformations to
evaluate our improvements and to compare them with the SeekSat/ProCon tool,
demonstrating that our approach shows better scalability for certain cases.

The paper is organized as follows: The formal foundations are introduced
in Sect. 2. Our restrictions and important constructions in our algorithms are
explained in Sect. 3. Section 4 presents the employed inductive invariant check-
ing scheme with its formal justification. Section 5 presents our evaluation, with
Sect. 6 then discussing related work. Finally, Sect. 7 provides a summary and
outlook on possible future work. Proofs and additional prerequisites concerning
the formal model can be found in the extended version [13].

2 Foundations

This section shortly describes foundations of graph transformation systems we
use in our verification approach. For additional definitions, we refer to [13].

The formalism used herein (cf. [14]) considers a graph G = (V,E, s, t) to
consist of sets of nodes, edges and source and target functions s, t : E → V .
A graph morphism f : G1 → G2 consists of two functions mapping nodes and
edges, respectively, that preserve source and target functions. In this paper we
put special emphasis on injective morphisms (or monomorphisms), denoted f :
G1 ↪→ G2, and consider typed graphs, i.e. graphs typed over a type graph TG by
a typing morphism type : G → TG and typed graph morphisms that preserve
the typing morphism. We also adopt the concept of partial monomorphisms.

Inductive Invariant Checking with Partial Negative Application Condition 239

Definition 1 (partial monomorphism ([9], adjusted)). A partial mono-
morphism is a 2-tuple p = 〈a, b〉 of monomorphisms a, b with
dom(a) = dom(b), dom(p) = codom(a), and codom(p) = codom(b). The inter-
face of p refers to the common domain of a and b, i.e., iface(p) = dom(a) =
dom(b). A partial monomorphism p = 〈a, b〉 is said to be a total monomorphism
b, if a is an isomorphism, i.e. a bijective morphism.

Thus, the partial monomorphism describes an inclu-
sion of a subgraph A′ of A in B. With partial monomorphisms
we can define partial application conditions, which, similar to
nested application conditions [10], describe conditions on mor-
phisms. Graph constraints, on the other hand, describe conditions
on graphs.

Definition 2 (partial application condition ([15], extended to partial
morphisms)). A partial application condition is inductively defined as follows:

1. For every graph P , true is a partial application condition over P .
2. For every partial monomorphism with a = 〈p, c〉 and monomor-

phisms p : P ′ ↪→ P and c : P ′ ↪→ C and every partial application condition
ac over C, ∃(a, ac) is a partial application condition over P .

3. For partial application conditions ac, aci over P with i ∈ I (for all index sets
I), ¬ac and

∧

i∈I aci are partial application conditions over P .

Satisfiability of partial application conditions is inductively defined as follows:

1. Every morphism satisfies true.
2. A morphism g : P → G satisfies ∃(a, ac) over P with with

a = 〈p, c〉 if there exists an injective q : C ↪→ G such that q ◦ c = g ◦ p and q
satisfies ac.

3. A morphism g : P → G satisfies ¬ac over P if g does not satisfy ac and g
satisfies

∧

i∈I aci over P if g satisfies each aci (i ∈ I).

We write g |= ac to denote that the morphism g satisfies ac.
Two application conditions ac and ac′ are equivalent, denoted by ac ≡ ac′,

if for all morphisms g : P → G, g |= ac if and only if g |= ac′.
If all morphisms involved in a partial application condition are total mor-

phisms we say that it is a total application condition.
∃p abbreviates ∃(p, true). ∀(p, ac) abbreviates ¬∃(p,¬ac).

Definition 3 (graph constraint [10]). A graph constraint is an application
condition over the empty graph ∅. A graph G then satisfies such a condition if
the initial morphism iG : ∅ ↪→ G satisfies the condition.

240 J. Dyck and H. Giese

Fig. 1. Partial and total conditions and graph constraint

Example 4. Figure 1 shows an example from a software refactoring context (cf.
[12]) with node types P , I, C, O standing for Package, Interface, Class, and
Operation, respectively. Although equivalent, the partial condition ac in Fig. 1(a)
is much more compact—and also less expensive in computation—when compared
to the total condition ac′ in Fig. 1(b). Both conditions describe the absence of an
implementing class and contained operation for the interface. Further, Fig. 1(c)
shows a graph constraint F , which forbids the existence of an interface without
an implementing class containing an operation.

Application conditions can also be used in graph rules, which are used to trans-
form graphs. Finally, a graph transformation system consists of a number of rules
and, in our case of typed graph transformation systems, of a type graph.

Definition 5 (rules and transformations [15]). A plain rule p = (L ←↩ K ↪→
R) consists of two injective morphisms K ↪→ L and K ↪→ R. L and R are called
left- and right-hand side of p, respectively. A rule b = 〈p, acL, acR〉 consists of a
plain rule p and a left (right) application condition acL (acR) over L (R).

L

(1) (2)

acL �

m |= acL

��

K
� r ���l��

��

R� acR

m′ |= acR

��
G D

�

r′
���

l′
�� H

A direct transformation consists of two pushouts (1) and (2) such that m |= acL

and m′ |= acR. We write G ⇒b,m,m′ H and say that m : L → G is the match of b in
G and m′ : R → H is the comatch of b in H. We also write G ⇒b,m H, G ⇒m H
or G ⇒ H to express that there exist m′, m or b such that G ⇒b,m,m′ H.

We also introduce the concept of a reduced rule, which basically is a rule with-
out certain elements irrelevant for a specific application via a match once the
applicability for that match is ensured. By using reduced rules, we can reduce
the effort necessary for verification, as will be shown later.

Definition 6 (reduced rule). Given a plain rule b = 〈L ←↩ K ↪→ R〉, we
define a reduced rule of b as a rule b∗ = 〈L∗ ←↩ K∗ ↪→ R∗〉 with injective
morphisms r+ : R∗ ↪→ R, l+ : L∗ ↪→ L, and k+ : K∗ ↪→ K such that for

Inductive Invariant Checking with Partial Negative Application Condition 241

all graphs G,H and injective morphisms m,m′ it holds that G ⇒b,m,m′ H ⇔
G ⇒b∗,m◦l+,m′◦r+ H.

Example 7. The figure above shows a plain rule describing the replacement of a
package containing an existing interface and class. In general, a corresponding
reduced rule (also depicted) can be constructed by choosing K∗ as any subgraph
of K whose images under l and r include all nodes attached to edges to be deleted
or created and then constructing L∗ and R∗ as the pushout complements of
〈k+, l〉 and 〈k+, r〉, respectively.

3 Restrictions, Constructions, and Implication

With the foundations established, we will now introduce certain restrictions that
apply to our specifications and the main constructions used by our algorithms.

The most important adjustments are concerned with the notion of rules and
application conditions. Since most application conditions that will be encoun-
tered in this paper have the same structure, we define a special kind of negative
application conditions without additional nesting. In comparison to our previous
work [8], this is a significant difference in expressive power, as [8] allowed only
negative application conditions with each having a node and an edge, at most.

Definition 8 (composed negative application condition). A composed
negative application condition is an application condition of the form
ac =

∧

i∈I ¬∃ai for partial monomorphisms ai of a common domain. An indi-
vidual condition ¬∃ai is called negative application condition. A (composed)
total negative application condition is a (composed) negative application condi-
tion including only total graph morphisms.

Our properties for verification are described by so-called forbidden patterns:

Definition 9 (pattern). A pattern is a graph constraint of the form
F = ∃(∅ ↪→ P, acP), with P being a graph and acP a composed total negative
application condition over P . A composed forbidden pattern is a graph con-
straint of the form F =

∧

i∈I ¬Fi for some index set I and patterns Fi. Patterns
Fi occurring in a composed forbidden pattern are also called forbidden patterns.

We also allow graph transformation systems to be equipped with a special vari-
ant of composed forbidden pattern called composed guaranteed pattern. Such a
pattern is a constraint whose validity is guaranteed by some external means or
additional knowledge about the system under verification.

242 J. Dyck and H. Giese

While our specification language concerning patterns and application condi-
tions is more limited than the general concept of nested application conditions [10],
the level of expressive power we support is sufficient to verify a number of case stud-
ies [8,11,12]. On the other hand, the following additional limitations in our app-
roach (except for the second) do not result in a loss of expressive power [10,14,15]:

Morphisms in application conditions (Definition 2) must be injective.
Left application conditions (Definition 5) in rules are required to be com-

posed total negative application conditions.
Right application conditions (Definition 5) in rules are required to be true.
Rule applicability (Definition 5) requires injective matches and comatches.

To conclude the definitions used in our verification approach, we introduce
our notion of inductive invariants for graph transformation systems. Informally,
all rule applications should preserve the validity of a composed forbidden pattern
F . Since the system is assumed to prevent violations of a composed guaranteed
pattern G by other means (e.g., a postprocessing step) or additional knowledge,
rule applications leading to such a violation do not need to be considered.

Definition 10 (inductive invariant). Given a composed forbbidden pattern
F and a composed guaranteed pattern G, a typed graph transformation system
GTS = (TG,B) is preserving F under G if, for each rule b in B, it holds that

∀G,H((G ⇒b H) =⇒ ((G |= F ∧ G |= G) ⇒ (H |= F ∨ H �|= G))).

A composed forbidden pattern F preserved by GTS under G is an inductive
invariant for GTS under G.

3.1 Constructions

An important part of our algorithm is the transformation of application condi-
tions over morphisms and rules. [15] presents a Shift-construction for a trans-
formation of application conditions over morphisms into equivalent application
conditions. For our restricted formal model, we use a marginally adjusted form
of the Shift-construction. Its validity is proven in Appendix B in [13].

Construction 11 (Shift-construction, adjusted from [15]). For each total
application condition ac over a graph P and for each morphism b : P → P ′,
Shift(b, ac) transforms ac via b into a total application condition over P ′ such
that, for each morphism n : P ′ ↪→ H, it holds that n◦ b |= ac ⇔ n |= Shift(b, ac).

The Shift-construction is inductively defined as follows:

P

(1)

�ac

b ��

a

��

P ′
�

a′

��
C

�

b′
�� C ′

Shift(b, true) = true.
Shift(b,∃(a, ac)) =

∨

(a′,b′)∈F ∃(a′,Shift(b′, ac)) if F =
{(a′, b′) | (a′, b′) are jointly surjective, a′, b′ are injective,
and (1) commutes (b′ ◦ a = a′ ◦ b)} �= ∅ and false,
otherwise.
Shift(b,¬ac) = ¬Shift(b, ac).
Shift(b,

∧

i∈I aci) =
∧

i∈I Shift(b, aci).

Inductive Invariant Checking with Partial Negative Application Condition 243

While this construction can be employed to equivalently transform total appli-
cation conditions, the calculation of the respective morphism pairs is compu-
tationally expensive. To avoid executing that calculation, we construct partial
application conditions instead and establish their equivalence to the result of the
Shift-construction in the following construction and lemma. As before, proof of
validity and a more detailed version can be found in Appendix B in [13].

Construction 12 (PShift-construction). For each total application condi-
tion ac over P ′ and for each morphism p′ : P ′ ↪→ P , PShift(p′, ac) transforms
ac via p′ into a partial application condition over P such that, for each morphism
n : P ↪→ H, it holds that n ◦ p′ |= ac ⇔ n |= PShift(p′, ac).

The PShift-construction is defined as follows:

Lemma 13. For each application condition ac over P and each monomorphism
p′ : P ↪→ P ′, we have Shift(p′, ac) ≡ PShift(p′, ac).

We also transform application conditions over rules using the L-construction
found in [15]. For the formal basis of this construction, we refer to [13].

Construction 14 (L-construction [10,15]). For each rule b = 〈L ←↩ K ↪→ R〉
and each total application condition ac over R, L(b, ac) transforms ac via b into
a total application condition over L such that, for each direct transformation
G ⇒b,m,m′ H, we have m |= L(b, ac) ⇔ m′ |= ac.

The L-construction is inductively defined:

L

(2)a′

��

K

(1)

� r ���l��

��

R

a

��
L′L(b′,ac)� K ′ �

r′
���

l′
�� R′ �ac

L(b, true) = true.
L(b,∃(a, ac)) = ∃(a′,L(b′, ac)) (with
b′ = 〈L′ ←↩ K ′ ↪→ R′〉 constructed
via the pushouts (1) and (2)) if 〈r, a〉
has a pushout complement (1) and
false, otherwise.
L(b,¬ac) = ¬L(b, ac).
L(b,

∧

i∈I aci) =
∧

i∈I L(b, aci).

3.2 Implication

One of the main requirements for our algorithm is the comparison of graph
constraints or, more precisely, the notion of implication of patterns.

Definition 15 (implication of patterns). Let C = ∃(∅ ↪→ P, ac) and C ′ =
∃(∅ ↪→ P ′, ac′) with composed partial negative application conditions ac and ac′

be two patterns. C ′ implies C (C ′ |= C), if the following condition holds:

∀G(G |= C ′ ⇒ G |= C).

244 J. Dyck and H. Giese

Since a pattern may be fulfilled by an infinite number of graphs, we cannot
(in general) check the above condition for all such graphs. Instead, we establish
a condition sufficient to imply implication when comparing patterns. Depending
on whether the patterns’ application conditions ac and ac′ are partial, total, or
nonexistent (i.e. true), the procedure and its computational effort varies. The
following theorem describes the most interesting case with a composed partial
(total) negative application in the implying (implied) pattern, respectively.

Theorem 16 (implication of patterns). Let C = ∃(∅ ↪→ P, ac) and C ′ =
∃(∅ ↪→ P ′, ac′) be patterns with a composed total negative application condition
ac =

∧

i∈I ¬∃(xi : P ↪→ Xi) and a composed partial negative application condi-
tion . Then C ′ |= C, if the following conditions
are fulfilled:

P �
m

���

xi

��

P ′�
m−1

��
�

〈n′
j ,nj〉=x′

j
�

Nj
�

m′

��
�

n′
j

��
�

nj����
��

��

Xi X ′
j

�
y

��

1. There exists a monomorphism m : P ↪→ P ′

such that:
2. For each i ∈ I, there exists a j ∈ J such that

n′
j(iface(x

′
j)) ⊆ m(P) and there exists a

monomorphism y : X ′
j ↪→ Xi such that

y ◦ nj = xi ◦ m′, with m′ = m−1 ◦ n′
j.

For patterns without negative application conditions, the theorem is also
applicable as the second condition is trivially true. For cases where the implying
pattern’s partial negative application conditions do not satisfy the interface con-
dition, a partial expansion of the implied pattern’s condition is required, which
requires additional computational effort.

In general, all cases can be transformed into a default case by expanding all
composed partial negative application conditions into composed total negative
application conditions with the Shift-construction. The comparison in that case
is explained in Appendix B in [13]. The desired effect of the above theorem is to
avoid this computationally expensive default case as often as possible.

This theorem only considers one implying pattern at a time. We also use an
advanced implication check considering more complex relations between forbid-
den patterns and negative application conditions, such as implication of a single
pattern by multiple patterns. The theory and implementation of such a check
for the more general concept of nested conditions have already been introduced
by Pennemann et al. in [9]. Hence, we will not discuss our implementation here.

Besides graph constraints we will also encounter application conditions over
a rule side, which can be interpreted as graph constraints as follows:

Lemma 17 (reduction to pattern). Let ac = ∃(s : L ↪→ S, acS) be an appli-
cation condition over L with acS being a composed partial negative application
condition. For the reduction to a pattern ac∅ = ∃(iS : ∅ ↪→ S, acS) of ac we
have the following property: For each graph G with a monomorphism m : L ↪→ G
such that m |= ac, we have G |= ac∅.

Inductive Invariant Checking with Partial Negative Application Condition 245

4 Inductive Invariant Checking

Our inductive invariant checking algorithm consists of four basic steps:
(1) From a composed forbidden pattern and a rule set, we create all pairs of

individual forbidden patterns and rules to be analyzed on a per-pair basis. (2)
We construct target patterns for each pair by applying the Shift- and PShift-
constructions, such that each target pattern represents a satisfaction of a forbid-
den pattern after rule application. (3) From each target pattern, we construct
a source pattern by applying the L-construction such that a source pattern is
a representation for graphs before a rule application leads to a forbidden pat-
tern. (4) We analyze source and target pattern pairs (counterexamples) for other
forbidden or guaranteed patterns, which might invalidate the counterexample.

The first step of splitting a composed forbidden patterns into forbidden pat-
terns for individual analysis is shown to be correct in the following lemma. It
also explains the analysis of source and target patterns in step 4.

Lemma 18. Given a composed forbidden pattern F =
∧

i∈I ¬Fi, a composed
guaranteed pattern G =

∧

j∈J ¬Gj and a typed graph transformation system
GTS = (TG,B), GTS is preserving F under G if, for each rule b in B it
holds that:

∀G,H((G ⇒b H) =⇒ (∃n(H |= Fn) ⇒ ∃k(H |= Gk ∨ G |= Gk ∨ G |= Fk)))

4.1 Step 2: Construction of Target Patterns

The second step in our inductive invariant checking algorithm is the creation of
target patterns for each pair of a graph rule and a forbidden pattern such that
the forbidden pattern occurs in the target pattern. Target patterns in general
represent a set of graphs with a match for the right side of a specific graph rule.

Definition 19 (target pattern). A target pattern over the right side R of a
rule b is an application condition of the form tar = false or tar = ∃(t : R ↪→
T, acT) with a composed partial negative application condition acT over T .

The set of graphs fulfilling such a target pattern is the set of graphs H with a
comatch m′ : R ↪→ H such that m′ |= tar. For a rule b in B and a forbidden
pattern F , we can create target patterns by transforming F over the morphism
iR : ∅ ↪→ R into an application condition over the right rule side R:

Lemma 20 (creation of target patterns). Let b = 〈(L ←↩ K ↪→ R), acL,
true〉 be a rule and F = ∃(iP : ∅ ↪→ P, acP) a forbidden pattern with
acP and acL being composed total negative application conditions. Let b∗ =
〈(L∗ ←↩ K∗ ↪→ R∗)〉 be a reduced rule of the plain rule in b with respective injec-
tive morphisms r+ : R∗ ↪→ R, l+ : L∗ ↪→ L, and k+ : K∗ ↪→ K. Then we
have:

1. Shift(r+,Shift(iR∗ ,∃iP)) =
∨

j∈J ∃tj.

246 J. Dyck and H. Giese

2.
∨

j∈J tarj is a set of target patterns for tarj = ∃(tj ,PShift(t+j ,Shift(t′∗k , acp))).
3. For each graph H and each monomorphism h : R ↪→ H, it holds that ∃j(j ∈

J ∧ h |= tarj) ⇔ H |= F .

∅

=

�

iR∗
��

�

iP

��

R∗
�

t∗
k

��

�

r+
�� R�

tj

��

�

h
�� H

P
�acP

�

t′∗
k

�� T ∗
k�acT∗

k

� t+j �� Tj

In other words, we shift the exterior application condition (∃iP in step (1))
of the forbidden pattern to the right rule side, but its interior composed negative
application condition (acP in step (2)) to a partial application condition using
the reduced rule. Thus, we avoid creating a large number of morphism pairs
when shifting the interior application condition to the complete right rule side.

In conclusion, for each morphism h : R ↪→ H the satisfaction of the forbidden
pattern F by a graph H is equivalent to the existence of a target pattern tarj

satisfied by h. In other words, for each result of a possible rule application
leading to a graph satisfying the forbidden pattern we have constructed a target
pattern. Since target patterns (as shown above) are disjunctively combined, we
can analyze each target pattern individually and compute its source pattern. By
construction, we always have a finite number of target patterns.

4.2 Step 3: Construction of Source Patterns

For each target pattern constructed as described above, we try to generate a
source pattern to represent the state before the application of the rule lead to
the forbidden pattern. In general, we define source patterns analogously to target
patterns as application conditions over the left side of a specific graph rule.

Definition 21 (source pattern). A source pattern over the left side L of a rule
b is an application condition of the form src = false or src = ∃(s : L ↪→ S, acS)with
a composed partial negative application condition acS over S.

To construct source patterns to our target patterns, each target pattern is
transformed into an application condition over the left rule side using the L-
construction. Due to the nature of the L-construction, we create at most one
source pattern per target pattern transformation.

Lemma 22 (creation of source patterns). Let tar = ∃(t : R ↪→ T, acT) be a
target pattern specific to a rule b = 〈(L ←↩ K ↪→ R), acL, true〉 with a reduced rule
b∗ = 〈(L∗ ←↩ K∗ ↪→ R∗)〉 of its plain rule and constructed as described above.
Further, let acT be a composed partial negative application condition acT =
PShift(t+, ac′

T) with ac′
T being a composed total negative application condition

over T ∗. Then we have:

1. L(b,∃t) is a source pattern and L(b,∃t) = false or L(b,∃t) = ∃s.

Inductive Invariant Checking with Partial Negative Application Condition 247

2. For the latter case, src = ∃(s,PShift(s+,L(b′, ac′
T))) is a source pattern, with

b′ = 〈S∗ ←↩ K ′ ↪→ T ∗〉 being the rule constructed via the pushout complement
(1) and the pushout (2) and s+ : S∗ ↪→ S such that S ⇒b′,s+,t+ T .

3. For each direct graph transformation G ⇒b,m,m′ H: m |= src ⇔ m′ |= tar.

Such a source pattern represents graphs before the application of the rule in
question which leads to graphs satisfying the forbidden pattern. To also take left
application conditions into account, they need to be transformed via Shift(s, acL)
into conditions over the source pattern. For details, we refer to [13].

In summary, the source and target patterns src and tar represent a correct
rule application of a rule b leading to the existence of the forbidden pattern F .
To represent all possible rule applications, i.e. all graphs G and H with G ⇒b H,
we need to consider all target patterns and their corresponding source patterns.

4.3 Step 4: Analysis of Source Patterns and Counterexamples

Each target pattern and corresponding source pattern specific to a rule and a
forbidden pattern specify a counterexample for our inductive invariant, i.e. a
situation where a rule application leads to the occurrence of a forbidden pattern
Fi. To investigate whether this is indeed a violation of the inductive invariant F
under G, the following three conditions are considered:

1. The target pattern also violates the composed guaranteed pattern.
2. The source pattern violates the composed guaranteed pattern.
3. The source pattern violates the composed forbidden pattern.

Theorem 23 (inductive invariant checking). Let GTS be a graph transfor-
mation system and F =

∧

i∈I ¬Fi and G =
∧

j∈J ¬Gj be a composed forbidden
and composed guaranteed pattern. Let, for each rule b ∈ B and for i ∈ I, srcb,i

(tarb,i) be the set of source (target) patterns constructed from the pair (b, Fi)
and src∅,b,i (tar∅,b,i) be the set of these source (target) patterns reduced to graph
constraints.

GTS preserves F under G if, for all reduced source patterns src∅ created from
a pair of a rule and a forbidden pattern (b, Fi) and the corresponding reduced
target pattern tar∅, one of the following conditions holds:

1. ∃k(k ∈ J ∧ tar∅ |= Gk)
2. ∃k(k ∈ J ∧ src∅ |= Gk)

248 J. Dyck and H. Giese

3. ∃k(k ∈ I ∧ src∅ |= Fk)

This shows that GTS preserves F under G, if the condition from Theorem 23
holds. In other words, F is an inductive invariant for GTS under G. The con-
struction of target and source patterns and the verification of this condition by
application of Theorem 16 is, in short, the essence of the Invariant Checking
algorithm. On the other hand, source and target patterns not discarded by that
conditions are counterexamples for the inductive invariant.

Fig. 2. Source and target pattern pair created from a rule and a forbidden pattern

Example 24. Figure 2 shows a source and target pattern pair src and tar created
from the forbidden pattern F and rule in Examples 4 and 7. In tar, the condition
∃t is one amalgamation of F and the right rule side (Lemma 20, step 1); ¬∃p is
the pattern’s application condition transformed with PShift over t+ (Lemma 20,
step 2). Since the forbidden pattern can be found in the source pattern (src∅ |= F),
this counterexample is discarded by the analysis in Theorem 23.

Because the implication checks (Theorems 16 and 23) compare only individual
patterns and disregard more complex interdependencies and satisfiability of mul-
tiple patterns, this algorithm may still produce false negatives (i.e., spurious
counterexamples). Our advanced implication check then serves to reduce this
number and may also be applied to reduce the number of forbidden patterns to
be analyzed by subsuming some of them. Since the general concept has already
been introduced by Pennemann et al. in [9], we do not discuss it here. However,
our technique is safe in the sense that all violations will be reported.

5 Evaluation and Discussion

To evaluate our results, we employ three case studies: The first example car
platooning describes rules and constraints in a car platooning system. It was
employed in the context of the SeekSat/ProCon tool [9] and was originally
described in [16]. In order to conform to our restrictions it had to be adjusted,
resulting in the addition of twelve new constraints. Our second and third case
study are a simple and complex example for verification of behavior preservation

Inductive Invariant Checking with Partial Negative Application Condition 249

of model transformations by bisimulation with the simple case initially employed
by us in [11] and both examples described in [17]. In the first case (MT - Simple),
behavioral equivalence between single lifelines and automata derived by a triple
graph grammar (TGG) is proven. In the more complex example (MT - Com-
plex), behavioral equivalence between sequence diagrams with multiple lifelines
and networks of automata is proven. In both cases the check involves two induc-
tive invariant checks: one for the TGG generating all possible model pairs and
one for the Semantics of any possible pair of models to prove bisimilarity.

The first point of reference for our evaluation is our improved inductive invari-
ant checker in its basic variant (invcheck-total). We also compare variants employ-
ing advanced implication checks (invcheck-total/impl), partial negative applica-
tion conditions (invcheck-partial), and both (invcheck-partial/impl). On the other
hand, the former version of our inductive invariant checker [8] only supported a
restricted form of negative application conditions for constraints and rules and
was thus not expressive enough for the considered case studies.

In addition, we will consider the SeekSat/ProCon tool [9,10], which is able
to prove correctness of graph programs with respect to pre- and postconditions
specified as nested graph constraints. To verify an inductive invariant (F) of a
graph transformation system (GTS) with guaranteed constraints (G), the equiv-
alent check contains a graph program nondeterministically choosing a rule from
GTS, the precondition {F ∧ G} and the postcondition {F ∨ ¬G}. While the
technique behind SeekSat/ProCon is more expressive than our approach, we use
this comparison to demonstrate the relevance of our more specialized tool for
the verification of certain cases where that level of expressiveness is not needed.

Besides the evaluation of the case studies as a whole, we also want to study the
impact of the complexity of the checking problem by considering the sum of all
possible amalgamations between a forbidden pattern and the right side of a rule
and the number of total negative application conditions for those amalgamations.
To get more fine-grained results, we separated some examples into multiple cases
by splitting postconditions (

∧

i∈I Fi) ∨ ¬G into less complex i subproblems with
postconditions Fi ∨ ¬G or by considering rules in a set separately.

The experiments were executed on a computer with an Intel Core-i7–2640M
processor with two cores at 2,8 GHz, 8 GB of main memory and running Eclipse
4.2.2 and Java 8 with a limit of 2 GB on Java heap space. All values were rounded
and values under a second were not distingiuished. Timeout refers to a forced
timeout issued by the tool (SeekSat/ProCon) or manual abortion (our tool)—
for the related cases in our tool after more than two days of calculation. Out of
memory means that memory exceeded the Java heap space limit of 2 GB.

Table 1 shows an overview of the verification of our complete examples
(marked as complete; in gray) and a more detailed list of subproblems ordered by
complexity (marked as subproblem), respectively. All algorithms perform com-
parably well for the car platooning example, with SeekSat/ProCon performing
significantly better for the unadjusted version than our algorithms. However, for
the other complete cases our tool terminates while SeekSat/ProCon does not.

250 J. Dyck and H. Giese

Table 1. Complexity of verification problems and results of evaluated algorithms

Example Check Complexity time (s) result time (s) result time (s) result time (s) result time (s) result
MT - Simple - Semantics subproblem 4 20 true <1 true <1 true <1 true <1 true
MT - Simple - Semantics subproblem 4 20 true <1 true <1 true <1 true <1 true
MT - Complex - TGG subproblem 4 <1 true <1 true <1 true <1 true <1 true
MT - Complex - TGG subproblem 4 <1 true <1 true <1 true <1 true <1 true
MT - Complex - Semantics subproblem 5 10 true <1 true <1 true <1 true <1 true
MT - Complex - Semantics subproblem 5 9 true <1 true <1 true <1 true <1 true
MT - Simple - Semantics subproblem 11 40 true <1 true <1 true <1 true <1 true
MT - Complex - TGG subproblem 11 <1 true <1 true <1 true <1 true <1 true
MT - Complex - Semantics subproblem 12 out of memory timeout <1 false negatives timeout <1 true
MT - Complex - Semantics subproblem 17 17 true <1 false negatives <1 false negatives <1 true <1 true
MT - Complex - TGG subproblem 20 timeout <1 true <1 true <1 true <1 true
MT - Simple - Semantics subproblem 30 20 true <1 true <1 true <1 true <1 true
MT - Simple - Semantics subproblem 70 40 true <1 true <1 true <1 true <1 true
MT - Complex - Semantics subproblem 72 timeout <1 false negatives 1 false negatives 1,5 true 1,5 true
MT - Simple - Semantics subproblem 78 6,5 true <1 true <1 true <1 true <1 true
MT - Complex - Semantics subproblem 188 out of memory 1,5 false negatives 2,5 false negatives <1 true <1 true
Car Platooning subproblem 258 <1 true <1 true <1 true <1 true <1 true
Car Platooning subproblem 610 <1 true <1 true <1 true <1 true <1 true
MT - Simple - Semantics subproblem 807 timeout <1 true <1 true <1 true <1 true
Car Platooning complete 947 <1 false <1 false negatives <1 false negatives 3 false 3 false
MT - Simple - TGG subproblem 2778 220 true 1,5 false negatives 1 false negatives 1,5 true 1 true
MT - Simple - TGG subproblem 2778 226 true 1,25 false negatives 1 false negatives 1,25 true 1 true
MT - Simple - Semantics complete 3870 timeout 1,5 true 1 true 1,5 true 1 true
MT - Simple - TGG complete 5556 562 true 2 false negatives 2 false negatives 2,25 true 1,75 true
MT - Complex - Semantics subproblem 607312 out of memory timeout 90 false negatives timeout <1 true
MT - Complex - Semantics complete 607500 out of memory timeout 95 false negatives timeout <1 true
MT - Complex - TGG complete 1817622 timeout timeout ~100min true timeout ~50min true

SeekSat/ProConCharacteristics
without advanced implication check with advanced implication check
Invcheck-total Invcheck-partial Invcheck-total/impl Invcheck-partial/impl

It is important to note that the inductive invariant checker without advanced
implication checks yields false negatives for certain subproblems. Even more
importantly, these false negatives do not occur when using the variant with
advanced implication checks. This demonstrates that the improvement in accu-
racy due to advancement in implication checks is indeed relevant for the case
studies.

Further, the results demonstrate that the complex model transformation case
study cannot be verified by the inductive invariant checker variants without par-
tial negative application conditions, as these attempts were aborted after more
than two days of calculation without a result. In contrast to that, a verification
time of 100 min (for the longest case) when employing partial negative appli-
cation conditions shows a drastic improvement in scalability for the considered
more complex cases. The additional use of advanced implication checks does then
not only eliminates false negatives, but, for one case, also halves the verification
time, showing another notable effect on performance.

While these case studies show both our improvements and the relevance of
verification for specifications that conform to our restrictions, the data is not
complete and heterogeneous enough to derive claims for the general case. While
SeekSat/ProCon’s more general approach is also successfully applicable for spec-
ifications that are significantly more expressive, our tool has been optimized for
a particular class of problems present in the two more complex case studies and
their verification only succeeded with our tool.

6 Related Work

As already discussed in Sect. 5, the SeekSat/ProCon tool [9,10] is more general
than our approach and thus is in principle capable of addressing the case studies.

Inductive Invariant Checking with Partial Negative Application Condition 251

However, the limited scalability of the SeekSat/ProCon tool demonstrates that
there is still a need for a tool optimized for a particular class of problems that
scales up to the presented two more complex case studies.

For all other automated approaches that approach graph transformation sys-
tems with infinite state space [3–8,18], it holds that, in contrast to the approaches
considered in the evaluation, they cannot be used for the case studies which
require unrestricted negative application conditions: The model checking app-
roach [4] employing abstraction based on the summarization in shape analysis
and the model checking approach [3] employing a neighborhood abstraction,
but both do not support negative application conditions for the constraints
or rules. The tool Uncover [5] supports well-structured graph transformation
systems that can only be established for negative application conditions which
forbid the existence of edges but not of nodes. The Augur tool [6,18], which
constructs a over-approximation in form of a so-called Petri graph, also consid-
ers only graph transformation systems without negative application conditions.
Finally, the RAVEN tool [7] can check only invariants for graph transforma-
tion systems without negative application conditions whose reachable graphs
are accepted by a finite graph automaton. Since two of our case studies describe
reachable graphs by TGGs, they cannot be covered by a finite graph automaton.

For additional discussion of related work with respect to the general concept
of inductive invariants, we refer to the respective section in [8].

7 Conclusion and Future Work

In this paper, we presented several improvements for the inductive invariant
checker for graph transformation systems introduced in [8]. Support for more
expressive negative application conditions in constraints and rules was shown to
be necessary to address the considered case studies at all. The introduction of
partial negative application conditions allowed avoiding the explicit representa-
tion of a large number of application conditions, which considerably improved
scalability. The addition of advanced implication checks improved the accuracy,
so that no false negatives are reported for the case studies.

In addition we demonstrated the outlined improvements by means of three
case studies and compared our approach for a restricted class of problems with an
existing tool that targets more general problems. For the more complex problems
considered, our approach was still able to check them; the other tool was not.

While the results are promising, the evaluation also raises a number of possi-
ble future directions such as employing even more partial shifts in our construc-
tions, and experimenting with the parallel execution of alternative strategies.

Acknowledgments. We would like to thank the group of Annegret Habel, in partic-
ular the authors of the SeekSat/ProCon tool [9], for allowing us to do the comparison
and Leen Lambers for her work on behavior preservation of model transformations.

252 J. Dyck and H. Giese

References

1. Ghamarian, A.H., de Mol, M.J., Rensink, A., Zambon, E., Zimakova, M.V.: Mod-
elling and analysis using GROOVE. Int. J. Softw. Tools Technol. Transf. 14(1),
15–40 (2012)

2. Schmidt, A., Varró, D.: CheckVML: a tool for model checking visual modeling
languages. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol.
2863, pp. 92–95. Springer, Heidelberg (2003)

3. Boneva, I.B., Kreiker, J., Kurban, M.E., Rensink, A., Zambon, E.: Graph abstrac-
tion and abstract graph transformations (Amended version). Technical report
TR-CTIT-12-26, Centre for Telematics and Information Technology, University
of Twente, Enschede (2012)

4. Steenken, D.: Verification of infinite-state graph transformation systems via
abstraction. Ph.D. thesis, University of Paderborn (2015)

5. König, B., Stückrath, J.: A general framework for well-structured graph transfor-
mation systems. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704,
pp. 467–481. Springer, Heidelberg (2014)

6. König, B., Kozioura, V.: Augur 2 - a new version of a tool for the analysis of graph
transformation systems. In: Electronic Notes in Theoretical Computer Science,
Proceedings of the Fifth International Workshop on Graph Transformation and
Visual Modeling Techniques (GT-VMT 2006), vol. 211, pp. 201–210 (2008)

7. Blume, C., Bruggink, H.J.S., Engelke, D., König, B.: Efficient symbolic implemen-
tation of graph automata with applications to invariant checking. In: Ehrig, H.,
Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562,
pp. 264–278. Springer, Heidelberg (2012)

8. Becker, B., Beyer, D., Giese, H., Klein, F., Schilling, D.: Symbolic invariant ver-
ification for systems with dynamic structural adaptation. In: Proceedings of the
28th International Conference on Software Engineering (ICSE), Shanghai, China.
ACM Press (2006)

9. Pennemann, K.-H.: Development of correct graph transformation systems. Ph.D.
thesis, Department of Computing Science, University of Oldenburg (2009)

10. Habel, A., Pennemann, K.-H.: Correctness of high-level transformation systems
relative to nested conditions. Math. Struct. Comput. Sci. 19, 1–52 (2009)

11. Giese, H., Lambers, L.: Towards automatic verification of behavior preservation for
model transformation via invariant checking. In: Ehrig, H., Engels, G., Kreowski,
H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 249–263. Springer,
Heidelberg (2012)

12. Becker, B., Lambers, L., Dyck, J., Birth, S., Giese, H.: Iterative development
of consistency-preserving rule-based refactorings. In: Cabot, J., Visser, E. (eds.)
ICMT 2011. LNCS, vol. 6707, pp. 123–137. Springer, Heidelberg (2011)

13. Dyck, J., Giese, H.: Inductive invariant checking with partial negative applica-
tion conditions, 98, Technical report, Hasso Plattner Institute at the University of
Potsdam, Germany (2015)

14. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, Secaucus (2006)

15. Ehrig, H., Golas, U., Habel, A., Lambers, L., Orejas, F.: M-Adhesive transforma-
tion systems with nested application conditions, part 1: parallelism, concurrency
and amalgamation. Math. Struct. Comput. Sci. 24(4) (2014)

Inductive Invariant Checking with Partial Negative Application Condition 253

16. Hsu, A., Eskafi, F., Sachs, S., Varaiya, P.: The design of platoon maneuver protocols
for IVHS. Technical report UCBITS-PRR-91-6, University of California, Berkley
(1991)

17. Dyck, J., Giese, H., Lambers, L.: Automatic verification of behavior preservation
for model transformation via invariant checking. Technical report, Hasso Plattner
Institute at the University of Potsdam, Germany (2015, forthcoming)

18. Baldan, P., Corradini, A., König, B.: A static analysis technique for graph trans-
formation systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS,
vol. 2154, pp. 381–395. Springer, Heidelberg (2001)

Applications: Tool Presentations

Tool Support for Multi-amalgamated Triple
Graph Grammars

Erhan Leblebici(B), Anthony Anjorin, and Andy Schürr

Technische Universität Darmstadt, Darmstadt, Germany
{erhan.leblebici,anthony.anjorin,andy.schuerr}@es.tu-darmstadt.de

Abstract. We present in this paper our tool support with eMoflon
(www.emoflon.org) to incorporate the concept of multi-amalgamation
into Triple Graph Grammars (TGGs). Multi-amalgamation provides a
mechanism similar to a foreach loop for graph transformation rules by
consolidating multiple applications of rules depending on how many rule
applications are available at transformation time. TGGs are a well-known
technique used to specify bidirectional model transformation, where con-
sistency is described via triple rules that build up source, target, and
correspondence models simultaneously. Combining both techniques in
eMoflon yields a TGG implementation that can handle bidirectional con-
sistency relations between source and target elements, whose number is
unknown at design time and can only be determined at transformation
time. Our goal with this extension is to tackle transformation scenarios
that are currently beyond the capabilities of classical TGGs.

Keywords: Triple graph grammars · Multi-amalgamation · eMoflon

1 Introduction and Motivation

Triple Graph Grammars (TGGs) [14] are a declarative and rule-based technique
to specify bidirectional model transformation, which plays a crucial role in Model-
Driven Engineering (MDE). Formalizing models as graphs, a TGG comprises
triple rules that state how to build up source and target graphs connected via
a correspondence graph. Hence, a TGG is a constructive grammar for consistent
triples of graphs. From this grammar, forward and backward transformation rules
are derived to realize model transformation in the respective direction.

A crucial limitation when specifying consistency with triple rules is the fact
that they are graph patterns of fixed size, requiring and creating a constant
number of related elements in a single application of the respective rule. This
is not always sufficient in practice as the number of involved elements for the
desired notion of consistency might depend on concrete models and, therefore,
be impossible to determine at specification time. Intuitively, a foreach loop-like
feature is missing to specify consistency for an arbitrary number of elements.

The expressiveness issue with fixed rule patterns as well as a formal solution
to the problem, namely amalgamation, have already been explored in classi-
cal graph transformation. In [1], amalgamation is introduced as combining the
c© Springer International Publishing Switzerland 2015
F. Parisi-Presicce and B. Westfechtel (Eds.): ICGT 2015, LNCS 9151, pp. 257–265, 2015.
DOI: 10.1007/978-3-319-21145-9 16

www.emoflon.org

258 E. Leblebici et al.

applications of two rules (called multi-rules) over the shared application of an
embedded subrule (called kernel rule). This is generalized in [15] to combin-
ing n multi-rule applications, and is formalized in [5] as multi-amalgamation.
With multi-amalgamation, transformations are not specified via plain rules but
via interaction schemes that contain a kernel rule and an arbitrary number of
multi-rules that embed the kernel rule. Multi-rules are consolidated over the ker-
nel to a multi-amalgamated rule at transformation time depending on how many
rule applications over the same kernel are available for a concrete model.

To the best of our knowledge, existing TGG implementations neither support
multi-amalgamation nor provide a similar means to overcome the limitations of
fixed rule patterns. In this paper, we tackle this gap from a practical perspective
and report on our tool support for multi-amalgamated TGGs, i.e., TGGs that
are specified via interaction schemes. Our goal is to increase the capabilities of
our TGG implementation eMoflon (www.emoflon.org) by utilizing our formal
results from [11]. The practical challenges here are to (1) extend the visual syn-
tax appropriately for multi-amalgamation, and (2) handle multi-amalgamated
rules without a high impact on scalability. Moreover, we provide a quantitative
evaluation (runtime measurements) of our implementation and compare it with
our choice of another bidirectional tool, namely medini QVT [9]. A demo session
with our running example is available via a virtual machine1 in SHARE [6].

The rest of the paper is structured as follows: After introducing a running
example that is beyond the capabilities of classical TGGs in Sect. 2, we intro-
duce in Sect. 3 multi-amalgamated TGGs with eMoflon by solving the running
example. In Sect. 4, we discuss related work and evaluate our implementation
quantitatively with a tool comparison. Finally, Sect. 5 concludes the paper.

2 Running Example

As our running example, we use an excerpt of a transformation between class
diagrams and their HTML-like documentations (e.g., Javadoc). In particular,
we focus on transforming inheritance links in class diagrams to hyperlinks in
documents (and vice versa). The most important requirement with respect to
our contribution is that hyperlinks must be created in the documents for direct
super classes (as from now referred to as direct hyperlinks) as well as for the
transitive closure of all super classes (referred to as transitive hyperlinks). For
simplicity, we allow multiple inheritance but forbid repeated inheritance, i.e., we
assume that a transitive hyperlink is not induced over multiple ways. Figure 1
shows a class diagram and its consistent documentation.

Obviously, the number of transitive hyperlinks to be created when trans-
forming an inheritance link depends on the concrete class diagram. Consider
the inheritance link between Employee and Person in Fig. 1 and assume all other
parts of the class diagram is documented consistently. Besides creating a direct
and a transitive hyperlink from the subclass document (Employee) to the super
1 Direct link to the virtual machine: http://is.ieis.tue.nl/staff/pvgorp/share/

?page=ConfigureNewSession\&vdi=XP-TUe TGG-Comparison eMoflonEMF.vdi.

www.emoflon.org
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=XP-TUe_TGG-Comparison_eMoflonEMF.vdi
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=XP-TUe_TGG-Comparison_eMoflonEMF.vdi

Tool Support for Multi-amalgamated Triple Graph Grammars 259

Fig. 1. A class diagram and its corresponding documentation

class document (Person), three additional steps must be repeated to create addi-
tional transitive hyperlinks: (S.1) from the subclass document to all transitive
super class documents (from Employee to Serializable and Observable), (S.2) from
all transitive subclass documents to the super class document (from Worker
and Manager to Person), and (S.3) from all transitive subclass documents to all
transitive super class documents (from Worker and Manager to Serializable and
Observable). While creating ten hyperlinks in total for our concrete case, this
number ranges in general between two and arbitrarily many depending on the
class diagram, making a consistency specification with fixed patterns impossible.

3 Multi-amalgamated TGGs with eMoflon

In this section, we specify a TGG using multi-amalgamation with eMoflon, that
is indeed able to describe the consistency relation required for our example. All
diagrams except the last one in this section are specified with eMoflon’s frontend.

To the left of Fig. 2, a triple of metamodels for our running example is
depicted. The source metamodel describes class diagrams consisting of classes
with inheritance links (specified via the reference super). Accordingly, the target
metamodel describes hyperlinked documents. We distinguish between directLinks
representing hyperlinks for a direct inheritance relation and allLinks representing

Fig. 2. The metamodel triple and a triple rule for the running example

260 E. Leblebici et al.

hyperlinks for the transitive closure of inheritance relations. Finally, the hexagon-
shaped correspondences relate class diagrams with their documentation.

To the right of Fig. 2, an exemplary triple rule, namely CtoD (Class to Doc-
ument), is shown. A triple rule matches a pre-condition (depicted in black) and
extends it to a post-condition by creating new elements (depicted in green with
a ++ mark-up). The triple rule CtoD requires the root elements2, i.e., a related
pair of a class diagram and a documentation model, and creates a related pair
of a class and a document. The attribute condition eq(c.name,d.name) ensures
that the names of the class and the document are equal.

Next, we describe how an inheritance link and the
related hyperlinks, whose number depends on a con-
crete case, are created consistently. The main idea is to
specify consistency as an interaction scheme of rules
instead of plain rules. An interaction scheme, as shown
in the diagram to the right, consists of a kernel rule,
in our case ItoH 0 (Inheritance to Hyperlink), and a set
of multi-rules, in our case ItoH 1, ItoH 2, and ItoH 3, that include the kernel
rule via a so-called kernel morphism, and accomplish an additional remainder.
Figure 3 depicts the internal structures of these rules. Multi-rule nodes originat-
ing from the kernel rule can be distinguished via a gray shading. White nodes
in a multi-rule, and consequently their incident edges, represent the remainder.
While the remainders in Fig. 3 are only in the target domain, remainders over
three domains (in the same multi-rule) are possible.

Fig. 3. A kernel rule and three multi-rules

The kernel rule ItoH 0 requires two related pairs of classes and documents,
creating an inheritance in the source side and two hyperlinks in the same direc-
tion in the target side (a reference directLinks as well as a reference allLinks are

2 Due to space limitations, we omit the simple rule that creates these root elements.

Tool Support for Multi-amalgamated Triple Graph Grammars 261

created). The multi-rules ItoH 1, ItoH 2, and ItoH 3 include the kernel rule and
handle the three additional steps S.1, S.2, and S.3, respectively, as discussed in
the previous section. Each of them creates one additional transitive hyperlink in
the remainder (a reference of type allLinks) between two documents as long as
they are indirectly connected by the kernel part. That is, transitive hyperlinks
for an arbitrary depth of inheritance relations can be created.

Remark : Although a multi-rule includes the kernel rule completely according to
its formal definition [1,5], we allow a compact syntax by reducing the kernel part
of a multi-rule to a minimal interface that is sufficient to specify the remainder.
In Fig. 4, we depict ItoH 1, ItoH 2, and ItoH 3 in this way by repeating only the
target side of the kernel rule rather than its entire pattern. This is useful for
maintainability as refactorings in the kernel rule do not break the compliance of
the multi-rules as long as the changes do not concern the remainder.

Fig. 4. Compact syntax for multi-rules

At transformation time, the multi-rules of an interaction scheme are consol-
idated to a multi-amalgamated rule. The size of this consolidation depends on
how many applications of the multi-rules are available that agree on the same
kernel match. If there does not exist any multi-rule applications but only a ker-
nel rule application, the multi-amalgamated rule is identical to the kernel rule.
Considering again the repeated steps for the inheritance link between the classes
Person and Emplyoee in Fig. 1, the following multi-rule applications are avail-
able for our interaction scheme: (S.1) ItoH 1 twice while matching Serializable
and Observable in the remainder, (S.2) ItoH 2 twice while matching Worker and
Manager in the remainder, and (S.3) ItoH 3 four times while matching all four
possible combinations of Serializable and Observable with Worker and Manager in
the remainder. Figure 5 depicts the resulting multi-amalgamated rule. For pre-
sentation purposes, nodes matching the same element are merged to one node.

Note that such a (possibly very large) multi-amalgamated rule is not specified
explicitly by the transformation designer but accomplished by eMoflon at trans-
formation time given an interaction scheme and a model. From a consistency
point of view, the multi-amalgamated rule in Fig. 5 relates one inheritance link
to ten hyperlinks (nine allLinks and one directLinks). In the forward direction,
therefore, it translates one inheritance link to ten hyperlinks. Analogously, ten
hyperlinks are translated to one inheritance link in the backward direction.

262 E. Leblebici et al.

Fig. 5. The induced multi-amalgamated rule for our example

Technically, eMoflon compiles interaction schemes to programmed graph
transformation in order to realize transformations with multi-amalgamated rules.
This compilation is transparent to the user and enables the utilization of control
flow structures to find all occurrences of multi-rule matches at transformation
time. That is, the semantics of multi-amalgamated steps in eMoflon are defined
via maximal matchings comparable to a foreach loop, introduced on a formal
level in [11]. In each atomic transformation step, our governing control algorithm
applies a kernel rule and complements the remainders of all available multi-rule
applications. A plain triple rule without any interaction scheme forms therefore
the special case where there is no remainders to be complemented.

4 Related Work and Evaluation with Comparison

In this section, we discuss existing TGG implementations and other bidirectional
transformation tools with a focus on their support for a foreach construct. We
also provide a quantitative evaluation (runtime measurements) of our implemen-
tation and a comparison with one representative from the latter group.

TGG Tools: None of the TGG tools we are aware of support multi-amalgamation
or a similar means to overcome the limitations posed by fixed rule patterns. Their
different strategies when deriving forward and backward transformations have
arguably a strong impact on how multi-amalgamation can be realized with these
tools. Similar to eMoflon, MoTE [4] compiles TGGs to programmed graph trans-
formation but handles only plain rules without interaction schemes. EMorf [10]
and TGG-Interpreter [7] do not compile triple rules but interpret them directly
at transformation time. A possible support for multi-amalgamation, therefore,
requires the interpretation of multi-amalgamated rules constructed at transfor-
mation time. HenshinTGG [3], moreover, seems to be a promising TGG tool with
regard to our goals, as the underlying graph transformation engine (Henshin)
supports multi-amalgamation. This diverse tool support, beside the shared for-
mal foundation, helped TGGs gain acceptance in the context of MDE. Our aim

Tool Support for Multi-amalgamated Triple Graph Grammars 263

is to ensure that TGGs remain competitive compared to other bidirectional lan-
guages that do not necessarily suffer from the same expressiveness issues.

Bidirectional Tools with Support for Foreach : GroundTram [8], an
example for tools based on bidirectional programming, features bidirectionally
interpreted queries that are inherently not restricted to a constant number of
elements. The QVT (Query, View, Transformation) standard [13], in particular
QVT-R (QVT-Relations), features constructs such as forall, closure, or recursive
invocations to address relating arbitrarily many elements. Echo [12] and JTL [2]
support the QVT-R syntax and employ model finding techniques to explore con-
sistent pairs of models. These tools exhibit powerful expressiveness but face the
usual scalability problems of model finding. A scalable QVT-R implementation
is provided by medini QVT [9]. We managed to solve3 our example using medini
QVT with acceptable execution times and use this solution for a quantitative
comparison, evaluating the scalability of eMoflon in the process.

Runtime Measurements: In order to achieve realistic inputs for our runtime
measurements, we extracted class diagram models from the following packages in
our Eclipse installation: org.antlr, eMoflon tool suite, org.apache, OpenJDK, and
org.eclipse. We transformed our models in the forward and backward direction
with eMoflon and medini QVT, each time with a fresh Java Virtual Machine with
8 GB memory on an Intel i5@3.30 GHz. In Fig. 6, the median of 15 repetitions
is plotted for each case. The y-axis shows the time in seconds in a logarithmic
scale while the x-axis lists our models with their sizes. Note that the numbers of
inheritance links and hyperlinks represent the portion that is transformed via a
multi-amalgamated step in the forward and backward direction, respectively.

Fig. 6. Runtime measurement results with eMoflon and medini QVT

While both tools exhibit similar execution times for small and mid-sized
models, eMoflon outperforms medini QVT in big-sized models with a factor of
up to 20. In all cases, eMoflon’s backward transformations are slower than its
forward transformations. A factor of about 4 (2 min / 0.5 min) is observed for

3 Our medini QVT solution is also available in the virtual machine in SHARE.

264 E. Leblebici et al.

org.eclipse. This is explained by the greater number of elements (hyperlinks) to be
matched in the target model compared to the source model. By contrast, medini
QVT is faster in the backward direction than in the forward direction in case of
big-sized models (again, a factor of about 4 for OpenJDK). Apparently, enforcing
consistent hyperlinks is a more difficult task for the QVT-R engine than only
checking them. This contrast stresses the conceptual differences between the two
approaches. As a final remark, we believe to have closed an expressiveness gap
of TGGs with arguably good scalability. It remains to be seen via established
benchmarks how eMoflon is seated in a broader circle of bidirectional tools.

5 Conclusion and Future Work

We presented multi-amalgamated TGGs with eMoflon allowing us to specify con-
sistency of an unbounded number of elements. The achieved extension adheres
to the rule-based nature of TGGs and is at the same time scalable.

Our focus for future work is incremental model synchronization with multi-
amalgamated TGGs. We furthermore plan consistency checks via correspon-
dence creation between existing models using multi-amalgamated TGGs. Our
ultimate goal is mature tool support for concurrent engineering in an MDE con-
text.

References

1. Boehm, P., Fonio, H.R., Habel, A.: Amalgamation of graph transformations: a
synchronization mechanism. JCSS 34(2–3), 377–408 (1987)

2. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: JTL: a bidirectional and
change propagating transformation language. In: Malloy, B., Staab, S., van den
Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 183–202. Springer, Heidelberg
(2011)

3. Ermel, C., Hermann, F., Gall, J., Binanzer, D.: Visual modeling and analysis of
EMF model transformations based on triple graph grammars. ECEASST 54, 1–14
(2012)

4. Giese, H., Hildebrandt, S., Lambers, L.: Toward Bridging the Gap Between Formal
Semantics and Implementation of Triple Graph Grammars. Technical report 37,
Hasso-Plattner Institute (2010)

5. Golas, U., Ehrig, H., Habel, A.: Multi-amalgamation in adhesive categories. In:
Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol.
6372, pp. 346–361. Springer, Heidelberg (2010)

6. van Gorp, P., Mazanek, S.: SHARE: a web portal for creating and sharing exe-
cutable research papers. Procedia Comput. Sci. 4, 589–597 (2011)

7. Greenyer, J., Pook, S., Rieke, J.: Preventing information loss in incremental model
synchronization by reusing elements. In: France, R.B., Kuester, J.M., Bordbar, B.,
Paige, R.F. (eds.) ECMFA 2011. LNCS, vol. 6698, pp. 144–159. Springer, Heidel-
berg (2011)

8. Hidaka, S., Hu, Z., Inaba, K., Kato, H., Nakano, K.: GRoundTram: an integrated
framework for developing well-behaved bidirectional model transformations. In:
Alexander, P., Pasarenau, C.S., Hosking, J.G. (eds.) ASE 2011, pp. 480–483 (2011)

Tool Support for Multi-amalgamated Triple Graph Grammars 265

9. Ikv++: Medini QVT. http://projects.ikv.de/qvt
10. Klassen, L., Wagner, R.: EMorF - A tool for model transformations. ECEASST

54, 1–6 (2012)
11. Leblebici, E., Anjorin, A., Schürr, A., Taentzer, G.: Multi-Amalgamated Triple

Graph Grammars. In: Parisi-Presicce, F., Westfechtel, B., (eds.) ICGT 2015, LNCS
9151, pp. 87–103. Springer, Heidelberg (2015)

12. Macedo, N., Cunha, A.: Implementing QVT-R bidirectional model transformations
using alloy. In: Cortellessa, V., Varró, D. (eds.) FASE 2013 (ETAPS 2013). LNCS,
vol. 7793, pp. 297–311. Springer, Heidelberg (2013)

13. OMG: QVT Specification, V1.1 (2011). http://www.omg.org/spec/QVT/1.1/
14. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:

Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–
163. Springer, Heidelberg (1995)

15. Taentzer, G.: Parallel and distributed graph transformation : Formal Description
and Application to Communication-Based Systems. Ph.D. thesis (1996)

http://projects.ikv.de/qvt
http://www.omg.org/spec/QVT/1.1/

Uncover: Using Coverability Analysis
for Verifying Graph Transformation Systems

Jan Stückrath(B)

Universität Duisburg-Essen, Essen, Germany
jan.stueckrath@uni-due.de

Abstract. Uncover is a tool for high level verification of distributed
or concurrent systems. It uses graphs and graph transformation rules
to model these systems in a natural way. Errors in such a system are
modelled by upward-closed sets for which two orders are provided, the
subgraph and the minor ordering. We can then exploit the theory of well-
structured transition systems to obtain exact or approximating decidabil-
ity results (depending on the order and system) for the question whether
an error can occur or not. For this framework we also introduced an
extension of classical graph transformation which is capable of modelling
broadcast protocols.

1 Introduction

Verification is a very broad area of computer science and Uncover aims at
the highest abstraction level, i.e. the verification of protocols or dynamic sys-
tems in general. For modelling systems we use graphs and graph transformation
rules [17], called graph transformation systems (GTS). Graphs are here used
to model the current state of a system, and graph transformation rules are
used to model state changes. More precisely we use hypergraphs, a generaliza-
tion of directed graphs, where each edge need not connect only two nodes, but
can be connected to an arbitrarily long, but finite sequence of nodes. Graph
transformation systems are effectively a transformation schema which can be
applied to possibly infinitely many graphs and can therefore finitely represent
infinitely large transition systems. The transformation approach we use is the
single pushout approach (SPO) based on category theoretical constructions using
partial morphisms, i.e. partial mappings from graphs to graphs.

Not many tools for verifying GTS exist, examples being Groove [10] for
finite state systems or Augur2 [3] and GBT [8,18] for infinite state systems.
Since most problems are undecidable in the infinite case, the latter two tools use
approximations via Petri nets (Augur2) and abstraction with graph patterns
(GBT). With Uncover we also target infinite state systems and use the theory
of well-structured transition systems [2,7] to achieve decidability results, which
gave rise to the framework we presented in [14]. In this paper we will present
Uncover including an introduction to the framework it implements.

Research partially funded by DFG project GaReV.

c© Springer International Publishing Switzerland 2015
F. Parisi-Presicce and B. Westfechtel (Eds.): ICGT 2015, LNCS 9151, pp. 266–274, 2015.
DOI: 10.1007/978-3-319-21145-9 17

Uncover: Using Coverability Analysis for Verifying Graph Transformation 267

1 2

Pi

3

⇒
1 2

Pi

3

Mi

(a) A process generates a newmessage to elect
itself as leader

1 2

Pj

3

Mi

⇒
i < j

1 2

Pj

3

Mi

(b) Other processes forward a message if their
ID is higher than that of the sender

1 2

Pi

Mi

⇒
1 2

L

(c) A process receiving its own message is the
leader

1 2

Pi ⇒
1, 2

(d) A process leaves the ring

L

L

(e) Error configuration of the protocol, show-
ing two leaders

P1

P2

P3

(f) Initial ring structure of the protocol

Fig. 1. Modelling of a leader election protocol by graph transformation rules [12]

To obtain a well-structured transition system we need to equip the GTS with
a well-quasi-order which is a simulation relation for the transition relation, i.e. if
a graph G can be transformed to a G′, then any graph larger than G can be
transformed to a graph larger than G′. Using this order we can now model errors
in a GTS by a set of minimal error graphs, i.e. every graph which is larger or
equal to a minimal error graph contains the error. We can see this for instance in
Fig. 1 where we model a leader election protocol for a ring structure. Initially the
protocol starts on a directed ring of processes, each with a unique ID (Fig. 1f)
where processes can propose their leadership (Fig. 1a), forward other processes
proposals (Fig. 1b), get elected (Fig. 1c) or simply leave the ring (Fig. 1d). The
system is erroneous if two processes can both elect themselves to be leader. This
error is exhaustively described (for rings) by the minimal error graph in Fig. 1e
when using the minor ordering. A graph G is a minor (i.e. smaller or equal) of
a graph G′ if we can obtain G by deleting nodes or contracting edges of G′.
A contraction deletes the edge and merges its incident nodes according to any
partition on them, which includes edge deletion. This means that the graph
in Fig. 1e is a minor of any directed ring (among others) of length larger or
equal to two where there are at least two leaders. Thus, the protocol is correct
if and only if we can not reach such a ring from the initial ring. Note that
contraction is essential in this case and the given error graph would not be
sufficient wrt. subgraph ordering, which only allows node and edge deletions. In
fact, we would need infinitely many subgraphs to describe the same error.

In this setting, checking whether an error is reachable is equivalent to check-
ing whether a minimal error graph is coverable, which is decidable for well-
structured transition systems if a so-called effective pred-basis exists. An effective
pred-basis is a algorithm which takes a graph G and computes the minimal

268 J. Stückrath

graphs which can be rewritten – in one step – to a graph larger than G. When
called, Uncover will use the initial error graphs as working set and compute in
each step the pred-basis of the current working set, add it to the set and keeps
only the minimal graphs, until eventually the working set stabilizes. All graphs
which are larger or equal to one of the graphs in the final working set can reach
an error, i.e. a graph larger or equal to an initial error graph. For the example in
Fig. 1 using three processes this will be 38 graphs in total, representing mostly
graphs with a “broken” ring structure or graphs where two processes have the
same ID. Since the initial graph (Fig. 1f) is not larger or equal to any of those
graphs, the protocol is correct. The simulation property of the order ensures the
correctness of the result set and being a well-quasi-order ensures termination.
This theory has also been successfully applied to related formalisms such as the
π-calculus [15].

So far both the subgraph ordering and the coarser minor ordering are imple-
mented in Uncover. Both orders impose different restrictions on the graphs
and graph transformation systems and we will illustrate the resulting trade-off
in Sect. 3 in more detail. The sources and documentation of the Uncover tool,
as well as some example case studies (including Fig. 1) can be found on its main
website [19].

2 Design and Usage

Uncover is a command line tool, written in C++ and licensed under
GPLv2. Since run times may be long for larger systems, it is designed to run
autonomously on a server once it has received its input, logging the performed
computations up to the desired verbosity and storing the final set of error graphs.
Figure 2 shows how an invocation of the tool may look like.

To perform an analysis Uncover requires three parameters: the system
model, the initial error description and the order used. The first two parame-
ters may be any GTS (not requiring initial graphs) and any set of graphs up to
certain restrictions depending on the order (see Sect. 3). The order may be cho-
sen from a set of predefined orders provided by Uncover, currently the minor
ordering and the subgraph ordering. Beyond the required parameters, there are
a few optional parameters e.g. for setting a timeout or the log file verbosity,
which are described in the documentation [19].

uncover --scn=backw GTS.xml Error.xml "subgraph[-]" to=3600

specifies that a backward
analysis will be performed

the GXL file storing the
initial error graphs

sets a timeout of one
hour (optional)

filename of the GTXL
storing the GTS

string specifying the
order used

Fig. 2. Shows an exemplary use of the Uncover tool

Uncover: Using Coverability Analysis for Verifying Graph Transformation 269

System Model. The system to be analysed must be modelled as a graph transfor-
mation system using SPO rules [17], i.e. partial morphisms, as shown in Fig. 1a – d
(the set of initial graphs may also be empty). Injective or conflict-free matches can
be used, which result in a slightly different induced transition system. In this
context a match is conflict-free wrt. some rule if every two elements with the
same image are either both deleted or both preserved by the rule. Note that
the transition system induced by conflict-free matches contains the transition
system using injective matches, since every injective match is also conflict-free.
In recent work we extended the standard SPO approach with so-called univer-
sally quantified rules, i.e. rules capable of matching the entire neighbourhood
of a node, to model broadcast operations [6] and also implemented this exten-
sion in Uncover. The input format for the GTS is based on the GTXL format
(i.e. XML-based) and a definition file is available with the source code [19].

Initial Error Description. The initial error description is a finite set of graphs
and is interpreted as the minimal elements of an upward-closed class of graphs
all containing an error. This means that an error can be described in this way if
it is invariant wrt. to the order used, i.e. if a graph contains the error, any larger
graph must contain the error as well. For instance the error graph in Fig. 1e
represents – wrt. the minor ordering – all rings (among others) containing two
leaders, which are all erroneous states of the system. As input format for the
initial error description we use the XML-based GXL format [11].

Predefined Orders. For an analysis the used order must be specified. It influences
the interpretation of the initial error configuration and may impose restrictions
on the analyzable GTS (see Sect. 3). Uncover currently supports the minor
ordering and the subgraph ordering, although the implemented framework is
not limited to these orders. In fact, in [14] we stated necessary conditions for an
order to be compatible and have also shown that the induced subgraph ordering1

satisfies these conditions. Note that different orders also lead to different notions
of coverability and may impose different restrictions on the system model. As
indicated in Fig.2, the third parameter may either be ‘minor’ for the minor order-
ing or ‘subgraph[x]’ for the subgraph ordering, where x may either be a natural
number specifying a path bound or ‘-’ for no bound (we define and discuss path
bounds in Sect. 3.2). Furthermore, Uncover is specifically implemented to be
easily extendible with further orders.

Results. The analysis procedure returns a finite set of graphs. It contains all
graphs that can reach a graph larger than one of the initial error graph. Obviously
this also includes the initial error description.

Additional Scenarios. In addition to the backward analysis scenario, Uncover
also provides auxiliary scenarios, the important being ‘gtxl2latex’ and
1 G is an induced subgraph of G′ if we can obtain G by deleting a subset of the nodes

of G′ including their incident edges.

270 J. Stückrath

‘gxl2pic’, which use Graphviz [9] and Latex to draw GXL and GTXL files,
and ‘leq’, which checks if a graph is in the upward closure of a given set of
graphs. All auxiliary scenarios are described in the documentation.

3 Decidability Results

Normally, given a (finite) set of initial error graphs I and a GTS T , Uncover
will return a (finite) set of final graphs E , which characterize by their upward
closure all graphs from which an error can be reached. More precisely, a graph G
can reach a graph larger than a graph of I if and only if there is an G′ ∈ E such
that G′ � G (wrt. the order used). However, Uncover is not always guaranteed
to terminate and in the following subsections we will examine this separately
for the minor and subgraph orderings. We will also see that there is a trade-off
between these orders: the minor ordering guarantees termination for all classes
of graphs whereas the subgraph ordering can analyse any GTS. Which order
is best suited depends on the concrete case study. If the GTS is suitable, the
minor ordering is often a good choice. However, the minor ordering is too coarse
for some properties to be described as its upward closure, in which case the
subgraph ordering is better.

If the GTS has initial graphs for which coverability should be checked,
Uncover can also prematurely terminate as soon as a graph was found that
is smaller or equal to one of the initial graphs. Moreover, we are not limited to
checking coverability for individual graphs. If T models for instance a distrib-
uted algorithm, the final graphs E represent all network topologies for which the
algorithm is not correct. This effect can be seen in the leader election protocol
in Fig. 1, where final graphs (see [12]) represent networks with duplicate process
identifiers as well as non-ring structures.

3.1 Minor Ordering

The minor ordering for hypergraphs was first used in [12] and a similar idea was
presented in [1] to abstractly represent heaps of programs, a more restricted class
of graphs. Since the minor ordering is a well-quasi-order on all graphs [16], all
upward-closed sets are finitely representable. This also guarantees that Uncover
will terminate when using minors. However, the minor ordering is not a simula-
tion relation wrt. all GTS, but only for GTS containing edge contraction rules
for each label, i.e. rules deleting an edge and merging an arbitrary partition on
its incident nodes. A class of systems which naturally satisfy this restriction are
lossy systems, where communication is assumed to be unreliable, i.e. messages
may be lost at any time. In the example shown in Fig. 1a process leaving the
ring and the loss of messages (not shown explicitly) constitute edge contraction
rules. In [13] we have shown that this restriction may even hold in the pres-
ence of negative application conditions, although this is not yet implemented in
Uncover.

Uncover: Using Coverability Analysis for Verifying Graph Transformation 271

If the input GTS does not satisfy the previously mentioned restriction, then
Uncover will analyse the GTS as if it would contain edge contraction rules,
i.e. implicitly add these rules. Obviously this GTS is an over-approximation of
the original GTS and E will be an over-approximation as well. Note that the
precision of this approximation strongly depends on the GTS and that Uncover
is still guaranteed to terminate, regardless of approximation.

Although it is technically not a problem, injective matches can currently not
be used with the minor ordering in Uncover.

3.2 Subgraph Ordering

We first proposed to use the subgraph ordering for the backwards analysis in [5]
and integrated it into our framework in [14]. However, there have also been
other approaches to use the subgraph ordering backwards [18] or forwards [4]
in the context of well-structured transition systems, often introducing approx-
imations. Uncover implements the subgraph ordering with conflict-free and
injective matches and additionally allows so-called universally quantified rules,
capable of matching entire neighbourhoods of nodes, in the injective case.

A nice property of the subgraph ordering is that it is a simulation relation
wrt. all GTS. However, not every upward closed set is finitely representable,
since it is not a well-quasi-order on all graphs, but only on the class of graphs
where every (undirected) path is bounded by a constant k. This also means that
termination is not guaranteed when we call Uncover without a path bound,
although we obtain a precise result for every terminating instance. Note that in
the case of non-termination we can still semi-decide coverability for a graph G
by letting Uncover check if G was found after each backward step.

To guarantee termination, we need to set a path bound, but this will affect
the expressiveness of the computed E . It still holds, that any G in the upward
closure of E can cover a initial error graph. However, for any G not in the
upward closure of E we only know that G cannot cover an initial error without
exceeding the path bound. In the latter case we simply do not know whether G
can or cannot cover an error if the paths were not bounded.

When using the subgraph ordering with injective matches, we can also use
universally quantified rules as introduced in [6]. Regardless of the use of bounded
or unbounded paths, E will usually be an over-approximation when using univer-
sally quantified rules, since these rules impose negative application conditions.

4 Case Studies

To demonstrate the effectiveness of our analysis procedure we verified several
case studies of which some are published in several papers [5,6,12–14]. Table 1
shows for each case study the order used, the class of graphs for which the system
was verified, the runtime and the number of graphs in the final graphs E . The
runtime results where computed on an Intel R© Xeon R© CPU E5-2637 v2 with
64 GB RAM using only one core (parallelisation is not yet implemented). All
case studies are available on the Uncover website [19].

272 J. Stückrath

Table 1. Runtime result for different case studies

Case study Order Graph class Runtime #(EG)

Leader election (IDs ≤ 10) minor all graphs 1m 1.6s 451

Leader election (IDs ≤ 20) minor all graphs 28m 17.5s 2401

Termination det. (faulty) minor all graphs 803ms 69

Termination det. (correct) minor all graphs 330ms 101

Rights management subg all graphs 37ms 4

Dining Philosophers subg all graphs 466ms 12

Public-private server subg path ≤ 50 13.8s 104

Public-private server subg path ≤ 100 3m 28.6s 204

Leader Election (see [12]). This is the leader election protocol modelled in
Fig. 1. We could verify that no two processes are elected as leader if the
protocol is used on a ring. However, the number of processes needs to be
fixed beforehand, since it affects the GTS.

Termination Detection (see [5,13]). Here we modelled a termination detec-
tion protocol for a ring structure, where processes can be generated by other
processes, leave the ring and can be passive or active. We modelled two vari-
ants, a faulty and a correct version, where in the former case our analysis
found the error and in the latter case we could prove the protocol correct.
In [13] we extended this protocol with negative conditions.

Rights management (see [14]). We modelled a rights management protocol
with users and objects where users can have read or write access rights for
objects. We could show that no two users may obtain write access to the
same object. For this case study the analysis terminates without setting a
path bound (which is not guaranteed in general).

Dining Philosophers (see [6]). In this case study we modelled the Dining
Philosophers Problem on an arbitrary graph structure using universally
quantified rules, i.e. two philosophers need all adjacent forks to eat. We
proved that no two adjacent philosophers can eat at the same time. The
analysis also terminates without a path bound.

Public-private server. Here we modelled a system of communicating public
and private servers and proved that communication between private servers
is never leaked to public servers. This analysis needs a path bound to ensure
termination.

The computation of the case studies above involves several combinatorial
problems which had to be tackled in the implementation of Uncover. On the
one hand it is NP-complete to check whether two graphs are related wrt. the
subgraph or minor ordering. On the other hand the search for possible matches
as well as the actual backward application of a rule are also potential sources of
combinatorial explosion. This made it necessary to implement a careful memory
management and early optimisations whenever enumerating graphs or matches.

Uncover: Using Coverability Analysis for Verifying Graph Transformation 273

5 Future Development

There are several ways to further improve and extend Uncover. To handle
the combinatorial blow-up some optimisations are implemented, such as delet-
ing rules which do not affect the analysis, but this could be extended further.
This especially holds for universally quantified rules, which still have a lot of
optimisation potential. Another obvious improvement is parallelisation, from
which Uncover would greatly benefit due to the inherently parallel nature of
a backward step. There are even some parts of the general framework, such as
the induced subgraph ordering or injective matches and negative application
conditions for the minor ordering, which still remain to be implemented. For
convenience Uncoverstill requires an automatic visualisation of its performed
steps, to support a user in understanding how an error can occur.

Possible improvements also arise from the underlying formalism. The frame-
work of [14] and the implementation of Uncover are already designed to allow
an easy extension by additional orders. Furthermore, the framework would bene-
fit in particular from an introduction of structural patterns or attributed graphs
for describing sets of graphs. The former would for instance allow a finite rep-
resentation of the class of all circles, even when using subgraphs. Whereas the
latter improvement could allow more general rules and for instance the analysis
of the leader election case study (Fig. 1) without fixing the number of processes.
However, both extensions considerably increase the complexity of computing
pred-bases.

References

1. Abdulla, P.A., Bouajjani, A., Cederberg, J., Haziza, F., Rezine, A.: Monotonic
abstraction for programs with dynamic memory heaps. In: Gupta, A., Malik, S.
(eds.) CAV 2008. LNCS, vol. 5123, pp. 341–354. Springer, Heidelberg (2008)

2. Abdulla, P.A., C̆erāns, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems
for infinite-state systems. In: Proceedings of LICS 1996, pp. 313–321. IEEE (1996)

3. AUGUR2. http://www.ti.inf.uni-due.de/research/tools/augur2/
4. Bansal, K., Koskinen, E., Wies, T., Zufferey, D.: Structural counter abstrac-

tion. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 62–77. Springer, Heidelberg (2013)

5. Bertrand, N., Delzanno, G., König, B., Sangnier, A., Stückrath, J.: On the decid-
ability status of reachability and coverability in graph transformation systems. In:
Proceedings of RTA 2012, vol. 15 of LIPIcs, pp. 101–116 (2012)

6. Delzanno, G., Stückrath, J.: Parameterized verification of graph transformation
systems with whole neighbourhood operations. In: Ouaknine, J., Potapov, I.,
Worrell, J. (eds.) RP 2014. LNCS, vol. 8762, pp. 72–84. Springer, Heidelberg (2014)

7. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!. Theor.
Comput. Sci. 256(1–2), 63–92 (2001)

8. Graph Backwards Tool (GB). http://www.it.uu.se/research/group/mobility/adh
oc/gbt

9. Graphviz website. http://www.graphviz.org/
10. GROOVE. http://groove.cs.utwente.nl/

http://www.ti.inf.uni-due.de/research/tools/augur2/
http://www.it.uu.se/research/group/mobility/adhoc/gbt
http://www.it.uu.se/research/group/mobility/adhoc/gbt
http://www.graphviz.org/
http://groove.cs.utwente.nl/

274 J. Stückrath

11. Holt, R.C., Schürr, A., Sim, S.E., Winter, A.: GXL. http://www.gupro.de/GXL/
12. Joshi, S., König, B.: Applying the graph minor theorem to the verification of graph

transformation systems. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 214–226. Springer, Heidelberg (2008)

13. König, B., Stückrath, J.: Well-structured graph transformation systems with neg-
ative application conditions. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg,
G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 81–95. Springer, Heidelberg (2012)

14. König, B., Stückrath, J.: A general framework for well-structured graph transfor-
mation systems. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704,
pp. 467–481. Springer, Heidelberg (2014)

15. Meyer, R.: Structural stationarity in the π-calculus. Ph.D. thesis, Carl-von-
Ossietzky-Universität Oldenburg (2009)

16. Robertson, N., Seymour, P.: Graph minors XXIII. Nash-Williams’ immersion con-
jecture. J. Comb. Theory, Ser. B 100, 181–205 (2010)

17. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation: Volume 1: Foundations. World Scientific Publishing, River Edge
(1997)

18. Saksena, M., Wibling, O., Jonsson, B.: Graph grammar modeling and verification
of ad hoc routing protocols. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 18–32. Springer, Heidelberg (2008)

19. Stückrath, J.: UNCOVER. http://www.ti.inf.uni-due.de/research/tools/uncover/

http://www.gupro.de/GXL/
http://www.ti.inf.uni-due.de/research/tools/uncover/

Local Search-Based Pattern Matching Features
in EMF-IncQuery

Márton Búr1,2, Zoltán Ujhelyi1,2(B), Ákos Horváth1,2, and Dániel Varró1

1 Department of Measurement and Information Systems,
Budapest University of Technology and Economics, Magyar Tudósok krt. 2,

Budapest 1117, Hungary
marton.bur@inf.mit.bme.hu, varro@mit.bme.hu

2 IncQuery Labs Ltd., Bocskai út 77-79, Budapest 1113, Hungary
{ujhelyi,horvath}@incquerylabs.com

Abstract. Graph patterns provide a declarative formalism to describe
model queries used for several important engineering tasks, such as
well-formedness constraint validation or model transformations. As
different pattern matching approaches, such as local search or incre-
mental evaluation, have different performance characteristics (smaller
memory footprint vs. smaller runtime), a wider range of practical prob-
lems can be addressed. The current paper reports on a novel feature
of the EMF-IncQuery framework supporting local search-based pat-
tern matching strategy to complement the existing incremental pattern
matching capabilities. The reuse of the existing pattern language and
query development environment of EMF-IncQuery enables to select the
most appropriate strategy separately for each pattern without any modi-
fications to the definitions of existing patterns. Furthermore, a graphical
debugger component is introduced that visualizes the execution of the
search process, helping to understand how complex patterns behave. This
tool paper presents the new pattern matching feature from an end users
viewpoint while the scientific details of the pattern matching strategy
itself are omitted. The approach is illustrated on a case study of auto-
mated identification of anti-patterns over program models created from
Java source code.

Keywords: Local search-based pattern matching · EMF-IncQuery ·
Integrated development environment

1 Introduction

Model queries form the underpinning of various engineering tasks, such as model
transformation, code generation or well-formedness validation. Declarative query
formalisms (such as graph patterns or OCL constraints) define queries at a high
level of abstraction allowing the use of different execution strategies such as local
search-based or incremental pattern matching.

This work was partially supported by the MONDO (EU ICT-611125) project.

c© Springer International Publishing Switzerland 2015
F. Parisi-Presicce and B. Westfechtel (Eds.): ICGT 2015, LNCS 9151, pp. 275–282, 2015.
DOI: 10.1007/978-3-319-21145-9 18

276 M. Búr et al.

Experimental evaluations of the two strategies (like in [1]) demonstrated
that incremental approaches, which rely on caching the result sets of queries,
provide an order of magnitude faster re-evaluation time, but they also result in
larger memory footprint and longer initialization phase compared to local search-
based pattern matching. These different performance characteristics makes var-
ious strategies or approaches most useful for different kinds of problems.

While EMF-IncQuery has traditionally been tailored to provide incremen-
tal evaluation over graphs captured as EMF models, these experimental find-
ings have triggered us to extend the EMF-IncQuery framework with a new
feature to support local search based evaluation for queries integrated to the
query development environment, which is reported in the current paper. The
reuse of the existing pattern language and query development environment of
EMF-IncQuery enables to select the most appropriate strategy separately for
each pattern without any modifications to the definitions of existing patterns. In
addition, we also report on a prototype graphical debugger to trace local search
based evaluation. The novel features will be presented in the context of a case
study aiming to detect anti-patterns in Java programs [1].

The rest of the paper is structured as follows. Sect. 2 gives a brief overview of
graph patterns and EMF-IncQuery that is followed in Sect. 3 by an overview
of local search based pattern matching. Then Sect. 4 presents the graphical
debugger for pattern matching. Sect. 5 summarizes related work, and Sect. 6
concludes the paper discussing directions for future work.

2 Model Queries with EMF-IncQuery

2.1 Running Example: Anti-pattern Detection in Java Programs

In the current paper we will use the automated detection of coding anti-patterns
over Java programs to demonstrate the local search support. As metamodel, the
Java metamodel of the Columbus framework is used, together with a set of
anti-patterns introduced in [1].

Example 1. Figure 1a presents a Java code snippet. The code consists of a public
method called equals with a single parameter and a call of this method using a
Java variable srcVar. This snippet shows an anti-pattern: the call equals can
result in an exception if the variable srcVar is null. However, by swapping the
literal parameter with the variable operand, no such exception could occur.

The model representation of this snippet is depicted in Fig. 1b as a typed
graph. Each node represents an element of the abstract syntax graph of the Java
model. To ease readability, several attribute values were omitted which are not
required to understand the contributions and examples in this paper (such as
the final flag of parameter definitions).

2.2 Graph Patterns

A graph pattern consists of structural constraints prescribing the interconnec-
tion between nodes and edges of given types and expressions to define attribute

Local Search-Based Pattern Matching Features in EMF-IncQuery 277

Fig. 1. ASG representation of Java code

constraints. Both constraints can be illustrated as a graph where the nodes are
typed as classes from the metamodel, while the edges prescribe the required
connections of selected types between them. Pattern parameters are a subset of
nodes and attributes interfacing the model elements interesting from the per-
spective of the pattern user. A match of a pattern in a model M is a binding
of all pattern parameters to model elements of M that satisfies all constraints
expressed by the pattern.

Complex patterns may reuse other patterns by different types of pattern com-
position constraints. A (positive) pattern call identifies a subpattern (or called
pattern) that is embedded as an additional set of constraints while a negative
pattern call invalidates cases when a match of the referred pattern is found.

Example 2. Figure 2 captures the “String Literal as Compare Parameter” prob-
lem as a graph pattern using the textual syntax of EMF-IncQuery that
describes a case when a String literal is used as the argument of an equals
call.

Fig. 2. Graph pattern representation of the string literal compare anti-pattern

The pattern consists of four variables : inv (of type MethodInvocation), m (of
type NormalMethod), op (of type Expression) and arg (of type StringLiteral).
The constraint in Line 6 represents a typed reference invokes between the model
elements selected by inv and m, and a similar operand reference is required
between variables m and op. Variable m is part of an attribute constraint in Line 8:
its name attribute has to be the literal "equals". To ensure that the operand op
of the method invocation is not a Literal, a negative pattern call is used in Line
9. Finally, to confirm that the invoked method has only a single parameter, the

278 M. Búr et al.

number of arguments are counted in Line 11 by counting the number of matches
of the subpattern argument and checking if it equals to 1.

2.3 The Query Development Environment of IncQuery

EMF-IncQuery provides an integrated development environment where graph
patterns can be created and debugged [2]. The environment consists of three
major components: (1) a pattern editor to create queries, (2) the Query Explorer
to display the results of various queries, and (3) a code generator creating a
pattern matcher that can be integrated into existing Java (EMF) applications.

The Xtext-based pattern editor helps query development with advanced fea-
tures such as syntax highlighting, code completion and well-formedness valida-
tion rules that check for common developer mistakes.

The Query Explorer is the main debugging component of EMF-IncQuery
as it continuously evaluates the developed queries with changes of the model
from a model editor, it is possible to find problematic cases of complex queries
by modifying the models in the existing model editors, and watching for the
expected query result changes. The Query Explorer relies on the pattern inter-
preter support of EMF-IncQuery instead of the generated code itself. This
eases the development and debugging of graph patterns, as changes in the pat-
terns can be evaluated in the development environment directly.

3 Local-Search Pattern Matching in IncQuery

3.1 Executing a Local Search Based Matching Strategy

Local search based pattern matching (LS) is commonly used in graph transfor-
mation tools [3,4] starting the match process from a single node and extending
it step-by-step with the neighboring nodes and edges following a search plan.

Local search based pattern matching consists of four steps. (1) At first, in a
preprocessing step the patterns are normalized : the constraint set is minimized,
variables that are always equal are unified and positive pattern calls are flat-
tened. These normalized patterns are evaluated by (2) the query planner, using
a specified cost estimation function to provide search plans [5]: totally ordered
lists of search operations used to ensure that the constraints from the pattern
definition hold. From a single pattern specification multiple search plans can be
derived, thus pattern matching includes (3) plan selection based on the input
parameter binding and model-specific metrics. Finally, (4) the search plan is
executed by a plan interpreter evaluating the different operations of the plans.
If an operation fails, the interpreter backtracks; if all operations are executed
successfully, a match is found.

Example 3. To evaluate the String Literal Compare pattern from Fig. 2, a pos-
sible 8-step search plan is presented in Fig. 3a. First, (1) all NormalMethod
instances are iterated over to (2) check for their name. Then a (3) backward
navigation operation is executed to find all corresponding method invocations

Local Search-Based Pattern Matching Features in EMF-IncQuery 279

to check (4–6) its argument and (7) operand references. At the last step, (8)
a negative pattern call is executed by starting a new plan execution for the
negative subplan, but only looking for a single solution. Note that the positive
pattern call from Line 10 is flattened, resulting in operation (5), while the match
counter and negative pattern calls from Line 11 and Line 9 are represented by
pattern calls in operations (4) and (8), respectively.

Figure 3b illustrates the execution of the search plan on the simple instance
model introduced previously. First, the NormalMethod is selected, then its name
attribute is validated, followed by the search for the MethodInvocation. At this
point, following the argument reference made it sure that only a single element
is available, then the StringLiteral is found and checked. Finally, the operand
reference is followed, and a NAC check is executed using a different search plan.

Fig. 3. A search plan for the string literal compare pattern

3.2 Local Search Support in IncQuery

The local search feature of EMF-IncQuery relies on the existing features cre-
ated for incremental pattern matching as much as possible. This includes the
reuse of both the pattern language (together with its editor), pattern interpreter
and the code generator framework itself. Furthermore, the generated local search
based matchers provide code that is a drop-in replacement for existing, incre-
mental ones (with the notable exception of not providing change notifications for
the result set). The reuse of the pattern language with a common runtime API
allows to specify the patterns once, while being able to select the corresponding
strategy later based on the constraints of the created applications.

The search planner component relies on a cost function that estimates how
expensive is to evaluate a selected constraint based on the already bound vari-
ables. Currently, only a simplistic cost function is implemented, but it was
designed to be extensible with additional strategies, such as the dynamic pro-
gramming based approach in [5].

Additionally, the local search-based pattern matcher can optionally reuse
the model indexer of EMF-IncQuery for iterating over all instances of model

280 M. Búr et al.

elements or traverse model edges backwards. This option allows fine-grained
performance tuning of pattern matching, as reusing model indexes can greatly
reduce search time, while requiring much less memory than Rete-based incre-
mental matcher. In [1] we have evaluated the performance of search-based and
incremental approaches, and found that incremental graph pattern matching can
outperform other approaches in case of repeated execution of the same pattern,
as search times are an order of magnitude smaller, at the cost of a longer initial-
ization period and additional increase in memory cost by a factor of 10 − 15.

4 Debugging Model Queries with Local Search

The high-level, declarative nature of graph patterns sometimes results in hard
to understand corner cases. In such cases simply looking at match results, as
supported by the Query Explorer, does not provide enough details to locate the
source of the problem. To support this use case, the development environment
of EMF-IncQuery has been extended with a Local Search Debugger view that
follows through the execution of a search plan created for a pattern over a model.

As constraints of graph patterns are often not evaluated in the order of their
definitions, it is hard to see which constraints are already evaluated. On the other
hand, the ordered search operations visualize the status of pattern matching,
and can be traced back to the source query. The view can also be used for query
optimization, similar to explain plans [6] used for optimizing SQL queries.

As Fig. 4 depicts, the view has three distinct parts to display information
about the execution. At the upper left corner (a) the search plan itself is shown,
including the plans created for called patterns. Each line represents a search
operation; child nodes are operations of a called pattern. The current status
of the execution is depicted with a set of icons: check marks are assigned to
executed operations, question marks are assigned to operations not yet started,
while the current operation is denoted with the ‘Run’ symbol.

Fig. 4. The local search debugger

Local Search-Based Pattern Matching Features in EMF-IncQuery 281

In the bottom left corner (b) a set of tables is presented summarizing the
found matches. The tables include the found matches of all patterns in different
tables, including both parameters and local variables. Finally, in the right side
(c) of the view, a graph representation is provided for the currently evaluated
(partial) match, showing the current substitutions for the pattern variables along
with the relationships between them.

Finally, to control the execution, standard debugging operations are avail-
able [7]: breakpoints can be assigned to search operations, and both step-by-step
and continuous execution modes are available.

This view complements the debugging capabilities of the Query Explorer,
as the latter one is useful for identifying problematic cases by providing live
feedback when the model changes, the debugger visualizes the detailed execution
of the search. The local search algorithm, in our experience, works similarly as a
query developer reasons about a graph pattern, thus it eases the understanding
of complex graph patterns.

5 Related Work

Local search-based pattern matching is commonly used in graph transformation
tools, such as FUJABA [3], GrGen.NET [4] or FunnyQT [8]. The main difference
between the various approaches are the supported modeling backends, the search
planner algorithm and the cost estimation used during planning. For example,
in [5] an adaptive algorithm is proposed that uses dynamic programming to
estimate plan costs.

The debugging of graph transformations is already well-researched [7];
GrGen.NET [4] already incorporates a visual debugger for its transformation,
that can visualize the models being transformed, and can highlight elements
matched by a graph pattern; however, it does not support stepping through the
pattern matching process manually.

The Eclipse OCL tool [9] reuses the debugger interface of Eclipse for stepping
through models, including following the search steps directly in the OCL editor.
The direct reuse of this debugging approach is not optimal for graph patterns,
where, as opposed to OCL, the order of execution does not follow the order of
definitions, making it hard to understand which elements were hidden.

In the database community, several development environments were proposed
for SQL queries [6,10], providing query editing and evaluation support. Further-
more, to give insight to the performance of queries, visualizations are available
of the execution plans of the queries, such as Graphical Explain Plans in case of
Oracle Enterprise Manager.

The features of EMF-IncQuery introduced in the paper are novel in the
sense that query definitions can be evaluated using either incremental or local
search based techniques, and the corresponding tools for debugging incremental
and local search strategies nicely complement each other.

282 M. Búr et al.

6 Conclusion and Future Work

In this paper, we described a novel feature of the EMF-IncQuery framework,
the support of local search-based pattern matching in addition to the previously
available incremental evaluation. By reusing the existing pattern language and
query development environment, it is possible to select the most appropriate
strategy without modifications to already developed patterns. Furthermore, we
presented a prototype graphical debugger that helps understanding complex
patterns by visualizing the execution of the search process. Both contributions
are included in the EMF-IncQuery project.

In the future, we plan to improve the local search support by providing a
model-sensitive planner for local search [5], that is expected to enhance the per-
formance. Another promising idea is the support of hybrid pattern matching [11]:
by mixing incrementally evaluated and local search-based pattern matching, it
is possible to fine-tune the performance characteristics (memory footprint or
execution time), extending the range of problems that can be addressed.

References

1. Ujhelyi, Z., Szõke, G., Ákos Horvth, Csiszár, N.I., Vidács, L., Varró, D., Ferenc,
R.: Performance comparison of query-based techniques for anti-pattern detection.
Information and Software Technology (0) (2015) - Accepted

2. Ujhelyi, Z., Bergmann, G., Hegeds, Á., Horváth, Á., Izsó, B., Ráth, I., Szatmári, Z.,
Varró, D.: EMF-Incquery: an integrated development environment for live model
queries. Sci. Comput. Program. 98(1), 80–99 (2015)

3. Nickel, U., Niere, J., Zündorf, A.: Tool demonstration: The FUJABA environ-
ment. In: Proceedings of the 22nd International Conference on Software Engineer-
ing (ICSE 2000), pp. 742–745. ACM Press, Limerick, Ireland (2000)

4. Geiß, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A.: GrGen: a fast spo-
based graph rewriting tool. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro,
L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 383–397. Springer,
Heidelberg (2006)

5. Varró, G., Deckwerth, F., Wieber, M., Schürr, A.: An algorithm for generating
model-sensitive search plans for emf models. In: Hu, Z., de Lara, J. (eds.) ICMT
2012. LNCS, vol. 7307, pp. 224–239. Springer, Heidelberg (2012)

6. Oracle: Enterprise Manager (2015). http://www.oracle.com/technetwork/oem/
enterprise-manager/overview/index.html

7. Seifert, M., Katscher, S.: Debugging triple graph grammar-based model transfor-
mations. In: Fujaba Days, pp. 19–25 (2008)

8. Horn, T.: Model querying with funnyQT. In: Duddy, K., Kappel, G. (eds.) ICMB
2013. LNCS, vol. 7909, pp. 56–57. Springer, Heidelberg (2013)

9. Eclipse OCL Project: MDT-OCL website (2015). https://projects.eclipse.org/
projects/modeling.mdt.ocl

10. IBM Software: InfoSphere Data Architect (2015). http://www-01.ibm.com/soft
ware/data/optim/data-architect/

11. Horváth, Á., Bergmann, G., Ráth, I., Varró, D.: Experimental assessment of com-
bining pattern matching strategies with VIATRA2. Int. J. Softw. Tools Technol.
Transfer 12(3–4), 211–230 (2010)

http://www.oracle.com/technetwork/oem/enterprise-manager/overview/index.html
http://www.oracle.com/technetwork/oem/enterprise-manager/overview/index.html
https://projects.eclipse.org/projects/modeling.mdt.ocl
https://projects.eclipse.org/projects/modeling.mdt.ocl
http://www-01.ibm.com/software/data/optim/data-architect/
http://www-01.ibm.com/software/data/optim/data-architect/

Author Index

Anjorin, Anthony 87, 257
Arendt, Thorsten 155

Becker, Jan Steffen 155
Bruggink, H.J. Sander 52
Búr, Márton 275

Corradini, Andrea 35

de Oliveira Oliveira, Mateus 121
Diemert, Simon 205
Drewes, Frank 19
Duval, Dominique 35
Dyck, Johannes 237

Echahed, Rachid 35

Giese, Holger 237
Golas, Ulrike 69

Habel, Annegret 155
Heckel, Reiko 171
Hoffmann, Berthold 19
Horn, Tassilo 189
Horváth, Ákos 275

Kissinger, Aleks 138
Kleijn, Jetty 221
König, Barbara 52
Kwantes, Pieter M. 221

Leblebici, Erhan 87, 257
Löwe, Michael 3

Machado, Rodrigo 171
Minas, Mark 19

Nolte, Dennis 52

Padberg, Julia 104
Price, Morgan 205
Prost, Frederic 35

Radke, Hendrik 155
Rensink, Arend 221
Ribeiro, Leila 35, 171

Schürr, Andy 87, 257
Stückrath, Jan 266

Taentzer, Gabriele 69, 87, 155

Ujhelyi, Zoltán 275

Van Gorp, Pieter 221
Varró, Dániel 275

Weber, Jens H. 205

Zamdzhiev, Vladimir 138
Zantema, Hans 52

	Foreword
	Preface
	Organization
	From Software Modeling to System Modeling – Transforming the Change(Keynote)
	Contents
	Foundations
	Polymorphic Sesqui-Pushout Graph Rewriting
	1 Introduction
	2 Sesqui-Pushout Rewriting Framework
	3 Sesqui-Pushout Rewriting Instances
	3.1 Sesqui-Pushout Rewriting of Graphs
	3.2 Sesqui-Pushout Rewriting of Typed Graphs

	4 Example: Version Management
	5 Related Work and Future Research
	References

	Predictive Top-Down Parsing for Hyperedge Replacement Grammars
	1 Introduction
	2 Hyperedge Replacement Grammars
	3 Predictive Top-Down Parsing: From Strings to Graphs
	4 Predictive Top-Down Parsability
	5 Grammar Analysis
	6 Conclusions
	References

	AGREE -- Algebraic Graph Rewriting with Controlled Embedding
	1 Introduction
	2 Preliminaries
	2.1 Examples of Partial Map Classifiers

	3 Algebraic Graph Rewriting with Controlled Embedding
	4 Example: Social Network Anonymization
	5 AGREE Subsumes SqPO and Polarized Node Cloning
	5.1 AGREE Subsumes SqPO Rewriting with Injective Matches
	5.2 AGREE Subsumes Polarized Node Cloning on Graphs

	6 Related Work and Discussion
	References

	Proving Termination of Graph Transformation Systems Using Weighted Type Graphs over Semirings
	1 Introduction
	2 Preliminaries
	2.1 Graphs and Graph Transformation
	2.2 Matrix Interpretations for String Rewriting
	2.3 Ordered Semirings

	3 Weighted Type Graphs
	4 Using Strongly Ordered Semirings
	5 Examples
	6 Finding Weighted Type Graphs and Implementation
	7 Conclusion
	References

	Towards Local Confluence Analysis for Amalgamated Graph Transformation
	1 Introduction
	2 Amalgamated Graph Transformation
	3 Parallel Independence of Rule Schemes
	4 Conflict Analysis for Rule Schemes
	5 Related Work and Conclusion
	References

	Multi-amalgamated Triple Graph Grammars
	1 Introduction and Motivation
	2 Running Example and Preliminaries
	2.1 Consistency Specification with Triple Graph Grammars

	3 Multi-amalgamated Triple Graph Grammars
	4 Operationalizing Multi-amalgamated TGGs
	5 Model Transformation with Multi-amalgamated TGGs
	6 Related Work
	7 Conclusion and Future Work
	References

	Reconfigurable Petri Nets with Transition Priorities and Inhibitor Arcs
	1 Introduction
	2 Reconfigurable Petri Nets
	2.1 Reconfigurable Place/Transition Nets
	2.2 Other Types of Reconfigurable Petri Nets

	3 Motivating Example
	4 Review of M-Adhesive Transformation Systems
	5 Transition Priorities
	6 Inhibitor Arcs
	7 Related Work
	8 Conclusion
	References

	Reachability in Graph Transformation Systems and Slice Languages
	1 Introduction
	2 Graph Transformations
	3 Slices and Slice Languages
	3.1 Slice Languages
	3.2 Sub-Slices and Sub-Decompositions

	4 Elementary Slice Languages Operations
	5 Next Step Automaton
	5.1 Mapping Rules to Slice Decompositions
	5.2 Mapping Layers of Rewriting Rules into Unit Decompositions
	5.3 Applying Sliced Layers of Rules to Unit Decompositions

	6 Proofs of Our Main Results
	7 Conclusion
	References

	Equational Reasoning with Context-Free Families of String Diagrams
	1 Introduction
	2 Preliminaries
	2.1 B-edNCE Grammars
	2.2 String Graphs and Rewriting

	3 Encoded String Graphs and B-ESG Grammars
	4 B-ESG Rewrite Patterns
	5 Transforming B-ESG Grammars
	6 Conclusion and Future Work
	References

	Translating Essential OCL Invariants to Nested Graph Constraints Focusing on Set Operations
	1 Introduction
	2 Essential OCL Invariants
	3 Nested Graph Constraints
	4 Translation of Essential OCL Invariants
	5 Related Work
	6 Conclusion
	References

	Characterizing Conflicts Between Rule Application and Rule Evolution in Graph Transformation Systems
	1 Introduction
	2 Background
	3 Evolution of Graph Transformation Systems
	4 Inter-level Conflicts
	5 Inter-level Confluence
	6 Inter-level Critical Pair Analysis
	7 Related Work
	8 Concluding Remarks
	References

	Applications: Technical Papers
	Graph Pattern Matching as an Embedded Clojure DSL
	1 Introduction
	2 Pattern Matching
	3 In-Place Transformations
	4 Related Work
	4.1 Embedded Model Transformation DSLs
	4.2 Graph Pattern Matching and Transformation Languages

	5 Conclusion
	References

	Using Graph Transformations for Formalizing Prescriptions and Monitoring Adherence
	1 Introduction
	2 Medication Management Process
	3 Related Work
	4 A GT-Based Method to Formalize Prescriptions
	4.1 Interface Language
	4.2 Rx Graph Model
	4.3 Rx Graph Compilation
	4.4 Adherence Tracking

	5 Evaluation
	6 Conclusions and Future Work
	References

	Towards Compliance Verification Between Global and Local Process Models
	1 Introduction
	2 Process Modelling in BPMN
	2.1 Global Behaviour
	2.2 Modelling Local Behaviour in BPMN

	3 Implementation in GROOVE
	4 A Case Study: The Settlement Process
	4.1 BPMN Collaboration Diagram of the Settlement Process
	4.2 Translation of the BPMN Collaboration Diagram into an LTL-Formula
	4.3 Example of a Correct Specification of Local Behaviour
	4.4 Example of an Incorrect Specification of Local Behaviour
	4.5 Test Results

	5 Related Work
	6 Discussion and Outlook
	References

	Inductive Invariant Checking with Partial Negative Application Conditions
	1 Introduction
	2 Foundations
	3 Restrictions, Constructions, and Implication
	3.1 Constructions
	3.2 Implication

	4 Inductive Invariant Checking
	4.1 Step 2: Construction of Target Patterns
	4.2 Step 3: Construction of Source Patterns
	4.3 Step 4: Analysis of Source Patterns and Counterexamples

	5 Evaluation and Discussion
	6 Related Work
	7 Conclusion and Future Work
	References

	Applications: Tool Presentations
	Tool Support for Multi-amalgamated Triple Graph Grammars
	1 Introduction and Motivation
	2 Running Example
	3 Multi-amalgamated TGGs with eMoflon
	4 Related Work and Evaluation with Comparison
	5 Conclusion and Future Work
	References

	Uncover: Using Coverability Analysis for Verifying Graph Transformation Systems
	1 Introduction
	2 Design and Usage
	3 Decidability Results
	3.1 Minor Ordering
	3.2 Subgraph Ordering

	4 Case Studies
	5 Future Development
	References

	Local Search-Based Pattern Matching Features in EMF-IncQuery
	1 Introduction
	2 Model Queries with EMF-IncQuery
	2.1 Running Example: Anti-pattern Detection in Java Programs
	2.2 Graph Patterns
	2.3 The Query Development Environment of IncQuery

	3 Local-Search Pattern Matching in IncQuery
	3.1 Executing a Local Search Based Matching Strategy
	3.2 Local Search Support in IncQuery

	4 Debugging Model Queries with Local Search
	5 Related Work
	6 Conclusion and Future Work
	References

	Author Index

