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Abstract One of the main sources of inspiration for techniques applicable to
complex search space and optimisation problems is nature. This paper introduces
a new metaheuristic—Dispersive Flies Optimisation (DFO)—whose inspiration is
beckoned from the swarming behaviour of flies over food sources in nature. The
simplicity of the algorithm facilitates the analysis of its behaviour. A series of exper-
imental trials confirms the promising performance of the optimiser over a set of
benchmarks, as well as its competitiveness when compared against three other well-
known population based algorithms. The convergence-independent diversity of DFO
algorithm makes it a potentially suitable candidate for dynamically changing envi-
ronment. In addition to diversity, the performance of the newly introduced algorithm
is investigated using the three performance measures of accuracy, efficiency and
reliability and its outperformance is demonstrated in the paper. Then the proposed
swarm intelligence algorithm is used as a tool to identify microcalcifications on the
mammographs. This algorithm is adapted for this particular purpose and its per-
formance is investigated by running the agents of the swarm intelligence algorithm
on sample mammographs whose status have been determined by the experts. Two
modes of the algorithms are introduced in the paper, each providing the clinicians
with a different set of outputs, highlighting the areas of interest where more attention
should be given by those in charge of the care of the patients.
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1 Introduction

Throughout the history nature has been an inexplicable source of inspiration for
scientists and researchers. Observations, many of which made unintentionally, have
been triggering the inquisitive minds for hundreds of years. The task of resolving
problems and its often present nature in the minds of scientists boosts the impact of
these observations, which in cases led to discoveries. Among others, researchers in
mathematics, physics and natural sciences have had their fair share of ‘observations-
leading-to-discoveries’.

Observing the magnificently choreographed movements of birds, behaviour of
ants foraging, convergence of honey bees in search for food source and so forth has led
several researchers to propose (inspired versus identical)models used to solve various
optimisation problems. Genetic Algorithm [10], Particle Swarm Optimisation [11]
and Ant Colony Optimisation [8] are only few such techniques belonging to the
broader category of swarm intelligence; it investigates collective intelligence and
aims at modelling intelligence by looking at individuals in a social context and
monitoring their interactions with one another as well as their interactions with the
environment.

The work presented here aims at proposing a novel nature-inspired algorithm
based on the behaviours of flies hovering over food sources. This model—Dispersive
Flies Optimisation or DFO—is first formulated mathematically and then a set of
experiments is conducted to examine its performance when presented with various
problems.

Afterwards an introduction to metastatic disease is given along with a brief expla-
nation on how to detect metastasis. The swarm intelligence algorithm is adapted for
the purpose of this research. Next, a brief summary of x-ray mammography and
its use is presented, emphasising on mammographic film reading as a particularly
demanding visual task, which could be facilitated using the technique presented in
this paper.

2 Dispersive Flies Optimisation

Dispersive Flies Optimisation (DFO) is an algorithm inspired by the swarming
behaviour of flies hovering over food sources. The swarming behaviour of flies
is determined by several factors and that the presence of threat could disturb their
convergence on the marker (or the optimum value). Therefore, having considered the
formation of the swarms over the marker, the breaking or weakening of the swarms
is also noted in the proposed algorithm.

In other words, the swarming behaviour of the flies, in Dispersive Flies Opti-
misation, consist of two tightly connected mechanisms, one is the formation of the
swarms and the other is its breaking or weakening. The algorithm and the mathe-
matical formulation of the update equations are introduced below.
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The position vectors of the population are defined as:

xt
i = [

xt
i1, xt

i2, . . . , xt
i D

]
, i = 1, 2, . . . ,NP (1)

where t is the current time step, D is the dimension of the problem space and NP is
the number of flies (population size).

In the first generation, when t = 0, the i th vector’s j th component is initialised as:

x0id = xmin,d + r
(
xmax,d − xmin,d

)
(2)

where r is a random number drawn from a uniform distribution on the unit interval
U (0, 1); xmin and xmax are the lower and upper initialisation bounds of the dth
dimension, respectively. Therefore, a population of flies are randomly initialised
with a position for each flies in the search space.

On each iteration, the components of the position vectors are independently
updated, taking into account the component’s value, the corresponding value of the
best neighbouring fly (consider ring topology) with the best fitness, and the value of
the best fly in the whole swarm:

xt
id = xt−1

nb,d + U (0, 1) × (xt−1
sb,d − xt−1

id ) (3)

where xt−1
nb,d is the value of the neighbour’s best fly in the dth dimension at time step

t − 1; xt−1
sb,d is the value of the swarm’s best fly in the dth dimension at time step

t − 1; and U (0, 1) is the uniform distribution between 0 and 1.
The algorithm is characterised by two principle components: a dynamic rule for

updating flies position (assisted by a social neighbouring network that informs this
update), and communication of the results of the best found fly to other flies.

As stated earlier, the swarm is disturbed for various reasons; one of the positive
impacts of such disturbances is the displacement of the disturbed flies which may
lead to discovering a better position. To consider this eventuality, an element of sto-
chasticity is introduced to the update process. Based on this, individual components
of flies’ position vectors are reset if the random number, r , generated from a uniform
distribution on the unit interval U (0, 1) is less than the disturbance threshold (dt).
This guarantees a proportionate disturbance to the otherwise permanent stagnation
over a likely local minima.

Algorithm 1 summarises the DFO algorithm.1

1 The source code can be downloaded from the following page:
http://doc.gold.ac.uk/~map01mm/DFO/.

http://doc.gold.ac.uk/~map01mm/DFO/
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Algorithm 1 Dispersive Flies Optimisation
1: while FE < 300, 000 do
2: for i = 1 → NP do
3: xi .fitness ← f (xi )

4: end for
5: sb ← {sb, ∀ f (xsb) = min ( f (x1), f (x2), ..., f (xNP))}
6: nb ← {

nb, ∀ f (xnb) = min
(

f (xleft), f (xright)
)}

7: for i = 1 → NP do
8: for d = 1 → D do
9: τd ← xt−1

nb,d + U (0, 1) × (xt−1
sb,d − xt−1

id )

10: if (r < dt) then
11: τd ← xmin,d + r

(
xmax,d − xmin,d

)

12: end if
13: end for
14: xi ← τ

15: end for
16: end while

The next section briefly presents three population-based algorithms which will
be used to compare the performance of DFO, and then the results of a series of
experiments conducted on DFO over a set of benchmark functions are reported.

3 Experiments

This section presents a set of experiment investigating the performance of the newly
introduced Dispersive Flies Optimisation (DFO) and discusses the results. Then, to
understand whether disturbance plays an important role in the optimisation process,
a control algorithm is presented DFO-c where no disturbance is inflicted upon the
population of flies.

Recognising the lose of diversity as a common issue in all distribution based
evolutionary optimisers (since dispersion reduces with convergence), the impact of
disturbance on preserving the diversity of the population is also studied. Addition-
ally, an optimal value for disturbance threshold, dt, is suggested. Afterwards the
performance of DFO is compared against few other well-known population-based
algorithms, namely Particle SwarmOptimisation (PSO), Differential Evolution (DE)
and Genetic Algorithm (GA).

3.1 Experiment Setup

The benchmarks used in the experiments (see Table1) are divided in two sets, f1−14
and g1−14; more details about these functions (e.g. global optima, mathematical
formulas, etc.) are reported in [3, 15]. The first set, f1−14, have been used by several
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Table 1 Benchmark Functions

Fn Name Class D Feasible Bounds

f1 Sphere/Parabola Unimodal 30 (−100, 100)D

f2 Schwefel 1.2 Unimodal 30 (−100, 100)D

f3 Generalized Rosenbrock Multimodal 30 (−30, 30)D

f4 Generalized Schwefel 2.6 Multimodal 30 (−500, 500)D

f5 Generalized Rastrigin Multimodal 30 (−5.12, 5.12)D

f6 Ackley Multimodal 30 (−32, 32)D

f7 Generalized Griewank Multimodal 30 (−600, 600)D

f8 Penalized Function P8 Multimodal 30 (−50, 50)D

f9 Penalized Function P16 Multimodal 30 (−50, 50)D

f10 Six-hump Camel-back Low
dimensional

2 (−5, 5)D

f11 Goldstein-Price Low
dimensioal

2 (−2, 2)D

f12 Shekel 5 Low
dimensioal

4 (0, 10)D

f13 Shekel 7 Low
dimensioal

4 (0, 10)D

f14 Shekel 10 Low
dimensioal

4 (0, 10)D

g1 Shifted Sphere Unimodal 30 (−100, 100)D

g2 Shifted Schwefel 1.2 Unimodal 30 (−100, 100)D

g3 Shifted Rotated High
Conditioned Elliptic

Unimodal 30 (−100, 100)D

g4 Shifted Schwefel 1.2 with
Noise in Fitness

Unimodal 30 (−100, 100)D

g5 Schwefel 2.6 Global Optimum
on Bounds

Unimodal 30 (−100, 100)D

g6 Shifted Rosenbrock Multimodal 30 (−100, 100)D

g7 Shifted Rotated Griewank
without Bounds

Multimodal 30 (−600, 600)D

g8 Shifted Rotated Ackley with
Global Optimum on Bounds

Multimodal 30 (−32, 32)D

g9 Shifted Rastrigin Multimodal 30 (−5, 5)D

g10 Shifted Rotated Rastrigin Multimodal 30 (−5, 5)D

g11 Shifted Rotated Weierstrass Multimodal 30 (−0.5, 0.5)D

g12 Schwefel Problem 2.13 Multimodal 30 (−π, π)D

g13 Expanded Extended Griewank
plus Rosenbrock

Expanded 30 (−5, 5)D

g14 Shifted Rotated Expanded
Scaffer

Expanded 30 (−100, 100)D
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authors [3, 12, 14] and it contains the three classes of functions recommended by
Yao et al. [17]: unimodal and high dimensional, multimodal and high dimensional,
and low dimensional functions with few local minima. In order not to initialise the
flies on or near a region in the search space known to have the global optimum, region
scaling technique is used [9], which makes sure the flies are initialised at a corner of
the search space where there are no optimal solutions.

The second test set, g1−14, are the first fourteen functions of CEC 2005 test suite
[15] and they present more challenging features of the common functions from the
aforementioned test set (e.g. shifted by an arbitrary amount within the search space
and/or rotated). This set has also been used for many researchers.

One hundred flies were used in the experiments and the termination criterion for
the experiments is set to reaching 300,000 function evaluations (FEs). There are
50 Monte Carlo simulations for each experiment and the results are averaged over
these independent simulations. Apart from the disturbance threshold which is set to
dt = 0.001, there are no adjustable parameters in DFO’s update equation.

The aim of the experiments is to study and demonstrate the qualities of the newly
introduced algorithm as a population based continuous optimiser. The behaviour
of the DFO algorithm is compared against its control counterpart and some other
population based algorithms.

In this work, a standard particle swarm version, Clerc-Kennedy PSO (PSO-CK)
is used. In terms of DE, DE/best/1 variation of mutation approaches is deployed with
CR and F set to 0.5. In GA algorithm, the probabilities of crossover and mutation
of the individuals is set to pc = 0.7 and pm = 0.9 respectively. The tournament
size of the tournament selection is set to two, and elitism with an elite size of one is
deployed to maintain the best found solution in the population.

The details of these algorithms and the rest of configuration is given in [1].

3.2 Performance Measures and Statistical Analysis

In order to conduct the statistical analysis measuring the presence of any significant
difference in the performance of the algorithms, Wilcoxon 1 × 1 non-parametric
statistical test is deployed. The performance measures used in this paper are error,
efficiency, reliability and diversity which are described below.

Error is defined by the quality of the best agent in terms of its closeness to the
optimumposition (if knowledge about the optimumposition is known a priori, which
is the case here). Another measure used is efficiency which is the number of function
evaluations before reaching a specified error, and reliability is the percentage of
trials where a specified error is reached. These performance measures are defined as
below:
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Error = ∣∣ f
(
xg

) − f (xo)
∣∣ (4)

Efficiency = 1

n

n∑

i=1

FEs (5)

Reliability = n
′

n
× 100 (6)

where xg is the best position found and xo is the position of the known optimum
solution; n is the number of trials in the experiment and n

′
is the number of successful

trials, FEs is the number of function evaluations before reaching the specified error,
which in these experiments, set to 10−8.

In this work, diversity, which is the degree of convergence and divergence, is
defined as a measure to study the population’s behaviour with regard to exploration
and exploitation. There are various approaches to measure diversity. The average
distance around the population centre is shown [13] to be a robust measure in the
presence of outliers and is defined as:

Diversity = 1

NP

NP∑

i=1

√√√√
D∑

j=1

(
x j

i − x̄ j
)2

(7)

x̄ j = 1

NP

NP∑

i=1

x j
i (8)

where NP is the number of flies in the population, D is the dimensionality of the
problem, x j

i is the value of dimension j of agent i , and x̄ j is the average value of
dimension j over all agents.

3.3 Performance of Dispersive Flies Optimisation

The error, efficiency and reliability results of DFO performance over the benchmarks
are reported in Table2. The first five columns detail the error-related figures and
the last column highlights the median efficiency along with the reliability (shown
between brackets) of the algorithm in finding the optima. The algorithm exhibits
a promising performance in optimising the presented problem set where half the
benchmarks ( f1−2,5−11 and g1−2,7,9) are optimised with the specified accuracy. The
figures in the table are expanded in the following categories:

Unimodal, high dimensional (f 1,2, g1−5) The algorithm optimises 57% of the
benchmarks in this category; while both functions in the first set are optimised ( f1,2),
only two out of five benchmarks in the second andmore challenging set are optimised
to the specified accuracy. All optimised benchmarks achieve 100% success.
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Table 2 DFO—Dispersive Flies Optimisation

Min. Max. Median Mean StdDev Eff. (Rel.%)

f1 6.46E−47 1.97E−40 1.75E−43 1.07E−41 3.49E−41 46850 (100)

f2 2.24E−12 6.01E−10 6.46E−11 1.08E−10 1.26E−10 239850 (100)

f3 1.74E−04 1.45E+01 3.65E−01 2.17E+00 3.62E+00 ∞ (0)

f4 3.89E−07 5.05E−03 2.87E−05 2.49E−04 7.81E−04 ∞ (0)

f5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 84850 (100)

f6 2.84E−14 6.39E−14 3.91E−14 3.88E−14 6.49E−15 121200 (100)

f7 0.00E+00 1.54E−01 1.85E−02 3.25E−02 3.74E−02 47450 (28)

f8 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 50950 (100)

f9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 55550 (100)

f10 0.00E+00 2.22E−16 0.00E+00 4.00E−17 8.62E−17 1700 (100)

f11 0.00E+00 8.10E+01 8.10E+01 5.51E+01 3.82E+01 2100 (32)

f12 5.05E+00 5.05E+00 5.05E+00 5.05E+00 0.00E+00 ∞ (0)

f13 5.27E+00 5.27E+00 5.27E+00 5.27E+00 0.00E+00 ∞ (0)

f14 5.36E+00 5.36E+00 5.36E+00 5.36E+00 0.00E+00 ∞ (0)

g1 5.68E−14 2.27E−13 1.71E−13 1.49E−13 4.28E−14 45300 (100)

g2 4.55E−12 9.78E−10 3.88E−11 1.03E−10 1.57E−10 234100 (100)

g3 3.58E+05 3.22E+06 1.40E+06 1.38E+06 6.23E+05 ∞ (0)

g4 1.40E+00 2.38E+02 2.18E+01 3.71E+01 4.74E+01 ∞ (0)

g5 3.47E+03 1.82E+04 8.95E+03 9.26E+03 3.17E+03 ∞ (0)

g6 1.66E−03 1.51E+02 3.06E+00 1.41E+01 3.05E+01 ∞ (0)

g7 3.31E−11 2.64E−01 1.97E−02 2.93E−02 4.05E−02 236800 (10)

g8 2.00E+01 2.02E+01 2.01E+01 2.01E+01 3.11E−02 ∞ (0)

g9 1.14E−13 2.27E−13 1.71E−13 1.52E−13 3.71E−14 89450 (100)

g10 1.29E+02 3.42E+02 2.34E+02 2.38E+02 5.62E+01 ∞ (0)

g11 2.46E+01 4.02E+01 3.11E+01 3.12E+01 3.23E+00 ∞ (0)

g12 9.73E+01 1.58E+04 2.34E+03 3.62E+03 3.51E+03 ∞ (0)

g13 9.34E−01 2.01E+00 1.48E+00 1.48E+00 3.07E−01 ∞ (0)

g14 1.23E+01 1.40E+01 1.35E+01 1.35E+01 3.69E−01 ∞ (0)

Low dimensional and few local minima (f 10−14) In this category, 40% of the
benchmarks are optimised, with 100% reliability for f10 and 32% for f11. How-
ever, none of the Shekel functions ( f12−14) are optimised; Shekel is known to be a
challenging function to optimise due to the presence of several broad sub-optimal
minima; also the proximity of a small number of optima to the Shekel parameter ai

is another reason for the difficulty of optimising these set of functions.

Multimodal, high dimensional (f 3−9, g6−14)The optimiser is able to optimise 50%
of the benchmarks in this category ( f5−9 and g7,9), 71% of which achieve 100%
success rate (all except f7, g7 with 28 and 10% success rates respectively). The opti-
miser exhibit a promising performance when dealing with the difficult Rosenbrock
functions ( f3, g6), reaching the error of 10−4 and 10−3 respectively. The algorithm
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performs exceptionally well in optimising the infamous Rastrigin functions, both
common and shifted mode (i.e. f5 and g9), achieving 100% success rate; however
it does show weakness in the more challenging g10 rotated version.

The success of the optimiser in optimising the notorious Rastrigin function in its
common and shifted modes will be discussed in the context of DFO’s dimension-to-
dimension disturbance mechanism induced by the algorithm.

In order to provide a better understanding of the behaviour of the algorithm, in
the next section, the disturbance is discarded and the diversity of the algorithm is
studied.

3.4 Diversity in DFO

Most swarm intelligence and evolutionary techniques commence with exploration
and, over time (i.e. function evaluations or iterations), lean towards exploitation.
Maintaining the right balancebetween exploration and exploitationphases has proved
to be difficult. The absence of the aforementioned balance leads to a weaker diversity
when encountering a local minimum and thus the common problem of pre-mature
convergence to a local minimum surfaces. Similar to other swarm intelligence and
evolutionary algorithms, DFO commences with exploration and over time, through
its mechanism (i.e. gradual decrease in the distance between the members of the
population and as such, each agent’s local and global best positions), moves towards
exploitation. However, having implemented the disturbance threshold, a dose of
diversity (i.e. dt) is introduced in the population throughout the optimisation process,
aiming to enhance the diversity of the algorithm.

Figure1 illustrates the convergence of the population towards the optima and their
diversities in three random trials over three benchmarks (i.e. g1,7,9 chosen from the
second set) as examples from unimodal and multimodal functions. The difference
between the error and the diversity values demonstrates the algorithm’s ability in
exploration while converging to the optima whose fitness reach as low as 10−13 in
g1 and g9.

Exploring the role of disturbance in increasing diversity, a control algorithm is
proposed (DFO-c) where there is no disturbance (dt = 0) during the position update
process. The graphs inFig. 1 illustrate the diversity ofDFO-c populations in randomly
chosen trials over three sample benchmarks (again g1,7,9). The graphs illustrate that
the diversity of the population inDFO-c is less thanDFO, thus emphasising the impact
of disturbance in injecting diversity which in turn facilitates the escape from local
minima (e.g. as demonstrated in case of the highly multimodal Rastrigin functions
f5, g9). Note the gradual shrinkage of diversity in g9 (≈10−13) which is a clear
indication of a premature convergence to a local minima with very poor chance of
escape.

In order to compare the performance of DFO and its control counterpart, Table3
presents the result of optimising the benchmarks using DFO-c. Additionally, a statis-
tical analysis is conducted and the output is reported inTable4where the performance
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Fig. 1 DFO and DFO-c: diversity and error in g1,7,9

is compared using the three aforementioned measures of error, efficiency and reli-
ability (see Sect. 3.2 for the definitions of the measures). The results show that in
89% of cases (where there is a significant difference between the two algorithms),
DFO is performing significantly better than its control counterpart (DFO-c) which
is stripped from the diversity inducing disturbance. Furthermore, in all multimodal
functions ( f3−9 and g6−12), whenever there is a statistically significant difference
between DFO and DFO-c, the former demonstrates significant outperformance over
the later.

Following on the results from measuring error, Table4 also shows that in terms
of efficiency and reliability measures, DFO is 79% more efficient than its control
counterpart, and 92% more reliable.
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Table 3 DFO-c—Control DFO Algorithm

Min. Max. Median Mean StdDev Eff. (Rel.%)

f1 1.44E−56 3.09E−36 1.27E−45 9.65E−38 4.55E−37 65400 (100)

f2 7.29E−09 3.23E+01 1.28E−04 7.60E−01 4.60E+00 298200 (2)

f3 5.27E−05 1.61E+02 5.08E+00 1.67E+01 3.08E+01 ∞ (0)

f4 4.48E−09 3.20E+03 1.55E+03 1.40E+03 8.66E+02 141500 (2)

f5 1.87E+02 4.17E+02 2.96E+02 2.94E+02 5.76E+01 ∞ (0%)

f6 1.97E+01 2.00E+01 1.98E+01 1.98E+01 5.24E−02 ∞ (0)

f7 2.22E−16 6.00E+00 9.30E−02 3.51E−01 8.72E−01 64050 (8)

f8 1.03E−32 3.30E+02 2.14E+00 2.35E+01 5.84E+01 132950 (24)

f9 0.00E+00 1.57E+02 1.54E−01 5.35E+00 2.27E+01 176500 (30)

f10 0.00E+00 2.22E−16 0.00E+00 7.99E−17 1.08E−16 1700 (100)

f11 0.00E+00 8.10E+01 8.10E+01 5.99E+01 3.59E+01 2100 (26)

f12 5.05E+00 5.05E+00 5.05E+00 5.05E+00 0.00E+00 ∞ (0)

f13 5.27E+00 5.27E+00 5.27E+00 5.27E+00 0.00E+00 ∞ (0)

f14 5.36E+00 5.36E+00 5.36E+00 5.36E+00 0.00E+00 ∞ (0)

g1 5.68E−14 9.37E−05 1.14E−13 1.91E−06 1.33E−05 70600 (94)

g2 1.68E−09 2.23E+01 1.23E−04 4.63E−01 3.14E+00 257700 (2)

g3 2.18E+05 5.38E+06 1.67E+06 1.73E+06 9.39E+05 ∞ (0)

g4 2.23E+02 1.74E+04 1.80E+03 2.91E+03 3.36E+03 ∞ (0)

g5 5.79E+03 1.38E+04 8.50E+03 8.69E+03 2.00E+03 ∞ (0)

g6 2.25E−04 9.53E+01 8.61E+00 1.68E+01 2.52E+01 ∞ (0)

g7 3.01E−10 2.13E−01 3.02E−02 4.17E−02 4.41E−02 263900 (2)

g8 2.00E+01 2.02E+01 2.00E+01 2.01E+01 3.89E−02 ∞ (0)

g9 8.36E+01 2.64E+02 1.62E+02 1.64E+02 4.61E+01 ∞ (0)

g10 1.22E+02 4.93E+02 2.69E+02 2.71E+02 7.69E+01 ∞ (0)

g11 1.98E+01 4.11E+01 3.10E+01 3.13E+01 3.97E+00 ∞ (0)

g12 2.32E+02 1.38E+04 3.04E+03 4.78E+03 3.88E+03 ∞ (0)

g13 4.79E+00 3.56E+01 1.47E+01 1.58E+01 6.47E+00 ∞ (0)

g14 1.28E+01 1.45E+01 1.36E+01 1.37E+01 3.38E−01 ∞ (0)

3.5 Fine Tuning Disturbance Threshold

The role of disturbance in increasing the diversity ofDFOpopulation is discussed ear-
lier (Sect. 3.4). Also, the importance of disturbance is investigated on the optimisation
capability of DFO by introducing a control algorithm which lacks the disturbance
mechanism and the results demonstrate the positive impact of this mechanism. The
aim of this section is to recommend a value for the disturbance threshold, dt. The
range of disturbance probabilities used in this experiment is between 1 and 10−9 and
the values were chosen according to:

dtn = 10−n, 0 ≤ n ≤ 9
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Table 4 Comparing DFO and DFO-c Performance

DFO—DFO-c

Error Efficiency Reliability

f1 o–X 1–0 –

f2 X–o 1–0 1–0

f3 X–o – –

f4 X–o 0–1 0–1

f5 X–o 1–0 1–0

f6 X–o 1–0 1–0

f7 X–o 1–0 1–0

f8 X–o 1–0 1–0

f9 X–o 1–0 1–0

f10 o–X 0–1 –

f11 – 0–1 1–0

f12 – – –

f13 – – –

f14 – – –

g1 – 1–0 1–0

g2 X–o 1–0 1–0

g3 X–o – –

g4 X–o – –

g5 – – –

g6 – – –

g7 X–o 1–0 1–0

g8 – – –

g9 X–o 1–0 1–0

g10 X–o – –

g11 – – –

g12 – – –

g13 X–o – –

g14 X–o – –

16–2 11–3 11–1

Based on Wilcoxon 1×1 Non-Parametric Statistical Test, if the error difference between each pair
of algorithms is significant at the 5% level, the pairs are marked. X–o shows DFO is significantly
outperforming its counterpart algorithm; and o–X shows that the algorithm compared to DFO is
significantly better than DFO. In terms of the efficiency and reliability measures, 1–0 (or 0–1)
indicates that the left (or right) algorithm is more efficient/reliable. The figures, n–m, in the last row
present a count of the number of X’s or 1’s in the respective columns
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Fig. 2 Fine tuning disturbance threshold

Figure2 illustrates the performance of DFO using these dt probabilities. Both set
of benchmarks (i.e. f1−14 and g1−14) have been used to find a suitable value for
the disturbance threshold. As the heat map highlights, the optimal range is 10−2 <

dt < 10−4 and the overall recommended value of dt = 10−3 is suggested as a good
compromise.

3.6 Comparing DFO with Other Population-Based Optimisers

Having presented the performance of the DFO algorithm (taking into account the
three performance measures of error, efficiency and reliability, as well as the diver-
sity of its population and the impact of disturbance on its behaviour), this section
focuses on contrasting the introduced algorithm with few well-known optimisation
algorithms. The three population algorithms deployed for this comparison are Dif-
ferential Evolution, Particle Swarm Optimisation and Genetic Algorithm. In this
comparison, only the second and the more challenging set of benchmarks, g1−14
are used. Table5 presents the optimising results of the aforementioned algorithms,
and as shown, the algorithms have optimised some of the benchmark to the spec-
ified accuracy, 10−8. Table6 shows the result of the statistical analysis comparing
DFO with the other three optimisers. Based on this comparison, whenever there is
a significant difference between the performance of DFO and the other algorithms,
DFO significantly outperforms DE, PSO and GA in 66.67, 58.33 and 85.71% of the
cases, respectively. Table7 summaries the efficiency results of the three optimisers
with that of DFO; note that only the efficiency of functions reaching the specified
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Table 5 DE (Differential Evolution), PSO (Particle Swarm Optimisation) and GA (Genetic Algo-
rithm)

DE PSO GA

Error Eff. (Rel.%) Error Eff. (Rel.%) Error Eff. (Rel.%)

g1 1.38E−13 21500 (100) 5.23E−14 656236 (100) 5.04E−05 ∞ (0)

g2 1.72E−07 ∞ (0) 1.33E−01 ∞ (0) 1.21E+04 ∞ (0)

g3 9.65E+06 ∞ (0) 1.52E+06 ∞ (0) 1.47E+07 ∞ (0)

g4 4.92E−01 ∞ (0) 7.89E+03 ∞ (0) 5.13E+04 ∞ (0)

g5 2.34E+03 ∞ (0) 5.04E+03 ∞ (0) 2.09E+04 ∞ (0)

g6 2.30E+00 265800 (12) 2.16E+01 ∞ (0) 7.23E+02 ∞ (0)

g7 5.39E−01 ∞ (0) 1.04E−02 279653 (10) 5.48E+03 ∞ (0)

g8 2.09E+01 ∞ (0) 2.09E+01 ∞ (0) 2.04E+01 ∞ (0)

g9 3.47E+01 ∞ (0) 9.59E+01 ∞ (0) 2.20E+01 ∞ (0)

g10 1.47E+02 ∞ (0) 1.14E+02 ∞ (0) 1.39E+02 ∞ (0)

g11 3.65E+01 ∞ (0) 3.00E+01 ∞ (0) 1.17E+01 ∞ (0)

g12 5.85E+05 ∞ (0) 9.51E+03 ∞ (0) 8.14E+03 ∞ (0)

g13 5.70E+00 ∞ (0) 5.35E+00 ∞ (0) 2.70E+00 ∞ (0)

g14 1.34E+01 ∞ (0) 1.25E+01 ∞ (0) 1.39E+01 ∞ (0)

Table 6 Comparing Error in DFO with DE, PSO and GA

DFO - DE DFO - PSO DFO - GA

g1 – o–X X–o

g2 X–o X–o X–o

g3 X–o – X–o

g4 o–X X–o X–o

g5 o–X o–X X–o

g6 o–X X–o X–o

g7 X–o o–X X–o

g8 X–o X–o X–o

g9 X–o X–o X–o

g10 o–X o–X o–X

g11 X–o – o–X

g12 X–o X–o X–o

g13 X–o X–o X–o

g14 – o–X X–o
∑

8–4 7–5 12–2

Based on Wilcoxon 1×1 Non-Parametric Statistical Test, if the difference between each pair of
algorithms is significant at the 5% level, the pairs are marked. X–o shows that the left algorithm is
significantly better than the right one; and o–X shows that the right one is significantly better than
the left. n–m in the row labeled � is a count of the number of X’s in the columns above
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Table 7 Comparing Efficiency in DFO with DE, PSO and GA in this table, 1–0 (0–1) indicates
that the left (right) algorithm is more efficient

DFO - DE DFO - PSO DFO - GA

g1 0–1 1–0 1–0

g2 1–0 1–0 1–0

g6 0–1 – –

g7 1–0 1–0 1–0

g9 1–0 1–0 1–0
∑

3–2 4–0 4–0

The figures, n–m, in the last row present a count of the number of 1’s in the respective columns.
Note that non-applicable functions have been removed from the table

Table 8 Comparing Reliability in DFO with DE, PSO and GA in this table, 1–0 (0–1) indicates
that the left (right) algorithm is more reliable

DFO - DE DFO - PSO DFO - GA

g2 1–0 1–0 1–0

g6 0–1 – –

g7 1–0 – 1–0

g9 1–0 1–0 1–0
∑

3–1 2–0 4–0

The figures, n–m, in the last row present a count of the number of 1’s in the respective columns.
Note that non-applicable functions have been removed from the table

error is given. As shown in the table, DFO, in the majority of cases, outperforms the
other algorithms. In other words, although, when compared with DE, DFO only out-
performs marginally (60%), it outperforms both PSO and GA in all cases (100%).
The reliability comparison of DFOwith the other optimisers is given in Table8. DFO
is shown to be the most reliable algorithm in this comparison. While DFO outper-
forms DE in 75% of cases, it show 100% outperformance when compared with
PSO and GA. In order to compare the diversity of the DFO algorithm with the other
three optimisers, three benchmarks were chosen from unimodal and multimodal cat-
egories (g1,7,9). The result of this comparison is illustrated in Fig. 3. It is shown that
DE has the least diversity in both uni- and multimodal functions. On the other hand,
the diversity of the population in PSO decreases as the population converges towards
an optimum (see g1); however, when convergence does not occur (e.g. in g7,9), PSO
maintain its high diversity throughout the optimisation process. GA shows a sim-
ilar pattern to that of PSO in multimodal functions, which is the gradual diversity
decrease over time; however it maintains a higher diversity for the unimodal function
than PSO (perhaps attributable to the difference in the fitness of the best positions
found in both algorithms). In terms of DFO, diversity is less convergence-dependent
and more stable across all modalities.
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Fig. 3 Diversity of the
population in DFO, DE, PSO
and GA over three random
trials in g1,7 and 9
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4 Computer Aided Diagnosis and Metastatic Disease

Computer aided diagnosis (CAD) is an emerging field in medicine. The technique
introduced in this paper can help radiologists to examine the image in greater depth
and has the potential to help doctors from different medical disciplines to interpret
medical imaging with greater confidence. Furthermore CAD is a promising learning
tool for both medical students and junior doctors to develop basic diagnostic skills.
This paper presents a new CAD approach in which a recently developed swarm
intelligence algorithm—Dispersive Flies Optimisation [1]—is applied to a medical
imaging modality where the potential areas of microcalcifications on the x-ray mam-
mography are detected (Fig. 4).

X-ray mammography has been shown to be effective as a method for detecting
early breast cancer, but the success of mass screening depends critically on the avail-
ability of highly skilled film readers to interpret the images. The majority of film
readers in the UK are consultant radiologists and in order to maintain a sufficiently
high standard of interpretation, readers are required to undergo training, to keep in



Dispersive Flies Optimisation and Medical Imaging 199

Fig. 4 Mammograph

practice and to evaluate their performance at regular intervals [2]. Mammographic
film reading is a particularly demanding visual task. In screening programmes, the
film reader must search for extremely infrequent and often very subtle signs of can-
cer superimposed on complex and variable backgrounds. Early breast cancer may
appear in a variety of forms: a few particles of microcalcification; a small ill-defined
or speculated mass; abnormal asymmetry between right and left breast images, or
subtle distortion of the underlying structure of the breast. These abnormalities vary
in size, shape, structure, brightness and location and may share a great deal of simi-
larity with normal mammographic appearances. False negative cases, in which signs
of cancer are missed by a reader, sometimes occur. Retrospective evaluation of the
previous screening films of cancers detected between screening rounds (interval can-
cers) and screen-detected cancers show evidence of abnormality in between 16 and
27% of cases. Some of these signs are very subtle, and may have been seen by the
readers but dismissed as being insignificant, but others are clear signs of malignancy
[4, 5, 16]. However, different readers miss different cancers, as is evidenced by the
success of double reading in which two readers independently read the films [6]. The
most accurate method of interpretation is double reading with arbitration, where a
third reader reviews cases about which the two readers disagree [6, 7]. In the UK par-
ticularly with the National Health Service Breast Screening Programme (NHSBSP)
there is an increased demand for skilled manpower to effectively interpret mammo-
graphs and double or triple reading of the mammograph is not viable option due
to the increased workload. A novel and different method of coping with this is the
use of computer-based aids. Researchers have been developing algorithms to detect
mammographic abnormalities for more than 30 years with the aim of either automat-
ing mammographic interpretation or, more realistically, providing a tool which will
enhance human film-reading performance. There are two basic approaches to the
problem of detecting abnormalities in mammograms: either to search the images for
specific appearances suggestive of cancer, or to characterize normal mammographic
appearance to the extent that it is possible to detect anything that fails to conform to
the generated model of normality.
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The purpose of the current study is to apply for the first time an swarm intelligence
algorithm namely dispersive flies optimisation to perform the task of identifying the
microcalcifications on the mammographs.

5 Applying Dispersive Flies Optimisation

In this paper, we are presenting a unique approach by deploying the recently
developed DFO algorithm to detect microcalcifications on the mammographs. This
approach demonstrates a promising ability to undertake this task with similar level
of sensitivity. The scan used in this paper is processed by the DFO agents which are
responsible for locating the affected areas.

The reproducibility and the accuracy of the DFO algorithm can be utilised in
developing a standardised system to interpret bone scans and mammographs pre-
venting operator errors and discrepancies. This technology can be employed as an
adjunct to help radiologists assess the various parts of the bone scans and mammo-
graphs making the diagnosis of the lesions more thorough and less time consuming.
Additionally this technique can be effectively used to develop programs for teaching
and training medical students and junior doctors.

5.1 Experiments and Results

This section presents the technical details and the experiment setup, followed by the
results and discussions of the performance of the algorithm.

The number of agents used in this experiment is 50,000. This figure depends on
the size of the input scan (in the case of the paper the size of the scan is 500 × 667
pixels) and the algorithm is run for 25 iterations (i.e. 25 cycles of test and diffusion
phases). The output images shown later in the paper are snapshots taken after every
5 iterations recoding the behaviour of the agents at each stage. As stated earlier, in
the beginning of the process, all the agents are initialised randomly throughout the
search space.

DFO is adapted here to search for areas of metastasis or calcifications in the fea-
sible solution space. Given that the problem is a multi-objective problem, on the
contrary to Eq.3 the local neighbourhood architecture of the algorithm is imple-
mented as shown below:

xt
id = xt−1

nb,d + U (0, 1) × (xt−1
nb,d − xt−1

id ) (9)

In order to evaluate the fitness of each agent, a radius (rad) value is specified
which determine how many pixels around the pixel chosen by the agent is used to
calculate the fitness of each agent. In Model I of the algorithm the radius is set to
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Fig. 5 rad = 1 for Model I. The symbol x represents the position of the agent and the o’s represent
the pixels used in the calculation of the fitness value of the DFO agent
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Fig. 6 rad = 10 for Model II. The symbol x represents the position of the agent and the o’s
represent the pixels used in the calculation of the fitness value of the DFO agent

Fig. 7 Mode I Detecting calcifications

1, rad = 1 as shown in Fig. 5. In this model, the purpose is to highlight the area
of calcification by allowing the DFO agents to converge on the areas of interest. In
Mode II, radius is set to rad = 10 in order to segregate the areas that radiologists
should pay particular attention. In this mode, the exact points of high calcifications
are not marked but DFO agents form a border around the area of interest (Fig. 6).

As shown in Figs. 7 and 8 areas with higher potential of metastasis and calcifica-
tions are identified using Mode I and II respectively. These figures visually present
the technique used, illustrating how agents congregate over the areas of interest over
time (i.e. iterations) when fed with the scans as inputs of the algorithm. As the fig-
ures show, DFO agents converge to the areas of interest (as confirmed by the medical
experts) throughout the entire search space.
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Fig. 8 Mode II Detecting calcifications

6 Conclusion

Dispersive Flies Optimisation (DFO), a simple numerical optimiser over continuous
search spaces, is a population based stochastic algorithm, proposed to search for an
optimum value in the feasible solution space; despite its simplicity, the algorithm’s
competitiveness over an exemplar set of benchmark functions is demonstrated. As
part of the study and in an experiment, a control algorithm is proposed to investigate
the behaviour of the optimiser. In this experiment, the algorithm’s induced distur-
bancemechanismshows the ability tomaintain a stable and convergence-independent
diversity throughout the optimisation process. Additionally, a suitable value is rec-
ommended for the disturbance threshold which is the only parameter in the update
equations to be optimised. This parameter controls the level of diversity by injecting
a component-wise disturbance (or restart) in the flies, aiming to preserve a balance
between exploration and exploitation.

In addition to diversity, DFO’s performance has been investigated using three
other performance measures (i.e. error, efficiency and reliability). Using these mea-
sures, it is established that the newly introduced algorithm, outperforms few generic
population based algorithms (i.e. differential evolution, particle swarm optimisation
and genetic algorithm) in all of the aforementioned measures over the presented
benchmarks. In other words, DFO is more efficient and reliable in 84.62 and 90%
of the cases, respectively; furthermore, when there exists a statistically significant
difference, DFO converges to better solutions in 71.05% of problem set.

Additionally, this paper details the promising results of the novel application of
DFO in detecting areas of interest and the identification of the potential microcal-
cifications on the mammographs. Two modes are proposed to further investigate
the behaviour of the agents in the population and offer two representations of the
outcome in order to emphasis on the area of interest and draw the attention of the
clinicians in charge.
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Finally, it is emphasised that the presented technique could be effectively utilised
as an adjunct to the expert’s eyes of a specialist.
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