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Abstract The Molecular Distance Geometry Problem (MDGP) is the problem of
finding the possible conformations of a molecule by exploiting available informa-
tion about distances between some atom pairs. When particular assumptions are
satisfied, the MDGP can be discretized, so that the search domain of the problem
becomes a tree. This tree can be explored by using an interval Branch & Prune (iBP)
algorithm. In this context, the order given to the atoms of the molecules plays an
important role. In fact, the discretization assumptions are strongly dependent on the
atomic ordering, which can also impact the computational cost of the iBP algorithm.
In this work, we propose a new partial discretization order for protein backbones.
This new atomic order optimizes a set of objectives, that aim at improving the iBP
performances. The optimization of the objectives is performed by Answer Set Pro-
gramming (ASP), a declarative programming language that allows to express our
problem by a set of logical constraints. The comparison with previously proposed
orders for protein backbones shows that this new discretization order makes iBP
perform more efficiently.
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1 Introduction

Experiences of Nuclear Magnetic Resonance (NMR) are able to estimate distances
between some pairs of atoms of a given molecule [12]. The problem of finding
the possible conformations of the molecule that are compatible with this distance
information is known in the scientific literature as the Molecular Distance Geometry
Problem (MDGP) [6, 12, 18]. Generally, the distance information is given through
a list of lower and upper bounds on the distances, i.e. by a list of real-valued inter-
vals [19]. The MDGP, by its nature, is a constraint satisfaction problem, which is
NP-hard [24].

Let G = (V, E, d) be a simple weighted undirected graph where the vertices in
V represent the atoms of the molecule and d : E → R+ assigns positive weights
d(i, j) to edges which are in E if the distance between the atoms i and j is available.
The MDGP asks therefore to find an embedding x : V → R

3 satisfying the distance
information, i.e. a conformation in the three-dimensional space such that:

d(i, j) ≤ ‖xi − x j‖ ≤ d(i, j), ∀(i, j) ∈ E, (1)

where d(i, j) and d(i, j) denote, respectively, the lower and upper bounds for the
distance d(i, j) (notice that d(i, j) = d(i, j) if d(i, j) is exact). In this paper, we
suppose that the given set of distances is actually embeddable in R3; in other words,
it is supposed that no distance is affected by errors.

Over the years, the solution of MDGPs has been attempted by formulating global
optimization problems in a continuous space, where a penalty objective function
is generally employed in order to measure the violation of the distance constraints
for given molecular conformations. More recently, a new class of MDGPs has been
introduced, for which the search domain of the optimization problem can be reduced
to a discrete space having the structure of a tree. Instances belonging to this class
can be solved by employing an interval Branch & Prune (iBP) algorithm [15, 17].

In order to perform the discretization, MDGP instances need to satisfy some
particular assumptions. In practice, the atoms of the molecule must be sorted in a
way that there are at least three reference atoms for each of them.We say that an atom
z is a reference for another atom y when z precedes y in the given atomic order, and
the distance d(z, y) is known. In such a case, indeed, candidate positions for y belong
to the sphere centered in z and having radius d(z, y). When the reference distance
d(z, y) is given through a real-valued interval, a spherical shell centered in z can be
instead defined. If three reference atoms are available for y, then candidate positions
(for y) belong to the intersection of three Euclidean objects. The easiest situation is
the one where the three available distances are exact, and the intersection gives, in
general, two possible positions for y [14]. However, if only one of the three distances
is allowed to take values into a certain interval, then the intersection gives two curves,
generally disjoint, where sample points can be chosen [15]. In both situations, the
discretization can be performed. More details about the discretization process are
given in Sect. 2.
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Necessary preprocessing step for solving MDGPs by this discrete approach is
therefore the one of finding suitable atomic orders that allow each atom y to have at
least three reference atoms.We refer to such orders as discretization orders. In previ-
ous works, discretization orders have been either handcrafted [5, 15], or designed by
using a pseudo de Bruijn graph representation of the cliques in G [21], or even auto-
matically obtained by a greedy algorithm [13, 20]. In the present paper, we propose
an approach for selecting, among all discretization orders that might exist for a given
MDGP instance, the ones that are able to improve iBP performances. To this aim, we
define some objectives (with a given priority) to be optimized during the search for
the discretization orders. These objectives, together with the discretization assump-
tions, define a multi-level optimization problem for finding optimal discretization
orders. Although this optimization problem can be cast as a mathematical program-
ming problem (see for example [4]), we consider instead in this work an Answer Set
Programming (ASP) approach [7, 9]. ASP provides in fact more flexible tools for
managing the constraints we need to deal with.

The rest of the paper is organized as follows. The basic idea behind the discretiza-
tion and the sketch of the iBP algorithm are presented in Sect. 2. In Sect. 3, we present
our ASP model for the generation of partial orders for the MDGP. Given one unique
partial order provided as a result by theASP solver, several total orders for the protein
backbones can be extracted. By considering one of such total orders, we present in
Sect. 4 some computational experiments where we compare the properties of this
new order to those of previously proposed orders for protein backbones. Finally,
Sect. 5 concludes the paper.

2 Discretization Orders and the iBP Algorithm

Let G = (V, E, d) be a simple weighted undirected graph representing an instance
of the MDGP. In order to perform the discretization, G needs to satisfy the following
assumptions. Let E ′ ⊂ E be the subset of edges for which the associated weight is
an exact distance.

Definition 2.1 (The interval Discretizable DGP in dimension 3 (iDDGP3)) Given
a simple weighted undirected graph G = (V, E, d), we say that G represents an
instance of the iDDGP3 if and only if there exists an order relationship “<” on the
vertices of V verifying the following assumptions:

(a) {1, 2, 3} is a clique and {(1, 2), (2, 3), (1, 3)} ⊂ E ′;
(b) ∀i ∈ {4, . . . , |V |}, there exists a subset re f (i) = {

i ′, i ′′, i ′′′
}
such that

1. i ′′′ < i , i ′′ < i , i ′ < i ;
2.

{
(i ′′, i), (i ′, i)

} ⊂ E ′ and (i ′′′, i) ∈ E ;
3. d(i ′, i ′′′) < d(i ′, i ′′) + d(i ′′, i ′′′).

We refer to orders satisfying (a) and (b) as “discretization orders”. These orders can
be either partial or total.
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Assumption (a) allows us to fix the positions of the first three atoms, avoiding to con-
sider congruent solutions that can be obtained by rotations and translations. Assump-
tion (b.1) ensures the existence of the three reference atoms for every atom i > 3,
and assumptions (b.2) ensures that at most one of the three reference distances is
represented by an interval. We say that the reference distances are the ones used in
the discretization process; additional distances that might be available can be used in
the pruning process (see below). Finally, assumption (b.3) avoids the reference atoms
to be co-linear. Note that assumption (b.3) cannot always be verified a priori, because
some of the necessary distances may not be available (the corresponding edges may
not be in E). However, this assumption can fail to be satisfied with probability 0
when considering either molecular instances or even generic graphs, and therefore
we do not really need to verify it in advance [13, 22].

Under the assumptions (a) and (b), the MDGP can be discretized. The search
domain becomes a tree containing, layer by layer, the possible positions for a given
atom. In this tree, the number of branches increases exponentially layer by layer.
After the discretization, the MDGP can be seen as a combinatorial problem.

The discretization assumptions strongly depend on the existence of an order for
the vertices of G, i.e. for the atoms of the considered molecule. When working on
moleculeswith knownchemical structure such as proteins, somedistance information
is always available, because related to this chemical structure. In this case, orders, that
are valid for an entire class of instances, can be obtained, where only “guaranteed”
distance information is exploited. This kind of information includes bond lengths
and angles, and also structural information, such as peptide plane induced distances
[19]. In this work, we focus our attention on protein backbones, which consist of the
set of atoms that, in proteins, are common to all amino acids (the side chains are not
considered).

In previous works, discretization orders were identified by employing different
approaches. In [5, 15], handcrafted orders were presented for the protein backbone
and the side chains belonging to the 20 amino acids that can take part to the protein
synthesis. More recently, in [21], orders were identified by searching for total paths
on pseudo de Bruijn graphs containing cliques of the original MDGP graph G. In
both cases, these orderswere conceived for satisfying an additional assumption on the
reference atoms: i ′′′, i ′′, i ′ and i have to be consecutive (consecutivity assumption).
Because of this additional assumption, the calculation of the atomic coordinates was
possible by using the method described in [14], which is more stable than the general
approach based on the solution of a sequence of quadratic systems (each for one
sphere intersection). Successively, however, it was proved that the same efficiency
and the same accuracy can be obtained by employing another method for which the
consecutivity assumption does not have to be satisfied [10].

Another way to construct discretization orders is given by the greedy algorithm
firstly proposed in [13] and subsequently extended for interval distances in [20]. This
algorithm is able to find orders where the consecutivity assumption is not ensured.
In fact, requiring the consecutivity assumption be satisfied makes the problem of
finding a discretization order NP-hard [4]. A heuristic has also been proposed for
finding discretization orders without consecutivity assumption, which outperformed
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Algorithm 1 The iBP algorithm.
1: iBP( j, n, order, d, discr_ f actor)

2: if ( j > n) then
3: print current conformation;
4: else
5: define re f ( j) = { j ′, j ′′, j ′′′};
6: if (d( j ′′′, j) is a nondegenerate interval) then
7: let [l, u] = d( j ′′′, j); set N = discr_ f actor ;
8: else
9: let l = u = d( j ′′′, j); set N = 1;
10: end if
11: for (h = 1 . . . N , h equally spaced distances in the interval [l, u]) do
12: compute the candidate positions: xh

j and x−h
j ;

13: if (xh
j is feasible) then

14: iBP( j + 1, n, order, d, discr_ f actor);
15: end if
16: if (x−h

j is feasible) then
17: iBP( j + 1, n, order, d, discr_ f actor);
18: end if
19: end for
20: end if

the greedy algorithm on large instances, but for which there are no guarantees of
convergence [11].

This work finds its place in the context of this last approach for the identification
of discretization orders without the consecutivity assumption. Our aim is not only
to find orders that allow for the discretization, but also to optimize these orders in
a way that the corresponding search domain (the tree) is easier to explore by the
iBP algorithm. Section3 provides details about the objectives that we optimize for
improving the search on the tree.

Algorithm 1 is a sketch of the iBP algorithm [15]. The algorithm recursively
calls itself for exploring the search tree. The if structure in line 6 discriminates
between the two situations: there are three exact reference distances/only two of
these distances are exact. In the first case, two atomic positions are generated by
the sphere intersection, and two new branches are added to the tree at the current
layer (see Introduction). In the second case, instead, the intersection gives 2 disjoint
curves, from which sample points need to be taken for discretizing. The parameter
of the algorithm named discr_factor gives in fact the (fixed) number of samples that
are taken from each curve. The other parameters of the algorithm are: j , the current
atom; n, the total number of atoms; order, the available discretization order; d, the
set of weights on the edges of G. The discretization order allows to define, for each
j , the set re f ( j) = { j ′, j ′′, j ′′′} of reference atoms for j .

After the computation of possible positions for the current atom j , the feasibility
of these atomic positions are verified by applying what we call pruning devices
(see lines 13 and 16 of Algorithm 1). Even if tree branches grow exponentially
layer by layer, the pruning devices allow iBP to focus the search on the feasible
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parts of the tree. The easiest and probably most efficient pruning device is the Direct
Distance Feasibility (DDF) criterion [14], which consists in verifying the ε-feasibility
of the constraints:

d(k, j) − ε ≤ ||xk − x j || ≤ d(k, j) + ε, ∀(k, j) ∈ E, with k < j. (2)

All distances related to edges (k, j), with k < j and that are not used in the discretiza-
tion, are named pruning distances, because they can be used by DDF for discovering
infeasibilities. Several pruning devices can be integrated in iBP, that can be based
on either pure geometric features of molecules, or rather on chemical and biological
properties [3]. In this work, in order to focus the attention on the discretization orders,
only the pruning device DDF will be considered in our computational experiments.

3 Looking for Optimal Orders for the Protein Backbone

Besides satisfying the assumptions in Definition 2.1, discretization orders can be
optimized with the aim of improving the performances of the iBP algorithm.We pro-
pose in this work some objectives to be optimized during our search for discretization
orders for protein backbones. These objectives are sorted with their priority levels:
higher priority objectives are optimized first.

The protein backbone is defined by the sequence of atomic subgroups common
to all amino acids, which are bonded together to form the protein chain [19]. Side
chains are omitted in this work, and we consider proteins formed by only one chain.
Only four different atoms compose protein backbones: carbons (C), nitrogens (N ),
hydrogens (H ) and oxygens (O). We will use the symbol Cα for the “central” carbon
of the amino acid, and wewill use the symbol Hα for the hydrogen bonded to thisCα .
Other atom types appear only once per amino acid, so that it is not necessary to use
special characters when referring to them. Superscripts associated to atom’s labels
will denote the position of the amino acid to which the atom belongs in the protein
chain. For example, Hi

α denotes the hydrogen bonded to Ci
α , in the amino acid at

position i . The superscript “0” is associated to the second hydrogen H0 belonging
to the first amino acid; the superscript “n + 1” is instead associated to the second
oxygen belonging to the last amino acid, where n is the total number of amino acids.

Recall that, when three exact reference distances are available for the discretiza-
tion, there are two possible positions for the current atom. Otherwise, when one
of such distances is instead represented by an interval, 2 × discr_factor possible
candidate positions for the atom can be computed (see Sect. 2).

Our list of objectives is given below, together with their priority levels. Together
with the assumptions (a) and (b) inDefinition 2.1, these objectives define amulti-level
optimization problem.

4. Maximize the number of exact distances used in the discretization.
In order to keep the tree width as small as possible, the situation where all three
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reference distances used in the discretization are exact is preferable. This way,
the number of branches on each layer can be at most the double of the number of
branches on the previous one.

3. Maximize the number of distances (Hi
α, Hi+1) and (Hi , Hi

α) used in the dis-
cretization.
The interval distances (Hi

α, Hi+1) and (Hi , Hi
α) can always be estimated by

studying the structure of protein backbones. Even if represented by real-valued
intervals, these distances can be employed for the discretization. Moreover, it
is likely NMR experiments can provide a better estimate for them, i.e. sharper
intervals [16].

2. Postpone the interval distances used in the discretization.
When an interval distance is used in the discretization process, potentially 2 ×
discr_ f actor new branches are added to the tree at the current layer, while, at
most, only two branches need to be added when all distances are exact. Therefore,
if an interval distance is used for discretization at deeper layers of the tree, this
phenomenon can be delayed, so that fewer internal nodes in the search tree are
generated, and this may favor early pruning.

1. Anticipate the pruning distances.
Pruning distances are employed for verifying the feasibility of generated can-
didate positions. The sooner they appear, the earlier infeasible positions can be
discovered and branches of the tree can be pruned. Since the set of pruning dis-
tances is instance-dependent, it is not possible to find orders where this objective
is optimal for an entire class of instances. Therefore, we only consider NMR
distances that are likely to be available in every protein instance: the distance
between pairs of hydrogens (Hi , Hi+1) and (Hi

α, Hi+1
α ) belonging to consecu-

tive amino acids [16]. Note that, since there are two hydrogens bonded to N 1 in
the first amino acid, the distances related to both hydrogens are supposed to be
known.

In order to consider the above objectives, we discriminate among: (i) exact dis-
tances; (i i) generic interval distances; (i i i) interval distances between hydrogen pairs
(Hi

α, Hi+1) and (Hi , Hi
α); (iv) pruning distances. While looking for optimal orders,

we will fix the length of the protein backbone to three. In fact, the regular structure
of the protein backbone will allow us to easily extend the obtained orders to protein
backbones of any length.

4 Computational Experiments and Discussion

We present and discuss in this section two sets of computational experiments. First
of all, by using ASP, we generate an optimal partial order for which the objectives
detailed in Sect. 3 are optimized (see Sect. 4.1). Secondly, we extract one total order
from the optimal partial one, and we compare the performances of the iBP algorithm
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while using this new order and some previously proposed ones (see Sect. 4.2). Both
experiments will be commented in details.

4.1 Finding an Optimal Partial Order by ASP

We use the ASP framework to find solutions to the multi-level optimization problem
described in Sect. 3. ASP is a form of declarative programming adapted to combina-
torial and optimization problems [2], which offers a language of clauses to express
constraints on given variables. Once all constraints are expressed as logical formulas,
a grounder transforms such constraints into a (large) set of Boolean equations, while
a solver looks for possible models (possible answers) for this set. From the set of
obtained answers, solutions to the initial problem can be derived.

To the four objectives given in Sect. 3, we also added the one of minimizing the
number of ranks in the partial order. This actually makes the searched order a partial
order, where the same rank can be associated to more than one atom. We point out
that the expressiveness and efficiency of ASP modeling allowed us to test multiple
objective functions and to converge towards a single solution with a few simple
objectives. In other words, the list of objectives presented above was tested by ASP
and refined several times before defining the current list (given in Sect. 3) for which
only one partial order is given as optimal by ASP. In our experiments, we employ
the grounder Gringo and the solver Clasp developed in Potsdam University [8].

We focus our attention on the protein backbone of a short polypeptide consisting
of three amino acids (without side chains). The regular structure of protein backbones
allows to extend any solution found for three amino acids to protein backbones of
any length. There is only one slight variation on the backbone in presence of one
single amino acid: the proline. This amino acid has no hydrogen H bonded to its
nitrogen N .

Before presenting the results obtained by ASP, we briefly present two previously
proposed orders for protein backbones. In [15], the following handcrafted order was
introduced:

|N 1, H1, H0, C1
α, N 1, H1

α , C1
α, C1|N 2, C2

α, H2, N 2, C2
α, H2

α , C2, C2
α|

|N 3, C2, C3
α, H3, N 3, C3

α, H3
α , C3, C3

α, O3, C3, O4|. (3)

Recall that superscripts are used for referring to the amino acid the atom belongs
to. Recall also that H0 refers to second hydrogen belonging to the first amino acid
and bonded to N 1, and that O4 is one of the oxygens belonging to the last amino
acid. Repetitions are allowed in this order, because of the consecutivity assumption
(see Sect. 2). Repetitions increase MDGP instances in length because atoms can
appear in the order more than once; this, however, does not imply any increase in
complexity, because there is no branching in iBPwhen copies of already placed atoms
are considered. The symbol “|” is used for separating the amino acids. Since there
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are repetitions, however, some atoms belonging to one amino acid can be repeated
in the next one.

In [20], another order was generated by using a greedy algorithm:

|N 1, H1, H0, C1
α, H1

α , C1|N 2, H2, C2
α, H2

α , C2|N 3, H3, C3
α, H3

α , C3, O3, O4|.
(4)

Repetitions are not necessary in this order and the consecutivity assumption is not
satisfied (see Sect. 2). The employed greedy algorithm iteratively constructs the order
by placing at the current position the atom that has at least three reference atoms and
for which the total number of references is maximized. When it exists, the greedy
algorithm is able to find a discretization order for a given instance.

Our ASP execution provided us with one unique solution: the partial order is
depicted in Fig. 1. For the 18 atoms of our 3-amino acid protein backbone, the greatest
rank is 13 in this partial order. There are in fact clusters of atoms where the relative
positioning of the atoms is irrelevant. In the initial amino acid, there is a cluster with
4 atoms; in the other amino acids, the positions in the order for the atoms N i and Ci

α

can be exchanged. When considering three amino acids, there are therefore 96 (4! ·
2! · 2!) total orders corresponding to the partial order in Fig. 1.

In order to verify whether these 96 total orders have similar properties, we gen-
erated 96 iDDGP3 instances related to the 3-amino acid backbone used in the ASP
simulation. For all of them, we ran the iBP algorithm and monitored the total num-
ber of iBP recursive calls necessary to explore the entire tree. This analysis showed
that all generated total orders are equivalent (same number of solutions, same num-
ber of iBP calls). Note that, even if the theoretical number of solutions should be
order-independent, the branching over intervals currently implemented in iBP (see
Algorithm 1) could lead to different numbers of found solutions when using different
orders. Nevertheless, we did not have any variation for any instance of our set.

Fig. 1 A partial order, for the discretization of protein backbones, found by our ASP model
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In order to perform computational experiments on realistic protein instances (see
Sect. 4.2), we selected, among the 96 total orders that can be extracted from the
partial order in Fig. 1, one total order:

|N 1, C1
α, H1

α , C1|H2, N 2, C2
α, H2

α , C2|H3, N 3, C3
α, H3

α , C3|H0, H1, O3, O4|.
(5)

In this order, the two hydrogens H0 and H1 bonded to N 1, as well as the two oxygens
O3 and O4 beloging to the last amino acid, are placed at the end of the order. As
it is easy to remark, the specific orders for the second and the third amino acids are
identical. For backbones composed by a longer list of amino acids, it is necessary
to repeat this generic order as many times as the total number of amino acids in the
molecule. In the special case of proline, where the hydrogen bonded to N i , with
i > 1, does not appear, we can just omit Hi in the order. This change does not make
the order non-discretizable.

4.2 Comparison to Other Orders

We present some experiments on a subset of realistic protein instances where, for
each instance, we consider the three orders (3), (4), and (5), and we compare the per-
formances of iBP. The iBP algorithm was implemented in C programming language
(GNU C compiler v.4.0.1 with -O3 flag), and the executions were carried out on an
Intel Core 2 Duo @ 2.4GHz with 2GB RAM, running Mac OS X.

The instances that we consider in our experiments have been generated as follows.
We consider a subset of proteins from the Protein Data Bank (PDB) [1] related to
human immunodeficiency. Together with the PDB coordinates of the atoms, we
consider the chemical structure of the protein, i.e. information about its bond lengths
and angles. All distances between atompairs are computed, and a distance is included
in our instances if it is between

1. two bonded atoms (considered as exact);
2. two atoms that are bonded to a common atom (considered as exact);
3. two atoms belonging to a quadruplet of bonded atoms forming a torsion angle

(considered as an interval);
4. two hydrogen atoms (considered as an interval, if the distance lies in the interval

[2.5, 5]Å).

The first three items are related to the chemical structure of the molecule; only the
last item concerns distances that simulate NMR data. The distances that are related
to item 3 are generally intervals; however, one of the possible torsion angles is
related to the peptide bond between two amino acids: in such a case, the distance is
considered as exact, because the peptide bond forces all atoms to lie on the sameplane.
Interval distances coming from torsion angles are computed so that all corresponding
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Table 1 Some properties of the instances that we generated from PDB files related to human
immunodeficiency

Instance 1niz 2jnr 2pv6 1zec 2m1a 2me1 2me4 1dsk

|V | 69 98 112 123 132 137 137 142

|E | 333 460 570 628 695 700 694 746

|E ′| 186 263 307 336 363 377 377 391

values for the torsion angle are allowed. The interval distances related to item 4 have
insteadwidth equal to 2Å, and their boundswere generated so that the true distance is
randomly placed inside the interval. After the calculation of the distance information,
the atoms in every instance have been reordered by considering three total orders: the
handcrafted order (3), the greedy order (4), and our new order (5). Table1 contains
some information about the generated instances.

Table2 presents a comparative analysis of the three orders. The table provides
the minimum value for discr_ f actor (d_ f in the table) necessary to obtain at least
one solution with the iBP algorithm, the total number of iBP calls, and the CPU
time, in seconds. In order to obtain the minimum value for the discretization factor,
we gradually increased discr_ f actor from 3 to 9, until one solution was found
in less than 30s. In these experiments, we considered ε = 0.1 in the feasibility
test (see Eq. (2)) given by DDF. All found solutions are “good-quality” solutions:
we considered as index for measuring the solution quality the LDE, which ranges
between 10−5 and 10−4 in our solutions. The reader can refer to [10] for the definition
of the LDE index.

As the table shows, the total order that we found in this work is generally the opti-
mal one (in terms of both iBP calls and CPU time, while the quality of the solutions
remains unchanged). There are a few examples, however, where the performances
of iBP are better when using the other orders. This can be due to the fact that sample
points are chosen during the discretization from the curves that are generated in pres-
ence of interval data (see Sect. 2). Not considering entire curves, but some sample
points only, makes iBP a heuristic, whose performances can drastically vary on the
basis of the sample points that are chosen. Nevertheless, the experiments in Table2
show that the order (5) is almost always the best one.

In order to validate this result, we performed all experiments for a second time, and
we replaced the deterministic choice on line 11 of Algorithm 1 for the selection of the
sample distanceswith a random choice of (discr_ f actor =) 5 uniformly distributed
samples on the two obtained curves. Table3 shows the average performances of iBP
over 10 runs. Only the runs taking less than 10s are considered in the average: S
denotes the number of considered runs. This table shows a more regular pattern for
the greedy order (4) and our new order.



12 D. Gonçalves et al.

Ta
bl

e
2

C
om

pa
ri
so
n
am

on
g
th
re
e
to
ta
ld

is
cr
et
iz
at
io
n
or
de
rs

O
rd
er

(3
)

O
rd
er

(4
)

O
rd
er

(5
)

d
_

f
iB

P
ca
lls

T
im

e
(s
)

d
_

f
iB

P
ca
lls

T
im

e
(s
)

d
_

f
iB

P
ca
lls

T
im

e
(s
)

1n
iz

6
66
02
39
8

10
.7
7

6
35

30
52

0.
49

6
11
80
27
3

3.
12

2j
nr

3
32
66
3

0.
06

5
17

33
7

0.
02

5
44
40
3

0.
10

2p
v6

5
13
42
94
1

2.
49

6
37
66
08

0.
51

5
47

90
3

0.
11

1z
ec

7
59
43
66
7

12
.2
0

6
82
19
70

1.
47

5
41

29
1

0.
15

2m
1a

–
–

–
5

20
44
75

0.
35

6
38

57
2

0.
11

2m
e1

9
35
68
31
7

6.
35

5
16
67
99
1

2.
36

5
13

55
74

0.
36

2m
e4

6
97
49
13

1.
94

5
12
13
94
8

2.
11

4
28

19
22

0.
81

1d
sk

7
10
09
80
38

19
.1
6

6
21
86
23
4

2.
88

6
36

57
28

1.
41

d
_

f
is

d
is

cr
_

fa
ct

or
in

A
lg
or
ith

m
1.

T
he

la
st

co
lu
m
n
gi
ve
s
th
e
pe
rf
or
m
an
ce
s
of

iB
P
fo
r
th
e
ne
w

op
tim

al
or
de
r.
E
xp
er
im

en
ts

la
st
in
g
m
or
e
th
an

30
s
ar
e

co
ns
id
er
ed

as
un
su
cc
es
sf
ul

(d
et
ai
ls
no
tr
ep
or
te
d)



Finding Optimal Discretization Orders for Molecular Distance … 13

Table 3 Experiments with iBP and the random selection of the samples from the intervals

Instance Order (3) Order (4) Order (5)

S Avg.
Time (s)

S Avg.
Time (s)

S Avg.
Time (s)

1niz 8 1.06 7 0.84 10 0.27

2jnr 9 0.71 10 0.43 10 0.99

2pv6 10 0.92 10 0.11 10 0.07

1zec 7 4.63 10 0.91 10 0.23

2m1a 9 4.38 10 0.55 10 0.14

2me1 5 2.84 10 0.86 10 0.25

2me4 10 1.63 10 0.09 10 0.05

1dsk 7 3.48 10 0.47 10 0.44

Experiments running more than 10s are not considered in the computation of the average time

5 Conclusions

We proposed a new discretization order for distance geometry with interval data
that allows for the discretization of protein backbones. This order comes from a
complete search of the space of possible discretization orders, implemented through
an ASP model. This model ensures that the assumptions for the discretization are
satisfied, and that some additional objectives (aimed at improving iBP performances)
are optimized. Priorities were assigned to the considered objectives. We compared
the proposed discretization order to two orders that were previously proposed in the
literature [15, 20]. Our computational experiments on protein instances showed that
iBP performances actually improve when using the new proposed order.

Future works will be devoted to strategies for reducing the degrees of freedom of
our protein backbones. In general, there are two (continuous) degrees of freedom per
amino acid (on the protein backbone), which can be modeled by using two torsion
angles φ and ψ [19]. One possibility for an improvement is to explore the favorable
regions of the so-called Ramachandran map to reduce the discretization intervals in
length [23]. Moreover, an interesting property of the new proposed order is that it
allows to easily set the reference atoms so that the planarity of the peptide plane and
the chirality around the carbons Cα can be exploited [3]. As a consequence, this new
order could be used for branching only over interval distances (the planarity and the
chirality properties allow to uniquely position an atomwhen three reference distances
are exact). We point out that this feature of the new order was not considered in the
experiments presented in this paper because the two older orders (3) and (4) do not
allow for an easy implementation of a method based on this feature.

Finally, notice that this work can be extended to protein side chains. Side chains
generally have constrained structures and preferred configurations, forwhich optimal
discretizationordersmight be identified. Subject of future research is also the problem
of finding the optimal discretization orders that consider the chemical structure of
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the whole molecule at once, as well as the entire set of pruning distances that might
be available (obtained by NMR).
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