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Preface

Many real-world problems arising in engineering, economics, medicine and other
domains can be formulated as optimization tasks. Every day we solve optimization
problems. Optimization occurs in the minimizing time and cost or the maximization
of the profit, quality and efficiency. Such problems are frequently characterized by
non-convex, non-differentiable, discontinuous, noisy or dynamic objective func-
tions and constraints which ask for adequate computational methods.

This volume is a result of very vivid and fruitful discussions held during the
Workshop on Computational Optimization, WCO-2014. The participants agreed
that the relevance of the conference topic and quality of the contributions clearly
suggest that a more comprehensive collection of extended contributions devoted to
the area would be very welcome and would certainly contribute to a wider exposure
and proliferation of the field and ideas.

The volume includes important real problems like parameter settings for con-
trolling processes in bioreactor and other processes, resource constrained project
scheduling, infection distribution, molecule distance geometry, quantum computing,
real-time management and optimal control, bin packing, medical image processing,
localization the abrupt atmospheric contamination source and so on.

Some of these problems can be solved applying traditional numerical methods,
but others need a huge amount of computational resources. Therefore, for them it is
more appropriate to develop algorithms based on some metaheuristic method like
the evolutionary computation, ant colony optimization, constrain programming, etc.

April 2015 Stefka Fidanova
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Finding Optimal Discretization Orders
for Molecular Distance Geometry
by Answer Set Programming

Douglas Gonçalves, Jacques Nicolas, Antonio Mucherino
and Carlile Lavor

Abstract The Molecular Distance Geometry Problem (MDGP) is the problem of
finding the possible conformations of a molecule by exploiting available informa-
tion about distances between some atom pairs. When particular assumptions are
satisfied, the MDGP can be discretized, so that the search domain of the problem
becomes a tree. This tree can be explored by using an interval Branch & Prune (iBP)
algorithm. In this context, the order given to the atoms of the molecules plays an
important role. In fact, the discretization assumptions are strongly dependent on the
atomic ordering, which can also impact the computational cost of the iBP algorithm.
In this work, we propose a new partial discretization order for protein backbones.
This new atomic order optimizes a set of objectives, that aim at improving the iBP
performances. The optimization of the objectives is performed by Answer Set Pro-
gramming (ASP), a declarative programming language that allows to express our
problem by a set of logical constraints. The comparison with previously proposed
orders for protein backbones shows that this new discretization order makes iBP
perform more efficiently.
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1 Introduction

Experiences of Nuclear Magnetic Resonance (NMR) are able to estimate distances
between some pairs of atoms of a given molecule [12]. The problem of finding
the possible conformations of the molecule that are compatible with this distance
information is known in the scientific literature as the Molecular Distance Geometry
Problem (MDGP) [6, 12, 18]. Generally, the distance information is given through
a list of lower and upper bounds on the distances, i.e. by a list of real-valued inter-
vals [19]. The MDGP, by its nature, is a constraint satisfaction problem, which is
NP-hard [24].

Let G = (V, E, d) be a simple weighted undirected graph where the vertices in
V represent the atoms of the molecule and d : E → R+ assigns positive weights
d(i, j) to edges which are in E if the distance between the atoms i and j is available.
The MDGP asks therefore to find an embedding x : V → R

3 satisfying the distance
information, i.e. a conformation in the three-dimensional space such that:

d(i, j) ≤ ‖xi − x j‖ ≤ d(i, j), ∀(i, j) ∈ E, (1)

where d(i, j) and d(i, j) denote, respectively, the lower and upper bounds for the
distance d(i, j) (notice that d(i, j) = d(i, j) if d(i, j) is exact). In this paper, we
suppose that the given set of distances is actually embeddable in R3; in other words,
it is supposed that no distance is affected by errors.

Over the years, the solution of MDGPs has been attempted by formulating global
optimization problems in a continuous space, where a penalty objective function
is generally employed in order to measure the violation of the distance constraints
for given molecular conformations. More recently, a new class of MDGPs has been
introduced, for which the search domain of the optimization problem can be reduced
to a discrete space having the structure of a tree. Instances belonging to this class
can be solved by employing an interval Branch & Prune (iBP) algorithm [15, 17].

In order to perform the discretization, MDGP instances need to satisfy some
particular assumptions. In practice, the atoms of the molecule must be sorted in a
way that there are at least three reference atoms for each of them.We say that an atom
z is a reference for another atom y when z precedes y in the given atomic order, and
the distance d(z, y) is known. In such a case, indeed, candidate positions for y belong
to the sphere centered in z and having radius d(z, y). When the reference distance
d(z, y) is given through a real-valued interval, a spherical shell centered in z can be
instead defined. If three reference atoms are available for y, then candidate positions
(for y) belong to the intersection of three Euclidean objects. The easiest situation is
the one where the three available distances are exact, and the intersection gives, in
general, two possible positions for y [14]. However, if only one of the three distances
is allowed to take values into a certain interval, then the intersection gives two curves,
generally disjoint, where sample points can be chosen [15]. In both situations, the
discretization can be performed. More details about the discretization process are
given in Sect. 2.
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Necessary preprocessing step for solving MDGPs by this discrete approach is
therefore the one of finding suitable atomic orders that allow each atom y to have at
least three reference atoms.We refer to such orders as discretization orders. In previ-
ous works, discretization orders have been either handcrafted [5, 15], or designed by
using a pseudo de Bruijn graph representation of the cliques in G [21], or even auto-
matically obtained by a greedy algorithm [13, 20]. In the present paper, we propose
an approach for selecting, among all discretization orders that might exist for a given
MDGP instance, the ones that are able to improve iBP performances. To this aim, we
define some objectives (with a given priority) to be optimized during the search for
the discretization orders. These objectives, together with the discretization assump-
tions, define a multi-level optimization problem for finding optimal discretization
orders. Although this optimization problem can be cast as a mathematical program-
ming problem (see for example [4]), we consider instead in this work an Answer Set
Programming (ASP) approach [7, 9]. ASP provides in fact more flexible tools for
managing the constraints we need to deal with.

The rest of the paper is organized as follows. The basic idea behind the discretiza-
tion and the sketch of the iBP algorithm are presented in Sect. 2. In Sect. 3, we present
our ASP model for the generation of partial orders for the MDGP. Given one unique
partial order provided as a result by theASP solver, several total orders for the protein
backbones can be extracted. By considering one of such total orders, we present in
Sect. 4 some computational experiments where we compare the properties of this
new order to those of previously proposed orders for protein backbones. Finally,
Sect. 5 concludes the paper.

2 Discretization Orders and the iBP Algorithm

Let G = (V, E, d) be a simple weighted undirected graph representing an instance
of the MDGP. In order to perform the discretization, G needs to satisfy the following
assumptions. Let E ′ ⊂ E be the subset of edges for which the associated weight is
an exact distance.

Definition 2.1 (The interval Discretizable DGP in dimension 3 (iDDGP3)) Given
a simple weighted undirected graph G = (V, E, d), we say that G represents an
instance of the iDDGP3 if and only if there exists an order relationship “<” on the
vertices of V verifying the following assumptions:

(a) {1, 2, 3} is a clique and {(1, 2), (2, 3), (1, 3)} ⊂ E ′;
(b) ∀i ∈ {4, . . . , |V |}, there exists a subset re f (i) = {

i ′, i ′′, i ′′′
}
such that

1. i ′′′ < i , i ′′ < i , i ′ < i ;
2.

{
(i ′′, i), (i ′, i)

} ⊂ E ′ and (i ′′′, i) ∈ E ;
3. d(i ′, i ′′′) < d(i ′, i ′′) + d(i ′′, i ′′′).

We refer to orders satisfying (a) and (b) as “discretization orders”. These orders can
be either partial or total.
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Assumption (a) allows us to fix the positions of the first three atoms, avoiding to con-
sider congruent solutions that can be obtained by rotations and translations. Assump-
tion (b.1) ensures the existence of the three reference atoms for every atom i > 3,
and assumptions (b.2) ensures that at most one of the three reference distances is
represented by an interval. We say that the reference distances are the ones used in
the discretization process; additional distances that might be available can be used in
the pruning process (see below). Finally, assumption (b.3) avoids the reference atoms
to be co-linear. Note that assumption (b.3) cannot always be verified a priori, because
some of the necessary distances may not be available (the corresponding edges may
not be in E). However, this assumption can fail to be satisfied with probability 0
when considering either molecular instances or even generic graphs, and therefore
we do not really need to verify it in advance [13, 22].

Under the assumptions (a) and (b), the MDGP can be discretized. The search
domain becomes a tree containing, layer by layer, the possible positions for a given
atom. In this tree, the number of branches increases exponentially layer by layer.
After the discretization, the MDGP can be seen as a combinatorial problem.

The discretization assumptions strongly depend on the existence of an order for
the vertices of G, i.e. for the atoms of the considered molecule. When working on
moleculeswith knownchemical structure such as proteins, somedistance information
is always available, because related to this chemical structure. In this case, orders, that
are valid for an entire class of instances, can be obtained, where only “guaranteed”
distance information is exploited. This kind of information includes bond lengths
and angles, and also structural information, such as peptide plane induced distances
[19]. In this work, we focus our attention on protein backbones, which consist of the
set of atoms that, in proteins, are common to all amino acids (the side chains are not
considered).

In previous works, discretization orders were identified by employing different
approaches. In [5, 15], handcrafted orders were presented for the protein backbone
and the side chains belonging to the 20 amino acids that can take part to the protein
synthesis. More recently, in [21], orders were identified by searching for total paths
on pseudo de Bruijn graphs containing cliques of the original MDGP graph G. In
both cases, these orderswere conceived for satisfying an additional assumption on the
reference atoms: i ′′′, i ′′, i ′ and i have to be consecutive (consecutivity assumption).
Because of this additional assumption, the calculation of the atomic coordinates was
possible by using the method described in [14], which is more stable than the general
approach based on the solution of a sequence of quadratic systems (each for one
sphere intersection). Successively, however, it was proved that the same efficiency
and the same accuracy can be obtained by employing another method for which the
consecutivity assumption does not have to be satisfied [10].

Another way to construct discretization orders is given by the greedy algorithm
firstly proposed in [13] and subsequently extended for interval distances in [20]. This
algorithm is able to find orders where the consecutivity assumption is not ensured.
In fact, requiring the consecutivity assumption be satisfied makes the problem of
finding a discretization order NP-hard [4]. A heuristic has also been proposed for
finding discretization orders without consecutivity assumption, which outperformed
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Algorithm 1 The iBP algorithm.
1: iBP( j, n, order, d, discr_ f actor)

2: if ( j > n) then
3: print current conformation;
4: else
5: define re f ( j) = { j ′, j ′′, j ′′′};
6: if (d( j ′′′, j) is a nondegenerate interval) then
7: let [l, u] = d( j ′′′, j); set N = discr_ f actor ;
8: else
9: let l = u = d( j ′′′, j); set N = 1;
10: end if
11: for (h = 1 . . . N , h equally spaced distances in the interval [l, u]) do
12: compute the candidate positions: xh

j and x−h
j ;

13: if (xh
j is feasible) then

14: iBP( j + 1, n, order, d, discr_ f actor);
15: end if
16: if (x−h

j is feasible) then
17: iBP( j + 1, n, order, d, discr_ f actor);
18: end if
19: end for
20: end if

the greedy algorithm on large instances, but for which there are no guarantees of
convergence [11].

This work finds its place in the context of this last approach for the identification
of discretization orders without the consecutivity assumption. Our aim is not only
to find orders that allow for the discretization, but also to optimize these orders in
a way that the corresponding search domain (the tree) is easier to explore by the
iBP algorithm. Section3 provides details about the objectives that we optimize for
improving the search on the tree.

Algorithm 1 is a sketch of the iBP algorithm [15]. The algorithm recursively
calls itself for exploring the search tree. The if structure in line 6 discriminates
between the two situations: there are three exact reference distances/only two of
these distances are exact. In the first case, two atomic positions are generated by
the sphere intersection, and two new branches are added to the tree at the current
layer (see Introduction). In the second case, instead, the intersection gives 2 disjoint
curves, from which sample points need to be taken for discretizing. The parameter
of the algorithm named discr_factor gives in fact the (fixed) number of samples that
are taken from each curve. The other parameters of the algorithm are: j , the current
atom; n, the total number of atoms; order, the available discretization order; d, the
set of weights on the edges of G. The discretization order allows to define, for each
j , the set re f ( j) = { j ′, j ′′, j ′′′} of reference atoms for j .

After the computation of possible positions for the current atom j , the feasibility
of these atomic positions are verified by applying what we call pruning devices
(see lines 13 and 16 of Algorithm 1). Even if tree branches grow exponentially
layer by layer, the pruning devices allow iBP to focus the search on the feasible
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parts of the tree. The easiest and probably most efficient pruning device is the Direct
Distance Feasibility (DDF) criterion [14], which consists in verifying the ε-feasibility
of the constraints:

d(k, j) − ε ≤ ||xk − x j || ≤ d(k, j) + ε, ∀(k, j) ∈ E, with k < j. (2)

All distances related to edges (k, j), with k < j and that are not used in the discretiza-
tion, are named pruning distances, because they can be used by DDF for discovering
infeasibilities. Several pruning devices can be integrated in iBP, that can be based
on either pure geometric features of molecules, or rather on chemical and biological
properties [3]. In this work, in order to focus the attention on the discretization orders,
only the pruning device DDF will be considered in our computational experiments.

3 Looking for Optimal Orders for the Protein Backbone

Besides satisfying the assumptions in Definition 2.1, discretization orders can be
optimized with the aim of improving the performances of the iBP algorithm.We pro-
pose in this work some objectives to be optimized during our search for discretization
orders for protein backbones. These objectives are sorted with their priority levels:
higher priority objectives are optimized first.

The protein backbone is defined by the sequence of atomic subgroups common
to all amino acids, which are bonded together to form the protein chain [19]. Side
chains are omitted in this work, and we consider proteins formed by only one chain.
Only four different atoms compose protein backbones: carbons (C), nitrogens (N ),
hydrogens (H ) and oxygens (O). We will use the symbol Cα for the “central” carbon
of the amino acid, and wewill use the symbol Hα for the hydrogen bonded to thisCα .
Other atom types appear only once per amino acid, so that it is not necessary to use
special characters when referring to them. Superscripts associated to atom’s labels
will denote the position of the amino acid to which the atom belongs in the protein
chain. For example, Hi

α denotes the hydrogen bonded to Ci
α , in the amino acid at

position i . The superscript “0” is associated to the second hydrogen H0 belonging
to the first amino acid; the superscript “n + 1” is instead associated to the second
oxygen belonging to the last amino acid, where n is the total number of amino acids.

Recall that, when three exact reference distances are available for the discretiza-
tion, there are two possible positions for the current atom. Otherwise, when one
of such distances is instead represented by an interval, 2 × discr_factor possible
candidate positions for the atom can be computed (see Sect. 2).

Our list of objectives is given below, together with their priority levels. Together
with the assumptions (a) and (b) inDefinition 2.1, these objectives define amulti-level
optimization problem.

4. Maximize the number of exact distances used in the discretization.
In order to keep the tree width as small as possible, the situation where all three
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reference distances used in the discretization are exact is preferable. This way,
the number of branches on each layer can be at most the double of the number of
branches on the previous one.

3. Maximize the number of distances (Hi
α, Hi+1) and (Hi , Hi

α) used in the dis-
cretization.
The interval distances (Hi

α, Hi+1) and (Hi , Hi
α) can always be estimated by

studying the structure of protein backbones. Even if represented by real-valued
intervals, these distances can be employed for the discretization. Moreover, it
is likely NMR experiments can provide a better estimate for them, i.e. sharper
intervals [16].

2. Postpone the interval distances used in the discretization.
When an interval distance is used in the discretization process, potentially 2 ×
discr_ f actor new branches are added to the tree at the current layer, while, at
most, only two branches need to be added when all distances are exact. Therefore,
if an interval distance is used for discretization at deeper layers of the tree, this
phenomenon can be delayed, so that fewer internal nodes in the search tree are
generated, and this may favor early pruning.

1. Anticipate the pruning distances.
Pruning distances are employed for verifying the feasibility of generated can-
didate positions. The sooner they appear, the earlier infeasible positions can be
discovered and branches of the tree can be pruned. Since the set of pruning dis-
tances is instance-dependent, it is not possible to find orders where this objective
is optimal for an entire class of instances. Therefore, we only consider NMR
distances that are likely to be available in every protein instance: the distance
between pairs of hydrogens (Hi , Hi+1) and (Hi

α, Hi+1
α ) belonging to consecu-

tive amino acids [16]. Note that, since there are two hydrogens bonded to N 1 in
the first amino acid, the distances related to both hydrogens are supposed to be
known.

In order to consider the above objectives, we discriminate among: (i) exact dis-
tances; (i i) generic interval distances; (i i i) interval distances between hydrogen pairs
(Hi

α, Hi+1) and (Hi , Hi
α); (iv) pruning distances. While looking for optimal orders,

we will fix the length of the protein backbone to three. In fact, the regular structure
of the protein backbone will allow us to easily extend the obtained orders to protein
backbones of any length.

4 Computational Experiments and Discussion

We present and discuss in this section two sets of computational experiments. First
of all, by using ASP, we generate an optimal partial order for which the objectives
detailed in Sect. 3 are optimized (see Sect. 4.1). Secondly, we extract one total order
from the optimal partial one, and we compare the performances of the iBP algorithm



8 D. Gonçalves et al.

while using this new order and some previously proposed ones (see Sect. 4.2). Both
experiments will be commented in details.

4.1 Finding an Optimal Partial Order by ASP

We use the ASP framework to find solutions to the multi-level optimization problem
described in Sect. 3. ASP is a form of declarative programming adapted to combina-
torial and optimization problems [2], which offers a language of clauses to express
constraints on given variables. Once all constraints are expressed as logical formulas,
a grounder transforms such constraints into a (large) set of Boolean equations, while
a solver looks for possible models (possible answers) for this set. From the set of
obtained answers, solutions to the initial problem can be derived.

To the four objectives given in Sect. 3, we also added the one of minimizing the
number of ranks in the partial order. This actually makes the searched order a partial
order, where the same rank can be associated to more than one atom. We point out
that the expressiveness and efficiency of ASP modeling allowed us to test multiple
objective functions and to converge towards a single solution with a few simple
objectives. In other words, the list of objectives presented above was tested by ASP
and refined several times before defining the current list (given in Sect. 3) for which
only one partial order is given as optimal by ASP. In our experiments, we employ
the grounder Gringo and the solver Clasp developed in Potsdam University [8].

We focus our attention on the protein backbone of a short polypeptide consisting
of three amino acids (without side chains). The regular structure of protein backbones
allows to extend any solution found for three amino acids to protein backbones of
any length. There is only one slight variation on the backbone in presence of one
single amino acid: the proline. This amino acid has no hydrogen H bonded to its
nitrogen N .

Before presenting the results obtained by ASP, we briefly present two previously
proposed orders for protein backbones. In [15], the following handcrafted order was
introduced:

|N 1, H1, H0, C1
α, N 1, H1

α , C1
α, C1|N 2, C2

α, H2, N 2, C2
α, H2

α , C2, C2
α|

|N 3, C2, C3
α, H3, N 3, C3

α, H3
α , C3, C3

α, O3, C3, O4|. (3)

Recall that superscripts are used for referring to the amino acid the atom belongs
to. Recall also that H0 refers to second hydrogen belonging to the first amino acid
and bonded to N 1, and that O4 is one of the oxygens belonging to the last amino
acid. Repetitions are allowed in this order, because of the consecutivity assumption
(see Sect. 2). Repetitions increase MDGP instances in length because atoms can
appear in the order more than once; this, however, does not imply any increase in
complexity, because there is no branching in iBPwhen copies of already placed atoms
are considered. The symbol “|” is used for separating the amino acids. Since there
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are repetitions, however, some atoms belonging to one amino acid can be repeated
in the next one.

In [20], another order was generated by using a greedy algorithm:

|N 1, H1, H0, C1
α, H1

α , C1|N 2, H2, C2
α, H2

α , C2|N 3, H3, C3
α, H3

α , C3, O3, O4|.
(4)

Repetitions are not necessary in this order and the consecutivity assumption is not
satisfied (see Sect. 2). The employed greedy algorithm iteratively constructs the order
by placing at the current position the atom that has at least three reference atoms and
for which the total number of references is maximized. When it exists, the greedy
algorithm is able to find a discretization order for a given instance.

Our ASP execution provided us with one unique solution: the partial order is
depicted in Fig. 1. For the 18 atoms of our 3-amino acid protein backbone, the greatest
rank is 13 in this partial order. There are in fact clusters of atoms where the relative
positioning of the atoms is irrelevant. In the initial amino acid, there is a cluster with
4 atoms; in the other amino acids, the positions in the order for the atoms N i and Ci

α

can be exchanged. When considering three amino acids, there are therefore 96 (4! ·
2! · 2!) total orders corresponding to the partial order in Fig. 1.

In order to verify whether these 96 total orders have similar properties, we gen-
erated 96 iDDGP3 instances related to the 3-amino acid backbone used in the ASP
simulation. For all of them, we ran the iBP algorithm and monitored the total num-
ber of iBP recursive calls necessary to explore the entire tree. This analysis showed
that all generated total orders are equivalent (same number of solutions, same num-
ber of iBP calls). Note that, even if the theoretical number of solutions should be
order-independent, the branching over intervals currently implemented in iBP (see
Algorithm 1) could lead to different numbers of found solutions when using different
orders. Nevertheless, we did not have any variation for any instance of our set.

Fig. 1 A partial order, for the discretization of protein backbones, found by our ASP model
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In order to perform computational experiments on realistic protein instances (see
Sect. 4.2), we selected, among the 96 total orders that can be extracted from the
partial order in Fig. 1, one total order:

|N 1, C1
α, H1

α , C1|H2, N 2, C2
α, H2

α , C2|H3, N 3, C3
α, H3

α , C3|H0, H1, O3, O4|.
(5)

In this order, the two hydrogens H0 and H1 bonded to N 1, as well as the two oxygens
O3 and O4 beloging to the last amino acid, are placed at the end of the order. As
it is easy to remark, the specific orders for the second and the third amino acids are
identical. For backbones composed by a longer list of amino acids, it is necessary
to repeat this generic order as many times as the total number of amino acids in the
molecule. In the special case of proline, where the hydrogen bonded to N i , with
i > 1, does not appear, we can just omit Hi in the order. This change does not make
the order non-discretizable.

4.2 Comparison to Other Orders

We present some experiments on a subset of realistic protein instances where, for
each instance, we consider the three orders (3), (4), and (5), and we compare the per-
formances of iBP. The iBP algorithm was implemented in C programming language
(GNU C compiler v.4.0.1 with -O3 flag), and the executions were carried out on an
Intel Core 2 Duo @ 2.4GHz with 2GB RAM, running Mac OS X.

The instances that we consider in our experiments have been generated as follows.
We consider a subset of proteins from the Protein Data Bank (PDB) [1] related to
human immunodeficiency. Together with the PDB coordinates of the atoms, we
consider the chemical structure of the protein, i.e. information about its bond lengths
and angles. All distances between atompairs are computed, and a distance is included
in our instances if it is between

1. two bonded atoms (considered as exact);
2. two atoms that are bonded to a common atom (considered as exact);
3. two atoms belonging to a quadruplet of bonded atoms forming a torsion angle

(considered as an interval);
4. two hydrogen atoms (considered as an interval, if the distance lies in the interval

[2.5, 5]Å).

The first three items are related to the chemical structure of the molecule; only the
last item concerns distances that simulate NMR data. The distances that are related
to item 3 are generally intervals; however, one of the possible torsion angles is
related to the peptide bond between two amino acids: in such a case, the distance is
considered as exact, because the peptide bond forces all atoms to lie on the sameplane.
Interval distances coming from torsion angles are computed so that all corresponding
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Table 1 Some properties of the instances that we generated from PDB files related to human
immunodeficiency

Instance 1niz 2jnr 2pv6 1zec 2m1a 2me1 2me4 1dsk

|V | 69 98 112 123 132 137 137 142

|E | 333 460 570 628 695 700 694 746

|E ′| 186 263 307 336 363 377 377 391

values for the torsion angle are allowed. The interval distances related to item 4 have
insteadwidth equal to 2Å, and their boundswere generated so that the true distance is
randomly placed inside the interval. After the calculation of the distance information,
the atoms in every instance have been reordered by considering three total orders: the
handcrafted order (3), the greedy order (4), and our new order (5). Table1 contains
some information about the generated instances.

Table2 presents a comparative analysis of the three orders. The table provides
the minimum value for discr_ f actor (d_ f in the table) necessary to obtain at least
one solution with the iBP algorithm, the total number of iBP calls, and the CPU
time, in seconds. In order to obtain the minimum value for the discretization factor,
we gradually increased discr_ f actor from 3 to 9, until one solution was found
in less than 30s. In these experiments, we considered ε = 0.1 in the feasibility
test (see Eq. (2)) given by DDF. All found solutions are “good-quality” solutions:
we considered as index for measuring the solution quality the LDE, which ranges
between 10−5 and 10−4 in our solutions. The reader can refer to [10] for the definition
of the LDE index.

As the table shows, the total order that we found in this work is generally the opti-
mal one (in terms of both iBP calls and CPU time, while the quality of the solutions
remains unchanged). There are a few examples, however, where the performances
of iBP are better when using the other orders. This can be due to the fact that sample
points are chosen during the discretization from the curves that are generated in pres-
ence of interval data (see Sect. 2). Not considering entire curves, but some sample
points only, makes iBP a heuristic, whose performances can drastically vary on the
basis of the sample points that are chosen. Nevertheless, the experiments in Table2
show that the order (5) is almost always the best one.

In order to validate this result, we performed all experiments for a second time, and
we replaced the deterministic choice on line 11 of Algorithm 1 for the selection of the
sample distanceswith a random choice of (discr_ f actor =) 5 uniformly distributed
samples on the two obtained curves. Table3 shows the average performances of iBP
over 10 runs. Only the runs taking less than 10s are considered in the average: S
denotes the number of considered runs. This table shows a more regular pattern for
the greedy order (4) and our new order.
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Table 3 Experiments with iBP and the random selection of the samples from the intervals

Instance Order (3) Order (4) Order (5)

S Avg.
Time (s)

S Avg.
Time (s)

S Avg.
Time (s)

1niz 8 1.06 7 0.84 10 0.27

2jnr 9 0.71 10 0.43 10 0.99

2pv6 10 0.92 10 0.11 10 0.07

1zec 7 4.63 10 0.91 10 0.23

2m1a 9 4.38 10 0.55 10 0.14

2me1 5 2.84 10 0.86 10 0.25

2me4 10 1.63 10 0.09 10 0.05

1dsk 7 3.48 10 0.47 10 0.44

Experiments running more than 10s are not considered in the computation of the average time

5 Conclusions

We proposed a new discretization order for distance geometry with interval data
that allows for the discretization of protein backbones. This order comes from a
complete search of the space of possible discretization orders, implemented through
an ASP model. This model ensures that the assumptions for the discretization are
satisfied, and that some additional objectives (aimed at improving iBP performances)
are optimized. Priorities were assigned to the considered objectives. We compared
the proposed discretization order to two orders that were previously proposed in the
literature [15, 20]. Our computational experiments on protein instances showed that
iBP performances actually improve when using the new proposed order.

Future works will be devoted to strategies for reducing the degrees of freedom of
our protein backbones. In general, there are two (continuous) degrees of freedom per
amino acid (on the protein backbone), which can be modeled by using two torsion
angles φ and ψ [19]. One possibility for an improvement is to explore the favorable
regions of the so-called Ramachandran map to reduce the discretization intervals in
length [23]. Moreover, an interesting property of the new proposed order is that it
allows to easily set the reference atoms so that the planarity of the peptide plane and
the chirality around the carbons Cα can be exploited [3]. As a consequence, this new
order could be used for branching only over interval distances (the planarity and the
chirality properties allow to uniquely position an atomwhen three reference distances
are exact). We point out that this feature of the new order was not considered in the
experiments presented in this paper because the two older orders (3) and (4) do not
allow for an easy implementation of a method based on this feature.

Finally, notice that this work can be extended to protein side chains. Side chains
generally have constrained structures and preferred configurations, forwhich optimal
discretizationordersmight be identified. Subject of future research is also the problem
of finding the optimal discretization orders that consider the chemical structure of
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the whole molecule at once, as well as the entire set of pruning distances that might
be available (obtained by NMR).

Acknowledgments We are thankful to the Brittany Region (France) and to the Brazilian research
agencies FAPESP, CNPq for financial support.

References

1. H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov,
P.E. Bourne, The protein data bank. Nucleic Acid Res. 28, 235–242 (2000)
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Estimation of Edge Infection Probabilities
in the Inverse Infection Problem

András Bóta, Miklós Krész and András Pluhár

Abstract Several methods have been proposed recently to estimate the edge infec-
tion probabilities in infection or diffusionmodels. In this paper wewill use the frame-
work of theGeneralized CascadeModel to define the Inverse Infection Problem—the
problem of calculating these probabilities.We are going to show that the problem can
be reduced to an optimization task and wewill give a particle swarm basedmethod as
a solution. We will show, that direct estimation of the separate edge infection values
is possible, although only on small graphs with a few thousand edges. To reduce the
dimensionality of the task, the edge infection values can be considered as functions
of known attributes on the vertices or edges of the graph, this way only the unknown
coefficients of these functions have to be estimated. We are going to evaluate our
method on artificially created infection scenarios. Our main points of interest are the
accuracy and stability of the estimation.

1 Introduction

The study of infection processes has roots in two seemingly different fields of
research: sociology and the medical sciences. In the latter, it was used to model
the spread of epidemics [10]. Applications focused on prevention, and the identi-
fication of the “choke points” during an epidemic. In the former, the spreading of
information or opinions came into focus. One of the earliest models in sociometry,
Granovetter’s Linear Threshold [13] model is still considered to be a viable descrip-
tion of information diffusion.
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In economics, Domingos and Richardson developed the Independent Cascade
model (IC) [11] for the purpose of viral marketing. They proposed the influence
maximization problem, that is to find the set of k initial infectors for any k that
results in the largest expected infection. Kempe et al. [16, 17] proved the influ-
ence maximization problem was NP-hard, proposed a greedy algorithm for it, and
also showed that the generalization of the IC model is in fact an equivalent of the
Linear Threshold model. They also used random simulations to approximate the ver-
tex infection probabilities, and they choose an arbitrary constant for edge infection
probabilities. This result stresses the importance of the exact computation of vertex
infection probabilities. This problem was proven to be #P-complete by Cao et al. [6].

Computing maximal infections or the exact probabilities of infection with any
kind of model requires a weighted network, that is the edge infection probabilities
must be available. This information is usually not known beforehand. In most real-
life applications, the edges are considered to be some constant, or estimated using
intuition guided trial-and-error methods based on known edge or vertex attributes.
Recently, a few papers were published in this topic discussing systematic approaches
for the estimation of edge infection probabilities. In some of them [12, 18], the steps
or iterations of the infection process are assumed to be known, which is realistic in
the case of twitter or blog-based networks.

In this paper we are going to propose a different approach to the problem. Our
approach uses the framework of the Generalized Cascade (GC) model [3] to define
the Inverse Infection Problem, the task of estimating the edge infection probabili-
ties in diffusion or infection models. The problem can be reduced to an optimiza-
tion task and a Particle Swarm based meta-heuristic is proposed to solve it. The
Inverse Infection Problem and its solution is different from the previously men-
tioned approaches because it does not require information on the individual steps of
the infection process. Instead it builds on the probabilities of infection of vertices
both before and after the process itself.

In order to reduce the complexity of the task and allow the algorithm tohandle large
networks an additional simplification will be proposed. If additional information is
available on both the vertices and edges of the graph in the form of attributes, attribute
functions can be used to calculate the edge infection probabilities from the attributes
themselves. The functions haveunknowncoefficients, and the taskof the optimization
is the estimation of these coefficients. It is also worthwhile to independently estimate
the infection probability of each edge, although this is only possible in small graphs.
This way we can shed more light on the behavior of the problem and we can explore
the boundaries of the optimization algorithm. The usefulness of the Inverse Infection
Problem has been proven in the recent publication of the authors in [1].

Based on the good results of this method in applications, our goal in this paper
is to provide a solid foundation to the Inverse Infection Problem in a more con-
trolled environment. The paper is constructed as follows. In the next section we
will give a short introduction into infection mechanisms, define the GC model, the
Inverse Infection Problem and its two variants: direct and coefficient estimation. In
Sect. 3 we will describe several ways to accurately estimate the infection probabil-
ities, including gradient-based methods and Particle Swarm Optimization. We will
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evaluate the performance of the optimization method on artificially generated infec-
tion scenarios in Sect. 4. The stability and the accuracy of the optimization will be
examined, we will review the available infection heuristics and we will also iden-
tify the minimum number of patterns required to accurately estimate the infection
probabilities. A preliminary version of this paper appeared in the proceedings of the
Federated Conference on Computer Science and Information Systems [4].

2 Problem Definition

The process of infection takes place on a graph G, where V (G) denotes the set of
vertices, and E(G) denotes the set of edges. While most traditional models require
directed edges, depending on the application, they can be easily modified to handle
undirected ones. We also need to know the edge infection probabilities, that is a
weight we ∈ [0, 1] for each edge e.

The notion of states is important. Each vertex of the network has a state of infec-
tion. The number of states and the transitions between them are governed by the
specific model. One of the most basic approaches, the SIR model, [10] has three
states: Susceptible, Infected and Recovered. Infected nodes infect susceptible ones,
but after a certain period,which is usually a parameter of themodel, theymay recover,
no longer infectious. Models in epidemics have a variety of states and the transitions
between them are often more complicated. Models in economics or models describ-
ing information diffusion can be considered simpler. In the case of the Independent
Cascade model, there are three states loosely corresponding to the ones in the SIR
model and the infection period only lasts for one iteration. These three states are:
susceptible, just infected (and still infectious), infected (but no longer infectious).

Most infection processes are also iterative, that is the process takes place in discrete
time steps. Those models, that allow nodes to become susceptible again some time
after becoming infected, may not terminate. It is easy to see, that the IC model
terminates in finite steps.

2.1 Infection Models

Any infection model can be described as a process, that has two inputs: the first one
is a weighted graph, where the edge weights are probabilities. The second input is
the set of initial infectors A0 ⊂ V (G). These nodes are considered as infected at the
beginning of the process. The process terminates at iteration t , and results in the set
of infected nodes A = ⋃t

i=0 Ai .
The specific way one vertex infects another varies depending on the model. In

the case of the IC model [11], let Ai ⊆ V (G) be the set of nodes newly activated in
iteration i . In the next iteration i + 1, each node u ∈ Ai tries to activate its inactive
neighbors v ∈ V \ ∪0≤ j≤i A j according to the edge infection probability wu,v, and v
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becomes active in iteration i +1, if the attempt is successful. If more than one node is
trying to activate v in the same iteration, the attempts are made independently of each
other in an arbitrary order within iteration i + 1. If At = ∅, the process terminates
in iteration t . It is easy to see, that the process always terminates in a finite number
of iterations.

2.2 Generalized Cascade Model

Following the works of Bóta et al. [3], we can generalize this model in the following
way. Instead of using vertex sets for representing the initial infectors, we work with
two probability distributions. The a priori distribution defines the probability, that a
vertex becomes infected on its own, independently of other vertices at the beginning
of the process. The a posteriori defines the probability, that a vertex becomes infected
at the end of the process. For all vertices v ∈ V (G), we will denote the a priori
probability of infection as pv, the a posteriori as p′

v.
In some applications, an estimate of one or both of the above described probability

distributions is available. For example, in the case of the banking application [1, 5]
an accurate estimation of the probability of default for each company was given by
standard models used by the bank.1 Another application in telecommunications uses
estimations for the probability of churn using similar methods. If such estimations
are not available we can resort to a crude but effective method. Suppose we can
observe the beginning and the end of the infection process k times. By counting
the frequencies of infection, for all vertices v, how many times did v belong to A0
or A we can construct the respective probability distributions. The accuracy of the
estimation obviously depends on k, but k does not have to be a large number. We will
show in Sect. 4, that 6–8 observations are enough to produce outputs with acceptable
quality.

Based on these remarks and formulations, we can define the Generalized Cascade
model [2]:

The Generalized Cascade Model: Given an appropriately weighted graph G and
the a priori infection distribution pv, the model computes the a posteriori distribution
p′

v for all v ∈ V (G).

The infection process itself is the IC model, although other models might also be
used for different applications. We have chosen the Independent Cascade model as
the basis of ourmethod, because it performswell inmodeling infection-like processes
in business applications [5]. Alternatively, this model can be considered as a general
framework of infection.

Unfortunately, the computation of the a posteriori distribution in the IC model
is #P-complete. There are several existing heuristics to provide estimations of p′

v
[7, 8], including the ones the authors proposed in [2]. Two of these are Monte Carlo
based simulations. Complete Simulation is a direct adaptation of the idea of Kempe

1The BASEL II default probabilities were computed using vertex attributes.
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et al. to the framework of the GC model. The basis of the idea is the notion of
reachability. By selecting the edges (u, v) ∈ E(G) independently of each other
according to their infection probabilities wu,v, they construct an unweighted graph
which is a realization of the infection process. Any vertex, that can be reached from
any initially infector is considered to be infected. We can adapt this process into
the GC model by computing a large number of individual runs of the model and
counting the frequencies of infections (both a priori and a posteriori). The process
has an unfortunate property: the frequency (or sample size) must be high enough
to reduce the standard deviation characteristic of Monte Carlo based methods. The
Edge Simulation method decreases the standard deviation of the previous method. In
each run, a subgraph containing all of the vertices able to infect the individual vertex
v is constructed for all vertices v ∈ V (G). This way the a posteriori infection of v
can be computed directly in each run. The results of individual runs are averaged.

The authors have proposed two additional heuristics: In the Neighborhood Bound
Heuristic a tree is constructed from the 2-neighborhood of a given vertex v repre-
senting all possible routes of infection. Both the tree and the a posteriori infection of
v can be computed in a short time, resulting in a very fast heuristic. The Aggregated
Linear Effect model is a linear approximation of the mechanism of the IC model. A
more detailed description of these methods can be found in [2].

2.3 Inverse Infection Problem

Based on the framework of theGeneralized Cascademodel, we can define the Inverse
Infection Problem.

Inverse Infection Problem: Given an unweighted graph G, the a priori and the a
posteriori probability distributions pv and p′

v, compute the edge infection probabil-
ities we for all e ∈ E(G).

If we are looking for each edge weight independently, |E(G)| severely limits the
applicability of the method. It is possible to optimize for several thousand different
values, but a graph with this amount of edges only fits into the small category. Even
so, these small examples might provide us with important information about the
problem and its resolvability.

To make the problem tractable for large real-life networks we are going to sug-
gest simplification of the problem. In many real-life applications the probability of
infection between vertices can be considered as a combination of some properties of
the edges, vertices and the graph itself. We are going to take advantage of this fact
to make the problem solvable on large graphs in reasonable time. We are going to
assume, that on each edge there are several attributes,2 and the infection probability
of the edge is a parametrized function of these attributes.3

2Vertex attributes can be easily converted into edge attributes.
3It is possible, that some of these attributes have no influence on the infection probability, but we
expect the method to ignore the effect of these.
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If there is only one attribute, this function can be expressed as f (a1(e)), where
f is the attribute function and a1(e) represents the attribute of edge e. We have
used low-degree polynomials or simply a linear functions like c0 + c1a1(e), where
c0 and c1 are unknown coefficients. The degree of these polynomials should be
low, but we allow different polynomials on different edges, with possibly different
degrees. If the maximum degree of these polynomials is fmax , then there are at most
( fmax + 1)� coefficients to estimate. If there are multiple attributes it is necessary to
summarize the effect of them, and even in the case of a single one, normalization is
required toget valid probability values between zero andone.Therefore it is necessary
to use two functions, the attribute function is applied to the individual attributes
on each edge, then the results of these functions are summarized and normalized:
we = g( f (a1(e)), f (a2(e)), . . . , f (an(e))), where we is the edge weight of e, g
is the summarizer-normalizer function, f denotes the attribute function and ai (e)
represents the i-th attribute of edge e. The attribute and the normalizer function is
the same for all edges, this way we only have to estimate the coefficients of these
functions, and since the number of attributes and coefficients is limited, the problem
becomes tractable.

According to the above we are going to define two variants of the problem.

1. The direct estimation of edge weights.
2. The attribute function coefficient estimation.

We are going to evaluate the properties of both variants in the results section.

3 Estimation with Learning Methods

To provide a solution for the Inverse Infection Problem, we have developed the
following learning algorithm. The problem definition states, that the a posteriori dis-
tribution is required as an input of any algorithm. In the case of a learning algorithm,
it is considered as a test or reference dataset. By choosing some initially random
edge weights or coefficients and taking the a priori distribution we can compute
an estimation of the a posteriori distribution. Then, an error function calculates the
difference between the reference set and the newly calculated infection values. Our
goal is finding the global minimum of this error function by repeatedly adjusting
the edge weights or coefficients and computing a new estimation of the a posteriori
distribution. This is a typical task for global optimization, i.e. finding the minimum
of an unknown multidimensional surface, where the points of this surface can be
accurately estimated.

3.1 Previous Approaches and Experiences

We have tried several optimization algorithms, including more simple ones, like grid
search, gradient-basedmethods andmeta-heuristics.Our first analysiswas performed
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on banking data where we used grid search for optimization and the attribute formu-
lation discussed above. While this early approach provided some results [5], it was
clear that the search method was unable to solve but the most trivial tasks. Later, we
have implemented a multi agent gradient based method, and compared the perfor-
mance of itwith our previous results [3]. The gradientmethod providedmore accurate
estimations, but highlighted several unfortunate properties of the problem itself.

Perhaps the most obvious problem is the dimensionality. Even if we consider
coefficient estimation, the number of attributes and thus the number of parameters
to estimate is too large for grid search to handle.

Another observation was that the error function was noisy. This comes from using
Monte Carlo methods to approximate the IC model, since the deviation of these
simulations makes different runs with the same coefficient values have different
results. The noise can be reduced by increasing the frequency parameter of the
simulation, but this also increases the time complexity of the method [3].

The third observation was that the problem is underdetermined. Different edge
weight configurations can result in the same infection pattern, the same a posteriori
distribution. This results in alleys and plateaus on the error surface. In the case of
the example on Fig. 1, the global minimum is in the middle of the alley. Even in this
simple example neither algorithms are able to reliably find the best solution.

Grid search had serious performance issues both in finding the global minimum
and in time complexity. Due to its search pattern, its precision is simply not enough
to tackle with this problem, and it also scales exponentially with the number of
coefficients. The simple gradient method also performs poorly: it easily gets lost on
the alleys and plateaus especially if they are noisy as well. As a consequence, it rarely
finds a solution close to the global minimum, and the number of steps it takes to find
a solution at all can be quite high.

We have tried several error functions, mainly vector distance measurements, and
ROC evaluation. One of our first experiences was, that the latter is not enough to
properly guide the optimization method to the global minimum, so we have shifted
our attention to other measurements, and finally settled on the root mean squared
error. In this work we are going to use the RMSE as an error measurement, that is
we are looking for the minimum of

Fig. 1 The error surface of
an IIP with one edge attribute
and f1(a1) = c0 ∗ a1 + c1
as the attribute function.
Root mean squared error was
used for the evaluation
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where p̂′
v denotes the estimated a posteriori infection of vertex v.

3.2 Particle-Swarm Optimization

In order to handle the above mentioned problems, we have decided to implement the
particle swarm optimization algorithm of Kennedy [14]. This is an iterative method
based on the interaction of multiple agents or “particles”. Each agent corresponds to
a different edge weight or coefficient configuration, representing a coordinate in the
parameter space of the problem.

Apart from the coordinates themselves, the agents also have a velocity. In each
iteration the position of an agent is updated by adding its velocity to it. The velocity
of the agent is computed using the best solution the agent has found and the best
solutions of the neighboring agents; the goodness of the solution is measured by
evaluating the error function on the coordinates visited by the particles. Agents are
connected to each other according some topology describing the neighborhood of
each agent.

The specific way the velocities of the agents are updated and the topology itself is
not fixed: there are various approaches in the literature for specific applications and for
more general problem solving. In ourworkwe have followed the recommendations of
Kennedy andMendes [15], and found, that it performs well in finding configurations
close to the global minimum.

Algorithm 1 Particle Swarm Optimization
1: for all ai do
2: Initialize xi for agent ai within the boundaries of the search space
3: Initialize vi for agent ai
4: Set bi ← xi
5: Select the neighbors of ai according to the topology
6: end for
7: repeat
8: for all ai do
9: Update vi according to Eq.2
10: Update xi according Eq.3
11: Calculate the error function e(xi ) in position xi
12: if e(xi ) < e(bi ) then
13: bi ← xi
14: end if
15: end for
16: until termination criterium is met
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We have used the Fully Informed Particle Swarm published in [15] with a von
Neumann neighborhood.4 The position and the velocity of the agents are updated
according to the following equations:

vi ← χ

⎛

⎝vi +
Ni∑

n=1

U (0, ϕ)(bnbr(n) − xi )

Ni

⎞

⎠ , (2)

xi ← xi + vi , (3)

where xi and vi denotes the coordinate and velocity of particle i , U (min, max) is a
uniform randomnumber generator,bi is the best location found so far by particle i , Ni

is the number of neighbors i has and nbr(n) is the nth neighbor of i . The formula has
two parameters: χ is the constriction coefficient and ϕ is the acceleration constant.
Again, we have used the recommendations of Kennedy et al., and set χ = 0.7298
and ϕ = 4.1.

At the beginning of the search, the agents are initialized with zero velocities and
random starting coordinates within some reasonable bounds of them. Then in each
iteration these two vectors are updated according to Eqs. 2 and 3 in a synchronized
manner. The search is completed if the global minimum found considering all agents
does not change for five consecutive iterations. We have experimented with other
values and found, that increasing it does not improve the quality of the results, and
decreasing it does not reduce the running time considerably.

4 Evaluation on Artificial Infection Scenarios

In this section we will test the performance of the Inverse Infection Problem and its
estimation on artificially created infection scenarios. These scenarios take place on
graphs with sizes from |V (G)| = 1000 to 100000. We will give a detailed discussion
of the scenarios in Sect. 4.1. In most subsequent sections of the evaluation we will
make a distinction between the direct and coefficient estimations and present result
for both of them For the latter approach, a description of the used attributes and
attribute functions will be given in Sect. 4.1.1.

We will begin the evaluation of the Inverse Infection Problem and its estimation
method by testing the stability and running time of the optimization algorithm. We
can show, that the latter can be divided into two parts: the evaluation of the error
surface and the speed of the optimization mechanics. Corresponding to this we will
start with the review of the complexities of the used infection heuristics and only then
we will test the stability of the optimization. The most natural was to do this is by
counting the average and maximum number of iterations the method takes before it
finishes. In attribute estimation the number of values to estimate in our examples is at

4Each agent has four neighbors in a grid, connected to the upper, lower, left and right,whilewrapping
around the edges.



26 A. Bóta et al.

most 21, while in direct estimation there can be thousands of values. Understandably
the focus is on the latter.

The next point of interest is the effect of the infection heuristic on the precision of
the estimation. Our findings correspond with those in [2], we will elaborate on this
in Sect. 4.3. The results are mostly the same for each estimation type.

In case the exact a priori and a posteriori infection probabilities are not available,
the only thing to do is to rely on counting the frequencies of infections. We will show
the behavior of our method when the number of learning patterns is minimal. In real
life we cannot hope to witness an infection process on any network in more than a
handful of times. It is therefore necessary to investigate the sensitivity of our method
to low-quality inputs. We will discuss this in Sect. 4.4.

4.1 Test Dataset

As a basis of our analysis we have used graphs generated with the forest fire
method of Leskovec et al. [19]. We have created a series of graphs of sizes
n = 1000, . . . , 100000, with parameters p = 0.37 and pb = 0.32, for forward and
backward burning probabilities, respectively. We have assigned a number of edge
attributes ai , i = 2, . . . , 10 to these networks. These attributes are randomly gener-
ated: they were drawn independently from a uniform distribution between [0, 0.5].
We have also used randomly generated a priori infections. The expected size of the
set of initial infectors is 0.3 ∗ n. If v is selected, then an a priori infection probability
was drawn from an uniform distribution between [0, 0.5], otherwise pv = 0. We
have used various attribute functions, description of these will be given in the next
subsection. Finally for each network and each attribute function we have created an
a posteriori infection distribution as the reference dataset. For this purpose we have
used Complete Simulation with sample size k = 10000, because this method gives
the best approximation of the original IC model.

4.1.1 Attribute Functions

We have seen, that in coefficient estimation, the edge infection probabilities are com-
puted from some additional information on the edges in the form of edge attributes
by so-called attribute functions. The choice of these attribute functions is an impor-
tant part of our method. A natural requirement of this choice is, that it must result in
infection probabilities: it must map into the [0, 1] interval.

There are two approaches to this problem: the first one is to construct problem-
specific functions, taking into account the structure of the network, the nature of
the infection model and the number and domain of the attributes. This way it is
possible to calculate the infection probabilities directly, without any form of addi-
tional normalization. This is the obvious choice if the above mentioned information
is available.
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If we do not have this information, we can try a more user-friendly approach.
We can apply functions to the individual attributes, summarize them and finally
normalize them. A variety of functions might be considered for this purpose. In
our work, we have used low-degree polynomials for the individual attributes and
simple addition or multiplication to join them. We have normalized the resulting
edge infection probabilities according to

norm(e) = e − min(e)
3(max(e) − min(e))

, (4)

where e is a vector containing the infection probabilities for each individual edge.
The reason why we have used the multiplier 3 in the denominator is, that according
to our findings in the prediction of default events on banking data, the edge infection
probabilities are low [5]. The normalizer function obviously distorts the shape of the
individual attribute functions, but in real-life problems a simpleweighted, normalized
sum of attributes is sufficient to produce acceptable results.

In this paper, we have used seven attribute function configurations, ai denotes
attribute i and c j denotes coefficient j :

• Weighted sum of two attributes: c1a1(e) + c2a2(e), two coefficients in total.
• Weighted sum of four attributes:

∑
i ci ai (e), i = 1, 2, 3, 4, four coefficients

in total.
• Weighted sum of six attributes:

∑
i ci ai (e), i = 1, . . . , 6, six coefficients in total.

• Weighted sum of eight attributes:
∑

i ci ai (e), i = 1, . . . , 8, eight coefficients
in total.

• Weighted sum of ten attributes:
∑

i ci ai (e), i = 1, . . . , 10, ten coefficients in total.
• Sumofquadratic polynomialswith eight attributes c1+∑

i (c2i ai (e)2+c2i+1ai (e)),
i = 1, . . . , 8, 17 coefficients in total.

• Sum of quadratic polynomials with ten attributes c1+∑
i (c2i ai (e)2+c2i+1ai (e)),

i = 1, . . . , 10, 21 coefficients in total.

4.2 Computational Time

The time complexity of the inverse infection estimation is the sum of two distinct
parts of the algorithm: evaluating points on the error surface and the search method
itself. The latter consists of the repeated evaluation of the formula in Sect. 3.2, after
initializing the neighborhood and the starting coordinates. Since the number of agents
is relatively small, this part of the algorithm is very fast, and most of the running
time is spent with the evaluation of error surface.

In each iteration every agent evaluates the error function. This evaluation is the
computation of the GC model using the coordinates5 of the given agent. The time
complexity of this step heavily depends on the used heuristic. Altogether, we can

5Again, these are the edge weights or the coefficients of the attribute function.
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say, that the time complexity of a single run is s ∗ a ∗ h, where s is the number of
iterations, a is the number of agents (a constant) and h is the time complexity of
the infection heuristic. This also means, that we can describe the time complexity
of the algorithm by measuring the average or maximum number of iterations and
multiplying it with the time complexity of the infection method and the number of
agents. Breaking the time complexity of the method into different factors makes
sense because of another reason: the individual runs of the infection heuristics may
be run on multiple threads simultaneously, significantly improving the speed of the
method. In the subsequent subsections we will discuss all of these starting with the
evaluation of the error surface—the speed of the infection heuristics, the stability
of the optimization algorithm and finally we will give a short example on the total
running time of our method on an average personal computer.

4.2.1 Speed of the Heuristics

Previously, in Sect. 2.2, we have given short descriptions of some heuristics of the
GC model published in [2]. We will give a short reminder on their running times on
the networks discussed in the previous section. The mentioned heuristics are:

• CompleteSimulation (CS)with sample size k = 10000, a very accurate simulation.
• Complete Simulation (CS) with sample size k = 1000, a very fast simulation.
• Edge Simulation (ES) with sample size k = 100, a simulation based heuristic.
• Neighborhood Bound Heuristic (NBH), an extremely fast lower approximation.
• Aggregated Linear Effect (ALE) model, a DeGroot [9] based simplification of the
infection process.

We are going to use two different datasets to evaluate the running time. First, small
networkswith |V (G)| ≤ 5000will be used tomakegeneral observations, thenwewill
test themore robust heuristics on large networks with |V (G)| = 10000, . . . , 100000.
Our largest network has 100000 vertices and 2.3 million edges.

Our results on the running times6 of these heuristics on small networks correspond
with our previous findings [2]. The speed of the simulations are governed by the
sample size. Complete Simulation is considerably faster than ES7 because the latter
focuses on the fast computation of smaller infections. By decreasing the sample
size CS can tackle larger networks as well. The Neighborhood Bound Heuristic is
able to compute the a posteriori infections of the largest networks within a minute,
enabling the heuristic to scale upwards and handle real-life datasets and networks
with possibly millions of nodes and edges (Figs. 2 and 3).

6We have implemented themethods in JAVA, andwe have used a computer with an Intel i7-2630QM
processor, and 8Gb of memory.
7Note the sample sizes.
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Fig. 2 The running timeof the infection heuristicswith different network sizesmeasured in seconds.
Figure used with the permission of the authors [2]

Fig. 3 The running time of the infection heuristics on large networks measured in seconds

4.2.2 Stability of the Optimization

Let us take a look at the stability of the optimization. We have to make a distinc-
tion between direct and coefficient estimations, because both the number of agents
required to handle the task and the expected number of iterations are different.

OnFig. 4wecan see the averagenumber of iterations for different numbers of coef-
ficients.Wehaveused a small networkwith |V (G)| = 1000.Thepoint of interest here
is, starting from a simple problem with only two coefficients to more complex ones,
the expected number of iterations grows slowly, and stabilizes around 12. The maxi-
mum number of iterations remains bounded as well, even in the experiment with 21
coefficients, it does not gobeyond30.The results shownonFig. 4were computedwith
9 agents. We have tried this problem with 16 agents as well and got similar results.
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Fig. 4 The average number of iterations with different attribute functions

Fig. 5 The average number of iterations with direct estimation

If we compare the different infection heuristics, they perform similarly, with the
non-Monte Carlo methods finishing slightly sooner, usually by 4–5 iterations.

A more interesting question is the stability of direct optimization, where dimen-
sionality of the problem is in the thousands. On Fig. 5 the magnitude of the opti-
mization task is represented as the number of edges |E(G)| which is of course is
equal to the dimensionality of the problem. The values correspond to networks with
sizes of |V (G)| = 1000, . . . , 5000. We can see that the average number of iterations
is surprisingly low considering the task, it settles around 27, but the process rarely
takes more than 50 iterations to conclude. The number of agents was 100. We have
experimentedwith smaller and greater values, but they had little effect on the stability
and the precision of the optimization.

Unlike before, there is a difference between the used heuristics. With this many
agents, Edge Simulation is too slow to produce results even with k = 100. Complete
Simulation performs well both in speed and accuracy, but with the otherMonte Carlo
method, the sample size should be significantly decreased. TheNeighborhoodBound
heuristic is very fast, but it fails to produce acceptable accuracy, as we will see in
Sect. 4.3.
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Fig. 6 Total running time of direct estimation

We can conclude, that the Particle-Swarm Optimization method described in this
section is able to give an estimation of the Inverse Infection Problem with satisfying
results. The algorithm is very stable, and even in the worst case of direct estimation,
it finishes within 50 iterations.

4.2.3 Total Running Time

Finally let us take a look at the total running time of the algorithm. As we have
mentioned before, the total running time is the function of the infection heuristic, the
number of agents and the number of iterations and computations can be simplified
by evaluating the points of the error surface in a parallel fashion. Therefore Fig. 6 is
simply an example meant to illustrate that our method is able to produce results on
an average personal computer. We can see the running times of the more demanding
direct estimation with a hundred agents, and eight threads. We can confirm our
previous observations: Edge Simulation is too slow to be of any use, and even though
NBH is extremely fast we will see, that its accuracy is not acceptable. This leaves us
with Complete Simulation.

4.3 Accuracy of the Inverse Infection Estimation

We are going to continue our discussion with the precision of the inverse infection
estimation itself: we are going to test both direct and coefficient estimations on
the artificial infection scenarios of Sect. 4.1. For our computations we will use the
infection heuristics described in the previous section with the same settings. As we
have mentioned before, we will use CS with sample size k = 10000 to create an a
posteriori distribution as a reference set. Then we will use each heuristic with the
optimization method to estimate the edge infection probabilities.
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Fig. 7 The RMSE of coefficient estimation on a small network with n = 1000

Fig. 8 The RMSE of direct estimation on networks with |V (G)| = 1000, . . . , 5000

We can see the difference between the estimated and reference a posteriori infec-
tion values for coefficient estimation on Fig. 7. We have used a small network with
|V (G)| = 1000. As we can see in this example, the Monte Carlo based simulations
(CS and ES) are able to estimate the reference distribution well, with the measured
error between 0.01 and 0.03. The other two heuristics (NBH and ALE) are tailored
to small edge infection probabilities with rare infections, hence they do not perform
so well on this dataset. Note, that in some cases even an error of this magnitude is
acceptable, and the time complexity of these methods allows them to handle larger
networks. Finally, if we compare the results computed with different attribute func-
tions, we can see that they have minimal effect on the accuracy of the methods. Yet
this is only coefficient estimation so this is not surprising.

We can see the precision of direct estimation on Fig. 8. Again, the dimension-
ality of the task is represented as the size of |E(G)| for graphs with |V (G)| =
1000, . . . , 5000. Edge Simulation was left out because of the computational reasons
discussed in the previous section, and ALE failed to produce acceptable output. We
can see, that even though the Neighborhood Bound Heuristic is very fast, in direct
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estimation it is unable to solve the optimization task. The only working heuristic is
Complete Simulation, and even though it produces less accurate output than with
coefficient estimation its precision is acceptable, with the added property of the
accuracy remaining mostly the same as the dimensionality increases.

Considering both problem variants, we can conclude, that the use of Complete
Simulation is recommended. Both its precision and accuracy are good for both direct
and coefficient estimations. If the infection probabilities are lower than our current
dataset, the use of Edge Simulation is also advisable for coefficient estimation. The
Neighborhood BoundHeuristic is able to handle even larger networks, yet this comes
at the cost of a significantly lower precision which only makes it applicable for
coefficient estimation.

4.4 Number of Patterns

In many real-life applications the a priori or a posteriori probabilities of infections
are unavailable. In this section we are going to assume, that the initial infection
probabilities are given, but we only have a small number of observations on the a
posteriori infections. We are going to simulate this on a small network by generating
an a posteriori distribution using CS with k = 1, . . . , 10, corresponding to 1, . . . , 10
observations.

We can see, that the proposed method gives a rough estimate of the vertex infec-
tion probabilities in only a few iterations. If we consider a threshold of 0.15 as an
acceptable estimation, our method only requires 6 observations to reach it. However,
it is important to keep in mind, that the method tries to create a posteriori infections
close to the reference. The problem is underdetermined even with exact possibilities
of vertex infection, with only a handful number of observations many attribute func-
tion configurations (and edge weights) may result in the same infection. The results
in this section only imply, that our method is able to give one of these.

Fig. 9 The precision of the infection heuristics with a limited number of observations of the
reference distribution
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Different infection heuristics are shown on Fig. 9, one can see, that the simulations
have identical performance regardless of the sample size. As before, the non-Monte
Carlo based methods perform poorly, their use is not recommended with low-quality
inputs.

5 Conclusions

Our goal on this paper was to extend the previous results of the Inverse Infection
Problem and its solution. We have given a detailed description and analysis of the
Generalized Cascade Model and the Inverse Infection Problem. We have given two
variants of the latter. The first one is the direct estimation of the edge weights of the
given graph. We have also proposed coefficient estimation, where the edge weights
are considered to be a function of known attributes on the edges, thus reducing the
dimensionality of the problem.

We have formulated the Inverse Infection Problem as an optimization task and
given a Particle-Swarm Optimization algorithm capable of giving a good estimation.
Several aspects of the method were investigated: We have tested the stability and
accuracy of the optimizationmethod, we have examined the implications of choosing
between the heuristics of the GCmodel andwe have tested ourmethod in low-quality
inputs as well.

The results were given for both direct and coefficient estimations. For both vari-
ants, the optimization method is able to predict the edge infection probabilities in
a small number of iterations, while the number of attributes and the shape of the
attribute functions have only a small effect on this. There are differences between the
two variants however. It is only possible to use direct estimation if the graph is small
enough, not just because the dimensionality of the problem, but because the number
of agents required. This means the slower heuristics like Edge Simulation should
not be used. The precision of the heuristics should be high, leaving NBH and ALE
out of the picture, with Complete Simulation remaining to be the only recommended
heuristic. Even with Complete Simulation, the accuracy of the method is less than
with coefficient estimation. Still, if there are no attributes available and the graph is
small enough, direct estimation can be used.

Coefficient estimation significantly reduces the dimensionality of the problem. It
is faster, since less agents are required, and is less dependent on the used heuristic.
Precision is the highest with the Monte Carlo heuristics, and even the Neighborhood
Bound heuristic is able to produce acceptable results. The latter heuristic is extremely
fast, with it is possible to handle large graphs with millions of nodes and edges.
Coefficient estimation also handles low-quality inputs well.

We have shown the usefulness of our method in a recent paper, where we have
given an application of thismethod in the prediction of credit default on bank transac-
tion networks [1]. We were able to predict the bankruptcies of the riskiest 5% clients
10% more accurately than the currently used method. Our model was implemented
in August 2013 into the OTP Bank of Hungary’s credit monitoring process.
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On a Quantum Algorithm for the Resolution
of Systems of Linear Equations

J.M. Sellier and I. Dimov

Abstract The numerical resolution of systems of linear equations is an important
problem which recurs continously in applied sciences. In particular, it represents
an indispensable tool in applied mathematics which can be utilized as a founda-
tion to more complicated problems (e.g. optimization problems, partial differential
equations, eigenproblems, etc.). In this work, we introduce a solver for systems of
linear equations based on quantum mechanics. More specifically, given a system of
linear equations we introduce an equivalent optimization problem which objective
function defines an electrostatic potential. Then, we evolve a many-body quantum
system immersed in this potential and show that the corresponding Wigner quasi-
distribution function converges to the global energy minimum. The simulations are
performed by using the time-dependent, ab-initio, many-body Wigner Monte Carlo
method. Finally, by numerically emulating the (random) process ofmeasurement, we
demonstrate that one can extract the solution of the original mathematical problem.
As a proof of concept we solve 3 simple, but different, linear systems with increas-
ing complexity. The outcomes clearly show that our suggested approach is a valid
quantum algorithm for the resolution of systems of linear equations.

1 Introduction

Quantum computing is the art of exploiting quantum effects for computational pur-
poses. While it is clear, from a theoretical perspective, that incredible speedup could
be achieved with such technology, how to actually build such devices is still an
important open problem. Different approaches have been proposed such as the quan-
tum gate and the adiabatic models, just to mention a few. In particular, the quantum
gate model is very similar to the classical electronics paradigm. Its aim is, indeed,
to process (quantum) information by means of (quantum) gates [1], thus allowing
the implementation of more complex circuits which can achieve practical and useful
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functionalities. Classical gate electronics has been very successful in this respect,
and it is more than natural that the vast majority of the scientific community thinks
in terms of gate models when refering to quantum computing. Furthermore, mathe-
matical investigations have clearly shown that a quantum computer based on the gate
model would offer an incredible advantages over classical computers, representing
an additional motivation [1]. Thus it is not surprising that a great deal of efforts have
been spent in trying to physically build the basic blocks of quantum gate electron-
ics (qubits and gates) [2–7]. Unfortunately, this paradigm necessitates technological
exploits that we may not be reachable yet. Indeed, it requires an incredibly high
control of the quantum states which are rapidly destroyed by the environmental
noise [1, 8].

On the other hand, quantum computing based on the adiabatic model seems to
be within our reach already. As a matter of fact, on may 2011 the D-Wave company
announced the first commercial quantum computer [9], based on an implementation
of the quantum annealing algorithm [10–13] and empowering 128 flux qubits, and a
second generation machine, with 512 flux qubits, is already being benchmarked by
Google, NASAand a consortium of universities showing that themachine is an actual
quantummachine [14]. The question of speedup still remains an open discussion [15],
though one should note that calculation times for this very young technology are
already comparable to the biggest clusters available (based on a mature technology)
[15]. This is certainly a very encouraging fact which opens the door toward achiev-
able quantum computing. These machines are special purpose machines which solve
combinatorial optimization problems only. In practice, calculations can be achieved
since the adiabatic paradigm does not necessitate extreme control over the environ-
ment as it is, instead, required by the gate model. In this respect, the situation is
very similar to the early days of electronic computers where analog designs were
implemented successfully to construct special purpose machines.

In this paper, we take inspiration from the actual situation in quantum computing
and present an analog numerical quantum algorithm for the resolution of systems of
linear equations. One cannot stress enough on the importance of such mathematical
problems. The resolution of systems of linear equations appears in a plethora of
important scientific and engineering practical situations. For instance, in Chemistry
the simulation of the electrostatic potential is made possible by the resolution of
a system of linear equations (due to the discretization of the Poisson equation). In
Physics and Engineering, most of the time the simulation ofmodels expressed as a set
of partial differential equations eventually reduces to the resolution of linear systems.
Not to mention that in appliedMathematics a linear solver represents one of the most
powerful numerical tool for the resolution of even more complex numerical tasks
such as optimization problems, eigenproblems, etc. It is, therefore, not surprising
that quantum algorithms for the resolution of such linear systems have been already
(recently) proposed [16, 17], and the reader should give particular attention to the
fact that, while these works are completely based on the gate paradigm, the main
purpose is the actual construction of a quantum machine.

In this study, our goal is mainly the suggestion of a new numerical approach to the
resolution of linear systems. In practice, this algorithm is based on the simulation of



On a Quantum Algorithm for the Resolution of Systems of Linear Equations 39

quantum many-body problems and, as such, strongly relies on the time-dependent
many-body Wigner Monte Carlo method [22]. A way to depict (virtual) quantum
systems, which evolution in time provide the solution of a given linear system,
is introduced. In particular the Wigner quasi-distribution function of the system
is shown, for long enough times, to converge towards a state which points to the
global energy minimum. Conequently, a set of (random) measurements is emulated
which recovers the solution of the original algebraic problem. Finally, in order to
show the reliability of such proposed quantum algorithm, we solve relatively simple
linear systems, as a proof of concept, involving one, two and 16 unknowns. Although
furthermathematical investigation is still needed (and some interesting comments are
reported in the conclusion section), we believe that these promising (and preliminary)
results show a valid alternative to other more classical methods, and offer a way
to bypass typical numerical problems such as, for example, the presence of local
minima.

2 A Quantum Solver for Linear Systems

In this section, we introduce the fundamental concepts needed to solve a system
of linear equations by simulating a corresponding quantum system. The numerical
experiments to show the feasibility of such approach are performed and discussed in
the next section.

The initial problem. Let us suppose to have a n × n real and invertible matrix
A ∈ IRn×n (with n being a natural number) and b ∈ IRn×1 a n-dimensional real
vector (the generalization to complex systems is trivial). Our problem consists of
finding the real n-dimensional vector x (unknown) such that

A · x = b, (1)

in other words the resolution of a system of linear equations. The fact that A is
invertible guarantees the uniqueness of the solution.

Due to the high significance of this problem in practical applications, an incred-
ible number of solvers have been developed all based on deterministic approaches/
concepts. For example, nowadays available methods are the Gauss-Jordan elimi-
nations, the LU decomposition, the Singular Value method, the Cholesky method,
and QR decompositions, Relaxation methods such as the Gauss-Seidel and Jacobi
methods, just to mention a few of them. Moreover, a plethora of numerical libraries
are available, e.g. [19, 20]. The situation is quite different on the other side of the
spectrum. A few quantum algorithms exist too, but based on the gate model and not
available for any practical application yet [17].

The optimization problem. Now, one can think of the previous problem as an
optimization problem. Indeed, if one defines the following objective function
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Fig. 1 Typical landscape of a two-dimensional quadratic objective function given at a certain time
t > 0. If interpreted as an electric potential, it is easy to see how the electrons reach the bottom of
the main (and unique) valley

F = F (x) =
n∑

i=1

(ai1x1 + ai2x2 + · · · + ain xn − bi )
2 , (2)

it is trivial to show that F is quadratic non-negative definite, has a unique global
minimumwhich corresponds to the (unique) solution of the system (1), and F (x∗) =
0 where x∗ is the solution of (1). Thus, one can think of the problem (1) as the
(equivalent) optimization problemwhich objective function is (2). The two problems
have both the same unique solution and the same complexity O(n2). A typical shape
for a (two-dimensional) objective function is shown in Fig. 1.

The quantum solver. Having reformulated the problem (1) in terms of an opti-
mization problem, one can physically interpret the objective function (2) as a fixed
electrostatic potential in which a system of electrons evolves. However in practice,
the objective function is multiplied by a non-decreasing function s = s(t), where
s(0) = 0 and s(t) = 1,∀t > TC , and Tc equal to an (arbitrary) fraction of the final
time T f . Thus, the potential evolves in time until Tc:

V = V (x; t) = s(t) × F(x), (3)

where x = (x1, x2, . . . , xn). At this point, two approaches are conceivable. One may
immagine a rather abstract electron defined in n-dimensional space which evolves
in the n-dimensional (increasing in time) potential (3). Another (more realistic) pos-
sibility is to think of a system of n electrons defined in a one-dimensional space and
which dynamics is shaped by the time-dependent formula (3). This last interpretation
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has several important advantages. First of all, it defines a physically sound system
which in principle could be realized, leading to a special-purpose quantum machine
able to solve systems of linear equations. However, how to build such a machine
is not the goal of this work and, unfortunately, remains an unclear task to us at the
present time. In spite of it, this interpretation represents a very suggestive perspective
and several further comments are given in the conclusions of this paper. Secondly,
it gives the opportunity to introduce an artificial dissipative background [23] which
assists the trapping of electrons in the global energetic minimum (somehow miming
phonon assisted charge trapping).

A final note must be given for the sake of clarity. In order to deal with practical
numerical problems, the function (3) is rescaled to have reasonable, and physically
meaningful, values. Obviously, this procedure does not change the position of the
global minimum which corresponds to the solution of the linear system we aim to
solve. Moreover, while one could have thought of a time-independent potential such
as V = V (x) = F(x), it is observed from our numerical tests that the introduction
of the function s = s(t) in (3) speeds up the convergence up (rapidly pushing the
electrons towards the global minimum).

3 Simulations and Validation

In this section, we perform several numerical experiments to show how a physical
system of electrons in the potential defined in (3) can actually reach the (unique)
bottom of the energy valley, thus, providing the solution of the linear system (1) when
their position is measured. For every n × n system of linear equations it is possible
to construct a corresponding physical system consisting of n electrons evolving in
the potential defined by (2) and (3). First, we simulate such systems, i.e. n-body
problems, for simple case studies (n = 1, 2) to show that the physical structure
actually provides the correct solution. Thus we proceed with the more interesting
case n = 16. To this goal, we apply the many-body Wigner Monte Carlo method
described in [22].

3.1 Numerical Technique

In the Wigner formulation of quantum mechanics (mathematically equivalent to the
Schrödinger formalism) [18] the description of a system is based on the concept of
a quasi-distribution function defined over the d × n-dimensional phase-space (with
d = 1, 2, 3 the dimensionality and n the number of electrons). For a one-dimensional
system of n electrons, its time-dependent evolution equation reads:
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∂ fW

∂t
(x; p; t) +

n∑

k=1

pk

m

fW

xk
=

∫
dp fW (x; p; t)VW (x; p; t), (4)

withx = (x1, x2, . . . , xn) the set of coordinates of the particles,p = (p1, p2, . . . , pn)

the momenta of the particles,
∫
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dp1

∫
dp2 . . .

∫
dpn , m the mass of the elec-

tron, and the Wigner kernel VW = VW (x; p; t) defined as
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2
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]
.

(5)

In this work, all simulated quantummany-body problems are described by the partial
integro-differential equation (4) which is solved by means of the many-bodyWigner
Monte Carlo method presented in [22] and based on [24, 25].

We now proceed with several numerical experiments to show the efficiency of the
proposed method.

3.2 The Case n = 1

In the first experiment, we start from one equation and one unknown. While this first
example have no impact in practical calculations, it is an interesting case study to
perform a validation of the proposed physical system, which in this case consists of
a one-dimensional single electron.

We start from the following problem

ax = b,

where a = 1 and b = 1. The solution is trivial (x = 1). Now, our goal is to show
that the proposed system can recover the solution correctly. In order to compute the
solution physically, we prepare the following experiment. An electron is isolated in
a box which dimensions are 250 nm and immersed in the potential (coming from the
objective function defined above and rescaled on the spatial domain)

V (x; t) = s(t) × F(x) = s(t) × (ax − b)2 .

This is a parabolic potential which has a unique global minimum corresponding
to 0eV at a position which corresponds to the solution of the linear system (when
t > Tc). Concerning the electron, it is initially a Gaussian wave packet [21], with
σ the dispersion of the packet equal to 32 nm and x0 the position of the central
peak of the packet equal to 125 nm. The system is evolved until a final time equal
to 60 fs is reached. The experiment is performed 256 times at the end of which a
random selection of the position is performed according to the probability density
calculated during the simulation. This is equivalent to an 256 identical experiments
which position measurements give 256 different outcomes.
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Fig. 2 Wigner quasi-distribution function at 0 fs (top) and 60 fs (bottom) respectively. It is clear
that the distribution function tends to a δ-function, in time, which peak is in the proximity of the
solution of the linear system (100nm in this specific case)
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Fig. 3 Resolution of 1 linear equation in 1 unknown. 256 equivalent physical systems are simulated
at the end of which a measurement of the position of the electron is performed. The top plot shows
the outcomes for these measurements (in a rescaled space). One clearly sees that the probability of
finding the electron at the position corresponding to the solution of the system is very high. The
bottom plot shows the corresponding energy of the potential at the position of the electron. It is
always close to 0eV, i.e. the global minimum. This is a clear indication of the efficiency of the
proposed method
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The results of this preliminary simulation are shown in Figs. 2 and 3. In particular,
Fig. 2 shows the initial Wigner quasi-distribution function at 0 fs (top) and at 60 fs
(bottom). The distribution function at 60 fs has clearly evolved toward a δ-function
in space, peaking exactly at the solution of the linear system (at 100 nm which,
rescaled, corresponds to our solution x = 1). Figure3 shows 256 simulated position
measurement outcomes (rescaled) after the probability density has been evolved. The
top plot shows the obtained solutions while the bottom plot shows the corresponding
energies. It is clear that the average solution is correct. Indeed, the average is around
1 while the energy is clearly close to 0eV for the vast majority of performed mea-
surements. This first simple case study shows, as a proof of concept, that a physical
system can be depicted to solve one equation in one unknown.

3.3 The Case n = 2

We now proceed with a slightly more complex case study for n = 2 and apply our
proposed method to the system

Fig. 4 Resolution of a system of 2 linear equations in 2 unknown. 256 equivalent physical systems
are simulated at the end of which a measurement of the position of the electrons is performed. The
plot shows the outcomes of measurements for the first electron in a rescaled space. The probability
of finding the electron at the position corresponding to the first component of the solution of the
system is very high
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Fig. 5 Resolution of a system of 2 linear equations in 2 unknown. 256 equivalent physical systems
are simulated at the end of which a measurement of the position of the electrons is performed.
The plot shows the outcomes of measurements for the second electron in a rescaled space. The
probability of finding the electron at the position corresponding to the second component of the
solution of the system is very high

[
c11 c12
c21 c22

]
·
[

x1
x2

]
=

[
g1
g2

]
,

with c11 = 1, c22 = 1, c12 = c21 = 0 and g1 = g2 = 1. The solution is trivial
(x1 = 1, x2 = 1). The case where c12 and c21 are different than 0 is a simple
spatial translation in the reduced phase-space (x1, x2) and, thus, the complexity of
the problem, from a computational point of view, remains the same.

This time, our physical system consists of 2 non-interacting electrons evolving in
the following potential calculated from (2) and (3)

V (x1, x2; t) = s(t) × F(x1, x2) = s(t) ×
{
(c11x1 − g1)

2 + (c22x2 − g2)
2
}

.

Again, this function is quadratic by definition and has a unique global minimum
which corresponds to the value 0eV located at the position corresponding to the
solution of the linear system.

In order to compute the solution, two electrons, initially Gaussian, are evolved
in a one-dimensional space where the potential is V = V (x1, x2; t) defined above.
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Fig. 6 Resolution of a system of 2 linear equations in 2 unknown. The plot shows the corresponding
energy of the potential at the position of the electrons reported in Figs. 4 and 5. It is always close to
0eV, i.e. the global minimum. This is a clear indication of the efficiency of the proposed method

This corresponds to simulate the evolution of the Wigner quasi-distribution func-
tion in a four-dimensional phase-space. The potential starts from a flat profile and
increases in time until s(t) = 1 while the electrons feel a slightly dissipative back-
ground. The final time is fixed to be 60 fs and 256 equivalent experiments are per-
formed at the end of which ameasurement is performed. It is, thus, possible to extract
the solution out of the 256 measurements as we did for the case n = 1.

The results are reported in Figs. 4, 5 and 6. In particular, Fig. 4 shows the out-
comes of (rescaled) measurements for the position of the first electron, Fig. 5 shows
the outcomes of (rescaled) measurements for the position of the second electron,
and Fig. 6 shows the corresponding energies. It is clear, from Fig. 6, that the global
minimum of the potential landscape has been reached, i.e. the solution of the system
has been found. This demonstrates that, as a proof of concept, the proposed quantum
algorithm works even for the case n = 2.

3.4 The Case n = 16

In order to show that our proposed quantum algorithmworks for meaningful systems
as well, we perform a simulation involving 16 one-dimensional electrons which aim
is to solve a system of n = 16 linear equations. We consider the linear system
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Fig. 7 Resolution of 16 linear equation in 16 unknown. The plot shows the outcomes for 256
measurements (in a rescaled space) for the x1 component

Fig. 8 Resolution of 16 linear equation in 16 unknown. The plot shows the outcomes for 256
measurements (in a rescaled space) for the x8 component
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Fig. 9 Resolution of 16 linear equation in 16 unknown. The plot shows the outcomes for 256
measurements (in a rescaled space) for the x16 component

x = H · x + k,

where hi j = a
n , ki = 1, a = 0.9, j = 1, 2, . . . , 16 and whose exact solution is

known to be xi = 1
1−a for every i = 1, 2, . . . , 16. This is a classical example often

utilized by the numerical community to validate new solvers.
The corresponding physical system consisting of 16 electrons evolving in the elec-

trostatic potential shaped by the objective function of the linear system is simulated
and 256 measurements of the position for each of the 16 electrons is performed at
the end of each experiment. The outcomes are shown in Figs. 7, 8 and 9 for selected
components of the solution (x1, x8 and x16 respectively). Even in this relatively more
complex case, our proposed method appears to be efficient in finding the correct
solution.

3.5 Notes on Convergence

It is important to comment on Fig. 10, reporting the evolution of the average of
the position of an electron after every single measurement. This particular case is
taken from a (randomly) selected component of the solution of the system n = 16.
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Fig. 10 Typical plot of the average of the electron position in function of the number of per-
formed measurements. The plot shows a clear convergence towards the solution of the system (256
measurements)

This plot sheds light on the convergence properties of our suggested solver. It is
important to note that typical convergence patterns like this one appear for every
component of the solution of every test performed in this work. This is a clear
indication that our quantum solver converges towards the correct answer and gives
a glance about the speed of convergence of the algorithm.

3.6 Computational Aspects

The simulator used to obtain the results presented in this paper is a modified ver-
sion of Archimedes, the GNU package for the simulation of carrier transport in
semiconductor devices [26] which was first released in 2005 under the GNU Public
License (GPL). In this particular project, named nano-archimedes, our aim has been
to develop a full quantum time-dependent simulator. The code is entirely developed
in C and optimized to get the best performance from the hardware. It can run on par-
allel machines using the OpenMP standard library. The results of the present version
are posted on the nano-archimedes website, dedicated to the simulation of quantum
systems [27]. The source code is available as well.
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The results have been obtained using the HPC cluster deployed at the Institute
of Information and Communication Technologies of the Bulgarian Academy of Sci-
ences. This cluster consists of two racks which contain HP Cluster Platform Express
7000 enclosures with 36 blades BL 280c with dual Intel Xeon X5560 @ 2.8 GHz
(total 576 cores), 24 GB RAM per blade. There are 8 storage and management con-
trolling nodes 8 HP DL 380 G6 with dual Intel X5560 @ 2.8 GHz and 32 GB RAM.
All these servers are interconnected via non-blocking DDR Infiniband interconnect
at 20Gbps line speed. The theoretical peak performance is 3.23 Tflops.

4 Conclusions

In this paper, we introduced a numerical solver for systems of linear equations which
exploits typical concepts of quantummechanicswithout involving the use of quantum
gates. Given a linear system of order n, the solver evolves n electrons in a (initially
time-dependent) electric field shaped by an objective function (2) recovered from
the initial linear system (1). As a proof of concept, we applied the proposed method
to simple (but meaningful) case studies corresponding to n = 1, n = 2, and n = 16.
We have shown that, by means of position measurements of the involved electrons,
it is possible to extract the correct solution of the proposed linear systems. Figures3
(top), 4, 5, 7, 8 and 9 clearly show that the solution of the respective linear systems
is found correctly, while Figs. 3 (bottom) and 6 show that the global minimum of the
corresponding electrostatic potential is reached, providing an indication of the quality
of the found solutions. Finally, Fig. 10 shows the convergence speed of a randomly
selected component of the solution for the case n = 16. Similar convergence patterns
can be shown for other components of the solution and for other systems.

Here we mainly focused on providing new concepts and validate them. It is clear
that further mathematical and theoretical investigations need to be carried out. For
instance, one open question is related to one of the most fascinating effect of quan-
tum mechanics: in all examples shown we started from non-entangled particles, but
what would happen if entanglement were introduced? How that would affect the
convergence of the solver? Another open question concerns the fine tuning of the
dissipative background introduced in the many-body simulations. It is not clear, at
this stage, how to automatically select the right amount of dissipation. As a matter of
fact, when too much noise is introduced the system stops to be in quantum coherence
destroying any hope to exploit effects such as tunnelling and entanglement. On the
other hand, if too less background is introduced the system hardly reaches a station-
ary state. Moreover, it would be interesting to introduce more realistic dissipative
models such as phonon scattering due to the lattice vibrations [28], and see how
this affects the overall behavior of the solver. Another important point is how the
solution provided by our solver is influenced by the (inevitable) errors introduced
in the input. We believe that this question can be answered by utilizing techniques
typical of the field of sensitivity analysis, and an investigation in this direction could
bring interesting insights.
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Finally, we would like to spend a few words on the possibility of building such a
machine. In this paper, we have shown a correspondence between systems of linear
equations and physical systems which are simulated by means of the many-body
Wigner Monte Carlo approach. We did not provide any practical detail on how these
systems could be achieved in real life as we have been more interested in showing its
reliability as a first step. As a matter of fact, we do not even know if potentials such
as in Eq. (3) are physically realizable. Despite the foreseeable technical challenges,
we think that our quantum algorithm remains very suggestive and may shed some
light on how to experimentally proceed. In a sense, the situation is very similar to the
quantum annealing algorithm at its early stage [11]. It tooks several decades before
a physical implementation of the algorithm could come into existence [9].

We firmly believe that by answering these important open questions, we could
obtain novel mathematical and technological tool. This will be the subject of further
papers in the next future.
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Synthesis of Self-Adaptive Supervisors
of Multi-Task Real-Time Object-Oriented
Systems Using Developmental Genetic
Programming

Krzysztof Sapiecha, Leszek Ciopiński and Stanisław Deniziak

Abstract This chapter presents a procedure for automatic creation of self-adaptive
artificial supervisors of multi-task real-time object-oriented systems (MT RT OOS).
The procedure is based on developmental genetic programming. Early UML dia-
grams describing a MT RT OOS are used as input data to the procedure. Next, an
artificial supervisor which optimizes the system use is automatically generated. The
supervisor is self-adaptive what means that it is capable of keeping optimality of the
system in spite of disruptions that may occur dynamically in time of the systemwork.
A representative example of creation of a supervisor of building a house illustrates
the procedure. Efficiency of the procedure from the point of view of self-adaptivity
of the supervisor is investigated.

1 Introduction

Real-time (RT) systems are present in all areas of human life. We can find RT
systems in civil engineering, in traveling, in computer engineering, in banking, and
so on. In the first case, a building enterprise is such a system. It owns resources,
such as workers and building machinery, necessary to build a house according to
requirements of a client. These usually comprise functionalities of the house, its cost
and a deadline. In the second case a human being is an RT system. It knows which
means of transportationmayuse tomeet his requirements. Fromamongflights, trains,
buses, rented cars, and even walking he selects a set, so that to reach a target on time
and at affordable cost. An embedded computer systemmay be another example of RT
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system. A lot of such systems are dynamic i.e. a cost of their resources or processing
time of executed tasks may change at any time.

Complex real life systems may be represented as multi task systems (MS), where
more than one task can be processed at the same time. Each task requires some
resources (processing components) for its execution. A designer or a manager of
such a system has to decide what of the tasks of the system should be assigned to
what of its processing components, so that to get maximum of the performance and
do not surpass the cost. In RT MS the punctuality is an extra requirement which has
to be satisfied. The problem arises when some of the tasks could be delayed, or a
cost of some of the allocated resources could be increased. In such cases real time
constraints might be violated or the system could be not optimal as far as the total
cost is considered. To avoid this inconvenience, the system should be adapted to deal
with the problem. Thus, for dynamic RT MS some capabilities of self-adaptivity are
required.

Usually, RT systems should be optimized for cost versus speed of operation (speed
of reaching a goal or a target). Therefore, a building enterprise, and a traveler, and
hardware/software system designer, and other RT systems have to be endowed with
optimization engine. We will call these engines: artificial supervisors (AS) or artifi-
cial managers (AM) of resources. An AS should find an optimum use of supervised
resources, taking into account the requirements and the constraints. This means that
the AS decides what functionalities should be allocated to what resources and in
which order these functionalities should be executed. Actually, it has to find a solu-
tion for a specific case of the well-known Resource-Constrained Project Scheduling
Problem (RCPSP) which consists in rescheduling the project tasks (RT system tasks)
efficiently using limited renewable resources (components/objects of the RT system)
minimizing the maximal completion time of all activities [1].

The RCPSP is an NP-complete problem which is computationally very hard
[2, 3]. Möhring et al. [4] states that it is one of the hardest problems of Operational
Research. Therefore, a skilled specialist with an assistance of the planner (Computer
Aided System Engineering in case of the enterprise) might play a role of such an AS
only for small systems containing a limited number of tasks and a moderate number
of resources. No doubt, in case of real life systems, particularly RTMS, the AS must
be a very powerful optimization engine.

In time of work of the RT MS it may occur that some disruption has occurred
and a new schedule must be determined. Unforeseen delays may cause a violation
of time constraints. Therefore, the AS should be able to adapt its schedule to any
such perturbation. Actually, it should be self-adaptive. In this chapter, a method of
automatic generation of the self-adaptive AS (SAAS) is introduced and evaluated
with the help of representative example. The method is based on an idea derived
from developmental genetic programming (DGP) [5]. The method is universal, but
an SAASmust bewell-fitted to a particular RTMS. TheRTMS is amicro-worldwith
its own functionalities and resources. Therefore, a formal specification of the RTMS
is an input data to the method. RTMS, where a number of resources have punctually
to execute a number of tasks are good micro-worlds for object-oriented modeling.
Objects may play a role of resources that execute tasks in real time for some costs.
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A widely accepted standard for modeling object-oriented systems (OOSs) is the
UnifiedModeling Language (UML) [6]. It shows how to write a system’s blueprints,
including conceptual things such as business processes and system functions. It
encompassesOOSs of any kind, particularly real-timemultitaskOOSs (RTMOOSs).
Using theUML formodellingRTOOShas been a subject ofmany publications [7–9].
Hence, this will be applied here.

Related work is briefly described in Sect. 2. In Sect. 3 the problem is stated. Sec-
tion4 briefly shows how early UML models should be used as an input data for the
method, and Sect. 5 explains how DGP can create the supervisors and the initial so-
lutions. In Sect. 6 computational experiments evaluating our approach are described.
Experiments verify the self-adaptivity capabilities of the supervisor. Finally, Sect. 7
contains conclusions.

2 Related Work

Genetic programming (GP) is an extension of the genetic algorithm [10], in which
the population consists of computer programs. In the DGP, strategies creating so-
lutions evolve, instead of computer programs. In this approach a genotype and a
phenotype are distinguished. The genotype is a procedure that constructs a solution
of the problem. It is composed of genes representing elementary functions, con-
structing the solution. The phenotype represents a target solution. During evolution,
only genotypes are evolved, while genotype-to-phenotype mapping is used in the
fitness computation, which is required for the genotype selection process. Next, all
genotypes are rated according to an estimated quality of the corresponding pheno-
types. The goal of the optimization is to find the procedure constructing the best
solution. The idea is based on the theory from the molecular biology, concerning
protein synthesis that produces proteins (phenotype) from the DNA (genotype).

For the first time Developmental Genetic Programming was proposed by Koza
et al. [11], to create electrical circuits. This methodology evolves circuit-construction
tree, in which nodes correspond to functions defining the developmental process. The
initial circuit consists of an embryo and a test fixture. The sample embryo is at least
one modifiable wire while fixture is one or more unmodifiable wire or electrical
components. The circuit is developed by progressively applying functions in the
circuit-construction tree to the modifiable parts (wires and electronic components)
of the embryonic circuit.

The similar methodology was used by Deniziak and Górski in the co-synthesis
of embedded systems described by task graphs [12]. The system-construction tree is
based on a task graph. Each node of the tree specifies an implementation of the corre-
sponding task. The embryo is an allocation of the first task. First (initial) population is
created randomly. Then after evolution, using crossover, mutation and reproduction,
an optimal (or suboptimal) solution is found.

In [13] a list of 36 instances of human-competitive results produced by the GP
is presented. A lot of them concern of synthesis of an analog electrical circuits,
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developing quantum algorithms, designing controllers. According to our best knowl-
edge, there is no approach concerning optimization of object-oriented real-time mul-
titask systems using DGP methods.

Genetic approach was proved as very efficient for solving RCPSP problems. Ones
of themost efficient genetic algorithms forRCPSPare presented in [14, 15].Recently,
Zhang et al. [16] proposed a modification of genetic algorithm in which a search
space was reduced. As concerns the use of self-adapting, Hartmann in [17] proposed
a genetic algorithm that chooses the best decoding procedure separately for every
individual but not in real time. In [18] the method of improving the genetic algorithm
for optimization of multi-task project scheduling was proposed. It was shown that the
method is competitive in comparisonwith 11 other heuristic approaches. Amethod of
solving a large scale RCPSP is presented in [19]. In this solution, a genetic algorithm
is used and a method of encoding classical RCPSP problem in the chromosome is
described. The results achieved by authors of [19] give a slight improvement, in
comparison with other existing heuristics.

Two types of approaches are used for solving RCPSP problems that may dy-
namically change during the project execution: proactive scheduling and reactive
scheduling [20]. The proactive scheduling tries to minimize the effects of any delays
by maximization of the minimum or total free slacks of activity [21]. The reactive
scheduling is based on rescheduling the tasks that did not start before the disruption.
Usually rescheduling tries to minimize the perturbation of the original schedule by
minimizing the number of activities that receive a different start time in the new
schedule [22].

In [23] we presented a procedure for automatic creation of ASs for RT MOOSs.
Representative example showed that the AS can develop the best schedule, which
corresponds to the global optimum. However, the procedure did not consider the
self-adaptivity of the AS.

3 Problem Statement

Let us assume that information about the functionalities of RTMOOS and resources
available for implementation of these functionalities are specified with the help of
UML early diagrams: use case, activity, and sequence. This is typical while designing
OOS of any kind. To start the implementation (run the system) a supervisor is needed,
which allocates the functionalities into the resources in such a way that the cost will
beminimal while all real-time constraints will be satisfied.We assume that during the
system execution, the costs of resources and the processing times of tasksmay change
or some resources may be unavailable. Thus the supervisor should try to reschedule
tasks and/or reallocate resources in real-time, to minimize adverse effects of any
changes. Both, a number of the functionalities and number of resources are large
enough to exclude a human being as the supervisor. Therefore, an engine which
optimizes supervising the system should be worked out. The engine will be named a
self-adaptive artificial supervisor (SAAS), since it does what the supervisor should
do. A SAAS should work as follows:
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1. It should work out a schedule for RT MOOS which would be optimal under
current operational conditions, and

2. Adjust the schedule, to keep its optimality and to avoid violation of real time
constraints, when the conditions have changed (some tasks are delayed or the
cost of any resource has increased, for example).

The goal of the research is to introduce amethod of automatic generation of the SAAS
from the diagrams. The procedure consists of two steps. In the first one information
included in the UML diagrams are transformed into a task graph and a library of
objects working for the system. These are input data to the second step. In this
step (Sect. 5) the SAAS is created. To this end a universal method of evolution of a
genotype of the SAAS is applied. Decision options, which may be contained in the
genes of the SAAS, are defined and then the genotype is created developmentally,
using DGP-like approach. An example of the generation of a supervisor in a building
enterprise is used to illustrate the method. The enterprise is an RT MOOS because
its resources may be dealt with as objects of different kinds, human or technical,
which work in real time and in multi-task mode of operation. A user of the RT
MOOS specifies the functionalities of the house, a deadline of the implementation
and cost constraints. In the case of a small building enterprise, a contractor assisted
by a CASE tool (Computer Aided Software Engineering) can elaborate optimal or
semi-optimal schedule of building the house. However, big consortia own a large
number of resources and implement many different constructions. Hence, this duty
must be waived from the contractor and placed onto the SAAS. Not the contractor,
but the SAAS, which is engaged in building the house, should generate an optimal
schedule for management of enterprise resources.

4 From UML Early Models to Library of Resources

The first step of the method consists in the generation of input data for DGP, which
in turn will create an adequate supervisor. To this end UML early models of RT
MOOS, which will be under optimization, are used. In case of building a house the
models describe all activities of the supervisor that controls the whole process of the
construction.

4.1 Functionalities and Sequential Constraints

Functionalities are described with the help of a UML use case diagram where a
Supervisor is the main actor. It owns resources (objects) performing tasks in real-
time and may face orders of task executions. Use case diagram describing building
a house is given on Fig. 1. Actually, it maintains the enterprise which works as a real
RT MOOS.
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1. Digging the place under
foundations

2. Bringing the
media

3. Overflow the concrete of
foundations

4. Sting of the walls in the
cellar

5. Overflow of the plate of first storey

6. Building of chimney 

7. Building of external ground-floor walls

8. Building of internal ground-floor walls
(rooms, kitchen, bathroom, ...)

9.
Electricity

10. Purchase and the assembly of
windows

11. Purchase and the assembly of door

12. Purchase and the assembly of
stove, heater, pump, etc.

13. Arrangement of the plates, 
panelling etc.

14. Plastering

15. Warming the house

16. Overflow of the plate of second
storey

17. Building of the roof

Supervisor

Fig. 1 Use case diagram for building a house

A task is an activity performed by a specific user of an RTMOOS. In the diagram,
each of the use cases corresponds to one of such tasks, since a use case is an action
performed by an object (objects) which aims to yield an observable goal for the
user. Thus, each of the tasks has a use case that explains what the task is, and
how it should function. Moreover, a use case may include statements about pre-
conditions (required before the task began), post-conditions (valid when the task
was successfully completed) and, if needed, exceptions.

The diagram on Fig. 1 contains 17 use cases (stages of a house building; numbered
from1 to 17 on Fig. 2)which should be scheduled for enterprise resources. Therefore,
assignment of the use cases, to the resources, is a subject of optimization. However,
the diagram may not say anything, that one of the cases must be used before another
one. Digging foundations must precede their laying, and plastering must be done
before warming a house, for example.1 In general, an RT MOOS as an example of a
multi-task system may have sequential constraints. Tasks should not be executed in
arbitrary orders because some of the tasks need to be executed before others.

The Supervisor knows use case sequential constraints. This can be specified
with the help of an extension and of an inclusion associations (<<extend>> or
<<include>> stereotypes [6]) and on pre- and post-conditions defined for the use
cases (sequential dependencies [24]). As the summary, a UML activity diagram [6]
for an RTMOOS can be defined, and then transferred into a task graph (TG) showing
an execution of the tasks in a real-time. The constraints for the example are shown
on Fig. 2a whereas their corresponding TG is shown on Fig. 2b.2

4.2 Resources

The resource is an object required to execute a task. In general, it could be a human, a
tool or any other object, which is reusable or renewable. If there are many resources
of the same type, each of them should be presented as a separate resource.

1Numerical prefixes are introduced to identify the use cases and will be used later on.
2Automatic generation of TG fromUML diagrams is possible but will not be discussed in the paper.
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1. Digging the place under foundations

2. Bringing the media 3. Overflow the concrete of foundations

4. Sting of the walls in the cellar

5. Overflow of the plate of f irst storey

7. Bui lding of external ground-f loor wal ls 8. Bui lding of internal ground-f loor
walls (rooms, kitchen, bathroom, ...)

9. Electricity 16. Overflow of the plate of second storey

6. Building of chimney

17. Building of the roof

10. Purchase and the assembly of windows

11. Purchase and the assembly of door

12. Purchase and the assembly
of stove, heater, pump, etc.

14. Plastering

13. Arrangement of the plates, panelling etc. 15. Warming the house

[task9 done]
[task16 not done][task16 done]

[task9 not done]

(a) (b)

Fig. 2 Activity diagram (a) and task graph (b) of the system

In the example, two types of the resources are required for building a house. First
are Workers. These are labourers like electricians, plasterers, and so on, that are
able to execute some specific tasks. Also, a company, which could be used as an
outsourcing, should be given as a resource. A worker could use the second type of
the resources which are Tools. These are machines which could be used by workers
during execution of tasks. Hardly ever one resource is able to complete a task itself.
Thus resources are grouped into work teams, which will be described in the next
subsection.

Not all resources are necessary for the execution of some tasks. This could be
determined by the Supervisor with the help of the third kind of UML diagrams,
namely sequence diagrams.

4.3 Scenarios of the Resource Cooperation

Inspired by real world, where most tasks are executed by a group of resources, a
concept of a team is introduced. The team is a set of resources that are able to
execute a task. Any task may be executed by more than one team. We assume that
the execution cost and time of the task are known. One resource may belong to
different teams, but teams having the same resources cannot be scheduled at the
same time period.

A use case is refined into one or more sequence diagrams to show how the case
might be implemented with the help of detailed actions. Therefore, each sequence
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a l t

WR3 :
Resource

WR6 :
Resource

WR8 :
Resource

WR7 :
Resource

WR5 :
Resource

WR4 :
Resource

WR2 :
Resource

WR1 :
Resource

Supervisor

: done() : done() : done() : done() : done() : done()

: do(): do(): do(): do(): do(): do()

: done(): done()

: do(): do()

: done() : done()

: do() : do()

: done()

: do()

1

2

3

58

Fig. 3 Sequence diagram of bringing the media use case

of the actions defines an actual work-flow and reflects a sequence of decisions the
supervisor should take to perform a single task. Every task is executed by teams
(single worker team is also possible, but rarely). Different teams are able to finish
their work faster or cheaper, using more or less resources. The sequence diagrams
have to define these scenarios.

Figure3 shows an example how the supervisor might interact with objects partic-
ipating in the construction of the building.3 Moreover, the sequence diagrams show
options (with time and cost of their implementations) available to the supervisor of
the enterprise.

It is characteristic for a Supervisor that while traversing a task graph it determines
step by step what should be done at that point and that its selections are usually
optional. This means that it actually decides what functionalities of the RT MOOS
should be assigned to what objects and in which order these functionalities should
be executed. Its decisions should be optimal, taking into account costs and the time
of execution. Therefore, the quality of the supervisor should be as high as possible.

4.4 Library of Resources

Sequence diagrams specify how cooperating objects are organized in teams and
how do they work. For example, Fig. 3 shows 4 teams. Each of the teams could
bring media to a house under construction, but with different workload and costs.

3Remaining 16 sequences are very similar.
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Table 1 A library of resources

Task # Team #
(for the task #)

Time Cost Time * Cost Members

1: 0 125 6 750 WR1

1: 1 51 24 1224 WR1, WR2

1: 2 37 33 1221 WR1, WR2

… … … … … …

1: 58 9 115 1035 WR1, WR2,
WR4, WR5,
WR7, WR8

… … … … … …

1: 62 82 183 15006 WR1, WR2,
WR3, WR4,
WR5, WR7,
WR8

2: 0 57 62 3534 WR3

… … … … … …

2: 3 41 82 3362 WR1, WR2,
WR5

… … … … … …

2: 62 10 189 1890 WR3, WR4,
WR5, WR7,
WR8

… … … … … …

From sequence diagrams a table is derived which determines a binding of tasks with
teams. For the example, this is given in Table1.

Columns “Time”, “Cost” and “Members” of the table are filled in with data from
sequence diagrams. Units of “Time” or “Cost” are inessential. It could be a day or
an hour, dollar or euro. It is only important that all costs and all times are defined
using the same units.

Column “Time * Cost” does not give any new information, but it is helpful to
accelerate the time of the computations.

5 Creation of Supervisors

The second step of the method consists of initiating and evolving genotypes, corre-
sponding to the supervisors, with the help of DGP. It is assumed that the supervi-
sor selects options defining the strategy of the allocation of resources. The way in
which it does, it is a specific feature of its mind, and it is contained in its genotype.
A supervisor with the best genotype (allocating the resources optimally) will be
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generated with the help of DGP. DGP evolves genotypes, while genotype-to-
phenotype mapping is used in the fitness computation, which is required for the
genotype selection process. It is possible, that one phenotype may be created from
two different genotypes, because genotype-to-phenotype mapping always generates
systems that meet the system requirements.

A genotype corresponding to the supervisor has a form of a tree engineering the
system. A root of the tree specifies a construction of an embryonic system, while all
other nodes correspond to functions which progressively build up the whole system.
If the system is defined by a task graph, then an embryo is a system executing the
first task from the task graph. Thus, the number of possible embryos equals the
number of teams, in the library of resources, which are capable of executing the first
task. Embryonic systems are selected randomly for each attempt to create an initial
population of supervisors.

5.1 Supervisor’s Options

The supervisor undertakes the following two actions:

• resource allocation and task assignment, that send an appropriate team to execute
a particular task and hence, allocate members of the team,

• task scheduling (only when more than one task is assigned to the same resource),
that schedules the tasks assigned to the resources.When the resource is unavailable,
the execution of the task is delayed as long as the resource is not released.

Initial population of supervisors consists of randomly generated genotypes. It
selects one of the options given in part 1 of its decision table. Table2 contains
the options which the supervisor may choose. The last column in Table2 shows a
probability of the selection.

The first option prefers a team, which requires the smallest period of time to
execute a task. Second one prefers a team, which brings the lowest cost increase.
Third option prefers a teamwith the best ratio of the costs to the time of the execution.

Table 2 Supervisor’s options

Step Option P

1 a. The fastest team 0.16(6)

b. The cheapest team 0.16(6)

c. The lowest time * cost 0.16(6)

d. Determination by second gene 0.16(6)

e. The fastest starting team 0.16(6)

f. The fastest ending team 0.16(6)

2 List scheduling 1
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Fig. 4 A node of the
genotype isLeaf :bool

strategy:
 char

cutPos: int

*nextLeft: 
 Node
*nextRight: 
 Node

Fourth option works in a different way. It allows us to use “a little pushed” teams,
what cannot be obtained as a result of the remaining options. The next option prefers
a team, which could start an execution of the task as soon as possible (other teams
might be busy). The last option prefers a team whose members could be the first to
finish a task (be freed). For the second action only one option is available, namely
the list scheduling method.

5.2 Genotype

The genotypes have forms of binary trees corresponding to various procedures of
synthesis of phenotypes (target solutions). Every node has the same structure pre-
sented on Fig. 4.

The first field isLeaf determines a role of the node in a tree. When it is true (the
node is a leaf), the strategy for tasks is described in the field named “strategy”, which
stores an option fromTable II. In this case information from the other fields is omitted.
When the node is not a leaf, a content of the field “strategy” is not important. In this
case, cutPos contains a number describing which group of tasks should be scheduled
by the left node and which one by the right node. Thus, nextLeft and nextRight must
not be null pointers.

The simplest genotype consists of only one node, which is also a leaf and a root.
A simple genotype and the corresponding phenotype are presented on Fig. 5.

0

4

2 3

6 1

5

(a) (b)

Fig. 5 A simple genotype (a) and the corresponding phenotype (b)
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Table 3 Rules of Mutations

Is a leaf?

Yes No

Draw: switch leaf/node or not?

Yes No Yes No

Set isLeaf as FALSE.
If nextLeft or
nextRight is
NULL—create a new
leaf for it

Draw new strategy Set isLeaf as TRUE Change value for a
randomly chosen field:
cutPos, nextLeft or
nextRight

0

4

3 2

6 1

5

0

VII

IIIVI

II I

VIII IVV

0

4

23

6

1

5

0

VII III

VI II I

VIII

IVV

Cut Place

Fig. 6 An example of the crossover

During the evolution, a genotype grows but a size of the genotype tree is limited. If
the tree exceeds the maximum size then too long branches are cut off. For example,
if the maximum size is 6, every node on the sixth level which has a successor is
changed into a leaf, and all its successors are destroyed.

An embryo of the tree could grow as an effect of genetic operators: mutation and
crossover. An action associated with the mutation depends on the state of the node
and is presented in the Table3.

The crossover is used to exchange information between two chromosomes. It is
necessary to draw a point of cut a tree in both chromosomes. An example of the
crossover is presented on Fig. 6.

With every genotype an array is associated. Its size is equal to the number of tasks
and contains indexes of teams. If for a task, strategy ’d’ is chosen, the team with an
index taken from the array is used. At the very beginning of the mutation, a place in
the array is randomly chosen. Next a new index is randomly generated. During the
crossover, parts of the arrays from both genotypes are swapped.

5.3 Genotype to Phenotype Mapping

The first step in a genotype-to-phenotypemapping is to assign strategies to tasks (that
is teams from Table1 to tasks from Fig. 2b, in the example). This step is illustrated
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Fig. 7 The first step in genotype-to-phenotype mapping

on Fig. 7. Please note, that node 1 partitions tasks from 11 to 17 into two groups:
from 11 to 18 and the rest. Because the first group is out of the range, in fact, there
is only one group, which is taken by node 3.

In the second step all tasks without any predecessor, or with predecessors having
already assigned teams, are being searched for. For these tasks, teams are assigned
according to their strategy. Then the step is repeated as long as there are tasks without
assigned teams.

In the third step, the total cost of the solution could be calculated. For this purpose,
the cost of each team from the resource library (Table1) is given.

5.4 Parameters of DGP

During the evolution, new populations of supervisors are created using genetic op-
erations: reproduction, crossover (recombination) and mutation. After the genetic
operations are performed on the current population, a new population replaces the
current one. The number of individuals in each population is always equal:

Π = α

n∏

i=1

si (1)

where n is the number of tasks, s is the number of teams capable to solve specific
problem and α is a constant between 0 and 1. If α is equal to 1, the population has as
many individuals as many solutions of the problem exist. The evolution is controlled
by parameters β, γ and δ, such that:

• Φ = β · Π is the number of individuals created using the reproduction,
• Ψ = γ · Π is the number of individuals created using the crossover,
• Ω = δ · Π is the number of individuals created using the mutation and
• β + γ + δ = 1.
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The last condition ensures that each of the created population will have the same
number of individuals.

Finally, the selection of the best individuals by a tournament is chosen [25].
In this method, chromosomes (genotypes) are drawn with the same probability in
quantity defined as a size of the tournament. From the drawn chromosomes the best
one is taken. Hence, the tournament is repeated as many times as the number of
chromosomes for a reproduction, crossover and mutation is required. A size of the
tournament should not be too high, because the selection pressure is too strong and
the evolution will be too greedy. It also could not be too low, because the time of
finding any better result would be too long.

5.5 Fitness Function

Afitness function determines the aim of DGP. In the presented approach, two options
are possible. In the first one, the cheapest solution which has to be finished before
a deadline is searched for. Such fitness function is applied when hard real time
constraints have to be satisfied. In the second one, the DGP should find the fastest
solution, which does not exceed a given budget. This case concerns systems with
soft real-time requirements.

5.6 Self-adaptivity of the Genotype

A direct mapping genotype to phenotype does not guarantee that the target solution
will satisfyRTconstraints. Thus an adaptivemapping should be applied. For example,
if in strategy ‘b’ (Table2) the cheapest team does not allow finishing tasks before
the deadline, it will be replaced by the next cheapest team, which allows finishing
the task before the deadline. This is first contingency of self-adaptivity which is used
during the initial scheduling.

The exact self-adaptivity is applied during the system work. After each disruption
of the system (i.e. a change of the cost of any resource or a change of the time of
execution of any finished task) the genotype to phenotype mapping is performed, but
only for tasks that have not been started. The mapping modifies the schedule taking
into consideration the RT constraints and minimization of the total cost. Since, for
the creation of a new schedule selfsame genotype is again used (the same AS), one
may say that AS is self-adaptive i.e. different phenotypes are obtained using the same
genotype depending on the system environment.

When an execution time of the task increases, the deadline of the whole project
may be exceeded (Fig. 8). Let us assume that for an example from Fig. 2 the deadline
is equal to 700. Figure8a presents a sample phenotype that satisfies the deadline.
Suppose that the time of execution of task T3 increases by 60% than it was planned.
Thus, the whole project could not be finished on time without rescheduling (since
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(a)

(b)

(c)

Fig. 8 The self-adaptivity: original phenotype (a) and its rescheduling after the first (b) and the
second (c) changes

all successive tasks will be delayed by 30, and the deadline will be exceeded by 10
time units). Therefore, the self-adaptivity starts working. The genotype to phenotype
mapping is performed again, for tasks T4–T17. Finally, tasks T12, T13, T14 and T15
are reallocated and rescheduled, and a makespan satisfying RT constraint is obtained
(Fig. 8b).

In real world, it is also possible, that some resources are temporarily unavailable.
For example, a labourer could be on sick leave or a tool could be in a service. Such
a case is presented on Fig. 8c. Suppose that after finishing the task T7, the resource
WR7 is temporarily unavailable. Then task T9 has to be executed by another team
and the rescheduling of all successive tasks is necessary. The self-adaptivity of the
SAAS works also in such cases.
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6 Computational Experiments

The procedure was evaluated with the help of the example from Fig. 1. The deadline
was equal 700 time units. The SAAS and the initial solution were generated using
DGP. During the experiments, the following values of genetic parameters were used:

• the evolution was stopped after 100 generations,
• each experiment was repeated 7 times,
• parameter α was equal to 7 · 10−30, thus the population size was equal to 102,
• tournament size was equal to 10,
• parameter δ, defining the number of mutants in each generation, was equal to 0.2,
• the crossover was applied for creation of 60% genotypes (γ = 0.6),
• β = 0.2, i.e. in each generation, 20% of individuals were created using reproduc-
tion.

All genetic parameters were adjusted by experimentally tuning the DGP. The
convergence of the DGP is illustrated on Fig. 9. The evolution quickly found the best
solution. After 30 generations in the worst case.

Next, self-adaptivity of the SAAS was evaluated. Times of processing for some
randomly selected taskswere increased. In thisway task delaysweremodeled. Single,
double and triple delays were considered. The SAAS started to reschedule after
finishing the last delayed task. The results are presented in Table4. Only in two cases
the rescheduling was not required. In all other cases the self-adaptivity of the SAAS
was effective and after rescheduling the RT constraint was satisfied. The adaptation
to new circumstances caused the cost increase.

300

360

420

480

540

600

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99

Case 1
Case 2
Case 3

Fig. 9 Progress of the evolution of three specimens
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Table 4 Self adaption for different delays

Case Delay Time
without
reschedul-
ing

Time after
reschedul-
ing

Timeout
(%)

Cost

0 (none) 674 – 0.0 333

1 T3 +60% 701 682 0.14 407

2 T8 +32% 712 696 1.71 342

3 T10 +27% 696 696 0.00 333

4 T14 +66% 702 689 0.28 381

5 T2 +18%, T5 +33% 694 694 0.00 333

6 T3 +23%, T9 +17% 701 678 0.14 407

7 T7 +54%, T16 +42% 708 697 1.14 337

8 T11 +18%, T14 +47% 714 691 2.00 390

9 T2 +18%, T3 +41%, T9 +37% 736 691 5.14 338

10 T3 +32%, T6 +11%, T14 +52% 718 695 2.57 390

11 T7 +18%, T9 +44%, T10 +15% 738 692 5.43 390

12 T4 +46%, T5 +62%, T11 +27% 729 700 4.14 390

Table 5 Self adaption for different extra times

Case Time decrease Time Cost Cost without
rescheduling

0 (none) 674 333 333

1 T3: −50% 651 333 333

2 T16: −50% 674 333 333

3 T9: −50% 700 533 333

4 T4: −50% 674 333 333

5 T3: −50% 651 333 333

6 T9: −50%, T4: −50% 651 333 333

7 T1:−50%, T2: −50%, T10: −50% 683 329 333

8 T3: −50%, T9: −50%, T16: −50% 696 377 333

9 T3: −50%, T4: −50%, T9: −50%, T16:
−50%

686 329 333

10 T1–T16: time = 1 62 329 333

In real life systems the processing of some tasks may take less time than it was ex-
pected. Primarily this happens when the worst case analysis was used to estimate the
complexity of tasks. The laxity may cause possibilities for the additional optimiza-
tion, i.e. reduction of the cost. We may use the SAAS to perform such optimization.
Table5 presents the results obtained for systemswhere execution times of some tasks
were shortened.
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Table 6 Self adaption for different rises of costs

Case Cost increase for previous chosen teams Time Cost Cost without rescheduling

0 (none) 674 333 333

1 T2: +50% 674 345 345

2 T5: +100% 674 359 359

3 T7 T16: + 100% 697 524 374

4 T3: + 100%, T11: +100% 657 353 369

5 T16: + 180% 674 336 344

6 T3: + 75%, T7: + 100% 696 380 359

7 T4: + 120%, T10: + 90% 697 373 388

8 T9: + 100%, T12: + 110% 680 416 361

9 T8: + 100%, T9: + 75%, T11: + 120% 696 632 378

10 T3: +80%, T6: +120%, T9: + 50% 692 459 366

11 T2: + 120%, T3: +120%, T7: + 80% 696 403 381

Table 7 Self adaption for different decreases of costs

Case Cost increase Time Cost Cost without rescheduling

0 (none) 674 333 333

1 T10: −50% 697 318 333

2 T8: −75% 695 354 333

3 T2: − 70% 691 374 333

4 T12: −60% 658 325 333

5 T9: −70% 669 323 333

6 T10: −60% 697 310 327a

7 T9: −50%, T15: −70% 691 325 333

8 T16: − 50%, T8: −80% 650 326 333

9 T6: − 50%, T15:−70% 674 322 333

10 T2: −70%, T9: − 50%, T12: −60%,
T16: −50%

522 310 333

a In this case, both previous and current selected teams use the same resource for which the cost has
fallen

The SAAS tries to reduce the cost whenever it is possible. However, the successes
were rare (cases 7 and9). To check the reason, in case 10 a time equal to 1was assigned
to each of the teams. The result means that the initial schedule was enough good, and
therefore further optimization was very difficult. In cases 7 and 9 the best schedules
were found. In cases 3 and 8 the rescheduling caused an increase of the cost. The
SAAS is too greedy to deal with such cases. The problem may be fixed by adding
more sophisticated options for the fitness function (Table2).

During the system work, costs of the resources may also change. When a cost
of allocated resource increases, the SAAS should try to find a cheaper resource and
reschedule tasks, if it is necessary. Similarly, the SAAS should find benefits from a
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decrease of costs of unused resources. The results of adaptation of the SAAS to the
increase of costs are presented in Table6.

Results from Table6 show that the SAAS found better solutions only in 3 cases,
while in 6 cases the attempt of reallocation and rescheduling led to worse solution.
Like in the previous case (Table5), an adaptivity of the SAAS features may be
improved by limiting the greed of the supervisor options.

Table7 presents results of reaction of the SAAS to the cost decrease. Similarly
to the previous experiments (above Tables5 and 6) the SAAS in few cases is too
greedy. But in most cases better solutions were found.

7 Conclusions

The presented method of synthesis of the SAAS extends the idea of AS presented
in [23]. The SAAS is created automatically using developmental genetic program-
ming. It reacts to any changes of execution times of tasks or of costs of resources by
reallocating resources and task rescheduling. In this way any violation of real-time
constraints may be avoided and/or a cost of the system may be reduced.

The procedure was applied to create the SAAS managing teams which are able
to solve tasks. The teams may share members. A team is able to start working when
all of its members are idle. For this reason, it is possible, that choosing only the
fastest teams do not yield the fastest solution. From the other hand, choosing only
the cheapest teams one could cause to the deadline is exceeded.

Experimental results showed that the procedure is efficient. The rescheduling is
performed by creation of the new solution from the same genotype, thus it does not
require repeating the evolution and may be done in real-time. In all cases the SAAS
adapted the RT MS to dynamic changes, and found schedules that meet real-time
requirements. However, the results also showed that the SAAS might be less greedy,
as far as the cost minimization is concerned.
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Direct Shooting Method for Optimal
Control of the Highly Nonlinear
Differential-Algebraic Systems

Paweł Dra̧g and Krystyn Styczeń

Abstract In the paper the optimal control of highly nonlinear differential-algebraic
systems (DAEs) is discussed. The direct shooting method is seen as an efficient tool
for control of the complex real-life technological processes, where dynamics and
conservation laws are presented. To stabilize the optimization algorithm, the multi-
ple shooting method was proposed. The multiple shooting approach introduces new
decision variables and constraints to the problem, but it can preserve the stability
of the process, the continuity of the differential state trajectories and enables par-
allel computation of the mathematical model. The conditions for the frequency of
shots, to establish the well-conditioned optimization problem, are considered. The
proposed method was tested on the mathematical model of the fed-batch fermentor
for penicillin production process, which is a highly nonlinear multistage differential-
algebraic system. The numerical simulations were executed in MATLAB environ-
ment using Wroclaw Center for Networking and Supercomputing.

Keywords Optimal control · Differential-algebraic systems · Multiple shooting
method · Nonlinear programming

1 Introduction

In recent years, many efforts have been devoted to the model-based dynamical
optimization, especially in such fields like chemical and mechanical engineering,
bioengineering and biotechnology. The main common feature of these mathematical
models is the presence of dynamics and conservation laws.

Themathematical modeling of such processes, which operate under transient con-
ditions, leads to systems with both differential and algebraic constraints. However,
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Department of Control Systems and Mechatronics, Wrocław University of Technology,
Janiszewskiego 11-17, 50-372 Wrocław, Poland
e-mail: pawel.drag@pwr.edu.pl

K. Styczeń
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real-life industrial processes may be affected by external signals and actions influ-
encing the dynamics. On the other hand, some intrinsic physical changes can cause
discontinuities [5]. As a result,many of these processes can be described as sequences
of different sets of differential-algebraic equations, especially, when the multistage
systems are considered [10, 12]. In the article the dynamic optimization of both
single and multistage DAE systems is considered.

The direct approaches to control DAE systems in open-loop manner transform
the original infinite dimensional optimal control problem into a large-scale nonlinear
programming (NLP) problem. This is done in two possible ways, either using control
vector parametrization (CVP) or complete parametrization of both control and state
[1, 4].

In complete parametrization approach, often known as simultaneous direct strat-
egy, the controls and states are parametrized by means of collocation on finite ele-
ments. This full discretization results in a large-scale NLP problem, which can have
thousands of variables. It has the advantage of avoiding the solution of the model
for different values of decision variables. This method was extensively illustrated on
control of the high-impact polystyrene reactor [13, 14].

On the other hand, there is the direct shootingmethod, which combines the advan-
tages of the efficient DAE and NLP solvers, gives the possibility of parallel com-
putations and improves the stability of the system [19]. Like in the simultaneous
approach, direct shooting method enables us to use the sparse representations of the
matrices.

Also, the authors want to discuss the advanced methods of control and optimiza-
tion of the highly nonlinear systems with differential-algebraic constraints.

The article is constructed as follows. In Sect. 2 the formulation of dynamical sys-
tems using descriptor equations was discussed. The direct shooting formulation was
presented in Sect. 3. Sequential dynamical approach for control of the differential-
algebraic systems was presented in Sect. 4. Then results of the numerical simulation
on the highly nonlinear fed-batch fermentor for penicillin production process was
reported. The presented considerations were concluded in Sect. 6.

In the article was used the same notation as in [11].

2 Descriptor Equations and Dynamical Systems

The real-life technological systems with dynamics and conservation laws can be
described in the general form

F
(
x(t), z(t), u(t)p, t

) = 0, (1)

where x(t) ∈ Rnx is a differential state, z(t) ∈ Rnz is an algebraic state, u(t) ∈ Rnu

the control function, p ∈ Rn p is a vector of parameters constant in the time. Then the
vector-valued nonlinear function F : Rnx ×Rnz ×Rnu ×R → RnF is considered.
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The fully-implicit form presented in Eq. (1) is very general and can be difficult
to analyze in all possible situations, in which definitely different properties can be
observed.

On the other hand, when only dynamical features of the systems are under con-
siderations, the description using ordinary differential equation is enough

ẋ(t) = G
(
x(t), u(t)p, t

)
, (2)

but in such manner some interesting relations between variables and their physical
interpretations can be lost.

Complex technological processes presented in a descriptor form are more conve-
nient to the analysis than presented like in Eq. (1), enable compact description of the
systems with complicated structure, include both dynamics and conservation laws
and allow advanced numerical methods for control and optimization. In wide range
of applications, the process can be modeled in the conventional descriptor form

MD,A ẋ(t) = F(
x(t), z(t), u(t)p, t

)
. (3)

It is known, that matrixMD,A is singular and can be seen as MD,A =
[MD 0

0 MA

]
,

where MD is the square submatrix of MD,A with the biggest size, such that
detMD �= 0. In this way Eq. (2) one can rewrite as

[MD 0
0 MA

] [
ẋ(t)
ż(t)

]
=

[F1
(
x(t), z(t), u(t)p, t

)

F2
(
x(t), z(t), u(t)p, t

)
]

(4)

The appropriate sparse structure of the matrixMD,A enables us to distinguish in
the considered system the differential and algebraic parts. This leads to the following
system

B(·)ẋ(t) = F1
(
x(t), z(t), u(t), p, t

)

0 = F2
(
x(t), z(t), u(t), p, t

)
,

(5)

where the matrix B is nonsingular.

3 Multistage Systems and Direct Shooting Approach

The optimal control of the technological processes is aimed at the minimization of
the performance cost function

min
(u(t),x(t),z(t),p)

∫ t f

t0
L
(
x(t), z(t), u(t), p

)
dt + E

(
x(t f )

)
, (6)



78 P. Dra̧g and K. Styczeń

subject to a system of the index-one differential-algebraic equations (DAEs)

B(·)ẋ(t) = F1
(
x(t), z(t), u(t), p

)

0 = F2
(
x(t), z(t), u(t), p

)
,

(7)

which in many applications could have some highly nonlinear components.
The initial values of the differential and algebraic states and values for the system

parameters are prescribed
x(t0) = x0, (8)

p(t0) = p0. (9)

In addition, the terminal constraints

r1
(
x(t f ), p

) = 0, r2
(
x(t f ), p

) ≤ 0, (10)

as well as the state and control inequality constraints

h(x(t), z(t), u(t), p) ≤ 0 (11)

have to be satisfied.
This description is valid only for single-state processes. There is a quite differ-

ent situation, when the multistage technological systems are considered, because
each stage can be described by different sets of the nonlinear differential-algebraic
equations.

Let us assume, that there are N stages in the complex industrial process and there
is an independent variable t , for example time or length of the chemical reactor.

For a suitable partition of the time horizon [t0, t f ] into N subintervals [ti , ti+1]
with

t0 < t1 < · · · < tN = t f , (12)

the control function u(t) is discretized in an appropriate way. The most frequently
encountered representations of the control function are a piecewise constant, a piece-
wise linear or a polynomial approximation of the control [20]. If the control function
is parametrized as a piecewise constant vector function, then

u(t) = ul (13)

for t ∈ [tl−1, tl ], l = 1, . . . , N .
By the multiple shooting method, the DAE model is parametrized in some sense

too. The solution of the DAE system is decoupled on the N intervals [tl , tl+1]. In
this way the initial values sl

x and sl
z of the differential and algebraic states at times

ti are introduced as the additional optimization variables. The trajectories x(t) and
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z(t) are obtained as a set of trajectories xl(t) and zl(t) on each interval [tl−1, tl ]. The
mentioned trajectories xl(t) and zl(t) are the solutions of an initial value problem

Bl(·)ẋ(t) = F l
1

(
xl(t), zl(t), ul(t), p

)

0 = F l
2

(
xl(t), zl(t), ul(t), p

)+
+αl(tl)gl

(
sl

x , sl
z, ul , p

)

t ∈ [tl−1, tl ], l = 1, . . . , N .

(14)

The relaxation parameterαl(tl)was introduced to allow an efficient DAE solution
for the initial values of state trajectories sl

x , sl
z and controls ul , that may temporarily

violate the consistency conditions. In this way, the trajectories xl(t) and zl(t) on
the interval [tl−1, tl ] are the functions of the initial values, controls and parameters
sl

x , sl
z, ul , p.

The integral part of the performance cost function is evaluated on each interval
independently ∫ t1

t0
L1

(
x1(t), z1(t), u1(t), p)dt + · · ·+

+ ∫ tN
tN−1

L N
(
x N (t), zN (t), uN (t), p)dt+

+E
(
x(tN )

) =

= ∑N
l=1

∫ tl
tl−1

Ll
(
xl(t), zl(t), ul(t), p)dt+

+E
(
x(tN )

)
.

(15)

The multiple shooting method is often known as the parallel shooting method. It
means, that DAE system can be solved parallel for each time interval [tl−1, tl ] [3].

Theparametrization of the optimal control problemof themultistageDAEsystems
using themultiple shooting approach and a piecewise constant control representation
leads to the following nonlinear programming problem

∑N
l=1

∫ tl
tl−1

Ll
(
xl(t), zl(t), ul(t), p)dt+

+E
(
x(tN )

) = Φ(sl
x , sl

z, ul , p) = Φ(χ) → min
(16)

subject to the continuity conditions

sl
x = xl−1(tl−1), l = 2, . . . , N , (17)

the consistency conditions

0 = gl(sl
x , sl

z, ul , p), l = 1, . . . , N , (18)
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the control and path constraints imposed pointwise at the multiple shooting nodes

hl(sl
x , sl

z, ul , p) ≤ 0, l = 1, . . . , N , (19)

the terminal constraints

r1(s
l
x , sl

z, p) = 0, r2(s
l
x , sl

z, p) ≤ 0, (20)

the lower and upper bounds on the decision variables

χL ≤ χ ≤ χU , (21)

χ = [s1x , . . . , s N
x , s1z , . . . , s N

z , u1, . . . , uN , p]T , (22)

χL = [s1x,L , . . . , s N
x,L , s1z,L , . . . , s N

z,L , u1
L , . . . , uN

L , pL ]T , (23)

χU = [s1x,U , . . . , s N
x,U , s1z,U , . . . , s N

z,U , u1
U , . . . , uN

U , pU ]T (24)

and to the DAE system in each interval

Bl(·)ẋ(t) = F l
1

(
xl(t), zl(t), ul(t), p

)

0 = F l
2

(
xl(t), zl(t), ul(t), p)+

+αl(tl)gl(sl
x , sl

z, ul , p),

t ∈ [tl−1, tl ], l = 1, . . . , N .

(25)

Remark 1 It is assumed, that matrix Bl in each stage has a constant rank.

The application of themultiple shooting method enables us to control and optimize
the multistage technological processes. It is a one of ways, to control of the unstable
processes too. The stabilization of the unstable dynamical modes can be carried out
by adjustment the frequency of the shots to the dynamics properties of the system.

Additional shots incorporate additional equality constraints into the nonlinear
programming problem. The equality constraints, which provide continuity of the
differential state trajectories, have often a simple form and the Karsuh-Kuhn-Tucker
(KKT) system becomes more sparse.

The second type of the constraints represents technological constraints on the
state variables. The mentioned method can preserve fulfillment of such constraints
only at the beginning of each interval, and at the end of each interval by the active
equality constraints on the continuity of the state trajectories [21].

The starting point for solving differential-algebraic equations are the consistent
initial conditions. They are difficult to obtain especially, when the multistage sys-
tems are considered. Addition of the dumping parameter enables us to solve the
DAE systems efficiently without other methods, e.g. penalty terms in the objective
function.
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The challenge is the frequency selection for the multiple shooting method. The
point are chosen by the structure of the system, nature of the process or experience of
the researchers. To obtain the appropriate shooting frequency, the following remarks
and theorem can be helpful.

Remark 2 The approximately solution of the multiscale dynamical systems, known
as singularly perturbed problem

ẋ(t) = F1
(
x(t), z(t), u(t), p

)

εż(t) = F2
(
x(t), z(t), u(t), p)

(26)

can be obtained by solving the following DAE system

ẋ(t) = F1
(
x(t), z(t), u(t), p

)

0 = F2
(
x(t), z(t), u(t), p)

(27)

with consistent initial conditions.

It means, that more number of shots should not be dependent on a single state
variables, which oscillates around small values.

In highly nonlinear dynamical processes a fast transition phase can be observed.
The transition is continuous and it is an especially interesting area, where a larger
number of shots can be required.

Theorem 1 If the state trajectories are monotonic in the time interval [tl , tl+1], then
the number of shots can be used to specify the Lipschitz constant in each interval l

ẋ(tl) ≤ |xl+1 − xl |
|tl+1 − tl | ≤ K l , (28)

where xl and xl+1 are the values of the shots at the beginning and at the end of the
time interval, respectively.

In this way, one can preserve the state trajectories to come into instability regions.
The interval, when the state trajectories are monotonic, are often known from the
process specification.

On the other hand, it means, that the bigger number of the shots do not improve
the stability of the solution. If the difference in the state trajectory |xl+1 − xl | is
relatively small, but the shooting frequency is high, so |tl+1 − tl | is small, then the
high fluctuations can be observed.

4 Sequential Dynamical Approach

The sequential dynamical approach is a part of the trend “discretize then optimize”.
This approach has the advantage of directly finding good approximate solutions,
which are feasible to the pointwise state constraints. From literature it is known, that
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Fig. 1 Sequential dynamic
optimization strategy [4]

this formulation requires an accurate level of discretization of the both control and
state profiles.

As it was mentioned, the time domain was partitioned into smaller time elements
and the DAEmodels are integrated separately in each element. The control variables
are represented as a piecewise polynomial, hence optimization is performed with
respect to the polynomials coefficients. The sensitivities in each element are obtained
for both the control variables and the initial conditions of the states, which are the
decision variables.

The equality constraints are added to the nonlinear program in order to link the
elements and ensure that the states remain continuous over time. The inequality
constraints for the states and the control can be imposed directly at the grid points,
although the constraints on the state profiles may be violated between the grid points.

There is a sketch of sequential dynamic optimization strategy on the Fig. 1. This
approach consists of three main elements. There are the NLP solver, the DAE solver
and the sensitivity calculations. All of this parts, especially from parallel calculations
point of view, were described and commented in this section.

4.1 NLP Solver

Consider the formulas (16)–(25) rewritten in the form

min
χ

Φ(χ) (29)

subject to
ceq(χ) = 0, cin(χ) ≤ 0. (30)

An optimal solution of (29) and (30) satisfies the first order necessary conditions

∇χL(χ∗,λ∗, s∗) = 0,
s∗ ≥ 0,

λ∗
eq ≥ 0,

λ∗
eq

T s∗ = 0,

(31)
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where s is a vector of slack variables, λ = [λT
eq ,λT

in]T and

L(χ,λ, s) = Φ(χ) + λT
[

ceq(χ)

cin(χ) + s

]
. (32)

HereL denotes the Lagrange function for the problems (29) and (30), and λeq ,λin

are the Lagrange multipliers associated with the equality and inequality constraints
respectively.

Sequential Quadratic Programming methods [8, 18] can be derived from the
application of the Newton’s formula to the problem of determining a stationary
point of L, which satisfies all the constraints. This results in a sequence of iterates
{(χk,λk, sk)}, in which the next iterate is determined by solving at the kth iteration
the system

∇2
χχL(χk,λk, sk+1)

[
dk

δk

]
= −∇χL(χk,λk, sk+1) (33)

sk+1 ≥ 0,
λeq,k + δeq,k ≥ 0,

(λeq,k + δeq,k)
T sk+1 = 0

(34)

to obtain (dk, δk, sk+1) and to determine

χk+1 = χk + dk, (35)

λk+1 = λk + δk . (36)

To limit the step size, the iteration is usually formulated as an equivalent QP
subproblem

min
dk

∇χΦ(χk)
T dk + 1

2
dT

k BL(χk,λk)dk (37)

subject to
∇χceq(χk)

T dk + ceq(χk) = 0, (38)

∇χcin(χk)
T dk + cin(χk) ≤ 0. (39)

The solution dk determines a search direction, which can be used to determine the
next iterate χk+1. In Eq. (37), BL is either taken to be the Hessian of the Lagrange
function L

BL(χ,λ) = ∇2
χχL = ∇2

χχΦ(χ)
∑

i

λi∇2
χχci (χ,λ), (40)

or BL is defined as a suitable approximation of ∇2
χχL. The use of an approximate

Hessian for BL enables us to avoid the calculation of the second derivatives of the
performance cost function and the constraints. In this way, it allows to reduce the
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computational complexity, but it reduces the rate of the convergence near the solution
too.

The proposed approach enables us to use the full machinery of NLP solvers,
especially SQP codes for medium and large-scale problems are desirable [6, 17]. For
nonlinear programming problems with a few hundreds of variables fmincon solver
can be treated as quite suitable. The mentioned solver is coupled to the MATLAB
environment and applies line search and BFGS updates of the Hessian.

4.2 Sensitivity Calculations

The place, where appropriate using of parallel computing can improve the time
performance, is connected with calculations of sensitivities. Firstly, SQP algorithm
needs the gradients of both the objective and the constraints functions. Estimation of
the objective function and constraint functions can be given analytically or obtained
using the finite difference derivative approximation [9].

Consider a subroutine, that estimates the gradient of the objective function and
the constraint functions. This calculation involves the computing of function values
at points near the current solution χk .

In this situation there is a possibility to compute successive elements of the gra-
dient vector parallel. It is worthy to note, that these elements are independent and
computing of each element needs the objective or constraint function evaluation [16].

Let us say, that the considered model is very complicated and the calculation of
each objective function is time-consuming. Always one has to decide, if it is better
to use parallel computing for the gradient estimation or parallel evaluation of the
objective function.

One of the results of the multiple shooting approach is an increase in the size
of the NLP problem. There are additional variables and constraints, which were
introduced for each segment. The number of NLP variables and constraints for a
multiple shooting application is n = (nx + nz)(N − 1), where nx is the number
of dynamic variables x , nz is the number of algebraic variables z, and (N − 1) is
the number of segments. It is important to note, that the Jacobian matrix, which is
needed to compute the Newton search direction, is sparse. Only (N − 1)(nx + nz)

2

elements in this matrix are nonzero of a possible [(N − 1)(nx + nz)]2. Thus, the
percentage of nonzeros is proportional to 1

N−1 indicating that the matrix get sparser
as the number of intervals grows.

4.3 DAE Solver

The rangeof applications of thismethoddepends on the appliedDAE solver. Themul-
tiple shooting method allows to use parallel solving systems, hence the calculation
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of the objective function can be faster, especially, when the function is complicated.
One of the most known algorithm for solving index-1 DAE systems is the backward
differentiation formula, known as the implicit Euler method [7].

5 Case Study: Optimal Control of a Fed-Batch Fermentor
for Penicillin Production

This problem considers a fed-batch reactor for the production of penicillin [2]. We
consider here the free terminal time version where the objective is to maximize the
amount of penicillin using the feed rate as the control variable. The mathematical
statement of the free terminal time problem is as follows.

Find u(t) and t f over t ∈ [t0, t f ] to maximize

J = x2(t f ) · x4(t f ) (41)

subject to differential-algebraic system

ẋ1(t) = z1x1 − u

(
x1

500x4

)
, (42)

ẋ2(t) = z2x1 − 0.01x2 − u

(
x2

500x4

)
, (43)

ẋ3(t) = −z1
x1
0.47

− z2
x1
1.2

− x1
0.029x3

0.0001 + x3
+ u

x4

(
1 − x3

500

)
, (44)

ẋ4(t) = u

500
, (45)

0 = z1 − 0.11

(
x3

0.006x1 + x3

)
, (46)

0 = z2 − 0.0055

(
x3

0.0001 + x3(1 + 10x3)

)
, (47)

where x1, x2 and x3 are the biomass, penicillin and substrate concentration (g/L),
and x4 is the volume (L). The initial conditions are

x(t0) = [1.5 0 0 7]T . (48)

There are several path constraints for state variables

0 ≤ x1 ≤ 40, (49)

0 ≤ x2 ≤ 25, (50)
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0 ≤ x3 ≤ 10. (51)

The upper and lower bounds on the only control variable (feed rate of substrate) are

0 ≤ u ≤ 50. (52)

The control problem of a fed-batch fermentor for penicillin production was solved
with the line-search SQP algorithm combined with multiple shooting method.

At first, the overall time domain was divided into 100 equidistance intervals. It
results in 100 differential-algebraic submodels, each of them consists of 4 differen-
tial equations and 2 algebraic equations. Initial conditions only for the first stage are
known. So, there are 396 decision variables connected with initial values for differ-
ential variables and 200 variables, which represents pointwise values of algebraic
states. The last decision variables was the duration time of the process.

In the optimization process it was assumed piecewise constant control function
u.

The inconsistent and away from the solution initial values for decision variables
were as follows

χ1,x1,2 , . . . ,χ99,x1,100 = 1.5, (53)

χ100,x2,2 , . . . ,χ198,x2,100 = 0.0, (54)

χ199,x3,2 , . . . ,χ297,x3,20 = 0.0, (55)

χ298,x4,2 , . . . ,χ396,x4,20 = 7.0, (56)

χ397,h1,1, . . . ,χ496,h1,20 = 10.0, (57)

χ497,h2,1, . . . ,χ596,h2,20 = 10.0, (58)

χ597,u1, . . . ,χ696,u20 = 10.0, (59)

χ697,t f = 110.0[h]. (60)

To provide consistent initial values for DAEmodels and to preserve continuity on
the differential state trajectories, 596 pointwise equality algebraic constraints were
introduced.

The presented stages are based on technological constraints and assumptions,
which reflect a desired performance of the process. To proceed the reactions more
effectively, new equal length substages were introduced. They are aimed at fulfill
the constraints on the control variables and both the differential and algebraic state
trajectories. Partitioning the process into the substages has a positive impact on the
stability of the solution.

The solution, with the accuracy 10−6 and the final value of the objective function
is 87.80 [g]. The duration of the penicillin production process is 132.54h. There are
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Fig. 2 Trajectory of the
biomass concentration (g/L)

the optimal trajectories of the biomass, penicillin concentrations and feed substrate
concentration in the Figs. 2, 3 and 4. Trajectory of the volume was presented in the
Fig. 5.

Optimal control trajectory can be observed in the Fig. 6. Results presented in this
researches are comparable with the solution presented in [2], but fluctuations of the
control function are much smaller and do not reach the extreme values.

In the presented approach the multiple shooting method was used. It enables us to
solve the dynamic optimization problemwith some processors working parallel. The
computation time, depending of the number of used processors, were presented in
the Table1. The performance time can be greatly reduced in the algorithms designed
for parallel working.

The shooting method preseved the high fluctuations in the state trajectories,
because

maxi |xi+1 − xi |
|ti+1 − ti | = 40

≈ 1.3
≤ 30.77. (61)

The shooting frequency about |ti+1 − ti | ≤ 50 can have a negative impact on the
stability of the obtained solution.

Fig. 3 Trajectory of the
penicillin concentration (g/L)
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Fig. 4 Trajectory of the feed
substrate concentration (g/L)

Fig. 5 Trajectory of the
volume (L)

Fig. 6 The optimal control
trajectory u(t)
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Table 1 Computation time
for different number of
parallel processors

# of processors Computation time (s)

1 32 936

2 25 000

4 14 707

6 Conclusion

In the article, the optimal control problem of highly nonlinear differential-algebraic
systems (DAEs) was presented and discussed. To solve the control problem, a large-
scale SQP optimization algorithm with the multiple shooting method was proposed.
Because the multiple shooting method introduces a large number of the new decision
variables, parallelizationmethodcanbe successfully used toperform theoptimization
procedure effectively. The numerical simulations of control problem of model the
penicillin production process were performed with the parallel working processors,
which enables us to reduce the computation time significantly.

Next research focuses on the effective taking into account a large number of the
nonlinear equality constraints in dynamic optimization problems and the new aspects
of the constraints aggregation.

Acknowledgments The project was supported by the grant of National Science Centre Poland
DEC-2012/07/B/ST7/01216.

References

1. E. Balsa-Canto, V.S. Vassiliadis, J.R. Banga, Dynamic optimization of single and multi-stage
systems using a hybrid stochastic-deterministic method. Ind. Eng. Chem. Res 44, 1514–1523
(2005)

2. J.R. Banga, E. Balsa-Canto, C.G. Moles, A.A. Alonso, Dynamic optimization of bioprocesses:
efficient and robust numerical strategies. J. Biotechnol. 117, 407–419 (2005)

3. J.T. Betts, Practical Methods for Optimal Control and Estimation Using Nonlinear Program-
ming, 2nd edn. (SIAM, Philadelphia, 2010)

4. L.T. Biegler, Nonlinear Programming, Concepts, Algorithms and Applications to Chemical
Processes (SIAM, Philadelphia, 2010)

5. L.T. Biegler, S. Campbell, V. Mehrmann, DAEs, Control, and Optimization, in Control and
Optimization with Differential-Algebraic Constraints, ed. by L.T. Biegler, S. Campbell, V.
Mehrmann (SIAM, Philadelphia, 2012)

6. L.T. Biegler, I.E. Grossmann, Retrospective on optimization. Comput. Chem. Eng. 28, 1169–
1192 (2004)

7. K.E. Brenan, S.L. Campbell, L.R. Petzold, Numerical Solution of Initial-Value Problems in
Differential-Algebraic Equations (SIAM, Philadelphia, 1996)

8. M. Cannon, Efficient nonlinear model predictive control algorithms. Annu. Rev. Control 28,
229–237 (2004)

9. M. Caracotsios, W.E. Stewart, Sensitivity analysis of initial value problems with mixed ODEs
and algebraic equations. Comput. Chem. Eng. 9, 359–365 (1985)



90 P. Dra̧g and K. Styczeń
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19. K. Styczeń, P.Dra̧g.Amodifiedmultipoint shooting feasible-SQPmethod for optimal control of

DAE systems. Proceedings of the Federated Conference on Computer Science and Information
Systems, Szczecin, Poland, pp. 477–484, 18–21 September 2011

20. V.S. Vassiliadis, R.W.H. Sargent, C.C. Pantelides, Solution of a class of multistage dynamic
optimization problems. 1. Problems without path constraints. Ind. Eng. Chem. Res. 33, 2111–
2122 (1994)

21. V.S. Vassiliadis, R.W.H. Sargent, C.C. Pantelides, Solution of a Class of Multistage Dynamic
Optimization Problems. 2. Problems with Path Constraints. Ind. Eng. Chem. Res. 33, 2123–
2122 (1994)



A Review on the Direct and Indirect Methods
for Solving Optimal Control Problems
with Differential-Algebraic Constraints
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Abstract In the article the main features of direct and indirect approaches for
solving optimal control problems were presented. The mentioned methods can be
effectively applied in the Model Predictive Control of the complex technological
systems in electrical, chemical and aerospace engineering, often described by non-
linear differential-algebraic equations. Among the direct and indirect methods for
solving optimal control problems one can mention Euler-Lagrange equations, direct
optimization methods and indirect gradients methods.

Keywords Optimal control · Direct and indirect methods · Differential-algebraic
systems · Multiple shooting method

1 Introduction

The efficient designing and trouble-free controlling of technological systems requires
the solution of optimal control problem in a reasonable short computation time. The
real-life technological processes often impose themselves necessary constraints on
computation time. From this manner, the question about the effective computational
methods is crucial. This is important especially, when the dynamics of the system is
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highly nonlinear. The nonlinearities always incorporate the possibility of themultiple
local minima and high sensitivities to small changes in parameter values. Depend-
ing on how the problem was formulated, it may have different number of possible
solutions and require very different computational efforts.

The development of both the software and the hardware has enabled us to use the
optimal control methods in complex industrial processes [18]. Nowadays, the main
trends for the optimal control problems are:

(a) approach based on the Euler-Lagrange equations, which enables us to obtain
a solution in the infinite dimensional space [13],

(b) advanced finite-dimensional optimization methods, which widely use nonlin-
ear programming algorithms; these algorithms include different variants of sequential
quadratic programming (SQP),

(c)minimization of theHamiltonian function combinedwith the gradientmethods
[22].

The paper focuses on the review of direct and indirect methods for solving opti-
mal control problems with differential-algebraic constraints. In the Sect. 2 indirect
approach for solving the optimal control problem, which results in differential-
algebraic system,waspresented.Themain features of direct and indirectmethodswas
given in Sect. 3. The other various direct methods, extended with multiple shooting
approach, were discussed in Sects. 4 and 5. Indirect gradient methods, which con-
cerns minimization of the Hamiltonian function, were presented in the Sect. 6. The
application areas of presented algorithms were given and the considerations were
concluded in Sect. 8.

In the article was used the same notation as in [8] and [22].

2 Euler-Lagrange Equations

Let us consider the optimal control problem of the dynamical system

ẋ(t) = f (x(t), u(t), t), (1)

where x(t) ∈ Rnx is a differential state, u(t) ∈ Rnu is a control function, t ∈ R is an
independent variable and f : Rnx × Rnu × R → Rnx is a vector-valued function.
Let consider also the constraints on the control function

u(t) ∈ U . (2)

The objective is to minimize the cost function of the following form

min
u(t)

∫ t f

t0
L
(
x(t), u(t), t

)
dt + E

(
x(t f )

)
. (3)
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For a such defined task, let us define the Hamiltonian function H as

H(x, u,λ,μ) = L(x, u) + λT f (x, u) + μT c(u), (4)

where λ = λ(t) is a co-state variable, μ = μ(t) is a multiplier for inequality con-
straints on the control function and c

(
u(t)

) ≤ 0 is equivalent to the constraints
u(t) ∈ U .

The first order conditions for the minimization of the functional (3) subject to the
constraints have the following form

ẋ = ∇λH, (5)

λ̇ = −∇xH, (6)

λ(t f ) = −∇x E
(
x(t f )

)
, (7)

0 = ∇uH. (8)

If the initial values of the co-state variables are known, then the optimal trajectories
of the state and co-state, togetherwith an optimal trajectory of the control variable can
be obtained by simulating the system in a time interval t ∈ [t0, t f ]. While the initial
values of the co-state variables are implicitly determined by the final conditions, a
value of λ(0) can not be generally known analytically.

The necessary optimality conditions lead to the differential-algebraic equations
(DAEs) [5]. In such systems the differential variables (x,λ) and algebraic variable
u can be distinguished. Because the DAE system is taken into account, one can
expect that the algebraic equations determine the algebraic variables. At this point,
the optimality condition 0 = ∇uHT defines a control variable, provided that the
matrix ∇2

uuH is nonsingular [2].
However, if thematrix∇2

uuH is singular, then the control function u is not uniquely
determined by the optimality condition. In such situation, singular arcs are consid-
ered.

3 Direct and Indirect Methods

The well-known classification of ways for solving optimal control problems is
divided into direct and indirect methods. Direct methods construct a sequence of
points

z1, z2, . . . , z�, (9)

that causes the objective function values F(z) are getting smaller

F(z1) > F(z2) > · · · > F(z�). (10)
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The purpose of indirect methods is to find the solutions of the equation, resulting
from the application of the necessary optimality conditions F ′(z) = 0.

Direct methods require only a comparison of the value of the objective function.
In contrast, the indirect method first examine the slope F ′(z) and then decide whether
it is sufficiently close to zero. This means, that the indirect methods seek solutions
of the necessary conditions, while the direct method are searching for the minimum
of the objective function or the Lagrange function.

In his book [2] J.T. Betts gave three main difficulties associated with the use of
the indirect methods.

1. The user should calculate ∇xH and ∇uH, which are necessary to perform
further calculations. However, the calculation of these terms requires from the user
a basic knowledge of optimal control theory. Even if the user will be able to provide
analytical expressions for these terms, the use of this methodology can be very
difficult for complex objects.

2. Every system can be described by using other equations, which means that
necessary optimality conditions introduce other equations for each system.

3. If the considered system contains inequality constraints, the sequence of the
active constraints should be known a priori. When the number of active constraints
is unknown, the switching points are unknown also.

4. Indirect methods are not robust for noise.
5. The user should determine the initial values of the adjoint variables λ, which

do not have a physical interpretation.

4 Direct Approach with Multiple Shooting Method

As a result of parametrization both the control function and state variables, direct
methods can transform the infinite dimensional optimization problem into the finite-
dimensional problem of nonlinear programming (NLP).

Let us consider the following optimal control problem of DAE system

min
u(t)

∫ t f

t0
L
(
x(t), z(t), u(t), p

) + E
(
x(t f )

)
(11)

subject to the differential-algebraic constraints

B(·)ẋ(t) = f (x(t), z(t), u(t), p), (12)

0 = g(x(t), z(t), u(t), p), (13)

where x(t) ∈ Rnx and z(t) ∈ Rnz are the differential and algebraic variables, respec-
tively. The variable u(t) ∈ Rnu denotes the control function. The other constant in
time parameters were determined by p ∈ Rn p . It was assumed, that the matrix
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B
(
x(t), z(t), u(t), p

)
is invertible. The initial values of differential variables and the

parameters are as follows
x(t0) = x0, (14)

p = p0. (15)

In the optimal control problem the conditions at the final time are taken into
account

r1
(
x(t f ), p

) = 0, (16)

r2
(
x(t f ), p

) ≥ 0. (17)

The control algorithms for real-life industrial systems should take into account the
limitations of various types. The first noteworthy constraints on the control variables
u(t) are

h1(u(t), t) ≥ 0, t0 ≤ t ≤ t f . (18)

The second type are the constraints on the state variables x(t)

h2(x(t), t) ≥ 0, t0 ≤ t ≤ t f . (19)

In the technological process, there may be inequality constraints binding the state
variables and the control variable

h
(
x(t), z(t), u(t), p

) ≥ 0. (20)

Effective solution of the optimal control problem can be achieved by direct
approach extended by multiple shooting method.

4.1 Parametrization of the Optimal Control Problem

Parametrization of an infinite dimensional optimization task is carried out in two
steps.

In the first step, the time horizon [t0, t f ] is divided into a certain number of N
subintervals of the form [ti , ti+1], where

t0 < t1 < · · · < tN = t f . (21)

In the prepared subintervals, the control functionu(t) is discretized. For simplicity,
the control function is often parametrized as a piecewise constant

u(t) = ui , t ∈ [ti , ti+1]. (22)
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In the literature the different options of control function parametrization were
proposed: a piecewise continuous linear function, piecewise linear and quadratic
function with discontinuities [27].

In the next step, the system of differential-algebraic equations is parametrized
by multiple shooting method. In this way, complex DAE system can be solved by
introducing N subintervals [ti , ti+1] with initial values for the differential variables
sx

i and the initial values of algebraic variables sz
i .

In each subinterval [ti , ti+1] the trajectories xi (t) and zi (t) are calculated as the
solution of the initial value problem

B(·)ẋ(t) = f
(
xi (t), zi (t), ui (t), p

)
, (23)

0 = g
(
xi (t), zi (t), ui (t), p

) − αi (t)g(sx
i , sz

i , ui , p), (24)

xi (ti ) = sx
i . (25)

The extension in the algebraic part (Eq. 24) has been introduced. Thus, consistency
condition, significant from the point of solving the system by the DAE solver, was
always satisfied. The parameter αi in the literature is known as the scalar damping
factor. There are also other possibilities for DAE relaxation.

In each interval [ti , ti+1] the trajectories xi (t) and zi (t) are the functions of the
initial values sx

i , sz
i , the control function ui and parameters of the system p.

The integration of the cost function can be performed independently on each
subinterval

Li (s
x
i , sz

i , ui , p) =
∫ ti+1

ti
L
(
xi (t), zi (t), ui , p

)
dt. (26)

4.2 The Structure of Nonlinear Programming Problem

Parametrization of the optimal control problem, the use of the multiple shooting
method and representation of the control function as a piecewise constants function
leads to a nonlinear optimization problem

min
u,s,p

N−1∑

i=0

Li (s
x
i , sz

i , ui , p) + E(sx
N , p). (27)

The constraints on the initial values and parameters of the systems are presented
as follows

sx
0 = x0, (28)

p = p0, (29)



A Review on the Direct and Indirect Methods for Solving Optimal Control Problems … 97

the continuity conditions

sx
i+1 = xi (ti+1), i = 0, 1, . . . , N − 1 (30)

and the consistency conditions

0 = g(sx
i , sz

i , ui , p, t), i = 0, 1, . . . , N . (31)

The constraints on the control variable, along with the other constraints are taken
into account only at the mesh points

h(sx
i , sz

i , ui , p) ≥ 0, i = 0, 1, . . . , N , (32)

similarly, as the constraints on the final state

r1(s
x
N , p) = 0, (33)

r2(s
x
N , p) ≥ 0. (34)

The separation of both the variables and the appropriate functions can be effec-
tively used in the implementation of the optimization algorithms.

5 Sequential Quadratic Programming with Multiple
Shooting Method

One of the commonly used algorithms for solving nonlinear optimization problems
is the Sequential Quadratic Programming (SQP) [21]. This algorithm can effectively
utilize the structure of the problem, which is a result of the application of the multiple
shooting method.

One of the most important advantage of SQP algorithms is their fast local
convergence—quadratic or superlinear.

In general, the task of nonlinear programming can be stated as follows

min
w

F(w), (35)

subject to
G(w) = 0, (36)

H(w) ≥ 0. (37)

The vector w contains all the decision variables referring to the differential state
variables, algebraic state variables, controls and parameters of the model
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w = (sx
0 , sz

0, u0, sx
0 , sz

0, u1, . . . , sx
N , sz

N , uN , p). (38)

The dynamic equations of the system(23)–(25) take the form of the discrete
equations and are attached to the equality constraints G(w) = 0.

Starting at the point w0, the SQP algorithm solves the optimization problem
(35)–(37) in subsequent iterations

wk+1 = wk + βkΔwk, k = 0, 1, . . . . (39)

The parameter βk ∈ [0, 1] is called as the relaxation factor. The search direction
Δwk is the solution of the quadratic programming subproblem

min
Δw∈Ωk

∇F(wk)
T
Δw + 1

2
ΔwT BkΔw (40)

subject to

G(wk) + ∇G(wk)
T
Δw = 0, (41)

H(wk) + ∇H(wk)
T
Δw ≥ 0. (42)

The matrix Bk denotes the Hessian approximation of the Lagrangian function

B(w,λ,μ) = ∇2
wwL = ∇2

ww F(w) −
∑

λ̃T ∇2
wwG(w) −

∑
μ̃T ∇2

ww H(w), (43)

where λ̃ and μ̃ are the Lagrange multipliers.
Parametrization of both the state variables and the control function means, that

the resulting nonlinear optimization problem has a specific structure. The Lagrange
function is partially separable and it can be written in the following form

L(w, λ̃, μ̃) =
N−1∑

i=0

Li (wi , λ̃, μ̃), (44)

wherewi = (sx
i , sz

i , ui , p) are the elements of the vectorw, which have an impact on
the process in the i-th time interval [ti , ti+1]. It should be noted, that the parameter p
can be considered as piecewise continuous constant control function. However, this
is possible only, if the function u(t) was parametrized in the same way.

The consequence of this approach is a block-diagonal structure of the Hessian
matrix. In a similar manner, by the use of the multiple shooting method, the matrices
∇G(w)T and ∇H(w)T has a sparse block structure. To effectively use the block-
diagonal structure of the matrices, many different methods has been proposed.

One of the most important and difficult step in solving nonlinear programming
problem is to obtain thematrix B, which influence the convergence rate of the solution
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process. In practical application, there are the following approaches for calculating
the Hessian matrix or its approximation.

1. Numerical calculation of the exact Hessian matrix;
this approach is recommendedwhen the size of the problem is not large and complete
calculation of the Hessian does not require large amounts of computations. The use
the exact Hessian in the calculation give a very fast convergence to a local solution
(in the best case quadratic).
2. Update the Hessian matrix using higher-order scheme (eg. Broyden or BFGS
method);
3. Approximation of the Hessian matrix, when the objective function is a function of
the least-squares-type F(w) = 1

2‖C(w)‖22;
if the residues C(w) of the objective function is sufficiently small, a good Hessian
approximation is given by ΔwCΔwCT . This approximation is available using only
the gradient [21].

Solution of the DAE system and the calculation of the corresponding derivatives
can be generated in parallel on different subintervals by the effective DAE solvers.
This possibility is given by the use of the multiple shooting method.

The real-life industrial processes, especially in chemical engineering, are the
sources of large-scale nonlinear optimizationproblems.Limited computing resources
associatedwith the power of currently available computers, programming techniques,
and the time that one can spent on the calculation, causing the development of new
methods that are applied to known algorithms. The new methods are as follows:

• the starting point, which is close to a solution, prevents convergence to another
point than the requested optimum,

• when the solution was obtained with expected accuracy, then the calculation can
be premature terminated,

• if the starting point is feasible, then the number of required iterations can be
considerably reduced,

• warm starting—the algorithm starts at a point, which is already regarded as an
approximate solution of the problem, for example: known solution of the similar
problem.

The premature termination of the calculation is often used togetherwith the “warm
starting”. Moreover, calculation of the starting point near the solution can signifi-
cantly improve the optimization process. Then, the optimal solution can be achieved
already after a few iterations [7].



100 P. Dra̧g et al.

Fig. 1 The scheme of the
sequential approach

5.1 The Sequential Approach

The scheme of the sequential approach in dynamic optimization is shown in Fig. 1,
where one full optimization cycle was presented. In each cycle, the decision variables
w are determined by nonlinear programming algorithm, for example Sequential
Quadratic Programming [15, 26].

When the initial values of decision variables are known, then the DAE system
can be solved in each time interval [ti , ti+1]. As a result of this step, the profiles of
differential and algebraic state trajectories are obtained.

The last component calculates the gradients of the objective and the constraints
functions, for the decision variablesw. The values of both the objective function and
gradients are passed to the nonlinear programming solver. This enables us to update
the decision variables w. The described cycle is repeated as long, as the NLP solver
reaches the result with the expected accuracy.

The majority of the calculations is related with the solving the DAE systems to
obtain gradient vectors of objective and constraints functions. For small andmedium-
sized problems, with few hundred variables, the appropriate optimization algorithm
is fmincon solver, attached to the MATLAB environment [12].

5.2 The Simultaneous Approach

In the simultaneous approach, the NLP solver takes into account more variable,
than in the sequential case. This is due to the fact, that the dynamic equations and
their associated discrete state variables are included as equality constraints in the
quadratic programming subproblem. They do not form the Hessian matrix, which
remains within a block diagonal structure, but allows for efficient use of sparse
factorization methods. The computational complexity of quadratic programming
subproblem depends linearly on the number of shots N .

The problem of unstable dynamics is overcome by imposing restrictions on the
decision variables by lower and upper bounds.

The main disadvantage of the simultaneous approach is, that the calculation can
not be prematurely terminated. The equations describing the model are fulfilled only
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after the last iteration. This means, that as long as the algorithm does not achieve a
solution, acceptable solutions are not available.

Simultaneous approach transform the optimal control problem into large-scale
optimization problem with thousands decision variables and constraints. In practical
application, for solving problems rewritten in a such way, interior point nonlinear
programming codes are commonly used. The most popular codes are IPOPT [30]
and KNITRO [6].

6 Indirect Gradient Approach

The indirect methods for solving optimal control problems base on indirect multiple
shooting and indirect collocation approaches. Indirect multiple shooting method
is originally known for solving purely continuous optimal control problems. The
initialization for indirect multiple shooting method and indirect.

The third class of methods for solving optimal control problems are the combined
indirect gradient methods. Passenberg et al. [22] proposed the min-H algorithm,
which can be applied for solving both continuous and hybrid dynamic optimization
problems.

Gradient methods are more intuitive to initialize than indirect multiple shooting
and indirect collocation approach, because control values can be guessed initially
instead of adjoint values.

Starting from the initial conditions, in indirect gradient algorithms, the dynam-
ical system is integrated forward in time until the final time is reached. Then, the
adjoint differential equations are integrated backward in time [t0, t f ]. The backward
integration is initialized with the relevant optimality conditions at final time. To per-
form the integrations and the initialization of the adjoint variables, a control function
of the time has to be initially guessed. These unknowns are the decision variables,
which are iteratively varied until an optimal solution is found. The unknown control
function is a physically intuitive variable, which simplified the initialization of the
control function. Then, the values of the decision variables are updated after each
pair of forward-backward integrations.

It was assumed that the Hamiltonian is convex with respect to the control

∇2
uuH(x(t),λ(t), u(t)) > 0. (45)

This implies, that the Hamiltonian minimization condition is satisfied for any
values x and λ if the optimal control is chosen

∇uH(x(t),λ(t), u�(t)) = 0. (46)

In the current iteration of the method, the optimal control u�(t) is approached by
the Newton step, if the gradient is not zero for the control u(t). Linearization of the
current gradient leads to the update formula of the control u(t)
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δu(t) = −(∇2
uuH(x(t),λ(t), u(t)))−1 (47)

(∇2
uxH(x(t),λ(t), u(t))δx(t)+

∇u f T (x(t), u(t))δλ(t) + ε∇uH(x(t),λ(t), u(t))).

The step size ε with 0 < ε ≤ 1 determines, how fast the optimal control u�(t)
satisfying ∇uH = 0 is approached.

The update of the control

δu(t) = −εΔu(t) + δu�(t) (48)

such that Δu(t) = u(t) − u�(t) and the predicted variation is

δu�(t) = −(∇2
uuH(x(t),λ(t), u�(t)))−1 (49)

(∇2
uxH(x(t),λ(t), u�(t))δx(t)+

∇u f T (x(t), u�(t))δλ(t))

To compute the update δu(t) it is required to find the unknown values δx(t) and
δλ(t) needed for δu�(t). The values δx(t) and δλ(t) where obtained by solving the
linear TPBVP of the forms

δẋ(t) = A(t)δx(t) − B(t)δλ(t) − d(t) (50)

δλ̇(t) = −C(t)δx(t) − F(t)δλ(t) − γ(t), (51)

where the matrices A, B, C , F and vectors d, γ result from the linearization of the
differential equations.

The solution of the TPBVP can be derived with a single pair of backward differ-
ential integrations.

7 Applications

In the literature related to the controlling the large-scale, chemical industrial
processes, more important, than the choice between using indirect or direct approach,
is rather a choice between sequential and simultaneous approaches.

Direct methods combined with the multiple shooting approach are widely used
in the control of batch processes [3].

Batch processes involve defined sequence of operations processes and can be sin-
gle or multistage. These operations are the function of the process and the product.
Each stage of the process (heating, cooling, pressure changing, adding and remov-
ing substances) makes several physical or chemical changes in the being processed
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material. These stages run for a specified period of time, until the manufacture of the
final product [20, 24, 25].

Batch processes are often used in places, where product characteristics require-
ments are very high, i.e. pharmaceuticals production [29]. Other examples include:
fermentation [23], crystallization [31] and polymer preparation processes [1], uti-
lized in the wide range of industry branches: petrochemical, paper and food ones
[17, 19, 25]. The batch processes link to the high pressure tubular and kinetics reac-
tors [3, 10, 27, 28], distillation columns [3] and other reactions, that take place in
the presence of the catalyst [9, 16].

Batch process control stands important and difficult aspect of product manufactur-
ing. Factors that can affect the batch processes can be different. In dynamic optimiza-
tion problems of batch processes off-line and online problems can be distinguished
[3].

Batch process control is necessary from an economical point of view. The costs
arising from inadequate production of product batches are usually very large. Further-
more, even small changes in technological parameters may affect the final products
quantity and quality [25].

The second wide range of applications is an aerospace industry. An important
issue is the control of the airplane, to achieve the proper height or to determine the
trajectory of the shuttle, which returns from a space mission [2].

Application of the described methods is highly connected with the application of
the appropriate software packages. To the most popular are the Sequential Quadratic
Programming codes, e.g. fmincon [12], filterSQP [11], MUSCOD-II [18], SNOPT
[14] and SOCS [2].

8 Summary

The main trends in solving optimal control problems were presented in the arti-
cle. The starting point were the Euler-Lagrange equations. On this basis, one can
designate the necessary conditions for optimality, and as a result obtain a system
of differential-algebraic equations. Because of the obtaining this type of equations
requires knowledge of advanced mathematical methods, the new, more intuitive,
direct methods have been developed. The direct methods transform the optimal con-
trol problem into a large-scale nonlinear programming problem, which can be solved
sequentially or simultaneously. The multiple shooting method allows to control non-
linear and ill-conditioned dynamic systems, described by ordinary differential equa-
tions (ODE) and differential-algebraic equations (DAE). Large-scale optimization
problem can be solved effectively by nonlinear programming algorithms [21].

Algorithms based on the direct approach are widely used in industry, especially
in the chemical industry and aerospace engineering.

The new trends in solving optimal control problems are the min-H algorithms,
which jet have not been widely used for control and optimization of the complex
industrial processes.
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InterCriteria Analysis of ACO and GA
Hybrid Algorithms
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Abstract In this paper, the recently proposed approach for multicriteria decision
making—InterCriteria Analysis (ICA)—is presented. The approach is based on the
apparatus of the index matrices and the intuitionistic fuzzy sets. The idea of Inter-
Criteria Analysis is applied to establish the relations and dependencies of considered
parameters based on different criteria referred to various metaheuristic algorithms. A
hybrid scheme using Genetic Algorithm (GA) and Ant Colony Optimization (ACO)
is used for parameter identification of E. coli MC4110 fed-batch cultivation process
model. In the hybrid GA-ACO, the GA is used to find feasible solutions to the
considered optimization problem. Further ACO exploits the information gathered
by GA. This process obtains a solution, which is at least as good as—but usually
better than—the best solution devised by GA. Moreover, a comparison with both
the conventional GA and ACO identification results is presented. Based on ICA the
obtained results are examined and conclusions about existing relations and depen-
dencies between model parameters of the E. coli process and algorithms parameters
and outcomes, such as number of individuals, number of generations, value of the
objective function and computational time, are discussed.
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1 Introduction

To solve different optimization problems we can apply various techniques and
approaches, namely exact algorithms (Branch-and-Bound, Dynamic Programming,
local search techniques) [14, 20, 39], heuristics [27, 35], andmetaheuristics (Genetic
Algorithms, Ant Colony Optimization, Particle Swarm Optimization, Simulated
Annealing, Tabu Search, etc.) [15, 17, 23]. Today, the use of metaheuristics has
received more and more attention. These methods offer good solutions, even global
optima, within reasonable computing time [38]. An even more efficient behavior
and higher flexibility when dealing with real-world and large-scale problems, can
be achieved through a combination of a metaheuristic with other optimization tech-
niques, the so-called hybrid metaheuristic [15, 22, 29, 30, 36, 37, 40].

The main goal of the hybrid algorithms is to exploit the advantages of different
optimization strategies, avoiding their disadvantages. Choosing an adequate combi-
nation of metaheuristic techniques we can achieve a better algorithm performance
in solving hard optimization problems. Developing such effective hybrid algorithm
requires expertise from different areas of optimization. There are many hybridization
techniques that have shown to be successful for different applications.

In this paper, we investigate a hybrid metaheuristic method that combines Genetic
Algorithms (GA) and Ant Colony Optimization (ACO), named GA-ACO. There are
some applications of ACO-GA hybrid for several optimization problems. In [25, 26]
a hybrid metaheuristic ACO-GA for the problem of sports competition scheduling is
presented. In the proposed algorithm first, GA generates activity lists thus provides
the initial population for ACO. Next, ACO is executed. In the next step GA, based
on the crossover and mutation operations, generates new population. continuous
engineering optimization. Authors in [18] presented hybrid algorithm in that ACO
and GA search alternately and cooperatively in the solution space. Test examples
show that hybrid algorithm can be more efficient and robust than the traditional
population based heuristic methods. In [2] the problem of medical data classification
is discussed. Authors propose a hybrid GA-ACO and show the usefulness of the
proposed approach on a number of benchmark real-world medical datasets. For
solvingNP-hard combinatorial optimization problems in [1] a novel hybrid algorithm
combining the search capabilities of the ACO and GA is introduced. As a result a
faster and better search algorithm capabilities is achieved.

Provoked by the promising results obtained from the use of hybrid GA-ACO
algorithms, we propose a hybrid algorithm, i.e. collaborative combination between
ACO and GA for model parameters optimization of E. coli cultivation process. The
effectiveness of GA and ACO have already been demonstrated for model parameter
optimization considering fed-batch cultivation processes [32]. Moreover, parameter
identification of cellular dynamics models has especially become a research field of
great interest. Robust and efficient methods for parameter identification are of key
importance.

On the other hand, the recently proposed approach for multicriteria decision
making—InterCriteria Analysis (ICA)—is applied for additional exploring of the
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used metaheuristic techniques. In here discussed case the E. coli model parameter
estimates, number of individuals (chromosomes and ants), number of algorithm gen-
erations, corresponding algorithm accuracy and computational time are considered
as user criteria. The ICA is applied with the aim to more profoundly understand
the nature of the criteria involved and discover on this basis existing correlations
between the criteria themselves. The theory of ICA has been presented in details in
[4], and in [9–12] it was further discussed and developed.

The paper is organized as follows. The problem formulation is given in Sect. 2.
The proposed hybrid GA-ACO technique is described in Sect. 3. The background of
the ICA is presented in Sect. 4. The numerical results and a discussion are presented
in Sect. 5. Conclusion remarks are done in Sect. 6.

2 Problem Formulation

2.1 E. coli Fed-batch Fermentation Model

The mathematical model of the fed-batch cultivation process of E. coli is presented
by the following non-linear differential equation system [33]:

dX

dt
= μX − Fin

V
X (1)

dS

dt
= −qS X + Fin

V
(Sin − S) (2)

dV

dt
= Fin (3)

where

μ = μmax
S

kS + S
(4)

qS = 1

YS/X
μ (5)

X is the biomass concentration, [g/l];
S is the substrate concentration, [g/l];
Fin is the feeding rate, [l/h];
V is the bioreactor volume, [l];
Sin is the substrate concentration in the feeding solution, [g/l];
μ and qS are the specific rate functions, [1/h];
μmax is the maximum value of the specific growth rate, [1/h];
kS is the saturation constant, [g/l];
YS/X is the yield coefficient, [−].
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Fig. 1 Bioreactor and FIA
measurement system

For the model parameters identification, experimental data of an E. coli MC4110
fed-batch cultivation process are used. The experiments are performed in the Institute
of Technical Chemistry, University of Hannover, Germany. The detailed description
of the cultivation condition and experimental data could be found in [3, 31].

The fed-batch process starts at time t = 6.68h, after batch phase. The initial
liquid volume is 1350ml. Before inoculation a glucose concentration of 2.5g/l was
established in the medium. Glucose in feeding solution is 100 g/l. The temperature
was controlled at 35 ◦C, the pH at 6.9. The stirrer speed was set to 900 rpm and was
increased to 1800 rpm, so that the dissolved oxygen concentration was never below
30%. The aeration rate was kept at 275 l/h and the carbon dioxide was measured in
the exhaust gas. The process is stopped at time t = 11.54h.

The bioreactor, as well as FIA measurement system is shown on Fig. 1. The feed
rate profile and the dynamics of the measured substrate concentration are presented,
respectively on Figs. 2 and 3.

For the considered non-linear mathematical model of E. coli fed-batch cultivation
process Eqs. (1)–(5) the parameters that should be identified are:

• maximum specific growth rate (μmax ),
• saturation constant (kS),
• yield coefficient (YS/X ).

Fig. 2 Feed rate profile
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Fig. 3 Measured substrate
concentration
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The following upper and lower bounds of the model parameters are considered
[32]:

0 < μmax < 0.7,

0 < kS < 1,

0 < 1/YS/X < 30.

In the model identification procedures measurements of main process variables
(biomass and glucose concentration) are used. For on-line glucose determination a
FIA system has been employed. For biomass, off-line analysis are performed [3].

2.2 Optimization Criterion

The objective consists of adjusting the parameters (μmax , kS and YS/X ) of the non-
linear mathematical model function Eqs. (1)–(5) to best fit a data set. The objective
function is presented as aminimization of a distancemeasure J between experimental
and model predicted values of the main state variables (biomass X and substrate S):

J =
m∑

i=1

(
Xexp(i) − Xmod(i)

)2 +

+
m∑

i=1

(
Sexp(i) − Smod(i)

)2 → min (6)

where m is the number of experimental data; Xexp and Sexp are the known experi-
mental data for biomass and substrate; Xmod and Smod are the model predictions for
biomass and substrate with a given set of parameters (μmax , kS and YS/X ).
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3 Methodology

3.1 Genetic Algorithm

GA is a metaheuristic technique based on an analogy with the genetic structure and
behaviour of chromosomes within a population of individuals using the following
foundations [21]:

• chromosomes in a population compete for resources and mates;
• those chromosomes most successful in each competition will produce more off-
spring than those chromosomes that perform poorly;

• genes from good chromosomes propagate throughout the population so that two
good parents will sometimes produce offspring that are better than either parent;

• thus each successive generation will become more suited to their environment.

The structure of the GA, shown by the pseudocode is presented in Fig. 4.
GA mainly operating on binary strings and using a recombination operator with

mutation. GA support a population of chromosomes, Pop(t) = xt
1, . . . , xt

n for
generation t . Each chromosome introduces a potential solution to the problem and
is implemented as some data structure S. Each solution is evaluated according its
“fitness”. Fitness of a chromosome is assigned proportionally to the value of the
objective function of the chromosomes. Then, a new population (generation t + 1)
is formed by selecting better chromosomes (selection step).

Roulette wheel, developed by Holland [28] is most used selection method. The
probability, Pi , for each chromosome to be selected is defined by:

P[Individual i is chosen] = Fi

PopSize∑

j=1
Fj

, (7)

where Fi equals the fitness of chromosome i and PopSize is the population size.

Fig. 4 Pseudocode for GA Genetic Algorithm
i = 0
Initial population Pop(0)
Evaluate Pop(0)
while (not done) do (test for termination criterion)

i = i+ 1
Select Pop(i) from Pop(i− 1)
Recombine Pop(i)
Mutate Pop(i)
Evaluate Pop(i)

end while
Final solution
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Selected members of the new population have been subjected to transformations
by means of “genetic” operators to form new solution. There are unary transforma-
tions mi (mutation type), which create new chromosomes by a small change in a
single chromosome (mi : S → S), and higher order transformations c j (crossover
type),which create newchromosomes by combiningparts fromseveral chromosomes
(c j : S × · · · × S → S). The combined effect of selection, crossover and mutation
gives so-called reproductive scheme growth equation (the schema theorem) [24]:

ξ (S, t + 1) ≥

ξ (S, t) · eval (S, t) /F̄ (t)

[
1 − pc · δ (S)

m − 1
− o (S) · pm

]
.

Good schemata receive an exponentially increasing number of reproductive trials
in successive generations.

3.2 Ant Colony Optimization

The ACO is a stochastic optimization method that mimics the social behavior of
real ants colonies, which try to find shortest rout to feeding sources and back. Real
ants lay down quantities of pheromone (chemical substance) marking the path that
they follow. An isolated ant moves essentially at random but an ant encountering a
previously laid pheromone will detect it and decide to follow it with high probability
and reinforce it with a further quantity of pheromone. The repetition of the above
mechanism represents the auto-catalytic behavior of a real ant colony, where the
more the ants follow a trail, the more attractive that trail becomes. The idea comes
from observing the exploitation of resources of food among ants, in which ants have
collectively been able to find the shortest path between to the food.

The ACO is implemented as a team of intelligent agents, which simulate the
ants behavior, walking around the graph representing the problem to solve. The
requirements of the ACO algorithm are as follows [16, 19]:

• The problem needs to be represented appropriately, which would allow the ants
to incrementally update the solutions through the use of a probabilistic transition
rules, based on the amount of pheromone in the trail and other problem specific
knowledge.

• A problem-dependent heuristic function, that measures the quality of components
that can be added to the current partial solution.

• A rule set for pheromone updating, which specifies how to modify the pheromone
value.

• A probabilistic transition rule based on the value of the heuristic function and the
pheromone value, that is used to iteratively construct a solution.
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Fig. 5 Pseudocode for ACO Ant Colony Optimization
Initialize number of ants;
Initialize the ACO parameters;
while not end-condition do

for k = 0 to number of ants
ant k choses start node;
while solution is not constructed do

ant k selects higher probability node;
end while

end for
Update-pheromone-trails;

end while

The structure of the ACO algorithm, shown by the pseudocode is presented in
Fig. 5.

The transition probability pi, j , to choose the node j when the current node is i ,
is based on the heuristic information ηi, j and the pheromone trail level τi, j of the
move, where i, j = 1, . . . . , n.

pi, j = τa
i, jη

b
i, j

∑

k∈Unused
τa

i,kη
b
i,k

, (8)

where Unused is the set of unused nodes of the graph.
The higher the value of the pheromone and the heuristic information, the more

profitable it is to select this move and resume the search. In the beginning, the initial
pheromone level is set to a small positive constant value τ0; later, the ants update this
value after completing the construction stage. The ACO algorithms adopt different
criteria to update the pheromone level.

The pheromone trail update rule is given by:

τi, j ← ρτi, j + Δτi, j , (9)

where ρ models evaporation in the nature and Δτi, j is a new added pheromone
which is proportional to the quality of the solution. Better solutions will receive
more pheromone than others and will be more desirable in a next iteration.

3.3 Hybrid GA-ACO Algorithm

We proposed to combine two metaheuristics, namely GA [24, 28] and ACO [19].
GA is a population-based method where initial population is randomly generated.
Thus generated initial solutions, further is genetically evaluated. ACO algorithm is
a population-based too. The difference with GA is that ACO do not need initial
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Fig. 6 Pseudocode for
Hybrid GA-ACO

GA-ACO hybrid algorithm
i = 0
Initial population Pop(0)
Evaluate Pop(0)
while not end-condition do

i = i+ 1
Select Pop(i) from Pop(i− 1)
Recombine Pop(i)
Mutate Pop(i)
Evaluate Pop(i)

end while
Final GA solution for ACO
Initialize number of ants;
Initialize the ACO parameters;
while not end-condition do

for k = 0 to number of ants
ant k choses start node;
while solution is not constructed do

ant k selects higher probability node;
end while

end for
Update-pheromone-trails;

end while
Final solution

population. ACO is a constructive method and we manage the ants to look for good
solutions by parameter called pheromone. At the beginning the initial pheromone
is the same for the elements of the all potential solutions. After every iteration the
pheromone is updated. The elements of better solutions receivemore pheromone then
others and become more desirable in a next iterations. In our hybrid algorithm the
solutions achieved by GA are like solutions achieved by ACO from some previous
iteration and we update the initial pheromone according them. After that we continue
with ACO algorithm.

The pseudocode of the proposed GA-ACO algorithm is shown in Fig. 6.

4 InterCriteria Analysis

4.1 Short Remarks on Intuitionistic Fuzzy Pairs and Index
Matrices

The Intuitionistic Fuzzy Pairs (IFPs) is an object in the form of an ordered pair

〈a, b〉,

where a, b ∈ [0, 1] and a + b ≤ 1.
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IFPs are used as an evaluation of some object or process, and the components (a
and b) are interpreted, respectively, as degrees of membership and non-membership
to a given set, or degrees of validity and non-validity, or degree of correctness and
non-correctness, etc. [5].

Let us have two IFPs x = 〈a, b〉 and y = 〈c, d〉.
In [5] the following relations are defined:

x < y iff a < c and b > d
x ≤ y iff a ≤ c and b ≥ d
x = y iff a = c and b = d
x ≥ y iff a ≥ c and b ≤ d
x > y iff a > c and b < d

The concept of Index Matrix (IM) was introduced in [6] and discusssed in more
details in [7, 8].

The basic definitions and properties related to IMs are follows [7]:
Let I be a fixed set of indices and R be the set of all real numbers. By IM with

index sets K and L (K , L ⊂ I ), we mean the object,

[K , L , {aki ,l j }] ≡

l1 l2 . . . ln
k1 ak1,l1 ak1,l2 . . . ak1,ln
k2 ak2,l1 ak2,l2 . . . ak2,ln
...

...
...

. . .
...

km akm ,l1 akm ,l2 . . . akm ,ln

,

where

K = {k1, k2, ..., km}, L = {l1, l2, ..., ln},

and for 1 ≤ i ≤ m, and 1 ≤ j ≤ n : aki ,l j ∈ R.
On the basis of the above definition, in [8] the newobject—the Intuitionistic Fuzzy

IM (IFIM)—was introduced in the form

[K , L , {〈μki ,l j , νki ,l j 〉}]

≡

l1 l2 . . . ln
k1 〈μk1,l1 , νk1,l1〉 〈μk1,l2 , νk1,l2〉 . . . 〈μk1,ln , νk1,ln 〉
k2 〈μk2,l1 , νk2,l1〉 〈μk2,l2 , νk2,l2〉 . . . 〈μk2,ln , νk2,ln 〉
...

...
...

. . .
...

km 〈μkm ,l1 , νkm ,l1〉 〈μkm ,l2 , νkm ,l2〉 . . . 〈μkm ,ln , νkm ,ln 〉

,

where for every 1 ≤ i ≤ m, 1 ≤ j ≤ n: 0 ≤ μki ,l j , νki ,l j ,μki ,l j + νki ,l j ≤ 1, i.e.,
〈μki ,l j , νki ,l j 〉 is an IFP.
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Let us have an IM

A =

O1 . . . Ok . . . Ol . . . On

C1 aC1,O1 . . . aC1,Ok . . . aC1,Ol . . . aC1,On
...

...
. . .

...
. . .

...
. . .

...

Ci aCi ,O1 . . . aCi ,Ok . . . aCi ,Ol . . . aCi ,On
...

...
. . .

...
. . .

...
. . .

...

C j aC j ,O1 . . . aC j ,Ok . . . aC j ,Ol . . . aC j ,On

...
...

. . .
...

. . .
...

. . .
...

Cm aCm ,O1 . . . aCm ,Ok . . . aCm ,Ol . . . aCm ,On

, (10)

where for every p, q, (1 ≤ p ≤ m, 1 ≤ q ≤ n):

• C p is a criterion, taking part in the evaluation,
• Oq is an object, being evaluated.
• aC p,Oq is a real number or another object, that is comparable about relation R with
the other a-objects, so that for each i, j, k: R(aCk ,Oi , aCk ,O j ) is defined. Let R be
the dual relation of R in the sense that if R is satisfied, then R is not satisfied and
vice versa. For example, if “R” is the relation “<”, then R is the relation “>”, and
vice versa.

Let Sμ
k,l be the number of cases is which R(aCk ,Oi , aCk ,O j ) and

R(aCl ,Oi , aCl ,O j ) are simultaneously satisfied. Let Sν
k,l be the number of cases is

which R(aCk ,Oi , aCk ,O j ) and R(aCl ,Oi , aCl ,O j ) are simultaneously satisfied.
Obviously,

Sμ
k,l + Sν

k,l ≤ n(n − 1)

2
.

Now, for every k, l, such that 1 ≤ k < l ≤ m and for n ≥ 2, we define

μCk ,Cl = 2
Sμ

k,l

n(n − 1)
, νCk ,Cl = 2

Sν
k,l

n(n − 1)
. (11)

Therefore, 〈μCk ,Cl , νCk ,Cl 〉 is an IFP. Now, we can construct the IM

C1 . . . Cm

C1 〈μC1,C1 , νC1,C1〉 . . . 〈μC1,Cm , νC1,Cm 〉
...

...
. . .

...

Cm 〈μCm ,C1 , νCm ,C1〉 . . . 〈μCm ,Cm , νCm ,Cm 〉
, (12)

that determine the degrees of correspondence between criteria C1, . . . , Cm .
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5 Numerical Results and Discussion

5.1 Model Parameters Identification of E. coli Fed-batch
Fermentation Process

The theoretical background of the GA and ACO is presented in details [32]. For
the considered here model parameter identification, we used real-value coded GA
instead binary encoding. The type of the basic operators in GA are as follows:

• encoding—real-value,
• fitness function—linear ranking,
• selection function—roulette wheel selection,
• crossover function—extended intermediate recombination,
• mutation function—real-value mutation,
• reinsertion—fitness-based.

In the applied here ACO algorithm the problem is represented by graph and the
artificial ants try to construct shortest path under some conditions. In our case the
graph of the problem is represented by tripartite graph. There are not arcs inside a
level and there are arcs between levels. Every level corresponds to one of the model
parameters we identify (μmax , kS and YS/X ).

To set to the optimal settings the parameters of the GA andACO, several pre-tests,
according considered here optimization problem, are performed.

The optimal settings of the GA and ACO parameters are summarized in Tables1
and 2.

Computer specification to run all identification procedures are Intel Core i5-2329
3.0 GHz, 8 GB Memory, Windows 7 (64bit) operating system and Matlab 7.5 envi-
ronment.

We perform 30 independent runs of the hybrid GA-ACO. The hybrid algorithm
starts with population of 20 chromosomes.We use 40 generation to find solution.We
take the achieved best GA solution to update ACO initial pheromone. Further ACO
is used to obtain the best model parameters vector using 30 ants for 100 generations.

Table 1 Parameters of GA Parameter Value

ggap 0.97

xovr 0.7

mutr 0.05

Maximum generations
(maxgen)

40

Number of individuals (nind) 20

Number of variables 3

Inserted rate 100%
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Table 2 Parameters of ACO algorithm

Parameter Value

Number of ants (nind) 20

Initial pheromone 0.5

Evaporation 0.1

Maximum generations (maxgen) 100

Table 3 Results from model parameters identification procedures

Value Algorithm Algorithm performance

T , [s] J

Best GA 67.5172 4.4396

ACO 67.3456 4.9190

GA-ACO 38.7812 4.3803

ACO-GA 35.5212 4.4903

Worst GA 66.5968 4.6920

ACO 66.6280 6.6774

GA-ACO 41.4495 4.6949

ACO-GA 35.3498 4.6865

Average GA 67.1370 4.5341

ACO 69.5379 5.5903

GA-ACO 39.4620 4.5706

ACO-GA 36.1313 4.5765

For comparison of hybrid performance pure GA and pure ACO are run (30 times)
with parameters shown in Tables1 and 2.

The main numerical results, from parameter identification, are summarized in
Table3. The obtained average values of the model parameters (μmax , kS and YS/X )
are summarized in Table4.

Table 4 Parameters’ estimations of the E. coli fed-batch cultivation process model

Value Algorithm Model parameters

μmax kS 1/YS/X

Average GA 0.4857 0.0115 2.0215

ACO 0.5154 0.0151 2.0220

GA-ACO 0.4946 0.0123 2.0204

ACO-GA 0.4976 0.0135 2.0221
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As it can be seen from Table3 the hybrid GA-ACO achieves similar to pure GA
and pure ACO algorithm values of the objective function. In the same time, the
running time of the proposed hybrid algorithm is about two times less. The pure
ACO algorithm starts with equal initial pheromone for all problem elements. In the
case of hybrid GA-ACO we use the best found solution by the GA to update the
ACO pheromone. Thus our ACO algorithm uses the GA “experience” and starts
from “better” pheromone. This strategy helps to the ants to find good solutions using
less computational resources like time and memory. In result our hybrid algorithm
uses more than three times less memory than pure ACO and pure GA algorithms.

Moreover, in Table3 we compare achieved in this work results with results in our
previous work [34]. There we run the ACO algorithm for several iterations and thus
we generate initial populations forGA algorithm. Thus theGA starts from population
closer to the good (optimal) solution than the randomly generated population. We
observe that ACO-GA and GA-ACO algorithms achieves very similar results for
a similar running time. We run the ANOVA test to measure the relative difference
between two algorithms. The two hybrid algorithms achieves statistically equivalent
results, but the GA-ACO algorithm uses 30% less memory. Thus we can conclude
that hybrid GA-ACO algorithm performs better than ACO-GA hybrid algorithm.

On Fig. 7 the comparison of the dynamics of measured and modeled biomass
concentration is shown. With a line we show the modeled biomass during the cul-
tivation process and with stars we show the measured biomass concentration. We
put only several stars because the two line are almost overlapped. On Fig. 8 the
comparison between time profiles of measured and modeled substrate concentration

Fig. 7 Comparison between
measured and modeled
biomass concentration
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Fig. 8 Comparison between
measured and modeled
substrate concentration
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during the cultivation process is shown. On the both figures we observe how close are
the modeled and measured data. Thus we show the quality of our hybrid GA-ACO
algorithm.

5.2 InterCriteria Analysis

Based on the obtained results from the identification procedures the following IM is
defined:

A =

GA ACO GA-ACO ACO-GA
Tave 67.1370 69.5379 39.4620 36.1313
Jave 4.5341 5.5903 4.5706 4.5765
Jbest 4.4396 4.9190 4.3803 4.4903

Jworst 4.6920 6.6774 4.6949 4.6865
μmaxave 0.4857 0.5154 0.4946 0.4976
kSave 0.0115 0.0151 0.0123 0.0135

1/YS/X ave 2.0215 2.0220 2.0204 2.0221
nind 100 20 30 10

maxgen 100 20 30 10

(13)

In the IM A (13) the average values for computation time (Tave) and for the three
model parameters estimations (μmaxave , kSave and 1/YS/X ave), in case of GA, ACO,
GA-ACO and ACO-GA, are presented. Moreover, population number (individuals
and/or ants) (nind), algorithm generations (maxgen) and the average, best and worst
value of the objective function (Jave, Jbest , Jworst ) Eq. (6) are considered.

Resulting IMs that determine the degrees of “agreement” (μ) and “disagreement”
(ν) between criteria are follows:



122 O. Roeva et al.

μ Tave Jave Jbest Jworst μmaxave kSave 1/YS/X ave nind maxgen
Tave 1 0.5 0.67 0.83 0.5 0.5 0.5 0.67 0.67
Jave 0.5 1 0.83 0.67 1 1 0.67 0.17 0.33
Jbest 0.67 0.83 1 0.5 0.83 0.83 0.83 0.33 0.5

Jworst 0.83 0.67 0.5 1 0.67 0.67 0.33 0.5 0.5
μmaxave 0.5 1 0.83 0.67 1 1 0.67 0.17 0.33
kSave 0.5 1 0.83 0.67 1 1 0.67 0.17 0.33

1/YS/X ave 0.5 0.67 0.83 0.33 0.67 0.67 1 0.17 0.33
nind 0.67 0.17 0.33 0.5 0.17 0.17 0.17 1 0.5

maxgen 0.67 0.33 0.5 0.5 0.33 0.33 0.33 0.5 1

(14)

ν Tave Jave Jbest Jworst μmaxave kSave 1/YS/X ave nind maxgen
Tave 0 0.5 0.33 0.17 0.5 0.5 0.5 0.33 0
Jave 0.5 0 0.17 0.33 0 0 0.33 0.33 0.33
Jbest 0.33 0.17 0 0.5 0.17 0.17 0.17 0.67 0.17

Jworst 0.17 0.33 0.5 0 0.33 0.33 0.67 0.5 0.17
μmaxave 0.5 0 0.17 0.33 0 0 0.33 0.33 0.33
kSave 0.5 0 0.17 0.33 0 0 0.33 0.33 0.33

1/YS/X ave 0.5 0.33 0.17 0.67 0.33 0.33 0 0.33 0.33
nind 0.33 0.83 0.67 0.5 0.83 0.83 0.83 0 0.17

maxgen 0 0.33 0.17 0.17 0.33 0.33 0.33 0.17 0

(15)

As expected, every criteria perfectly correlates with itself, so the value μ is always
1, and ν = 0. Also, the two matrices are obviously symmetrical according to the
main diagonal. Observing obtained values of “agreement” (μ, Eq. (14)) and “dis-
agreement” (ν, Eq. (15)), we can group the pairs of defined criteria in the following
6 groups.

• μ = 1 and ν = 0
μmaxave − Jave, kSave − Jave, kSave − μmaxave

• μ = 0.83 and ν = 0.17
Jworst − Tave, Jbest − Jave, μmaxave − Jbest , kSave − Jbest , 1/YS/X ave − Jbest

• μ = 0.67 and 0 <= ν <= 0.33
Jworst − Jave, nind − Tave, maxgen − Tave, 1/YS/X ave − Jave, Jbest − Tave

• μ = 0.5 and 0.17 <= ν <= 0.5
Jave − Tave, μmaxave − Tave, kSave − Tave, 1/YS/X ave − Tave, Jworst − Jbest ,
nind − Jworst , maxgen − Jbest , maxgen − Jworst , maxgen − nind

• μ = 0.33 and 0.33 <= ν <= 0.67
maxgen − Jave, nind − Jbest , 1/YS/X ave − Jworst , μmaxave − maxgen, kSave −
maxgen, 1/YS/X ave − maxgen

• μ = 0.17 and ν <= 0.83
nind − Jave, μmaxave − nind, kSave − nind, 1/YS/X ave − nind
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The high value of “agreement” of the parameters values from the first two groups
confirms the robustness of the proposed algorithms. At the same time the strong
connection in pair kSave −μmaxave derives from the physical meaning of these model
parameters [13]. In most of the cases the sum of the values of μ and ν is 1. However,
sometimes this sum is less than 1, therefore there is someuncertainty. This uncertainty
could be explained with the stochastic nature of the applied algorithms. The values of
μ in the 4th group show the correctness of the algorithms. The value of “agreement”
between the average value of the objective function and computation time, or worst
and best value of the objective function is not very high, but it exists. The last group
shows that the dependence between number of population and achieved objective
function value is less important than with running time. The running time depends
on both—the number of population and the number of algorithm generations. Thus
we can conclude that for achieving good results the balance between number of
population and number of generations is very important. We observe that the worst
value of the objective function depends much more of the running time than the best
objective function value. If we run the algorithm for a short running time with high
probability we will achieve bad solutions only, at the same time long running time
can not guarantee achieving of good solutions.

On Fig. 9 with stars are shown the pairs 〈μ, ν〉. When there is not uncertainty, the
stars are on the diagonal. In the case of uncertainty the stars are under the diagonal.
The uncertainties are in 30% of the cases and thus the robustness of our algorithms
is confirmed.

Fig. 9 Intuitionistic fuzzy
triangle representation
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6 Conclusion

In this paper we apply a new approach—InterCriteria analysis—for establishing
relations and dependencies between different algorithm parameters and model para-
meters. We considered two hybrid algorithms—GA-ACO and ACO-GA—as well as
pure GA and pure ACO algorithms.

First, algorithms are applied for parameter identification of nonlinear mathemat-
ical model of E. coli fed-batch cultivation process. We observe that our hybrid algo-
rithms (GA-ACO and ACO-GA) achieve similar to pure GA and ACO algorithms
solutions using less computational resources like time and memory. Both hybrid
algorithms achieve statistically similar results for a similar running time, but GA-
ACO algorithm uses 30% less memory, which is important when we solve large
problems.

Second, InterCriteria analysis is performed to determine the levels of dependence
between E. coli process model parameters themselves. Then between algorithms
outcomes as computational time and accuracy, as well as the number of used pop-
ulations and maximum number of algorithms generations. Next we determine the
levels of dependence between E. coli process model parameters and the considered
algorithms’ parameters. This analysis shows some relations and dependencies that
result from the physical meaning of the model parameters—on the one hand, and
from stochastic nature of the considered metaheuristics—on the other hand. More-
over, the results show the robustness of the proposed algorithms (both hybrid and
pure techniques) and confirm their correctness.
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A Two-Stage Look-Ahead
Heuristic for Packing Spheres
into a Three-Dimensional Bin
of Minimum Length

Hakim Akeb

Abstract In this work we propose a two-stage look-ahead heuristic for packing
a given set of spheres into a three-dimensional bin of fixed height and depth but
variable length. The problem consists to pack all the spheres into the bin of minimum
length. This problem is also knownunder the nameof three-dimensional strip packing
problem. The computational results conducted on a set of benchmark instances taken
from the literature indicates that the proposed method is effective since it improves
most of the best known results by finding new upper bounds for the length of the bin.

1 Introduction

Packing spheres can be used to model many solid state systems. Indeed, the associ-
ation of different-sized spheres can for example approximate a given solid form.
Packing identical and non-identical spheres is for example used in the domain
of stereotactic radio surgery radiation therapy (see for example the works of
Gavriliouk [4], Sutou and Dai [15], andWang [17]) where the target areas are delim-
ited by spheres of different sizes. Random sphere packing is used in physics in order
to approximate granular materials (see for example Li and Ji [9]).

The problem of packing spheres into an open-dimension bin, also known as the
Three-Dimensional Strip Packing Problem (3DSPP) is NP-Hard [7] and can be stated
as follows. Given a set S containing n spheres si , 1 ≤ i ≤ n where each sphere has
radius ri and is placed with its center at coordinates (xi , yi , zi ) in the Euclidean
space. Let also B be a three-dimensional bin (rectangular cuboid or parallelepiped)
of fixed height and depth (H, D) respectively but of variable length L . The objective
is then to place the n spheres inside the parallelepiped of minimum length such that
no sphere overlaps another sphere and no sphere exceeds the container boundaries.
The method proposed in this work is based on the use of several tools including
the Maximum Hole Degree (MHD) heuristic, a modified look-ahead strategy, and an
interval search.
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2 Literature Review

Even if the 2D-Packing problems are very-well studied in the literature, the three-
dimensional versions are less studied. In sphere packing problems the spheresmay be
of identical or different sizes (radii). The problem of packing non-identical spheres
into a given three-dimensional (3D) container was for example considered by Li and
Ji [9] where a dynamics-based collective method for random sphere packing was
proposed as well as an application to the problem of packing spheres into a cylinder
container. The authors studied also the stability of the method and the convergence of
their algorithm. Sutou and Dai [15] used a global optimization approach (including
Linear Programming relaxation and branch-and-bound) in order to pack unequal
spheres inside a three-dimensional container. More precisely, the objective is to
maximize the volume of the container (of fixed size) occupied by the placed spheres,
this consists then to maximize the “density” of the packing that is equal to the sum
of volumes of the placed spheres divided by the volume of the container. This is also
called the Knapsack version of the problem, i.e., the objective is not to place all the
objects but those maximizing the obtained profit. The profit used often corresponds
to the volume of the corresponding objects placed. Stoyan et al. [14] developed a
mathematical model in order to place different-sized spheres inside a parallelepiped
of fixed length and width but with variable height. The objective is then to minimize
the height of the container. The proposed method uses different tools including
extreme points and neighborhood search. Solutions are given for a set containing
eight instances (designed by the authors) where the number of spheres varies from
20 to 60. Farr [3] studied the problem of random close packing fractions of lognormal
distributions of hard spheres. The author employed a one-dimensional algorithm for
predicting close packing of spheres of lognormal distributions of sphere sizes.

For the case of identical spheres, M’Hallah et al. [11] proposed a Variable Neigh-
borhood Search (VNS) coupled with a Non-Linear Programming (NLP) in order
to place identical spheres into the smallest containing sphere. VNS consists here to
move some spheres situated in the neighborhood of a given placed sphere, then a
NLP procedure is called in order to remove overlapping between spheres. M’Hallah
and Alkandari [12] applied the same principle (VNS and NLP) as in [11] but to solve
the problem of packing unit spheres into the smallest cube. Soontrapa and Chen [13]
considered the problem of packing identical spheres into a cube by using a random-
search technique based on the Monte Carlo method. The problem concerns actually
the development of a fuel catalyst layer. Vance [16] proved an asymptotic lower
bound for the sphere density that improves previous known lower bounds by con-
sidering the Hurwitz lattice sphere packing density. Lochmann et al. [10] proposed
a statistical analysis for packing random spheres with variable radius distribution.

Finally Birgin and Sobral [2] studied the problem of packing identical and non-
identical spheres into different three-dimensional containers. The objective of the
work is to minimize the dimension of the container. The method proposed by the
authors is based on twice-differentiable models as well as on non-linear program-
ming.
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The problem to solve in this paper is the Three-Dimensional Strip Packing Prob-
lem (3DSPP) that consists to pack (without overlapping) a given set containing n
spheres of known radii into a bin of fixed depth D and height H but unlimited length
L . The goal is then to minimize the value of L . The proposed method is essentially
based on the look-ahead strategy that explores here a new idea based on the use of a
two-level search.

3 Problem Formulation

The spheres are to be placed inside a three-dimensional bin denoted by B that has
six faces F = {left, top, right, bottom, back, front}.Moreover, the bin is placed such
that its bottom-left-back corner corresponds to the origin O(0, 0, 0) of the axes in
the Euclidean space as shown in Fig. 1. The length L , the height H, and the depth
D of the container are associated with the

−→
Ox,

−→
Oy, and

−→
Oz axes respectively. In

addition, each sphere si ∈ S has radius ri and its center’s coordinates are (xi , yi , zi ).

The 3DSPP can then be formulated as follows:

min L (1)

(xi − x j )
2 + (yi − y j )

2 + (zi − z j )
2 ≥ (ri + r j )

2 for 1 ≤ i < j ≤ n (2)

xi ≥ ri ∀i ∈ [1, . . . , n] (3)

xi ≤ L − ri ∀i ∈ [1, . . . , n] (4)

yi ≥ ri ∀i ∈ [1, . . . , n] (5)

yi ≤ H − ri ∀i ∈ [1, . . . , n] (6)

zi ≥ ri ∀i ∈ [1, . . . , n] (7)

zi ≤ D − ri ∀i ∈ [1, . . . , n] (8)

Fig. 1 The
three-dimensional bin
container placed with its
bottom-left-back corner at
the origin of the axes in the
Euclidean space

O(0, 0, 0)

z

x

y
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Equation1 indicates the objective (value) to minimize (the length L of the bin).
Equation2 is the non-overlapping constraint that verifies that any pair of distinct
spheres (si , s j ) ∈ S2 do not overlap each other. Equations3–8 mean that each sphere
must not exceed the boundaries of the container.

The distance between the edges of two distinct spheres si and s j , denoted by di, j ,

is defined as follows:

di, j =
√

(xi − x j )2 + (yi − y j )2 + (zi − z j )2 − ri − r j for i �= j. (9)

4 The 3DMHD Heuristic for Packing Spheres
into a Three-Dimensional Bin

In this section, a greedy heuristic, denoted by 3DMHD (Three-Dimensional Maxi-
mum Hole Degree), for packing spheres into a three-dimensional bin is given. This
corresponds to the adaptation of the Maximum Hole Degree (MHD) heuristic [5],
designed for packing circles (two-dimensional case), to the three-dimensional case.

With the MHD heuristic, a simple way to pack the spheres inside the container
consists for example to place the first sphere s1 ∈ S (the set of spheres to pack) at
the bottom-left-back corner, i.e., at coordinates (r1, r1, r1). After that, at each step
i, (1 < i ≤ n) a new sphere is chosen and is placed at the best position (that has the
maximum hole degree). So at each step we have to compute the possible positions
for the spheres that are not yet placed by using the spheres already placed and the
boundaries of the bin.

More precisely, let:

• Sin define the set of spheres already placed inside the container.
• Sout is the complementary set containing the spheres that are not yet placed (out-
side). Note that Sin ∪ Sout = S.

• P denotes the set of possible positions (called corner positions) for the spheres of
set Sout.

Figure2 shows an example where two spheres s1 and s2 (the two greatest ones)
are already placed inside the container B, we have then Sin = {s1, s2}. The figure
also indicates six possible corner positions for packing another sphere s3 ∈ Sout.
These positions are denoted by {p13, . . . , p63}. Each position pk

3 is computed by using
three elements, an element may be a sphere already placed or one of the six faces
of the parallelepiped. These three elements correspond to set T (pk

3) associated to
this position. For example, position p13 is computed by using sphere s1, the left-
edge and the back-face of the container, then T (p13) = {s1, left, back}. Similarly,
T (p23) = {s1, s2, left}.

Generally, let position pk
i+1 ∈ P, associated to a sphere of radius rk

i+1, be one of
the possible corner positions for the next sphere si+1 to place. Then, the 3DMHD
value for position pk

i+1 is defined and computed as follows:
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Fig. 2 The 3DMHD
heuristic for packing spheres
into a three-dimensional bin

z x

y

s1

s2

p13

p
2
3

p33

p43p53
p63

λ(pk
i+1) = max

j ∈ Sin ∪ F \ T (pk
i+1)

1 − dk
i+1, j

r k
i+1

(10)

Equation10 indicates that the hole degree λ(pk
i+1) is computed for each position

in the set of positions P (associated with set Sout) for the next sphere to place. This
value uses the distance dk

i+1, j between the edge of position pk
i+1 (that is similar to

a sphere) and the nearest object j in the set Sin ∪ F \ T (pk
i+1) that contains the

spheres already placed, the six faces (F) of the container but excluding setT (pk
i+1).

The distance is divided by the radius rk
i+1 of the sphere corresponding to position

pk
i+1. Note that if a given position touches more than three objects, then λ = 1,

meaning that this positions has a high probability to be chosen for placing the next
sphere.

For example, Fig. 2 indicates the distance between position p43 and four other
objects: sphere s2, the front face, the top face, and finally the right face of the
container.

So at each step, the 3DMHD heuristic places the next sphere at position p∗ ∈ P
that corresponds to the maximum value of λ(pk

i+1) as indicated in Eq.11.

p∗ = argmax
pk

i+1

λ(pk
i+1) (11)

Algorithm 1 explains how the 3DMHD heuristic proceeds in order to place a set
of spheres inside the container B of dimensions (L × H × D). Procedure 3DMHD
receives a partial solution {Sin, Sout, P} indicating the spheres already packed into
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Require: Set Sin containing spheres already placed, Sout containing the remaining spheres to
place, set P indicating the possible positions for spheres in Sout and the current length L of
the container.

Ensure: TRUE if all the spheres are packed into the container, FALSE otherwise.
1: i ← |Sin|;
2: while (P �= ∅) do
3: Compute/update the 3DMHD value for each corner position p ∈ P;
4: Place the next sphere si+1 at position p∗ that has the maximum hole degree as shown in

Eq.11.
5: Move sphere si+1 from Sout to Sin;
6: Remove from set P the positions that overlap the new inserted sphere;
7: Compute new positions by using the new inserted sphere and the other objects already

placed;
8: i ← i + 1;
9: end while
10: if (i = n) then
11: Set L ← max(xi + ri );
12: Update the best known length if L is smaller than this value;
13: return TRUE;
14: else
15: return FALSE;
16: end if

Algorithm 1: The 3DMHD greedy heuristic

the container, the remaining spheres, and the set of corner positions for spheres in
Sout respectively. The current length L of the container is also transmitted to the
procedure. The heuristic’s output is a boolean value indicating whether yes or no all
the spheres were successfully packed into the container. So procedure 3DMHD is
able to start with any partial solution where the number of spheres already packed is
greater than or equal to zero.

At line 1 inAlgorithm 1 counter i indicating the number of spheres already packed
is set to the number of spheres inside Sin. After that, in the while loop, the 3DMHD
value is computed for each position p ∈ P (line 3), this is done by using the formula
of Eq.10. At line 4, the best position p∗ is chosen in order to place the next sphere
si+1. After that, the new sphere moves from set Sout to set Sin (line 5) and the set
of positions P is updated by removing those overlapping the new inserted sphere
(line 6) and by computing new positions by using the new inserted sphere (line 7).
Counter i is then incremented at line 8. The while loop ends when the set of positions
P becomes empty meaning that no additional sphere can be packed. Then two cases
can be distinguished: if i = n then all the n spheres were successfully packed into
the container. In this case the procedure computes at line 11 the exact value for L
which is equal to max(xi + ri ), i.e., using the most right placed sphere si ∈ Sin. If
the obtained value L is smaller than the best known length then this value is updated
(line 12) and the procedure returns TRUE (line 13). If i < n then a feasible packing
was not obtained and the procedure returns FALSE (line 15), this means that the
current length L of the container has to be changed.
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Note that one can test several values for the length L of the bin in order to try
to compute a feasible solution with the 3DMHD heuristic (not necessarily a binary
search but othermore efficient strategies). This can be done for example bydecreasing
the length from an upper bound to a lower bound. Indeed, this strategy may escape
from local optima (see Sect. 5).

4.1 A Multi-Level Look-Ahead strategy for the 3DSPP

This section describes a look-ahead algorithm designed for the three-dimensional
strip packing problem.

Look-ahead (LA) strategies (see for example [1, 5, 8]) are often used in order to
improve the results obtained by different algorithms. Its objective is to evaluate the
future behavior of a decision (choice) made at a given step of the problem solving
process. For example, in a greedy algorithm, the best decision among all the possible
decisions is made at step i in order to move to the next step i + 1. The look-ahead
strategy tries then several (or all) choices at step i and see what will be obtained
when executing the greedy algorithm few steps ahead of until the end (this is often
executed on a copy of the partial solution). After that, the decision actually made at
step i is the one that had the best behavior or led to the best outcome.

In packing problems, the look-ahead strategy often uses a parameter called density
of a solution. The density of a solution Sin, denoted by density(Sin) is equal to the
sum of the volumes of spheres in Sin divided by the volume of the container as
indicated in Eq.12. The look-ahead strategy selects then the decision that will obtain
the highest density.

density(Sin) = 4 × π

3 × L × H × D
×

∑|Sin|
i=1

(r3i ) (12)

The algorithm that implements the look-ahead strategy, denoted by LA-3DMHD,
is described in Algorithm 2. It receives as input parameters a partial solution
{Sin, Sout, P}where |Sin| spheres are already packed, set Sout denotes the spheres that
remain to pack and P contains the corner positions for spheres of set Sout. The algo-
rithm receives also the current length (L) of the container. Algorithm LA-3DMHD
returns TRUE if it succeeds to compute a feasible solution, FALSE otherwise.

Instruction at line 1 of Algorithm 2 sets the counter i indicating the number of
spheres already packed. At line 2, a boolean value (found) is set to FALSE (this
indicator is set to TRUE if a feasible solution is obtained).

The difference between the look-ahead strategy and the 3DMHD heuristic
(described in Algorithm 1) is that the look-ahead tries (evaluates) several positions at
each step of the packing process while the greedy heuristic 3DMHD selects, at each
step, only one position (the best one) in order to pack the next sphere. Moreover, the
look-ahead used here contains two levels, i.e., it places the two next spheres and con-
tinues the placement of the remaining spheres by using the greedy heuristic 3DMHD
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Require: Sets Sin, Sout, P, and the current length L of the container.
Ensure: TRUE if all the spheres are packed into the container, FALSE otherwise.
1: i ← |Sin|;
2: found ← FALSE;
3: while (P �= ∅ and found=FALSE) do
4: Sort the positions of set P in decreasing order of their hole degree (λ) value;
5: for all of the first ψ1 × |P| positions p ∈ P do
6: Let S′

in ← Sin, S′
out ← Sout and P ′ ← P;

7: Insert the next sphere s′
i+1 into S′

in at position p and update sets S′
in, S′

out, and P ′;
8: density∗ ← 0;
9: Sort the positions of set P ′ in decreasing order of their hole degree (λ) value;
10: for all of the first ψ2 × |P ′| positions p′ ∈ P ′ do
11: Let S′′

in ← S′
in, S′′

out ← S′
out and P ′′ ← P ′;

12: Insert the next sphere s′′
i+2 into S′′

in at position p′ and update sets S′′
in, S′′

out, and P ′′;
13: found ← 3DMHD(S′′

in, S′′
out, P ′′, L);

14: if (found=TRUE) then
15: Set L equal to the length computed by 3DMHD;
16: return TRUE;
17: else
18: if (density(S′′

in) > density∗) then
19: density∗ ← density(S′′

in);
20: end if
21: end if
22: end for
23: Assign to position p ∈ P the density density∗ obtained after calling 3DMHD;
24: end for
25: Let p∗ ∈ P be the position that has obtained the highest density density∗;
26: Place the next sphere si+1 at position p∗ and move sphere si+1 from Sout to Sin;
27: Remove from set P the positions that overlap the new inserted sphere;
28: Compute new positions by using the new inserted sphere;
29: i ← i + 1;
30: end while
31: if (i = n) then
32: Set L ← max(xi + ri ) where xi and ri are the x−coordinate and the radius of sphere

si ∈ Sin;
33: Update the best known length if L is smaller than this value;
34: return TRUE;
35: else
36: return FALSE;
37: end if

Algorithm 2: LA-3DMHD

(Algorithm 1). This is implemented by using two nested for loops that begin at lines 5
and 10 respectively. In addition, the first for loop considers only the best ψ1 × |P|
positions with 0 < ψ1 ≤ 1 and P is the set of corner positions in the first level. In
the second for loop the algorithm considers only the bestψ2 ×|P ′|with 0 < ψ2 ≤ 1
and P ′ is the set of corner positions in the second level. So if for example ψ1 = 0.5,
then only the half best positions in the list of positions are considered in the first level
of the look-ahead strategy, and if ψ1 = 1, then this means that all the positions will
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be considered. Using a value of ψ1 and ψ2 lower than 1 will of course decrease the
computation time of the algorithm.

More precisely, the positions in set P are sorted in decreasing order of their hole
degree value (λ). This is done at line 4. In the first for loop, the algorithm expends
the current solution {Sin, Sout, P} by choosing at each time a position p ∈ P by
creating a copy of the current solution denoted by {S′

in, S′
out, P ′} (line 6) and inserts

the next sphere s′
i+1 at that position (line 7). At line 8, a variable called density∗

is set to 0. This parameter is used in order to store the best density obtained in the
second level of the look-ahead. The corner positions of set P ′ are after that sorted
in decreasing order of their λ value (line 9). The second for loop starts at line 10,
after placing sphere s′

i+1. Like in the first level, only a proportion ψ2 × |P ′| of the
best corner positions are taken into account in set P ′. Then for each selected position
p′ ∈ P ′, the procedure creates a copy, denoted by {S′′

in, S′′
out, P ′′}, for the current

partial solution {S′
in, S′

out, P ′} (line 11). After that, the next sphere s′′
i+2 is placed at

position p′ (line 12). Then, the partial solution is evaluated by calling the 3DMHD
heuristic (Algorithm 1) at line 13 in order to try to pack the remaining n − i − 2
spheres. If 3DMHD succeeded to pack all the remaining spheres, then it returns
TRUE (line 14), the current length of the container is then set to the length computed
by 3DMHD (line 15). The algorithm then exits at line 16 since it has succeeded to
pack all the spheres (it returns TRUE). Otherwise (found=FALSE), this means that
3DMHD did not succeed to place all the remaining spheres, then the density of the
obtained solution density(S′′

in) is assigned to the best known density density∗ if a
better value is obtained (line 19). The second for loop ends when all the selected
positions p′ ∈ P ′ are evaluated and the best obtained density (density∗) is assigned
to position p ∈ P that is currently considered in the first for loop.

At the output of the two for loops, the next sphere si+1 is placed at position
p∗ (line 26) that has obtained the best density after calling 3DMHD. The set P of
positions is then updated at line 27 by removing those that overlap the new inserted
sphere and new positions are computed at line 28. The number of placed spheres (i)
is incremented at line 29.

Instructions of the while loop (lines 3–30) are executed until a feasible solution
is obtained (found=TRUE) or the set of positions P becomes empty. So if i = n
(line 31), this means that a feasible solution is reached, then the true length of the
container is computed at line 32 and the best known length is updated if a better one
is obtained (line 33). The algorithm returns TRUE (line 34). If (i < n), then this
means that algorithm LA-3DMHD did not succeed to compute a feasible solution
and returns FALSE (line 36).

Finally, Algorithm 2 can for example be called by an interval-search procedure
that modifies the value of the length L of the container at each call as described in
Sect. 4.2.



136 H. Akeb

Require: Instance S containing n spheres, the height H, and the depth D of the
three-dimensional bin B;

Ensure: The best length L∗ obtained and the corresponding density density∗;

1: Set Lmin ← max

(
4×π×∑n

i=1(r
3
i )

3×H×D , 2 × rmax

)
be the lower bound of the interval search;

2: Set Lmax ← 3 × Lmin;
3: Set ΔL ← 0.01;
4: L ← Lmax;
5: L∗ ← L;
6: density∗ ← 0;
7: while (L ≥ Lmin) do
8: Sin ← ∅;
9: Sout ← S;
10: Create set P of positions corresponding to the placement of each sphere si ∈ S of radius ri

at position (ri , ri , ri ) in the bin of dimensions L × H × D;
11: found ← LA-3DMHD(Sin, Sout, P, L);
12: if (found = TRUE) then
13: Update L if a lower value was obtained by LA-3DMHD;
14: L∗ ← L;
15: Update the best density density∗;
16: end if
17: L ← L − ΔL;
18: end while

Algorithm 3: (LA2)

4.2 Computing the Best Packing by Using Interval Search

This section presents the interval search algorithm, denoted by LA2 and described in
Algorithm 3, used in order to compute the best feasible packing. The search principle
consists to decrease the value of the bin length L from an upper bound Lmax by a
given step ΔL until matching the lower bound Lmin. The search may also stop if the
computation time limit is reached.

Algorithm 3 (LA2) explains how the heuristic proceeds in order to compute the
best packing of the n spheres into the three-dimensional bin of minimum length.
Procedure LA2 receives as input parameters the instance S = {s1, . . . , sn} containing
n spheres of radii r1, . . . , rn respectively as well as the height H and the depth D of
the three-dimensional bin B. The output of the algorithm is the best length found L∗
and the corresponding density (density∗) that is equal to the sum of the volumes of
the spheres divided by the volume of the bin (L∗ × H × D).

The continuous lower bound for the length of the container is used as theminimum
value (Lmin) of the interval search (line 1). Note that if this value is lower than the
diameter of the greatest sphere, then this diameter (2 × rmax) is used as the lower
bound. The upper bound Lmax of the interval search is set equal to 3× Lmin. The step
ΔL withwhich the length is decreased at each step is defined at line 3, this value is set
to 0.01. The length of the container is then set equal to the upper bound L ← Lmax
(line 4) and the best length L∗ is set equal to L at line 5. The next instruction serves
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to initialize the value of the best known density (density∗) associated with the best
length L∗ (line 6).

After that, at each step in the while loop (lines 7–18) a starting configuration is
created where the set Sin of spheres already packed is set equal to the empty set
(line 8) and the set of the remaining spheres to pack (Sout) is set equal to the instance
S. List P of positions for spheres in set Sout is then computed (line 10) so that each
position is placed at (ri , ri , ri ). This is a novel method because most of the greedy
heuristics start by placing one or several objects, here only the list of positions is
computed and no object is placed.

Algorithm LA-3DMHD is then called at line 11 in order to try to compute a
feasible solution (packing the n spheres into the bin of dimensions L × H × D).
If procedure LA-3DMHD succeeded to pack the n spheres (found=TRUE) then the
value of L is updated if a lower value was computed by LA-3DMHD (line 13) and the
best length L∗ is set equal to L (line 14). The best density density∗, corresponding
to L∗ is then updated at line 15. The value of the length L is after that deceased
(line 17), even if a feasible solution was not obtained by procedure LA-3DMHD.
Indeed, this method is, to our opinion, preferable to a basic dichotomous search
where the dimensions of the container are increased when a feasible solution was
not obtained. This is not always a good strategy because, in our case for example, if
a feasible solution is not obtained by using a given value of the length L , it may be
obtained by using a lower value L − ΔL . In fact, decreasing the value of the length
L is a good strategy to escape from local optima in order to increase the solution
quality.

Algorithm LA2 stops when the value of L becomes lower than the lower bound
Lmin or when the computation time limit is reached.

5 Computational Results

In order to evaluate the performance of the proposed algorithm LA2 (Algorithm 3),
two sets of instances were considered:

• Six instances, denoted by SYS, proposed by Stoyan et al. [14]. The number of
spheres varies from 25 to 60. All the spheres have different radii in each instance.
These instances are then strongly heterogeneous.

• The second set contains twelve instances, denoted by KBG1, . . . ,KBG12, pro-
posed by Kubach et al. [6]. Here, the number of spheres is equal to 30 for the
first six instances and 50 for the six last ones. Moreover, instances KBG1–KBG3
and KBG7–KBG9 are strongly heterogeneous since all the radii are different. The
other six instances KBG4–KBG6 and KBG10–KBG12 are weakly heterogeneous
because there are only n/10 different radii in each instance, each radius is dupli-
cated 10 times.

The algorithms and procedures are coded in C++ language and executed under
Linux environment on a computer with a 2.4GHz processor. The results are
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compared to those obtained by the B1.6 algorithm [6] that is mainly based on a
look-ahead strategy and starting configurations, the results taken from [6] were also
obtained on a 2.4GHzprocessor.AlgorithmB1.6 is in fact the adaptation of algorithm
B1.5 [5] for packing circles inside a rectangular container to the three-dimensional
case. Algorithm B16 however tries more starting configurations than B1.5 does. In
addition, B1.6 uses a parameter denoted by τ (0 < τ ≤ 1) that serves to indicate
the proportion of corner positions evaluated at each step of the look-ahead process.
The authors in [6] tried two values: τ = 0.8 and τ = 1. The first case means that
only 80% of corner positions are evaluated by the look-ahead while the second case
means that all positions are evaluated. So in fact, algorithm B1.6 is executed twice
(60min for each value of τ ). It is to note that the proposed algorithm LA2 is executed
only once during 60min on each instance.

In algorithm LA2, the number of positions evaluated by the look-ahead is set
to 50% in the two levels (ψ1 = ψ2 = 0.5). So at each time the corner positions
are sorted in decreasing order of their hole degree λ and only the first half ones are
evaluated. The objective is of course to save computation time.

The results obtained by the proposed algorithm LA2 are given in two distinct
tables. Table1 gives the results obtained by different algorithms on the first set of
instances (SYS) that contains six strongly heterogeneous instances. Column 1 indi-
cates the instance’s name and column 2 its size. The two next columns indicate the
height H and the depth D of the container. Column 5 (SYS) indicates the results (best
length) obtained by the SYS method [14] on instances SYS1–SYS6. Columns 6 and
7 contain the best results (the best length L and the corresponding density “Dens.”
respectively) obtained by algorithm B1.6 on the six instances (SYS) when parameter
τ is set equal to 0.8 (80% of positions are evaluated by the look-ahead). The next two
columns display the same results as the two previous columns but when parameter
τ is set equal to 1 (all the positions are evaluated in the look-ahead). Columns 10–
14 contain the results obtained by the proposed algorithm LA2 on the considered
instances. Column 10 (L) gives the best length obtained and column 11 the corre-
sponding density. Column 12 (t∗) indicates the time needed by algorithm LA2 for
computing the best solution.

The two last columns of Table1 indicate the percentage of improvement obtained
by the proposed algorithm LA2 on algorithm B1.6. Column “Imp. 0.8” shows the
improvement obtained when considering B1.6 with τ = 0.8 and the last column
“Imp. 1” is the percentage of improvement when B1.6 with τ = 1 is consid-
ered. Note that the percentage of improvement is computed as follows: Imp. =
Density(LA2)−Density(B1.6)

Density(B1.6) .

The results of Table1 indicate that the proposed algorithm LA2 improves all the
results obtained by the SYSmethod on the first six instances. The last row of the table
indicates that algorithm LA2 improves B1.6 with 1.68% in average (column “Imp.
0.8”) when τ = 0.8 for B1.6. The improvement in equal to 0.81% when τ = 1.0.

Figure3 shows the improvement of the best solution obtained by the proposed
algorithm LA2 on instance SYS1 (n = 30) spheres. The horizontal axis indicates the
cumulative time while the vertical axis indicates the density of the solution (in %).
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Fig. 3 Improvement of the solution quality obtained by algorithm LA2 on the first instance SYS1
(n = 30, Density = 54.983%)

Note that the improvement is faster during the beginning of the execution but becomes
slower after that. This is because the improvement becomes more and more difficult
since the quality of the solution becomes better. For example the density moves from
49.171 to 53.655% during the first 53 s of the execution and reaches the best density
(54.983%) after 1911s.

Table2 gives the results obtained by algorithms B1.6 and LA2 on the second set
of instance (KBG) that contains twelve examples. The results obtained by algorithm
SYS are not known for this set. Columns 1–4 indicates the name of the instance, the
number of spheres (n), the height H and the depth D of the container. Column 5
gives the best density Dens. obtained by algorithmB1.6 when τ = 0.8 and Column 6
contains the result obtained by the same algorithm with τ = 1.0. Columns 7–11
shows the results obtained by the proposed algorithm LA2. Column 7 (L) gives
the best length of the bin computed by LA2 and the next column Dens. contains
the corresponding density. Column t∗ corresponds to the computation time needed
to compute the best solution that is given in columns 7 and 8. Columns 10 and 11
contains the percentage of improvement of LA2 when compared to compared B1.6.
LA2 outperforms B1.6 when τ = 0.8 in 5 cases, the two algorithms reached optimal
solutions on instances KBG2, KBG4, and KBG10. B1.6 remains better than LA2 in
4 cases. The percentage of improvement obtained by LA2 is equal to 0.84% when
τ = 0.8 inB1.6. For τ = 1,LA2 improves 1.6 in six cases, the two algorithms obtains
the oprimal solution on instances KBG2, KBG4, and KBG10. B1.6 (τ = 1) remains
better than LA2 in three cases. The corresponding percentage of improvement is
equal to 0.53%.

Figure4 gives the solutions obtained by the proposed algorithm LA2 on the six
instances SYS. The number of spheres (n) aswell as the obtained density is indicated.



A Two-Stage Look-Ahead Heuristic for Packing Spheres … 141

Ta
bl

e
2

R
es
ul
ts
ob
ta
in
ed

by
th
e
pr
op
os
ed

m
et
ho
d
L
A
2
on

in
st
an
ce
s
K
B
G

B
1.
6

τ
=

0.
8
(1
h)

B
1.
6

τ
=

1
(1
h)

A
lg
or
ith

m
L
A
2
(1
h)

In
st
.

n
H

D
D

en
s.

D
en

s.
L

D
en

s.
t∗

Im
p.

0.
8

Im
p.

1

K
B
G
1

30
10

10
53
.7
72

54
.0
96

11
.2
06
3

54
.4

94
24
00

1.
34

0.
74

K
B
G
2

30
10

10
*3

0.
07

1
*3

0.
07

1
1.
99
00

*3
0.

07
1

2
0.
00

0.
00

K
B
G
3

30
10

10
50
.6
14

51
.3
87

18
.9
23
1

51
.6

93
33
00

2.
13

0.
60

K
B
G
4

30
10

10
*3

7.
76

5
*3

7.
76

5
1.
99
60

*3
7.

76
5

1
0.
00

0.
00

K
B
G
5

30
10

10
48

.2
78

48
.2

78
1.
92
79

48
.1
81

19
30

−0
.2
0

−0
.2
0

K
B
G
6

30
10

10
48

.9
66

47
.7
92

18
.8
80
7

48
.8
47

34
00

−0
.2
4

2.
21

K
B
G
7

50
10

10
54
.6
23

55
.3
72

13
.5
07
5

55
.8

24
20
30

2.
20

0.
82

K
B
G
8

50
10

10
44
.9
24

45
.0
60

2.
60
27

46
.6

39
32
6

3.
82

3.
50

K
B
G
9

50
10

10
52
.2
10

52
.7

32
29
.7
02
3

51
.7
83

34
20

−0
.8
2

−1
.8
0

K
B
G
10

50
10

10
*5

1.
86

6
*5

1.
86

6
1.
81
00

*5
1.

86
6

9
0.
00

0.
00

K
B
G
11

50
10

10
51
.6
29

52
.7

08
5.
26
40

52
.6
58

42
0

1.
99

−0
.0
9

K
B
G
12

50
10

10
52

.1
20

51
.7
57

22
.2
06
0

52
.0
63

10
00

−0
.1
1

0.
59

A
v.

48
.0
70

48
.2
40

48
.4

88
0.
84

0.
53



142 H. Akeb

Fig. 4 Solutions obtained
by algorithm LA2 on the six
instances SYS

SYS1 (n= 25,Density= 54.983%) SYS2 (n= 35,Density= 55.965%)

SYS3 (n= 40,Density= 54.288%) SYS4 (n= 45,Density= 54.410%)

SYS5 (n= 50,Density= 55.084%) SYS6 (n= 60,Density= 55.597%)

Figure5 gives the solution obtained by algorithm LA2 on nine instances KBG
where the solution cannot be proved to be optimal. The number of spheres (n) and
the obtained density (in parentheses) is indicated.

Figure6 gives the optimal solutions obtained by algorithm LA2 on the three
instances KBG2, KBG4, and KBG10. The solution is optimal because the length of
the bin is exactly equal to the diameter of the greatest sphere in the instance.

6 Conclusion

In this paper, a look-ahead heuristic was proposed in order to solve the problem of
packing spheres into a three-dimensional bin of minimum length. Three main new
ideas were used. The first one is that the method starts with an empty configuration
instead of placing one or several pieces inside the container. The second idea consists
to use an interval search that proceeds by decreasing the value of the length of the bin
instead of using a dichotomous search, the objective is to escape from local optima.
Finally the look-ahead procedure uses a double search (two levels) instead of one
level. The obtained results on the two sets of instances demonstrated that the proposed
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KBG1 n= 30 (54.494%) KBG3 n= 30 (51.693%) KBG5 n= 30 (48.181%)

KBG6 n= 30 (48.847%) KBG7 n= 50 (55.824%) KBG8 n= 50 (46.639%)

KBG9 n= 50 (51.873%) KBG11 n= 50 (52.658%) KBG12 n= 50 (52.063%)

Fig. 5 Solutions obtained by algorithm LA2 on the twelve instances KBG

KBG2 n= 30 (30.071%) KBG4 n= 30 (37.765%) KBG10 n= 50 (51.866%)

Fig. 6 Optimal solutions obtained by algorithm LA2 on instances KBG2, KBG4, and KBG10
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method is effective since it succeeded to improve or reach almost all the best known
results published in the literature. As a future work, it will be interesting to design
a new heuristic for packing weakly heterogeneous spheres because it is well-known
that the MHD heuristic was designed for packing strongly heterogeneous circles and
spheres.
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Handling Lower Bound and Hill-Climbing
Strategies for Sphere Packing Problems

Mhand Hifi and Labib Yousef

Abstract In this paper the 3-dimensional sphere packing problem is solved by using
an iterative tree search-based heuristic. The goal of the problem is to determine a
minimum length of the container that contains all available spheres/items without
overlapping. Such a length is searched by applying a tree search that combines
hill-climbing and bounding strategies. All branches of the tree are created following
eligible positions associated to successive items to pack and the bounds are computed
by applying a greedy procedure. Because the number of positions is large, the hill-
climbing strategy is introduced in order to filter the search by choosing some best
paths. The proposed algorithm is evaluated on benchmark instances taken from the
literature and on new benchmark instances: the provided results are compared to
those reached by recent methods available in the literature. The proposed method
remains competitive and it yields new results.

1 Introduction

In this paper we investigate the use of the truncated tree search for solving the
so-called 3-Dimensional Sphere Packing Problem (noted 3DSPP). An instance of
3DSPP is defined by a set N of n spheres/items and an object/container P of fixed
width W and height H and, unlimited length (noted L for the rest of the paper).
Moreover, each i ∈ N is characterized by its radius ri and the aim of the problem is
to optimize the length L of the object P such that all items of N are packed in the
target object, without overlapping.
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Formally, 3DSPP can be stated as follows:

Minimize L (1)

(xi − x j )
2 + (yi − y j )

2 + (zi − z j )
2 ≥ (ri + r j )

2, ∀(i, j) ∈ N 2, i < j (2)

ri ≤ xi ≤ L − ri , ∀i ∈ N (3)

ri ≤ yi ≤ H − ri , ∀i ∈ N (4)

ri ≤ zi ≤ W − ri , ∀i ∈ N (5)

L ≤ L ≤ L (6)

(xi , yi , zi ) ∈ R
3+, ∀i ∈ N , (7)

where the objective function (1) minimizes the length of the containerP containing
all the items, Eq. (2) ensures the non-overlap constraint of any pair of distinct items
(i, j) of N × N and Eqs. (3)–(5) ensure that all items of N belong to the target
container P of dimensions (L , W, H). Finally, Eq. (7) ensure that all items are
placed in the container P . Note that since the goal of the problem is to find the
smallest length of the container containing all items of N , then it is easy to start any
method trying to solve the above problem by a trivial solution value representing the
sum of the spheres’ area affected to L (Eq. (6)) and a quick solution value, reached
by a greedy algorithm, can be affected to L .

The rest of the paper is organized as follows. The literature review on the 3DSPP
and some of its variants is given in Sect. 2. The presentation and themodel used for the
problem is described in Sect. 3.1. Section3.2 describes the subset of eligible positions
associated to each selected item. Section3.3 details the tree search that uses a hill-
climbing strategy for approximately solving an instance of 3DSPP. Indeed, given a
current container, the tree search is applied in order to create a set of eligible nodes
to evaluate and the hill-climbing strategy mimics the global search where all eligible
positions are evaluated following an evaluation operator. In this case, only the best
nodes may be chosen for further branchings and so, trying to improve the quality
of the solutions. The previous search is iterated until reaching the minimum length
of the target container. The performance of the proposed algorithm is evaluated in
Sect. 4, where its obtained results are compared to those reached by recent algorithms
published in the literature. Finally, Sect. 5 summarizes the contribution of the paper.

2 Background

Cutting and Packing (CP) is considered as a natural combinatorial optimization
problems (cf., Wascher et al. [18]), where its problematics are admitted in several
real-world applications, like logistics, manufacturing, production process, automated
planning, etc. The 3DSPP belongs to the CP family and one of the more recent paper
addressing an optimization of a set of unequal spheres, is due to Sutou and Dai [17];
that has beenused for tackling an application of the automated radiosurgical treatment
planning.
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Few papers addressing the 3DSPP are available in the literature. Indeed, among
these papers, we can cite Lochmann et al. [12] who proposed a statistical analysis for
packing random spheres with variable radius distribution. Li and Ji [11] investigated
the use of dynamics-based collective approach in order to study the stability and
convergence of their approach when tackling the cylinder container packing. The
random close packing fractions of lognormal distributions of hard spheres has been
studied by Farr [3], where a one-directional approach was proposed to predict a close
packing of spheres of lognormal distributions of sphere sizes.

Packing spheres into a container has been considered by Sutou and Dai [17] who
addressed a global optimization method. Stoyan et al. [16] designed a mathematical
model for packing spheres into an open container, where a neighborhood search was
considered for providing extremum points and a series of approximate solutions. In
M’Hallah et al. [13], VNS and a nonlinear programming solver were combined for
solving the sphere packing problem into a container. Such an approach can be viewed
as a straightforward of Hifi and M’Hallah’s [5] approach, where the last method can
be applied to any variant of the two and three dimensional packing problems. By
using the same principle, Alkandari and M’Hallah [14] adapted the same principle
as in [13] for solving the problem of packing identical spheres into a cube.

In Soontrapa andChen [15], the problem of packing identical spheres into a small-
est containing sphere has been also tackled: a random search by usingMonte Carlo’s
method has been investigated. Birgin and Sobral [2] proposed twice-differentiable
non-linear programming models for 2D and 3D (circles and spheres) packing where
the container may be circular, rectangular, etc. Such a model has been solved by
applying ALGENCAN solver in order to create multiple starts solutions. Hifi and
Yousef [7] investigated a hybrid heuristic for solving the 3-dimensional sphere pack-
ing problem. That approach is based upon combining a greedy selection phase, a
width-beam search and a dichotomous search. Later, a simple version of Hifi and
Yousef’s [7] approach has been presented in Akeb [1] and according to its exper-
imental part, the reader can easily show the disadvantage of this approach when
compared to the performance of a simple version of Hifi and Yousef’s [7] approach.
Finally, for the 3DSPP, a modified and improved version of Hifi and Yousef’s [7]
method has been proposed in Hifi and Yousef’s [8], where the chosen nodes were
selected following the width-beam search combined with hill-climbing. Extensive
efficient models and methods for packing both circular and sphere problems were
reviewed in Hifi and M’Hallah [4].

In this paper, we propose an extended version of the truncated tree search-based
heuristic for the 3-dimensional sphere packing problem (cf., Hifi and Yousef [8]).
The designed method is based on combining two main futures:

(i) A greedy search-based procedure, which is used for creating a series of partial
solutions: each partial solution characterizes a subset of items already packed
into the current container.

(ii) A hill-climbing strategy that is used in order to simulate a lower bound for the
rest of non packed items.
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The aforementioned steps are repeated on a tree search-based heuristic whichmimics
the well-known branch-and-bound procedure.

3 A Tree Search-Based Algorithm for 3DSPP

This section begins by exposing the problem representation (Sect. 3.1). The branches,
characterizing the nodes of the tree, are generated following a basic procedure as
described in Sect. 3.2. Finally, Sect. 3.3 exposes the principle of the proposed algo-
rithm and its main steps.

3.1 3DSPP’s Representation

Because of the huge number of possible positions when an item will be assigned to
the target object, namely P , we propose to generate a subset of eligible positions
by using a Greedy Procedure (GP) (cf. Hifi and Yousef [7]). Besides to the approach
used in [7], herein, the generated positions are used for creating eligible branches
according to a selected node (as described in Hifi and Yousef [8]). GP is then used as
an operator for evaluating the potential of a node (position) to investigate. Therefore,
GP is used either for providing a complete solution or for estimating the gap between
the node’s upper bound and the best length reached up to now.

Generating eligible nodes for the developed tree needs the representation of the
object and each item. We use the following representation:

• We assume that the bottom-left-depth corner of the target object P is positioned
at the origine position (0, 0, 0), where P is characterized by a finite set F of
faces such that F = {left, top, right, bottom, depth, front} (Fig. 1 illustrates the
representation of P).

Fig. 1 Illustration of the
target object P and the
mechanism generating valid
nodes
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Table 1 The distance
between both item i and a
face f

f δi, f | i ∈ N , f ∈ F

Left xi − ri

Bottom yi − ri

Depth zi − ri

Right L − xi − ri

Top H − yi − ri

Front W − zi − ri

• Each item i ∈ N is centered at the position (xi , yi , zi ).
• A pair (i, j) of N are represented by their distance δi, j :

δi, j =
√

(xi − x j )2 + (yi − y j )2 + (zi − z j )2 − (ri + r j ), ∀(i, j) ∈ N 2, (8)

where both i and j can be positioned when δi, j ≥ 0.
Furthermore, positioning i ∈ N into the target object P needs to define a dis-

tance between i and the faces of F. Indeed, for all faces of P , Table1 shows each
corresponding distance to be satisfied if i ∈ is assigned to an eligible position ofP .

3.2 Nodes of the Tree

Generating nodes of the tree is equivalent to create a subset of eligible positions in
the target objectP . We do it by applying a Greedy Procedure (GP) that searches for
the minimum distance between already packed items and the target object P .

3.2.1 Favorable Nodes and Paths

In this section, we describe some positions that represent the favorable nodes for
the developed tree. These nodes induce also the paths which serves to build the best
paths for the developed tree. Indeed, let i ∈ N be the next item chosen to be packed
in the target objectP and PIi denote the subset of its eligible positions. Assume that
the first item of N is positioned at (r1, r1, r1) and for i ∈ N , i ≥ 2, suppose that:

• Ii is the set of items of N already positioned in the current object P;
• Ii denotes the set of items of N which are not yet packed inP and,
• PIi represents the set of distinct eligible positions (nodes) for the next item i to
pack given the set of packed items Ii .

It follows that a favorable point is associated to an eligible position pi+1 ∈ PIi

(for the item i), which can be determined according to 3 elements: e1, e2 and e3,
respectively. An element is either an item belonging to N already positioned or one



150 M. Hifi and L. Yousef

of the six faces of F. Let Tpi+1 be the set of favorable nodes according to the three
elements e1, e2 and e3.

Then, a step of GP, for i ≥ 2, i ∈ N , proceeds as follows: the distance Δ(pk
i+1)

corresponding to the (i + 1)th item to pack, when positioned at the eligible position
pk

i+1 ∈ PIi , induces the distance:

Δ(pk
i+1) = min

j ∈ Ii ∪ F \ T
pk
i+1

δ(i+1, j). (9)

3.2.2 Comments

Note that GP starts by positioning the first item i = 1 at the bottom-left-depth
position (i.e., (r1, r1, r1)), while the remaining n−1 items are successively positioned
depending on the value of Eq. (9). Of course, we always favor

(i) the first item according to the order initially fixed or
(ii) that realizes the smallest distance to the left side of P .

Moreover, one can use GP as a greedy procedure for searching a feasible solution
to 3DSPP. Indeed, by setting the starting length of the target object P to ∞ (i.e.,
LP = ∞) and by applying successively GP (by excluding the “right” face from F)
on the rest of the non packed items, GP terminates by building a feasible solution
with length LU . The provided length LU can also be considered as an upper bound
for starting the proposed algorithm.

3.3 A Tree Search-Based Algorithm

It is well-known that using a tree search requires:

1. Defining the nodes of the tree with their characteristics and,
2. The branching mechanism out of the nodes that serves to generate successors.

3.3.1 Valid Nodes

The set of eligible positions forms the valid nodesof the developed tree.Asmentioned
in Sect. 3.2, let ηi be the current selected node to develop; that is defined by a pair of
subsets (i) the first subset Ii that contains all items assigned to the target object P
and (ii) the complementary subset I i that includes the unassigned items. A partial
solution derives from Ii when all the items are positioned inP and a complementary
solution may be constructed according to I i . The complementary solution can be
reached by applying GP; that is used as a greedy solution procedure (as discussed in
Sect. 3.2).
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It follows that, for the selected node ηi ,

1. Its successors correspond to eligible positions which are those created according
to all the positions of the set PIi ;

2. Among all successors of PIi , only the best positions are chosen following an
evaluation operator (as discussed in Sect. 3.4).

Hence, branching out of a valid node ηi is equivalent to create at most |PIi |
branches emanating out of the current node. Each resulting node corresponds to
packing the subset of items Ii and assigning to the current item i a favorite eligible
position. Moreover, each of these created nodes will be represented by a pair of two
complementary subsets of items of N .

3.3.2 Branching

The assessment of the potential of each valid node (in leading to the better solution) is
a critical step in enumerative search. It is equivalent to construct a lower bound to the
optimal solution. Herein, it should be based on a simple and quick evaluation operator
as it will be applied to each generated node. Yet, it has to be accurate by providing
each node η with a potential value that is close to the objective function value of
any leaf node emerging from η. Note that evaluation operators can be classified as
priority or total-cost:

1. The priority operator is a local or greedy strategy that focuses on the next decision
to be made.

2. The total-cost operator has a more global view: it estimates the potential of the
current node η by estimating the objective function value of a complete solution
that is built from the current partial solution of η.

Algorithm 1 describes the framework of the standard tree search applied for a
minimization problem. A node corresponds to a partial feasible solution and the set
Open of current nodes is initialized to the root node, namely η0. Each node η taken
from Open generates a set of offspring nodes, and stores them into a temporary list,
namely Bη. If a node γ of Bη is a leaf (i.e., no further branching is possible out of
γ ), then its objective function value zγ is computed and compared to z� (the best
objective value obtained up to now). If zγ < z�, then the incumbent solution is
set to the leaf node; z� is then updated: z� = zγ ; and γ is removed from Bγ (the
nodes emanating from the selected node γ ). Further, all nodes belonging to Bη are
transferred to Open for further branchings. This process is iterated until no further
branching is possible, i.e., until Open = ∅.
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Algorithm 1. A standard Tree Search-Based Algorithm (TSBA)
Input. An instance of a minimization problem.
Output. An optimal solution η∗ with objective value z∗.

1: Initialization Step.
2: Set Open = {η0}, where Open is the set of nodes to be investigated and η0 is the root node.
3: If an initial feasible solution η� is available, set z� to its objective function value; otherwise, set

z� = +∞.

4: Iterative Step.
5: while (Open 
= ∅) do
6: Choose a node η ∈ Open; branch out η; remove η from Open and insert the created nodes

into Bη.

7: if (a node γ of Bη is a leaf) then
8: compute its objective function value zγ ;
9: if zγ < z� then
10: update z� and the incumbent solution η�;
11: end if
12: remove γ from Bη.

13: end if
14: Assess the potential of each node of Bγ using an evaluation operator.
15: Insert all nodes of Bγ into Open.
16: end while

3.4 Adaptation of TSBA to 3DSPP

In our study, we introduce a Hill-Climbing (HC) strategy that is used for avoiding
exhaustive search by performing a partial enumeration of the solution space. As a
result, a truncated TSBA which may be equivalent to the well-known beam search
(Hifi et al. [6] and Yavuza [19])), where only a subset of paths are taken for further
branchings and the other nodes are discarded. A each step of the search procedure,
a node η is selected and after evaluating all its successors, only the best ω nodes are
chosen for further branchings. Of course, as described above, each selected node is
assessed via its evaluation function whose role is to provide a promising separation
mechanism of the nodes.

The proposed HC considers a hybrid operator that can be viewed as an alternative
to both priority and total-cost operators (cf. Sect. 3.3.2). Indeed, almost of the priority
operator (that explores a local information) nor the total-cost operator (because esti-
mating a “good” lower bound for 3DSPP remains difficult), we propose to combine
these two operators as follows:

(i) Using an approximation for the total-cost: one can complete the local solution
(the already positioned items of Iη) with a lower bound estimating the best
solution that contains all items of Iη.

(ii) Completing the local solution: one can use a quick greedy local search-based
procedure, like the procedure GP (cf. Sect. 3.2) when the generated node is
chosen for further branchings.
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Algorithm 2. Truncated Tree Search-Based Heuristic for 3DSPP (TTSBH)
Input. A set of items I and a predefined length lbest.
Output. feasible..

1: Initialization Step.
2: Let ω and ε be two predefined values.
3: Set Open = B0, where B0 denotes the starting eligible nodes according to the first packed item

i = 1.
4: Set 	 = 1 and B	 = ∅.

5: Set the variable feasible to false /* no feasible solution at hand */
6: Iterative Step.

7: while
(
(Open 
= ∅) and (the runtime limit is not performed) and (	 < n)

)
do

8: Choose η from Open;
9: Let Bη = {γ1, . . . , γ|PIη |} be the successors of η.
10: Evaluate the potential of each node γ belonging to Bη by computing g(γ ) and h′(γ ).
11: For each γ ∈ Bη apply ISBH(γ, L�) and update L� if necessary with the incumbent solution.
12: Filter Bη by keeping the ω best nodes realizing the smallest values of L�/

(
g(γ ) + h′(γ )

)
.

13: Replace all the nodes of Open by those of Bη, reduce Bη to empty and increment 	.
14: end while

3.4.1 A Truncated Tree Search-Based Heuristic

Algorithm 2 describes an adaptation of truncated tree search-based heuristic (noted
TTSBH). We recall that a node corresponds to a partial solution and the set Open of
current nodes contains initially the starting nodes of the root node B0 whereas Bη

containing the offspring nodes is initialized to the empty set.
On the one hand, a selected node η taken from Open (step 7), whose evaluation

is zη, creates a subset of nodes Bη = {γ1, . . . , γ|PIη |}, where each resulting node is
evaluated according to its global-cost operator; that is,

zη = g(η) + h(η).

On the other hand, because |PIη | may be large, then only a subset of nodes is chosen
for further branching. Indeed (line 9), if a node γ of Bη packs at most n − 1 items,
then it remains in Bη whenever z′(γ ) < z�, where

z′(γ ) = g(η) + h′(η) (10)

with h′(η) = (1+ ε)h(η) and ε is considered as a small predefined value that is used
for making a correction on the complementary lower bound h(η).

Whenever Eq. (10) is not satisfied, then γ is removed from Bη. Further, since we
try to intensify the search that permits to improve the quality of the solution, we apply
GP on all retuned nodes (line 10). Then, L� is updated whenever GP realizes a better
length; in this case, its corresponding incumbent solution is also updated. The rest
of the nodes belonging to Bη (line 11) are reordered in nondecreasing order of their
estimated lower bounds z′(γ ) and only the best ω nodes are selected and transferred
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to Open for further branchings. This process is iterated until no further branching is
possible, i.e., until Open = ∅, or when the fixed runtime limit is performed.

Note also that, at lines 9 and 10, if a node γ of Bη is a leaf (i.e., no further branching
is possible out of γ ), then its objective function value zγ is computed and compared
to the best solution value z� obtained up to now. If zγ < z�, then the incumbent
solution is set to a leaf node; z� is then updated: z� = zγ ; and γ is removed from
Bη.

3.4.2 Bounding the Search with an Iterative Process

It was already mentioned in Sect. 3.4 (see Step 10 of Algorithm 2) that TTSBH uses
an extensive search. Indeed, we introduce an Iterative TTSBH (noted ITTSBH) in
order to improve the quality of solutions reached. Herein, the principle of such a
procedure is explained.

Let (L, W, H) be the current object P and η be the node chosen for branching.
The length L denotes the best length reached byTSBHat a certain time.Now suppose
that instead of packing the n items in (L, W, H), we propose to perform the search
on a series of objects of dimensions (Lk, W, H), with L ≤ Lk ≤ L . In this case,
one can use a starting interval [L, L], where L denotes a lower bound for the 3DSPP
and L its upper bound and so, for each target object (Lk, W, H), TSBH attempts to
pack all the n items into (Lk, W, H), where L ≤ Lk ≤ L .

Algorithm 3 . An Iterative Truncated Tree Search-Based Heuristic: ITTSB
Input. A node η and the best length L�.
Output. feasible

/* with a new length L� and the coordinates of all items of N when feasible = true */

1: Initialization step
2: Set L ← 4π

3×W×H

∑
i∈N (r3i ) and L = L�.

3: Iterative step

4: while
(
the runtime limit is not performed

)
do

5: repeat
6: L ′ = (L + L)/2
7: Set feasible = TTBH(η)
8: if feasible then
9: set L = L ′, L� = L ′ and return L�; L = L ′ otherwise
10: end if
11: until (L − L ≥ α)

12: end while

Algorithm 3 summarizes the principle of such a process which can be viewed as
an intensification procedure for a given node η. Indeed, it begins (line 2) by defining
the starting interval [L, L], where L is setting equal to the best length L� reached so
far. The internal loop (lines 5–11) tries to pack all items in the target object by using
TSBH. If a feasible solution is obtained, then the incumbent solution is stored with
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its best length (L� = L) and ITTBH stops and returns this solution. In the case that
IBSP doesn’t pack the n items, the process is iterated till the gap between both lower
and upper bounds (of the current interval) becomes closest to a certain tolerance,
namely α (that is fixed to 0.1 in our experimental study). Finally, the aforementioned
process can also be stopped when the fixed runtime limit is exceeded.

4 Experimental Part

The performance of the proposed iterative truncated tree search-based heuristic that
uses hill-climbing strategy (noted ITTSBH)was evaluated on three sets of benchmark
instances: Set1, Set2 and Set3. Set1 contains six instances (SYS1, . . . ,SYS6) taken
from Stoyan et al. [16], where the number of items varies from 25 to 60. These
instances have been used as benchmarks in Stoyan et al. [16], Birgin and Sobral [2]
and Kubach et al. [10]. Set2 contains six instances (KBTG1, KBTG2, KBTG3,
KBTG7, KBTG8, and KBTG9) taken from Kubach et al. [10]. For each instance,
both dimensions W and H of the object are fixed to 10 whereas the number of items
is equal to 30 (resp. 50) for the first (resp. last) three instances. Further, these six
instances have been used as benchmarks in Kubach et al. [10] where they represent
the six instances with unequal spheres. Set3 contains 22 instances that are obtain ed
by combining the six instances of Stoyan et al. [16].

The rest of this part is organized as follows. First, the behavior of ITTSBH is
evaluated on the first set of instances Set1 (Sect. 4.2). The results reached by ITTSBH
are thereafter compared to those reached by five heuristics: Stoyan et al.’s [16]
method-based heuristic (noted SYS), Birgin and Sobral’s [2] algorithm (noted BSA),
both sequential and parallel heuristics proposed by Kubach et al. [9, 10] (noted
KBTGs and KBTGp respectively) and Hifi and Yousef’s [7] algorithm (noted HY)
that uses a standard width-beam search. Second, for the instances of Set2 (Sect. 4.3),
the results provided by TSBH are compared to those reached by Kubach et al. [10]
and Hifi and Yousef [7]. Third and last, the instances of Set3 are tested by comparing
the results reached by both HY and ITTSBH. Note also that the proposed algorithm
was coded in C++ and tested on an Intel Core 2 Duo (2.53Ghz and with 4Gb of
RAM) and the runtime limit was fixed to one hour.

4.1 Behavior of ITTSBH on the Instance SYS5

ITTSBH uses three parameters: ω, ε and the maximum runtime limit to fix, noted
tmax. Our computational study was conducted by varying ω in the discrete interval
{1, 2, . . .} with a maximum runtime limit tmax = 3600 s when considering Set1 and
Set2 (which can be considered as a standard runtime limit considered by algorithms
of the literature—cf., Sects. 4.2 and 4.3). Finally, a new set (noted Set3) containing
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(a) (b)

Fig. 2 Illustration of HY’s behavior on SYS5 instance: a variation of solution’s quality and b the
best solution’s structure reached by HY

22 new large-scale instances is tested in Sect. 4.4, where two different runtime limits
are considered.

In order to show the effect of these parameters, we show the quality of the solutions
obtained by ITTSBH when the value ω increases. In this case, the solution values
are compared to those obtained by HY algorithm (that realizing the best solution
available in the literature) by fixing the same runtime. We first do it on the instance
SYS5 considered by Stoyan et al. [16]: we recall that HY uses a width-beam search
that variesω from 1 to the higher value (incrementingωwith one unit) corresponding
to the fixed runtime limit tmax. The same process is applied by ITTSBH that combines
hill-climbing and an estimated lower bound.

Figure2a shows the behavior of HY when varying the width ω for the instance
SYS5. From the curve labeled Sol., one can observe that the value of the length L�

oscillates by generating a series of local optima. One can observe that in some cases
HY provides poor result for some higher values of ω.

4.2 Behavior of ITTSBH Versus Six Heuristics Available
in the Literature (Set1)

Second, for the instances of Set1, Table2 shows the results obtained by ITTSBH
and those reached by SYS (Stoyan et al. [16]), BSA (Birgin and Sobral [2]), KBTGs

(Kubach et al. [10]), its parallel version KBTGs (proposed in Kubach et al. [9]), LF2
(Akeb [1]) and HY (Hifi and Yousef [7]), where all the reported solutions are taken
from [1, 2, 7, 10, 16].

Column 1 displays the instance’s label. Column 2 reports the objective value
L�
SYS reached by SYS algorithm whereas column 3 displays BSAs’ objective values

(noted L�
BSA). Columns 4 and 5 report the best objective values (noted L�

KBTGs
and
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Table 2 Behavior of ITTSBH on instances of Set1

Label L�
SYS L�

BSA L�
KBTGs

L�
KBTGp

L�
LF2 L�

HY L� ω∗

SYS1 9.912 9.7942 9.2874 9.2656 9.2234 9.2431 9.1796 26

SYS2 9.623 – 9.1280 8.9301 9.1138 8.9164 8.8922 29

SYS3 9.473 9.3090 8.9850 8.7178 8.9316 8.7055 8.6702 31

SYS4 11.086 11.0962 10.8760 10.4042 10.7653 10.2357 10.2012 36

SYS5 11.646 11.6211 11.3494 10.9865 11.1948 10.9359 10.8954 34

SYS6 12.842 12.7215 12.3745 11.8399 12.2519 11.8178 11.7943 16

Average 16.764 10.908 10.333 10.024 10.247 9.976 9.939

The symbol “–” (resp. “”) means that the value for this instance is not available (resp. corresponds
to the best solution obtained by the corresponding algorithm)

L�
KBTGp

) realized by both the sequential KBTG algorithm and its parallel version
(without fixing the runtime limit as considered in Kubach et al. [10]). Column 6
shows LF2’s objective value (noted LLF2), column 7 reports HY’s objective value
(noted LHY) whereas column 8 displays the objective value (noted L�) realized by
ITTSBH. Finally, column 9 reports the best value ofω for which ITTSBH’s objective
value is realized.

The percentage improvement (when it happens) yielded by ITTSBH according
to the results displayed in Table2 are reported in Table3. The first part contains the
fourth columns displaying the instance’s information and the second part contains the
variation of the percentage improvement realized by ITTSBH over the other tested
algorithms (noted %SYS, %BSA, %KBTGs , %KBTGp and %HY, respectively).
The reported values correspond to the results reached by all algorithms when fixing
the runtime limit fixed to one hour.

Table 3 Variation of the percentage improvements between all tested algorithms: ITTSBH, HY,
SYS, BSA, LF2 and both KBTGs and KBTGp on instances of Set1

#Inst. ITTSBH versus all methods (% Improvement)

Label n H W %SYS %BSA %KBTGs %KBTGp %LF2 %HY

SYS1 25 5.5 6.9 7.24 6.70 1.17 0.94 0.48 0.69

SYS2 35 6.5 7.9 7.92 – 2.65 0.43 2.49 0.27

SYS3 40 5.5 6.9 8.82 7.37 3.63 0.55 3.01 0.41

SYS4 45 8.5 9.9 8.31 8.77 6.61 1.99 5.53 0.34

SYS5 50 8.5 9.9 6.49 6.66 4.17 0.84 2.75 0.37

SYS6 60 8.5 9.9 8.67 7.86 4.92 0.39 3.88 0.20

Average 7.91 7.47 3.86 0.85 3.02 0.38
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Fig. 3 Variation of the percentage improvement realized by ITTSBH on the instances of Set1

From both Tables2 and 3, one can observe what follows:

1. First, ITTSBH outperforms SYS, BSA, KBTGs and LF2 since it is able to reach
most of the best solutions for all instances of the first group Set1.

2. Second, the percentage of the improvement varies from 6.49% (instance SYS5)
to 8.82% (instance SYS3) when comparing ITTSBHs’ results to SYSs’ ones.

3. Third, the percentage improvement remains interesting when comparing ITTS-
BHs’ results to those reached by BSA: the improvement varies from 6.66%
(instance SYS5) and 8.77% (instance SYS4).

4. Fourth and last, ITTSBHs’ results remain better than those reached by the parallel
algorithmKBTGp (we recall that the parallel algorithm ranwithout runtime limit)
and the recent simple adaptation of the beam search considered in [1]. Indeed, all
the solution values for the instances of Set1 are improved.

a. On the one hand, ITTSBHs’ results when compared to those of KBTGp, the
percentage of improvement varies from 0.43% (instance SYS2) to 1.99%
(instance SYS4). which remains very interesting for a sequential algorithm.

b. On the other hand, the improvement becomes more interesting when compar-
ing ITTSBHs’ results to those reached by LF2, as shown in Table3).

Figure3 shows the behavior of ITTSBH on the six instances of Set1: each curve
represents the variation of the improvements (when it happens) when compared
to SYS, BSA, KBTGs , KBTGp, LF2 and HY, respectively. Figure4a displays the
structure of the final solution reached by ITTSBH for the instance SYS1 whereas
Fig. 4b shows the final configuration obtained by ITTSBH.

4.3 Performance of DSBH Versus KBTG, HY and LF2
Heuristics (Set2)

This section compares the results obtained by ITTSBH to those realized by both
KBTGs and HY on instances of Set2 extracted from Kubach et al. [10] (since it
is the only existing algorithms that have tested instances of Set2). For this type of
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(a) (b)

Fig. 4 Illustration of ITTSBH’s behavior a on the instance SYS1 (realizing the smallest percentage
improvement for the value L� = 11.7943) and b on the instance SYS1 (realizing the greatest
percentage improvement for the value L� = 9.1796)

Table 4 Performance of ITTSBH versus KBTGs , LF2 and HY algorithms on instances of Set2

#Inst. KBTGs LF2 HY ITTSBH

Label d�
KBTGs

d�
LF2 L�

LF2 d�
HY L�

HY L�
ITTSBH ω∗

KBTG1 54.096 54.494 11.2063 56.0092 10.9031 10.8076 23

KBTG2 30.071 30.071 1.99 30.071 1.99 1.99 23

KBTG3 51.387 51.693 18.9231 53.6243 18.2415 18.1936 24

KBTG7 55.372 55.824 13.5075 57.5662 13.0997 12.9653 14

KBTG8 45.060 46.639 2.6027 47.004 2.5825 2.582 13

KBTG9 52.732 52.732 29.7023 55.3203 27.8033 27.7152 26

instances, instead of determining the minimum length L� of the target containerP ,
Kubach et al. [10] determined the density of all packed items in the final object P .
Therefore, in addition to the density, we report in the same table the best objective
value L�, representing the best length of the final containerP , corresponding to that
density.

Table4 shows the results produced by the four methods: KBTGs , LF2, HY and
ITTSBH, respectively. Column 1 tallies the instance label and column 2 shows
KBTGs’s solution value (expressed in term of density; that is, the value extracted
from Kubach et al. [9, 10]). Columns 3 and 4 display both the objective value L�

reached by LF2 and its corresponding density d� (extracted from [1]) and columns
from 5 to 6 tally HY’s objective value and its corresponding density (extracted from
Hifi and Yousef [7]). Finally, the last columns (7 and 8, respectively) report the best
objective value realized by ITTSBH and the optimal value ofω for which the solution
value is reached. From Table4, one can observe that:

1. First, ITTSBH performs better than all approaches since it improves most solu-
tions reached by KBTGs , LF2 and HY, respectively. Indeed, five out of the six
best solution values available in the literature are improved by ITTSBH while it
matches the other solution (instance KBTG2).
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2. Second, for the improved solutions, ITTSBHrealizes an improvement gap varying
from 0.0194% (instance KBTG8) to 1.0366% (instance KBTG7). Globally, the
average improvement over all instances is equal to 0.4201%.

3. Third, the improvement gap realized by ITTSBH when compared to LF2 solu-
tion values varies from 0.8017% (KBTG8) to 7.1697% (KBTG9). It realizes an
average percentage gap of 3.3087%, which can be considered as an impressive
improvement for such a problematic.

4. Fourth and last, ITTSBH has a better behavior when comparing its results to
those reached by KBTGs algorithm which applies the same strategy as used in
Akeb [1].

4.4 Performance of ITTSBH Versus HY on a New Set
of Instances (Set3)

In this section, we analysis the behavior of ITTSBH on some large-scale instances
by varying its runtime limit. We do it by generating a set containing 22 new instances
(noted Set3), where each instance is obtained by combining each paire of instances
belonging to the first set (noted Set1—cf., Sect. 4.2). Table5 shows the characteristics
of these instances: for example, the instance SYS.1.3.a is obtained by adding all items
of both instances SYS1 and SYS3 and the dimension W (resp. H ) is taken in the
intervalle {5.5; 6.5; 7; 8.5; 10} (representing all the dimensions of instances of Set1).
All other instances are created following the same scheme, where the last instances
have the largest number of items to pack.

Moreover, because the codes associated to SYS, KBTGs , KBTGp and LF2 are
not available, we then compared ITTSBHs’ solution values to those reached by
HY, where the same variation on the runtime limit is considered. Indeed, herein
two runtime limits (for both algorithms) are considered: t1 = 3600 and t2 = 7200
(measured in seconds).

From Table5, one can observe what follows.

1. The average value of 22.9845 confirms the superiority of ITTSBH when t1 is
considered as the runtime limit for both tested algorithms. In this case, ITTSBH
is able to improve 12 solution values out of 22 (that represents a percentage of
54.55%), it matches two solution values and it fails in eight occasions to provide
better solutions.

2. By doubling the runtime (using t2 as the limit for both algorithms), the behavior
of ITTSBH becomes more interesting. Indeed, in this case, the proposed algo-
rithm realizes an average solution value of 22.7952 (although HY algorithm real-
izes interesting average). In this case, ITTSBH improves 21 out of 22 instances
(95.45%of the tested instances) and it matches the other solution (for the instance
SYS.1.6.b).

One can notice that ITTSBH can provide better solutions when increasing the
runtime. This phenomenon can be explained by the fact that the diversification
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strategy used (hill-climbing) sometimes requiresmore time to converge towards good
solutions. On the other hand, the greedy procedure remains very heavy whenever the
completion process is applied for all partial solutions.

5 Conclusion

In this paper, we proposed a hybrid algorithm for approximately solving the
3-dimensional sphere packing problem. The proposed algorithm applies a truncated
tree search which is based (i) on building a subset of successive eligible nodes, (ii)
on searching the best paths that are able to provide a series of complete solutions
and (iii) on combining both hill-climbing and bounding strategies for accelerating
the search process. The principle of the search process is based on building and
exploring a series of neighborhoods related to a series of partial solutions. In order to
complete/improve the quality of the partial solutions realized by the packing process,
a greedy solution procedure is used. The performance of the proposed algorithm was
computationally analyzed on a set of benchmark instances taken from the litera-
ture and a set of new generated instances. The provided results were compared to
those realized by six recent algorithm available in the literature. The obtained results
show that the truncated tree search-based heuristic was able to improve most existing
solutions.
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Multi-Objective Meta-Evolution Method
for Large-Scale Optimization Problems

Piotr Przystałka and Andrzej Katunin

Abstract The paper deals with the method for searching the proper values of
behavioural (relevant) parameters of optimization algorithms for large-scale prob-
lems. The authors formulate the optimization task as multi-objective problem taking
into account two criteria. The first criterion corresponds to the estimation of the
accuracy of a solution, whereas the second one represents the time computational
complexity of the main optimization algorithm. In the present study, predominant
Pareto optimality concept is used to solve this problem. Moreover, the authors pro-
pose to use a much less complicated algorithm in the main optimization engine,
while a more advanced approach in the meta-evolution core. The engine of the
target optimization algorithm is realised applying the particle swarm optimization
algorithm, while the core of the meta-evolution process is implemented by means
of the multi-objective evolutionary algorithm. The advantages and limitations of
the proposed meta-evolution method were examined employing well-practised test
functions described in the literature.

1 Introduction

Themeta-evolution which is also known in the literature as hyper-heuristic as well as
super- or meta-optimization is a quite novel approach, which found numerous appli-
cations in the engineering problems.One of the earliest attempts tometa-optimization
can be found in [1], where the genetic algorithm was used in order to find best muta-
tion and crossover rates for another lower-level genetic algorithm. In the next years,
there were similar trials to this problem by many authors, e.g. see [2–4]. Also in
this subject, the authors of the paper [5] discussed the most important issues related
to tuning evolutionary algorithm parameters by means of various meta-optimization
methods. Their main conclusion was that it was no matter what kind of tuner algo-
rithms to be used in this task, because for each case, it was possible to get a much

P. Przystałka · A. Katunin (B)

Silesian University of Technology, Institute of Fundamentals of Machinery Design,
Konarskiego 18a, 44-100 Gliwice, Poland
e-mail: andrzej.katunin@polsl.pl

© Springer International Publishing Switzerland 2016
S. Fidanova (ed.), Recent Advances in Computational Optimization,
Studies in Computational Intelligence 610, DOI 10.1007/978-3-319-21133-6_10

165



166 P. Przystałka and A. Katunin

better result from evolutionary computations with meta-optimization than relying
on own intuition and the usual parameter setting conventions. The similar strategy
as in the case of evolutionary algorithms can be observed for other soft computing
method. For example in [6], the authors proposed the concept in which a superordi-
nate swarm (‘superswarm’) can be used to optimize the parameters of subordinate
swarms (‘subswarms’). Subordinate swarms were used for neural network training.
Another point of the view is given in [7]. Branke and Elomari in their work proposed
the method that could be used, in a single run, to identify the best parameter settings
for all possible computational budgets. Their approach allows to save a lot of time.

The presented study deals with the recent advances in development of the multi-
objective meta-evolution approach introduced in [8]. In this paper the authors per-
formed themeta-optimization ofwavelet parameters inwavelet-based algorithmused
for damage identification in composite structures. Additionally, some tests were per-
formed onmulti-modal functions used for optimization benchmarking. In the present
study the authors performed an extended analysis on benchmark functions, which
were selected in such a way that the optimum achievement is difficult from the opti-
mization point of view. Such an analysis allows for testing the convergence of the
proposed algorithm and evaluate the specific behaviour of an algorithm during the
searching of a global optimum. The calculationwere performed for high-dimensional
(up to D = 500) functions for specific benchmark functions, including the nowhere
derivable Weierstrass function, which allows for generalization of the analysis. The
proposedmeta-optimization algorithm allows for acceleration of searching the global
optimum with simultaneous automatic selection of behavioural parameters, which
can find numerous applications in engineering practice.

2 Description of the Proposed Method

In this paper, the idea of the meta-optimization method corresponds to the data flow
diagram presented in Fig. 1. This strategy is used in order to search the space of
behavioural parameters of the target optimization algorithm. As it can be seen, the
meta-optimization algorithm (MAC) evaluates a meta-objective function whereas
the main optimization algorithm (OAE) computes the cost function in order to find
an optimal solution with the minimum time complexity and maximum accuracy.

Meta-optimization concept can be realized in different ways, however one of
the most promising approaches employs the multi-objective optimization algorithm.
Consequently, the main purpose of the meta-optimization process is to tune values
of behavioural parameters of the main optimization algorithm in order to minimize
a multiple objective function U. This function can be formulated taking into account
two fundamental criteria. The first criterion (MBF) corresponds to the estimation
of the accuracy of a solution, whereas the second one (FES) represents the time
computational complexity of the main optimization algorithm. When one assumes
that both objectives are not conflicted then the multi-objective meta-optimization
problem can be stated as follows:
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Fig. 1 A data flow diagram of the meta-optimization method

Minimize U (p) = [
MBF (p) FES (p)

]

subject to Ω (p) ,
(1)

where p is the set of behavioural properties of the main algorithm, Ω represents
boundaries and constraints in the meta-optimization process. The accuracy of the
solution that is found by the main optimization algorithm, can be computed taking
into account the mean value and the corrected sample standard deviation of best
scores of the cost function evaluations:

MBF (p) = F̄ (p) + αp

√√
√
√ 1

N − 1

N∑

i=1

(
F

[
x∗

i (p)
] − F̄

)2
, (2)

where N − 1 is the number of degrees of freedom in the vector of residuals, F̄ is
the sample mean of the cost function, αp is a critical value corresponding to a given
significance level. The optimal solution is assumed as:

x∗
i = argmin

Ω̄(xi )

F
[
xi (p)

]
, (3)

where Ω̄ denotes boundaries and constraints in the target optimization algorithm. On
the other hand, the time complexity of the same algorithm is related to the number
of steps (pS) as well as the number of cost function evaluations at each step (pE )
and can be approximated using the total number of cost function evaluations:

FES (p) = pS · pE (4)
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Generally, multi-objective optimization problems do not have single global solu-
tion, and therefore there is the need to investigate a set of points, each of which
satisfies the objectives. Due to this, in the present study, predominant Pareto opti-
mality concept ismainly used.A solution is Pareto optimal if there is no other solution
that improves at least one objective function without detriment another function [9].
It is often viewed the same as a non-dominated solution.

It is reasonable to expect that each of multi-objective versions of soft comput-
ing methods indicated often in the literature can be applicable in the task of meta-
optimization. Nevertheless, the authors propose to use a much less complicated algo-
rithm in the main optimization engine (OAE), while a more advanced approach in
the meta-optimization core (MAC). In such manner, it is possible to obtain general
values of relevant parameters of the main algorithm that can easily be implemented
in the embedded system of the end-user device. In this study, it is decided that, the
engine of the main optimization algorithm is prepared using the particle swarm opti-
mization algorithm (PSO-OAE), while the core of the meta-optimization process
is implemented by means of the multi-objective evolutionary algorithm (MOEA-
MAC). MOEAs are known in the literature as the heuristic methods for solving
optimization problems, which are based on the natural selection process that mimics
biological evolution. The MOEA recommended in [10] is utilized herein to solve the
meta-optimization problem defined as (1). Well-known and often practised genetic
operators for multi-objective optimization are applied to obtain the convergence of
a solution. In such a way, the problem of finding values of behavioural parameters
is solved by computing the Pareto front, hence the set of evenly distributed non-
dominated optimal solutions are determined. PSO is also classified into heuristic
approaches, however this is a population-based stochastic optimization technique,
which is inspired by simulation of social behaviour. In this paper, PSO proposed
by [11] is adopted and applied to search for the optimal values of x. The both opti-
mization algorithms are implemented in the MATLAB� environment using Genetic
AlgorithmandParticle SwarmOptimizationToolboxes and these are discussedbelow
in details.

2.1 Particle Swarm Optimization as OAE

The particle swarm optimization is a population-based stochastic optimization tech-
nique, which is inspired by simulation of the social behaviour reflected in flock of
birds, bees and fish that adapt their movements in order to seek the best food sources
as well as to avoid predators [12]. This type of optimization approach is also viewed
as a parallel evolutionary computation technique.

Numerically, the basic PSO algorithm can be formulated in vector notation such
as it is proposed in [13]. The velocity vk is updated using its current value and a term
which attracts the particle towards its own previous best position p1 and globally
best position p2 in the whole swarm:
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vk+1 = avk + b1r1 ⊗ (p1 − xk) + b2r2 ⊗ (p2 − xk), (5)

while, the particle position xk is dynamically actualized using its current value and
the newly computed velocity vk+1:

xk+1 = cxk + dvk+1, (6)

where the symbol ⊗ denotes element-by-element vector multiplication, a is the
momentum factor also known as the inertia weight, coefficients b1 and b2 are used
to describe the strength of attraction (cognitive and social attraction coefficients,
respectively), c and d are black-box tuning parameters, vectors of random numbers
r1 and r2 that are randomness useful for good state space exploration (they are usually
obtained using the generator of pseudo-random numbers with uniform distribution
on the range of 0 to 1).

2.2 Multi-Objective Evolutionary Algorithm as MAC

Evolutionary algorithms are known as the methods for solving optimization prob-
lems, which are based on the natural selection process that mimics biological evo-
lution. In this study a variant of the non-dominated sorting GA-II called controlled
elitist genetic algorithm is used [10]. In order to apply such an optimization technique
for tuning behavioural parameters of the main optimization algorithm (OAE) it is
necessary to define the following properties of the algorithm: the representation of
the individuals, the fitness function, selection and succession methods, crossover and
mutation operators. Note that, the chromosome contains information about behav-
ioural parameters of the target algorithm:

chr = p = [
p1 p2 . . . pK

]
(7)

where K is the number of the most relevant parameters of the target optimization
algorithm.

The feasible population method is adapted to create a random well-dispersed
initial population that satisfies all constraints and bounds Ω in (1). The fitness value
of an individual is computed using the fitness function which is declared on the basis
of the multi-objective function (1). The selection of the parents to the next generation
is achieved using the non-dominated rank and a distance measure of the individuals
in the current generation.

Additionally, the diversity of population for convergence to an optimal Pareto front
is done by controlling the elitemembers of the population as the algorithmprogresses.
In this algorithm, the fraction parameter (ec) and the distance function are used to
control the elitism. The Pareto fraction parameter limits the number of individuals
on the Pareto front (elite members), whereas the distance function is necessary to
maintain diversity on a front by favouring individuals that are relatively far away on
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the front. Moreover, it is decided to use a simple heuristic crossover operator that
returns a child that lies on the line containing the two parents in such a way that the
distance between the child and the better parent is determined by the user-defined
parameter λc. The remaining individuals (other than elite and crossover children)
are mutation children. They are obtained using the adaptive feasible method which
randomly generates directions that are adaptive with respect to the last successful or
unsuccessful generation.

3 Benchmark Functions

In order to test the proposed meta-optimization approach several benchmark func-
tions were selected. All of the selected functions are multi-modal. The modality of
functions is an important criterion in optimization problems since if a certain function
has many local minimums the searching algorithm may be trapped in one of them,
which will cause wrong results of search process and may direct search away from
the global minimum. Therefore, selection of such functions additionally complicates
the optimization problem.

The functions were selected basing on those proposed in the CEC’2008 Special
Session and Competition on Large Scale Global Optimization [14]. Their detailed
description and parameters selected for the testing purposes are presented below.

The first considered function is a shifted version of the Rosenbrock function
(Fig. 2) called after its inventor, H. Rosenbrock [15]. This function is non-convex and
non-separable, and often used as a test function for optimization problems because
of vary narrow global optimum, which is difficult to achieve. The general form of
this function can be expressed as:

Fig. 2 2D shifted Rosenbrock function
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F3 (x) =
D−1∑

i=1

(
100

(
z2i − zi+1

)2)
, (8)

where z = x−o+1 , x = [x1, x2, . . . , xD], x ∈ [−100, 100]D , o = [o1, o2, . . . , oD]
is the shifted global optimum x∗ = o , F3 (x∗) = 0.

The next considered function is a shifted version of the Rastrigin’s function [16],
which is non-convex separable function with a huge number of local optima given
by:

F4 (x) =
D∑

i=1

(
z2i − 10 cos (2π zi ) + 10

)
, (9)

where x ∈ [−5, 5]D , z is the same as in the previous function, the shifted global opti-
mum x∗ = o , F4 (x∗) = 0. The 2D representation of a shifted Rastrigin’s function
is shown in Fig. 3.

Further, the shifted version of Griewank’s function [17] was considered. This
function is widely used for convergence testing of optimization algorithms. It is non-
separable and has a huge number of regularly distributed local optima, thus it is not
easy to match the global optimum (see Fig. 4). This function is defined as:

F5 (x) =
D∑

i=1

z2i
4000

−
D∏

i=1

cos

(
zi√

i

)
+ 1 (10)

where z = (x − o), x ∈ [−600, 600]D , the shifted global optimum x∗ = o,

F4 (x∗) = 0.

Fig. 3 2D shifted Rastrigin’s function
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Fig. 4 2D shifted Griewank’s function

The last of the commonly used test functions for optimization considered is the
shifted version of the Ackley’s function [18]. The main difficulty during searching
the global optimum is its nearly flat outer region and a large hole in the centre. It is
defined as:

F6 (x) = −20 exp

⎛

⎝−0.2

√√
√
√ 1

D

D∑

i=1

z2i

⎞

⎠ − exp

(
1

D

D∑

i=1

cos (2π zi )

)

+ 20+ e (11)

where x ∈ [−32, 32]D , z is the same as in F5 function, the shifted global optimum
x∗ = o , F6 (x∗) = 0. Its 2D representation is shown in Fig. 5.

Moreover, two fractal-like function were considered. The first function con-
structed by Macnish [19] is composed of a large number of base functions. In order
to preserve the self-similarity property, the average number of base functions in any
unit hypercube in the fractal function increases with the inverse of the size to the
power of the dimension, which makes the optimization problem extremely difficult
(see Fig. 6). This function is given by the following expression:

F7 (x) =
D∑

i=1

λ1
(
xi + λ2

(
x(i mod D)+1

)) + 1720 (12)

where
λ1 (x) ≈ ∑3

k=1
∑2k−1

1
∑ô2

1 λ3

(
x, ô1,

1
2k−1(2−ô1)

)
,

λ2 (y) = 4
(
y4 − 2y3 + y2

)
,
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Fig. 5 2D shifted Ackley’s function

Fig. 6 2D Macnish fractal ‘DoubleDip’ function

λ3 (x, c, s) =

⎧
⎪⎨

⎪⎩

(−6144 (x − c)6 + 3088 (x − c)4

−392 (x − c)2 + 1
)

s , x ∈ (−0.5, 0.5)

0 , otherwise

and x ∈ [−1, 1]D , the global optimum is unknown, F7 (x∗) is also unknown, ô1 is a
double precision variable, pseudo-randomly chosen, with seed o1, with equal prob-
ability from the interval [0, 1], ô2 is an integer variable, pseudo-randomly chosen,
with seed o2, with equal probability from the set {0, 1, 2}.

The second considered fractal function is a shifted Weierstrass function (Fig. 7).
This function is a pathological real-valued function on the real line, which is
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Fig. 7 2D Weierstrass function

continuous everywhere, but nowhere derivable. The function is self-similar and thus
it has local optima in the entire domain, which makes the searching procedure of a
global optimum extremely difficult. This function is given by:

F8 (x) = 5 +
D∑

i=1

(
1

2

)i

cos
(
5i2π zi

)
, (13)

where z = (x − o), x ∈ [0, 1]D , the shifted global optimum x∗ = o , F8 (x∗) = 0.

4 Verification Studies

The advantages and limitations of the proposed meta-evolution method were attem-
pted in the following experiment. The aim of the case study was to validate the
performance of the meta-optimization approach over a set of well-practised test
functions described in the previous section. As it was mentioned above, the task
of the main optimization was defined as a continuous minimization problem. The
engine of the target optimization technique was prepared using the particle swarm
optimization algorithm (PSO-OAE), while the core of the meta-optimization process
was implemented by means of the multi-objective evolutionary algorithm (MOEA-
MAC). The cost function in the PSO-OAEwas computed using one of the benchmark
functions (8–13). In this algorithm only few parameters of the algorithm are relevant
to guarantee, as far as possible, to find the optimal solution of the problem. Taking
into consideration the analytical proofs given in [13] parameters c and d can be set
to unity and d can be set arbitrary without loss of generality. Therefore, behavioural
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parameters such as the social and cognitive attraction coefficients (p1 = b1, p2 =
b2), the number of particles (p3 = pE ), and the total number of generations (p4 =
pS) only were taken into account during the meta-optimization process realized by
means of MOEA-MAC.

For each function, the lower and upper boundaries of the PSO-OAEwere assumed
corresponding to functions’ properties (8–13), whereas in the case of MOEA-MAC
boundaries were declared in such a way, that the number of particles was equal from
D to 2D, the total number of generations from 5 to 100, the cognitive and social
attraction from 0 to 4. The heuristic rules given in the literature were employed to
get the best results from the MOEA. The fitness function was declared following
to (1), where MBF was computed by averaging the best fitness function (for N = 25
and αp = 3) and FES was obtained as the product of the number of particles and
the total number of generations of the OAE. It was decided that individuals in the
population of the MOEA were composed of genes representing real numeric values
of behavioural parameters (the integer parts of pS and pE parameters were used
during the computations). The total number of generations of MOEA was set to 30.
The population size of this algorithm was equal 40. It was decided that the fraction
parameter ec = 0.8. For a heuristic crossover operator the user-defined parameter
was set to 1.2, and the crossover probability was equal 0.8 (Table1).

The meta-evolution process was carried out for four cases D = 2, D = 100,
D = 250, D = 500. The achieved results are presented in Table2. Besides, in
Figs. 8a, c, e and g there are given graphs with the visualisation of selected Pareto
fronts (benchmark functions F5 and F6 for D = 500 as well as F7 and F8 for
D = 100) based on which the optimal values of behavioural parameters were chosen
(objective 1 denotes MBF, objective 2 denotes FES). In this case study, the authors
selected non-dominated optimal solutions that were characterized by the accuracy of
the cost function as higher as possible (in a statistic sense) with the acceptable time
complexity of the algorithm (that means the solution was exactly selected from the
centre of Pareto front). In order to have much more understandable and comparable
results the tuning of behavioural parameters was also carried out with the use of
expert’s knowledge and trial and error procedure. In the first case, the suggestions
proposed in [20] were applied (cognitive attraction b1 = 0.5, social attraction b2 =
1.25). In the second case values of behavioural parameters were changed several
times to obtaining satisfactory solutions.

The optimization processwas run ten times for each case and afterwards the results
were averaged. Overall, the comparison results of meta-evaluation (◦) and classic
strategies (�,�) for adjusting behavioural parameter valueswere included in Table2.
Themost important statisticmeasures such asAVGandSTDshow that the best option
is to find optimal values of behavioural parameters by means of the meta-evolution
method. It is also confirmed by results presented in Fig. 8 b, d, f, h for functions F5, F6
(D = 500) and F7, F8 (D = 100), respectively. These plots demonstratemean values
of the best scores of the cost function (MS) versus the number of function evaluations
(FES) for investigated cases. Each of these examples illustrates the effectiveness of
the proposed meta-optimization method when compared it to classic approaches.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 8 The comparison results obtained using meta-optimization, expert, trail and error procedures
for selection the behavioural parameter values. a Meta-opt. of F5 (D = 500). b Opt. of F5 (D =
500). c Meta-opt. of F6 (D = 500). d Opt. of F6 (D = 500). e Meta-opt. of F7 (D = 100). f Opt.
of F7 (D = 100). g Meta-opt. of F8 (D = 100). h Opt. of F8 (D = 100)
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5 Conclusions

The paper presents the upgraded approach for tuning values of behavioural parame-
ters of optimization algorithms especially for large-scale problems. The proposed
multi-objective method is based on two criteria. The first one corresponds to the
estimation of the accuracy of a solution, whereas the second represents the time
computational complexity of the target optimization algorithm. On the one hand, the
particle swarm optimization algorithmwas employed as the target optimization algo-
rithm and on the other hand the multi-objective evolutionary algorithm was adapted
as the core of the meta-evolution process. The proposed meta-evolution method
were examined applying well-practised test functions described in the literature. The
obtained results confirm that this approach can be used to find proper values of behav-
ioural parameters for which funded solutions to be characterized by the accuracy of
the cost function as higher as possible with the acceptable time complexity of the
algorithm.
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Abstract One of the main sources of inspiration for techniques applicable to
complex search space and optimisation problems is nature. This paper introduces
a new metaheuristic—Dispersive Flies Optimisation (DFO)—whose inspiration is
beckoned from the swarming behaviour of flies over food sources in nature. The
simplicity of the algorithm facilitates the analysis of its behaviour. A series of exper-
imental trials confirms the promising performance of the optimiser over a set of
benchmarks, as well as its competitiveness when compared against three other well-
known population based algorithms. The convergence-independent diversity of DFO
algorithm makes it a potentially suitable candidate for dynamically changing envi-
ronment. In addition to diversity, the performance of the newly introduced algorithm
is investigated using the three performance measures of accuracy, efficiency and
reliability and its outperformance is demonstrated in the paper. Then the proposed
swarm intelligence algorithm is used as a tool to identify microcalcifications on the
mammographs. This algorithm is adapted for this particular purpose and its per-
formance is investigated by running the agents of the swarm intelligence algorithm
on sample mammographs whose status have been determined by the experts. Two
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1 Introduction

Throughout the history nature has been an inexplicable source of inspiration for
scientists and researchers. Observations, many of which made unintentionally, have
been triggering the inquisitive minds for hundreds of years. The task of resolving
problems and its often present nature in the minds of scientists boosts the impact of
these observations, which in cases led to discoveries. Among others, researchers in
mathematics, physics and natural sciences have had their fair share of ‘observations-
leading-to-discoveries’.

Observing the magnificently choreographed movements of birds, behaviour of
ants foraging, convergence of honey bees in search for food source and so forth has led
several researchers to propose (inspired versus identical)models used to solve various
optimisation problems. Genetic Algorithm [10], Particle Swarm Optimisation [11]
and Ant Colony Optimisation [8] are only few such techniques belonging to the
broader category of swarm intelligence; it investigates collective intelligence and
aims at modelling intelligence by looking at individuals in a social context and
monitoring their interactions with one another as well as their interactions with the
environment.

The work presented here aims at proposing a novel nature-inspired algorithm
based on the behaviours of flies hovering over food sources. This model—Dispersive
Flies Optimisation or DFO—is first formulated mathematically and then a set of
experiments is conducted to examine its performance when presented with various
problems.

Afterwards an introduction to metastatic disease is given along with a brief expla-
nation on how to detect metastasis. The swarm intelligence algorithm is adapted for
the purpose of this research. Next, a brief summary of x-ray mammography and
its use is presented, emphasising on mammographic film reading as a particularly
demanding visual task, which could be facilitated using the technique presented in
this paper.

2 Dispersive Flies Optimisation

Dispersive Flies Optimisation (DFO) is an algorithm inspired by the swarming
behaviour of flies hovering over food sources. The swarming behaviour of flies
is determined by several factors and that the presence of threat could disturb their
convergence on the marker (or the optimum value). Therefore, having considered the
formation of the swarms over the marker, the breaking or weakening of the swarms
is also noted in the proposed algorithm.

In other words, the swarming behaviour of the flies, in Dispersive Flies Opti-
misation, consist of two tightly connected mechanisms, one is the formation of the
swarms and the other is its breaking or weakening. The algorithm and the mathe-
matical formulation of the update equations are introduced below.
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The position vectors of the population are defined as:

xt
i = [

xt
i1, xt

i2, . . . , xt
i D

]
, i = 1, 2, . . . ,NP (1)

where t is the current time step, D is the dimension of the problem space and NP is
the number of flies (population size).

In the first generation, when t = 0, the i th vector’s j th component is initialised as:

x0id = xmin,d + r
(
xmax,d − xmin,d

)
(2)

where r is a random number drawn from a uniform distribution on the unit interval
U (0, 1); xmin and xmax are the lower and upper initialisation bounds of the dth
dimension, respectively. Therefore, a population of flies are randomly initialised
with a position for each flies in the search space.

On each iteration, the components of the position vectors are independently
updated, taking into account the component’s value, the corresponding value of the
best neighbouring fly (consider ring topology) with the best fitness, and the value of
the best fly in the whole swarm:

xt
id = xt−1

nb,d + U (0, 1) × (xt−1
sb,d − xt−1

id ) (3)

where xt−1
nb,d is the value of the neighbour’s best fly in the dth dimension at time step

t − 1; xt−1
sb,d is the value of the swarm’s best fly in the dth dimension at time step

t − 1; and U (0, 1) is the uniform distribution between 0 and 1.
The algorithm is characterised by two principle components: a dynamic rule for

updating flies position (assisted by a social neighbouring network that informs this
update), and communication of the results of the best found fly to other flies.

As stated earlier, the swarm is disturbed for various reasons; one of the positive
impacts of such disturbances is the displacement of the disturbed flies which may
lead to discovering a better position. To consider this eventuality, an element of sto-
chasticity is introduced to the update process. Based on this, individual components
of flies’ position vectors are reset if the random number, r , generated from a uniform
distribution on the unit interval U (0, 1) is less than the disturbance threshold (dt).
This guarantees a proportionate disturbance to the otherwise permanent stagnation
over a likely local minima.

Algorithm 1 summarises the DFO algorithm.1

1 The source code can be downloaded from the following page:
http://doc.gold.ac.uk/~map01mm/DFO/.

http://doc.gold.ac.uk/~map01mm/DFO/
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Algorithm 1 Dispersive Flies Optimisation
1: while FE < 300, 000 do
2: for i = 1 → NP do
3: xi .fitness ← f (xi )

4: end for
5: sb ← {sb, ∀ f (xsb) = min ( f (x1), f (x2), ..., f (xNP))}
6: nb ← {

nb, ∀ f (xnb) = min
(

f (xleft), f (xright)
)}

7: for i = 1 → NP do
8: for d = 1 → D do
9: τd ← xt−1

nb,d + U (0, 1) × (xt−1
sb,d − xt−1

id )

10: if (r < dt) then
11: τd ← xmin,d + r

(
xmax,d − xmin,d

)

12: end if
13: end for
14: xi ← τ

15: end for
16: end while

The next section briefly presents three population-based algorithms which will
be used to compare the performance of DFO, and then the results of a series of
experiments conducted on DFO over a set of benchmark functions are reported.

3 Experiments

This section presents a set of experiment investigating the performance of the newly
introduced Dispersive Flies Optimisation (DFO) and discusses the results. Then, to
understand whether disturbance plays an important role in the optimisation process,
a control algorithm is presented DFO-c where no disturbance is inflicted upon the
population of flies.

Recognising the lose of diversity as a common issue in all distribution based
evolutionary optimisers (since dispersion reduces with convergence), the impact of
disturbance on preserving the diversity of the population is also studied. Addition-
ally, an optimal value for disturbance threshold, dt, is suggested. Afterwards the
performance of DFO is compared against few other well-known population-based
algorithms, namely Particle SwarmOptimisation (PSO), Differential Evolution (DE)
and Genetic Algorithm (GA).

3.1 Experiment Setup

The benchmarks used in the experiments (see Table1) are divided in two sets, f1−14
and g1−14; more details about these functions (e.g. global optima, mathematical
formulas, etc.) are reported in [3, 15]. The first set, f1−14, have been used by several
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Table 1 Benchmark Functions

Fn Name Class D Feasible Bounds

f1 Sphere/Parabola Unimodal 30 (−100, 100)D

f2 Schwefel 1.2 Unimodal 30 (−100, 100)D

f3 Generalized Rosenbrock Multimodal 30 (−30, 30)D

f4 Generalized Schwefel 2.6 Multimodal 30 (−500, 500)D

f5 Generalized Rastrigin Multimodal 30 (−5.12, 5.12)D

f6 Ackley Multimodal 30 (−32, 32)D

f7 Generalized Griewank Multimodal 30 (−600, 600)D

f8 Penalized Function P8 Multimodal 30 (−50, 50)D

f9 Penalized Function P16 Multimodal 30 (−50, 50)D

f10 Six-hump Camel-back Low
dimensional

2 (−5, 5)D

f11 Goldstein-Price Low
dimensioal

2 (−2, 2)D

f12 Shekel 5 Low
dimensioal

4 (0, 10)D

f13 Shekel 7 Low
dimensioal

4 (0, 10)D

f14 Shekel 10 Low
dimensioal

4 (0, 10)D

g1 Shifted Sphere Unimodal 30 (−100, 100)D

g2 Shifted Schwefel 1.2 Unimodal 30 (−100, 100)D

g3 Shifted Rotated High
Conditioned Elliptic

Unimodal 30 (−100, 100)D

g4 Shifted Schwefel 1.2 with
Noise in Fitness

Unimodal 30 (−100, 100)D

g5 Schwefel 2.6 Global Optimum
on Bounds

Unimodal 30 (−100, 100)D

g6 Shifted Rosenbrock Multimodal 30 (−100, 100)D

g7 Shifted Rotated Griewank
without Bounds

Multimodal 30 (−600, 600)D

g8 Shifted Rotated Ackley with
Global Optimum on Bounds

Multimodal 30 (−32, 32)D

g9 Shifted Rastrigin Multimodal 30 (−5, 5)D

g10 Shifted Rotated Rastrigin Multimodal 30 (−5, 5)D

g11 Shifted Rotated Weierstrass Multimodal 30 (−0.5, 0.5)D

g12 Schwefel Problem 2.13 Multimodal 30 (−π, π)D

g13 Expanded Extended Griewank
plus Rosenbrock

Expanded 30 (−5, 5)D

g14 Shifted Rotated Expanded
Scaffer

Expanded 30 (−100, 100)D
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authors [3, 12, 14] and it contains the three classes of functions recommended by
Yao et al. [17]: unimodal and high dimensional, multimodal and high dimensional,
and low dimensional functions with few local minima. In order not to initialise the
flies on or near a region in the search space known to have the global optimum, region
scaling technique is used [9], which makes sure the flies are initialised at a corner of
the search space where there are no optimal solutions.

The second test set, g1−14, are the first fourteen functions of CEC 2005 test suite
[15] and they present more challenging features of the common functions from the
aforementioned test set (e.g. shifted by an arbitrary amount within the search space
and/or rotated). This set has also been used for many researchers.

One hundred flies were used in the experiments and the termination criterion for
the experiments is set to reaching 300,000 function evaluations (FEs). There are
50 Monte Carlo simulations for each experiment and the results are averaged over
these independent simulations. Apart from the disturbance threshold which is set to
dt = 0.001, there are no adjustable parameters in DFO’s update equation.

The aim of the experiments is to study and demonstrate the qualities of the newly
introduced algorithm as a population based continuous optimiser. The behaviour
of the DFO algorithm is compared against its control counterpart and some other
population based algorithms.

In this work, a standard particle swarm version, Clerc-Kennedy PSO (PSO-CK)
is used. In terms of DE, DE/best/1 variation of mutation approaches is deployed with
CR and F set to 0.5. In GA algorithm, the probabilities of crossover and mutation
of the individuals is set to pc = 0.7 and pm = 0.9 respectively. The tournament
size of the tournament selection is set to two, and elitism with an elite size of one is
deployed to maintain the best found solution in the population.

The details of these algorithms and the rest of configuration is given in [1].

3.2 Performance Measures and Statistical Analysis

In order to conduct the statistical analysis measuring the presence of any significant
difference in the performance of the algorithms, Wilcoxon 1 × 1 non-parametric
statistical test is deployed. The performance measures used in this paper are error,
efficiency, reliability and diversity which are described below.

Error is defined by the quality of the best agent in terms of its closeness to the
optimumposition (if knowledge about the optimumposition is known a priori, which
is the case here). Another measure used is efficiency which is the number of function
evaluations before reaching a specified error, and reliability is the percentage of
trials where a specified error is reached. These performance measures are defined as
below:
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Error = ∣
∣ f

(
xg

) − f (xo)
∣
∣ (4)

Efficiency = 1

n

n∑

i=1

FEs (5)

Reliability = n
′

n
× 100 (6)

where xg is the best position found and xo is the position of the known optimum
solution; n is the number of trials in the experiment and n

′
is the number of successful

trials, FEs is the number of function evaluations before reaching the specified error,
which in these experiments, set to 10−8.

In this work, diversity, which is the degree of convergence and divergence, is
defined as a measure to study the population’s behaviour with regard to exploration
and exploitation. There are various approaches to measure diversity. The average
distance around the population centre is shown [13] to be a robust measure in the
presence of outliers and is defined as:

Diversity = 1

NP

NP∑

i=1

√√
√
√

D∑

j=1

(
x j

i − x̄ j
)2

(7)

x̄ j = 1

NP

NP∑

i=1

x j
i (8)

where NP is the number of flies in the population, D is the dimensionality of the
problem, x j

i is the value of dimension j of agent i , and x̄ j is the average value of
dimension j over all agents.

3.3 Performance of Dispersive Flies Optimisation

The error, efficiency and reliability results of DFO performance over the benchmarks
are reported in Table2. The first five columns detail the error-related figures and
the last column highlights the median efficiency along with the reliability (shown
between brackets) of the algorithm in finding the optima. The algorithm exhibits
a promising performance in optimising the presented problem set where half the
benchmarks ( f1−2,5−11 and g1−2,7,9) are optimised with the specified accuracy. The
figures in the table are expanded in the following categories:

Unimodal, high dimensional (f 1,2, g1−5) The algorithm optimises 57% of the
benchmarks in this category; while both functions in the first set are optimised ( f1,2),
only two out of five benchmarks in the second andmore challenging set are optimised
to the specified accuracy. All optimised benchmarks achieve 100% success.
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Table 2 DFO—Dispersive Flies Optimisation

Min. Max. Median Mean StdDev Eff. (Rel.%)

f1 6.46E−47 1.97E−40 1.75E−43 1.07E−41 3.49E−41 46850 (100)

f2 2.24E−12 6.01E−10 6.46E−11 1.08E−10 1.26E−10 239850 (100)

f3 1.74E−04 1.45E+01 3.65E−01 2.17E+00 3.62E+00 ∞ (0)

f4 3.89E−07 5.05E−03 2.87E−05 2.49E−04 7.81E−04 ∞ (0)

f5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 84850 (100)

f6 2.84E−14 6.39E−14 3.91E−14 3.88E−14 6.49E−15 121200 (100)

f7 0.00E+00 1.54E−01 1.85E−02 3.25E−02 3.74E−02 47450 (28)

f8 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 50950 (100)

f9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 55550 (100)

f10 0.00E+00 2.22E−16 0.00E+00 4.00E−17 8.62E−17 1700 (100)

f11 0.00E+00 8.10E+01 8.10E+01 5.51E+01 3.82E+01 2100 (32)

f12 5.05E+00 5.05E+00 5.05E+00 5.05E+00 0.00E+00 ∞ (0)

f13 5.27E+00 5.27E+00 5.27E+00 5.27E+00 0.00E+00 ∞ (0)

f14 5.36E+00 5.36E+00 5.36E+00 5.36E+00 0.00E+00 ∞ (0)

g1 5.68E−14 2.27E−13 1.71E−13 1.49E−13 4.28E−14 45300 (100)

g2 4.55E−12 9.78E−10 3.88E−11 1.03E−10 1.57E−10 234100 (100)

g3 3.58E+05 3.22E+06 1.40E+06 1.38E+06 6.23E+05 ∞ (0)

g4 1.40E+00 2.38E+02 2.18E+01 3.71E+01 4.74E+01 ∞ (0)

g5 3.47E+03 1.82E+04 8.95E+03 9.26E+03 3.17E+03 ∞ (0)

g6 1.66E−03 1.51E+02 3.06E+00 1.41E+01 3.05E+01 ∞ (0)

g7 3.31E−11 2.64E−01 1.97E−02 2.93E−02 4.05E−02 236800 (10)

g8 2.00E+01 2.02E+01 2.01E+01 2.01E+01 3.11E−02 ∞ (0)

g9 1.14E−13 2.27E−13 1.71E−13 1.52E−13 3.71E−14 89450 (100)

g10 1.29E+02 3.42E+02 2.34E+02 2.38E+02 5.62E+01 ∞ (0)

g11 2.46E+01 4.02E+01 3.11E+01 3.12E+01 3.23E+00 ∞ (0)

g12 9.73E+01 1.58E+04 2.34E+03 3.62E+03 3.51E+03 ∞ (0)

g13 9.34E−01 2.01E+00 1.48E+00 1.48E+00 3.07E−01 ∞ (0)

g14 1.23E+01 1.40E+01 1.35E+01 1.35E+01 3.69E−01 ∞ (0)

Low dimensional and few local minima (f 10−14) In this category, 40% of the
benchmarks are optimised, with 100% reliability for f10 and 32% for f11. How-
ever, none of the Shekel functions ( f12−14) are optimised; Shekel is known to be a
challenging function to optimise due to the presence of several broad sub-optimal
minima; also the proximity of a small number of optima to the Shekel parameter ai

is another reason for the difficulty of optimising these set of functions.

Multimodal, high dimensional (f 3−9, g6−14)The optimiser is able to optimise 50%
of the benchmarks in this category ( f5−9 and g7,9), 71% of which achieve 100%
success rate (all except f7, g7 with 28 and 10% success rates respectively). The opti-
miser exhibit a promising performance when dealing with the difficult Rosenbrock
functions ( f3, g6), reaching the error of 10−4 and 10−3 respectively. The algorithm
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performs exceptionally well in optimising the infamous Rastrigin functions, both
common and shifted mode (i.e. f5 and g9), achieving 100% success rate; however
it does show weakness in the more challenging g10 rotated version.

The success of the optimiser in optimising the notorious Rastrigin function in its
common and shifted modes will be discussed in the context of DFO’s dimension-to-
dimension disturbance mechanism induced by the algorithm.

In order to provide a better understanding of the behaviour of the algorithm, in
the next section, the disturbance is discarded and the diversity of the algorithm is
studied.

3.4 Diversity in DFO

Most swarm intelligence and evolutionary techniques commence with exploration
and, over time (i.e. function evaluations or iterations), lean towards exploitation.
Maintaining the right balancebetween exploration and exploitationphases has proved
to be difficult. The absence of the aforementioned balance leads to a weaker diversity
when encountering a local minimum and thus the common problem of pre-mature
convergence to a local minimum surfaces. Similar to other swarm intelligence and
evolutionary algorithms, DFO commences with exploration and over time, through
its mechanism (i.e. gradual decrease in the distance between the members of the
population and as such, each agent’s local and global best positions), moves towards
exploitation. However, having implemented the disturbance threshold, a dose of
diversity (i.e. dt) is introduced in the population throughout the optimisation process,
aiming to enhance the diversity of the algorithm.

Figure1 illustrates the convergence of the population towards the optima and their
diversities in three random trials over three benchmarks (i.e. g1,7,9 chosen from the
second set) as examples from unimodal and multimodal functions. The difference
between the error and the diversity values demonstrates the algorithm’s ability in
exploration while converging to the optima whose fitness reach as low as 10−13 in
g1 and g9.

Exploring the role of disturbance in increasing diversity, a control algorithm is
proposed (DFO-c) where there is no disturbance (dt = 0) during the position update
process. The graphs inFig. 1 illustrate the diversity ofDFO-c populations in randomly
chosen trials over three sample benchmarks (again g1,7,9). The graphs illustrate that
the diversity of the population inDFO-c is less thanDFO, thus emphasising the impact
of disturbance in injecting diversity which in turn facilitates the escape from local
minima (e.g. as demonstrated in case of the highly multimodal Rastrigin functions
f5, g9). Note the gradual shrinkage of diversity in g9 (≈10−13) which is a clear
indication of a premature convergence to a local minima with very poor chance of
escape.

In order to compare the performance of DFO and its control counterpart, Table3
presents the result of optimising the benchmarks using DFO-c. Additionally, a statis-
tical analysis is conducted and the output is reported inTable4where the performance
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Fig. 1 DFO and DFO-c: diversity and error in g1,7,9

is compared using the three aforementioned measures of error, efficiency and reli-
ability (see Sect. 3.2 for the definitions of the measures). The results show that in
89% of cases (where there is a significant difference between the two algorithms),
DFO is performing significantly better than its control counterpart (DFO-c) which
is stripped from the diversity inducing disturbance. Furthermore, in all multimodal
functions ( f3−9 and g6−12), whenever there is a statistically significant difference
between DFO and DFO-c, the former demonstrates significant outperformance over
the later.

Following on the results from measuring error, Table4 also shows that in terms
of efficiency and reliability measures, DFO is 79% more efficient than its control
counterpart, and 92% more reliable.
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Table 3 DFO-c—Control DFO Algorithm

Min. Max. Median Mean StdDev Eff. (Rel.%)

f1 1.44E−56 3.09E−36 1.27E−45 9.65E−38 4.55E−37 65400 (100)

f2 7.29E−09 3.23E+01 1.28E−04 7.60E−01 4.60E+00 298200 (2)

f3 5.27E−05 1.61E+02 5.08E+00 1.67E+01 3.08E+01 ∞ (0)

f4 4.48E−09 3.20E+03 1.55E+03 1.40E+03 8.66E+02 141500 (2)

f5 1.87E+02 4.17E+02 2.96E+02 2.94E+02 5.76E+01 ∞ (0%)

f6 1.97E+01 2.00E+01 1.98E+01 1.98E+01 5.24E−02 ∞ (0)

f7 2.22E−16 6.00E+00 9.30E−02 3.51E−01 8.72E−01 64050 (8)

f8 1.03E−32 3.30E+02 2.14E+00 2.35E+01 5.84E+01 132950 (24)

f9 0.00E+00 1.57E+02 1.54E−01 5.35E+00 2.27E+01 176500 (30)

f10 0.00E+00 2.22E−16 0.00E+00 7.99E−17 1.08E−16 1700 (100)

f11 0.00E+00 8.10E+01 8.10E+01 5.99E+01 3.59E+01 2100 (26)

f12 5.05E+00 5.05E+00 5.05E+00 5.05E+00 0.00E+00 ∞ (0)

f13 5.27E+00 5.27E+00 5.27E+00 5.27E+00 0.00E+00 ∞ (0)

f14 5.36E+00 5.36E+00 5.36E+00 5.36E+00 0.00E+00 ∞ (0)

g1 5.68E−14 9.37E−05 1.14E−13 1.91E−06 1.33E−05 70600 (94)

g2 1.68E−09 2.23E+01 1.23E−04 4.63E−01 3.14E+00 257700 (2)

g3 2.18E+05 5.38E+06 1.67E+06 1.73E+06 9.39E+05 ∞ (0)

g4 2.23E+02 1.74E+04 1.80E+03 2.91E+03 3.36E+03 ∞ (0)

g5 5.79E+03 1.38E+04 8.50E+03 8.69E+03 2.00E+03 ∞ (0)

g6 2.25E−04 9.53E+01 8.61E+00 1.68E+01 2.52E+01 ∞ (0)

g7 3.01E−10 2.13E−01 3.02E−02 4.17E−02 4.41E−02 263900 (2)

g8 2.00E+01 2.02E+01 2.00E+01 2.01E+01 3.89E−02 ∞ (0)

g9 8.36E+01 2.64E+02 1.62E+02 1.64E+02 4.61E+01 ∞ (0)

g10 1.22E+02 4.93E+02 2.69E+02 2.71E+02 7.69E+01 ∞ (0)

g11 1.98E+01 4.11E+01 3.10E+01 3.13E+01 3.97E+00 ∞ (0)

g12 2.32E+02 1.38E+04 3.04E+03 4.78E+03 3.88E+03 ∞ (0)

g13 4.79E+00 3.56E+01 1.47E+01 1.58E+01 6.47E+00 ∞ (0)

g14 1.28E+01 1.45E+01 1.36E+01 1.37E+01 3.38E−01 ∞ (0)

3.5 Fine Tuning Disturbance Threshold

The role of disturbance in increasing the diversity ofDFOpopulation is discussed ear-
lier (Sect. 3.4). Also, the importance of disturbance is investigated on the optimisation
capability of DFO by introducing a control algorithm which lacks the disturbance
mechanism and the results demonstrate the positive impact of this mechanism. The
aim of this section is to recommend a value for the disturbance threshold, dt. The
range of disturbance probabilities used in this experiment is between 1 and 10−9 and
the values were chosen according to:

dtn = 10−n, 0 ≤ n ≤ 9
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Table 4 Comparing DFO and DFO-c Performance

DFO—DFO-c

Error Efficiency Reliability

f1 o–X 1–0 –

f2 X–o 1–0 1–0

f3 X–o – –

f4 X–o 0–1 0–1

f5 X–o 1–0 1–0

f6 X–o 1–0 1–0

f7 X–o 1–0 1–0

f8 X–o 1–0 1–0

f9 X–o 1–0 1–0

f10 o–X 0–1 –

f11 – 0–1 1–0

f12 – – –

f13 – – –

f14 – – –

g1 – 1–0 1–0

g2 X–o 1–0 1–0

g3 X–o – –

g4 X–o – –

g5 – – –

g6 – – –

g7 X–o 1–0 1–0

g8 – – –

g9 X–o 1–0 1–0

g10 X–o – –

g11 – – –

g12 – – –

g13 X–o – –

g14 X–o – –

16–2 11–3 11–1

Based on Wilcoxon 1×1 Non-Parametric Statistical Test, if the error difference between each pair
of algorithms is significant at the 5% level, the pairs are marked. X–o shows DFO is significantly
outperforming its counterpart algorithm; and o–X shows that the algorithm compared to DFO is
significantly better than DFO. In terms of the efficiency and reliability measures, 1–0 (or 0–1)
indicates that the left (or right) algorithm is more efficient/reliable. The figures, n–m, in the last row
present a count of the number of X’s or 1’s in the respective columns
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Fig. 2 Fine tuning disturbance threshold

Figure2 illustrates the performance of DFO using these dt probabilities. Both set
of benchmarks (i.e. f1−14 and g1−14) have been used to find a suitable value for
the disturbance threshold. As the heat map highlights, the optimal range is 10−2 <

dt < 10−4 and the overall recommended value of dt = 10−3 is suggested as a good
compromise.

3.6 Comparing DFO with Other Population-Based Optimisers

Having presented the performance of the DFO algorithm (taking into account the
three performance measures of error, efficiency and reliability, as well as the diver-
sity of its population and the impact of disturbance on its behaviour), this section
focuses on contrasting the introduced algorithm with few well-known optimisation
algorithms. The three population algorithms deployed for this comparison are Dif-
ferential Evolution, Particle Swarm Optimisation and Genetic Algorithm. In this
comparison, only the second and the more challenging set of benchmarks, g1−14
are used. Table5 presents the optimising results of the aforementioned algorithms,
and as shown, the algorithms have optimised some of the benchmark to the spec-
ified accuracy, 10−8. Table6 shows the result of the statistical analysis comparing
DFO with the other three optimisers. Based on this comparison, whenever there is
a significant difference between the performance of DFO and the other algorithms,
DFO significantly outperforms DE, PSO and GA in 66.67, 58.33 and 85.71% of the
cases, respectively. Table7 summaries the efficiency results of the three optimisers
with that of DFO; note that only the efficiency of functions reaching the specified
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Table 5 DE (Differential Evolution), PSO (Particle Swarm Optimisation) and GA (Genetic Algo-
rithm)

DE PSO GA

Error Eff. (Rel.%) Error Eff. (Rel.%) Error Eff. (Rel.%)

g1 1.38E−13 21500 (100) 5.23E−14 656236 (100) 5.04E−05 ∞ (0)

g2 1.72E−07 ∞ (0) 1.33E−01 ∞ (0) 1.21E+04 ∞ (0)

g3 9.65E+06 ∞ (0) 1.52E+06 ∞ (0) 1.47E+07 ∞ (0)

g4 4.92E−01 ∞ (0) 7.89E+03 ∞ (0) 5.13E+04 ∞ (0)

g5 2.34E+03 ∞ (0) 5.04E+03 ∞ (0) 2.09E+04 ∞ (0)

g6 2.30E+00 265800 (12) 2.16E+01 ∞ (0) 7.23E+02 ∞ (0)

g7 5.39E−01 ∞ (0) 1.04E−02 279653 (10) 5.48E+03 ∞ (0)

g8 2.09E+01 ∞ (0) 2.09E+01 ∞ (0) 2.04E+01 ∞ (0)

g9 3.47E+01 ∞ (0) 9.59E+01 ∞ (0) 2.20E+01 ∞ (0)

g10 1.47E+02 ∞ (0) 1.14E+02 ∞ (0) 1.39E+02 ∞ (0)

g11 3.65E+01 ∞ (0) 3.00E+01 ∞ (0) 1.17E+01 ∞ (0)

g12 5.85E+05 ∞ (0) 9.51E+03 ∞ (0) 8.14E+03 ∞ (0)

g13 5.70E+00 ∞ (0) 5.35E+00 ∞ (0) 2.70E+00 ∞ (0)

g14 1.34E+01 ∞ (0) 1.25E+01 ∞ (0) 1.39E+01 ∞ (0)

Table 6 Comparing Error in DFO with DE, PSO and GA

DFO - DE DFO - PSO DFO - GA

g1 – o–X X–o

g2 X–o X–o X–o

g3 X–o – X–o

g4 o–X X–o X–o

g5 o–X o–X X–o

g6 o–X X–o X–o

g7 X–o o–X X–o

g8 X–o X–o X–o

g9 X–o X–o X–o

g10 o–X o–X o–X

g11 X–o – o–X

g12 X–o X–o X–o

g13 X–o X–o X–o

g14 – o–X X–o
∑

8–4 7–5 12–2

Based on Wilcoxon 1×1 Non-Parametric Statistical Test, if the difference between each pair of
algorithms is significant at the 5% level, the pairs are marked. X–o shows that the left algorithm is
significantly better than the right one; and o–X shows that the right one is significantly better than
the left. n–m in the row labeled � is a count of the number of X’s in the columns above
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Table 7 Comparing Efficiency in DFO with DE, PSO and GA in this table, 1–0 (0–1) indicates
that the left (right) algorithm is more efficient

DFO - DE DFO - PSO DFO - GA

g1 0–1 1–0 1–0

g2 1–0 1–0 1–0

g6 0–1 – –

g7 1–0 1–0 1–0

g9 1–0 1–0 1–0
∑

3–2 4–0 4–0

The figures, n–m, in the last row present a count of the number of 1’s in the respective columns.
Note that non-applicable functions have been removed from the table

Table 8 Comparing Reliability in DFO with DE, PSO and GA in this table, 1–0 (0–1) indicates
that the left (right) algorithm is more reliable

DFO - DE DFO - PSO DFO - GA

g2 1–0 1–0 1–0

g6 0–1 – –

g7 1–0 – 1–0

g9 1–0 1–0 1–0
∑

3–1 2–0 4–0

The figures, n–m, in the last row present a count of the number of 1’s in the respective columns.
Note that non-applicable functions have been removed from the table

error is given. As shown in the table, DFO, in the majority of cases, outperforms the
other algorithms. In other words, although, when compared with DE, DFO only out-
performs marginally (60%), it outperforms both PSO and GA in all cases (100%).
The reliability comparison of DFOwith the other optimisers is given in Table8. DFO
is shown to be the most reliable algorithm in this comparison. While DFO outper-
forms DE in 75% of cases, it show 100% outperformance when compared with
PSO and GA. In order to compare the diversity of the DFO algorithm with the other
three optimisers, three benchmarks were chosen from unimodal and multimodal cat-
egories (g1,7,9). The result of this comparison is illustrated in Fig. 3. It is shown that
DE has the least diversity in both uni- and multimodal functions. On the other hand,
the diversity of the population in PSO decreases as the population converges towards
an optimum (see g1); however, when convergence does not occur (e.g. in g7,9), PSO
maintain its high diversity throughout the optimisation process. GA shows a sim-
ilar pattern to that of PSO in multimodal functions, which is the gradual diversity
decrease over time; however it maintains a higher diversity for the unimodal function
than PSO (perhaps attributable to the difference in the fitness of the best positions
found in both algorithms). In terms of DFO, diversity is less convergence-dependent
and more stable across all modalities.
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Fig. 3 Diversity of the
population in DFO, DE, PSO
and GA over three random
trials in g1,7 and 9
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4 Computer Aided Diagnosis and Metastatic Disease

Computer aided diagnosis (CAD) is an emerging field in medicine. The technique
introduced in this paper can help radiologists to examine the image in greater depth
and has the potential to help doctors from different medical disciplines to interpret
medical imaging with greater confidence. Furthermore CAD is a promising learning
tool for both medical students and junior doctors to develop basic diagnostic skills.
This paper presents a new CAD approach in which a recently developed swarm
intelligence algorithm—Dispersive Flies Optimisation [1]—is applied to a medical
imaging modality where the potential areas of microcalcifications on the x-ray mam-
mography are detected (Fig. 4).

X-ray mammography has been shown to be effective as a method for detecting
early breast cancer, but the success of mass screening depends critically on the avail-
ability of highly skilled film readers to interpret the images. The majority of film
readers in the UK are consultant radiologists and in order to maintain a sufficiently
high standard of interpretation, readers are required to undergo training, to keep in
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Fig. 4 Mammograph

practice and to evaluate their performance at regular intervals [2]. Mammographic
film reading is a particularly demanding visual task. In screening programmes, the
film reader must search for extremely infrequent and often very subtle signs of can-
cer superimposed on complex and variable backgrounds. Early breast cancer may
appear in a variety of forms: a few particles of microcalcification; a small ill-defined
or speculated mass; abnormal asymmetry between right and left breast images, or
subtle distortion of the underlying structure of the breast. These abnormalities vary
in size, shape, structure, brightness and location and may share a great deal of simi-
larity with normal mammographic appearances. False negative cases, in which signs
of cancer are missed by a reader, sometimes occur. Retrospective evaluation of the
previous screening films of cancers detected between screening rounds (interval can-
cers) and screen-detected cancers show evidence of abnormality in between 16 and
27% of cases. Some of these signs are very subtle, and may have been seen by the
readers but dismissed as being insignificant, but others are clear signs of malignancy
[4, 5, 16]. However, different readers miss different cancers, as is evidenced by the
success of double reading in which two readers independently read the films [6]. The
most accurate method of interpretation is double reading with arbitration, where a
third reader reviews cases about which the two readers disagree [6, 7]. In the UK par-
ticularly with the National Health Service Breast Screening Programme (NHSBSP)
there is an increased demand for skilled manpower to effectively interpret mammo-
graphs and double or triple reading of the mammograph is not viable option due
to the increased workload. A novel and different method of coping with this is the
use of computer-based aids. Researchers have been developing algorithms to detect
mammographic abnormalities for more than 30 years with the aim of either automat-
ing mammographic interpretation or, more realistically, providing a tool which will
enhance human film-reading performance. There are two basic approaches to the
problem of detecting abnormalities in mammograms: either to search the images for
specific appearances suggestive of cancer, or to characterize normal mammographic
appearance to the extent that it is possible to detect anything that fails to conform to
the generated model of normality.
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The purpose of the current study is to apply for the first time an swarm intelligence
algorithm namely dispersive flies optimisation to perform the task of identifying the
microcalcifications on the mammographs.

5 Applying Dispersive Flies Optimisation

In this paper, we are presenting a unique approach by deploying the recently
developed DFO algorithm to detect microcalcifications on the mammographs. This
approach demonstrates a promising ability to undertake this task with similar level
of sensitivity. The scan used in this paper is processed by the DFO agents which are
responsible for locating the affected areas.

The reproducibility and the accuracy of the DFO algorithm can be utilised in
developing a standardised system to interpret bone scans and mammographs pre-
venting operator errors and discrepancies. This technology can be employed as an
adjunct to help radiologists assess the various parts of the bone scans and mammo-
graphs making the diagnosis of the lesions more thorough and less time consuming.
Additionally this technique can be effectively used to develop programs for teaching
and training medical students and junior doctors.

5.1 Experiments and Results

This section presents the technical details and the experiment setup, followed by the
results and discussions of the performance of the algorithm.

The number of agents used in this experiment is 50,000. This figure depends on
the size of the input scan (in the case of the paper the size of the scan is 500 × 667
pixels) and the algorithm is run for 25 iterations (i.e. 25 cycles of test and diffusion
phases). The output images shown later in the paper are snapshots taken after every
5 iterations recoding the behaviour of the agents at each stage. As stated earlier, in
the beginning of the process, all the agents are initialised randomly throughout the
search space.

DFO is adapted here to search for areas of metastasis or calcifications in the fea-
sible solution space. Given that the problem is a multi-objective problem, on the
contrary to Eq.3 the local neighbourhood architecture of the algorithm is imple-
mented as shown below:

xt
id = xt−1

nb,d + U (0, 1) × (xt−1
nb,d − xt−1

id ) (9)

In order to evaluate the fitness of each agent, a radius (rad) value is specified
which determine how many pixels around the pixel chosen by the agent is used to
calculate the fitness of each agent. In Model I of the algorithm the radius is set to
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Fig. 5 rad = 1 for Model I. The symbol x represents the position of the agent and the o’s represent
the pixels used in the calculation of the fitness value of the DFO agent
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Fig. 6 rad = 10 for Model II. The symbol x represents the position of the agent and the o’s
represent the pixels used in the calculation of the fitness value of the DFO agent

Fig. 7 Mode I Detecting calcifications

1, rad = 1 as shown in Fig. 5. In this model, the purpose is to highlight the area
of calcification by allowing the DFO agents to converge on the areas of interest. In
Mode II, radius is set to rad = 10 in order to segregate the areas that radiologists
should pay particular attention. In this mode, the exact points of high calcifications
are not marked but DFO agents form a border around the area of interest (Fig. 6).

As shown in Figs. 7 and 8 areas with higher potential of metastasis and calcifica-
tions are identified using Mode I and II respectively. These figures visually present
the technique used, illustrating how agents congregate over the areas of interest over
time (i.e. iterations) when fed with the scans as inputs of the algorithm. As the fig-
ures show, DFO agents converge to the areas of interest (as confirmed by the medical
experts) throughout the entire search space.
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Fig. 8 Mode II Detecting calcifications

6 Conclusion

Dispersive Flies Optimisation (DFO), a simple numerical optimiser over continuous
search spaces, is a population based stochastic algorithm, proposed to search for an
optimum value in the feasible solution space; despite its simplicity, the algorithm’s
competitiveness over an exemplar set of benchmark functions is demonstrated. As
part of the study and in an experiment, a control algorithm is proposed to investigate
the behaviour of the optimiser. In this experiment, the algorithm’s induced distur-
bancemechanismshows the ability tomaintain a stable and convergence-independent
diversity throughout the optimisation process. Additionally, a suitable value is rec-
ommended for the disturbance threshold which is the only parameter in the update
equations to be optimised. This parameter controls the level of diversity by injecting
a component-wise disturbance (or restart) in the flies, aiming to preserve a balance
between exploration and exploitation.

In addition to diversity, DFO’s performance has been investigated using three
other performance measures (i.e. error, efficiency and reliability). Using these mea-
sures, it is established that the newly introduced algorithm, outperforms few generic
population based algorithms (i.e. differential evolution, particle swarm optimisation
and genetic algorithm) in all of the aforementioned measures over the presented
benchmarks. In other words, DFO is more efficient and reliable in 84.62 and 90%
of the cases, respectively; furthermore, when there exists a statistically significant
difference, DFO converges to better solutions in 71.05% of problem set.

Additionally, this paper details the promising results of the novel application of
DFO in detecting areas of interest and the identification of the potential microcal-
cifications on the mammographs. Two modes are proposed to further investigate
the behaviour of the agents in the population and offer two representations of the
outcome in order to emphasis on the area of interest and draw the attention of the
clinicians in charge.
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Finally, it is emphasised that the presented technique could be effectively utilised
as an adjunct to the expert’s eyes of a specialist.
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An Efficient Solution of the Resource
Constrained Project Scheduling Problem
Based on an Adaptation of the
Developmental Genetic Programming

Grzegorz Pawiński and Krzysztof Sapiecha

Abstract An adaptation of the Developmental Genetic Programming (DGP) for
solving an extension of the Resource-Constrained Project Scheduling Problem
(RCPSP) is investigated in the paper. In DGP genotypes (the search space) and phe-
notypes (the solution space) are distinguished and a genotype-to-phenotype mapping
(GPM) is used. Thus, genotypes are evolved without any restrictions and the whole
search space is explored. RCPSP is a well-known NP-hard problem but in its orig-
inal formulation it does not take into consideration initial resource workload and it
minimises the makespan. We consider a variant of the problem when resources are
only partially available and a deadline is given but it is the cost of the project that
should be minimized. The goal of the evolution is to find a procedure construct-
ing the best solution of the problem for which the cost of the project is minimal.
The paper presents new evolution process for the DGP as well as a comparison
with other genetic approaches. Experimental results showed that our approach gives
significantly better results compared with other methods.

Keywords Minimisation · Project management · Scheduling · Search problems ·
Resource allocation · Evolutionary computations · Genetic algorithms · Develop-
mental genetic programming

1 Introduction

The Resource-Constrained Project Scheduling Problem (RCPSP) attempts to
reschedule project tasks efficiently using limited renewable resources minimising
the maximal completion time of all activities [4, 6, 7]. RCPSP is an NP-complete
problem which is computationally very hard [3], therefore optimal solutions for
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real-life systems may be found only by using efficient heuristics. The RCPSP occurs
frequently, in high scale project management such as software development, power
plant building, and military industry projects such as design, development and build-
ing of nuclear submarines [31]. The authors in [25] states that it is one of the hardest
problems of Operational Research.

Various RCPSP extensions have been developed for solving practical problems
[15]. However, there is still free room for research. In this paper we will attack the
RCPSP where resources have already got their own schedule (like in a software
house). Such tasks cannot be moved. Hence, the resources are available only in
particular time periods, what makes the problem computationally even more com-
plex. The goal is to allocate resources to the project tasks, taking into consideration
the availability of resources, in order to minimise the total cost of the project and
complete it before a deadline. To overcome this complexity Developmental Genetic
Programming (DGP) [17, 23] will be applied. It is an adaptation of Genetic Program-
ming (GP) [21] to the optimisation problems. DGP is quite new (from 1999) but it
has already been successfully applied in the design of electronic circuits, control
algorithms [23], strategy algorithms in computer games, the synthesis of embedded
systems [10], etc.,

To summarize, the purpose of the paper is to introduce a new evolution process
to the DGP approach for solving RCPSP when resources are partially available and
compare the result with other genetic approaches. Next section of the paper contains
a brief description of the DGP. Related work and a motivation to the research is given
in Sect. 3. Section4 presents an idea of the adaptation of the DGP for a solution of the
RCPSP extension. In Sect. 5, computational experiments to evaluate our approach
and a comparison with other methods are given. The paper ends with conclusions.

2 Developmental Genetic Programming

For many problems, restrictions are imposed on how the structure of genotype may
be created. GP algorithms handle the problems by constrained genetic operators in
the manner, which makes them produce only legal individuals. The method achieved
respectable results for the generation of efficient programs in different domains, e.g.
mathematical calculations, robot control, text recognition, etc. In 36 cases, obtained
results were as good as or even better than known solutions [22]. However, con-
strained operators create infeasible regions in the search space, also eliminating
sequences of genes which may lead to high quality solutions. In the DGP approach
the problem does not exists anyway. The genotype (search space) and phenotype
(solution space) are distinguished and a genotype to phenotype mapping is used
prior to fitness evaluation of the phenotype. Because of separating the search space
from the solution space, legal as well as illegal genotypes are evolved, while each
genotype is mapped onto a legal phenotype. It is worth to notice that the evolution of
an illegal genotype may lead to the legal genotype constructing the expected result.
Thus, the whole search space is explored. Genotypes usually are represented by trees.
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Nodes of the tree are genes specifying construction functions for a solution of the
problem. The edges indicate an order of execution of these functions (a procedure of
construction).1 Genotype to phenotype mapping (GPM) is performed by the execu-
tion of this procedure, starting from the root. So, if the target solution (phenotype) is
a sequence of tasks with allocated resources, which is usually created by the project
manager, then the construction of the solution will be a method showing how the
project manager selects a resource to be allocated to each of the tasks. Therefore, the
DGP does not evolve a project schedule but the project manager itself. A genotype
defines how the project manager uses resource allocation strategies to create a project
schedule.

3 Resource Constrained Project Scheduling Problem

Researchers’ attention has been focused on making the best use of scarce resources
available since PERT (Program Evaluation and Review Technique) and CPM (Crit-
ical Path Method) developed in the late 1950s [16]. RCPSP addresses the task of
allocating limited resources over time, in order to perform a set of activities subject
to constraints on the order, in which the activities may be executed [18].

3.1 Classical Approach

RCPSP attempts to schedule the project tasks, efficiently using limited renewable
resources, minimizing the maximal completion time of all activities V = v1, . . . , vn .
Each activity has a specific processing time pi and it requires resources R =
r1, . . . , rm to be processed. In general, activities may not be interrupted during
their processing (non-preemption) and cannot be processed independently from each
other, due to limited resource capacity and additional technological requirements.
Technological requirements are represented by precedence relationships that specify
a fixed processing order between pairs of activities. The finish–start relationship with
zero time lags means that the activity can be started immediately after all its prede-
cessors are completed. An example of a project plan with precedence constraints is
shown on Fig. 1. The objective of the RCPSP is to find feasible completion times for
all activities such that themakespan of the project isminimized, while the precedence
of activities and limits of resources are not violated [17].

3.2 RCPSP Extensions

Classical RCPSP is a rather basic model with assumptions that are too restrictive for
many practical applications. Consequently, various extensions of the RCPSP have

1A genotype in classical GAs represents a solution of the problem, while in the DGP a genotype
comprises a procedure for constructing that solution.
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Fig. 1 Task’s precedence
constraints

also been developed [15, 34]. The authors outline generalizations of the activity con-
cept, alternative precedence and resource constraints, as well as, deal with different
objectives, task graph characteristic and the simultaneous consideration of multiple
projects.

In the classical approach a goal of optimization is to minimize the makespan,
but in many practical problems the goal is to minimize the cost i.e. to minimize the
number of resources or the cost of using resources required for executing all tasks,
while time constraints should be satisfied. Such problems are defined as resource
investment problems [12] or resource renting problems [26]. Example of practical
application of this extension is the optimization of distributed embedded systems
[10], especially implemented as a network on chip architectures or based on multi-
core embedded processors [11]. Moreover, existing RCPSP approaches do not take
into consideration initial resource workload and resources are assumed to be steadily
available during an execution of the whole project. In spite of that, developers in a
software house or resources of an enterprise building houses, for example, may have
initial workloads when starting a new project. Such constraint better fits real-life
project management problems. Dealing with more than one project is common in
IT business, for example, where managers have to use a resource-sharing approach.
An extension of the problem, where resources are only partially available, since they
may be involved in many projects, was also investigated in [29, 30].

3.3 Solutions of the Problem

RCPSP has become a well-known standard of optimization, which has attracted
numerous researchers who developed both, exact and heuristic scheduling algo-
rithms. Among the first ones, Demeulemeester and Herroelen [6] proposed a depth-
first branching scheme with dominance criteria and the bounding rules. In [4] a
branching scheme which starts from a graph representing a set of conjunctions and
disjunctions was used. Another method, a tree search algorithm was presented in
[24]. It is based on a mathematical formulation that uses lower bounds and dom-
inance criteria. According to [2], the optimal solution can be achieved by exact
procedures only for small projects, usually containing less than 60 tasks and not
highly constrained. Moreover, exact methods may require a significant amount of
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computation time. Therefore heuristics have been preferred instead of exact methods
due to substantial limitations of these latter ones. In-depth study of the performance
of recent RCPSP heuristics can be found in Kolisch and Hartmann [19]. Heuristics
described by the authors, include X-pass methods, also known as priority rule based
heuristics, classical metaheuristics, such as Genetic algorithms (GAs), Tabu search
(TS), Simulated annealing (SA), and Ant Colony Optimisation (ACO). They give a
performance comparison of these methods as applied to different standard instances
sets, generated by ProGen in the PSPLIB [20]. Two approaches of TS, for artificially
created dataset instances, but based on real-world instances (got from Volvo IT and
verified by experienced project manager), were investigated in [32].

Another metaheuristic algorithm, driven by a metric of the gain of optimization
(MAO) [8], was also applied to the RCPSP [27]. The advantage of the algorithm
is that it has a capacity of getting out of local minima. The authors adapted the
algorithm to take into account specific features of human resources participating in a
project schedule. The computational experiments showed significant efficiency of the
approach in optimizing the RCPSP and an extension of the problem, where resources
are only partially available, since they may be involved in many projects [29].

One of the latest review papers on solving RCPSP by exact methods and heuris-
tics has been published by Deiranlou and Jolai [5], who paid particular attention to
GAs. They introduced a new crossover operator and auto-tuning for adjusting the
rates of crossover and mutation operators. Two approaches for solving the prob-
lem with GAs and GP are given in [13]. The authors achieved good quality results
by the use of GAs. With GP, they described a methodology to evolve scheduling
heuristics in a small amount of time. Yet, they state that GAs, as a technique, are
inappropriate for dynamic environments and for projects with large number of activ-
ities, because of their uncertainty and amount of time required to obtain satisfactory
results. The authors propose GP to find a solution of an acceptable quality within a
reasonable time.

4 Adaptation of the DGP to the RCPSP

The adaptation consists in creating a tree which defines a method of allocating
resources to tasks by a project manager. Then, a transformation of the tree into a
target solution (a target system) is given, in order to evaluate a quality of results.
Genetic operators are adapted to the tree, too.

4.1 Evolution Process

An evolution process in DGP is similar to other genetic approaches. It starts with
an initial population with m individuals. Subsequently, individuals are randomly
drawn from the population and are subject to operations of crossover, mutation and
reproduction, such that a size of each population Π is as follows:
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Π = Ψ + Ω + Φ = α(γ · m + δ · m + (m − Ψ − Ω)) = αm (1)

γ + δ ≤ 1 (2)

where
Ψ = α · γ · m—the number of individuals created by the crossover,
Ω = α · δ · m—the number of individuals created by the mutation,
Φ = α(m − Ψ − Ω)—the number of individuals created by the reproduction,
γ ∈ [0, 1]—the probability of crossover,
δ ∈ [0, 1]—the probability of mutations,
m—the number of tasks in the project,
α—a constant.

If they satisfy time constraints, they are passed to the next generation. During evo-
lution only genotypes are evolved, while the genotype-to-phenotype mapping is used
to create phenotypes. Then, the fitness of newly created genotypes is calculated. In
that way, a quality of the phenotypemay be evaluated in order to find procedures con-
structing the best solution. This iterative process is repeated over many generations
until a predefined number of generations has been reached.

4.2 Genotypes and Phenotypes

In our method a genotype of the project manager is represented by a binary tree that
comprises resource allocation strategies and away of applying them for the activities.
The tree edges represent a division of the list of activities into two subgroups, while
nodes specify a location of the division di (important only for the internal nodes) and
a resource allocation strategy si (used only by leaves) (Fig. 2). The strategy, which
will be assigned to each of the subgroups is specified in an appropriate child of the
node. The method (actually the project manager) uses a list of possible strategies,
whichmight be associated to the genes, for resource assignment. These are presented
in Table1. The first two strategies, search for a resource which is the fastest or the
cheapest, its load is not taken into consideration. Strategies 3 and 4 refer to tasks
execution time. Task may be assigned to a resource, which will start the task as fast
as possible or execute it as soon as possible, respectively. The last two strategies
check, how the resource assignment and the task allocation affect current duration
and current cost of the schedule that is being built.

A root of the genotype tree specifies a construction of an embryonic system,
while all other nodes correspond to functions that schedule tasks, according to the

Fig. 2 Tree node
di—dividing point,
si—decision strategy
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Table 1 Strategies for
implementation of tasks

No. Strategy

0 The fastest resource

1 The cheapest resource

2 The earliest start of the task

3 The earliest finish of the task

4 The smallest local duration of schedule

5 The smallest local cost of the system

assigned strategies. The initial population consists of individuals generated randomly
by recursively creating nodes until a pre-established maximum tree height H is
reached. An increase of the H causes doubling the divisions and hence the number
of leaves of the tree. Therefore, in order to get all possible variations of strategies,
the number of leaves (3) should be at least the number of activities in the project. At
the beginning, the genotype is a full tree, where each node has one of the strategies
assigned with the same probability and a random di , which is inversely proportional
to H . It has to be verified whether nodes contain improper values of di . The dividing
point cannot be bigger than the number of activities in currently considered subgroup.
Oneof the repairingmechanisms couldbe a “deleting repair” that removes all children
of the invalid node. The process is similar to withering of unused features in live
organisms, like in intron splicing [1, 33]. However, we used a “replacing repair”
that replaces the invalid node by any of its children, instead of removing the entire
branch. Therefore, more genetic information will be kept in the genotype. Our tests
have shown that 4685 repairs were required, for a project with 4 resources and a
deadline equal to 80, out of 6000 chromosomes, which were generated during 100
generations of 30 individuals. With no repair, about 2 leaves would have been cut
off each time (2.17 on average). The repair allowed to save 1466.9 leaves of the tree
which is 14.5%, where each leaf may have one of 6 different strategies.

Leafsnum = 2H−1 (3)

4.3 Genotype-to-Phenotype Mapping

A GPM is used to transform the tree structure into a sequence of decision strategies,
corresponding to the project activities. The sequence of strategies is obtained by
traversing the tree in the depth-first order starting from the top node (the root).
It corresponds to the list of leaves starting from left to right. If a node has children, a
di is used for dividing currently considered project activities into two subgroups and
strategies are assigned to them. The left child defines a strategy for the first subgroup
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Fig. 3 Genotype with 6 decision strategies (0–5) represented by a binary tree (H = 4) and a
sequence of decision strategies (strat.) after the decoding, corresponding to the project activities
(task)

and the right child for the other. Then, subgroups of activities are passed to offspring
nodes and the process is continued. Finally, as a result, we obtain a sequence of
decision strategies (strat), assigned to the tree leaves, each corresponding to the
given project activity. For the tree from Fig. 3 this works as follows:

• First, tasks are partitioned into subgroups: {T0−T5} and {T6−T19}.
• Next, the first subgroup is divided into {T0−T1}, {T2−T5}, and the second group
is divided into {T6−T12}, {T13−T19}.

• Then, the subgroup {T0−T1} is associated with the leaf, hence the strategy 1 is
assigned to tasks T0 and T1. The subgroup {T2−T5} is partitioned into {T2−T4}
and {T5}.

• Afterwards, the strategies 4 and 0 are assigned to tasks T2, T3, T4 and T5 respec-
tively, and so on.

Subsequently, the decision strategies are used to construct the target schedule
(phenotype), according to strategies specified by the genotype nodes. The project
schedule is constructed by executing functions corresponding to the nodes. Each
function takes into consideration all requirements and constraints. Thus, a genotype
is always mapped onto a legal phenotype. The following steps have to be carried out,
to create a task schedule:

1. search activities from the task graph, according to the precedence relationships,
in order to find a list of ready-to-start tasks,

2. assign the strategieswith corresponding tasks and execute the strategy to calculate
a resource to allocate,

3. schedule tasks—calculate a start time for each task, based on the earliest prece-
dence relationships and the feasible time of a resource,

4. repeat the first step, until there are unassigned tasks.
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Finally, a feasible project schedule is obtained. The phenotype is used for evalua-
tion of the quality (fitness) of the corresponding genotype. The goal of the evolution
is to find the genotype giving the best result.

4.4 Fitness Function

Each individual in the population is measured in order to check the quality of the
solution. A numerical value, called fitness, is calculated for the project schedule
obtained after GPM. It is defined as the project cost (C), using the following equation:

C =
r∑

j=1

Ce( j) · Tp +
n∑

j=1

(
Cu( j) +

m∑

i=1

T (i, j) · Ca( j)

)
(4)

where Ca( j)—cost of task execution per time unit by the resource R j , Ce( j)—
the cost of the employment of the resource R j , Tp—the project duration, Cu( j)—
resource R j unit cost, T (i, j)—safe time estimate of task i being executed by the
resource R j , n—the number of resources used in the project schedule, m—the num-
ber of tasks, r—the number of resources in the resource library. The first sum corre-
sponds to the resourcemaintenance cost in the project. These are constant in execution
time of the whole project no matter how high a workload of a team developing the
project is. The second term occur only when a resource is being assigned to the
project. These comprise a resource deployment cost and a sum of execution costs of
all allocated activities. The genotypes that produce lower project cost are considered
to be the better ones.

4.5 Genetic Operators

The genetic operations that are performed during the run (i.e. crossover, mutation,
reproduction) are based on techniques described in [9]. A crossover is applied with
the probability γ ∈ [0, 1] on a randomly selected pairs of individuals. Next, the
decision trees in pairs are pruned by removing a randomly selected edge. Then,
subtrees are swapped between both parent genotypes. Similarly, amutation is applied
on each genotype in the population with the probability δ ∈ [0, 1]. Afterwards, one
of the following modifications, selected with the same probability, is done on the
decision tree:

1. a randomly selected node is changed to another,
2. a randomly selected edge is pruned and the subtree is removed,
3. two random nodes are created and added to a randomly selected leaf.
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Modifications are done only when the subtree contains more than one node. If the
newly created tree is too high, it is pruned to the allowed height. Then, faulty nodes are
removed to preserve the correct tree decoding. Implementation of genetic operators
ensures that the correct genotype-tree structure is always kept.Moreover, they neither
break precedence constraints nor produce infeasible schedules.

5 Experimental Results

Based on the above adaptation an algorithm was implemented and tested on projects
from PSPLIB, developed by [20]. However, we considered an extension of RCPSP
where resources have already got their own schedule, randomly allocated from a
different project instance, located in the same group (so called an initial schedule).
Such activities cannot be moved and therefore the resources were available only
in particular time periods. Thus, our results cannot be compared with the optimal
ones, because of different problem statement. So, we had to compare our results
with results obtained by the use of methods which were available in the literature.
The comparative study is described in Sect. 5.3. In most of the tests, the number of
generations (GEN) was set to 100 and the tree height was set to 10, because for
bigger values the difference of the parameters has a little effect on the results.

5.1 Test Instances

The library for RCPSP contains 2040 projects with 30, 60, 90 and 120 activities
for which either optimal, best-known or lower bound solutions are given. For each
problem size, a set consists of 480 instances in groups of ten, which have been
systematically generated by varying three parameters: network complexity, resource
factor, and resource strength. The parameters have a big impact on the hardness of the
project instances [20]. The set with 30 non-dummy activities is the hardest standard
set of RCPSP-instances for which all optimal solutions are currently known [6].

In our study we used project instances with 30 non-dummy activities. The renew-
able resources were randomly generated such that the resource unit cost Cu( j) and
the execution cost of activityCe( j)might vary up to 10% from default values, which
were 20 and 1 respectively. They are general purpose resources, so theymight execute
each activity. Values of resource parameters were set as shown in Table2. We tested
2 randomly selected instances from each of the groups. For each project instance 10
independent runs were performed and the results were averaged.
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Table 2 Values of resource
parameters in the experiments

j Ca( j) Cd ( j)

1 0.95 20

2 0.96 20

3 1.07 20

4 0.9 22

5 1.03 19

6 0.97 20

7 1.0 22

8 0.99 19

9 0.91 20

10 1.1 22

5.2 Analysis of the Evolutionary Process

5.2.1 Selection of Individuals

At first, we tested three reproduction methods: ranking, roulette-wheel and tourna-
ment selection (tournament size equals 3). In the roulette-wheel method (Fig. 4a), the
cost after 100 generations was approximately the same for various probabilities of
mutation and crossover. However, the best results were obtained for a small proba-
bility of crossover. The population contained randomly selected individuals with the
probability proportional to their fitness and with no certainty that the best one would
be reproduced. At the beginning the population was the most varied and its diversity
lowered in further generations. But the best result in every subsequent generationwas
getting worse. The project cost was almost the same, along with the increase of the
probability of both genetic operators, while in other methods it rapidly grew when
the sum of the probabilities was close to 1. The reason was too small number of good
individuals that were reproduced and too large number of newly created individu-
als in generations. In the tournament method (Fig. 4b) and ranking method (Fig. 4c)
good quality results started to dominate in the population very quickly along with the
increasing number of generations and therefore the project cost was decreasing. The
convergence of the ranking method was slightly faster than the tournament method.
In the former, individuals with high cost were quickly eliminated and the best result
was found faster (in 6 generation) than in the latter (in 9 generation). Yet, the final
result obtained by the tournament method was better, on average, than obtained by
the ranking and therefore it was chosen for further tests. Further improvement was
very slight, but it occurred till the last generation.

5.2.2 Testing Various Probabilities of Genetic Operators

Next, tests were executed in order to examine how various probabilities of crossover
(Fig. 5a, b) and mutation (Fig. 5c, d) influence the algorithm performance.
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(a)

(b)

(c)

Fig. 4 The average project cost from the best individuals in each test run after 100 generations
(left column) and the project cost in generations for δ = 0.05, γ = 0.65 (right column), Π = 90
minavg—the average project cost from the best individuals in each test run maxavg—the average
project cost from the worst individuals in each test run, min—the minimal; max—the maximal;
avg—the average project cost, from all individuals of a given generation and all test runs. aRoulette-
wheel selection. b Tournament selection. c Ranking selection

The Figures show the average project cost from the best individuals in each test run.
Usually, the project cost becomes lower along with increasing γ as well as increasing
δ, because the operators produce more new genotypes and the population is more
diverse. Thus, the chance of finding the optimal solution is bigger. However, too
large number of newly created individuals makes the best ones, that were obtained
in the evolution process, do not survive and the evolution itself is more random.
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(a) (b)

(d)(c)

Fig. 5 The average project cost from the best individuals in each test run. a Π = 60, γ = 0.05.
b Π = 120, γ = 0.05. c Π = 60, δ = 0.05. d Π = 120, δ = 0.05

In both probabilities of mutation and crossover the best amount of individuals that
were evolved was about 70–75%. This characteristic is even more noticeable for
a greater number of individuals in the population. If Π = 120, the results were
improved but for the probabilities greater than 0.7 they were even worse than for
Π = 60.

5.3 Comparative Study

In order to highlight strong and weak points of our adaptation of the DGP, it was
compared with a metaheuristic MAO [8], GA of Hartmann [14] and GP that use the
same evolution process but vary in a way of coding the genotype. MAO is based on
iterative improvements of target solution driven by a metric of the gain of optimisa-
tion, and it has the capacity of getting out of a local minimum. In [28] the MAO was
adapted to take into account specific features of human resources participating in a
project schedule. Their research showed high efficiency of the algorithm for resource
allocation. GAs have similar evolution process but they differ in a way of coding the
genotype. In GA the genotype does not have a tree structure. Genetic operators are
performed directly on a sequence of resources corresponding to project activities.
Mutation changes a resource on a randomly drawn position; crossover swaps two
subsequences of resources, which were cut at a random position. On the other hand,
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(a) (b)

(d)(c)

(e) (f)

Fig. 6 Project cost in each generation forγ = 0.65, δ = 0.05minavg—the average project cost from
the best individuals in each test run maxavg—the average project cost from the worst individuals
in each test run, min—the minimal; max—the maximal; avg—the average project cost, from all
individuals of a given generation and all test runs. a Π = 60, GA. b Π = 120, GA. c Π = 60, GP.
d Π = 120, GP. e Π = 60, DGP. f Π = 120, DGP

GP uses a genotype represented by a binary tree, but with leaves that comprise the
number of resource to allocate instead of the strategy of a resource assignment.

The Fig. 6 shows a comparison of the evolution process in genetic approacheswith
different genotype representation. In GA, the evolution is long lasting. Genetic oper-
ations are performed randomly and without any context. In case of GP and DGP tree
structures allow for preserving information about the way of constructing the result.
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(a) (b)

(c) (d)

Fig. 7 The uncorrected sample standard deviation σ of the project cost in generations. a γ =
0.3, δ = 0.3,Π = 60. b γ = 0.3, δ = 0.3,Π = 120. c γ = 0.15, δ = 0.7,Π = 60.
d γ = 0.15, δ = 0.7,Π = 120

Thus, convergences of GP and DGP are much faster. Moreover, the usage of these
strategies causes that genotypes are of better quality from the very beginning.

The same average project cost from the best individuals in each test run was
obtained after 10 generations by DGP while GP needed 20 generations. Further
improvement is very slight, but it occurs till the last generation with a predominance
of DGP. Both the minimal and the minimal average cost were lower with the use of
DGP. This can be also observed on Fig. 7, where the uncorrected sample standard
deviation of the project cost is close to 0 after 10 generations, by the use of DGP.
The diversity of the population in GP is lower than in DGP, reaching its minimum
after 20 generations. After that it is slightly higher but it remains on the same level.

We have also performed efficiency test on all 480 project instances where 10
project schedules were computed for each test case (Fig. 8). The results showed that
after 100 generations the DGP outperformed the GA by about 2.4% and MAO by
about 7.3% as concerns project cost reduction (Table3). Results obtained by the use
of the GP and of the DGP are similar. On the other hand DGP is about 50% slower
than GA and about 25% slower than GP forΠ = 120. However, the timing is just for
illustration only, because the measurement was inaccurate due to operating system
dependency. It is worth noticing that the convergence of the DGP is fast and it does
not require as many generations to achieve good quality results. If we stopped the
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(a) (b)

(c) (d)

Fig. 8 Experimental results for different methods for γ = 0.65, δ = 0.05, Π = 120 minavg—the
averageproject cost from thebest individuals in each test run,min—theminimal project cost, fromall
individuals of a given generation and all test runs, σ—The uncorrected sample standard deviation,
time—computation time. GA genetic algorithm, GP genetic programming, DGP developmental
genetic programming

Table 3 Experimental results for different methods for γ = 0.65, δ = 0.05, Π = 120

Scheduling method minC minT Computation time (s)

MAO 638.25 103.02 4560

GA 606.37 94.50 32.463

GP 592.16 90.76 40.162

DGP 591.77 90.57 49.862

minC—theminimal project cost, from all individuals of a given generation and all test runs, minT —
the minimal project time, from all individuals of a given generation and all test runs

calculations after 5 generations, it would occurred that theDGP allowed for obtaining
the project cost which is lower by 7% than the GA. Moreover, the result was better
than the one obtained by the GA after 100 generations, in over 19 times greater
computation time. The same result was obtained slower with the use of the GP (by
18%). So, the main strength of the DGP is in generating quite good results much
faster than other genetic approaches. Furthermore, the uncorrected sample standard
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deviation of the DGP was lower than the deviation of the GA (by 55%), and also
lower than the deviation of the GP (by 21%). Thereby DGP is better, on average.
This means that it does not require as many test reruns, because every attempt is
close to the best one.

6 Conclusions

The objective of this research was to introduce and evaluate a new heuristic that can
efficiently solve an extension of the RCPSP. It is based on the idea of developmental
genetic programming. An algorithm, which was worked out, searches for the best
resource allocation strategies in a project. The method of constructing a project
schedule takes the formof a decision tree that evolves, instead of evolving the solution
itself. The quality of the solution is evaluated after the GPM.

The fitness function was defined as the project cost. Genetic operators specified
for RCPSP were presented as well. Three reproduction methods were tested, from
which the tournament method gave the best results. Then, the influence of various
probabilities of mutation and crossover on the algorithm performance was evaluated.
Usually, the project cost was lower along with increasing γ as well as increasing δ.
The best proportion between newly created individuals in each generation, by the
crossover andmutation, and individuals selected from the current population is about
3:1. The project cost also decreases as the number of generations increases. Yet, 10
generations is enough to obtain good quality results. Further reduction of the project
cost may be achieved by increasing the population size.

Experimental results showed that our adaptation of DGP is efficient and may be
used for solving the extension of the RCPSP. It was compared with other genetic
approacheswith different genotype representations. The usage of the trees accelerates
the evolution. This makes genotypes are of better quality from the beginning, which
accelerates the convergence. The DGP gives significantly better results than the other
methods. After 100 generations it is 2.4%better than theGAand 7.3%better than the
MAO, as concerns project cost reduction. However, the main advantage of the DGP
is that it generates quite good results much faster than the other genetic approaches.
Just after 5 generations it allowed for obtaining the project cost which is better than
the one obtained by the GA after 100 generations, and this was done over 19 times
faster.
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Bayesian-Based Approach to Application
of the Genetic Algorithm to Localize the
Abrupt Atmospheric Contamination Source

A. Wawrzynczak, M. Jaroszynski and M. Borysiewicz

Abstract We apply the Bayesian inference in combination with the Genetic algo-
rithm (GA) to the problem of the atmospheric contaminant source localization.
The algorithm input data are the on-line incoming concentrations of released sub-
stance registered by sensors network. The proposed reconstruction algorithm is firstly
adjusted and tested based on the data from the synthetic experiment. The proposed
GA scan 5-dimensional parameters space searching for the contaminant source coor-
dinates (x,y), release strength (Q) and the atmospheric transport dispersion coeffi-
cients. Based on the performed tests the most efficient GA configuration is identified.
To speed up the algorithm the dynamical termination criteria, founded on the proba-
bilistic requirements regarding the searched parameters value, is proposed. Then, we
apply developed algorithm to localize the release source utilizing data from the field
tracer experiment conducted in May 2001 at the Kori nuclear site. We demonstrate
successful localization of the continuous contamination source in very complicated
hilly terrain surrounding the Kori nuclear site. Results indicate the probability of a
source to occur at a particular location with a particular release strength.

1 Introduction

Accidental atmospheric releases of harmful material pose high risks to human health
and the environment. In the event of an atmospheric release of chemical, but also
radioactive, biological materials, emergency responders need quickly to predict the
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current and future locations and concentrations of the substance in the atmosphere.
Therefore, it is valuable to develop the emergency system, which based on the con-
centrations of a dangerous substance can estimate the probable location of the release
source.Moreover, the location of the contamination source should be found as soon as
possible. The most obvious way is to propose the simulation that gives the same sub-
stance point concentrations as registered by the sensors. However, to create themodel
realistically imitating the real situation based only on the sparse point-concentrations
is not trivial. This task requires the specification of the set of model parameters. The
event reconstruction problem can be reformulated into a task of sampling an ensem-
ble of simulations, guided by comparisons with data.

A comprehensive literature review of past works on solutions of the inverse prob-
lem for atmospheric contaminant releases can be found in (e.g. [1]). The problem of
the source term estimation was studied in the literature grounded both on the deter-
ministic and probabilistic approach. In [2] was implemented an algorithm based
on integrating the adjoint of a linear dispersion model backward in time to solve a
reconstruction problem. In [3] were introduced dynamic Bayesian modeling, and the
Markov Chain Monte Carlo (MCMC) sampling approaches to reconstruct a conta-
minant source. The effectiveness of MCMC in the localization of the atmospheric
contamination source based on the synthetic experiment data was presented in [4, 5].
The advantage of the Sequential Monte Carlo over the MCMC in the estimation of
the probable values of the source coordinates was presented in [6].

The problem of finding the ’best fitted’ model parameters, for which a forward
atmospheric dispersion model output will reach agreement with real observations,
can be considered as the optimization problem. Metaheuristics, such as genetic algo-
rithms (GA), are broadly used to solve various optimization problems. The concept
of GA was to use the power of evolution to create a stable and universal tool reliable
of solving optimization problems [7, 8]. Since GA introduction and propagation, the
GA have been often used as an alternative to the conventional optimization methods
and has been successfully applied in a variety of areas. For example it was used in
control engineering [9], finding hardware bugs [10] and much more e.g. [11]. The
GA has been also used in environmental sciences problem e.g. in the addressing air
quality problem [12].

Application of the metaheuristic like GA requires defining the values of several
algorithm components and parameters. These parameters have a large impact on per-
formance and efficiency of the algorithm (e.g., [13–15]). Therefore, it is important
to estimate the parameters of the algorithm best suitable for the considered opti-
mization problem. The optimal values for the parameters depend mainly on: (a) the
problem; (b) the domain of the problem to deal with; and (c) computational time that
can be spent on solving the problem. Usually, in the algorithm parameters tuning a
compromise between solution quality and computational time should be achieved.

In this paper, we apply the GA together with the Bayesian approach to the
problem of localizing the abrupt atmospheric contamination source based on point-
concentrations reported by the sensors network. Using the synthetic experiment data
we found the efficient GA configuration best suitable for the algorithm performance.
Then we run the proposed algorithm for the real field tracer experiment data.
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1.1 Synthetic Data

Our primary goal is to propose the efficient algorithm being able to conduct dynamic
inference of an unknown atmospheric release. To test the proposedmethodwe require
some concentration data. To satisfy this requirement we have performed the simu-
lation with the use of the atmospheric dispersion second-order Closure Integrated
PUFF model (SCIPUFF) [16]. SCIPUFF is an ensemble mean dispersion model
designed to compute the time-dependent field of expected concentrations resulting
from one or more sources. The model solves the transport equations using a second-
order closure scheme and treats releases as a collection of Gaussian puffs.

In simulation, we assumed thatwe have 10 sensors distributed over 15km× 15km
area, the location of sensors was chosen randomly within the domain (Fig. 1). The
atmospheric contamination source was located at x = 3km, y = 8km, H = 25m
within the domain. The simulated release was continuous with rate Q = 8000g/s
and started one hour before first sensors measurements. The wind was directed along
x axis with speed 5m/s. Further, in this paper we assume that the algorithm input

Fig. 1 Distribution of the
sensors and the release
source within the considered
domain
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Table 1 Concentrations [g/m3] reported by sensors in subsequent time intervals

Sensor t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

S1 0 0 0 0 0 0

S2 0 3.62E-09 4.93E-09 6.98E-09 4.15E-09 6.65E-09

S3 9.15E-09 2.88E-08 1.97E-08 1.88E-08 1.69E-08 1.62E-08

S4 3.83E-12 1.77E-11 4.89E-12 6.53E-12 2.31E-12 7.77E-12

S5 1.14E-08 1.83E-08 1.25E-08 1.20E-08 1.10E-08 1.03E-08

S6 2.91E-06 4.85E-04 4.77E-04 4.71E-04 4.43E-04 4.49E-04

S7 3.28E-05 3.27E-05 3.21E-05 3.13E-05 3.01E-05 2.87E-05

S8 2.29E-11 2.15E-10 1.05E-10 1.17E-10 7.56E-11 1.14E-10

S9 0 0 0 0 0 0

S10 0 0 0 0 0 0
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information are reported every 15min (in subsequent time steps) during 1.5h con-
centrations of the dispersed substance registered by 10 sensors (Table1). We run
algorithm localizing the source of contamination just after the first recording from
sensors (t = 1) and update the obtained probabilities with use of the developed
algorithm by subsequent sensors data.

2 The Reconstruction Procedure

2.1 Bayesian Inference

The Bayes’ theorem, as applied to an emergency release problem, can be stated as
follows:

P(M |D) ∝ P(D|M)P(M) (1)

where M represents possible model configurations or parameters and D are observed
data. For our application, Bayes’ theorem describes the conditional probability
P(M |D) of certain source parameters (model configuration M) given observed
measurements of concentration at sensor locations (D). This conditional probability
P(M |D) is also known as a posteriori distribution and is related to the probability
of the data conforming to a given model configuration P(D|M), and to the possi-
ble model configurations P(M), before taking into account the measurements. The
probability P(D|M), for fixed D, is called the likelihood function, while P(M)-a
priori distribution [17]. To estimate the unknown source parameters M using for-
mula (1), the posteriori distribution P(M |D) must be sampled. P(D|M) quantifies
the likelihood of a set of measurements D given the source parameters M .

Value of likelihood for a sample is computed by running a forward dispersion
model with the given source parameters M and comparison of the model predicted
concentrations in the points of sensors location (within a considered domain) with
actual observations D. The closer the predicted values are to the measured ones, the
higher is the likelihood of the sampled source parameters. As the sampling procedure
we use an GA to obtain the posterior distribution P(M |D) of the source term para-
meters given the concentration at sensor locations. This way we replace the Bayesian
formulation with a sampling procedure to explore the model parameters space and
to obtain a probability distribution for the contamination source parameters.

A measure indicating the quality of the current GA population is expressed in
terms of a likelihood function. This function compares the predicted from the model
and observed data at the sensor locations as:

λ(M) = −
N∑

i=1

[log(C M
i ) − log(C E

i )]2, (2)
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where λ is the likelihood function, C M
i are the predicted by the forward model

concentrations at the sensor locations i , C E
i are the sensor measurements and N is

the number of sensors.
The posterior probability distribution (1) is computed directly from the resulting

GA generations and is estimated as:

P(M |D) = 1

n

n∑

i=1

δ(Mi − M), (3)

which represents the probability of a particular model configuration M giving results
that match the observations at sensor locations. Equation (3) is a sum over the entire
GA generation. Thus δ(Mi − M) = 1 when Mi = M , and 0 otherwise. If in
the generation many chromosomes have the same configuration P(M |D) increases
through the summation increasing the probability for those contamination source
parameters.

2.2 Forward Dispersion Model

A forward model is needed to calculate the concentration C M
i at the points i of

sensor locations for the tested set of model parameters M at each GA step. As
a testing forward model we selected the fast-running Gaussian plume dispersion
model (e.g. [18]). The Gaussian plume dispersion model for uniform steady wind
conditions can be written as follows:

C (̃x, ỹ, z) = Q

2πσyσzU
exp

[

− 1

2

(
ỹ

σy

)2
]

×
{

exp

[

− 1

2

(
z − H

σz

)2
]

+ exp

[

− 1

2

(
z + H

σz

)2
]}

(4)

whereC (̃x, ỹ, z) is the concentration of the emission (inmicrograms per cubicmeter)
at any point x̃ meters downwind of the source, ỹ meters laterally from the centerline
of the plume, and z meters above ground level, U is the wind speed directed along x
axis, Q is the emission rate or the source strength and H is the effective height of the
release equal to the sum of the release height and plume rise. In the Eq. (4) σy and σz

are the standard deviation of concentration distribution in the crosswind and vertical
direction. These two parameters were defined empirically for different stability con-
ditions [19, 20]. In this case we restrict the diffusion to the stability class C (Pasquill
type stability for rural area). In scanning algorithm we assumed that we do not know
exact behavior of the plume and consider those coefficients as unknown. Thus, the
parameters σy and σz are taken as: σy = z1 · x̃ · (1 + x̃ · 4 · 10−5)−0.5, σz = z2 · x̃
where values z1 and z2 are sampled by algorithm within interval [0.001, 0.35]. The
simple mathematical transformation of the coordinate system is required to apply
formula (4) to search for the contamination source position (x, y) within the domain
15km × 15km (Fig. 1).
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2.3 Genetic Algorithm

The localization of the contamination source within the predefined domain requires
the recognition of the atmospheric dispersion model parameters for which the model
output at the sensors location meets the real data. In this context, we can say that
the problem can be seen as the optimization problem for which GA can be applied.
Figure2 presents the concept of GA application in the Bayesian estimation of the
unknown model parameters. The algorithm starts with the defining the initial pop-
ulation. The population is composed of the predefined number of chromosomes,
P(τ ) = xτ

1 , . . . , xτ
n , for the generation τ , being initially randomly drawn from the

admissible set of values. This set is explicitly defined by the space of explored para-
meters. GA chromosome is configured as a binary value representing the real value
of searched parameters. The quality of each chromosome in the current population
is evaluated based on the cost, or objective/likelihood function. Various objective
functions can be applied; its form depends upon the problem being solved. We use
the function presented by Eq. (2). The application of the genetic operators ’improves’
the current population.

Figure2 presents the sequence of applied genetic operators:

no

no

Start

Produce the generation

of chromosomes M {x,y,Q,z1,z2}
fromthe apriori distribution

Evaluationofthe
generation with use of the
likelihood function Eq.(2)

Termination
criteria have
been met?

Genetic operators

Selection

Crossover

Mutation

time_step=1

time_step<T?
yes

yes

Generate
a posteriori distribution

time_step++

Stop

Fig. 2 Flow chart of the stochastic reconstruction procedure
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1. Selection. Information on the quality of population’s chromosomes is used to per-
form a selection. The portion of the population that is replaced in each generation
is done based on the likelihood function (Eq.2) value obtained during the evalua-
tion of the population (various in each algorithm iteration). There are many ways
of dealing with GA selection e.g. roulette selection, rank selection, hard and soft
tournament. For the problem presented the all mentioned methods were tested. In
this paper, we present the results of selection based on rank and hard tournament
selection. Results obtained applying these two selections are compared further in
this paper. In the rank selection, the better likelihood function results in the lower
rank value leading to higher probability of being drawn to the next population.
Pseudo code presents Algorithm 1. In the case of hard tournament selection of
size 2, as the result of the tournament from each pair of the selected chromosomes
one with the better objective function value passes to the next population. Pseudo
code presents Algorithm 2.

2. Crossover. Crossover is process of replacing parents with their children in the
current population. Children are created by blending of the parents at the ran-
domly chosen crossover point. The crossover probability determines the number
of crossovers that occurs within the population. Similarly to the previous operator
there are many ways of dealing with GA crossover e.g. single point crossover,
multi-point crossover, uniform crossover, arithmetic crossover. For a given prob-
lem, the best results were achieved applying the multi-point crossover. Procedure
begins with performing, for each chromosome, the test for being a parent accord-
ing to the crossover probability CP. From the parents’ population the unexploited
pair is chosen, then one crossover point for each parameter encoded in the chro-
mosome is drawn, i.e. five points for the problem presented. Parents are split at
the crossover points for each encoded parameter, then (in term of each encoded
parameter) bits are swap resulting in two children. Pseudo code presents Algo-
rithm 3.

3. Mutation. It changes the chromosome’s features. By giving a chance of chang-
ing chromosome’s individual bits mutation allows the algorithm to search for the
entire solution’s space and not to converge to local extremes. The mutation prob-
ability determines the number of mutations that occurs. The most frequently used
are uniform mutation and not-uniform mutation. For the given problem the best
results were achieved with uniform mutation in which all chromosome’s bits are
mutated with the mutation probability MP. Pseudo code presents Algorithm 4.

After performing the selection, crossover and mutation, the new generation (τ + 1),
being subject to the new evaluation, is established. After some number of generations
the algorithm converges—it is expected that the best chromosome represents a near-
optimum (reasonable) solution. The process stops when the termination criterion is
fulfilled. The most common termination criterion is a limited number of generations,
but in this paper we present another possibility.

In thepresented inSect. 3 tests the scannedparameters space M is five-dimensional
i.e. M ≡ {x, y, Q, z1, z2}. Correspondingly each chromosome M(i) stores the fol-
lowing information:
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• x , y—coordinates of contamination’s source in [m],
• Q—strength of release in [g/s],
• z1, z2—terms in the turbulent diffusion parametrization.

The parameters M are searched within the intervals x ∈ 〈0, 15000〉, y ∈ 〈0, 15000〉,
Q ∈ 〈1, 8000〉, z1 ∈ 〈0.001, 0.350〉 and z2 ∈ 〈0.001, 0.350〉. The precision P for
parameters x ,y equals Px,y = 1 (m), for Q: PQ = 1 (g/s), and Pz1 = Pz2 = 0.001.
The example of the encoded chromosome presents Fig. 3.

00010001000100010101010101010100110011000000110000011101

parameter x parameter  y parameter  Q parameter  z1 parameter  z2

Fig. 3 Example of the chromosome representing the searched model parameters
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In the reconstruction of the atmospheric contamination source the following GA
configuration was applied:

• Size of population N = 150;
• Selection:

– rank selection,
– hard tournament of size 2;

• Multi-point crossover with probability CP = 0.75, with 5 crossover points (5 is a
number of searched parameters);

• Uniform mutation with probability MP = 0.02.

The size of population, crossover probability and mutation probability were selected
based on the numerical tests presented in [21].

3 Reconstruction of the Synthetic Experiment

We assume that the concentrations from the sensors arrives subsequently in six-time
steps (Table1). We start to search for the source location (x, y), release rate (Q) and
parameters z1 and z2 after first sensorsmeasurements. Thus, reconstruction algorithm
is run with obtaining the first measurements from the sensors (t = 1 at Table1). We
assume that initially we have no a priori information about the parameters values.
So, the initial value of each parameter is draw randomly from the predefined inter-
val with the use of the uniform distribution. Then generation is evaluated with the
utilization of the likelihood function (Eq.2). The subsequent generations are iter-
atively updated by the genetic operators until the stop criterion is met. Of course,
there arises the question how to specify the termination criteria? The usual criterion
applied in GA is fixed number of generations. For the problem defined in this paper
the time of giving the answer is crucial, so the constant number of generations is
not optimal. In the estimation of the source of the atmospheric contamination, the
most important is to assess its location. Thus, crucial is assessment of the x and y
coordinates of the source. Applying the Bayesian approach we can ask what prob-
ability of estimation of these parameters will be acceptable. So, after applying the
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last genetic operator, i.e. mutation, the histograms of x and y parameters encoded
in the current chromosomes generation are evaluated. If many chromosomes have
the same parameters configuration the probability of individual value of parameter
increases. Consequently, the reconstruction algorithm is terminated when values of
parameters x , y will be obtained with probability greater than 0.8 and Q with prob-
ability greater than 0.7. If this condition is fulfilled, the posterior distributions of
all parameters are calculated. Obtained posterior distributions are considered as the
prior distributions in the subsequent time step. Consequently, in the next time step,
when new data from the sensors arrive the initial population is drawn uniformly from
the prior distribution i.e. posterior distribution from the previous time step [22].

We have run the reconstruction applying two types of the selection i.e. the rank
and the hard tournament selection. The number of generations required to fulfill the
dynamical termination criterion for both selections is presented in Table2. Compari-
sonmakes obvious that the rank selection is muchmore efficient, precisely it requires
ten times fewer generations than the algorithm with the hard tournament selection.
Thus, in the practical application is should be preferred. Figure4 illustrates the dis-
tribution of the estimated by the GA contamination source coordinates x and y in
subsequent generations in the first-time step. It is seen that in the 1st generation
the chromosomes are equally distributed within the scanned domain. However, the
applied genetic operators improve population quality in further generations and the
chromosomes gradually focus on the actual source location. Finally, for 19th gener-
ation the estimated by the GA contamination source location approaches the target
site. Figures5 and 6 present the posterior distributions for x , y and Q parameters
obtained in the succeeding time steps. These distributions were obtained based on the
chromosomes configurations in the last generation at given reconstruction algorithm
iteration. Based on the searched parameters value, encoded in the final chromosomes
population, the histogram for each parameter has been assessed. Obtained histograms

Table 2 Number of generations used in the reconstruction algorithm with the dynamic termination
criteria for the hard tournament of size 2 selection and with the rank selection, CP = 0.75 and
MP = 0.02

Time step Hard tournament selection Rank selection

Generation’s
number

Forward
dispersion
model’s runs

Generation’s
number

Forward
dispersion
model’s runs

t = 1 163 24300 20 3000

t = 2 71 10650 10 1500

t = 3 136 20400 9 1350

t = 4 125 18750 10 1500

t = 5 124 18600 12 1800

t = 6 99 14850 13 1950

Summary 717 107550 74 11100
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Fig. 4 Distribution of the x and y coordinates estimates during the GA runs for the given generation
in 1st time step (rank selection)

Fig. 5 Probability distributions of the models parameters x , y, and Q for the last generations in
1st, 2nd and 3rd time step (rank selection). Vertical red lines represent the target value
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Fig. 6 Probability distributions of the models parameters x , y, and Q for the last generations in
4th, 5th and 6th time step (rank selection). Vertical red lines represent the target value

show which values of the parameters were the most frequent in the last generation,
which directly is reflected in its probability.

Figures5 and 6 presents that the first sensors measurements allow to estimate the
searched parameters quite close to the target values. However, its estimation varies
in the subsequent time-steps. The probability distributions in subsequent time steps
reflect how the sensors data support or not the obtained distributions. As the estimated
parameter value, we provide the central value of the histogram bar with the highest
probability and as the error the half of the bar width. In the 6th time step the following
parameters were estimated P(x = 3050 ± 75) = 1, P(y = 7950 ± 75) = 1
and P(Q = 8100 ± 40) = 0.93. To adequately compare the results reported by
two proposed algorithms we have estimated the joint marginal distribution of x , y
and Q parameters. Figure7 present the posterior distributions averaged over all
time steps for the GA algorithm with the hard tournament and with rank selection
selection, respectively. The algorithm applying rank selection as the most probable
has pointed the parameters P(x = 3225 ± 75) = 0.64, P(y = 7875 ± 75) = 0.5
and P(Q = 7880 ± 40) = 0.25, while the algorithm applying the hard tournament
the parameters P(x = 2925 ± 75) = 0.33, P(y = 7725 ± 75) = 0.64 and P(Q =
7000 ± 40) = 0.67. We do not show the distributions for the z1 and z2 because we
do not know the target values for these coefficients. The reason is that the SCIPUFF
model used to generate the synthetic concentration data do not allow to specify it
directly. In the reconstruction procedure we could of course fix these coefficients
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Fig. 7 Cumulative probability distributions of the models parameters x , y, and Q averaged over
all time steps for two selection types. Vertical red lines represent the target value

according to the stability class pointed by the terrain and wind speed which in this
case could be the stability class C for which z1 = 0.22 and z2 = 0.2. However,
our numerical tests showed that we obtain better results when we do not restrict the
dispersion coefficients to the one given value. The ‘freed’ the dispersion coefficients
in some acceptable interval assumption allows to better fit the Gaussian plume to the
‘real’ data.

Comparison of the obtained results leads to the conclusion that algorithms apply-
ing both selection methods return similar results for the x and y parameters, at the
same time the algorithm using the hard tournament selection as the most probable
denotes Q = 7000g/s which differs from the true release rate for 1000g/s, while for
the rank selection algorithm hits the target value. Consequently, we can pointed the
algorithm applying the rank selection as more effective. The reason is the applied
dynamical termination criteria that resulted in the ten times less computational time
for rank selection than for the hard tournament selection. Thus, the rank selection
will be applied to the reconstruction of the real field tracer experiment.
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4 Reconstruction of the 31 May 2001 Kori
Tracer Experiment

We have applied the proposed in the previous sections reconstruction algorithm
localize a source of the release with the use of the data from field tracer experiment
conducted in May 2001 over the Kori nuclear site [23]. From 2000 to 2002 six
field tracer experiments had been conducted at the Kori site to the east of Korea [24].
These experiments have been carried out for the purpose of analyzing the site-specific
atmospheric dispersion characteristics and validating a real-time radiological dose
assessment system FADAS (Following Dose Assessment System) [25].

In this paper, we use data from the 3rd experiment taken on 31May 2001.A tracer
gas SF6 was released from the meteorological tower (58m high) with an average rate
75.79kg/h. Release started at 12:30 and lasted for 3.5h. The sampling of the tracer
has taken place every 10min since 15:00 up to 16:00. The 140 tracer gas samplers
were disposed in two lines along the roads with the radius of about 3 and 12km,
respectively from the release point. During the experiment, the meteorological data
were also measured at several locations. The topography, meteorological towers,
sampling points and release point locations present Fig. 8.

During the reconstruction, it is important to implement into the forward atmos-
pheric dispersion model the information about parameters characterizing the state
of the atmosphere that can have the most impact on the transport of the dispersed
substance. In the case of the Kori tracer experiment, one of themost important factors
is thewindfield. This experiment took place close to the sea coast of the east and south
direction. During the daytime, the wind blows from the east and south by the effects
of land-sea breeze. Therefore, the wind patterns are very complicated in coupling
with an elaborate hilly topography. Due to character of the experiment we have
chosen the SCIPUFF model [16] as the forward model to predict the concentrations
at the sensors locations. SCIPUFF can assimilate observational data ranging from a
single wind measurement to multiple profiles that include turbulence measurements
and/or boundary layer parameters such as Pasquill-Gifford-Turner stability class.
Thus, during the reconstruction we have included the wind speed, wind direction and
stability class recorded every 15min since 12:30 up to 16:00 by 5 meteorological
towers at a height of 10m (see Fig. 9). Based on these data SCIPUFF was able to
calculate the velocity field from interpolating observations.

Summarizing, the reconstruction problem undertaken in this section is character-
ized by: (1) the domain area of 15km × 15km, in which the contamination source
is searched for; (2) the gas samplers registered the tracer concentration in six-time
intervals during 10min since 15:00 up to 16:00 (i.e. 2.5h after starting the release);
(3) six meteorological towers register the wind speed and its direction every 15min
at a height of 10m; (4) very complex hilly terrain at the sea coast.

The task to localize the atmospheric contamination source based on the sensors
data from the Kori 2001 field tracer experiment was quite challenging. The first
problemwas the localization of the experiment. The Kori site is located at the bottom
of the protrusion and from three sides is surrounded by the sea, with bordering
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Fig. 8 Location of the release point M (red dot), sampling points (white and orange dots) and
meteorological towers (color dots) during the field tracer experiment conducted on 31 May 2001
at the Kori nuclear site

Fig. 9 Measurements of the wind speed and direction every 15min since 12:30 up to 16:00 during
the field tracer experiment conducted on 31 May 2001 at the Kori nuclear site. The arrows color
corresponds to the meteorological towers presented in Fig. 8
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land on the north side (Fig. 8). In this terrain the wind field configuration is very
complicated. As presents Fig. 9 during the experiment the wind direction recorded
by the meteorological towers changes significantly e.g. by station N6 even for 180◦
and more than 90◦ for other towers. The 140 automatic gas samplers were disposed
along the traffic roads. However, during this experiment significant missing rate of
air sampling took place. The main problem of the data is a large discrepancy between
concentrations recorded by neighboring sensors i.e. at very close location one sensor
returns the ‘zero’ concentration and the other a high rate. Thus, it was necessary to
perform the preselection of the sensors. We have selected 40 sensors marked at the
Fig. 8 by orange dots. The selected sensors reported entirely consistent data during
the release, hence can be used during the reconstruction.

In this reconstruction the scanned parameters space was M = {x, y, Q}. The
GA setup was identical as described in the Sect. 2.3, but we employed only the rank
selection. We have also make use of the dynamic termination criteria. Consequently,
the GA is terminated when some values of parameters x , y will be obtained with
probability greater than 0.8.

Figure10 present the posterior distributions for x , y and Q parameters obtained
in the first three time steps. One can see that the target values of source coordinates
were found by the algorithm quite fast. The dynamic termination criterion allowed to
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Fig. 10 Probability distributions of the models parameters x , y, and Q for the last generations in
1st, 2nd and 3rd time step for reconstruction of the field tracer experiment conducted on 31 May
2001 at the Kori nuclear site (rank selection). Vertical red lines represent the target value
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Fig. 11 Cumulative probability distributions of the models parameters x , y, and Q averaged over
all time steps for reconstruction of the field tracer experiment conducted on 31 May 2001 at the
Kori nuclear site (rank selection). Vertical red lines represent the target value

finish the reconstruction in just 45 generations resulting in 6750 runs of the SCIPUFF
model (i.e.: 10 generations in T = 1; 9 generations in T = 2; generations in 8
generations in T= 3; and only 6 generations in T= 4, 5, 6). The cumulative posterior
distributions are presented in Fig. 11. One can see that the location of the release
source was found quite well. Reconstruction algorithm pointed as the most probable
P(x = 6900 ± 75) = 0.52, P(y = 2175 ± 75) = 0.18 while the true values were
x = 7000 and y = 2000. The worst situation is with the release rate, because it was
over estimated by 20kg/h. There are several reasons for this mismatch between the
predictions and the measurements for the source reconstruction during Kori tracer
experiment. First of all, all concentrations measured during the experiment were
averaged values from a 10min release, whereas model predictions are steady-state
results. The second reason is that the height of the release was 58m while during the
reconstruction it was fixed at the sensor height i.e. 10m. It is also important to notice,
that very hilly terrain topography was not incorporated into the SCIPUFF model. In
consequence the reconstruction was not able to take into account the diversity of
the measured by the gas sampler concentrations owing to the altitude difference
connected with the placing the gas samplers along the road in the valley between
the hills. However, taking the above mention we can conclude that the proposed
reconstruction algorithm even in the so complicated domain was able to quite fast
find the release source location, which is one of the primary goals in the real-time
reconstructions.

5 Conclusion

We have presented a methodology to reconstruct a source causing an area of contam-
ination, based on a set of measurements. The method combines Bayesian inference
with the genetic algorithm and produces posterior probability distributions of the
parameters describing the unknown source. Developed dynamic data-driven event
reconstruction model couples data and pollutant dispersion simulations through
Bayesian inference. This approach successfully provide the solution to the stated
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inverse problem i.e. having the downwind concentrations and knowledge of the wind
field algorithm found the most probable location of the source and release strength.

We have proposed the dynamical termination criteria for the genetic algorithm.
This criteria reflects the probabilistic aspect of the obtained solution i.e. the GA is
terminated when some of the searched parameters are pointed with satisfactorily
probability. This approach allows to optimize the algorithm computational time. We
show that in the presented problem the rank selection is more efficient than the hard
tournament selection. The developed algorithm was also employed to perform the
reconstruction with use of the real field tracer experiment data. In the case of the
Kori experiment reconstruction algorithm correctly assessed the x and y coordinates
and overestimated release rate.

The probabilistic aspect of the solution optimally combines a probable answer
with the uncertainties of the available data. Among several possible solutions, the
Bayesian source reconstruction points the values of the model parameters that are
more consistent with the currently available data.
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