
Chapter 8
Normal Cone Method

An important characterization of efficient faces of a polyhedral set is the fact that
their normal cones contain strictly positive vectors. This will be utilized to develop an
algorithm to find the efficient solution set and the efficient value set of a multiobjective
linear problem.

8.1 Normal Index Sets

We consider a finite system of linear inequalities

〈ai , x〉 � bi , i = 1, · · · , m, (8.1)

where a1, · · · , am are n-dimensional column vectors and b1, · · · , bm are real num-
bers. The solution set of this system is denoted X . Throughout this chapter we assume
the following hypothesis:

(A1) The system (8.1) is non-redundant and consistent.
Recall that the set of active indices at a point x0 ∈ X is denoted I (x0), which

consists of indices i ∈ {1, · · · , m} such that 〈ai , x0〉 = bi for i ∈ I (x0) and
〈ai , x0〉 < bi for i /∈ I (x0). We also recall that given a face F of X , the index set
I (F) (sometimes denoted IF ) of F is the active index set at a relative interior point
of F , and pos(X ) is the positive hull of X .

Definition 8.1.1 A nonempty index set I ⊆ {1, · · · , m} is said to be normal if there
is some point x ∈ X such that

NX (x) = pos{ai : i ∈ I }.

It is clear that when X has a boundary point, that is, at least one vector among
ai , i = 1, · · · , m is nonzero, then normal index sets exist. Moreover, not every
subset of the index set {1, · · · , m} is normal.
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262 8 Normal Cone Method

Example 8.1.2 Consider a system of four inequalities in R
2:

x1 � 2
−x1 � −1

x1 + x2 � 3
−x1 − x2 � −2.

This system consists of four inequalities that we enumerate from one to four. It
is clear that the index sets {1}, {2}, {3}, {4}, {1, 3}, {1, 4}, {2, 3} and {2, 4} are all
normal, while the remaining subsets of the index set {1, 2, 3, 4} are not. For instance
I = {1, 2} is not normal because

pos{a1, a2} = pos

{(
1
0

)
,

(−1
0

)}
= pos

{(
t
0

)
, t ∈ R

}

is a normal cone to X at no point.

Lemma 8.1.3 An index set I ⊆ {1, · · · , m} is normal if and only if the following
system has a solution

〈ai , x〉 = bi , i ∈ I
〈a j , x〉 < b j , j ∈ {1, · · · , m}\I.

(8.2)

Proof Assume that the system (8.2) has a solution, denoted x . Then x is a boundary
point of X and the active index set at x is I . In view of Theorem 2.3.24, we have
NX (x) = pos{ai : i ∈ I }. By definition I is a normal index set.

Conversely, let I be a normal index set and let x ∈ X be a point such that NX (x) =
pos{ai : i ∈ I }. Since x is an element of X , it satisfies the system

〈ai , x〉 = bi , i ∈ I (x)

〈a j , x〉 < b j , j ∈ {1, · · · , m}\I (x).

In view of Theorem 2.3.24, we have NX (x) = pos{ai : i ∈ I (x)} and deduce

pos{ai : i ∈ I (x)} = pos{ai : i ∈ I }.

We claim that every vector ai for i ∈ I (x) is an extreme ray of the cone pos{ai :
i ∈ I (x)}. Indeed, assume to the contrary, that for some index i0 ∈ I (x) one finds
ti � 0, i ∈ I (x) \ {i0} such that ai0 = ∑

i∈I (x)\{i0} ti ai . Then

bi0 = 〈ai0 , x〉 =
∑

i∈I (x)\{i0}
ti 〈ai , x〉 =

∑
i∈I (x)\{i0}

ti bi .

http://dx.doi.org/10.1007/978-3-319-21091-9_2
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Let y ∈ R
n satisfy

〈ai , y〉 � bi for i ∈ I (x) \ {i0}.

We deduce

〈ai0 , y〉 =
∑

i∈I (x)\{i0}
ti 〈ai , y〉 �

∑
i∈I (x)\{i0}

ti bi = bi0 .

This shows that inequality 〈ai0 , y〉 � bi0 is redundant in (8.1), a contradiction to
(A1). By this, I (x) ⊆ I and each of vectors a j , j ∈ I can be expressed as a positive
combination of the vectors ai , i ∈ I (x). Again, by a similar argument as above, one
proves that I = I (x) due to the non-redundancy hypothesis (A1). Consequently the
system (8.2) is consistent. �

There is a close relation between normal index sets and faces of X . We remember
that an index set I ⊆ {1, · · · , m} is said to determine a face F of X if F is the
solution set to the system

〈ai , x〉 = bi , i ∈ I
〈a j , x〉 � b j , j ∈ {1, · · · , m}\I

(8.3)

and if no inequality can be replaced by equality. We know from Corollary 2.3.5 that
I , denoted also I (F), coincides with the active index set of a relative interior point
of F . Moreover, if F is the solution set of another system corresponding to another
index set I ′ ⊆ {1, · · · , m}, then I ′ ⊆ I (F).

Theorem 8.1.4 A nonempty index set I ⊆ {1, · · · , m} is normal if and only if the
solution set to the system (8.3) is determined by I . Moreover, a nonempty subset F
of X is a face if and only if it is determined by a normal index set.

Proof Let I ⊆ {1, · · · , m} be a normal index set and let F be the solution set to the
system (8.3). By definition there is some point x̄ ∈ X such that NX (x̄) = pos{ai :
i ∈ I }. We wish to prove that I determines F . Towards this end, we first show that
F is nonempty, namely it contains x̄ , that is

〈ai , x̄〉 = bi for i ∈ I.

Suppose, to the contrary, that there is some index i0 ∈ I such that 〈ai0 , x̄〉 < bi0 . It
follows from the definition of the normal cone that

〈ai0 , y〉 � 〈ai0 , x̄〉 < bi0 (8.4)

for every y ∈ X . Consider the system

〈ai , y〉 � bi for i ∈ {1, · · · , m} \ {i0}.

http://dx.doi.org/10.1007/978-3-319-21091-9_2
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We claim that every solution y of this system lies in X . This is because if for some
solution y one has 〈ai0 , y〉 > bi0 , then there is a real number t ∈ [0, 1] such that
〈ai0 , t x̄ + (1− t)y〉 = bi0 . As the point t x̄ + (1− t)y belongs to X , the latter equality
contradicts (8.4). Thus, inequality 〈ai0 , y〉 � bi0 is redundant, which contradicts
(A1). Next, we prove I = I (x̄). Inclusion I ⊆ I (x̄) is evident. If there is some
j ∈ I (x̄) \ I , then in view of Theorem 2.3.24, a j is a normal vector at x̄ , and hence
there are ti � 0, i ∈ I such that a j = ∑

i∈I ti ai . This expression of a j leads to a
contradiction that inequality 〈a j , y〉 � b j is redundant. Hence we conclude that I
determines the face F .

To show the second part of the theorem, let F be a face of X . Pick any relative
interior point x̄ of F . Then 〈a j , x̄〉 < b j for j ∈ {1, · · · , m}\I (x̄) and 〈ai , x̄〉 = bi

for i ∈ I (x̄). In view of Lemma 8.1.3, I (x̄) is a normal index set that determines F .
The converse statement is clear because if F is nonempty and given by the system
(8.3), then it is a face of X by Theorem 2.3.3. �

Let x̄ be a vertex of X . It is a zero-dimensional face, hence the index set I (x̄) has
at least n elements. We recall that a point x̄ is a non-degenerate vertex of X if there
are exactly n linearly independent inequalities in (8.1) that are satisfied as equalities
at x̄ . It follows that the active index set at a non-degenerate vertex has n elements.
The next result tells us when a subset I ⊆ I (x̄) is a normal set.

Corollary 8.1.5 Let x̄ be a non-degenerate vertex of X. Then every nonempty subset
I ⊆ I (x̄) is normal.

Proof Without loss of generality we may assume that I (x̄) = {1, · · · , n}. Let I be
a nonempty subset of I (x̄). Consider the system

〈ai , x〉 = bi , i ∈ I

〈a j , x〉 � b j , j ∈ {1, · · · , m} \ I.

This system is consistent, for instance x̄ is a solution. Hence the solution set, denoted
F , is a face of X . Since the vectors ai , i = 1, · · · , n are linearly independent, the
dimension of F is equal to n − |I |. Let IF be the index set that determines the face
F and is the active index set at a relative interior point of F . Then I ⊆ IF and
dimF = n − rank{ai : i ∈ IF } = n − |I |. We conclude I = IF . By Theorem 8.1.4,
I is a normal index set. �

Corollary 8.1.6 Let I 1 and I 2 be two normal index sets. Then the intersection
I 1 ∩ I 2 is normal if it is nonempty.

Proof Since I 1 and I 2 are normal, when I = I 1 (respectively I = I 2) the system
(8.2) has at least one solution, say x (respectively y). Set z = (x + y)/2. Then for
i ∈ I 1 ∩ I 2 we have

〈ai , z〉 = 1

2

(〈ai , x〉 + 〈ai , y〉) = 1

2
(bi + bi ) = bi .

http://dx.doi.org/10.1007/978-3-319-21091-9_2
http://dx.doi.org/10.1007/978-3-319-21091-9_2
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For j ∈ {1, · · · , m} \ (I 1 ∩ I 2) we have either j /∈ I 1 which implies 〈a j , x〉 < b j ,

or j /∈ I 2 which implies 〈a j , y〉 < b j . This implies

〈a j , z〉 = 1

2

(〈a j , x〉 + 〈a j , y〉) <
1

2
(b j + b j ) = b j

for all j ∈ {1, · · · , m} \ (I 1 ∩ I 2). Consequently, z is a solution to the system (8.2),
in which I = I 1 ∩ I 2. In view of Lemma 8.1.3, the index set I 1 ∩ I 2 is normal. �

Assume that there exist � edges F1, · · · , F� emanating from a vertex x̄ . Then, each
of I (F1), · · · , I (F�) has at least (n − 1) elements (remember that I (Fi ) denotes
the active index set of a relative interior point of Fi ). Let J ⊆ {1, · · · , �} with
|J | = r ≤ min{�, n − 1}. Take xi ∈ Fi \ {x̄}, i = 1, · · · , � and set

x J = x̄

r + 1
+

∑
j∈J

x j

r + 1
.

The next result allows us to determine the largest face that contains x J as a relative
interior point.

Proposition 8.1.7 Assume that the active index set I (x J ) is nonempty. Then it is a
normal set and the face F determined by the system

〈ai , x〉 = bi , i ∈ I (x J )

〈a j , x〉 � b j , j ∈ {1, · · · , m} \ I (x J ),

contains the convex hull of all edges Fj , j ∈ {1, · · · , m} that satisfy the containment
I (Fj ) ⊇ I (x J ), including j ∈ J .

Proof Since x J belongs to X , it is a solution of the system described in the propo-
sition. Hence F is a face of X . It follows from the definition of active index sets, x J

is a solution to the system

〈ai , xi 〉 = bi , i ∈ I (x J )

〈a j , xi 〉 < b j , j ∈ {1, · · · , m} \ I (x J ).

By Lemma 8.1.3, I (x J ) is a normal index set. Furthermore, if for some index j ∈
{1, · · · , m} one has I (Fj ) ⊇ I (x J ), then NX (Fj ) ⊇ NX (F), and hence Fj ⊆ F .
Being convex, the face F contains the convex hull of all such edges. Finally, for
i ∈ I (x), equality

bi = 〈ai , x J 〉 = 〈ai ,
x̄

r + 1
+

∑
j∈J

x j

r + 1
〉
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holds if and only if 〈ai , x j 〉 = bi for all i ∈ I (x̄) and j ∈ J . We conclude that
Fj ⊆ F for all j ∈ J . �

8.2 Positive Index Sets

Let C be a k × n-matrix and let the columns of CT be denoted by c1, · · · , ck .

Definition 8.2.1 A vector v ∈ R
n is called C-positive if there exist strictly positive

numbers λ1, · · · ,λk such that v =
k∑

i=1
λi ci , and it is C-negative if −v is C-positive.

In the matrix form, a column vector v is C-positive if and only if v = CT λ for
some strictly positive vector λ ∈ R

k . Throughout this chapter we also assume the
following

(A2) the cone pos{c1, · · · , ck} is not a linear subspace.
This assumption is clearly equivalent to the fact that the origin of the space is not C-

positive. When the zero vector of Rn is a strictly positive combination of c1, · · · , ck ,
the problem of vector maximizing Cx over a set X ⊆ R

n becomes trivial because
every feasible solution is maximal. Some more properties of C-positive vectors are
given next.

Lemma 8.2.2 The following properties hold true.

(i) If C is the identity matrix, then a vector v ∈ R
n is C-positive if and only if it is

strictly positive.
(ii) The set of C-positive vectors coincides with the relative interior of the cone

pos{c1, · · · , ck}.
(iii) If there is a vector simultaneously C-positive and C-negative, then the rows of

C are linearly dependent.
(iv) For x ∈ R

n, one has Cx � 0 (respectively Cx > 0) in R
k if and only if

〈v, x〉 � 0 (respectively 〈v, x〉 > 0) for every C-positive vector v of Rn.

Proof The first property is immediate from the definition. The second one follows
from Lemma 6.4.10. For the third property, we notice that when a vector is simulta-
neously C-positive and C-negative, then the zero vector is a linear combination of the
rows of C . Hence the rows of C are linearly dependant. Let us prove the last property.
We have Cx � 0 if and only if 0 � 〈Cx,λ〉 = 〈x, CT λ〉 for every λ ∈ R

k,λ > 0,
or equivalently 〈x, v〉 � 0 for every C-positive vector v ∈ R

n . The strict inequality
Cx > 0 is proven in a similar way. �

Definition 8.2.3 Let a1, · · · , am be (column) vectors in R
n . An index set I ⊆

{1, · · · , m} is said to be positive if pos{ai : i ∈ I } contains a C-positive vector.

It is clear that if an index set is positive, any index set that contains it is also positive,
while a smaller subset is not necessarily positive.

http://dx.doi.org/10.1007/978-3-319-21091-9_6
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Example 8.2.4 Consider a matrix C =
(

2 −3 −1
3 1 0

)
and a system of inequalities

given by ⎛
⎜⎜⎜⎜⎝

1 1 1
−2 −2 −1
−1 0 0

0 −1 0
0 0 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎝ x1

x2
x3

⎞
⎠ �

⎛
⎜⎜⎜⎜⎝

1
−1

0
0
0

⎞
⎟⎟⎟⎟⎠ .

The transposes of the row vectors of this system are denoted by a1, · · · , a5. Direct
calculation shows that the index set {2, 4} is not positive. The set {1, 4, 5} is positive
because the cone pos{a1, a4, a5}, where a1 = (1, 1, 1)T , a4 = (0,−1, 0)T and a5 =
(0, 0,−1)T , contains a C-positive vector v = (7/2,−5/2,−1)T = (2,−3,−1)T +
1
2 (3, 1, 0)T .

Proposition 8.2.5 An index set I ⊆ {1, · · · , m} is positive if and only if the following
system is consistent

∑
i∈I

μi a
i −

k∑
j=1

λ j c
j = 0

μi � 0, i ∈ I and λ j � 1, j = 1, · · · , k.

(8.5)

Proof It is clear that if the system has a solution, then pos{ai : i ∈ I } contains
the C-positive vector

∑k
j=1 λ j c j . Conversely, if there are strictly positive numbers

λ1, · · · ,λk such that
∑k

j=1 λ j c j belongs to the cone pos{ai : i ∈ I }, then the vector∑k
j=1

λ j
min{λ1,··· ,λk }c j belongs to that cone too, by which the system given in the

proposition has a solution. �

Given a family of vectors a1, · · · , am we denote

I 1 = {
i ∈ {1, · · · , m} : ai is C−positive

}
I 3 = {

i ∈ {1, · · · , m} : ai is C−negative
}

I 2 = {1, · · · , m} \ (I 1 ∪ I 3).

Under (A2) we have a partition of the index set {1, · · · , k} = I 1 ∪ I 2 ∪ I 3 by disjoint
subsets. The next result shows how to find positive normal sets outside I 1.

Theorem 8.2.6 Assume that I ⊆ {1, · · · , m} is a positive and normal index set such
that the cone pos{ai : i ∈ I } is not a linear subspace. Then there exists a positive
and normal set I0 ⊆ I ∩ (I 1 ∪ I 2).

Proof Let I = {i1, · · · , il} be a positive and normal index set. We prove the theorem
by induction on l. If l = 1, then tai1 is C-positive for some t � 0 since pos{ai1} is a
positive normal cone. Actually t > 0 because otherwise the zero vector would belong
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to the relative interior of the cone pos{c1, · · · , ck}, which contradicts the assumption
that pos{c1, · · · , ck} is not a linear subspace. It follows that ai1 is C-positive and
I0 = I satisfies the requirements of the theorem.

Now, let l > 1. We claim that I ∩ (I 1 ∪ I 2) �= ∅. Indeed, if not, then one has
I ⊆ I 3. Let v be a C-positive vector that belongs to the cone pos{ai : i ∈ I }. As all
ai , i ∈ I are C-negative, the vector v is C-negative too. We deduce that 0 = v − v

is a C-positive vector and arrive at the same contradiction as above. Consider two
possible cases: I ∩ I 3 = ∅ and I ∩ I 3 �= ∅, say il is a common element of I and
I 3. In the first case, the index set I0 = I will be suitable to achieve the proof. In the
second case we claim that the cone pos{ai : i ∈ I } does not contain all C-positive
vectors in its relative interior. In fact, if not, this relative interior should contain the
vector −ail because ail is C-negative, and hence pos{ai : i ∈ I } contains the zero
vector 0 = ail −ail in its relative interior, which contradicts the hypothesis. Let u be
a C-positive vector outside the relative interior of the cone pos{ai : i ∈ I }. Joining
v and u we find a C-positive vector w on a proper face of the cone pos{ai : i ∈ I }.
Let I ′ be a proper subset of I such that the face is the cone pos{ai : i ∈ I ′}. In view
of Theorem 2.3.26 the index set I ′ determines a face of P , which contains the face
determined by I . In other words, I ′ is a normal index set. It is positive because it
contains the C-positive vector w. By induction, there is a positive normal index set
I0 ⊆ I ′ ∩ (I 1 ∪ I 2) ⊆ I ∩ (I 1 ∪ I 2) as requested. �

Efficient solution faces

Let us consider the following multiobjective linear programming problem (MOLP)

Maximize Cx

subject to Ax � b,

where C is a real k × n-matrix, A is a real m × n-matrix and b is a column m-vector.
The feasible solution set of (MOLP) is denoted X and its efficient (maximal) solution
set is denoted S(M O L P). We will assume throughout that X is nonempty. Moreover,
if the zero vector of Rn is C-positive, then every feasible solution is efficient because
there is a strictly positive vector λ ∈ R

k such that 0 = CT λ which implies that every
element of X is an optimal solution of the scalarized problem (Pλ)

maximize 〈λ, Cx〉
subject to Ax � b,

and hence, in view of Theorem 4.3.1, it is an efficient solution of (MOLP). For this
reason, we will assume henceforth (A2) as before, that is, the cone pos{c1, · · · , ck}
is not a linear subspace.

http://dx.doi.org/10.1007/978-3-319-21091-9_2
http://dx.doi.org/10.1007/978-3-319-21091-9_4
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Theorem 8.2.7 A feasible solution of (MOLP) is an efficient solution if and only if
the active index set at this solution is positive.

Proof Let x0 ∈ X be an efficient solution. In view of Theorem 4.3.1 there is a strictly
positive vector λ such that x0 solves the problem (Pλ). In particular,

〈CT λ, x0 − x〉 � 0 for all x ∈ X (8.6)

which proves that the vector CT λ is a normal vector to X at x0. If I (x0) is empty,
then x0 is an interior point of X . Hence CT λ is the zero vector and contradicts
the assumption. In view of Theorem 2.3.24 the normal cone to X at x0 is the cone
pos{ai : i ∈ I (x0)}. Hence I (x0) is a positive and normal index set.

Conversely, assume that I (x0) is positive. There is a strictly positive vector λ such
that CT λ belongs to the cone pos{ai : i ∈ I (x0)}. In particular CT λ is normal to
the set X at x0. Consequently, (8.6) is true, and therefore x0 solves (Pλ). We deduce
from Theorem 4.3.1 that x0 is an efficient solution of (MOLP). �

Corollary 8.2.8 (MOLP) has an efficient solution if and only if the index set
{1, · · · , m} is positive, or equivalently, the following system is consistent

m∑
i=1

μi a
i −

k∑
j=1

λ j c
j = 0

μi � 0, i = 1, · · · , m and λ j � 1, j = 1, · · · , k.

Proof Let x0 be an efficient solution of (MOLP). In view of Theorem 8.2.7 the
index set I (x0) is positive. As the set {1, · · · , m} contains I (x0), it is positive too.
Conversely, if the set {1, · · · , m} is positive, the cone pos{a1, · · · , am} which is
exactly the normal cone of X contains a C-positive vector. Hence there is some
point x0 ∈ X such that the normal cone to X at x0 contains that C-positive vector.
Again, by Theorem 8.2.7, the point x0 is efficient, and therefore (MOLP) has efficient
solutions. The equivalence between the consistency of the linear system mentioned
in the corollary and the positivity of the index set {1, · · · , m} is immediate from the
definition. �

Corollary 8.2.9 Let F be a face of X and I (F) the index set of F. Then F is
efficient if and only if I (F) is positive, in which case the dimension of F is equal to
n − rank{ai : i ∈ IF }. In particular, when X is of full dimension, (MOLP) admits
an (n − 1)-dimensional efficient face if and only if there is an index i0 ∈ {1, · · · , m}
such that ai0 is C-positive, in which case the (n − 1)-dimensional face determined
by the linear system

〈ai0 , x〉 = bi0

〈a j , x〉 � b j , j ∈ {1, · · · , m}\{i0},

is an efficient face.

http://dx.doi.org/10.1007/978-3-319-21091-9_4
http://dx.doi.org/10.1007/978-3-319-21091-9_2
http://dx.doi.org/10.1007/978-3-319-21091-9_4
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Proof Let x be a relative interior point of the face F . Then I (x) = I (F). By Theorem
4.3.8 the face F is efficient if and only if x is efficient. It remains to apply Theorem
8.2.7 to conclude the first part of the corollary. If the dimension of X is equal to n,
then a face F is of dimension n − 1 if and only if it is given by the (non-redundant)
system determining X in which only one inequality is equality. In other words the
index set of an (n −1)-dimensional face consists of one element. Therefore, this face
is efficient if and only if that unique index is positive. �

Let x̄ be an efficient vertex of (MOLP) and F1, · · · , F� the efficient edges ema-
nating from x̄ . The active index set of each Fi is denoted I (Fi ). Below is a condition
for an efficient face adjacent to x̄ to be maximal, that is, it is not a proper face of any
other efficient face of the problem.

Corollary 8.2.10 Let J ⊆ {1, . . . , �} and IJ =
⋂
i∈J

I (Fi ). Then the face F adjacent

to x̄ determined by the system

〈ai , x〉 = bi , i ∈ IJ

〈a j , x〉 � b j , j ∈ {1, · · · , m}\IJ ,

is a maximal efficient face if the following conditions hold:

(i) IJ is positive;
(ii) For every i /∈ IJ such that I (Fi ) �⊃ IJ , the index set IJ ∩ I (Fi ) is either empty

or not positive.

Proof It is clear that under (i), F is an efficient face. If it is not maximal, then it is
contained in a bigger efficient face, say F ′. We may find an edge Fj of F ′ emanating
from x̄ which does not belong to F . Then

IJ ∩ I (Fj ) �= ∅.

Since this index set contains the positive index set I (F ′) we conclude that IJ ∩ I (Fj )

is positive, which contradicts the hypothesis. �

The support of a vector μ ∈ R
m+ is denoted by supp(μ) and defined as

supp(μ) = {
i ∈ {1, · · · , m} : μi > 0

}
.

We shall use also the following notations: Γ is the solution set to the system formu-
lated in Corollary 8.2.8 and

I0 = {
I ⊆ {1, · · · , m} : I = supp(μ) for some (μ,λ) ∈ Γ

}
I1 = {

I ∈ I0 : I = supp(μ) for some vertex (μ,λ) ∈ Γ
}

and I denotes the set of all minimal elements of I1 with respect to inclusion. We
recall also that for a subset I ⊆ {1, · · · , m}, the set F(I ) consists of feasible solutions

http://dx.doi.org/10.1007/978-3-319-21091-9_4
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x of (MOLP) such that 〈ai , x〉 = bi , i ∈ I . In particular when I is the empty set,
F(I ) = X .

Corollary 8.2.11 The following statements hold.

(i) Let (μi ,λi ), i = 1, · · · , l be vertices of Γ . Then for all ti ∈ (0, 1) with
l∑

i=1

ti =
1 one has

F
(
supp(

l∑
i=1

tiμ
i )

) =
l⋂

i=1

F
(
supp(μi )

)
.

(ii) S(M O L P) =
⋃
I∈I0

F(I ) =
⋃
I∈I1

F(I ) =
⋃
I∈I

F(I )

(iii) Given an index set I ⊆ {1, · · · , m}, the set F(I ) is a maximal efficient face if
and only if it is nonempty and I ∈ I.

Proof It follows from the definition that

supp
( l∑

i=1

tiμ
i ) =

l⋃
i=1

supp(μi ).

This implies the equality in the first statement.
For the second statement, it is clear that for every I ∈ I0, if nonempty, the set

F(I ) is a face of X . Hence the index set of F(I ) that is included in I is positive.
By Corollary 8.2.9, F(I ) is efficient. Thus,

⋃
I∈I0

F(I ) ⊆ S(M O L P) is true.
Conversely, let x be an efficient solution of (MOLP). In view of Theorem 8.2.7, the
active index set I (x) is positive, which means that the system

∑
i∈I (x)

μi a
i −

k∑
j=1

λ j c
j = 0

μi � 0, i ∈ I (x) and λ j � 1, j = 1, · · · , k

is solvable. Let (μ,λ) be a solution. Define μ to be the vector the coordinates of
which are given by

μi =
{

μi for i ∈ I
0 else.

It is then clear that

x ∈ F
(
I (x)

) ⊆ F
(
supp(μ)

)

with supp(μ) ∈ I0 and the first equality in (ii) follows. Furthermore, since I ⊆ I1 ⊆
I0, we deduce inclusions
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⋃
I∈I0

F(I ) ⊇
⋃
I∈I1

F(I ) ⊇
⋃
I∈I

F(I ).

For the converse inclusions we notice that for each element I 1 ∈ I1, we find an
element I ∈ I such that I ⊆ I 1. Then F(I 1) ⊆ F(I ), which proves

⋃
I∈I1

F(I ) ⊆
⋃
I∈I

F(I ).

Moreover, for every element I 0 ∈ I0, say I =supp(μ) for some (μ,λ) ∈ Γ , there
exist vertices (μi ,λi ) ∈ Γ and positive numbers ti , i = 1, · · · , l such that

∑l
i=1 ti =

1 and (μ,λ) = ∑l
i=1 ti (μi ,λi ). It follows from the first part that

F(I 0) ⊆ F
(
supp(μi )

)
for every i = 1, · · · , l.

We conclude that

⋃
I∈I0

F(I ) ⊆
⋃
I∈I1

F(I ),

by which equalities in the second statement hold.
To prove the last statement we assume that F(I ) is a maximal efficient face of

(MOLP). By Corollary 8.2.9 the index set I belongs to I0. According to (ii), there
is a minimal index set I ′ ∈ I such that F(I ) ⊆ F(I ′). Since F(I ) is maximal,
we deduce F(I ) = F(I ′). Under the non-redundancy hypothesis (A1), we obtain
I = I ′. The converse statement is clear because if the efficient face F(I ) were not
maximal for I ∈ I, then one would find an efficient face F ′ that contains F(I ) as a
proper face. Then the index set of F ′ is strictly smaller than the index set of F(I ),
which is a contradiction because the index set of F(I ) is equal to I . �

Notice that the family I as well as the families I0 and I1 gathers positive index
sets which uniquely depend on the objective matrix C and the constraint matrix A
of (MOLP) and do not depend on the second term b of the constraints. This latter
term intervenes in the normality of the index sets, that is the nonemptiness of the
faces determined by these index sets. Therefore, for a given b, some of subsets in the
unions described in (ii) of Corollary 8.2.11 may be empty, which are precisely the
case when the corresponding index sets are not normal.

8.3 The Normal Cone Method

In this section we shall give a method for numerically solving the problem (MOLP).
The study of normal cones and their relationship with efficient faces that we have
developed in the previous sections allow us to construct simple algorithms to
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determine efficient faces of any dimension. Throughout this section we will make
the following assumption.

(A3) The feasible set X is an n-dimensional polyhedral set and contains no lines
and there is no redundant inequality in the constraint system of (MOLP).

The method we are going to describe consists of three main procedures:

1—Determine whether (MOLP) has efficient solutions and if it has, find an initial
efficient solution.

2—Starting from an efficient vertex, find all efficient edges and efficient rays
emanating from it. Since the efficient solution set of (MOLP) is arcwise connected,
this procedure allows us to find all efficient vertices and all efficient edges of the
problem.

3—Find all efficient faces adjacent to (i.e. containing) a given efficient vertex
when all the efficient edges adjacent to this vertex are already known.

Existence of efficient solutions and finding an initial efficient solution for
(MOLP)

According to Corollary 8.2.8, (MOLP) has an efficient solution if and only if the
system

AT μ − CT λ = 0
μ ∈ R

m,μ � 0
λ ∈ R

k,λ � e,
(8.7)

where e is the vector of ones, has a solution. Remember that the columns of AT are
a1, · · · , am and the columns of CT are c1, · · · , ck .

Procedure 1.

• Step 1. Solve the system (8.7).
(a) If the system has no solution, then stop. (MOLP) has no efficient solution.
(b) Otherwise, go to Step 2.

• Step 2. Let λ > 0 be a solution and v = CT λ. If v = 0 , then every feasible solu-
tion of (MOLP) is an efficient solution. Otherwise, solve the linear programming
problem

maximize 〈v, x〉
subject to Ax � b.

This problem has a solution, say x̄ . Then x̄ is an initial efficient solution of (MOLP).
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Example 8.3.1 We consider the following (MOLP)

Maximize

(
2 −3 1
3 1 0

) ⎛
⎝ x1

x2
x3

⎞
⎠

subject to

⎛
⎜⎜⎜⎜⎝

1 1 1
−2 −2 −1
−1 0 0

0 −1 0
0 0 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎝ x1

x2
x3

⎞
⎠ �

⎛
⎜⎜⎜⎜⎝

1
−1

0
0
0

⎞
⎟⎟⎟⎟⎠ .

By solving the system (8.7) we find a solution λ = (2, 1)T . The vector v in Step 2
is v = (7,−5, 2)T and the problem to solve in this step is to maximize the function
7x1−5x2+2x3 over the feasible set of (MOLP). The simplex method of Chap. 3 yields
a vertex solution x0 = (1, 0, 0)T , which is also an efficient solution of (MOLP).

Determination of efficient vertices and efficient edges

When (MOLP) has an efficient solution, by solving the linear problem in Step 2 of
Procedure 1 one may obtain an efficient vertex. Let x̄ be such a vertex. Then the active
index set I (x̄) has at least n elements. Any edge emanating from x is determined
by n − 1 linearly independent equations among the m inequality constraints, and of
course its index set is a subset of I (x̄). An index set I ⊆ I (x̄) the cardinality of
which is equal to n − 1 determines a one-dimensional space that may give rise to an
edge of X by the system

〈ai , v〉 = 0, i ∈ I

provided that the vectors ai , i ∈ I are linearly independent. Otherwise the solution
set of this system would be of higher dimension. Moreover, if I is normal, then there
is some real number t �= 0 such that x̄ + tv is a solution to the system

〈ai , x〉 = bi , i ∈ I
〈a j , x〉 � b j , j ∈ {1, · · · , m}\I.

The edge emanating from x̄ in direction v above is efficient if, in addition, I is pos-
itive. We are now able to describe the second procedure to solve (MOLP).

Procedure 2.

• Step 0 (Initialization). Determine the active index set

I (x̄) = {
i ∈ {1, · · · , m} : 〈ai , x̄〉 = bi

}
.

Choose I ⊂ I (x̄) with |I | = n − 1.

http://dx.doi.org/10.1007/978-3-319-21091-9_3
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• Step 1. Check the linear independence of the family {ai : i ∈ I }.
If not, choose another I ⊆ I (x̄) with |I | = n − 1.
If yes, go further.

• Step 2. (I is positive?) Solve

∑
i∈I

μi a
i −

k∑
j=1

λ j c
j = 0

μi � 0, i ∈ I and λ j � 1, j = 1, · · · , k.

(a) If it has no solution, pick another I ⊆ I (x̄) with |I | = n − 1 and return to
Step 1.
(b) Otherwise, I is a positive set, go further.

• Step 3. (I is normal? If yes, find the corresponding efficient edge)

– Step 3.1. Find a direction v �= 0 of a possible edge emanating from x̄ by solving

〈ai , v〉 = 0, i ∈ I.

– Step 3.2. Solve the following system

〈ai , x̄ + tv〉 � bi , i = 1, · · · , m.

Let the solution set be [t0, 0] or [0, t0] according to t0 < 0 or t0 > 0. The values
t0 = −∞ and t0 = ∞ are possible.

(a) If t0 = 0, no edge of X emanating from x̄ along v. I is not normal. Pick
another I ⊆ I (x̄) and go to Step 1.
(b) If t0 �= 0 and is finite, then x̄ + t0v is an efficient vertex and [x̄, x̄ + t0v] is
an efficient edge. Store them if they have not been stored before. Pick another
I ⊆ I (x̄) and go to Step 1.
(c) If t0 is infinite, say t0 = ∞, then the ray {x̄ + tv : t ≥ 0} is efficient. Store
the result. Pick another I ⊆ I (x̄) and go to Step 1.

We notice that if x̄ is a non-degenerate vertex, that is |I (x̄)| = n, then Step 1 can
be skipped because the family of vectors ai , i ∈ I (x̄) is already linearly independent,
and any subset of I (x̄) is normal (see Corollary 8.1.5).

Moreover, by solving the system of Step 3.2 we mean finding the solution set of
type [t0, 0] or [0, t0] with t0 negative or positive respectively. The infinite values +∞
and −∞ are possible. If t0 �= 0, then this solution set is a 1-dimensional face of X
determined by the system

〈ai , x〉 = bi , i ∈ I
〈a j , x〉 � b j , j ∈ {1, · · · , m}\I.
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The active index set of this face contains I , but does not necessarily coincide with
I , unless x̄ is non-degenerate. It can be found by checking the number of equalities
〈ai , x̄ + tv〉 = bi with i ∈ I (x̄) for some 0 < t < t0 if t0 > 0, or t0 < t < 0 if
t0 < 0.

Example 8.3.2 The aim of this example is to apply Procedure 2 to find all efficient
edges adjacent to an initial efficient vertex. We consider the following (MOLP)

Maximize

(
2 3 4
3 2 0

) ⎛
⎝ x1

x2
x3

⎞
⎠

subject to

⎛
⎜⎜⎜⎜⎝

1 1 1
−2 −2 −1
−1 0 0

0 −1 0
0 0 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎝ x1

x2
x3

⎞
⎠ �

⎛
⎜⎜⎜⎜⎝

1
−1

0
0
0

⎞
⎟⎟⎟⎟⎠ .

To find an initial efficient vertex we solve the system (8.7) that takes the form

μ1

⎛
⎝ 1

1
1

⎞
⎠ + μ2

⎛
⎝−2

−2
−1

⎞
⎠ + μ3

⎛
⎝−1

0
0

⎞
⎠ + μ4

⎛
⎝ 0

−1
0

⎞
⎠ + μ5

⎛
⎝ 0

0
−1

⎞
⎠ (8.8)

= λ1

⎛
⎝ 2

3
4

⎞
⎠ + λ2

⎛
⎝ 3

2
0

⎞
⎠

μi � 0, i = 1, · · · , 5, λ1 � 1,λ2 � 1.

A solution can be given as λ1 = 3,λ2 = 1,μ1 = 12,μ2 = 0,μ3 = 3,μ4 =
1, and μ5 = 0. The normal cone of the feasible set contains a C-positive vector
v = λ1c1T + λ2c2T = (9, 11, 12)T , which generates a denegerate efficient vertex
x0 = (0, 0, 1)T . The active index set of this solution is I (x0) = {1, 2, 3, 4}. In order
to find efficient edges emanating from x0 we check the normality and the positivity
of each of the 2-element index subsets of I (x0) and also the linear independence of
the corresponding vectors.

(1) For I1 = {1, 2} we have the vectors a1 = (1, 1, 1)T and a2 = (−2,−2,−1)T

linearly independent. To check its positivity we solve (8.8) by setting μ3 = μ4 =
μ5 = 0, which leads to

μ1 − 2μ2 = 2λ1 + 3λ2 = 3λ1 + 2λ2

μ1 − μ2 = 4λ1.

In particular μ2 = −λ1, which contradicts the constraints μ2 � 0 and λ1 � 1. Hence
I1 is not positive.
(2) For I2 = {1, 3}, we notice that the vectors a1 = (1, 1, 1)T and a3 = (−1, 0, 0)T
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are linearly independent. To check its positivity we solve (8.8) by setting μ2 =
μ4 = μ5 = 0. A solution of it can be given as λ1 = 2, λ2 = 1, μ1 = 8,μ3 = 1.
As consequence, I2 is positive. To see whether it is normal we solve the constraint
inequalities of (MOLP) in which the first and the third inequations are equations. It
is easy to check that the solution set is the segment connecting the vertex x0 and the
vertex x2 = (0, 1, 0)T . Thus, I2 is positive and normal. By this, the segment [x0, x2]
is an efficient edge.
(3) For I3 = {1, 4}, we notice again that the vectors a1 = (1, 1, 1)T and a4 =
(0,−1, 0)T are linearly independent. We set μ2 = μ3 = μ5 = 0 in (8.8) for checking
the positivity of I3. Similarly to the case of I1, the system yields μ4 = −λ2/2, which
is a contradiction. Hence I3 is not positive.
(4) The index sets {2, 3}, {2, 4} and {3, 4} are evidently not positive because in the
corresponding systems obtained from (8.8) by setting at least μ1 = 0, the vector
on the left hand side is negative, while the vector on the right hand side is strictly
positive.
We conclude that there is only one efficient edge emanating from the vertex x0 and
ending at the vertex x2.

Determination of higher dimensional efficient solution faces

Assume that x̄ is an efficient vertex of problem (MOLP) and [x̄, x̄ + tivi ], i =
1, · · · , r are efficient edges emanating from x̄ with ti > 0. Here, for the convenience
we use ti = ∞ if the ray edge {x̄ + tvi : t ≥ 0} is efficient and [x̄, x̄ + tivi ] denotes
this ray. Let Ii ⊆ I (x̄), i = 1, · · · , r be the positive index sets determining these
edges.

Observe that except for the pathological case when the entire set X is efficient,
the largest dimension that an efficient face adjacent to x̄ may have is min{r, n − 1}.
For 1 < l � min{r, n − 1}, we have the following procedure to find l-dimensional
efficient faces adjacent to the given efficient vertex x̄ .

Procedure 3.

• Step 0 (Initialization). Pick J ⊆ {1, · · · , r} with |J | = l and determine I = ⋂
j∈J

I j .

Find rank{ai : i ∈ I }.
If rank{ai : i ∈ I } �= n − l, choose another J and repeat this step.
Otherwise go to the next step.

• Step 1. (I is positive?) Solve the system (8.5).
(a) If it has no solution, return to Step 0 by choosing another J .
(b) Otherwise, I is positive, go to Step 2.

• Step 2. Determine J0 = { j ∈ {1, · · · , r} : I j ⊇ I }. (It is evident that J ⊆ J0.)
The convex hull of the edges [x̄, x̄ + t jv j ], j ∈ J0 forms an l-dimensional efficient
face. Return to Step 0 by picking another not yet explored J that is not contained
in J0 with |J | = l until no such J left.
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The index set I obtained in the initialization step is normal whenever it is nonempty
because it is the intersection of normal sets I j , j ∈ J (Corollary 8.1.6). If in addition
the rank of the family {ai : i ∈ I } is equal to n − l, then the face determined by the
system

〈ai , x〉 = bi , i ∈ I
〈a j , x〉 � b j , j ∈ {1, · · · , m}\I,

has its dimension equal to l, and its active index set contains I . When the efficient
vertex x̄ is non-degenerate, the condition rank{ai : i ∈ I } = n − l is equivalent to
the fact that I has l elements.

Example 8.3.3 The aim of this example is to apply Procedure 3 to find all efficient
faces adjacent to an initial efficient vertex. We consider the following (MOLP)

Maximize

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠

⎛
⎝ x1

x2
x3

⎞
⎠

subject to

⎛
⎜⎜⎜⎜⎜⎜⎝

−2 −2 −1
2 1 2
1 2 2

−1 0 0
0 −1 0
0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎝ x1

x2
x3

⎞
⎠ �

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
2
2
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Applying Procedure 1 and Procedure 2 one finds an initial vertex x0 = (0, 0, 1)T

to start and the following efficient edges adjacent to x0: Fi = [x0, xi ], i = 1, 2, 3,
where x1 = (1, 0, 0)T , x2 = (0, 1, 0)T and x3 = (2/3, 2/3, 0)T . The index sets of
x0 and Fi are respectively given by

I (x0) = {1, 2, 3, 4, 5}
I1 = {2, 5}
I2 = {3, 4}
I3 = {2, 3}.

We use Procedure 3 to determine a two-dimensional efficient face adjacent to x0. At
Step 0, we choose for instance J = {1, 3} and consider I = I1 ∩ I3 = {2}. The rank
of a2 = (2, 1, 2)T is equal to 1, hence we may go further. In Step 2, we check the
positivity of I by solving the system (8.5) applied to our example:

μ

⎛
⎝ 2

1
2

⎞
⎠ = λ1

⎛
⎝ 1

0
0

⎞
⎠ + λ2

⎛
⎝ 0

1
0

⎞
⎠ + λ3

⎛
⎝ 0

0
1

⎞
⎠ .
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A solution is given by λ1 = 2,λ2 = 1,λ3 = 2 and μ = 1. We conclude that the
two-dimensional face determined by the system of constraints in which the second
inequality is set to equation is efficient. Since I is contained in I1 and I3, this face
contains the edges F1 and F3. The edge F2 is not included in it because I2 does not
contain I .

Determination of all maximal efficient faces adjacent to an efficient vertex

Let x̄ be an efficient vertex of (MOLP) and let {p1, · · · , pr } be the collection of
all efficient edges (possibly rays) emanating from x̄ which have been obtained by
Procedure 2. The positive index sets determining these edges are denoted I1, · · · , Ir .
Thus, each edge pi is the solution to the system

〈a j , x〉 = b j , j ∈ Ii

〈a j , x〉 � b j , j ∈ {1, · · · , m} \ Ii .

The next algorithm determines all maximal efficient faces adjacent to x̄ . The biggest
dimension of these faces does not exceed min{r, n−1} as we have already discussed.

Procedure 4.

• Step 0. For l = 2, · · · , r pick J ⊆ {1, · · · , r} with |J | = l and compute

I =
⋂
j∈J

I j .

If either I = ∅, or I is not positive, then choose another J .
If I is nonempty positive, go to the next step.

• Step 1. For each j ∈ {1, · · · , r} \ J , compute I ′ = I ∩ I j .

(a) If either I ′ = ∅ or I ′ is not positive, proceed for other j . If this is the case for
all j ∈ {1, · · · , r} \ I , the face FJ generated by the edges p j with I ⊆ I j

including j ∈ J , is a maximal efficient face to be stocked together with the
index set J = {i : I ⊆ Ii }. Return to Step 0 for other J .

(b) If I ′ is nonempty positive, set J = J ∪{ j} (then |J | � l +1) and repeat Step 1
until no J left.

• Step 2. Set l := l + 1 and return to Step 0 by choosing J not yet exploited or not
contained in any index subset already stocked in Step 1.

The positivity of I in Step 0 and of I ′ in Step 1 is checked by solving the system
(8.5). The maximality of the efficient faces stocked in Step 1 is due to Corollary
8.2.10.
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Example 8.3.4 We continue Example 8.3.3 by choosing x0 = (0, 0, 1)T as an initial
vertex. Its efficient edges Fi = [x0, xi ], i = 1, 2, 3 where x1 = (1, 0, 0)T , x2 =
(0, 1, 0)T , x3 = (2/3, 2/3, 0)T . The index set of x0 is I (x0) = {1, 2, 3, 4, 5} and
the index sets of Fi , i = 1, 2, 3 are respectively

I (F1) = {2, 5}, I (F2) = {3, 4}, I (F3) = {2, 3}.

We apply Procedure 4 to determine all maximal efficient faces adjacent to x0. In
Step 0, for l = 2, we choose J ⊆ {1, 2, 3} with |J | = 2.

• For J = {1, 3} one has I = I (F1) ∩ I (F3) = {2, 5} ∩ {2, 3} = {2}. This index
set I is positive (see Example 8.3.3), we go to Step 1. Let j ∈ {1, 2, 3}\J = {2}.
Compute I

′ = I ∩ I (F2) = {2} ∩ {3, 4} = ∅. Thus, the face generated by the
index set {2} is a maximal efficient face that contains the edges Fj , j ∈ J.

• For J = {1, 2} we have I = I (F1) ∩ I (F2) = ∅. Return to Step 0.
• For J = {2, 3} we have I = I (F2)∩ I (F3) = {3}. It is positive because the system

μ

⎛
⎝ 1

2
2

⎞
⎠ = λ1

⎛
⎝ 1

0
0

⎞
⎠ + λ2

⎛
⎝ 0

1
0

⎞
⎠ + λ3

⎛
⎝ 0

0
1

⎞
⎠ , λ1,λ2,λ3 � 1, μ � 0

admits a solution λ1 = 1,λ2 = 2,λ3 = 2 and μ = 1. We go to Step 1. Let
j ∈ {1, 2, 3}\J = {1}. Compute I

′ = I ∩ I (F1) = {3} ∩ {2, 5} = ∅. The face
generated by the index set I = {1} is maximal efficient and contains the edges
Fj , j ∈ J = {2, 3}.

The algorithm yields two maximal efficient faces that contain respectively the edges
F1, F3 and F2, F3.

Determination of the entire efficient solution set of (MOLP)

Since every efficient solution of (MOLP) is contained in a maximal efficient face,
the efficient solution set of the problem will be completely found if we can identify
all maximal efficient faces. The next algorithm for generating all maximal efficient
faces is based on Procedures 1, 2 and 4 and on the fact that the solution set of a
multiobjective linear problem is arcwise connected, that is any two efficient vertices
can be joined by a finite number of efficient edges.

The Algorithm

• Step 1. Determine whether (MOLP) has maximal solutions. If yes, find an efficient
vertex to start by using Procedure 1.

• Step 2. Find all efficient edges adjacent to this efficient vertex by Procedure 2.
• Step 3. Determine all maximal efficient faces adjacent to the given vertex by

Procedure 4 and stock them together with the active index set of each such a face.
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• Step 4. Choose a new efficient vertex adjacent to the given vertex and return to
Step 2 with this vertex to start unless no such efficient vertex left.

So far the analysis made in this chapter requires three assumptions (A1–A3), under
which the algorithm terminates after a finite number of iterations because this is
so for the three procedures we apply. There are some simple situations when one
or some of the above mentioned assumptions do not hold and there is no need to
solve the problem. For instance when (1) the feasible set is empty; or (2) the cone
pos{c1, · · · ck} is a linear subspace (the zero vector is C-positive, and hence every
feasible solution is maximal).

Particular case 1: Efficient sets in R
2

Sometimes we wish to compute the efficient set of a polyhedron (a bounded poly-
hedral convex set) which corresponds to the efficient solution set of the problem
(MOLP) with C being the identity matrix. Below we provide an effective and direct
algorithm to do this in the case X ⊆ R

2.

By renumbering the indices if necessary, we may assume

0 < θ1 < θ2 < · · · < θl <
1

2
π ≤ θl+1 < · · · < θm ≤ 2π,

where θ1, · · · , θm are the angular coordinates of a1, · · · , am in the polar coordinate
system of R2 (Fig. 8.1).

Fig. 8.1 Angular
coordinates

a1

a2

a3

a4

θ1

θ2θ3

θ4

Q
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It is evident that a1, · · · , al are positive vectors and hence each of them determines
an efficient edge. Moreover, each of the pairs of indices {m, 1}, {1, 2}, · · · , {l, l+1} is
positive and normal. So, by Corollary 8.2.9 they determine all 0-dimensional efficient
faces (vertices) of X. Denote by xi the intersection point of the lines

〈ai , x〉 = bi

〈ai+1, x〉 = bi+1,

i = 0, · · · , l, where a0 = am , b0 = bm . Then the efficient set of X is given by

l⋃
i=0

[xi , xi+1].

Particular case 2: Efficient sets in R
3

If the dimension of X is three, then it may have efficient faces of dimension 0 or 1
or 2. We recall that a point x̄ ∈ X is said to be an ideal efficient point if x̄ � x for
all x ∈ X. It is easy to see that X does not possess ideal efficient points if and only
if it has efficient faces of dimension 1 or 2, or it has no efficient point at all. Now we
describe an algorithm to determine the set of all efficient points of X ⊆ R

3. With one
exceptional case when Max(X ) consists of only one point, the efficient set Max(X )
can be completely determined if we know all efficient edges.

• Step 1 (Determine whether X possesses an ideal efficient point).
Solve the linear problem

maximize 〈ei , x〉
subject to x ∈ X.

for i = 1, 2, 3, where e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T . Let
x∗

1 , x∗
2 , x∗

3 be the optimal values of these problems. If x∗ = (x∗
1 , x∗

2 , x∗
3 ) ∈ X, then

x∗ is an ideal efficient point of X and Max(X) = {x∗};
Otherwise, go to Step 2.

• Step 2. Decompose the index set {1, · · · , m} into I 1 , I 2 , I 3 , where I 1 = {i :
ai > 0}, I 3 = {i : ai < 0}, I 2 = {1, · · · , m} \ (I 1 ∪ I 3).

If I 1 = ∅, then there are no efficient faces of dimension 2. Go to Step 3 to find
efficient faces of smaller dimension.
Otherwise, each ai , i ∈ I 1 determines an efficient face of dimension 2 by the
system

〈ai , x〉 = bi

〈a j , x〉 � b j , j ∈ {1, · · · , m}\{i}.
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Go to Step 3 to find efficient faces of smaller dimension, not included in the above
2-dimensional efficient faces.

• Step 3. Choose i, j ∈ I 2.

– Step 3.1. (Is {i, j} positive ?)
Solve the system

tai + (1 − t)a j > 0

1 � t � 0.

If it has a solution, then {i, j} is positive. Go to Step 3.2.
Otherwise, {i, j} is not positive. Pick other pair i, j ∈ I 2 and return to Step 3.1.

– Step 3.2. (Is {i, j} normal?)
Determine the set �i j := {x ∈ X : 〈ai , x〉 = bi , 〈a j , x〉 = b j }. If �i j = ∅ or
�i j is a point , then either {i, j} is not normal or dim�i j = 0. Pick other pair
i, j ∈ I 2 and Return to Step 3.1.
Otherwise �i j is a segment. This segment is an efficient edge. Store it. Pick
another i, j ∈ I 2 and return Step 3.1.

Remark According to Corollary 8.2.9, Step 2 and Step 3 allow us to generate the
entire efficient set of X because other efficient faces are included in those that were
found in these steps.

Computing weakly efficient solutions

The normal cone method we presented above to compute efficient solutions of
(MOLP) is also suitable to find weakly efficient solutions. The only difference is
that the C-positivity must be substituted by the weak C-positivity in all procedures.
Namely, we say that an index set I is weakly C-positive if there are nonnegative

numbers λ1, · · · ,λk , not all zero, such that v =
k∑

i=1
λi ci . Here are some results that

provide theoretical basis of the normal method for weakly efficient solutions:

• A face F of X is weakly efficient if and only if its active index set I (F) is weakly
C-positive.

• (MOLP) has weakly efficient solutions if and only if the following system is
consistent

m∑
i=1

μi a
i −

k∑
j=1

λ j c
j = 0

μi � 0, λ j � 0,

k∑
j=1

λ j = 1.
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• If the above system has a solution (μ1, · · · ,μm,λ1 · · · ,λk), then the function
x �→ 〈∑k

j=1 λ j c j , x〉 attains its maximum on X and every maximum point is a
weakly efficient solution of (MOLP).

8.4 Exercises

8.4.1 Find a counter-example to show that without the non-redundancy hypothesis
(A1), an index set I may be normal while the system

〈ai , x〉 = bi , i ∈ I
〈a j , x〉 < b j , j ∈ {1, · · · , m}\I

is inconsistent.

8.4.2 Consider (MOLP) described in Sect. 8.2 and assume that I ⊆ {1, · · · , m} is a
positive and normal index set. Prove that the efficient face determined by the system

〈ai , x〉 = bi , i ∈ I
〈a j , x〉 � b j , j ∈ {1, · · · , m}\I,

is not a maximal efficient face if the system

∑
i∈I

μi a
i −

k∑
j=1

λ j c
j = 0

μi � 1, i ∈ I and λ j � 1, j = 1, · · · , k,

is inconsistent. Show that the converse statement is not always true.

8.4.3 Find all normal index sets of the following systems:

(1)

⎧⎨
⎩

x1 − x2 + 2x3 � 3
x1 − 2x2 � −2

− x2 � 0
(2)

⎧⎨
⎩

x1 + x2 + x3 � 6
5x1 + 3x2 + 6x3 � 15
−x1 − x2 − x3 � 0.

8.4.4 Consider (MOLP) described in Sect. 8.2. Let X be the solution set of a linear
system Ax � b.

(1) Prove that if the polar cone of the asymptotic cone of X contains a C-positive
vector, then positive and normal index sets exist. In particular, when X is bounded,
there always exists a positive and normal index set.
(2) Assume that the system 〈ai , x〉 � bi , i = 1 · · · , m is non-redundant. Prove
that it has an (n − 1)-dimensional efficient face if and only if there is some i0 ∈
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{1, · · · , m} such that ai0 is C-positive, and that such an index is unique for each
(n − 1)-dimensional efficient face.

8.4.5 Solve the following problem by the normal cone method

Minimize

(−x1 − x2 − 0.25x3
x1 + x2 + 1.5x3

)

subject to

⎛
⎝ 2 1 2

1 2 1
−1 −1 −1

⎞
⎠

⎛
⎝ x1

x2
x3

⎞
⎠ �

⎛
⎝ 2

2
−6

⎞
⎠

x1, x2, x3 � 0.

and prove that the index set I = {6} determines a 2-dimensional maximal ef-
ficient face whose vertices are x1 = (0.67, 0.67, 0)T , x2 = (2, 0, 0)T , x3 =
(0, 2, 0)T , x4 = (6, 0, 0)T , x5 = (0, 6, 0)T .

8.4.6 Solve the problem

Minimize

⎛
⎝−x1 + 100x2 + 0x3

−x1 − 100x2 + 0x3
0x1 + 0x2 − 1x3

⎞
⎠

subject to

⎛
⎝ 1 2 2

2 1 2
5 5 6

⎞
⎠

⎛
⎝ x1

x2
x3

⎞
⎠ �

⎛
⎝ 10

10
30

⎞
⎠

x1, x2, x3 � 0.

We have obtained the following list of efficient vertices and faces.

(a) 3 two dimensional efficient faces F1, F2, F3 which are determined by I (F1) =
{1}, I (F2) = {2}, I (F3) = {3};

(b) Face F1 has 3 efficient vertices : x2 = (2, 4, 0), x4 = (0, 0, 5), x5 = (0, 5, 0)

and 3 efficient edges : :[x2, x4], [x2, x5], [x4, x5].
(c) Face F2 has 3 efficient vertices : x1 = (4, 2, 0), x3 = (5, 0, 0), x4 = (0, 0, 5)

and 3 efficient edges : :[x1, x3], [x1, x4], [x3, x4].
(d) Face F3 has 3 efficient vertices : x1 = (4, 2, 0), x2 = (2, 4, 0), x4 = (0, 0, 5)

and 3 efficient edges : :[x1, x2], [x1, x4], [x2, x4].
Write problems to determine

• an initial weakly efficient solution;
• all weakly efficient edges emanating from a given weakly efficient vertex;
• all maximal weakly efficient faces adjacent to a given weakly efficient vertex;
• the weakly efficient solution set of (MOLP).
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8.4.7 Consider the following problem

Minimize

⎛
⎝−1 −1 −0.25

1 1 1.5
0 1 1

⎞
⎠

⎛
⎝ x1

x2
x3

⎞
⎠

subject to

⎛
⎝−1 −1 1

−1 −1 −1
−2 −2 −1

⎞
⎠

⎛
⎝ x1

x2
x3

⎞
⎠ �

⎛
⎝−3

−5
−8

⎞
⎠

x1, x2, x3 � 0.

Using the normal method establish the following result

(a) 5 weakly efficient vertices:

v1 = (3, 0, 0), v2 = (0, 0, 0), v3 = (0, 3, 0),

v4 = (3.667, 0, 0.667), v5 = (0, 3.667, 0.667);

(b) 6 weakly efficient edges:

[v1, v2], [v1, v3], [v1, v4],
[v2, v3], [v3, v5], [v4, v5];

(c) 2 maximal weakly efficient faces of dimension 2:

F1 = co{v1, v3, v4, v5}
F2 = co{v1, v2, v3}.

8.4.8 Consider the following problem

Minimize

⎛
⎝−1 100 0

−1 −100 0
0 0 −1

⎞
⎠

⎛
⎝ x1

x2
x3

⎞
⎠

subject to

⎛
⎝−1 −2 −2

−2 −1 −2
−5 −5 −6

⎞
⎠

⎛
⎝ x1

x2
x3

⎞
⎠ �

⎛
⎝−10

−10
−30

⎞
⎠

x1, x2, x3 � 0.

Using the normal cone method to obtain the following efficient vertices and faces.

(a) 6 weakly efficient vertices:

v1 = (5, 0, 0); v2 = (4, 2, 0); v3 = (0, 0, 5)

v4 = (2, 4, 0); v5 = (0, 0, 0); v6 = (0, 5, 0).
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(b) 8 weakly efficient edges:

[v1, v2], [v1, v3], [v2, v4], [v2, v3],
[v3, v5], [v4, v6], [v4, v3], [v6, v3],

(c) 3 maximal weakly efficient faces of dimension 2:

F1 = co{v1, v2, v3},
F2 = co{v2, v3, v4},
F3 = co{v3, v4, v6}.
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