
Chapter 4
Pareto Optimality

In a multi-dimensional Euclidean space there are several ways to classify elements
of a given set of vectors. The componentwise order relation introduced in the very
beginning of the second chapter seems to be the most appropriate for this classifica-
tion purpose and leads to the concept of Pareto optimality or efficiency, a cornerstone
of multiobjective optimization that we are going to study in the present chapter.

4.1 Pareto Maximal Points

In the space R
k with k > 1 the componentwise order x � y signifies that each

component of x is bigger than or equal to the corresponding component of y. Equiv-
alently, x � y if and only if the difference vector x − y has non-negative components
only. This order is not complete in the sense that not every couple of vectors is com-
parable, and hence the usual notion of maximum or minimum does not apply. We
recall also that x > y means that all components of the vector x − y are strictly
positive, and x ≥ y signifies x � y and x �= y. The following definition lays the
basis for our study of multiobjective optimization problems.

Definition 4.1.1 Let Q be a nonempty set in R
k . A point y ∈ Q is said to be a

(Pareto) maximal point of the set Q if there is no point y′ ∈ Q such that y′ � y and
y′ �= y. And it is said to be a (Pareto) weakly maximal point if there is no y′ ∈ Q
such that y′ > y.

The sets of maximal points andweaklymaximal points of Q are respectively denoted
Max(Q) andWMax(Q) (Figs. 4.1 and 4.2). They are traditionally called the efficient
and weakly efficient sets or the non-dominated and weakly non-dominated sets of Q.
The set of minimal points Min(Q) and weakly minimal pointsWMin(Q) are defined
in a similar manner. When no confusion likely occurs between maximal and minimal
elements, the set Min(Q) and WMin(Q) are called the efficient and weakly efficient
sets of Q too. The terminology of efficiency is advantageous in certain circumstances
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Fig. 4.1 Max and Min
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Fig. 4.2 WMax and WMin
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in which we deal simultaneously with maximal points of a set as introduced above
and maximal elements of a family of subsets which are defined to be maximal with
respect to inclusion. Thus, given a convex polyhedron, a face of it is efficient if it
consists of maximal points only. When we refer to a maximal efficient face, it is
understood that that face is efficient and maximal by inclusion which means that no
efficient face of the polyhedron contains it as a proper subset. In some situations one
is interested in an ideal maximal point (called also a utopia point), which is defined
to be a point y ∈ Q that satisfies

y � y′ for all y′ ∈ Q.

Such a point is generally unattainable, and if it exists it is unique and denoted by
IMax(Q) (Fig. 4.3).

Geometrically, a point y of Q is an efficient (maximal) point if the intersection
of the set Q with the positive orthant shifted at y consists of y only, that is,

Q ∩ (y + R
k+) = {y}

and it is weakly maximal if the intersection of Q with the interior of the positive
orthant shifted at y is empty, that is,
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Fig. 4.3 IMax

IMAX (Q)

Q

Q ∩ (y + int(Rk+)) = ∅.

Of course, maximal points are weakly maximal, and the converse is not true in
general. Here are some examples in R

2.

Example 4.1.2 Let Q be the triangle of vertices a =
(
0
0

)
, b =

(
1
0

)
and c =

(
0
1

)

in R
2. Then Max(Q) = WMax(Q) = [b, c], Min(Q) = {a} and WMin(Q) =

[a, b] ∪ [a, c].
Example 4.1.3 Let Q be the polytope in the space R

3, determined by two
inequalities

y2 + y3 � 0

y3 � 0.

Then Max(Q) = WMax(Q) = ∅, Min(Q) = ∅ and WMin(Q) = Q \ int(Q).

Existence of pareto maximal points

As we have already seen in Example 4.1.3, a polyhedron may have no weakly max-
imal points. This happens when some components of elements of the set are un-
bounded above. Positive functionals provide an easy test for such situations.

Theorem 4.1.4 Let Q be a nonempty set and let λ be a nonzero vector in R
k . Assume

that y ∈ Q is a maximizer of the functional 〈λ, .〉 on Q. Then
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(i) y is a weakly maximal point of Q if λ is a positive vector;
(ii) y is a maximal point of Q if either λ is a strictly positive vector, or λ is a positive

vector and y is the unique maximizer.

In particular, if Q is a nonempty compact set, then it has a maximal point.

Proof Assume λ is a nonzero positive vector. If y were not weakly maximal, then
there would exist another vector y′ in Q such that the vector y′− y is strictly positive.
This would yield 〈λ, y′〉 > 〈λ, y〉, a contradiction.

Now, if λ is strictly positive, then for any y′ � y and y′ �= y, one has 〈λ, y′〉 >

〈λ, y〉 as well. Hence y is a Pareto maximal point of Q.
When λ is positive (not necessarily strictly positive) and not zero, the above

inequality is not strict. Actually, we have equality because y is a maximizer. But, in
that case y′ is also a maximizer of the functional 〈λ, .〉 on Q, which contradicts the
hypothesis.

When Q is compact, any strictly positive vector λ produces a maximizer on Q,
hence a Pareto maximal point too. �

Maximizers of the functional 〈λ, .〉 with λ positive, but not strictly positive, may
produce no maximal points as seen in the following example.

Example 4.1.5 Consider the set Q in R
3 consisting of the vectors x = (x1, x2, x3)T

with x3 � 0. Choose λ = (0, 0, 1)T . Then every element x of Q with x3 = 0
is a maximizer of the functional 〈λ, .〉 on Q, hence it is weakly maximal, but not
maximal, for the set Q has no maximal element.

Given a reference point a in the space, the set of all elements of a set Q that are
bigger than the point a forms a dominant subset, called a section of Q at a. The
lemma below shows that maximal elements of a section are also maximal elements
of the given set.

Lemma 4.1.6 Let Q be a nonempty set in R
k . Then for every point a in R

k one has

Max
(
Q ∩ (a + R

k+)
) ⊆ Max(Q)

WMax
(
Q ∩ (a + R

k+)
) ⊆ WMax(Q).

Proof Let y be a Pareto maximal point of the section Q ∩ (a + R
k+). If y were not

maximal, then one would find some y′ in Q such that y′ � y and y′ �= y. It would
follow that y′ belongs to the section Q ∩ (a + R

k+) and yield a contradiction. The
second inclusion is proven by the same argument. �

For convex polyhedra existence of maximal points is characterized by position of
asymptotic directions with respect to the positive orthant of the space.

Theorem 4.1.7 Let Q be a convex polyhedron in R
k . The following assertions hold.

(i) Q has maximal points if and only if

Q∞ ∩ R
k+ = {0}.
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(ii) Q has weakly maximal points if and only if

Q∞ ∩ int(Rk+) = ∅.

In particular, every polytope has a maximal vertex.

Proof Let y be a maximal point of Q and let v be any nonzero asymptotic direction
of Q. Since y + v belongs to Q and Q ∩ (y + R

k+) = {y}, we deduce that v does not
belong to R

k+. Conversely, assume Q has no nonzero asymptotic direction. Then for
a fixed vector y in Q the section Q ∩ (y + R

k+) is bounded; otherwise any nonzero
asymptotic direction of that closed convex intersection, which exists due to Corollary
2.3.16, should be a positive asymptotic vector of Q. In view of Theorem 4.1.4 the
compact section Q ∩ (y +R

k+) possesses a maximal point, hence, in view of Lemma
4.1.6, so does Q.

For the second assertion, the same argument as above shows that when Q has
a weakly maximal point, no asymptotic direction of it is strictly positive. For the
converse part, by the hypothesis we know that Q∞ andR

k+ are two convex polyhedra
without relative interior points in common. Hence, in view of Theorem 2.3.10 there
is a nonzero vector λ ∈ R

k separating them, that is

〈λ, v〉 � 〈λ, d〉 for all v ∈ Q∞ and d ∈ R
k+.

In particular, for v = 0 and for d being usual coordinate unit vectors, we deduce
from the above relation that λ is positive. Moreover, the linear function 〈λ, .〉 is then
non-positive on every asymptotic direction of Q. We apply Theorem 3.1.1 to obtain
a maximum of 〈λ, .〉 on Q. In view of Theorem 4.1.4 that maximum is a weakly
maximal point of Q.

Finally, if Q is a polytope, then its asymptotic cone is trivial. Hence, by the first
assertion, it has maximal points. To prove that it has a maximal vertex, choose any
strictly positive vector λ ∈ R

k and consider the linear problem of maximizing 〈λ, .〉
over Q. In view of Theorem 3.1.3 the optimal solution set contains a vertex, which,
by Theorem 4.1.4, is also a maximal vertex of Q. �

In Example 4.1.5 a positive functional 〈λ, .〉 was given on a polyhedron having
no maximizer that is maximal. This, however, is impossible when the polyhedron
has maximal elements.

Corollary 4.1.8 Assume that Q is a convex polyhedron and λ is a nonzero positive
vector in R

k . If Q has a maximal point and the linear functional 〈λ, .〉 has maximizers
on Q, then among its maximizers there is a maximal point of Q.

Proof Let us denote by Q0 the nonempty intersection of Q with the hyperplane
{y ∈ R

k : 〈λ, y〉 = d} where d is the maximum of 〈λ, .〉 on Q. It is a convex
polyhedron. Since Q has maximal elements, in view of Theorem 4.1.7 one has
Q∞ ∩ R

k+ = {0}, which implies that (Q0)∞ ∩ R
k+ = {0} too. By the same theorem,

Q0 has a maximal element, say y0. We show that this y0 is also a maximal element

http://dx.doi.org/10.1007/978-3-319-21091-9_2
http://dx.doi.org/10.1007/978-3-319-21091-9_2
http://dx.doi.org/10.1007/978-3-319-21091-9_3
http://dx.doi.org/10.1007/978-3-319-21091-9_3
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of Q. Indeed, if not, one could find some y ∈ Q such that y � y0 and y �= y0. Since
λ is positive, we deduce that 〈λ, y〉 � 〈λ, y0〉 = d. Moreover, as y does not belong
to Q0, this inequality must be strict which is a contradiction. �

We say a set Q in the space R
k has the domination property if its elements are

dominated by maximal elements, that is, for every y ∈ Q there is some maximal
element a of Q such that a � y. The weak domination property refers to domination
by weakly maximal elements.

Corollary 4.1.9 A convex polyhedron has the domination property (respectively
weak domination property) if and only if it has maximal elements (respectively weakly
maximal elements).

Proof The “only if” part is clear. Assume a convex polyhedron Q has maximal
elements. In view of Theorem 4.1.7, the asymptotic cone of Q has no nonzero vector
in common with the positive orthant R

k+. Hence so does the section of Q at a given
point a ∈ Q. Again by Theorem 4.1.7 that section has maximal points that dominate
a and by Lemma 4.1.6 they are maximal points of Q. Hence Q has the domination
property. The weak domination property is proven by the same argument. �

We learned in Sect. 2.3 how to compute the normal cone at a given point of a
polyhedron. It turns out that by looking at the normal directions it is possible to say
whether a given point is maximal or not.

Theorem 4.1.10 Let Q be a convex polyhedron in R
k . The following assertions

hold.

(i) y ∈ Q is a maximal point if and only if the normal cone NQ(y) to Q at y contains
a strictly positive vector.

(ii) y ∈ Q is a weakly maximal point if and only if the normal cone NQ(y) to Q at
y contains a nonzero positive vector.

Proof Let y be a point in Q. If the normal cone to Q at y contains a strictly positive
vector, say λ, then by the definition of normal vectors, the functional 〈λ, .〉 attains
its maximum on Q at y. In view of Theorem 4.1.4, y is a maximal point of Q. The
proof of the “only if” part of (i) is based on Farkas’ theorem. We assume that y is
a maximal point of Q and suppose to the contrary that the normal cone to Q at that
point has no vector in common with the interior of the positive orthant R

k+. We may
assume that Q is given by a system of inequalities

〈ai , z〉 � bi , i = 1, · · · , m. (4.1)

The active index set at y is denoted I (y). By Theorem 2.3.24, the normal cone to
Q at y is the positive hull of the vectors ai , i ∈ I (y). Its empty intersection with
int(Rk+) means that the following system has no solution

AI (y)λ � e

λ � 0,

http://dx.doi.org/10.1007/978-3-319-21091-9_2
http://dx.doi.org/10.1007/978-3-319-21091-9_2
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where AI (y) denotes the matrix whose columns are ai , i ∈ I (y) and e is the vector
whose components are all equal to one. By introducing artificial variables z, the
above system is equivalent to the system

[
AI (y) (−I )

] (
λ
z

)
= e

λ � 0

z � 0.

Apply Farkas’ theorem (Theorem 2.2.3) to obtain a nonzero positive vector v such
that

〈ai , v〉 � 0 for all i ∈ I (y).

The inequalities (4.1) corresponding to the inactive indices at y being strict, we may
find a strictly positive number t such that

〈ai , y + tv〉 � bi for all i = 1, · · · , m.

In other words, the point y + tv belongs to Q. Moreover, y + tv � y and y + tv �= y
which contradicts the hypothesis. This proves (i).

As to the second assertion, the “if" part is clear, again, Theorem 4.1.4 is in use. For
the converse part, we proceed the same way as in (i). The fact that the intersection
of NQ(y) with the positive orthant R

k+ consists of the zero vector only, means that
the system

AI (y)λ � 0

λ � 0

has no nonzero solution. Applying Corollary 2.2.5 we deduce the existence of a
strictly positive vector v such that

〈ai , v〉 � 0 for all i ∈ I (y).

Then, as before, the vector y + tv with t > 0 sufficiently small, belongs to Q and
y + tv > y, which is a contradiction. �

Example 4.1.11 Consider a convex polyhedron Q in R
3 determined by the system

⎛
⎜⎜⎜⎜⎝

1 1 1
0 1 1
1 0 1
0 0 −1
0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎝ x1

x2
x3

⎞
⎠ �

⎛
⎜⎜⎜⎜⎝

1
1
1
0
1

⎞
⎟⎟⎟⎟⎠ .

http://dx.doi.org/10.1007/978-3-319-21091-9_2
http://dx.doi.org/10.1007/978-3-319-21091-9_2
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We analyze the point y = (1/3, 1/3, 1/3)T ∈ Q. Its active index set is I (y) = {1}.
By Theorem 2.3.24 the normal cone to Q at that point is generated by the vector
(1, 1, 1)T . According to Theorem 4.1.10 the point y is a maximal point of Q. Now,
take another point of Q, say z = (−1, 0, 1)T . Its active index set consists of two
indices 2 and 5. The normal cone to Q at z is generated by two directions (0, 1, 1)T

and (0, 0, 1)T . It is clear that this normal cone contains no strictly positive vector,
hence the point z is not a maximal point of Q because zT ≤ (0, 0, 1)T . It is a weakly
maximal point, however, because normal directions at z are positive. Finally, we
choose a point w = (0, 0, 0)T in Q. Its active index set is I (w) = {4}. The normal
cone to Q atw is the cone generated by the direction (0, 0,−1)T . This cone contains
no positive vector, hence the point w is not weakly maximal. This can also be seen
from the fact that w is strictly dominated by y.

Scalarizing vectors

In remaining of this section we shall use the terminology of efficient points instead
of (Pareto) maximal points in order to avoid possible confusion with the concept of
maximal element of a family of sets by inclusion. Given a family {Ai : i ∈ I } of
sets, we say that Ai0 is maximal (respectively minimal) if there is no element Ai

of the family such that Ai �= Ai0 and Ai0 ⊂ Ai (respectively Ai0 ⊃ Ai ). Another
formulation of Theorem 4.1.10 is viewed by maximizing linear functionals on the
set Q.

Corollary 4.1.12 Let Q be a convex polyhedron in R
k . Then the following statements

hold.

(i) y ∈ Q is an efficient point if and only if there is a strictly positive vector λ ∈ R
k

such that y maximizes the functional 〈λ, .〉 on Q.
(ii) y ∈ Q is a weakly efficient point if and only if there is a nonzero positive vector

λ ∈ R
k such that y maximizes the functional 〈λ, .〉 on Q.

Proof This is immediate from the definition of normal cones and from Theorem
4.1.10. �

The vector λ mentioned in this corollary is called a scalarizing vector (or weakly
scalarizing vector in (ii)) of the set Q. We remark that not every strictly positive
vector is a scalarizing vector of Q like not every strictly positive functional attains
its maximum on Q. Moreover, an efficient point of Q may maximize a number of
scalarizing vectors that are linearly independent, and vice versa, a scalarizing vector
may determine several maximizers on Q. For a given polyhedron Q that has efficient
elements, the question of how to choose a vector λ so that the functional associated
with it furnishes a maximizer is not evident. Analytical choice of positive directions
such as the one discussed in Example 4.1.11 is conceivable andwill be given in details
later. Random generating methods or uniform divisions of the standard simplex do
not work in many instances. In fact, look at a simple problem of finding efficient
points of the convex polyhedral set given by the inequality

http://dx.doi.org/10.1007/978-3-319-21091-9_2
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x1 + √
2x2 � 1

in the two-dimensional space R
2. Except for one direction, every positive vector λ

leads to a linear problem of maximizing 〈λ, x〉 over that polyhedron with unbounded
objective. Hence, using positive vectors λi of a uniform partition

λi = i

p

(
1
0

)
+ p − i

p

(
0
1

)

of the simplex [(1, 0)T , (0, 1)T ] of the space R
2 for whatever the positive integer p

be, will never generate efficient points of the set.

Any nonzero positive vector of the spaceR
k is a positive multiple of a vector from

the standard simplex Δ. This combined with Corollary 4.1.12 yields the following
equalities

Max(Q) =
⋃

λ∈riΔ
argmaxQ〈λ, .〉

WMax(Q) =
⋃
λ∈Δ

argmaxQ〈λ, .〉

where argmaxQ〈λ, .〉 is the set of all maximizers of the functional 〈λ, .〉 on Q. Given
a point y ∈ Q denote

Δy = {
λ ∈ Δ : y ∈ argmaxQ〈λ, .〉}

ΔQ =
⋃
y∈Q

Δy .

The setΔQ is called the weakly scalarizing set of Q andΔy is the weakly scalarizing
set of Q at y (Fig. 4.4). By Corollary 4.1.12 the set Δy is nonempty if and only if
the point y is a weakly efficient element of Q. Hence when Q has weakly efficient
points, the set ΔQ can be expressed as

ΔQ =
⋃

y∈WMax(Q)

Δy, (4.2)

in which every set Δy is nonempty. By definition a vector λ ∈ Δ belongs to Δy if
and only if

〈λ, y′ − y〉 � 0 for all y′ ∈ Q.

The latter inequality signifies thatλ is a normal vector to Q at y, and so (4.2) becomes

ΔQ =
⋃

y∈WMax(Q)

NQ(y) ∩ Δ.
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Fig. 4.4 Scalarizing set at y

y

Q

Δy

Let F = {F1, · · · , Fq} be the collection of all faces of Q and let N (Fi ) be the
normal cone to Fi , which, by definition, is the normal cone to Q at a relative interior
point of Fi . Since each element of Q is a relative interior point of some face, the
decomposition (4.2) produces the following decomposition of ΔQ :

ΔQ =
⋃
i∈I

Δi , (4.3)

where Δi = N (Fi ) ∩ Δ and I is the set of those indices i from {1, · · · , q} such that
the faces Fi are weakly efficient. We note that when a face is not weakly efficient, the
normal cone to it does not meet the simplex Δ. Remember that a face of Q is weakly
efficient if all elements of it are weakly efficient elements of Q, or equivalently if a
relative interior point of it is a weakly efficient element. A face that is not weakly
efficient may contain weakly efficient elements on its proper faces.

We say a face of Q is a maximal weakly efficient face if it is weakly efficient and
no weakly efficient face of Q contains it as a proper subset. It is clear that when
a convex polyhedron has weakly efficient elements, it does have maximal weakly
efficient faces. Below we present some properties of the decompositions (4.2) and
(4.3) of the weakly scalarizing set.

Lemma 4.1.13 If P and Q are convex polyhedra with P ∩ Q �= ∅, then there are
faces P ′ ⊆ P and Q′ ⊆ Q such that P ∩ Q = P ′ ∩ Q′ and ri(P ′) ∩ ri(Q′) �= ∅.

Moreover, if the interior of Q is nonempty and contains some elements of P, then
ri(P) ∩ int(Q) �= ∅ and ri(P ∩ Q) = ri(P) ∩ int(Q).

Proof Let x be a relative interior point of the intersection P ∩ Q. Let P ′ ⊆ P
and Q′ ⊆ Q be faces that contain x in their relative interiors. These faces meet
the requirements of the lemma. Indeed, it suffices to show that every point y from
P ∩ Q belongs to P ′ ∩ Q′. Since x is a relative interior point of P ∩ Q, the segment
[x − ε(x − y), x + ε(x − y)] belongs to that intersection when ε > 0 is sufficiently
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small. Moreover, as P ′ is a face, this segment must lie in P ′ which implies that y
lies in P ′. The same argument shows that y lies in Q′, proving the first part of the
lemma.

For the second part it suffices to observe that P is the closure of its relative interior.
Hence it has relative interior points inside the interior of Q. The last equality of the
conclusion is then immediate. �

Theorem 4.1.14 The weakly scalarizing set ΔQ is a polytope. Moreover, if ΔQ is
nonempty, the elements of the decomposition (4.2) and (4.3) are polytopes and satisfy
the following conditions:

(i) If Δy = Δz for some weakly efficient elements y and z, then there is i ∈ I such
that y, z ∈ Fi and Δy = Δz = Δi .

(ii) If Fi is a maximal weakly efficient face of Q, then Δi is a minimal element of
the decomposition (4.3). Conversely, if the polytope Δi is minimal among the
polytopes of the decomposition (4.3), then there is a maximal weakly efficient
face Fj such that Δ j = Δi .

(iii) For all i, j ∈ I with i �= j , one has either Δi = Δ j or ri(Δi ) ∩ ri(Δ j ) = ∅.
(iv) Let Fi and Fj be two weakly efficient adjacent vertices (zero-dimensional faces)

of Q. Then the edge joining them is weakly efficient if and only if Δi ∩Δ j �= ∅.

Proof SinceΔy is emptywhen y is not a weakly efficient point of Q, wemay express
ΔQ as

ΔQ =
⋃
y∈Q

Δy =
⋃
y∈Q

(NQ(y) ∩ Δ) = NQ ∩ Δ

which proves that ΔQ is a bounded polyhedron because the normal cone NQ is a
polyhedral cone. Likewise, the sets Δy = NQ(y) ∩ Δ and Δi = N (Fi ) ∩ Δ are
convex polytopes.

To establish (i) we apply Lemma 4.1.13 to the intersections Δy = NQ(y) ∩ Δ

and Δz = NQ(z)∩Δ. There exist faces N ⊆ NQ(y), M ⊆ NQ(z) and Δy,Δz ⊆ Δ

such that

NQ(y) ∩ Δ = N ∩ Δy, ri(N ) ∩ ri(Δy) �= ∅
NQ(z) ∩ Δ = M ∩ Δz, ri(M) ∩ ri(Δz) �= ∅.

Choose any vector ξ from the relative interior ofΔy . Then it is also a relative interior
vector of the faces N , M ,Δy andΔz . This implies that N = M andΔy = Δz . Using
Theorem 2.3.26 we find a face Fi of Q such that N (Fi ) = N . Then Fi contains y
and z and satisfies

Δi = N (Fi ) ∩ Δ = N ∩ Δ = Δy = Δz .

For (ii) assume Fi is a maximal weakly efficient face. Assume that Δ j is a subset
of Δi for some j ∈ I . We choose any vector ξ from Δ j and consider the face F ′

http://dx.doi.org/10.1007/978-3-319-21091-9_2
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consisting of all maximizers of 〈ξ, .〉 on Q. Then F ′ is a weakly efficient face and
contains Fj and Fi . As Fi is maximal, we must have F ′ = Fi . Thus, Fj ⊆ Fi and

Δi = N (Fi ) ∩ Δ ⊆ N (Fj ) ∩ Δ = Δ j .

Conversely, let Δi be a minimal element among the polytopes Δ j , j ∈ I . If Fi is
maximal weakly efficient face, we are done. If it is not, we find a maximal weakly
efficient face Fj containing Fi . Then Δ j = N (Fj ) ∩ Δ ⊆ N (Fi ) ∩ Δ = Δi and
Δ j = Δi by hypothesis.

We proceed to (iii). Assume that the relative interior ofΔi and the relative interior
of Δ j have a vector ξ in common. In view of Lemma 4.1.13 one can find four faces:
N i of N (Fi ), N j of N (Fj ), Δi and Δ j of Δ such that

N (Fi ) ∩ Δ = N i ∩ Δi , ri(N i ) ∩ ri(Δi ) �= ∅
N (Fj ) ∩ Δ = N j ∩ Δ j , ri(N j ) ∩ ri(Δ j ) �= ∅.

According to Theorem 2.3.26 there are faces F� and Fm of Q which respectively
contain Fi and Fj with N (F�) = N i and N (Fm) = N j . Then ξ is a relative interior
vector of the faces N (F�), N (Fm), Δi and Δ j . We deduce that the face Δi coincides
with Δ j , and F� coincides with Fm . Consequently, Δi = Δ j .

To prove the last property we assume Fi and Fj are adjacent vertices (zero-
dimensional faces) of Q. Let a one-dimensional face Fl be the edge joining them.
According to Corollary 2.3.28 we have N (Fl) = N (Fi ) ∩ N (Fj ). Then Δl =
Δi ∩ Δ j which shows that Fl is weakly efficient if and only if the latter intersection
is nonempty. �

Note that two different faces of Q may have the same weakly scalarizing set.
For instance the singleton {(0, 0, 1)T } is the weakly scalarizing set for all weakly
efficient faces of the polyhedron R

2+ × {0} in R
3.

In order to treat efficient elements of Q we need to work with the relative interior
of Δ. Corresponding notations will be set as follows

Δr
Q = ΔQ ∩ ri(Δ)

Δr
y = Δy ∩ ri(Δ)

Δr
i = Δi ∩ ri(Δ).

The set Δr
Q is called the scalarizing set of Q. It is clear that y ∈ Q is efficient if and

only if Δr
y is nonempty, and it is weakly efficient, but not efficient if and only if Δy

lies on the border of Δ. The decompositions of the weakly scalarizing set induce the
following decompositions of the scalarizing set

Δr
Q =

⋃
y∈Max(Q)

Δr
y (4.4)

http://dx.doi.org/10.1007/978-3-319-21091-9_2
http://dx.doi.org/10.1007/978-3-319-21091-9_2
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and

Δr
Q =

⋃
i∈I0

Δr
i (4.5)

where I0 consists of those indices i from {1, · · · , q} for which Fi are efficient.

Theorem 4.1.15 Assume that the scalarizing set Δr
Q is nonempty. Then

ΔQ = cl(Δr
Q).

Moreover the decompositions (4.4) and (4.5) of Δr
Q satisfy the following properties:

(i) If Δr
y = Δr

z for some efficient elements y and z, then there is s ∈ I0 such that
y, z ∈ ri(Fs) and Δr

y = Δr
z = Δr

s .
(ii) For i ∈ I0 the face Fi is a maximal efficient face if and only if Δr

i is a minimal
element of the decomposition (4.5).

(iii) For all i, j ∈ I0 with i �= j , one has ri(Δr
i ) ∩ ri(Δr

j ) = ∅.
(iv) Let Fi and Fj be two efficient adjacent vertices (zero-dimensional efficient

faces) of Q. Then the edge joining them is efficient if and only if Δr
i ∩ Δr

j �= ∅.

Proof Since the set Δr
Q is nonempty, the set ΔQ does not lie on the border of Δ.

Being a closed convex set,ΔQ is the closure of its relative interior. Hence the relative
interior of ΔQ and the relative interior of Δ have at least one point in common and
we deduce

ΔQ = ΔQ ∩ Δ = cl
(
ri(ΔQ ∩ Δ)

)
= cl

(
riΔQ ∩ riΔ

) ⊆ cl
(
ΔQ ∩ riΔ

)
⊆ cl

(
Δr

Q

)
.

The converse inclusion being evident, we obtain equality ΔQ = cl(Δr
Q).

To prove (i) we apply the second part of Lemma 4.1.13 to have

ri
[
cone(Δr

y)
] = ri

[
NQ(y) ∩ R

k+
] = ri

[
NQ(y)

] ∩ int(Rk+)

ri
[
cone(Δr

z)
] = ri

[
NQ(z) ∩ R

k+
] = ri

[
NQ(z)

] ∩ int(Rk+).

If y and z were relative interior points of two different faces, in view of Theorem
2.3.26 we would have ri[NQ(y)] ∩ ri[NQ(z)] = ∅ that contradicts the hypothesis.
Hence they are relative interior points of the same face, say Fs . By definition N (Fs) =
NQ(y) and we deduce Δr

s = Δr
y .

For (ii) assume Fi is amaximal efficient face. If for some j ∈ I0 one hasΔr
j ⊆ Δr

i ,
then by Lemma 4.1.13 there is some strictly positive vector that lies in the relative
interior of the normal cone N (Fj ) and in the normal cone N (Fi ). We deduce that
either Fi = Fj , or Fi is a proper face of Fj . The last case is impossible because Fj is
also an efficient face and Fi is maximal. Conversely, if Fi is not maximal, then there

http://dx.doi.org/10.1007/978-3-319-21091-9_2
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is a face Fj that is efficient and contains Fi as a proper face. We have Δ j ⊆ Δi .
This inclusion is strict because the relative interiors of N (Fi ) and N (Fj ) do not meet
each other. Thus, Δi is not minimal.

We proceed to (iii). If ri(Δr
i ) ∩ ri(Δr

j ) �= ∅, in view of Theorem 4.1.14 one has
Δi = Δ j , and henceΔr

i = Δr
j . By (i), there is some face that contains relative interior

points of Fi and Fj in its relative interior. This implies Fi = Fj a contradiction.
For the last property we know that the normal cone to the edge joining the vertices

Fi and Fj satisfies N ([Fi , Fj ]) = N (Fi )∩N (Fj ). Hence the edge [Fi , Fj ] is efficient
if and only if the normal cone to it meets the set ri(Δ), or equivalently Δr

i ∩ Δr
j is

nonempty. �

A practical way to compute the weakly scalarizing set is to solve a system of
linear equalities when the polyhedron Q is given by a system of linear inequalities.

Corollary 4.1.16 Assume the polyhedron Q in R
k is determined by the system

〈ai , y〉 � bi , i = 1, · · · , m.

Then for every y ∈ Q, the set Δy consists of all solutions z to the following system

z1 + · · · + zk = 1∑
i∈I (y)

αi a
i = z

zi � 0, i = 1, · · · , k,αi � 0, i ∈ I (y).

In particular the weakly scalarizing set ΔQ is the solution set to the above system
with I = {1, · · · , m}.
Proof According to Theorem 2.3.24 the normal cone to Q at y is the positive hull
of the vectors ai , i ∈ I (y). Hence the set Δy is the intersection of the positive
hull of these vectors and the simplex Δ, which is exactly the solution set to the
system described in the corollary. For the second part of the corollary it suffices to
observe that the normal cone of Q is the polar cone of the asymptotic cone of Q
(Theorem 2.3.26) which, in view of Theorem 2.3.19, is the positive hull of the vectors
ai , i = 1, · · · , m. �

Example 4.1.17 Consider the polyhedron defined by

y1 − y2 − y3 � 1
2y1 + y3 � 0.

http://dx.doi.org/10.1007/978-3-319-21091-9_2
http://dx.doi.org/10.1007/978-3-319-21091-9_2
http://dx.doi.org/10.1007/978-3-319-21091-9_2
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By Corollary 4.1.16 the weakly scalarizing set ΔQ is the solution set to the system

z1 + z2 + z3 = 1

α1 + 2α2 = z1
−α1 = z2

−α1 + α2 = z3
z1, z2, z3,α1,α2 � 0.

This produces a unique solution z with z1 = 2/3, z2 = 0 and z3 = 1/3. Then ΔQ

consists of this solution only. The scalarizing set Δr
Q is empty, which shows that Q

has no efficient point. Its weakly efficient set is determined by the problem

maximize 2
3 y1 + 1

3 y3
subject to y ∈ Q.

It follows from the second inequality determining Q that the maximum value of the
objective function is zero and attained on the face given by the equations 2y1+y3 = 0
and y1 − y2 − y3 � 1.

In the next example we show how to compute the scalarizing set when the poly-
hedron is given by a system of equalities (see also Exercise 4.4.13 at the end of this
chapter).

Example 4.1.18 Let Q be a polyhedron in R
3 determined by the sytem

y1 + y2 + y3 = 1
y1 − y2 = 0

y3 � 0.

We consider the solution y = (1/2, 1/2, 0)T and want to compute the scalarizing set
at this solution if it exists. As the proof of Theorem 4.1.14 indicates, a vector λ ∈ Δ

in R
3 is a weakly scalarizing vector of Q at y if and only if it is normal to Q at that

point. Since the last component of y is zero, a vector λ is normal to Q at y if and
only if there are real numbers α,β and a positive number γ such that

λ = α

⎛
⎝1
1
1

⎞
⎠ + β

⎛
⎝ 1

−1
0

⎞
⎠ − γ

⎛
⎝ 0
0
1

⎞
⎠ .

We deduce λ ∈ Δy if and only if

α + β � 0

α − β � 0



100 4 Pareto Optimality

α − γ � 0

(α + β) + (α − β) + (α − γ) = 1

and hence Δy consists of vectors λ whose components satisfy 0 � λ3 � 1/3,
λ1 + λ2 = 1 − λ3 and λ1,λ2 � 0.

To obtain the scalarizing vectors, it suffices to chooseλ as abovewith an additional
requirement that λi > 0 for i = 1, 2, 3.

Structure of the set of efficient points

Given a convex polyhedron Q in the space R
k , the set of its efficient elements is not

simple. For instance, it is generally not convex, and an edge of it is not necessarily
efficient even if its two extreme end-points are efficient vertices. Despite of this, a
number of nice properties of this set can be scrutinized.

Corollary 4.1.19 Let Q be a convex polyhedron in R
k . The following statements

hold.

(i) If a relative interior point of a face of Q is efficient or weakly efficient, then so
is every point of that face.

(ii) If Q has vertices, it has an efficient vertex (respectively a weakly efficient vertex)
provided that it has efficient (respectively weakly efficient) elements.

Proof Since the normal cone to Q at every point of a face contains the normal cone
at a relative interior point, the first statement follows directly from Theorem 4.1.10.

For the second statement let y be an efficient point of the polyhedron Q. By
Theorem 4.1.10 one can find a strictly positive vector λ such that y is a maximizer
of the linear functional 〈λ, .〉 on Q. The face which contains y in its relative interior
maximizes the above functional. According to Corollary 2.3.14 there is a vertex of
Q inside that face and in view of Theorem 4.1.10 this vertex is an efficient point of
Q. The case of weakly efficient points is proven by the same argument. �

A subset P of R
k is called arcwise connected if for any pair of points y and z in

P , there are a finite number of points y0, · · · , y� in P such that y0 = y, y� = z and
the segments [yi , yi+1], i = 0, · · · , � − 1 lie all in P .

Theorem 4.1.20 The sets of all efficient points and weakly efficient points of a convex
polyhedron consist of faces of the polyhedron and are closed and arcwise connected.

Proof By analogy, it suffices to prove the theorem for the efficient set. According to
Corollary 4.1.19, if a point ȳ in Q is efficient, then the whole face containing y in
its relative interior is a face of efficient elements. Hence, Max(Q) consists of faces
of Q if it is nonempty. Moreover, as faces are closed, their union is a closed set.

Now we prove the connectedness of this set by assuming that Q has efficient
elements. Let y and z be any pair of efficient points of Q. We may assume without
loss of generality that y is a relative interior point of a face Qy and z is a relative
interior point of a face Qz . Consider the decomposition (4.5) of the scalarizing set

http://dx.doi.org/10.1007/978-3-319-21091-9_2
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Δr
Q . For a face F of Q, the scalarizing set N (F)∩ ri(Δ) is denoted by Δr

i(F). Let λy

be a relative interior point of the set Δr
i(Qy)

and λz a relative interior point of Δr
i(Qz)

.
Then the segment joining λy and λz lies in Δr

Q . The decomposition of the latter set
induces a decomposition of the segment [λy,λz] by [λi ,λi+1], i = 0, · · · , � − 1
where λ0 = λy , λ� = λz . Let Q1, · · · , Q� be faces of Q such that

[λ j ,λ j+1] ⊆ Δr
i(Q j+1)

j = 0, · · · , � − 1.

For every j , we choose a relative interior point y j of the face Q j . Then λ j belongs
to the normal cones to Q at y j and y j+1. Consequently, the points y j and y j+1 lie
in the face argmaxQ〈λ j , .〉 and so does the segment joining them. As λ j ∈ Δr

Q , by

Theorem 4.1.10 the segment [y j , y j+1] consists of efficient points of Q. Moreover,
as the vector λ0 belongs to the normal cones to Q at y and at y1, we conclude that
the segment [y, y1] is composed of efficient points of Q. Similarly we have that
[y�−1, z] lies in the set Max(Q). Thus, the union [y, y1] ∪ [y1, y2] ∪ · · · [y�−1, z]
forms a path of efficient elements joining y and z. This completes the proof. �

We know that every efficient point of a convex polyhedron is contained in a
maximal efficient face. Hence the set of efficient points is the union of maximal
efficient faces. Dimension of a maximal efficient face may vary from zero to k − 1.

Corollary 4.1.21 Let Q be a convex polyhedron in R
k . The following statements

hold.

(i) Q has a zero-dimensional maximal efficient face if and only if its efficient set is
a singleton.

(ii) Every (k − 1)-dimensional efficient face of Q, if any exists, is maximal. In
particular in the two dimensional space R

2 every efficient edge of Q is maximal
if the efficient set of Q consists of more than two elements.

(iii) An efficient face F of Q is maximal if and only if the restriction of the decom-
position of Δr

Q on ΔF consists of one element only.

Proof The first statement follows from the arcwise connectedness of the efficient
set of Q. In R

k a proper face of Q is of dimension at most k − 1. Moreover, a k-
dimensional polyhedron cannot be efficient, for its interior points are not maximal.
Hence, if the dimension of an efficient face is equal to k − 1, it is maximal.

The last statement follows immediately from Theorem 4.1.15. �

Example 4.1.22 Let Q be a polyhedron in R
3 defined by the system

x1 + x3 � 1
x2 + x3 � 1

x1, x2, x3 � 0.
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Since Q is bounded, it is evident that the weakly scalarizing set ΔQ is the whole
standard simplex Δ and the scalarizing set is the relative interior of Δ. Denote

q1 =
⎛
⎝ 1
0
0

⎞
⎠ , q2 =

⎛
⎝ 0
1
0

⎞
⎠ , q3 =

⎛
⎝0
0
1

⎞
⎠ , q4 =

⎛
⎝1/2

0
1/2

⎞
⎠ , q5 =

⎛
⎝ 0
1/2
1/2

⎞
⎠ .

Applying Corollary 4.1.16 we obtain the following decomposition of Δr
Q :

(i) ri[q4, q5] is the scalarizing set of the face determined by the equalities x1+x3 =
1 and x2 + x3 = 1;

(ii) ri(co([q3, q4, q5])) is the scalarizing set of the face determined by the equali-
ties x1 + x3 = 1, x2 + x3 = 1 and x1 = x2 = 0;

(iii) ri(co([q1, q2, q4, q5])) is the scalarizing set of the face determined by the equal-
ities x1 + x3 = 1, x2 + x3 = 1 and x3 = 0.

In view of Corollary 4.1.21 the one dimensional face (edge) determined by x1+x3 =
1 and x2 + x3 = 1 is a maximal efficient face.

4.2 Multiobjective Linear Problems

The central multiobjective linear programming problem which we propose to study
throughout is denoted (MOLP) and written in the form :

Maximize Cx

subject to x ∈ X,

where X is a nonempty convex polyhedron in R
n and C is a real k × n-matrix. This

problem means finding a Pareto efficient (Pareto maximal) solution x̄ ∈ X such that
Cx̄ ∈ Max(C(X)). In other words, a feasible solution x̄ solves (MOLP) if there is
no feasible solution x ∈ X such that

Cx̄ � Cx and Cx̄ �= Cx .

The efficient solution set of (MOLP) is denoted S(MOLP). When x is an efficient
solution, the vector Cx is called an efficient or maximal value of the problem. In
a similar manner one defines the set of weakly efficient solutions WS(MOLP) to be
the set of all feasible solutions whose image by C belong to the weakly efficient
set WMax(C(X)). It is clear that an efficient solution is a weakly efficient solution,
but not vice versa as we have already discussed in the preceding section. When the
feasible set X is given by the system

Ax = b

x � 0,
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where A is a real m ×n-matrix and b is a real m-vector, we say that (MOLP) is given
in standard form, and it is given in canonical form if X is determined by the system

Ax � b.

The matrix C is also considered as a linear operator from R
n to R

k , and so its kernel
consists of vectors x with Cx = 0.

Theorem 4.2.1 Assume that the problem (MOLP) has feasible solutions. Then the
following assertions hold.

(i) (MOLP) admits efficient solutions if and only if

C(X∞) ∩ R
k+ = {0}.

(ii) (MOLP) admits weakly efficient solutions if and only if

C(X∞) ∩ int(Rk+) = ∅.

In particular, if all asymptotic rays of X belong to the kernel of C, then (MOLP) has
an efficient solution.

Proof By definition, (MOLP) has an efficient solution if and only if the set C(X)

has an efficient point, which, in virtue of Theorem 4.1.7, is equivalent with

[C(X)]∞ ∩ R
k+ = {0}.

Now the first assertion is deduced from this equivalence and from the fact that the
asymptotic cone of C(X) coincides with the cone C(X∞) (Corollary 2.3.17). The
second assertion is proven by a similar argument. �

Example 4.2.2 Assume that the feasible set X of the problem (MOLP) is given by
the system

x1 + x2 − x3 = 5

x1 − x2 = 4

x1, x2, x3 � 0.

It is nonempty and parametrically presented as

X =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

t + 4

t

2t − 1

⎞
⎟⎠ : t � 1

2

⎫⎪⎬
⎪⎭ .

http://dx.doi.org/10.1007/978-3-319-21091-9_2
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Its asymptotic cone is given by

X∞ =
⎧⎨
⎩

⎛
⎝ t

t
2t

⎞
⎠ : t � 0

⎫⎬
⎭ .

Consider an objective function C with values in R
2 given by the matrix

C =
(

1 0 1
−2 −4 0

)
.

Then the image of X∞ under C is the set

C(X∞) =
{(

3t
−6t

)
: t � 0

}
,

that has only the zero vector in commonwith the positive orthant. In view of Theorem
4.2.1 the problem has maximal solutions.

Now we choose another objective function C ′ given by

C ′ =
(−1 1 0

0 0 1

)
.

Then the image of X∞ under C ′ is the set

C ′(X∞) =
{(

0
2t

)
: t � 0

}
,

that has no common point with the interior of the positive orthant. Hence the problem
admits weakly efficient solutions. It has no efficient solution because the intersection
of C ′(X∞) with the positive orthant does contain positive vectors.

Definition 4.2.3 The objective function of the problem (MOLP) is said to be
bounded (respectively weakly bounded) from above if there is no vector v ∈ X∞
such that

Cv ≥ 0 (respectively Cv > 0).

We shall simply say that (MOLP) is bounded if its objective function is bounded
from above. Of course, a bounded problem is weakly bounded and not every weakly
bounded problem is bounded. A sufficient condition for a problem to be bounded is
given by the inequality

Cx � a for every x ∈ X,

where a is some vector from R
k . This condition is also necessary when k = 1, but

not so when k > 1.
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Example 4.2.4 Consider the bi-objective problem

Maximize

(−3 1 1
0 1 0

) ⎛
⎝ x1

x2
x3

⎞
⎠

subject to

(
1 −1 0
0 0 1

) ⎛
⎝ x1

x2
x3

⎞
⎠ =

(
0
1

)

x1, x2, x3 � 0.

The feasible set and its asymptotic cone are given respectively by

X =
⎧⎨
⎩

⎛
⎝ t

t
1

⎞
⎠ ∈ R

3 : t � 0

⎫⎬
⎭

and

X∞ =
⎧⎨
⎩

⎛
⎝ t

t
0

⎞
⎠ ∈ R

3 : t � 0

⎫⎬
⎭

Then for every asymptotic direction v = (t, t, 0)T ∈ X∞ one has

Cv =
(−2t

t

)
� 0.

By definition the objective function is bounded. Nevertheless the value set of the
problem consists of vectors

C(X) =
{(−2t + 1

t

)
: t � 0

}

for which no vector a ∈ R
2 satisfies Cx � a for all x ∈ X .

Corollary 4.2.5 The problem (MOLP) has efficient solutions (respectively weakly
efficient solutions) if and only if its objective function is bounded (respectively weakly
bounded).

Proof This is immediate from Theorem 4.2.1. �

The following theorem provides a criterion for efficiency in terms of normal
directions.
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Theorem 4.2.6 Let x̄ be a feasible solution of (MOLP). Then

(i) x̄ is an efficient solution if and only if the normal cone NX (x̄) to X at x̄ contains
some vector CT λ with λ a strictly positive vector of R

k;
(ii) x̄ is a weakly efficient point if and only if the normal cone NX (x̄) to X at x̄

contains some vector CT λ with λ a nonzero positive vector of R
k .

Proof If the vector CT λ with λ strictly positive, is normal to X at x̄ , then

〈CT λ, x − x̄〉 ≤ 0 for every x ∈ X

which means that

〈λ, Cx〉 ≤ 〈λ, Cx̄〉 for every x ∈ X.

By Theorem 4.1.4 the vector Cx̄ is an efficient point of the set C(X). By definition,
x̄ is an efficient solution of (MOLP).

Conversely, if Cx̄ is an efficient point of C(X), then by Theorem 4.1.10, the
normal cone to C(X) at Cx̄ contains a strictly positive vector, denoted by λ. We
deduce that

〈CT λ, x − x̄〉 ≤ 0 for all x ∈ X.

This shows that the vector CT λ is normal to X at x̄ . The second assertion is proven
similarly. �

Example 4.2.7 We reconsider the bi-objective problem given in Example 4.2.2

Maximize

(
1 0 1

−2 −4 0

)⎛
⎝ x1

x2
x3

⎞
⎠

subject to
x1 + x2 − x3 = 5
x1 − x2 = 4

x1, x2, x3 � 0.

Choose a feasible solution x = (9/2, 1/2, 0)T corresponding to t = 1/2. The
normal cone to the feasible set at x is the positive hull of the hyperplane of basis
{(1, 1,−1)T , (1,−1, 0)T } (the row vectors of the constraint matrix) and the vector
(0, 0,−1)T (the constraint x3 � 0 is active at this point). In other words, this normal
cone is the half-space determined by the inequality

x1 + x2 + 2x3 � 0. (4.6)

The image of the positive orthant of the value space R
2 under CT is the positive hull

of the vectors
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v1 =
⎛
⎝ 1 −2
0 −4
1 0

⎞
⎠

(
1
0

)
=

⎛
⎝ 1
0
1

⎞
⎠ and v2 =

⎛
⎝ 1 −2
0 −4
1 0

⎞
⎠

(
0
1

)
=

⎛
⎝−2

−4
0

⎞
⎠ .

Using inequality (4.6) we deduce that the vector v2 lies in the interior of the normal
cone to the feasible set at x . Hence that normal cone does contain a vector CT λ with
some strictly positive vector λ. By Theorem 4.2.6 the solution x is efficient. It is
routine to check that the solution x is a vertex of the feasible set.

If we pick another feasible solution, say z = (5, 1, 1)T , then the normal cone to
the feasible set at z is the hyperplane determine by equation

x1 + x2 + 2x3 = 0.

Direct calculation shows that the vectors v1 and v2 lie in different sides of the normal
cone at z. Hence there does exist a strictly positive vector λ in R

2 such that CT λ is
contained in that cone. Consequently, the solution z is efficient too.

4.3 Scalarization

We associate with a nonzero k-vector λ a scalar linear problem, denoted (LPλ)

maximize 〈λ, Cx〉
subject to x ∈ X.

This problem is referred to as a scalarized problem of (MOLP) and λ is called a
scalarizing vector. Now we shall see how useful scalarized problems are in solving
multiobjective problems.

Theorem 4.3.1 The following statements hold.

(i) A feasible solution x̄ of (MOLP) is efficient if and only if there is a strictly positive
k-vector λ such that x̄ is an optimal solution of the scalarized problem (LPλ).

(ii) A feasible solution x̄ of (MOLP) is weakly efficient if and only if there is a nonzero
positive k-vector λ such that x̄ is an optimal solution of the scalarized problem
(LPλ).

Proof If x̄ is an efficient solution of (MOLP), then, in view of Theorem 4.2.6, there
is a strictly positive vector λ such that CT λ is a normal vector to X at x̄ . This implies
that x̄ maximizes the linear functional 〈λ, C(.)〉 on X , that is, x̄ is an optimal solution
of (LPλ).

Conversely, if x̄ solves the problem (LPλ) with λ strictly positive, then CT λ is a
normal cone to X at x̄ . Again, in view of Theorem 4.2.6, the point x̄ is an efficient
solution of (MOLP). The proof of the second statement follows the same line. �
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We notice that Theorem 4.3.1 remains valid if the scalarizing vector λ is taken
from the standard simplex, that is λ1 + · · · + λk = 1. Then another formulation of
the theorem is given by equalities

S(MOLP) =
⋃

λ∈riΔ
S(LPλ) (4.7)

WS(MOLP) =
⋃
λ∈Δ

S(LPλ) (4.8)

where S(LPλ) denotes the optimal solution set of (LPλ). It was already mentioned
that a weakly efficient solution is not necessarily an efficient solution. Consequently
a positive, but not strictly positive vector λ may produce weakly efficient solutions
which are not efficient. Here is an exception.

Corollary 4.3.2 Assume for a positive vector λ, the set consisting of the values Cx
with x being optimal solution of (LPλ) is a singleton, in particular when (LPλ) has
a unique solution. Then every optimal solution of (LPλ) is an efficient solution of
(MOLP).

Proof Let x be an optimal solution of (LPλ) and let y be a feasible solution of
(MOLP) such that Cy � Cx . Since λ is positive, one has

〈λ, Cx〉 � 〈λ, Cy〉.

Actually we have equality because x solves (LPλ). Hence y solves (LPλ) too. By
hypothesis Cx = Cy which shows that x is an efficient solution of (MOLP). �

Equalities (4.7) and (4.8) show that efficient and weakly efficient solutions of
(MOLP) can be generated by solving a family of scalar problems. It turns out that
a finite number of such problems are sufficient to generate the whole efficient and
weakly efficient solution sets of (MOLP).

Corollary 4.3.3 There exists a finite number of strictly positive vectors (respectively
positive vectors) λi , i = 1, · · · , p such that

S(MOLP) =
p⋃

i=1

S(LPλi )

(respectively WS(MOLP) =
p⋃

i=1

S(LPλi ))

Proof It follows from Theorem 3.1.3 that if an efficient solution is a relative interior
of a face of the feasible polyhedron and an optimal solution of (LPλ) for some
strictly positive vector λ, then the whole face is optimal for (LPλ). Since the number
of faces is finite, a finite number of such vectors λ is sufficient to generate all efficient

http://dx.doi.org/10.1007/978-3-319-21091-9_3
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solutions of (MOLP). The case of weakly efficient solutions is treated in the same
way. �

Corollary 4.3.4 Assume that (MOLP) has an efficient solution and (LPλ), where
λ is a nonzero positive vector, has an optimal solution. Then there is an efficient
solution of (MOLP) among the optimal solutions of (LPλ).

Proof Apply Theorem 4.3.1 and the method of Corollary 4.1.8. �

Corollary 4.3.5 Assume that the scalarized problems

maximize 〈ci , x〉
subject to x ∈ X

where ci , i = 1, · · · , k are the columns of the matrix CT , are solvable. Then (MOLP)
has an efficient solution.

Proof The linear problems mentioned in the corollary correspond to the scalarized
problems (LPλ) with λ = (0, · · · , 1, · · · , 0)T where the one is on the i th place,
i = 1, · · · , k. These problems provide weakly efficient solutions of (MOLP). The
linear problem whose objective is the sum 〈c1, x〉+ · · ·+ 〈ck, x〉 is solvable too. It is
the scalarized problemwith λ = (1, · · · , 1)T , and hence by Theorem 4.3.1, (MOLP)
has efficient solutions. �

Decomposition of the scalarizing set

Given a feasible solution x of (MOLP) we denote the set of all vectors λ ∈ Δ such
that x solves (LPλ) by �(x), and the union of all these �(x) over x ∈ X by �(X).
We denote also

�r (x) = �(x) ∩ ri(Δ)

�r (X) = �(X) ∩ ri(Δ).

The sets �r (X) and �(X) are respectively called the scalarizing and weakly scalar-
izing sets of (MOLP). The decomposition results for efficient elements (Theorems
4.1.14 and 4.1.15) are easily adapted to decompose theweakly scalarizing and scalar-
izing sets of the problem (MOLP).We deduce a useful corollary below for computing
purposes.

Corollary 4.3.6 The following assertions hold for (MOLP).

(i) A feasible solution x ∈ X is efficient (respectively weakly efficient ) if and only
if �r (x) (respectively �(x)) is nonempty.

(ii) If X has vertices, then the set �r (X) (respectively �(X)) is the union of the
sets �r (xi ) ( respectively �(xi )) where xi runs over the set of all efficient
(respectively weakly efficient ) vertices of (MOLP).
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(iii) If X is given by system

〈ai , x〉 � bi , i = 1, · · · , m

and x is a feasible solution, then the set �(x) consists of all solutions λ to the
following system

λ1 + · · · + λk = 1∑
i∈I (x)

αi a
i = λ1c1 + · · · + λkck

λi � 0, i = 1, · · · , k,αi � 0, i ∈ I (x).

In particular the weakly scalarizing set �(X) is the solution set to the above
system with I = {1, · · · , m}.

Proof The first assertion is clear from Theorem 4.3.1. For the second assertion we
observe that when X has vertices, every face of X has vertices too (Corollary 2.3.6).
Hence the normal cone of X is the union of the normal cones to X at its vertices.
Moreover, by writing the objective function 〈λ, C(.)〉 of (LPλ) in the form 〈CT λ, .〉,
we deduce that

�(x) = {λ ∈ R
k : CT λ ∈ NX (x) ∩ CT (Δ)}. (4.9)

Consequently,

�(X) =
⋃
x∈X

�(x)

=
⋃{

λ : CT λ ∈ NX (x) ∩ CT (Δ), x ∈ X
}

=
⋃{

λ : CT λ ∈ NX (x) ∩ CT (Δ), x is a vertex of X
}

=
⋃{

�(x) : x is a weakly efficient vertex of X
}
.

The proof for efficient solutions is similar. The last assertion is derived from (4.9)
and Corollary 4.1.16. �

Example 4.3.7 We reconsider the bi-objective problem

Maximize

(
1 1
2 −1

) (
x1
x2

)

subject to
x1 + x2 � 1

3x1 + 2x2 � 2.

Wewish to find theweakly scalarizing set of this problem.According to the preceding
corollary, it consists of positive vectors λ from the standard simplex of R

2, solutions
to the following system:

http://dx.doi.org/10.1007/978-3-319-21091-9_2
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λ1 + λ2 = 1

α1

(
1
1

)
+ α2

(
3
2

)
= λ1

(
1
1

)
+ λ2

(
2

−1

)

α1,α2 � 0,λ1,λ2 � 0.

Solving this system we obtain λ =
(

t
1 − t

)
with 7/8 � t � 1. For t = 1, the

scalarized problem associated with λ is of the form

maximize x1 + x2

subject to
x1 + x2 � 1

3x1 + 2x2 � 2.

It can be seen that x solves this problem if and only if x1+ x2 = 1 and x1 � 0. These
solutions form the set of weakly efficient solutions of the multiobjective problem.

For t = 7/8, the scalarized problem associated with λ = (7/8, 1/8)T is of the
form

maximize
9

8
x1 + 3

4
x2

subject to
x1 + x2 � 1

3x1 + 2x2 � 2.

Its optimal solutions are given by 3x1 + 2x2 = 2 and x1 � 0. Since λ is strictly
positive, these solutions are efficient solutions of the multiobjective problem. If we
choose λ = (1/2, 1/2)T outside of the scalarizing set, then the associated scalarized
problem has no optimal solution.

Structure of the efficient solution set

We knew in Chap.3 that the optimal solution set of a scalar linear problem is a
face of the feasible set. This property, unfortunately, is no longer true when the
problem is multiobjective. However, a few interesting properties of the efficient set
of a polyhedron we established in the first section are still valid for the efficient
solution set and exposed in the next theorem.

Theorem 4.3.8 The efficient solutions of the problem (MOLP) have the following
properties.

(i) If a relative interior point of a face of X is an efficient or weakly efficient solution,
then so is every point of that face.

(ii) If X has a vertex and (MOLP) has an efficient (weakly efficient) solution, then
it has an efficient (weakly efficient) vertex solution.

(iii) The efficient and weakly efficient solution sets of (MOLP) consist of faces of the
feasible polyhedron and are closed and arcwise connected.

http://dx.doi.org/10.1007/978-3-319-21091-9_3
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Proof Since the normal cone to X at every point of a face contains the normal cone
at a relative interior point, the first property follows directly from Theorem 4.2.6.

Further, under the hypothesis of (ii) there is a strictly positive vector λ ∈ R
k

such that the scalarized problem (LPλ) is solvable. The argument in proving (ii) of
Corollary 4.1.19 is applicable to obtain an optimal vertex of (LPλ) which is also an
efficient vertex solution of (MOLP).

The proof of the last property is much similar to the one of Theorem 4.1.15.
We first notice that in view of (i) the efficient and weakly efficient solution sets are
composed of faces of the feasible set X , and as the number of faces of X is finite, they
are closed. We now prove the arcwise connectedness of the weakly efficient solution
set, the argument going through for efficient solutions too. Let x and y be twoweakly
efficient solutions, relative interior points of efficient faces Xx and X y of X . Let λx

and λy be relative interior vectors of the weakly scalarizing sets �(Xx ) and �(X y).
The decomposition of the weakly scalarizing set �(X) induces a decomposition of
the segment joining λx and λy by

[λx ,λy] = [λ1,λ2] ∪ [λ2,λ3] ∪ · · · ∪ [λ�−1,λ�]

withλ1 = λx ,λ� = λy and [λi ,λi+1] ⊆ �(Xi ) for some face Xi of X , i = 1, ..., �−
1. Since λi belongs simultaneously to �(Xi ) and �(Xi+1), there is some common
point xi ∈ Xi ∩Xi+1, i = 1, ..., �−1. It is clear that [x, x1]∪[x1, x2]∪· · ·∪[x�−1, y]
is an arcwise path joining x and y and each member segment [xi , xi+1] is efficient
because being in the face Xi , i = 1, ..., � with x� = y. �

4.4 Exercises

4.4.1 Find maximal elements of the sets determined by the following systems

(a)

⎧⎨
⎩
2x + y � 15

x + 3y � 20
x, y � 0.

(b)

⎧⎨
⎩

x + 4y � 12
−2x + y � 0

x, y � 0.

(c)

⎧⎪⎪⎨
⎪⎪⎩

x + 2y � 20
7x + z � 6

3y + 4z � 30
x, y, z � 0.

(d)

⎧⎪⎪⎨
⎪⎪⎩

x + 2y + 3z � 70
x + y + z � 50

− y + z � 0
x, y, z � 0.
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4.4.2 Find maximal and weakly maximal elements of the following sets

Q1 =
⎧⎨
⎩

⎛
⎝ x1

x2
x3

⎞
⎠ ∈ R

3 : x1 � 0, x2 � 0, x3 � 0, x22 + x23 � 1

⎫⎬
⎭

Q2 =co(A, B) with A =
⎧⎨
⎩

⎛
⎝ 1
0
s

⎞
⎠ ∈ R

3 : 0 � s � 1

⎫⎬
⎭

and B =
⎧⎨
⎩

⎛
⎝ 0

x2
x3

⎞
⎠ ∈ R

3 : x2 � 0, x3 � 0, x22 + x23 � 1

⎫⎬
⎭ .

4.4.3 We say a real function g on R
k is increasing if x, y ∈ R

k and x ≥ y imply
g(x) > g(y), and it is weakly increasing if x > y implies g(x) > g(y). Prove that g
is increasing (respectively weakly increasing) if and only if for every nonempty subset
Q of R

k , every maximizer of g on Q is an efficient (respectively weakly maximal)
element of Q.

4.4.4 Let Q be a closed set in R
k . Prove the following statements.

(i) The set WMax(Q) is closed.
(ii) The set Max(Q) is closed provided that k = 2 and Q − R

2+ is convex.
(iii) Max(−Q) = − Min(Q) and Max(αQ) = α Max(Q) for every α > 0.

4.4.5 Let P and Q be two convex polyhedra in R
k .

(i) Prove that Max(P + Q) ⊆ Max(P)+ Max(Q).
(ii) Find conditions under which equality holds in (i).

4.4.6 Prove that the set of maximal elements of a convex polytope is included in the
convex hull of the maximal vertices. Is the converse true?

4.4.7 An element x of a set P in R
k is said to be dominated if there is some x ′ ∈ P

such that x ′ ≥ x. Prove that the set of dominated elements of a convex polyhedral
set is convex and if a face contains a dominated element, its relative interior points
are dominated too.

4.4.8 A diet problem. A multiobjective version of the diet problem in hospital
consists of finding a combination of foods for a patient to minimize simultaneously
the cost of the menu and the number of calories under certain nutritional requirements
prescribed by a treating physician. Assume a menu is composed of three main types of
foods: meat with potatoes, fish with rice and vegetables. The nutrition facts, calories
in foods and price per servings are given below

Fats Carbohydrates Vitamin Calories Prices/serving
Meat + potatoes 0.2 0.2 0.06 400 1.5
Fish + rice 0.1 0.2 0.08 300 1.5
Vegetables 0 0.05 0.8 50 0.8
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Using three variables: x= number of servings of meat, y= number of servings of fish
and z= number of servings of vegetables, formulate a bi-objective linear problem
whose objective functions are the cost and the number of calories of the menu while
maintaining the physician’s prescription of at least one unit and at most one and half
unit for each nutritional substance. Discuss the menus that minimize the cost and the
number of calories separately.

4.4.9 An investment problem. An investor disposes a budget of 20,000 USD and
wishes to invest into three product projects with amounts x, y and z respectively. The
total profit is given by

P(x, y, z) = 20x + 10y + 100z

and the total sale is given by

S(x, y, z) = 10x + 2y + z.

Find x, y and z to maximize the total profit and total sale.

4.4.10 Bilevel linear programming problem. A typical bilevel programming prob-
lem consists of two problems: the upper level problem of the form

maximize 〈c, x〉 + 〈d, y〉
subject to A1x � b1

x � 0

and the lower level problem for which y is an optimal solution:

maximize 〈p, z〉
subject to A2x + A3z � b2

z � 0.

Here c, p, d, b1 and b2 are vectors of dimension n1, n2, n2, m1 and m2 respectively;
A1, A2 and A3 are matrices of dimension m1 × n1, m2 × n1 and m2 × n2 corre-
spondingly.

Consider the following multiobjective problem

Maximize

⎛
⎝ x

−〈e, x〉
〈p, y〉

⎞
⎠

subject to A1x � b1
A2x + A3y � b2

x � 0, y � 0



4.4 Exercises 115

where e is the vector whose components are all equal to one. Prove that (x, y) is an
efficient solution of this latter problem if and only if it is a feasible solution of the
upper level problem described above.

4.4.11 Apply Theorem 4.1.15 to find a decomposition of the scalarizing set for the
polyhedron defined by the system

2x1 + x2 + 2x3 � 5

x1 + 2x2 + 2x3 � 5

x1, x2, x3 � 0.

4.4.12 Find the weakly scalarizing set of a polyhedron in R
k determined by the

system

〈ai , y〉 = bi , i = 1, · · · , m

y � 0,

and apply it to find the weakly scalarizing set of a multiobjective problem given in
standard form.

4.4.13 Scalarizing set at a vertex solution. Consider the problem (MOLP) in stan-
dard form

Maximize Cx
subject to Ax = b

x � 0,

where C is a k × n-matrix, A is an m × n-matrix and b is an m-vector. Assume
x is a feasible solution associated with a non-degenerate basis B. The non-basic
part of A is denoted N, the basic and non-basic parts of C are denoted CB and CN

respectively. Prove the following statements.

(a) A vector λ belongs to �(x) if and only if it belongs to Δ and solves the following
system

[CT
N − (B−1N )T CT

B ]λ � 0.

(b) If the vector on the left hand side of the system in (a) is strictly negative for some
λ, then x is a unique solution of the scalarized problem

maximize 〈λ, Cx〉
subject to Ax = b

x � 0.

In particular, if in addition λ is positive, then x is an efficient solution of (MOLP).
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4.4.14 Pascoletti-Serafini’s method. Let λ ∈ R
k be a strictly positive vector and

Cx � 0 for every feasible solution x ∈ X of (MOLP). Show that if (x,α) is an
optimal solution of the problem

maximize α

subject to 〈c j , x〉 � α, j = 1, ..., k

x ∈ X,

then x is a weakly efficient solution of (MOLP).

4.4.15 Weighted constraint method. Prove that a feasible solution x ∈ X is a
weakly efficient solution of (MOLP) if and only if there is some strictly positive
vector λ ∈ R

k such that x solves

maximize λ�〈c�, x〉
subject to λ j 〈c j , x〉 � λ�〈c�, x〉, j = 1, · · · , k, j �= �

x ∈ X

for � = 1, · · · , k.

4.4.16 Constraint method. Choose � ∈ {1, · · · , k}, L j ∈ R, j = 1, · · · , k, j �= �,
and solve the scalar problem (P�):

maximize 〈c�, x〉
subject to 〈c j , x〉 ≥ L j , j = 1, · · · , k, j �= �

Ax = b, x � 0.

Note that if L j are big, then (P�) may have no feasible solution. A constraint 〈c j , x〉 ≥
L j is called binding if equality 〈c j , x〉 = L j is satisfied at every optimal solution of
(P�). Prove that

(a) every optimal solution of (P�) is a weakly efficient solution of (MOLP);
(b) if an optimal solution of (P�) is unique or all constraints of (P�) are binding,

then it is an efficient solution of (MOLP);
(c) a feasible solution x0 of (MOLP) is efficient if and only if it is optimal for all

(P�), � = 1, ..., k and

L� = (〈c1, x0〉, · · · , 〈c�−1, x0〉, 〈c�+1, x0〉, · · · , 〈ck, x0〉).

4.4.17 Let d be a k-vector such that Cx � d for some feasible solution x of (MOLP).
Consider the problem (P)
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maximize 〈e, y〉
subject to Cx = d + y

Ax = b, x � 0, y � 0,

where e is the vector of ones in R
k . Show that

(a) a feasible solution x0 of (MOLP) is efficient if and only if the optimal value of
(P) with d = Cx0 is equal to zero;

(b) (MOLP) has efficient solutions if and only if the optimal value of (P) is finite.

4.4.18 Let x̄ be a feasible solution of the problem

Maximize Cx

subject to Ax � b.

Show that the following statements are equivalent.

(i) x̄ is a weak Pareto maximal solution.
(ii) The system {

Ax � b
Cx > Cx

is inconsistent.
(iii) For every t > 0, the system

{
Ax � b − Ax
Cx � te

is inconsistent, where e is the vector of ones.
(iv) For every t > 0, the system

⎧⎨
⎩

CT λ − AT μ = 0
〈Ax̄ − b,μ〉 + t〈e,λ〉 = 1

λ,μ � 0

is consistent.

4.4.19 Consider the multiobjective problem described in the preceding exercise.
Assume that the cone pos{c1, · · · , ck} contains the origin in its relative interior.
Prove that if the interior of the feasible set is nonempty, then every feasible solution
of (MOLP) is an efficient solution.

4.4.20 Let X denote the feasible set of the problem (MOLP) given in Exercise 4.4.18.
Consider the following function

h(x) = max
x ′∈X

min
λ∈Δ

〈λ, Cx ′ − Cx〉.
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Prove that x is a weakly maximal solution of (MOLP) if and only if h(x) = 0.

4.4.21 Geoffrion’s proper efficient solutions. Let X be a nonempty set in R
n and let

f be a vector-valued function from R
n to R

k . Consider the following multiobjective
problem

Maximize f (x)

subject to x ∈ X.

A feasible solution x of this problem is said to be a proper efficient solution if there
exists a constant α > 0 such that for every i ∈ {1, · · · , k} and x ∈ X satisfying
fi (x) > fi (x) there exists some j ∈ {1, · · · , k} for which f j (x) < f j (x) and

fi (x) − fi (x)

f j (x) − f j (x)
� α.

(i) Justify that every proper efficient solution is efficient. Give an example of efficient
solutions that are not proper.

(ii) Prove that when f is linear and X is a polyhedral set, every efficient solution is
proper.

4.4.22 Maximality with respect to a convex cone. Let C be a convex cone in R
k

with C ∩ (−C) = {0} (one says C is pointed). For y, z ∈ R
k define y �C z by

y − z ∈ C. A point z of a set A is called C-maximal if there is no y ∈ A such that
y �C z and y �= z. Prove the following properties:

(i) A point z ∈ A is C-maximal if and only if (A − a) ∩ R
k = {0};

(ii) If R
k+ ⊆ C, then every C-maximal point is Pareto maximal, and if R

k+ ⊇ C,
then every Pareto maximal point is C-maximal;

(iii) If A is a polyhedral set, then there is a polyhedral cone C satisfying R
k+ ⊆

int(C) ∪ {0} such that a point of A is C-maximal if and only if it is Pareto
maximal. Find such a cone for the sets in Exercise 4.4.1 (a) and (b).

4.4.23 Lexicographical order. The lexicographical order �lex in R
k is defined as

y �lex z for y, z ∈ R
k if and only if either y = z or there is some j ∈ {1, · · · , k}

such that yi = zi for i < j and y j > z j . A point z of a nonempty set A in R
k is

called lex-maximal if there is no y ∈ A such that y �lex z and y �= z.

(i) Show that the lexicographical order is total in the sense that for every y, z ∈ R
k

one has either y �lex z or z �lex y.
(ii) Find a convex cone C such that y �lex z if and only if y − z ∈ C.

(iii) Prove that every lex-maximal element of a set is Pareto maximal.

Do the same for the colexicographical order: y �colex z if and only if either y = z
or there is some j ∈ {1, · · · , k} such that yi = zi for i > j and y j > z j .
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