
Chapter 2
Convex Polyhedra

We begin the chapter by introducing basic concepts of convex sets and linear func-
tions in a Euclidean space. We review some of fundamental facts about convex
polyhedral sets determined by systems of linear equations and inequalities, includ-
ing Farkas’ theorem of the alternative which is considered a keystone of the theory
of mathematical programming.

2.1 The Space R
n

Throughout this book,Rn denotes the n-dimensional Euclidean space of real column
n-vectors. The norm of a vector x with components x1, · · · , xn is given by

‖x‖ =
[

n∑
i=1

(xi )
2

]1/2
.

The inner product of two vectors x and y in Rn is expressed as

〈x, y〉 =
n∑

i=1

xi yi .

The closed unit ball, the open unit ball and the unit sphere of Rn are respectively
defined by

Bn := {x ∈ R
n : ‖x‖ � 1

}
,

int(Bn) := {x ∈ R
n : ‖x‖ < 1

}
,

Sn := {x ∈ R
n : ‖x‖ = 1

}
.
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8 2 Convex Polyhedra

Given a nonempty set Q ⊆ R
n , we denote the closure of Q by cl(Q) and its interior

by int(Q). The conic hull, the positive hull and the affine hull of Q are respectively
given by

cone(Q) := {ta : a ∈ Q, t ∈ R, t � 0
}
,

pos(Q) :=
{

k∑
i=1

ti a
i : ai ∈ Q, ti ∈ R, ti � 0, i = 1, · · · , k with k ∈ N

}
,

aff(Q) :=
{

k∑
i=1

ti a
i : ai ∈ Q, ti ∈ R, i = 1, · · · , k and

k∑
i=1

ti = 1 with k ∈ N

}
,

where N denotes the set of natural numbers (Figs. 2.1, 2.2 and 2.3).

Fig. 2.1 Conic hull (with
Q = Q1 ∪ Q2)
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Fig. 2.2 Positive hull (with
Q = Q1 ∪ Q2)
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Fig. 2.3 Affine hull (with
Q = Q1 ∪ Q2)
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Among the sets described above cone(Q) and pos(Q) are cones, that is, they are
invariant under multiplication by positive numbers; pos(Q) is also invariant under
addition of its elements; and aff(Q) is an affine subspace of Rn . For two vectors x
and y of Rn , inequalities x > y and x � y mean respectively xi > yi and xi � yi

for all i = 1, · · · , n. When x � y and x �= y, we write x ≥ y. So a vector x is
positive, that is x � 0, if its components are non-negative; and it is strictly positive
if its components are all strictly positive. The set of all positive vectors of Rn is the
positive orthantRn+. Sometimes row vectors are also considered. They are transposes
of column vectors. Operations on row vectors are performed in the same manner as
on column vectors. Thus, for two row n-vectors c and d, their inner product is
expressed by

〈c, d〉 = 〈cT , dT 〉 =
n∑

i=1

ci di ,

where the upper index T denotes the transpose. On the other hand, if c is a row vector
and x is a column vector, then the product cx is understood as a matrix product which
is equal to the inner product 〈cT , x〉.

Convex sets

Wecall a subset Q ofRn convex if the segment joining any twopoints of Q lies entirely
in Q, which means that for every x, y ∈ Q and for every real number λ ∈ [0, 1], one
has λx + (1−λ)y ∈ Q (Figs. 2.4, 2.5). It follows directly from the definition that the
intersectionof convex sets, theCartesianproduct of convex sets, the image and inverse
image of a convex set under a linear transformation, the interior and the closure of a
convex set are convex. In particular, the sum Q1 + Q2 := {x + y : x ∈ Q1, y ∈ Q2}
of two convex sets Q1 and Q2 is convex; the conic hull of a convex set is convex.
The positive hull and the affine hull of any set are convex.

The convex hull of Q, denoted co(Q) (Fig. 2.6), consists of all convex combina-
tions of elements of Q, that is,
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Fig. 2.4 Convex set
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Fig. 2.5 Nonconvex set
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co(Q) :=
{

k∑
i=1

λi x i : xi ∈ Q,λi � 0, i = 1, · · · , k and
k∑

i=1

λi = 1 with k ∈ N

}
.

It is the intersection of all convex sets containing Q. The closure of the convex hull
of Q will be denoted by co(Q), which is exactly the intersection of all closed convex
sets containing Q. The positive hull of a set is the conic hull of its convex hull. A
convex combination

∑k
i=1 λi x i is strict if all coefficients λi are strictly positive.

Given a nonempty convex subset Q of Rn , the relative interior of Q, denoted
ri(Q), is its interior relative to its affine hull, that is,

ri(Q) := {x ∈ Q : (x + εBn) ∩ aff(Q) ⊆ Q for some ε > 0
}
.

Equivalently, a point x in Q is a relative interior point if and only if for any point y in
Q there is a positive number δ such that the segment joining the points x − δ(x − y)

and x +δ(x − y) entirely lies in Q. As a consequence, any strict convex combination
of a finite collection {x1, · · · , xk} belongs to the relative interior of its convex hull
(see also Lemma 6.4.8). It is important to note also that every nonempty convex set
inRn has a nonempty relative interior. Moreover, if two convex sets Q1 and Q2 have
at least one relative interior point in common, then ri(Q1 ∩ Q2) = ri(Q1) ∩ ri(Q2).

Fig. 2.6 Convex hull of Q

Q

co(Q)
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Fig. 2.7 The standard
simplex in R

3

Example 2.1.1 (Standard simplex) Let ei be the i th coordinate unit vector of Rn ,
that is its components are all zero except for the i th component equal to one. Let Δ
denote the convex hull of e1, · · · , en . Then a vector x with components x1, · · · , xn is
an element ofΔ if and only if xi � 0, i = 1, · · · , n and

∑n
i=1 xi = 1. This set has no

interior point. However, its relative interior consists of x with xi > 0, i = 1, · · · , n
and
∑n

i=1 xi = 1. The set Δ is called the standard simplex of Rn (Fig. 2.7).

Caratheodory’s theorem

It turns out that the convex hull of a set Q in the spaceRn can be obtained by convex
combinations of at most n + 1 elements of Q. First we see this for positive hull.

Theorem 2.1.2 Let {a1, · · · , ak} be a collection of vectors in R
n. Then for every

nonzero vector x from the positive hull pos{a1, · · · , ak} there exists an index set
I ⊆ {1, · · · , k} such that

(i) the vectors ai , i ∈ I are linearly independent;
(ii) x belongs to the positive hull pos{ai , i ∈ I }.
Proof Since the collection {a1, · · · , ak} is finite, we may choose an index set I of
minimum cardinality such that x ∈ pos{ai , i ∈ I }. It is evident that there are strictly
positive numbers ti , i ∈ I such that x =∑i∈I ti ai . We prove that (i) holds for this
I . Indeed, if not, one can find an index j ∈ I and real numbers si such that

a j −
∑

i∈I\{ j}
si a

i = 0.

Set
ε = min

{
t j and − ti

si
: i ∈ I with si < 0

}

and express
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x =
∑
i∈I

ti a
i − ε

(
a j −

∑
i∈I\{ j}

si a
i
)

= (t j − ε)a j +
∑

i∈I\{ j}
(ti + εsi )a

i .

It is clear that in the latter sum those coefficients corresponding to the indices that
realize the minimum in the definition of ε are equal to zero. By this, x lies in the
positive hull of less than |I | vectors of the collection. This contradiction completes
the proof. �

A collection of vectors {a1, · · · , ak} in R
n is said to be affinely independent if

the dimension of the subspace aff{a1, · · · , ak} is equal to k − 1. By convention a set
consisting of a solitary vector is affinely independent. The next result is a version of
Caratheodory’s theorem and well-known in convex analysis.

Corollary 2.1.3 Let {a1, · · · , ak} be a collection of vectors in R
n . Then for every

x ∈ co{a1, · · · , ak} there exists an index set I ⊆ {1, · · · , k} such that

(i) the vectors ai , i ∈ I are affinely independent
(ii) x belongs to the convex hull of ai , i ∈ I.

Proof We consider the collection of vectors vi = (ai , 1), i = 1, · · · , k in the space
R

n × R. It is easy to verify that x belongs to the convex hull co{a1, · · · , ak} if
and only if the vector (x, 1) belongs to the positive hull pos{v1, · · · , vk}. Applying
Theorem 2.1.2 to the latter positive hull we deduce the existence of an index set
I ⊆ {1, · · · , k} such that the vector (x, 1) belongs to the positive hull pos{vi , i ∈ I }
and the collection {vi , i ∈ I } is linearly independent. Then x belongs to the convex
hull co{ai , i ∈ I } and the collection {ai , i ∈ I } is affinely independent. �

Linear operators and matrices

A mapping φ : Rn → R
k is called a linear operator between R

n and R
k if

(i) φ(x + y) = φ(x) + φ(y),

(ii) φ(t x) = tφ(x)

for every x, y ∈ R
n and t ∈ R. The kernel and the image of φ are the sets

Kerφ = {x ∈ R
n : φ(x) = 0

}
,

Imφ = {y ∈ R
k : y = φ(x) for some x ∈ R

n}.
These sets are linear subspaces of Rn and R

k respectively.
We denote the k × n-matrix whose columns are c1, · · · , cn by C , where ci is the

vector image of the i th coordinate unit vector ei by φ. Then for every vector x of Rn

one has
φ(x) = Cx .
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The mapping x �→ Cx is clearly a linear operator from R
n to R

k . This explains
why one can identify a linear operator with a matrix. The space of k × n matrices
is denoted by L(Rn,Rk). The transpose of a matrix C is denoted by CT . The norm
and the inner product in the space of matrices are given by

‖C‖ =
(∑

i=1,··· ,n
∑

j=1,··· ,n |ci j |2
)1/2

,

〈C, B〉 =
∑

i=1,··· ,n
∑

j=1,··· ,n ci j bi j .

The norm ‖C‖ is called also the Frobenius norm.
The inner product 〈C, B〉 is nothing but the trace of the matrix C BT . Sometimes

the space L(Rn,Rk) is identified with the n × k-dimensional Euclidean spaceRn×k .

Linear functionals

A particular case of linear operators is when the value space is one-dimensional. This
is the space of linear functionals on Rn and often identified with the space Rn itself.
Thus, each linear functional φ is given by a vector dφ by the formula

φ(x) = 〈dφ, x〉.

When dφ �= 0, the kernel of φ is called a hyperplane; the vector dφ is a normal vector
to this hyperplane. Geometrically, dφ is orthogonal to the hyperplane Kerφ. The sets

{
x ∈ R

n : 〈dφ, x〉 � 0
}
,{

x ∈ R
n : 〈dφ, x〉 � 0

}
are closed halfspaces and the sets

{
x ∈ R

n : 〈dφ, x〉 > 0
}
,{

x ∈ R
n : 〈dφ, x〉 < 0

}
are open halfspaces bounded by the hyperplane Kerφ. Given a real number α and a
nonzero vector d of Rn , one also understands a hyperplane of type

H(d,α) = {x ∈ R
n : 〈d, x〉 = α

}
.

The sets

H+(d,α) = {x ∈ R
n : 〈d, x〉 � α

}
,

H−(d,α) = {x ∈ R
n : 〈d, x〉 � α

}
are positive and negative halfspaces and the sets



14 2 Convex Polyhedra

int
(
H+(d,α)

) = {x ∈ R
n : 〈d, x〉 > α

}
,

int
(
H−(d,α)

) = {x ∈ R
n : 〈d, x〉 < α

}
are positive and negative open halfspaces.

Theorem 2.1.4 Let Q be a nonempty convex set in R
n and let 〈d, .〉 be a positive

functional on Q, that is 〈d, x〉 � 0 for every x ∈ Q. If 〈d, x〉 = 0 for some relative
interior point x of Q, then 〈d, .〉 is zero on Q.

Proof Let y be any point in Q. Since x is a relative interior point, there exists a
positive number δ such that x + t (y − x) ∈ Q for |t | � δ. Applying 〈d, .〉 to this
point we obtain

〈d, x + t (y − x)〉 = t〈d, y〉 � 0

for all t ∈ [−δ, δ]. This implies that 〈d, y〉 = 0 as requested. �

2.2 System of Linear Inequalities

We shall mainly deal with two kinds of systems of linear equations and inequalities.
The first system consists of k inequalities

〈ai , x〉 � bi , i = 1, · · · , k, (2.1)

where a1, · · · , ak are n-dimensional column vectors and b1, · · · , bk are real num-
bers; and the second system consists of k equations which involves positive vectors
only

〈ai , x〉 = bi , i = 1, · · · , k (2.2)

x � 0.

Denoting by A the k × n-matrix whose rows are the transposes of a1, · · · , ak and
by b the column k-vector of components b1, · · · , bk , we can write the systems (2.1)
and (2.2) in matrix form

Ax � b (2.3)

and

Ax = b (2.4)

x � 0.

Notice that any system of linear equations and inequalities can be converted to the
twomatrix forms described above. To this end it suffices to perform three operations:
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(a) Express each variable xi as difference of two non-negative variables xi = x+
i −

x−
i where

x+
i = max{xi ; 0},

x−
i = max{−xi ; 0}.

(b) Introduce a non-negative slack variable yi in order to obtain equivalence between
inequality 〈ai , x〉 � bi and equality 〈ai , x〉 + yi = bi . Similarly, with a non-
negative surplus variable zi one may express inequality 〈ai , x〉 � bi as equality
〈ai , x〉 − zi = bi .

(c) Express equality 〈ai , x〉 = bi by two inequalities 〈ai , x〉 � bi and 〈ai , x〉 � bi .

Example 2.2.1 Consider the following system

x1 + 2x2 = 1,

−x1 − x2 � 0.

It is written in form (2.3) as

⎛
⎝ 1 2

−1 −2
1 1

⎞
⎠( x1

x2

)
�

⎛
⎝ 1

−1
0

⎞
⎠

and in form (2.4) with a surplus variable y as

(
1 −1 2 −2 0

−1 1 −1 1 −1

) (
x+
1 , x−

1 , x+
2 , x−

2 , y
)T =

(
1
0

)
,

(x+
1 , x−

1 , x+
2 , x−

2 , y)T � 0.

Redundant equation

Given a system (2.4) we say it is redundant if at least one of the equations (called
redundant equation) can be expressed as a linear combination of the others. In other
words, it is redundant if there is a nonzero k-dimensional vector λ such that

AT λ = 0,

〈b,λ〉 = 0.

Moreover, redundant equations can be dropped from the system without changing
its solution set. Similarly, an inequation of (2.1) is called redundant if its removal
from the system does not change the solution set.
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Proposition 2.2.2 Assume that k � n and that the system (2.4) is consistent. Then
it is not redundant if and only if the matrix A has full rank.

Proof If one of equations, say 〈a1, x〉 = b1, is redundant, then a1 is a linear combina-
tion of a2, · · · , ak . Hence the rank of A is not maximal, it is less than k. Conversely,
when the rank of A is maximal (equal to k), no row of A is a linear combination of
the others. Hence no equation of the system can be expressed as a linear combination
of the others. �

Farkas’ theorem

One of the theorems of the alternative that are pillars of the theory of linear and
nonlinear programming is Farkas’ theorem or Farkas’ lemma. There are a variety of
ways to prove it, the one we present here is elementary.

Theorem 2.2.3 (Farkas’ theorem) Exactly one of the following systems has a
solution:

(i) Ax = b and x � 0;
(ii) AT y � 0 and 〈b, y〉 < 0.

Proof If the first system has a solution x , then for every y with AT y � 0 one has

〈b, y〉 = 〈Ax, y〉 = 〈x, AT y〉 � 0,

which shows that the second system has no solution.
Now suppose the first system has no solution. Then either the system

Ax = b

has no solution, or it does have a solution, but every solution of it is not positive. In the
first case, choose m linearly independent columns of A, say a1, · · · , am , where m is
the rank of A. Then the vectors a1, · · · , am, b are linearly independent too (because
b does not lie in the space spanned by a1, · · · , am). Consequently, the system

〈ai , y〉 = 0, i = 1, · · · , m,

〈b, y〉 = −1

admits a solution. This implies that the system (ii) has solutions too. It remains to
prove the solvability of (ii) when Ax = b has solutions and they are all non-positive.
We do it by induction on the dimension of x . Assume n = 1. If the system ai1x1 =
bi , i = 1, · · · , k has a negative solution x1, then y = −(b1, · · · , bk)

T is a solution
of (ii) because AT y = −(a2

11+· · ·+a2
k1)x1 > 0 and 〈b, y〉 = −(b21 +· · ·+b2k ) < 0.

Now assume n > 1 and that the result is true for the case of dimension n−1. Given an
n-vector x , denote by x the (n − 1)-vector consisting of the first (n − 1) components
of x . Let Ā be the matrix composed of the first (n − 1) columns of A. It is clear that
the system
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Āx = b and x � 0

has no solution. By induction there is some y such that

A
T

y � 0,

〈b, y〉 < 0.

If 〈an, y〉 � 0, we are done. If 〈an, y〉 < 0, define new vectors

âi = 〈ai , y〉an − 〈an, y〉ai , i = 1, · · · , n − 1,

b̂ = 〈b, y〉an − 〈an, y〉b

and consider a new system

â1ξ1 + · · · + ân−1ξn−1 = b̂. (2.5)

We claim that this system of k equations has no positive solution. Indeed, if not, say
ξ1, · · · , ξn−1 were non-negative solutions, then the vector x with

xi = ξi , i = 1, · · · , n − 1,

xn = − 1

〈an, y〉
(
〈a1ξ1 + · · · + an−1ξn−1, y〉 − 〈b, y〉

)

should be a positive solution of (i) because−〈b, y〉 > 0 and 〈Aξ, y〉 = 〈ξ, A
T

y〉 � 0
for ξ = (ξ1, · · · , ξn−1)

T � 0, implying xn � 0. Applying the induction hypothesis
to (2.5) we deduce the existence of a k-vector ŷ with

〈âi , ŷ〉 � 0, i = 1, · · · , n − 1,

〈b̂, ŷ〉 < 0.

Then the vector y = 〈an, ŷ〉y − 〈an, y〉ŷ satisfies the system (ii). The proof is
complete. �

A number of consequences can be derived from Farkas’ theorem which are useful
in the study of linear systems and linear programming problems.

Corollary 2.2.4 Exactly one of the following systems has a solution:

(i) Ax = 0, 〈c, x〉 = 1 and x � 0;
(ii) AT y � c.
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Proof If (ii) has a solution y, then for a positive vector x with Ax = 0 one has

0 = 〈y, Ax〉 = 〈AT y, x〉 � 〈c, x〉.

So (i) is not solvable. Conversely, if (i) has no solution, then applying Farkas’ theorem
to the inconsistent system

(
A

cT

)
x =
(
0
1

)
and x � 0

yields the existence of a vector y and of a real number t such that

(
AT c
)( y

t

)
� 0 and

〈(
0
1

)
,

(
y
t

)〉
< 0.

Hence t < 0 and −y/t is a solution of (ii). �

Corollary 2.2.5 Exactly one of the following systems has a solution:

(i) Ax ≥ 0 and x � 0;
(ii) AT y � 0 and y > 0.

Proof By introducing a surplus variable z ∈ R
k we convert (i) to an equivalent

system

Ax − I z = 0,(
x
z

)
� 0,〈

c,

(
x
z

)〉
= 1,

where c is an (n + k)-vector whose n first components are all zero and the remaining
components are one. According to Corollary 2.2.4 it has no solution if and only if
the following system has a solution

(
AT

−I

)
y � c.

It is clear that the latter system is equivalent to (ii). �

The next corollary is known as Motzkin’s theorem of the alternative.

Corollary 2.2.6 (Motzkin’s theorem) Let A and B be two matrices having the same
number of columns. Exactly one of the following systems has a solution:

(i) Ax > 0 and Bx � 0;
(ii) AT y + BT z = 0, y ≥ 0 and z � 0.
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Proof The system (ii) is evidently equivalent to the following one

(
AT BT

eT 0

)(
y
z

)
=
(
0
1

)
(

y
z

)
� 0.

By Farkas’ theorem it is compatible (has a solution) if and only if the following
system is incompatible:

(
A e
B 0

)(
x
t

)
�
(
0
0

)
〈(

x
t

)
,

(
0
1

)〉
< 0.

The latter system is evidently equivalent to the system of (i). �

Some classical theorems of alternatives are immediate from Corollary 2.2.6.

• Gordan’s theorem (B is the zero matrix):
Exactly one of the following systems has a solution

(1) Ax > 0;
(2) AT y = 0 and y ≥ 0.

• Ville’s theorem (B is the identity matrix):
Exactly one of the following systems has a solution

(3) Ax > 0 and x � 0;
(4) AT y � 0 and y ≥ 0.

• Stiemke’s theorem (A is the identity matrix and B is replaced by

(
B

−B

)
):

Exactly one of the following systems has a solution

(5) Bx = 0 and x > 0;
(6) BT y ≥ 0.

2.3 Convex Polyhedra

A set that can be expressed as the intersection of a finite number of closed half-spaces
is called a convex polyhedron. A convex bounded polyhedron is called a polytope.
According to the definition of closed half-spaces, a convex polyhedron is the solution
set to a finite system of inequalities



20 2 Convex Polyhedra

〈ai , x〉 � bi , i = 1, · · · , k (2.6)

where a1, · · · , ak are n-dimensional column vectors and b1, · · · , bk are real num-
bers. When bi = 0, i = 1, · · · , k, the solution set to (2.6) is a cone and called a
convex polyhedral cone. We assume throughout this section that the system is not
redundant and solvable.

Supporting hyperplanes and faces

Let P be a convex polyhedron and let

H = {x ∈ R
n : 〈v, x〉 = α}

be a hyperplane with v nonzero. We say H is a supporting hyperplane of P at a point
x ∈ P if the intersection of H with P contains x and P is contained in one of the
closed half-spaces bounded by H (Fig. 2.8). In this case, the nonempty set H ∩ P is
called a face of P . Thus, a nonempty subset F of P is a face if there is a nonzero
vector v ∈ R

n such that

〈v, y〉 � 〈v, x〉 for all x ∈ F, y ∈ P.

When a face is zero-dimensional, it is called a vertex. A nonempty polyhedron may
have no vertex. By convention P is a face of itself; other faces are called proper
faces. One-dimensional faces are called edges. Two vertices are said to be adjacent
if they are end-points of an edge.

Example 2.3.1 Consider a system of three inequalities in R
2:

x1 + x2 � 1 (2.7)

−x1 − x2 � 0 (2.8)

−x1 � 0. (2.9)

Fig. 2.8 Supporting
hyperplane

x

H

P
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The polyhedron defined by (2.7) and (2.8) has no vertex. It has two one-dimensional
faces determined respectively by x1 + x2 = 1 and x1 + x2 = 0, and one two-
dimensional face, the polyhedron itself. The polyhedron defined by (2.7)–(2.9) has
two vertices (zero-dimensional faces) determined respectively by

{
x1 = 0
x2 = 0

and

{
x1 = 0
x2 = 1

,

three one-dimensional faces given by

⎧⎨
⎩

x1 + x2 � 1
−x1 − x2 � 0

x1 = 0
,

{
x1 + x2 = 1
−x1 � 0

and

{−x1 − x2 = 0
−x1 � 0

,

and one two-dimensional face, the polyhedron itself.

Proposition 2.3.2 Let P be a convex polyhedron. The following properties hold.

(i) The intersection of any two faces is a face if it is nonempty.
(ii) Two different faces have no relative interior point in common.

Proof Weprove (i) first. Assume F1 and F2 are two faceswith nonempty intersection.
If they coincide, there is nothing to prove. If not, let H1 and H2 be two supporting
hyperplanes that generate these faces, say

H1 = {x ∈ R
n : 〈v1, x〉 = α1

}
,

H2 = {x ∈ R
n : 〈v2, x〉 = α2

}
.

Since these hyperplanes contain the intersection of distinct faces F1 and F2, the
vector v = v1 + v2 is not zero. Consider the hyperplane

H = {x ∈ R
n : 〈v, x〉 = α1 + α2

}
.

It is a supporting hyperplane of P because it evidently contains the intersection of
the faces F1 and F2, and for every point x in P , one has

〈v, x〉 = 〈v1, x〉 + 〈v2, x〉 � α1 + α2. (2.10)

It remains to show that the intersection of H and P coincides with the intersection
F1 ∩ F2. The inclusion

F1 ∩ F2 ⊆ H ∩ P

being clear, we show the converse. Let x be in H ∩ P . Then (2.10) becomes equality
for this x . But 〈v1, x〉 � α1 and 〈v2, x〉 � α2, so that equality of (2.10) is possible
only when the two latter inequalities are equalities. This proves that x belongs to
both F1 and F2.
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For the second assertion notice that if F1 and F2 have a relative interior point in
common, then in view of Theorem 2.1.4, the functional 〈v1, .〉 is constant on F2. It
follows that F2 ⊆ H1 ∩ P ⊆ F1. Similarly, one has F1 ⊆ F2, and hence equality
holds. �

Let x be a solution of the system (2.6). Define the active index set at x to be the
set

I (x) =
{

i ∈ {1, · · · , k} : 〈ai , x〉 = bi

}
.

The remaining indices are called inactive indices.

Theorem 2.3.3 Assume that P is a convex polyhedron given by (2.6). A nonempty
proper convex subset F of P is a face if and only if there is a nonempty maximal
index set I ⊆ {1, · · · , k} such that F is the solution set to the system

〈ai , x〉 = bi , i ∈ I (2.11)

〈a j , x〉 � b j , j ∈ {1, · · · , k}\I, (2.12)

in which case the dimension of F is equal to n−rank{ai : i ∈ I }.
Proof Denote the solution set to the system (2.11, 2.12) by F ′ that we suppose
nonempty. To prove that it is a face, we set

v =
∑
i∈I

ai and α =
∑
i∈I

bi .

Notice that v is nonzero because F ′ is not empty and the system (2.6) is not redundant.
It is clear that the negative half-space H−(v,α) contains P . Moreover, if x is a
solution to the system, then, of course, x belongs to P and to H at the same time,
which implies F ′ ⊆ H ∩ P . Conversely, any point x of the latter intersection satisfies

〈ai , x〉 � bi , i = 1, · · · , k,∑
i∈I

〈ai , x〉 =
∑
i∈I

bi .

The latter equality is possible only when those inequalities with indices from I are
equalities. In other words, x belongs to F ′.

Now, let F be a proper face of P . Pick a relative interior point x of F and consider
the system (2.11, 2.12) with I = I (x) the active index set of x .Being a proper face of
P , F has no interior point, and so the set I is nonempty. As before, F ′ is the solution
set to that system. By the first part, it is a face. We wish to show that it coincides with
F . For this, in view of Proposition 2.3.2 it suffices to show that x is also a relative
interior point of F ′. Let x be another point in F ′. We have to prove that there is a
positive number δ such that the segment [x, x + δ(x − x)] lies in F ′. Indeed, note
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that for indices j outside the set I , inequalities 〈a j , x〉 � b j are strict. Therefore,
there is δ > 0 such that

〈a j , x〉 + δ〈a j , x − x〉 � b j

for all j /∈ I . Moreover, being a linear combination of x and x , the endpoint x +
δ(x − x) satisfies the equalities (2.11) too. Consequently, this point belongs to F ′,
and hence so does the whole segment. Since F and F ′ are two faces with a relative
interior point in common, they must be the same. �

In general, for a given face F of P , there may exist several index sets I for which
F is the solution set to the system (2.11, 2.12). We shall, however, understand that
no inequality can be equality without changing the solution set when saying that the
system (2.11, 2.12) determines the face F . So, if two inequalities combined yields
equality, their indices will be counted in I .

Corollary 2.3.4 If an m-dimensional convex polyhedron has a vertex, then it has
faces of any dimension less than m.

Proof The corollary is evident for a zero-dimensional polyhedron. Suppose P is a
polyhedron of dimension m > 0. By Theorem 2.3.3 without loss of generality we
may assume that P is given by the system (2.11, 2.12) with |I | = n − m and that
the family {ai , i ∈ I } is linearly independent. Since P has a vertex, there is some
i0 ∈ {1, · · · , k}\I such that the vectors ai , i ∈ I ∪ {i0} are linearly independent.
Then the system

〈ai , x〉 = bi , i ∈ I ∪ {i0},
〈a j , x〉 � b j , j ∈ {1, · · · , k}\(I ∪ {i0})

generates an (m − 1)-dimensional face of P . Notice that this system has a solution
because P is generated by the non-redundant system (2.11, 2.12). Continuing the
above process we are able to construct a face of any dimension less than m. �
Corollary 2.3.5 Let F be a face of the polyhedron P determined by the system (2.11,
2.12). Then for every x ∈ F one has

I (x) ⊇ I.

Equality holds if and only if x is a relative interior point of F.

Proof The inclusion I ⊆ I (x) is evident because x ∈ F . For the second part, we
first assume I (x) = I , that is

〈ai , x〉 = bi , i ∈ I,

〈a j , x〉 < b j , j ∈ {1, · · · , k}\I.

It is clear that if y ∈ aff(F), then 〈ai , y〉 = bi , i ∈ I, and if y ∈ x + εBk with
ε > 0 sufficiently small, then 〈a j , y〉 < b j , j ∈ {1, · · · , k}\I. We deduce that
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aff(F) ∩ (x + εBk) ⊆ F , which shows that x is a relative interior point of F .
Conversely, let x be a relative interior point of F . Using the argument in the proof
of Theorem 2.3.3 we know that F is also a solution set to the system

〈ai , y〉 = bi , i ∈ I (x),

〈a j , y〉 � b j , j ∈ {1, · · · , k}\I (x).

Since the system (2.11, 2.12) determines F , we have I (x) ⊆ I , and hence equality
follows. �

Corollary 2.3.6 Let F be a face of the polyhedron P determined by the system (2.11,
2.12). Then a point v ∈ F is a vertex of F if and only if it is a vertex of P.

Proof It is clear that every vertex of P is a vertex of F if it belongs to F . To prove
the converse, let us deduce a system of inequalities from (2.11, 2.12) by expressing
equalities 〈ai , x〉 = bi as two inequalities 〈ai , x〉 � bi and 〈−ai , x〉 � −bi . If v is
a vertex of F , then the active constraints at v consists of the vectors ai ,−ai , i ∈ I
and some a j , j ∈ J ⊆ {1, · · · , k}\I , so that the rank of the family {ai ,−ai , a j :
i ∈ I, j ∈ J } is equal to n. It follows that the family {ai , a j : i ∈ I, j ∈ J } has rank
equal to n too. In view of Theorem 2.3.3 the point v is a vertex of P . �

Given a face F of a polyhedron, according to the preceding corollary the active
index set I (x) is constant for every relative interior point x of F . Therefore, we call
it active index set of F and denote it by IF .

A collection of subsets of a polyhedron is said to be a partition of it if the elements
of the collection are disjoint and their union contains the entire polyhedron.

Corollary 2.3.7 The collection of all relative interiors of faces of a polyhedron forms
a partition of the polyhedron.

Proof It is clear from Proposition 2.3.2(ii) that relative interiors of different faces
are disjoint. Moreover, given a point x in P , consider the active index set I (x). If
it is empty, then the point belongs to the interior of P and we are done. If it is not
empty, by Corollary 2.3.5, the face determined by system (2.11, 2.12) with I = I (x)

contains x in its relative interior. The proof is complete. �

We now deduce a first result on representation of elements of polyhedra by ver-
tices.

Corollary 2.3.8 A convex polytope is the convex hull of its vertices.

Proof The corollary is evident when the dimension of a polytope is less or equal
to one in which case it is a point or a segment with two end-points. We make the
induction hypothesis that the corollary is true when a polytope has dimension less
than m with 1 < m < n and prove it for the case when P is a polytope determined by
the system (2.6) and has dimension equal to m. Since P is a convex set, the convex
hull of its vertices is included in P itself. Conversely, let x be a point of P . In view of
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Corollary 2.3.7 it is a relative interior point of some face F of P . If F is a proper face
of P , its dimension is less than m, and so we are done. It remains to treat the case
where x is a relative interior point of P . Pick any point y �= x in P and consider the
line passing through x and y. Since P is bounded, the intersection of this line with P
is a segment, say with end-points c and d. Let Fc and Fd be faces of P that contain
c and d in their relative interiors. As c and d are not relative interior points of P , the
faces Fc and Fd are proper faces of P , and hence they have dimension strictly less
than m. By induction c and d belong to the convex hulls of the vertices of Fc and Fd

respectively. By Corollary 2.3.6 they belong to the convex hull of the vertices of P ,
and hence so does x because x belongs to the convex hull of c and d. �

A similar result is true for polyhedral cones. It explains why one-dimensional
faces of a polyhedral cone are called extreme rays.

Corollary 2.3.9 A nontrivial polyhedral cone with vertex is the convex hull of its
one-dimensional faces.

Proof By definition a polyhedral cone P is defined by a homogeneous system

〈ai , x〉 � 0, i = 1, · · · , k. (2.13)

Choose any nonzero point y in P and consider the hyperplane H given by

〈a1 + · · · + ak, x − y〉 = 0. (2.14)

We claim that the vector a1 + · · · + ak is nonzero. Indeed, if not, the inequalities
(2.13) would become equalities for all x ∈ P , and P would be either a trivial cone, or
a cone without vertex. Moreover, P ∩ H is a bounded polyhedron, because otherwise
one should find a nonzero vector u satisfying 〈ai , u〉 = 0, i = 1, · · · , k and P could
not have vertices. In view of Corollary 2.3.8, P ∩ H is the convex hull of its vertices.
To complete the proof it remains to show that a vertex v of P ∩H is the intersection of
a one-dimensional face of P with H . Indeed, the polytope P ∩ H being determined
by the system (2.13) and (2.14), there is a set J ⊂ {1, · · · , k} with |J | = n − 1 such
that the vectors a j , j ∈ J and a1 + · · · + ak are linearly independent and v is given
by system

〈a j , x〉 = 0, j ∈ J (2.15)

〈a1 + · · · + ak, x〉 = 〈a1 + · · · + ak, y〉,
〈ai , x〉 � 0, i ∈ {1, · · · , k}\J. (2.16)

It is clear that (2.15) and (2.16) determine a one-dimensional face of P whose inter-
section with H is v. �



26 2 Convex Polyhedra

Separation of convex polyhedra

Given two convex polyhedra P and Q inRn , we say that a nonzero vector v separates
them if

〈v, x〉 � 〈v, y〉 for all vectors x ∈ P, y ∈ Q

and strict inequality is true for some of them (Fig. 2.9). The following result can be
considered as a version of Farkas’ theorem or Gordan’s theorem.

Theorem 2.3.10 If P and Q are convex polyhedra without relative interior points
in common, then there is a nonzero vector separating them.

Proof We provide a proof for the case where both P and Q have interior points only.
Without loss of generality we may assume that P is determined by the system (2.6)
and Q is determined by the system

〈d j , x〉 � c j , j = 1, · · · , m.

Thus, the following system:

〈ai , x〉 < bi , i = 1, · · · , k

〈d j , x〉 < c j , j = 1, · · · , m

has no solution because the first k inequalities determine the interior of P and the last
m inequalities determine the interior of Q. This system is equivalent to the following
one: ⎛

⎝ −A b
−D c

0 1

⎞
⎠( x

t

)
>

⎛
⎝0
0
0

⎞
⎠ ,

Fig. 2.9 Separation H

P

Q
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where A is the k × n-matrix whose rows are transposes of a1, · · · , ak , D is the
m × n-matrix whose rows are transposes of d1, · · · , dk , b is the k-vector with
the components b1, · · · , bk and c is the m-vector with the components c1, · · · , cm .
According to Gordan’s theorem, there exist positive vectors λ ∈ R

k and μ ∈ R
m and

a real number s � 0, not all zero, such that

AT λ + DT μ = 0,

〈b,λ〉 + 〈c,μ〉 + s = 0.

It follows from the latter equality that (λ,μ) is nonzero. We may assume without
loss of generality that λ �= 0. We claim that AT λ �= 0. Indeed, if not, choose x an
interior point of P and y an interior point of Q. Then DT μ = 0 and hence

〈b,λ〉 > 〈Ax,λ〉 = 〈x, AT λ〉 = 0

and
〈c,μ〉 � 〈Dy,μ〉 = 〈y, DT μ〉 = 0,

which is in contradiction with the aforesaid equality. Defining v to be the nonzero
vector −AT λ, we deduce for every x ∈ P and y ∈ Q that

〈v, x〉 = 〈−AT λ, x〉 = 〈λ,−Ax〉 � 〈λ,−b〉 � 〈μ, c〉 � 〈μ, Dy〉 = 〈v, y〉.

Of course inequality is strict when x and y are interior points. By this v separates P
and Q as requested. �

Asymptotic cones

Given a nonempty convex and closed subset C of Rn , we say that a vector v is an
asymptotic or a recession direction of C if

x + t x ∈ C for all x ∈ C, t � 0.

The set of all asymptotic directions of C is denoted by C∞ (Fig. 2.10). It is a convex
cone. It can be seen that a closed convex set is bounded if and only if its asymptotic
cone is trivial. The set C∞ ∩ (−C∞) is a linear subspace and called the lineality
space of C .

An equivalent definition of asymptotic directions is given next.

Theorem 2.3.11 A vector v is an asymptotic direction of a convex and closed set C
if and only if there exist a sequence of elements xs ∈ C and a sequence of positive
numbers ts converging to zero such that v = lims→∞ ts xs .

Proof If v ∈ C∞ and x ∈ C , then xs = x + sv ∈ C for all s ∈ N\{0}. Setting
ts = 1/s we obtain v = lims→∞ ts xs with lims→∞ ts = 0. Conversely, assume that



28 2 Convex Polyhedra

C

C∞

Fig. 2.10 Asymptotic cone

v = lims→∞ ts xs for xs ∈ C and ts > 0 converging to zero as s tends to ∞. Let
x ∈ C and t > 0 be given. Then t ts converges to zero as s → ∞ and 0 � t ts � 1
for s sufficiently large. Hence,

x + tv = lim
s→∞(x + t ts xs)

= lim
s→∞

(
(1 − t ts)x + t ts xs + t ts x

)
= lim

s→∞
(
(1 − t ts)x + t ts xs

)
.

The set C being closed and convex, the points under the latter limit belong to the set
C , and therefore their limit x + tv belongs to C too. Since x and t > 0 were chosen
arbitrarily we conclude that v ∈ C∞. �

Below is a formula to compute the asymptotic cone of a polyhedron.

Theorem 2.3.12 The asymptotic cone of the polyhedron P determined by the system
(2.6) is the solution set to system

〈ai , v〉 � 0, i = 1, · · · , k. (2.17)

Proof Let v be an asymptotic direction of P . Then for every positive number t one
has

〈ai , x + tv〉 � bi , i = 1, · · · , k,

where x is any point in P . By dividing both sides of the above inequalities by t > 0
and letting this t tend to ∞ we derive (2.17). For the converse, if v is a solution of
(2.17), then for every point x in P one has

〈ai , x + tv〉 = 〈ai , x〉 + t〈ai , v〉 � bi , i = 1, · · · , k
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for all t � 0. Thus, the points x + tv with t � 0, belong to P and v is an asymptotic
direction. �

Example 2.3.13 Consider a (nonempty) polyhedron in R3 defined by the system:

−x1 − x2 − x3 � −1,

x3 � 1,

x1, x2, x3 � 0.

The asymptotic cone is given by the system

−x1 − x2 − x3 � 0,

x3 � 0,

x1, x2, x3 � 0,

in which the first inequality is redundant, and hence it is simply given by x1 � 0,
x2 � 0 and x3 = 0.

Using asymptotic directions we are also able to tell whether a convex polyhedron
has a vertex or not. A cone is called pointed if it contains no straight line. When a
cone C is not pointed, it contains a nontrivial linear subspace C ∩ (−C), called also
the lineality space of C .

Corollary 2.3.14 A convex polyhedron has vertices if and only if its asymptotic cone
is pointed. Consequently, if a convex polyhedron has a vertex, then so does any of its
faces.

Proof It is easy to see that when a polyhedron has a vertex, it contains no straight
line, and hence its asymptotic cone is pointed. We prove the converse by induction
on the dimension of the polyhedron. The case where a polyhedron is of dimension
less or equal to one is evident because a polyhedron with a pointed asymptotic cone
is either a point or a segment or a ray, hence it has a vertex. Assume the induction
hypothesis that the conclusion is true for all polyhedra of dimension less than m with
1 < m < n. Let P be m-dimensional with a pointed asymptotic cone. If P has no
proper face, then the inequalities (2.6) are strict, which implies that P is closed and
open at the same time. This is possible only when P coincides with the space R

n

which contradicts the hypothesis that P∞ is pointed. Now, let F be a proper face of
P . Its asymptotic cone, being a subset of the asymptotic cone of P is pointed too.
By induction, it has a vertex, which in view of Corollary 2.3.6 is also a vertex of P .

To prove the second part of the corollary it suffices to notice that if a face of P
has no vertex, by the first part of the corollary, its asymptotic cone contains a straight
line, hence so does the set P itself. �

A second representation result for elements of a convex polyhedron is now for-
mulated in a more general situation.
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Corollary 2.3.15 A convex polyhedron with vertex is the convex hull of its vertices
and extreme directions.

Proof We conduct the proof by induction on the dimension of the polyhedron. The
corollary is evident when a polyhedron is zero or one-dimensional. We assume that
it is true for all convex polyhedra of dimension less than m with 1 < m < n and
prove it for an m-dimensional polyhedron P determined by system

〈ai , x〉 = bi , i ∈ I

〈a j , x〉 � b j , j ∈ {1, · · · , k}\I,

in which |I | = n − m and the vectors ai , i ∈ I are linearly independent. Let y be
an arbitrary element of P . If it belongs to a proper face of P , then by induction we
can express it as a convex combination of vertices and extreme directions. If it is a
relative interior point of P , then setting a = a1 + · · · + ak that is nonzero because
the asymptotic cone of P is pointed, P itself having a vertex, and considering the
intersection of P with the hyperplane H determined by equality 〈a, x〉 = 〈a, y〉 we
obtain a bounded polyhedron P ∩ H . By Corollary 2.3.8, the point y belongs to the
convex hull of vertices of P ∩ H . The vertices of P ∩ H belong to proper faces of P ,
by induction, they also belong to the convex hull of vertices and extreme directions
of P , hence so does y. �

When a polyhedron has a non-pointed asymptotic cone, it has no vertex. However,
it is possible to express it as a sum of its asymptotic cone and a bounded polyhedron
as well.

Corollary 2.3.16 Every convex polyhedron is the sum of a bounded polyhedron and
its asymptotic cone.

Proof Denote the lineality space of the asymptotic cone of a polyhedron P by M . If
M is trivial, we are done in view of Corollary 2.3.15 (the convex hull of all vertices
of P serves as a bounded polyhedron). If M is not trivial, we decompose the space
R

n into the direct sum of M and its orthogonal M⊥. Denote by P⊥ the projection of
P on M⊥. Then P = P⊥ + M . Indeed, let x be an element in P and let x = x1 + x2

with x1 ∈ M and x2 ∈ M⊥. Then x2 ∈ P⊥ and one has x ∈ P⊥ + M . Conversely,
let x1 ∈ M and x2 ∈ P⊥. By definition there is some y ∈ P , say y = y1 + y2 with
y1 ∈ M and y2 ∈ M⊥ such that y2 = x2. Since M is a part of the asymptotic cone
of P , one deduces that

x = x1 + x2 = y1 + (x1 − y1) + y2 = y + (x1 − y1) ∈ y + M ⊆ P,

showing that x belongs to P . Further, we claim that the asymptotic cone of P⊥
is pointed. In fact, if not, say it contains a straight line d. Then the convexity of
P implies that the space M + d belongs to the asymptotic cone of P . This is a
contradiction because d lies in M⊥ and M is already the biggest linear subspace
contained in P . Let Q denote the convex hull of the set of all vertices of P⊥ which
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is nonempty by Corollary 2.3.14. It follows from Corollary 2.3.18 below that the
asymptotic cone of P is the sum of the asymptotic cone of P⊥ and M . We deduce
P = Q + (P⊥)∞ + M = Q + P∞ as requested. �

The following calculus rule for asymptotic directions under linear transformations
is useful.

Corollary 2.3.17 Let P be the polyhedron determined by the system (2.6) and let L
be a linear operator from R

n to R
m . Then

L(P∞) = [L(P)]∞.

Proof The inclusion L(P∞) ⊆ [L(P)]∞ is true for any closed convex set. Indeed,
if u is an asymptotic direction of P , then for every x in P and for every positive
number t one has x + tu ∈ P . Consequently, L(x) + t L(u) belongs to L(P) for all
t � 0. This means that L(u) is an asymptotic direction of L(P). For the converse
inclusion, let v be a nonzero asymptotic direction of L(P). By definition, for a fixed
x of P , vectors L(x)+ tv belong to L(P) for any t � 0. Thus, there are x1, x2, · · · in
P such that L(xν) = L(x) + νv, or equivalently v = L( xν−x

ν ) for all ν = 1, 2, · · ·
Without loss of generality we may assume that the vectors xν−x

ν converge to some
nonzero vector u as ν tends to ∞. Then

〈ai , u〉 = lim
ν→∞

(
〈ai ,

xν

ν
〉 − 〈ai ,

x

ν
〉
)

� 0

for all i = 1, · · · , k. In viewofTheorem2.3.12 the vector u is an asymptotic direction
of P and v = L(u) ∈ L(P∞) as requested. �

Corollary 2.3.18 Let P, P1 and P2 be polyhedra in R
n with P ⊆ P1. Then

(P)∞ ⊆ (P1)∞
(P1 × P2)∞ = (P1)∞ × (P2)∞
(P1 + P2)∞ = (P1)∞ + (P2)∞.

Proof The first two expressions are direct from the definition of asymptotic direc-
tions. For the third expression consider the linear transformation L from R

n ×R
n to

R
n defined by L(x, y) = x+y, and applyCorollary 2.3.17 and the second expression

to conclude. �

Polar cones

Given a cone C in Rn , the (negative) polar cone of C (Fig. 2.11) is the set

C◦ :=
{
v ∈ R

n : 〈v, x〉 � 0 for all x ∈ C
}
.
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The polar cone of C◦ is called the bipolar cone of C . Here is a formula to compute
the polar cone of a polyhedral cone.

Theorem 2.3.19 The polar cone of the polyhedral cone determined by the system

〈ai , x〉 � 0, i = 1, · · · , k,

is the positive hull of the vectors a1, · · · , ak .

Proof It is clear that any positive combination of vectors a1, · · · , ak belongs to the
polar cone of the polyhedral cone. Let v be a nonzero vector in the polar cone. Then
the following system has no solution

〈ai , x〉 � 0, i = 1, · · · , k,

〈v, x〉 > 0.

According to Farkas’ theorem the system

y1a1 + · · · + ykak = v,

y1, · · · , yk � 0

has a solution, which completes the proof. �

Example 2.3.20 Let C be a polyhedral cone in R
3 defined by the system:

x1 − x2 � 0,

x3 = 0.

By expressing the latter equality as two inequalities x3 � 0 and −x3 � 0,
we deduce that the polar cone of C is the positive hull of the three vectors
(1,−1, 0)T , (0, 0,−1)T and (0, 0, 1)T . In other words, the polar cone C◦ consists
of vectors (t,−t, s)T with t ∈ R+ and s ∈ R.

Corollary 2.3.21 Let C1 and C2 be polyhedral cones in R
n. Then the following

calculus rules hold

Fig. 2.11 Polar cone

C

C◦
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(C1 + C2)
◦ = C◦

1 ∩ C◦
2

(C1 ∩ C2)
◦ = C◦

1 + C◦
2 .

Proof Let v ∈ (C1 + C2)
◦. We have

〈v, x + y〉 � 0 for all x ∈ C1, y ∈ C2.

By setting y = 0 in this inequality we deduce v ∈ C◦
1 . Similarly, by setting x = 0

we obtain v ∈ C◦
2 , and hence v ∈ C◦

1 ∩ C◦
2 . Conversely, if v belongs to both C◦

1
and C◦

2 , then 〈v, ·〉 is negative on C1 and C2. Consequently, it is negative on the sum
C1 + C2 by linearity, which shows that v ∈ (C1 + C2)

◦.
For the second equality we observe that the inclusion C◦

1 + C◦
2 ⊆ (C1 ∩ C2)

◦
follows from the definition. To prove the opposite inclusion we assume that C1 is
determined by the system described in Theorem 2.3.19 with i = 1, · · · , k1 and C2 is
determined by that system with i = k1 + 1, · · · , k1 + k2. Then the polyhedral
cone C1 ∩ C2 is determined by that system with i = 1, · · · , k1 + k2. In view
of Theorem 2.3.19, the polar cone of C1 ∩ C2 is the positive hull of the vectors
a1, · · · , ak1+k2 , which is evidently the sum of the positive hulls pos{a1, · · · , ak1}
and pos{ak1+1, · · · , ak1+k2}, that is the sum of the polar cones C◦

1 and C◦
2 . �

Corollary 2.3.22 The bipolar cone of a polyhedral cone C coincides with the cone
C itself.

Proof According to Theorem 2.3.19 a vector v belongs to the bipolar cone C◦◦ if
and only if 〈

v,

k∑
i=1

λi a
i
〉
� 0 for all λi � 0, i = 1, · · · , k.

The latter system is equivalent to

〈ai , v〉 � 0, i = 1, · · · , k,

which is exactly the system determining the cone C . �

Corollary 2.3.23 A vector v belongs to the polar cone of the asymptotic cone of a
convex polyhedron if and only if the linear functional 〈v, .〉 attains its maximum on
the polyhedron.

Proof It suffices to consider the case where v is nonzero. Assume v belongs to the
polar cone of the asymptotic cone P∞. In virtue of Theorems 2.3.12 and 2.3.19, it is
a positive combination of the vectors a1, · · · , ak . Then the linear functional 〈v, .〉 is
majorized by the same combination of real numbers b1, · · · , bk on P . Let α be its
supremum on P . Our aim is to show that this value is realizable, or equivalently, the
system
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〈ai , x〉 � bi , i = 1, · · · , k

〈v, x〉 � α

is solvable. Suppose to the contrary that the system has no solution. In view of
Corollary 2.2.4, there are a positive vector y and a real number t � 0 such that

tv = AT y,

tα = 〈b, y〉 + 1.

We claim that t is strictly positive. Indeed, if t = 0, then AT y = 0 and 〈b, y〉 = −1
and for a vector x in P we would deduce

0 = 〈AT y, x〉 = 〈y, Ax〉 � 〈y, b〉 = −1,

a contradiction. We obtain expressions for v and α as follows

v = 1

t
AT y and α = 1

t

(〈b, y〉 + 1
)
.

Let {xr }r�1 be a maximizing sequence of the functional 〈v, .〉 on P , which means
limr→∞〈v, xr 〉 = α. Then, for every r one has

〈v, xr 〉 = 1

t
〈AT y, xr 〉

� 1

t
〈y, b〉

� α − 1

t
,

which is a contradiction when r is sufficiently large.
For the converse part, let x be a point in P where the functional 〈v, .〉 achieves its

maximum. Then
〈v, x − x〉 � 0 for all x ∈ P.

In particular,
〈v, u〉 � 0 for all u ∈ P∞,

and hence v belongs to the polar cone of P∞. �

Normal cones

Given a convex polyhedron P determined by the system (2.6) and a point x in P , we
say that a vector v is a normal vector to P at x if

〈v, y − x〉 � 0 for all y ∈ P.
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The set of all normal vectors to P at x forms a convex cone called the normal cone to
P at x and denoted NP (x) (Fig. 2.12). When x is an interior point of P , the normal
cone at that point is zero. When x is a boundary point, the normal cone is computed
by the next result.

Theorem 2.3.24 The normal cone to the polyhedron P at a boundary point x of P
is the positive hull of the vectors ai with i being active indices at the point x.

Proof Let x be a boundary point in P . Then the active index set I (x) is nonempty.
Let v be an element of the positive hull of the vectors ai , i ∈ I (x), say

v =
∑

i∈I (x)

λi a
i with λi � 0, i ∈ I (x).

Then for every point x in P and every active index i ∈ I (x), one has

〈ai , x − x〉 = 〈ai , x〉 − bi � 0,

which yields
〈v, x − x〉 =

∑
i∈I (x)

λi 〈ai , x − x〉 � 0.

Hence v is normal to P at x . For the converse, assume that v is a nonzero vector
satisfying

〈v, x − x〉 � 0 for all x ∈ P. (2.18)

We wish to establish that v is a normal vector at 0 to the polyhedron, denoted Q, that
is determined by the system

〈ai , y〉 � 0, i ∈ I (x).

This will certainly complete the proof because the normal cone to that polyhedron
is exactly its polar cone, the formula of which was already given in Theorem 2.3.19.

Observe that normality condition (2.18) can be written as

〈v, y〉 � 0 for all y ∈ cone(P − x).

Therefore, v will be a normal vector to Q at zero if Q coincides with cone(P − x).
Indeed, let y be a vector of cone(P − x), say y = t (x − x) for some x in P and some
positive number t . Then

〈ai , y〉 = t〈ai , x − x〉 � 0,

which yields y ∈ Q. Thus, cone(P − x) is a subset of Q. For the reverse inclusion
we notice that inequalities with inactive indices are strict at x . Therefore, given a
vector y in Q, one can find a small positive number t such that
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Fig. 2.12 Normal cone

P

y
x

NP (x) + x

NP (y) + y

〈a j , x〉 + t〈a j , y〉 � b j

for all j inactive. Of course, when i is active, it is true that

〈ai , x + t y〉 = 〈ai , x〉 + t〈ai , y〉 � bi .

Hence, x + t y belongs to P , or equivalently y belongs to cone(P − x). This achieves
the proof. �

Example 2.3.25 Consider the polyhedron in R3 defined by the system:

x1 + x2 + x3 � 1,
−2x1 − 3x2 � −1,

x1, x2, x3 � 0.

This is a convex polytope with six vertices

v1 =
⎛
⎝ 1
0
0

⎞
⎠ , v2 =

⎛
⎝ 0
1
0

⎞
⎠ , v3 =

⎛
⎝ 0
1/3
0

⎞
⎠ ,

v4 =
⎛
⎝ 1/2

0
0

⎞
⎠ , v5 =

⎛
⎝1/2

0
1/2

⎞
⎠ , v6 =

⎛
⎝ 0
1/3
2/3

⎞
⎠

and five two-dimensional faces

co{v1, v2, v5, v6}, co{v1, v2, v3, v4}, co{v1, v4, v5},
co{v3, v4, v5, v6}, co{v2, v3, v6}.
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At the vertex v1 there are three active constraints:

x1 + x2 + x3 = 1,
x2 = 0,

x3 = 0,

and two non-active constraints

−2x1 − 3x2 � −1,
−x1 � 0.

Hence the normal cone at the vertex v1 is the positive hull of the vectors u1 =
(1, 1, 1)T , u2 = (0,−1, 0)T and u3 = (0, 0,−1)T . Notice that u1 generates
the normal cone at the point (1/3, 1/3, 1/3)T on the two-dimensional face F1 =
co{v1, v2, v6, v5}, u2 generates the normal cone at the point (2/3, 0, 1/4)T on the
two-dimensional face F2 = co{v1, v4, v5}, and the positive hull of u1 and u2 is the
normal cone at the point (3/4, 0, 1/4)T on the one-dimensional face [v1, v5] that is
the intersection of the two-dimensional faces F1 and F2.

As a direct consequence of Theorem 2.3.24, we observe that the normal cone is
the same at any relative interior point of a face. We refer to this cone as the normal
cone to a face. In view of Corollary 2.3.7 we obtain a collection of all normal cones
of faces, whose union is called the normal cone of P and denoted by NP . Thus, if
F := {F1, · · · , Fq} is the collection of all faces of P , then

NP =
q⋃

i=1

N (Fi ).

It is to point out a distinction between this cone and the cone N (P), the normal cone
to P when P is considered as a face of itself. We shall see now that the collectionN
of all normal cones N (Fi ), i = 1, · · · , q, is a nice dual object of the collection F .

Theorem 2.3.26 Assume that P is a convex polyhedron given by the system

〈ai , x〉 � bi , i = 1, · · · , k.

Then the following assertions hold.

(i) The normal cone of P is composed of all normal cones to P at its points, that is

NP =
⋃
x∈P

NP (x)

and coincides with the polar cone of the asymptotic cone of P. In particular,
it is a polyhedral cone, and it is the whole space if and only if P is a polytope
(bounded polyhedron).
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(ii) In the collectionF , if Fi is a face of Fj , then N (Fj ) is a face of N (Fi ). Moreover,
if i �= j , then the normal cones N (Fi ) and N (Fj ) have no relative interior point
in common.

(iii) In the collection N , if N is a face of N (Fi ), then there is a face F� containing
the face Fi such that N = N (F�).

Proof For the first property it is evident that NP is contained in the union of the right
hand side. Let x ∈ P . There exists an index i ∈ {1, · · · , k} such that x ∈ ri(Fi ).
Then NP (x) = N (Fi ) and equality of (i) is satisfied. To prove that NP coincides
with (P∞)◦, let v be a vector of the normal cone N (Fi ) for some i . Choose a relative
interior point x0 of the face Fi . Then, by definition,

〈v, x − x0〉 � 0 for all x ∈ P.

ByCorollary 2.3.23 the vectorv belongs to the polar cone of the cone P∞. Conversely,
let v be in (P∞)◦. In view of the same corollary, the linear functional 〈v, .〉 attains
its maximum on P at some point x , which means that

〈v, x − x〉 � 0 for all x ∈ P.

By definition, v is a normal vector to P at x .
For (ii), assume that Fi is a face of Fj with i �= j , which implies that the active

index set IFi of Fi contains the active index set IFj of Fj . Let x j be a relative interior
point of Fj . Then one has

N (Fj ) = NP (x j ) ⊂ N (Fi ).

Suppose that N (Fj ) is not a face of N (Fi ). There exists a face

N0 = pos{a� : � ∈ I0} ⊆ N (Fi )

for some I0 ⊆ IFi , which contains N (Fj ) as a proper subset and such that its relative
interior meets N (Fj ) at some point, say v0. Let F0 be the solution set to the system

〈a�, x〉 = b� , � ∈ I0,
〈a�, x〉 � b� , � ∈ {1, · · · , p}\I0 .

We see that IFj ⊆ I0 ⊆ IFi , hence Fi ⊆ F0 ⊆ Fj . In particular F0 �= ∅, hence it is
a face of P . Let x0 be a relative interior point of F0. We claim that

〈v, x j − x0〉 = 0 for all v ∈ N0.

Indeed, consider the linear functional v �→ 〈v, x j − x0〉 on N0. On the one hand,
〈v, x j − x0〉 � 0 for all v ∈ N0 because x0 ∈ ri(F0). On the other hand, for
v0 ∈ ri(N0) ∩ N (Fj ) above, one has 〈v0, x0 − x j 〉 � 0, hence 〈v0, x j − x0〉 = 0.
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Consequently, 〈v, x j − x0〉 = 0 on N0. Using this fact we derive for every v ∈ N0
that

〈v, x − x j 〉 = 〈v, x − x0〉 + 〈v, x0 − x j 〉 � 0,

for all x ∈ M,which implies v ∈ N (Fj ) and arrive at the contradiction N (Fj ) = N0.

To prove the second part of assertion (ii), suppose to the contrary that the normal
cones N (Fi ) and N (Fj ) have a relative interior point v in common. Then for each
x ∈ Fi and y ∈ Fj one has

〈v, x − y〉 = 0.

Since 〈u, y − x〉 � 0 for all u ∈ N (Fi ) and v is a relative interior point of N (Fi ),
one deduces

〈u, x − y〉 = 0 for all u ∈ N (Fi ).

Consequently, for u ∈ N (Fi ) it is true that

〈u, z − y〉 = 〈u, z − x〉 + 〈u, x − y〉 � 0 for all z ∈ P,

which shows u ∈ N (Fj ). In other words N (Fi ) ⊆ N (Fj ). The same argument with
i and j interchanging the roles, leads to equality N (Fi ) = N (Fj ). In view of the
first part we arrive at the contradiction Fi = Fj .

We proceed to (iii). Let N be a face of N (Fi ) for some i : 1 � i � k. The case
N = N (Fi ) being trivial, we may assume N �= N (Fi ). Let I ⊆ IFi be a subset of
indices such that

N = cone{a� : � ∈ I } ⊆ N (Fi ) = cone{a� : � ∈ IFi } .

Let F be the solution set to the system

〈a�, x〉 = b� , � ∈ I,
〈a�, x〉 � b� , � ∈ {1, · · · , p}\I .

Since I ⊆ IFi , we have Fi ⊆ F . In particular F �= ∅ and F is a face of P . Now we
show that N (F) = N and Fi is a proper face of F . Indeed, as N is a proper face of
N (Fi ), I is a proper subset of IFi and there is a nonzero vector u ∈ Rn such that

〈a�, u〉 = 0 for � ∈ I,
〈a�, u〉 < 0 for � ∈ IFi \I .

Take x ∈ ri(Fi ) and consider the point x + tu with t > 0. One obtains

〈a�, x + tu〉 = b� , � ∈ I,

〈a�, x + tu〉 = 〈a�, x〉 + t〈a�, u〉 < b� , � ∈ IFi \I .
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Moreover, since 〈a�, x〉 < b� for � ∈ {1, · · · , p}\IFi , when t is sufficiently small,
one also has

〈a�, x + tu〉 < b� , � ∈ {1, · · · p}\IFi .

Consequently,
N (F) = NP (x + tu) = pos{a� : � ∈ I } = N

when t is sufficiently small. It is evident that F �= Fi . The proof is complete. �

Example 2.3.27 Consider the polyhedron P in R2 defined by the system:

−x1 − x2 � −1,

−x1 + x2 � 1,

−x2 � 0.

It has two vertices F1 and F2 determined respectively by

⎧⎨
⎩

−x1 −x2 = −1
−x1 +x2 � 1

−x2 = 0
and

⎧⎨
⎩

−x1 −x2 = −1
−x1 +x2 = 1

−x2 � 0

three one-dimensional faces F3, F4 and F5 determined respectively by

⎧⎨
⎩

−x1 −x2 � −1
−x1 +x2 � 1

−x2 = 0
,

⎧⎨
⎩

−x1 −x2 = −1
−x1 +x2 � 1

−x2 � 0
and

⎧⎨
⎩

−x1 −x2 � −1
−x1 +x2 = 1

−x2 � 0

and P itself is the unique two-dimensional face. Denote by v1 = (−1,−1)T , v2 =
(−1, 1)T and v3 = (0,−1)T . Then the normal cones of the faces F1,· · · , F5 are
respectively the positive hulls of the families {v1, v3}, {v1, v2}, {v3}, {v1} and {v2}.
The normal cone of P is zero. Moreover, the union NP of these normal cones is the
positive hull of the vectors v2 and v3. It is the polar cone of the asymptotic cone of
P which is defined by the system

−x1 − x2 � 0,

−x1 + x2 � 0,

−x2 � 0,

in which the first inequality is redundant and hence it is reduced to x1 � x2 � 0.

Next we prove that the normal cone of a face is obtained from the normal cones
of its vertices.
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Corollary 2.3.28 Assume that a face F of P is the convex hull of its vertices
v1, · · · , vq . Then

N (F) =
q⋂

i=1

NP (vi ).

Proof The inclusion N (F) ⊆ ⋂q
i=1 NP (vi ) is clear from (ii) of Theorem 2.3.26.

We prove the converse inclusion. Let u be a nonzero vector of the intersection⋂q
i=1 NP (vi ). Let x be a relative interior point of F . Then x is a convex combi-

nation of the vertices v1, · · · , vq :

x =
q∑

i=1

λiv
i

with λi � 0, i = 1, · · · , q and λ1 + · · · + λq = 1. We have then

〈u, x ′ − vi 〉 � 0 for all x ′ ∈ P, i = 1, · · · , q.

This implies

〈u, x ′ − x〉 = 〈u,

q∑
i=1

λi x ′ −
q∑

i=1

λiv
i 〉

=
q∑

i=1

λi 〈u, x ′ − vi 〉 � 0

By this, u is a normal vector to P at x , and u ∈ N (F). �

Combining this corollary with Corollary 2.3.8 we conclude that the normal cone
of a bounded face is the intersection of the normal cones of all proper faces of that
bounded face. This is not true for unbounded faces, for instance when a face has no
proper face.

2.4 Basis and Vertices

In this section we consider a polyhedron P given by the system

Ax = b (2.19)

x � 0.
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We assume throughout that the matrix A has n columns denoted a1, · · · , an and
k rows that are transposes of a1, · · · , ak and linearly independent, and that the
components b1, · · · , bk of the vector b are non-negative numbers. A point x in P is
said to be an extreme point of P if it cannot be expressed as a convex combination
x = ta + (1− t)a′ for some 0 < t < 1 and a, a′ ∈ P with a �= a′. It can be seen that
extreme points correspond to verticeswe have defined in the previous section. Certain
results we have obtained for polyhedra given in a general form (by inequalities) will
be recaptured here, but our emphasis will be laid on computing issues which are
much simplified under equality form (2.19).

A k × k-submatrix B composed of columns of A is said to be a basis if it is
invertible.

Let B be a basis. By using a permutation one may assume that B is composed
of the first k columns of A, and the remaining columns form a k × (n − k)-
submatrix N , called a non-basic part of A. Let x be a vector with components xB

and xN , where xB is a k-dimensional vector and xN is an (n − k)-dimensional vector
satisfying

BxB = b,

xN = 0.

If xB is a positive vector, then x is a solution to (2.19) and called a feasible basic
solution (associated with the basis B). If in addition xB has no zero component, it is
called non-degenerate; otherwise it is degenerate.

Example 2.4.1 Consider the polyhedron in R3 defined by the system:

x1 + x2 + x3 = 1,
3x1 + 2x2 = 1,

x1, x2 , x3 � 0.

The vectors a1 = (1, 1, 1)T and a2 = (3, 2, 0)T are linear independent. There are
three bases

B1 =
(
1 1
3 2

)
, B2 =

(
1 1
3 0

)
and B3 =

(
1 1
2 0

)
.

The basic solutions corresponding to B1, B2 and B3 are respectively (−1, 2, 0)T ,
(1/3, 0, 2/3)T and (0, 1/2, 1/2)T . The first solution is unfeasible, while the two last
ones are feasible and non-degenerate.

Given a vector x ∈ R
n , its support, denoted supp(x), consists of indices i for which

the component xi is nonzero. The support of a nonzero vector is always nonempty.

Theorem 2.4.2 A vector x is a vertex of the polyhedron P if and only if it is a feasible
basic solution of the system (2.19).
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Proof Let x be a feasible basic solution. Assume that it is a convex combination of
two solutions y and z of the system (2.19), say x = t y + (1 − t)z with t ∈ (0, 1).
Then for any nonbasic index j , the component x j is zero, so that t y j +(1− t)z j = 0.
Remembering that y and z are positive vectors, we derive y j = z j = 0. Moreover,
the basic components of solutions to (2.19) satisfy equation

BxB = b

with B nonsingular. Therefore, they are unique, that is xB = yB = zB . Consequently,
the three solutions x , y and z are the same.

Conversely, let x be an extreme point of the polyhedron. Our aim is to show that
the columns ai , i ∈ supp(x) are linearly independent. It is then easy to find a basis
B such that x is the basic solution associated with that basis. To this end, we prove
first that supp(x) is minimal by inclusion among solutions of the system (2.19). In
fact, if not, one can find another solution, say y, with minimal support such that
supp(y) is a proper subset of supp(x). Choose an index j from the support of y such
that x j

y j
= min{ xi

yi
: i ∈ supp(y)}.

Let t > 0 be that quotient. Then

A(x − t y) = (1 − t)b and x − t y � 0.

If t � 1, then by setting z = x − y we can express

x = 1

2
(y + 2

3
z) + 1

2
(y + 4

3
z),

a convex combination of two distinct solutions of (2.19), which is a contradiction. If
t < 1, then take

z = 1

1 − t
(x − t y).

We see that z is a solution to (2.19) and different from x because its support
is strictly contained in the support of x . It is also different from y because the
component y j is not zero while the component z j is zero. We derive from the de-
finition of z that x is a strict convex combination of y and z, which is again a
contradiction.

Now we prove that the columns ai , i ∈ supp(x) are linearly independent. Sup-
pose the contrary: there is a vector y different from x (if not take 2y instead)
with

Ay = 0 and supp(y) ⊆ supp(x).
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By setting

t =
{

−min{ xi
yi

: i ∈ supp(y)} if y � 0
min{− xi

yi
: i ∈ supp(y), yi < 0} else

we obtain that z = x + t y is a solution to (2.19) whose support is strictly contained
in the support of x and arrive at a contradiction with the minimality of the support of
x . It remains to complete the vectors ai , i ∈ supp(x) to a basis to see that x is indeed
a basic solution. �
Corollary 2.4.3 The number of vertices of the polyhedron P does not exceed the

binomial coefficient

(
n
k

)
.

Proof This follows from Theorem 2.4.2 and the fact that the number of bases of

the matrix A is at most

(
n
k

)
. Notice that not every basic solution has positive

components. �
We deduce again Corollary 2.3.8 about the description of polytopes in terms of

extreme points (vertices), but this time for a polytope determined by the system
(2.19).

Corollary 2.4.4 If P is a polytope, then any point in it can be expressed as a convex
combination of vertices.

Proof Let x be any solution of (2.19). If the support of x is minimal, then in view of
Theorem 2.4.2 that point is a vertex. If not, then there is a solution y1 different from
x , with minimal support and supp(y1) ⊂ supp(x). Set

t1 = min
{ x j

y1j
: j ∈ supp(y1)

}
.

This number is positive and strictly smaller than one, because otherwise the nonzero
vector x − y1 should be an asymptotic direction of the polyhedron and P should be
unbounded. Consider the vector

z1 = 1

1 − t1
(x − t1y1).

It is clear that this vector is a solution to (2.19) and its support is strictly smaller than
the support of x . If the support of z1 is minimal, then z1 is a vertex and we obtain a
convex combination

x = t1y1 + (1 − t1)z
1,

in which y1 and z1 are vertices. If not, we continue the process to find a vertex
y2 whose support is strictly contained in the support of z1 and so on. In view of
Corollary 2.4.3 after a finite number of steps one finds vertices y1, · · · , y p such that
x is a convex combination of them. �



2.4 Basis and Vertices 45

Extreme rays

Extreme direction of a convex polyhedron P inRn can be defined to be a direction that
cannot be expressed as a strictly positive combination of two linearly independent
asymptotic vectors of P . As the case when a polyhedron is given by a system of
linear inequalities (Corollary 2.3.15), we shall see that a polyhedron determined by
(2.19) is completely determined by its vertices and extreme directions.

Theorem 2.4.5 Assume that the convex polyhedron P is given by the system (2.19).
Then

(i) A nonzero vector v is an asymptotic direction of P if and only if it is a solution
to the associated homogenous system

Ax = 0,

x � 0.

(ii) A nonzero vector v is an extreme asymptotic direction of P if and only if it is a
positive multiple of a vertex of the polyhedron determined by the system

Ay = 0 (2.20)

y1 + · · · + yn = 1,

y � 0.

Consequently P∞ consists of all positive combinations of the vertices of this
latter polyhedron.

Proof The first assertion is proven as in Theorem 2.3.12. For the second assertion,
let v be a nonzero extreme direction. Then Av = 0 by (i) and t := v1+· · ·+vn > 0.
The vector v/t is in the polyhedron of (ii), denoted Q. Since each point of that
polyhedron is an asymptotic direction of P , if v/t were a convex combination of
two distinct points y1 and y2 in Q, then v would be a convex combination of two
linearly independent asymptotic directions t y1 and t y2 of P , which is a contradiction.
Conversely, let v be a vertex of Q. It is clear that v is nonzero. If v = t x + (1− t)y
for some nonzero asymptotic directions x and y of P and some t ∈ (0, 1), then with

t ′ = t
∑n

i=1 xi

t
∑n

i=1 xi + (1 − t)
∑n

i=1 yi
= t

n∑
i=1

xi ,

x ′ = 1∑n
i=1 xi

x,

y′ = 1∑n
i=1 yi

y,
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we express v as a convex combination t ′x ′ + (1− t ′)y′ of two points of Q. Note that
t ′ > 0. By hypothesis, x ′ = y′ which means that x and y are linearly dependent.
The proof is complete. �

Corollary 2.4.6 A nonzero vector is an extreme asymptotic direction of P if and
only if it is a basic feasible solution of the system (2.20). Consequently, the num-
ber of extreme asymptotic directions of P does not exceed the binomial coefficient(

n
k + 1

)
.

Proof This is obtained from Theorems2.4.2 and 2.4.5. �

Example 2.4.7 Consider the polyhedron in R3 defined by the system:

x1 − x2 = 1
x1, x2, x3 � 0.

The asymptotic cone of this polyhedron is the solution set to the system

x1 − x2 = 0
x1, x2, x3 � 0.

Any vector (t, t, s)T with t � 0 and s � 0 is an asymptotic direction. To obtain
extreme asymptotic directions we solve the system

y1 − y2 = 0
y1 + y2 + y3 = 1

y1, y2, y3 � 0.

There are three bases corresponding to basic variables {y1, y2}, {y1, y3} and {y2, y3}:

B1 =
(
1 −1
1 1

)
, B2 =

(
1 0
1 1

)
and B3 =

(−1 0
1 1

)
.

The basic solution y = (1/2, 1/2, 0)T is associated with B1 and the basic solution
y = (0, 0, 1)T is associated with B2 and B3. Both of them are feasible, and hence
they are extreme asymptotic directions.

In the following we describe a practical way to compute extreme rays of the
polyhedron P .

Corollary 2.4.8 Assume that B is a basis of the matrix A and as is a non-basic
column of A such that the system

By = −as
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has a positive solution y � 0. Then the vector x whose basic components are equal
to y, the sth component is equal to 1 and the other non-basic components are all
zero, is an extreme ray of the polyhedron P.

Proof It is easy to check that the submatrix corresponding to the variables of y and
the variable ys is a feasible basis of the system (2.20). It remains to apply Corollary
2.4.6 to conclude. �

In Example 2.4.7 we have A = (1,−1, 0). For the basis B = (1) corresponding
to the basic variable x1 and the second non-basic column, the system By = −as

takes the form y = 1 and has a positive solution y = 1. In view of Corollary 2.4.8
the vector (1, 1, 0)T is an extreme asymptotic direction. Note that using the same
basis B and the non-basic column a3 = (0) we obtain the system y = 0 which has
a positive (null) solution. Hence the vector (0, 0, 1)T is also an extreme asymptotic
direction.

Representation of Elements of a Polyhedron

A finitely generated convex set is defined to be a set which is the convex hull of a
finite set of points and directions, that is, each element of it is the sum of a convex
combination of a finite set of points and a positive combination of a finite set of
directions. The next theorem states that convex polyhedra are finitely generated,
which is Corollary 2.3.15 for a polyhedron determined by the system (2.19).

Theorem 2.4.9 Every point of a convex polyhedron given by the system (2.19) can
be expressed as a convex combination of its vertices, possibly added to a positive
combination of the extreme asymptotic directions.

Proof Let x be any point in P . If its support is minimal, then, according to the proof
of Theorem 2.4.2 that point is a vertex. If not, there is a vertex v1 whose support is
minimal and strictly contained in the support of x . Set

t = min
{ x j

v1j
: j ∈ supp(v1)

}

and consider the vector x − tv1. If t � 1, then the vector z = x −v1 is an asymptotic
direction of the polyhedron and then x is the sum of the vertex v1 and an asymptotic
direction. The direction z, in its turn, is expressed as a convex combination of extreme
asymptotic directions. So the corollary follows. If t < 1, the technique of proof of
Theorem 2.4.2 can be applied. Expressly, setting z = (x − tv1)/(1 − t) we deduce
that z � 0 and

Az = 1

1 − t
b − t

1 − t
b = b.

Moreover, the support of z is a proper subset of the support of x because the compo-
nents j of z with j realizing the value of t = x j/v

1
j are zero. Then x = tv1+(1− t)z

with strict inclusion supp(z) ⊂ supp(x). Continuing this process we arrive at finding
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a finite number of vertices v1, · · · , v p and an asymptotic direction z such that x is
the sum of a convex combination of v1, · · · , v p and z. Then expressing z as a convex
combination of asymptotic extreme directions we obtain the conclusion. �

In view of Corollaries 2.4.3 and 2.4.6 the numbers of vertices and extreme asymp-
totic directions of a polyhedron P are finite. Denote them respectively by v1, · · · , v p

and z1, · · · , zq . Then each element x of P is expressed as

x =
p∑

i=1

λiv
i +

q∑
j=1

μ j z
j

with
p∑

i=1

λi = 1,λi � 0, i = 1, · · · , p and μ j � 0, j = 1, · · · , q.

Notice that the above representation is not unique, that is, an element x of P can
be written as several combinations of vi , i = 1, · · · , p and z j , j = 1, · · · , q with
different coefficients λi and μ j . An easy example can be observed for the center x
of the square with vertices

v1 =
(
0
0

)
, v2 =

(
1
0

)
, v3 =

(
0
1

)
and v4 =

(
1
1

)
.

It is clear that x can be seen as the middle point of v1 and v4, and as the middle point
of v2 and v3 too.

Another point that should bemade clear is the fact that the results of this section are
related to polyhedra given by the system (2.19) and theymight be false under systems
of different type. For instance, in view of Theorem 2.4.9 a polyhedron determined by
(2.19) has at least a vertex. This is no longer true if a polyhedron is given by another
system. Take a hyperplane determined by equation 〈d, x〉 = 0 for some nonzero
vector d ∈ R

2. It is a polyhedron without vertices. An equivalent system is given in
form of (2.19) as follows

〈d, x+〉 − 〈d, x−〉 = 0,

x+, x− � 0.

The latter system generates a polyhedron in R
4 that does have vertices. However, a

vertex (x+, x−)T of this polyhedron gives an element x = x+ − x− of the former
polyhedron, but not a vertex of it.
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