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Preface

Multiobjective optimization problems arise in decision-making processes in many
areas of human activity including economics, engineering, transportation, water
resources, and the social sciences. Although most real-life problems involve non-
linear objective functions and constraints, solution methods are principally
straightforward in problems with a linear structure. Apart from Zeleny’s classic
1974 work entitled “Linear Multiobjective Programming” and Steuer’s 1986 book
“Multiple Criteria Optimization: Theory, Computation and Application,” nearly all
textbooks and monographs on multiobjective optimization are devoted to non-
convex problems in a general setting, sometimes with set-valued data, which are not
always accessible to practitioners. The main purpose of this book is to introduce
readers to the field of multiobjective optimization using problems with fairly simple
structures, namely those in which the objective and constraint functions are linear.
By working with linear problems, readers will easily come to grasp the fundamental
concepts of vector problems, recognize parallelisms in more complicated problems
with scalar linear programming, analyze difficulties related to multi-dimensionality
in the outcome space, and develop effective methods for treating multiobjective
problems.

Because of the introductory nature of the book, we have sought to present the
material in as elementary a fashion as possible, so as to require only a minimum of
mathematical background knowledge. The first part of the book consists of two
chapters providing the necessary concepts and results on convex polyhedral sets
and linear programming to prepare readers for the new area of optimization with
several objective functions. The second part of the book begins with an examination
of the concept of Pareto optimality, distinguishing it from the classical concept of
optimality used in traditional optimization. Two of the most interesting topics in
this part of the book involve duality and stability in multiple objective linear
programming, both of which are discussed in detail. The third part of the book is
devoted to numerical algorithms for solving multiple objective linear programs.
This includes the well-known multiple objective simplex method, the outcome
space method, and a recent method using normal cone directions.
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Although some new research results are incorporated into the book, it is well
suited for use in the first part of a course on multiobjective optimization for
undergraduates or first-year graduate students in applied mathematics, engineering,
computer science, operations research, and economics. Neither integer problems
nor fuzzy linear problems are addressed. Further, applications to other domains are
not tackled, though students will certainly have no real difficulty in studying them,
once the basic results of this book assimilated.

During the preparation of this manuscript I have benefited from the assistance of
many people. I am grateful to my Post-Ph.D. and Ph.D. students Anulekha Dhara,
Truong Thi Thanh Phuong, Tran Ngoc Thang, and Moslem Zamani for their careful
reading of the manuscript. I would also like to thank Moslem Zamani for the
illustrative figures he made for this book. I want to take this opportunity to give
special thanks to Juan-Enrique Martinez-Legaz (Autonomous University of
Barcelona), Boris Mordukhovich (Wayne State University), Nguyen Thi Bach Kim
(Hanoi Polytechnical University), Panos Pardalos (University of Florida), Michel
Thera (University of Limoges), Majid Soleimani-Damaneh (University of Tehran),
Ralph E. Steuer (University of Georgia), Michel Volle (University of Avignon), and
Mohammad Yaghoobi (University of Kerman) for their valued support in this
endeavor.

Avignon Dinh The Luc
December 2014
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Notations

N Natural numbers
R Real numbers
R

n Euclidean n-dimensional space
LðRn;RmÞ Space of m� n matrices
Bn Closed unit ball in R

n

Sn Unit sphere in R
n

Bm�n Closed unit ball in LðRn;RmÞ
e Vector of ones
ei i-th coordinate unit vector
Δ Standard simplex
xk k Euclidean norm
xk k1 Max-norm

hx; yi Canonical scalar product
5 Less than or equal to
� Less than but not equal to
\ Strictly less than
affðAÞ Affine hull
clðAÞ, �A Closure
intðAÞ Interior
riðAÞ Relative interior
coðAÞ Convex hull
coðAÞ Closed convex hull
coneðAÞ Conic hull
posðAÞ Positive hull
MaxðAÞ Set of maximal elements
WMaxðAÞ Set of weakly maximal elements
MinðAÞ Set of minimal elements
WMinðAÞ Set of weakly minimal elements
S(MOLP) Efficient solution set
WS(MOLP) Weakly efficient solution set
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IðxÞ Active index set at x
A? Orthogonal
A� Negative polar cone
A1 Recession/asymptotic cone
NAðxÞ Normal cone
dðx;CÞ Distance function
hðA;BÞ Hausdorff distance
grðGÞ Graph
suppðxÞ Support
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Chapter 1
Introduction

Mathematical optimization studies the problem of finding the best element from a set
of feasible alternatives with regard to a criterion or objective function. It is written
in the form

optimize f (x)

subject to x ∈ X,

where X is a nonempty set, called a feasible set or a set of feasible alternatives, and
f is a real function on X , called a criterion or objective function. Here “optimize”
stands for either “minimize” or “maximize” which amounts to finding x̄ ∈ X such
that either f (x̄) � f (x) for all x ∈ X , or f (x̄) � f (x) for all x ∈ X .

This model offers a general framework for studying a variety of real-world and
theoretical problems in the sciences and human activities. However, inmany practical
situations, we tend to encounter problems that involve not just one criterion, but a
number of criteria, which are often in conflict with each other. It then becomes
impossible tomodel such problems in the above-mentioned optimization framework.
Here are some instances of such situations.
Automotive design The objective of automotive design is to determine the technical
parameters of a vehicle to minimize (1) production costs, (2) fuel consumption, and
(3) emissions, while maximizing (4) performance and (5) crash safety. These criteria
are not always compatible; for instance a high-performance engine often involves
very high production costs, which means that no design can optimally fulfill all
criteria.
House purchase Buying property is one of life’s weightiest decisions and often
requires the help of real estate agencies. An agency suggests a number of houses
or apartments which roughly meet the potential buyer’s budget and requirements. In
order to make a decision, the buyer assesses the available offers on the basis of his
or her criteria. The final choice should satisfy the following: minimal cost, minimal
maintenance charges, maximal quality and comfort, best environment etc. It is quite
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2 1 Introduction

natural that the higher the quality of the house, the more expensive it is; as such, it
is impossible to make the best choice without compromising.
Distributing electrical power In a system of thermal generators the chief problem
concerns allocating the output of each generator in the system. The aim is not only
to satisfy the demand for electricity, but also to fulfill two main criteria: minimizing
the costs of power generation and minimizing emissions. Since the costs and the
emissions aremeasured in different units,we cannot combine the twocriteria into one.
Queen Dido’s city Queen Dido’s famous problem consists of finding a territory
bounded by a line which has the maximum area for a given perimeter. According to
elementary calculus, the solution is known to be a circle. However, as it is incon-
ceivable to have a city touching the sea without a seashore, Queen Dido set another
objective, namely for her territory to have as large a seashore as possible. As a result,
a semicircle partly satisfies her two objectives, but fails to maximize either aspect.

As we have seen, even in the simplest situations described above there can be
no alternative found that simultaneously satisfies all criteria, which means that the
known concepts of optimization do not apply and there is a real need to develop new
notions of optimality for problems involving multiple objective functions. Such a
concept was introduced by Pareto (1848–1923), an Italian economist who explained
the Pareto optimum as follows: “The optimum allocation of the resources of a society
is not attained so long as it is possible to make at least one individual better off in his
own estimation while keeping others as well off as before in their own estimation.”
Prior to Pareto, the Irish economist Edgeworth (1845–1926) had defined an optimum
for the multiutility problem of two consumers P and Q as “a point (x, y) such that in
whatever direction we take an infinitely small step, P and Q do not increase together
but that, while one increases, the other decreases.” According to the definition put
forward by Pareto, among the feasible alternatives, those that can simultaneously be
improved with respect to all criteria cannot be optimal. And an alternative is optimal
if any alternative better than it with respect to a certain criterion is worse with respect
to some other criterion, that is, if a tradeoff takes place when trying to find a better
alternative. From the mathematical point of view, if one defines a domination order
in the set of feasible alternatives by a set of criteria—an alternative a dominates
an alternative b if the value of every criterion function at a is bigger than that at
b—then an alternative is optimal in the Pareto sense if it is dominated by no other
alternatives. In other words, an alternative is optimal if it is maximal with respect
to the above order. This explains the mathematical origin of the theory of multiple
objective optimization, which stems from the theory of ordered spaces developed by
Cantor (1845–1918) and Hausdorff (1868–1942).

A typical example of ordered spaces, frequently encountered in practice, is the
finite dimensional Euclidean space R

n with n ≥ 2, in which two vectors a and b
are comparable, let’s say a is bigger than or equal to b if all coordinates of a are
bigger than or equal to the corresponding coordinates of b. A multiple objective
optimization problem is then written as
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Maximize F(x) := ( f1(x), . . . , fk(x))

subject to x ∈ X,

where f1, . . . , fk are real objective functions on X and “Maximize” signifies finding
an element x̄ ∈ X such that no value F(x), x ∈ X is bigger than the value F(x̄). It
is essential to note that the solution x̄ is not worse than any other solution, but in no
ways it is the best one, that is, the value F(x̄) cannot be bigger than or equal to all
values F(x), x ∈ X in general. A direct consequence of this observation is the fact
that the set of “optimal values” is not a singleton, which forces practitioners to find
a number of “optimal solutions” before making a final decision. Therefore, solving
a multiple objective optimization problem is commonly understood as finding the
entire set of “optimal solutions” or “optimal values”, or at least a representative
portion of them. Indeed, this is the point that makes multiple objective optimization
a challenging and fascinating field of theoretical research and application.



Part I
Background



Chapter 2
Convex Polyhedra

We begin the chapter by introducing basic concepts of convex sets and linear func-
tions in a Euclidean space. We review some of fundamental facts about convex
polyhedral sets determined by systems of linear equations and inequalities, includ-
ing Farkas’ theorem of the alternative which is considered a keystone of the theory
of mathematical programming.

2.1 The Space R
n

Throughout this book,Rn denotes the n-dimensional Euclidean space of real column
n-vectors. The norm of a vector x with components x1, · · · , xn is given by

‖x‖ =
[

n∑
i=1

(xi )
2

]1/2
.

The inner product of two vectors x and y in Rn is expressed as

〈x, y〉 =
n∑

i=1

xi yi .

The closed unit ball, the open unit ball and the unit sphere of Rn are respectively
defined by

Bn := {x ∈ R
n : ‖x‖ � 1

}
,

int(Bn) := {x ∈ R
n : ‖x‖ < 1

}
,

Sn := {x ∈ R
n : ‖x‖ = 1

}
.
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8 2 Convex Polyhedra

Given a nonempty set Q ⊆ R
n , we denote the closure of Q by cl(Q) and its interior

by int(Q). The conic hull, the positive hull and the affine hull of Q are respectively
given by

cone(Q) := {ta : a ∈ Q, t ∈ R, t � 0
}
,

pos(Q) :=
{

k∑
i=1

ti a
i : ai ∈ Q, ti ∈ R, ti � 0, i = 1, · · · , k with k ∈ N

}
,

aff(Q) :=
{

k∑
i=1

ti a
i : ai ∈ Q, ti ∈ R, i = 1, · · · , k and

k∑
i=1

ti = 1 with k ∈ N

}
,

where N denotes the set of natural numbers (Figs. 2.1, 2.2 and 2.3).

Fig. 2.1 Conic hull (with
Q = Q1 ∪ Q2)

Q1

Q2

cone(Q)

cone(Q)

Fig. 2.2 Positive hull (with
Q = Q1 ∪ Q2)

Q1

Q2

pos(Q)
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Fig. 2.3 Affine hull (with
Q = Q1 ∪ Q2)

Q1

Q2

aff(Q)

Among the sets described above cone(Q) and pos(Q) are cones, that is, they are
invariant under multiplication by positive numbers; pos(Q) is also invariant under
addition of its elements; and aff(Q) is an affine subspace of Rn . For two vectors x
and y of Rn , inequalities x > y and x � y mean respectively xi > yi and xi � yi

for all i = 1, · · · , n. When x � y and x �= y, we write x ≥ y. So a vector x is
positive, that is x � 0, if its components are non-negative; and it is strictly positive
if its components are all strictly positive. The set of all positive vectors of Rn is the
positive orthantRn+. Sometimes row vectors are also considered. They are transposes
of column vectors. Operations on row vectors are performed in the same manner as
on column vectors. Thus, for two row n-vectors c and d, their inner product is
expressed by

〈c, d〉 = 〈cT , dT 〉 =
n∑

i=1

ci di ,

where the upper index T denotes the transpose. On the other hand, if c is a row vector
and x is a column vector, then the product cx is understood as a matrix product which
is equal to the inner product 〈cT , x〉.

Convex sets

Wecall a subset Q ofRn convex if the segment joining any twopoints of Q lies entirely
in Q, which means that for every x, y ∈ Q and for every real number λ ∈ [0, 1], one
has λx + (1−λ)y ∈ Q (Figs. 2.4, 2.5). It follows directly from the definition that the
intersectionof convex sets, theCartesianproduct of convex sets, the image and inverse
image of a convex set under a linear transformation, the interior and the closure of a
convex set are convex. In particular, the sum Q1 + Q2 := {x + y : x ∈ Q1, y ∈ Q2}
of two convex sets Q1 and Q2 is convex; the conic hull of a convex set is convex.
The positive hull and the affine hull of any set are convex.

The convex hull of Q, denoted co(Q) (Fig. 2.6), consists of all convex combina-
tions of elements of Q, that is,
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Fig. 2.4 Convex set

x

y

Fig. 2.5 Nonconvex set

x

y

co(Q) :=
{

k∑
i=1

λi x i : xi ∈ Q,λi � 0, i = 1, · · · , k and
k∑

i=1

λi = 1 with k ∈ N

}
.

It is the intersection of all convex sets containing Q. The closure of the convex hull
of Q will be denoted by co(Q), which is exactly the intersection of all closed convex
sets containing Q. The positive hull of a set is the conic hull of its convex hull. A
convex combination

∑k
i=1 λi x i is strict if all coefficients λi are strictly positive.

Given a nonempty convex subset Q of Rn , the relative interior of Q, denoted
ri(Q), is its interior relative to its affine hull, that is,

ri(Q) := {x ∈ Q : (x + εBn) ∩ aff(Q) ⊆ Q for some ε > 0
}
.

Equivalently, a point x in Q is a relative interior point if and only if for any point y in
Q there is a positive number δ such that the segment joining the points x − δ(x − y)

and x +δ(x − y) entirely lies in Q. As a consequence, any strict convex combination
of a finite collection {x1, · · · , xk} belongs to the relative interior of its convex hull
(see also Lemma 6.4.8). It is important to note also that every nonempty convex set
inRn has a nonempty relative interior. Moreover, if two convex sets Q1 and Q2 have
at least one relative interior point in common, then ri(Q1 ∩ Q2) = ri(Q1) ∩ ri(Q2).

Fig. 2.6 Convex hull of Q

Q

co(Q)

http://dx.doi.org/10.1007/978-3-319-21091-9_6
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Fig. 2.7 The standard
simplex in R

3

Example 2.1.1 (Standard simplex) Let ei be the i th coordinate unit vector of Rn ,
that is its components are all zero except for the i th component equal to one. Let Δ
denote the convex hull of e1, · · · , en . Then a vector x with components x1, · · · , xn is
an element ofΔ if and only if xi � 0, i = 1, · · · , n and

∑n
i=1 xi = 1. This set has no

interior point. However, its relative interior consists of x with xi > 0, i = 1, · · · , n
and
∑n

i=1 xi = 1. The set Δ is called the standard simplex of Rn (Fig. 2.7).

Caratheodory’s theorem

It turns out that the convex hull of a set Q in the spaceRn can be obtained by convex
combinations of at most n + 1 elements of Q. First we see this for positive hull.

Theorem 2.1.2 Let {a1, · · · , ak} be a collection of vectors in R
n. Then for every

nonzero vector x from the positive hull pos{a1, · · · , ak} there exists an index set
I ⊆ {1, · · · , k} such that

(i) the vectors ai , i ∈ I are linearly independent;
(ii) x belongs to the positive hull pos{ai , i ∈ I }.
Proof Since the collection {a1, · · · , ak} is finite, we may choose an index set I of
minimum cardinality such that x ∈ pos{ai , i ∈ I }. It is evident that there are strictly
positive numbers ti , i ∈ I such that x =∑i∈I ti ai . We prove that (i) holds for this
I . Indeed, if not, one can find an index j ∈ I and real numbers si such that

a j −
∑

i∈I\{ j}
si a

i = 0.

Set
ε = min

{
t j and − ti

si
: i ∈ I with si < 0

}

and express
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x =
∑
i∈I

ti a
i − ε

(
a j −

∑
i∈I\{ j}

si a
i
)

= (t j − ε)a j +
∑

i∈I\{ j}
(ti + εsi )a

i .

It is clear that in the latter sum those coefficients corresponding to the indices that
realize the minimum in the definition of ε are equal to zero. By this, x lies in the
positive hull of less than |I | vectors of the collection. This contradiction completes
the proof. �

A collection of vectors {a1, · · · , ak} in R
n is said to be affinely independent if

the dimension of the subspace aff{a1, · · · , ak} is equal to k − 1. By convention a set
consisting of a solitary vector is affinely independent. The next result is a version of
Caratheodory’s theorem and well-known in convex analysis.

Corollary 2.1.3 Let {a1, · · · , ak} be a collection of vectors in R
n . Then for every

x ∈ co{a1, · · · , ak} there exists an index set I ⊆ {1, · · · , k} such that

(i) the vectors ai , i ∈ I are affinely independent
(ii) x belongs to the convex hull of ai , i ∈ I.

Proof We consider the collection of vectors vi = (ai , 1), i = 1, · · · , k in the space
R

n × R. It is easy to verify that x belongs to the convex hull co{a1, · · · , ak} if
and only if the vector (x, 1) belongs to the positive hull pos{v1, · · · , vk}. Applying
Theorem 2.1.2 to the latter positive hull we deduce the existence of an index set
I ⊆ {1, · · · , k} such that the vector (x, 1) belongs to the positive hull pos{vi , i ∈ I }
and the collection {vi , i ∈ I } is linearly independent. Then x belongs to the convex
hull co{ai , i ∈ I } and the collection {ai , i ∈ I } is affinely independent. �

Linear operators and matrices

A mapping φ : Rn → R
k is called a linear operator between R

n and R
k if

(i) φ(x + y) = φ(x) + φ(y),

(ii) φ(t x) = tφ(x)

for every x, y ∈ R
n and t ∈ R. The kernel and the image of φ are the sets

Kerφ = {x ∈ R
n : φ(x) = 0

}
,

Imφ = {y ∈ R
k : y = φ(x) for some x ∈ R

n}.
These sets are linear subspaces of Rn and R

k respectively.
We denote the k × n-matrix whose columns are c1, · · · , cn by C , where ci is the

vector image of the i th coordinate unit vector ei by φ. Then for every vector x of Rn

one has
φ(x) = Cx .
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The mapping x �→ Cx is clearly a linear operator from R
n to R

k . This explains
why one can identify a linear operator with a matrix. The space of k × n matrices
is denoted by L(Rn,Rk). The transpose of a matrix C is denoted by CT . The norm
and the inner product in the space of matrices are given by

‖C‖ =
(∑

i=1,··· ,n
∑

j=1,··· ,n |ci j |2
)1/2

,

〈C, B〉 =
∑

i=1,··· ,n
∑

j=1,··· ,n ci j bi j .

The norm ‖C‖ is called also the Frobenius norm.
The inner product 〈C, B〉 is nothing but the trace of the matrix C BT . Sometimes

the space L(Rn,Rk) is identified with the n × k-dimensional Euclidean spaceRn×k .

Linear functionals

A particular case of linear operators is when the value space is one-dimensional. This
is the space of linear functionals on Rn and often identified with the space Rn itself.
Thus, each linear functional φ is given by a vector dφ by the formula

φ(x) = 〈dφ, x〉.

When dφ �= 0, the kernel of φ is called a hyperplane; the vector dφ is a normal vector
to this hyperplane. Geometrically, dφ is orthogonal to the hyperplane Kerφ. The sets

{
x ∈ R

n : 〈dφ, x〉 � 0
}
,{

x ∈ R
n : 〈dφ, x〉 � 0

}
are closed halfspaces and the sets

{
x ∈ R

n : 〈dφ, x〉 > 0
}
,{

x ∈ R
n : 〈dφ, x〉 < 0

}
are open halfspaces bounded by the hyperplane Kerφ. Given a real number α and a
nonzero vector d of Rn , one also understands a hyperplane of type

H(d,α) = {x ∈ R
n : 〈d, x〉 = α

}
.

The sets

H+(d,α) = {x ∈ R
n : 〈d, x〉 � α

}
,

H−(d,α) = {x ∈ R
n : 〈d, x〉 � α

}
are positive and negative halfspaces and the sets
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int
(
H+(d,α)

) = {x ∈ R
n : 〈d, x〉 > α

}
,

int
(
H−(d,α)

) = {x ∈ R
n : 〈d, x〉 < α

}
are positive and negative open halfspaces.

Theorem 2.1.4 Let Q be a nonempty convex set in R
n and let 〈d, .〉 be a positive

functional on Q, that is 〈d, x〉 � 0 for every x ∈ Q. If 〈d, x〉 = 0 for some relative
interior point x of Q, then 〈d, .〉 is zero on Q.

Proof Let y be any point in Q. Since x is a relative interior point, there exists a
positive number δ such that x + t (y − x) ∈ Q for |t | � δ. Applying 〈d, .〉 to this
point we obtain

〈d, x + t (y − x)〉 = t〈d, y〉 � 0

for all t ∈ [−δ, δ]. This implies that 〈d, y〉 = 0 as requested. �

2.2 System of Linear Inequalities

We shall mainly deal with two kinds of systems of linear equations and inequalities.
The first system consists of k inequalities

〈ai , x〉 � bi , i = 1, · · · , k, (2.1)

where a1, · · · , ak are n-dimensional column vectors and b1, · · · , bk are real num-
bers; and the second system consists of k equations which involves positive vectors
only

〈ai , x〉 = bi , i = 1, · · · , k (2.2)

x � 0.

Denoting by A the k × n-matrix whose rows are the transposes of a1, · · · , ak and
by b the column k-vector of components b1, · · · , bk , we can write the systems (2.1)
and (2.2) in matrix form

Ax � b (2.3)

and

Ax = b (2.4)

x � 0.

Notice that any system of linear equations and inequalities can be converted to the
twomatrix forms described above. To this end it suffices to perform three operations:
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(a) Express each variable xi as difference of two non-negative variables xi = x+
i −

x−
i where

x+
i = max{xi ; 0},

x−
i = max{−xi ; 0}.

(b) Introduce a non-negative slack variable yi in order to obtain equivalence between
inequality 〈ai , x〉 � bi and equality 〈ai , x〉 + yi = bi . Similarly, with a non-
negative surplus variable zi one may express inequality 〈ai , x〉 � bi as equality
〈ai , x〉 − zi = bi .

(c) Express equality 〈ai , x〉 = bi by two inequalities 〈ai , x〉 � bi and 〈ai , x〉 � bi .

Example 2.2.1 Consider the following system

x1 + 2x2 = 1,

−x1 − x2 � 0.

It is written in form (2.3) as

⎛
⎝ 1 2

−1 −2
1 1

⎞
⎠( x1

x2

)
�

⎛
⎝ 1

−1
0

⎞
⎠

and in form (2.4) with a surplus variable y as

(
1 −1 2 −2 0

−1 1 −1 1 −1

) (
x+
1 , x−

1 , x+
2 , x−

2 , y
)T =

(
1
0

)
,

(x+
1 , x−

1 , x+
2 , x−

2 , y)T � 0.

Redundant equation

Given a system (2.4) we say it is redundant if at least one of the equations (called
redundant equation) can be expressed as a linear combination of the others. In other
words, it is redundant if there is a nonzero k-dimensional vector λ such that

AT λ = 0,

〈b,λ〉 = 0.

Moreover, redundant equations can be dropped from the system without changing
its solution set. Similarly, an inequation of (2.1) is called redundant if its removal
from the system does not change the solution set.
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Proposition 2.2.2 Assume that k � n and that the system (2.4) is consistent. Then
it is not redundant if and only if the matrix A has full rank.

Proof If one of equations, say 〈a1, x〉 = b1, is redundant, then a1 is a linear combina-
tion of a2, · · · , ak . Hence the rank of A is not maximal, it is less than k. Conversely,
when the rank of A is maximal (equal to k), no row of A is a linear combination of
the others. Hence no equation of the system can be expressed as a linear combination
of the others. �

Farkas’ theorem

One of the theorems of the alternative that are pillars of the theory of linear and
nonlinear programming is Farkas’ theorem or Farkas’ lemma. There are a variety of
ways to prove it, the one we present here is elementary.

Theorem 2.2.3 (Farkas’ theorem) Exactly one of the following systems has a
solution:

(i) Ax = b and x � 0;
(ii) AT y � 0 and 〈b, y〉 < 0.

Proof If the first system has a solution x , then for every y with AT y � 0 one has

〈b, y〉 = 〈Ax, y〉 = 〈x, AT y〉 � 0,

which shows that the second system has no solution.
Now suppose the first system has no solution. Then either the system

Ax = b

has no solution, or it does have a solution, but every solution of it is not positive. In the
first case, choose m linearly independent columns of A, say a1, · · · , am , where m is
the rank of A. Then the vectors a1, · · · , am, b are linearly independent too (because
b does not lie in the space spanned by a1, · · · , am). Consequently, the system

〈ai , y〉 = 0, i = 1, · · · , m,

〈b, y〉 = −1

admits a solution. This implies that the system (ii) has solutions too. It remains to
prove the solvability of (ii) when Ax = b has solutions and they are all non-positive.
We do it by induction on the dimension of x . Assume n = 1. If the system ai1x1 =
bi , i = 1, · · · , k has a negative solution x1, then y = −(b1, · · · , bk)

T is a solution
of (ii) because AT y = −(a2

11+· · ·+a2
k1)x1 > 0 and 〈b, y〉 = −(b21 +· · ·+b2k ) < 0.

Now assume n > 1 and that the result is true for the case of dimension n−1. Given an
n-vector x , denote by x the (n − 1)-vector consisting of the first (n − 1) components
of x . Let Ā be the matrix composed of the first (n − 1) columns of A. It is clear that
the system
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Āx = b and x � 0

has no solution. By induction there is some y such that

A
T

y � 0,

〈b, y〉 < 0.

If 〈an, y〉 � 0, we are done. If 〈an, y〉 < 0, define new vectors

âi = 〈ai , y〉an − 〈an, y〉ai , i = 1, · · · , n − 1,

b̂ = 〈b, y〉an − 〈an, y〉b

and consider a new system

â1ξ1 + · · · + ân−1ξn−1 = b̂. (2.5)

We claim that this system of k equations has no positive solution. Indeed, if not, say
ξ1, · · · , ξn−1 were non-negative solutions, then the vector x with

xi = ξi , i = 1, · · · , n − 1,

xn = − 1

〈an, y〉
(
〈a1ξ1 + · · · + an−1ξn−1, y〉 − 〈b, y〉

)

should be a positive solution of (i) because−〈b, y〉 > 0 and 〈Aξ, y〉 = 〈ξ, A
T

y〉 � 0
for ξ = (ξ1, · · · , ξn−1)

T � 0, implying xn � 0. Applying the induction hypothesis
to (2.5) we deduce the existence of a k-vector ŷ with

〈âi , ŷ〉 � 0, i = 1, · · · , n − 1,

〈b̂, ŷ〉 < 0.

Then the vector y = 〈an, ŷ〉y − 〈an, y〉ŷ satisfies the system (ii). The proof is
complete. �

A number of consequences can be derived from Farkas’ theorem which are useful
in the study of linear systems and linear programming problems.

Corollary 2.2.4 Exactly one of the following systems has a solution:

(i) Ax = 0, 〈c, x〉 = 1 and x � 0;
(ii) AT y � c.
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Proof If (ii) has a solution y, then for a positive vector x with Ax = 0 one has

0 = 〈y, Ax〉 = 〈AT y, x〉 � 〈c, x〉.

So (i) is not solvable. Conversely, if (i) has no solution, then applying Farkas’ theorem
to the inconsistent system

(
A

cT

)
x =
(
0
1

)
and x � 0

yields the existence of a vector y and of a real number t such that

(
AT c
)( y

t

)
� 0 and

〈(
0
1

)
,

(
y
t

)〉
< 0.

Hence t < 0 and −y/t is a solution of (ii). �

Corollary 2.2.5 Exactly one of the following systems has a solution:

(i) Ax ≥ 0 and x � 0;
(ii) AT y � 0 and y > 0.

Proof By introducing a surplus variable z ∈ R
k we convert (i) to an equivalent

system

Ax − I z = 0,(
x
z

)
� 0,〈

c,

(
x
z

)〉
= 1,

where c is an (n + k)-vector whose n first components are all zero and the remaining
components are one. According to Corollary 2.2.4 it has no solution if and only if
the following system has a solution

(
AT

−I

)
y � c.

It is clear that the latter system is equivalent to (ii). �

The next corollary is known as Motzkin’s theorem of the alternative.

Corollary 2.2.6 (Motzkin’s theorem) Let A and B be two matrices having the same
number of columns. Exactly one of the following systems has a solution:

(i) Ax > 0 and Bx � 0;
(ii) AT y + BT z = 0, y ≥ 0 and z � 0.
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Proof The system (ii) is evidently equivalent to the following one

(
AT BT

eT 0

)(
y
z

)
=
(
0
1

)
(

y
z

)
� 0.

By Farkas’ theorem it is compatible (has a solution) if and only if the following
system is incompatible:

(
A e
B 0

)(
x
t

)
�
(
0
0

)
〈(

x
t

)
,

(
0
1

)〉
< 0.

The latter system is evidently equivalent to the system of (i). �

Some classical theorems of alternatives are immediate from Corollary 2.2.6.

• Gordan’s theorem (B is the zero matrix):
Exactly one of the following systems has a solution

(1) Ax > 0;
(2) AT y = 0 and y ≥ 0.

• Ville’s theorem (B is the identity matrix):
Exactly one of the following systems has a solution

(3) Ax > 0 and x � 0;
(4) AT y � 0 and y ≥ 0.

• Stiemke’s theorem (A is the identity matrix and B is replaced by

(
B

−B

)
):

Exactly one of the following systems has a solution

(5) Bx = 0 and x > 0;
(6) BT y ≥ 0.

2.3 Convex Polyhedra

A set that can be expressed as the intersection of a finite number of closed half-spaces
is called a convex polyhedron. A convex bounded polyhedron is called a polytope.
According to the definition of closed half-spaces, a convex polyhedron is the solution
set to a finite system of inequalities
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〈ai , x〉 � bi , i = 1, · · · , k (2.6)

where a1, · · · , ak are n-dimensional column vectors and b1, · · · , bk are real num-
bers. When bi = 0, i = 1, · · · , k, the solution set to (2.6) is a cone and called a
convex polyhedral cone. We assume throughout this section that the system is not
redundant and solvable.

Supporting hyperplanes and faces

Let P be a convex polyhedron and let

H = {x ∈ R
n : 〈v, x〉 = α}

be a hyperplane with v nonzero. We say H is a supporting hyperplane of P at a point
x ∈ P if the intersection of H with P contains x and P is contained in one of the
closed half-spaces bounded by H (Fig. 2.8). In this case, the nonempty set H ∩ P is
called a face of P . Thus, a nonempty subset F of P is a face if there is a nonzero
vector v ∈ R

n such that

〈v, y〉 � 〈v, x〉 for all x ∈ F, y ∈ P.

When a face is zero-dimensional, it is called a vertex. A nonempty polyhedron may
have no vertex. By convention P is a face of itself; other faces are called proper
faces. One-dimensional faces are called edges. Two vertices are said to be adjacent
if they are end-points of an edge.

Example 2.3.1 Consider a system of three inequalities in R
2:

x1 + x2 � 1 (2.7)

−x1 − x2 � 0 (2.8)

−x1 � 0. (2.9)

Fig. 2.8 Supporting
hyperplane

x

H

P
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The polyhedron defined by (2.7) and (2.8) has no vertex. It has two one-dimensional
faces determined respectively by x1 + x2 = 1 and x1 + x2 = 0, and one two-
dimensional face, the polyhedron itself. The polyhedron defined by (2.7)–(2.9) has
two vertices (zero-dimensional faces) determined respectively by

{
x1 = 0
x2 = 0

and

{
x1 = 0
x2 = 1

,

three one-dimensional faces given by

⎧⎨
⎩

x1 + x2 � 1
−x1 − x2 � 0

x1 = 0
,

{
x1 + x2 = 1
−x1 � 0

and

{−x1 − x2 = 0
−x1 � 0

,

and one two-dimensional face, the polyhedron itself.

Proposition 2.3.2 Let P be a convex polyhedron. The following properties hold.

(i) The intersection of any two faces is a face if it is nonempty.
(ii) Two different faces have no relative interior point in common.

Proof Weprove (i) first. Assume F1 and F2 are two faceswith nonempty intersection.
If they coincide, there is nothing to prove. If not, let H1 and H2 be two supporting
hyperplanes that generate these faces, say

H1 = {x ∈ R
n : 〈v1, x〉 = α1

}
,

H2 = {x ∈ R
n : 〈v2, x〉 = α2

}
.

Since these hyperplanes contain the intersection of distinct faces F1 and F2, the
vector v = v1 + v2 is not zero. Consider the hyperplane

H = {x ∈ R
n : 〈v, x〉 = α1 + α2

}
.

It is a supporting hyperplane of P because it evidently contains the intersection of
the faces F1 and F2, and for every point x in P , one has

〈v, x〉 = 〈v1, x〉 + 〈v2, x〉 � α1 + α2. (2.10)

It remains to show that the intersection of H and P coincides with the intersection
F1 ∩ F2. The inclusion

F1 ∩ F2 ⊆ H ∩ P

being clear, we show the converse. Let x be in H ∩ P . Then (2.10) becomes equality
for this x . But 〈v1, x〉 � α1 and 〈v2, x〉 � α2, so that equality of (2.10) is possible
only when the two latter inequalities are equalities. This proves that x belongs to
both F1 and F2.



22 2 Convex Polyhedra

For the second assertion notice that if F1 and F2 have a relative interior point in
common, then in view of Theorem 2.1.4, the functional 〈v1, .〉 is constant on F2. It
follows that F2 ⊆ H1 ∩ P ⊆ F1. Similarly, one has F1 ⊆ F2, and hence equality
holds. �

Let x be a solution of the system (2.6). Define the active index set at x to be the
set

I (x) =
{

i ∈ {1, · · · , k} : 〈ai , x〉 = bi

}
.

The remaining indices are called inactive indices.

Theorem 2.3.3 Assume that P is a convex polyhedron given by (2.6). A nonempty
proper convex subset F of P is a face if and only if there is a nonempty maximal
index set I ⊆ {1, · · · , k} such that F is the solution set to the system

〈ai , x〉 = bi , i ∈ I (2.11)

〈a j , x〉 � b j , j ∈ {1, · · · , k}\I, (2.12)

in which case the dimension of F is equal to n−rank{ai : i ∈ I }.
Proof Denote the solution set to the system (2.11, 2.12) by F ′ that we suppose
nonempty. To prove that it is a face, we set

v =
∑
i∈I

ai and α =
∑
i∈I

bi .

Notice that v is nonzero because F ′ is not empty and the system (2.6) is not redundant.
It is clear that the negative half-space H−(v,α) contains P . Moreover, if x is a
solution to the system, then, of course, x belongs to P and to H at the same time,
which implies F ′ ⊆ H ∩ P . Conversely, any point x of the latter intersection satisfies

〈ai , x〉 � bi , i = 1, · · · , k,∑
i∈I

〈ai , x〉 =
∑
i∈I

bi .

The latter equality is possible only when those inequalities with indices from I are
equalities. In other words, x belongs to F ′.

Now, let F be a proper face of P . Pick a relative interior point x of F and consider
the system (2.11, 2.12) with I = I (x) the active index set of x .Being a proper face of
P , F has no interior point, and so the set I is nonempty. As before, F ′ is the solution
set to that system. By the first part, it is a face. We wish to show that it coincides with
F . For this, in view of Proposition 2.3.2 it suffices to show that x is also a relative
interior point of F ′. Let x be another point in F ′. We have to prove that there is a
positive number δ such that the segment [x, x + δ(x − x)] lies in F ′. Indeed, note
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that for indices j outside the set I , inequalities 〈a j , x〉 � b j are strict. Therefore,
there is δ > 0 such that

〈a j , x〉 + δ〈a j , x − x〉 � b j

for all j /∈ I . Moreover, being a linear combination of x and x , the endpoint x +
δ(x − x) satisfies the equalities (2.11) too. Consequently, this point belongs to F ′,
and hence so does the whole segment. Since F and F ′ are two faces with a relative
interior point in common, they must be the same. �

In general, for a given face F of P , there may exist several index sets I for which
F is the solution set to the system (2.11, 2.12). We shall, however, understand that
no inequality can be equality without changing the solution set when saying that the
system (2.11, 2.12) determines the face F . So, if two inequalities combined yields
equality, their indices will be counted in I .

Corollary 2.3.4 If an m-dimensional convex polyhedron has a vertex, then it has
faces of any dimension less than m.

Proof The corollary is evident for a zero-dimensional polyhedron. Suppose P is a
polyhedron of dimension m > 0. By Theorem 2.3.3 without loss of generality we
may assume that P is given by the system (2.11, 2.12) with |I | = n − m and that
the family {ai , i ∈ I } is linearly independent. Since P has a vertex, there is some
i0 ∈ {1, · · · , k}\I such that the vectors ai , i ∈ I ∪ {i0} are linearly independent.
Then the system

〈ai , x〉 = bi , i ∈ I ∪ {i0},
〈a j , x〉 � b j , j ∈ {1, · · · , k}\(I ∪ {i0})

generates an (m − 1)-dimensional face of P . Notice that this system has a solution
because P is generated by the non-redundant system (2.11, 2.12). Continuing the
above process we are able to construct a face of any dimension less than m. �
Corollary 2.3.5 Let F be a face of the polyhedron P determined by the system (2.11,
2.12). Then for every x ∈ F one has

I (x) ⊇ I.

Equality holds if and only if x is a relative interior point of F.

Proof The inclusion I ⊆ I (x) is evident because x ∈ F . For the second part, we
first assume I (x) = I , that is

〈ai , x〉 = bi , i ∈ I,

〈a j , x〉 < b j , j ∈ {1, · · · , k}\I.

It is clear that if y ∈ aff(F), then 〈ai , y〉 = bi , i ∈ I, and if y ∈ x + εBk with
ε > 0 sufficiently small, then 〈a j , y〉 < b j , j ∈ {1, · · · , k}\I. We deduce that
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aff(F) ∩ (x + εBk) ⊆ F , which shows that x is a relative interior point of F .
Conversely, let x be a relative interior point of F . Using the argument in the proof
of Theorem 2.3.3 we know that F is also a solution set to the system

〈ai , y〉 = bi , i ∈ I (x),

〈a j , y〉 � b j , j ∈ {1, · · · , k}\I (x).

Since the system (2.11, 2.12) determines F , we have I (x) ⊆ I , and hence equality
follows. �

Corollary 2.3.6 Let F be a face of the polyhedron P determined by the system (2.11,
2.12). Then a point v ∈ F is a vertex of F if and only if it is a vertex of P.

Proof It is clear that every vertex of P is a vertex of F if it belongs to F . To prove
the converse, let us deduce a system of inequalities from (2.11, 2.12) by expressing
equalities 〈ai , x〉 = bi as two inequalities 〈ai , x〉 � bi and 〈−ai , x〉 � −bi . If v is
a vertex of F , then the active constraints at v consists of the vectors ai ,−ai , i ∈ I
and some a j , j ∈ J ⊆ {1, · · · , k}\I , so that the rank of the family {ai ,−ai , a j :
i ∈ I, j ∈ J } is equal to n. It follows that the family {ai , a j : i ∈ I, j ∈ J } has rank
equal to n too. In view of Theorem 2.3.3 the point v is a vertex of P . �

Given a face F of a polyhedron, according to the preceding corollary the active
index set I (x) is constant for every relative interior point x of F . Therefore, we call
it active index set of F and denote it by IF .

A collection of subsets of a polyhedron is said to be a partition of it if the elements
of the collection are disjoint and their union contains the entire polyhedron.

Corollary 2.3.7 The collection of all relative interiors of faces of a polyhedron forms
a partition of the polyhedron.

Proof It is clear from Proposition 2.3.2(ii) that relative interiors of different faces
are disjoint. Moreover, given a point x in P , consider the active index set I (x). If
it is empty, then the point belongs to the interior of P and we are done. If it is not
empty, by Corollary 2.3.5, the face determined by system (2.11, 2.12) with I = I (x)

contains x in its relative interior. The proof is complete. �

We now deduce a first result on representation of elements of polyhedra by ver-
tices.

Corollary 2.3.8 A convex polytope is the convex hull of its vertices.

Proof The corollary is evident when the dimension of a polytope is less or equal
to one in which case it is a point or a segment with two end-points. We make the
induction hypothesis that the corollary is true when a polytope has dimension less
than m with 1 < m < n and prove it for the case when P is a polytope determined by
the system (2.6) and has dimension equal to m. Since P is a convex set, the convex
hull of its vertices is included in P itself. Conversely, let x be a point of P . In view of
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Corollary 2.3.7 it is a relative interior point of some face F of P . If F is a proper face
of P , its dimension is less than m, and so we are done. It remains to treat the case
where x is a relative interior point of P . Pick any point y �= x in P and consider the
line passing through x and y. Since P is bounded, the intersection of this line with P
is a segment, say with end-points c and d. Let Fc and Fd be faces of P that contain
c and d in their relative interiors. As c and d are not relative interior points of P , the
faces Fc and Fd are proper faces of P , and hence they have dimension strictly less
than m. By induction c and d belong to the convex hulls of the vertices of Fc and Fd

respectively. By Corollary 2.3.6 they belong to the convex hull of the vertices of P ,
and hence so does x because x belongs to the convex hull of c and d. �

A similar result is true for polyhedral cones. It explains why one-dimensional
faces of a polyhedral cone are called extreme rays.

Corollary 2.3.9 A nontrivial polyhedral cone with vertex is the convex hull of its
one-dimensional faces.

Proof By definition a polyhedral cone P is defined by a homogeneous system

〈ai , x〉 � 0, i = 1, · · · , k. (2.13)

Choose any nonzero point y in P and consider the hyperplane H given by

〈a1 + · · · + ak, x − y〉 = 0. (2.14)

We claim that the vector a1 + · · · + ak is nonzero. Indeed, if not, the inequalities
(2.13) would become equalities for all x ∈ P , and P would be either a trivial cone, or
a cone without vertex. Moreover, P ∩ H is a bounded polyhedron, because otherwise
one should find a nonzero vector u satisfying 〈ai , u〉 = 0, i = 1, · · · , k and P could
not have vertices. In view of Corollary 2.3.8, P ∩ H is the convex hull of its vertices.
To complete the proof it remains to show that a vertex v of P ∩H is the intersection of
a one-dimensional face of P with H . Indeed, the polytope P ∩ H being determined
by the system (2.13) and (2.14), there is a set J ⊂ {1, · · · , k} with |J | = n − 1 such
that the vectors a j , j ∈ J and a1 + · · · + ak are linearly independent and v is given
by system

〈a j , x〉 = 0, j ∈ J (2.15)

〈a1 + · · · + ak, x〉 = 〈a1 + · · · + ak, y〉,
〈ai , x〉 � 0, i ∈ {1, · · · , k}\J. (2.16)

It is clear that (2.15) and (2.16) determine a one-dimensional face of P whose inter-
section with H is v. �
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Separation of convex polyhedra

Given two convex polyhedra P and Q inRn , we say that a nonzero vector v separates
them if

〈v, x〉 � 〈v, y〉 for all vectors x ∈ P, y ∈ Q

and strict inequality is true for some of them (Fig. 2.9). The following result can be
considered as a version of Farkas’ theorem or Gordan’s theorem.

Theorem 2.3.10 If P and Q are convex polyhedra without relative interior points
in common, then there is a nonzero vector separating them.

Proof We provide a proof for the case where both P and Q have interior points only.
Without loss of generality we may assume that P is determined by the system (2.6)
and Q is determined by the system

〈d j , x〉 � c j , j = 1, · · · , m.

Thus, the following system:

〈ai , x〉 < bi , i = 1, · · · , k

〈d j , x〉 < c j , j = 1, · · · , m

has no solution because the first k inequalities determine the interior of P and the last
m inequalities determine the interior of Q. This system is equivalent to the following
one: ⎛

⎝ −A b
−D c

0 1

⎞
⎠( x

t

)
>

⎛
⎝0
0
0

⎞
⎠ ,

Fig. 2.9 Separation H

P

Q
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where A is the k × n-matrix whose rows are transposes of a1, · · · , ak , D is the
m × n-matrix whose rows are transposes of d1, · · · , dk , b is the k-vector with
the components b1, · · · , bk and c is the m-vector with the components c1, · · · , cm .
According to Gordan’s theorem, there exist positive vectors λ ∈ R

k and μ ∈ R
m and

a real number s � 0, not all zero, such that

AT λ + DT μ = 0,

〈b,λ〉 + 〈c,μ〉 + s = 0.

It follows from the latter equality that (λ,μ) is nonzero. We may assume without
loss of generality that λ �= 0. We claim that AT λ �= 0. Indeed, if not, choose x an
interior point of P and y an interior point of Q. Then DT μ = 0 and hence

〈b,λ〉 > 〈Ax,λ〉 = 〈x, AT λ〉 = 0

and
〈c,μ〉 � 〈Dy,μ〉 = 〈y, DT μ〉 = 0,

which is in contradiction with the aforesaid equality. Defining v to be the nonzero
vector −AT λ, we deduce for every x ∈ P and y ∈ Q that

〈v, x〉 = 〈−AT λ, x〉 = 〈λ,−Ax〉 � 〈λ,−b〉 � 〈μ, c〉 � 〈μ, Dy〉 = 〈v, y〉.

Of course inequality is strict when x and y are interior points. By this v separates P
and Q as requested. �

Asymptotic cones

Given a nonempty convex and closed subset C of Rn , we say that a vector v is an
asymptotic or a recession direction of C if

x + t x ∈ C for all x ∈ C, t � 0.

The set of all asymptotic directions of C is denoted by C∞ (Fig. 2.10). It is a convex
cone. It can be seen that a closed convex set is bounded if and only if its asymptotic
cone is trivial. The set C∞ ∩ (−C∞) is a linear subspace and called the lineality
space of C .

An equivalent definition of asymptotic directions is given next.

Theorem 2.3.11 A vector v is an asymptotic direction of a convex and closed set C
if and only if there exist a sequence of elements xs ∈ C and a sequence of positive
numbers ts converging to zero such that v = lims→∞ ts xs .

Proof If v ∈ C∞ and x ∈ C , then xs = x + sv ∈ C for all s ∈ N\{0}. Setting
ts = 1/s we obtain v = lims→∞ ts xs with lims→∞ ts = 0. Conversely, assume that
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C

C∞

Fig. 2.10 Asymptotic cone

v = lims→∞ ts xs for xs ∈ C and ts > 0 converging to zero as s tends to ∞. Let
x ∈ C and t > 0 be given. Then t ts converges to zero as s → ∞ and 0 � t ts � 1
for s sufficiently large. Hence,

x + tv = lim
s→∞(x + t ts xs)

= lim
s→∞

(
(1 − t ts)x + t ts xs + t ts x

)
= lim

s→∞
(
(1 − t ts)x + t ts xs

)
.

The set C being closed and convex, the points under the latter limit belong to the set
C , and therefore their limit x + tv belongs to C too. Since x and t > 0 were chosen
arbitrarily we conclude that v ∈ C∞. �

Below is a formula to compute the asymptotic cone of a polyhedron.

Theorem 2.3.12 The asymptotic cone of the polyhedron P determined by the system
(2.6) is the solution set to system

〈ai , v〉 � 0, i = 1, · · · , k. (2.17)

Proof Let v be an asymptotic direction of P . Then for every positive number t one
has

〈ai , x + tv〉 � bi , i = 1, · · · , k,

where x is any point in P . By dividing both sides of the above inequalities by t > 0
and letting this t tend to ∞ we derive (2.17). For the converse, if v is a solution of
(2.17), then for every point x in P one has

〈ai , x + tv〉 = 〈ai , x〉 + t〈ai , v〉 � bi , i = 1, · · · , k
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for all t � 0. Thus, the points x + tv with t � 0, belong to P and v is an asymptotic
direction. �

Example 2.3.13 Consider a (nonempty) polyhedron in R3 defined by the system:

−x1 − x2 − x3 � −1,

x3 � 1,

x1, x2, x3 � 0.

The asymptotic cone is given by the system

−x1 − x2 − x3 � 0,

x3 � 0,

x1, x2, x3 � 0,

in which the first inequality is redundant, and hence it is simply given by x1 � 0,
x2 � 0 and x3 = 0.

Using asymptotic directions we are also able to tell whether a convex polyhedron
has a vertex or not. A cone is called pointed if it contains no straight line. When a
cone C is not pointed, it contains a nontrivial linear subspace C ∩ (−C), called also
the lineality space of C .

Corollary 2.3.14 A convex polyhedron has vertices if and only if its asymptotic cone
is pointed. Consequently, if a convex polyhedron has a vertex, then so does any of its
faces.

Proof It is easy to see that when a polyhedron has a vertex, it contains no straight
line, and hence its asymptotic cone is pointed. We prove the converse by induction
on the dimension of the polyhedron. The case where a polyhedron is of dimension
less or equal to one is evident because a polyhedron with a pointed asymptotic cone
is either a point or a segment or a ray, hence it has a vertex. Assume the induction
hypothesis that the conclusion is true for all polyhedra of dimension less than m with
1 < m < n. Let P be m-dimensional with a pointed asymptotic cone. If P has no
proper face, then the inequalities (2.6) are strict, which implies that P is closed and
open at the same time. This is possible only when P coincides with the space R

n

which contradicts the hypothesis that P∞ is pointed. Now, let F be a proper face of
P . Its asymptotic cone, being a subset of the asymptotic cone of P is pointed too.
By induction, it has a vertex, which in view of Corollary 2.3.6 is also a vertex of P .

To prove the second part of the corollary it suffices to notice that if a face of P
has no vertex, by the first part of the corollary, its asymptotic cone contains a straight
line, hence so does the set P itself. �

A second representation result for elements of a convex polyhedron is now for-
mulated in a more general situation.
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Corollary 2.3.15 A convex polyhedron with vertex is the convex hull of its vertices
and extreme directions.

Proof We conduct the proof by induction on the dimension of the polyhedron. The
corollary is evident when a polyhedron is zero or one-dimensional. We assume that
it is true for all convex polyhedra of dimension less than m with 1 < m < n and
prove it for an m-dimensional polyhedron P determined by system

〈ai , x〉 = bi , i ∈ I

〈a j , x〉 � b j , j ∈ {1, · · · , k}\I,

in which |I | = n − m and the vectors ai , i ∈ I are linearly independent. Let y be
an arbitrary element of P . If it belongs to a proper face of P , then by induction we
can express it as a convex combination of vertices and extreme directions. If it is a
relative interior point of P , then setting a = a1 + · · · + ak that is nonzero because
the asymptotic cone of P is pointed, P itself having a vertex, and considering the
intersection of P with the hyperplane H determined by equality 〈a, x〉 = 〈a, y〉 we
obtain a bounded polyhedron P ∩ H . By Corollary 2.3.8, the point y belongs to the
convex hull of vertices of P ∩ H . The vertices of P ∩ H belong to proper faces of P ,
by induction, they also belong to the convex hull of vertices and extreme directions
of P , hence so does y. �

When a polyhedron has a non-pointed asymptotic cone, it has no vertex. However,
it is possible to express it as a sum of its asymptotic cone and a bounded polyhedron
as well.

Corollary 2.3.16 Every convex polyhedron is the sum of a bounded polyhedron and
its asymptotic cone.

Proof Denote the lineality space of the asymptotic cone of a polyhedron P by M . If
M is trivial, we are done in view of Corollary 2.3.15 (the convex hull of all vertices
of P serves as a bounded polyhedron). If M is not trivial, we decompose the space
R

n into the direct sum of M and its orthogonal M⊥. Denote by P⊥ the projection of
P on M⊥. Then P = P⊥ + M . Indeed, let x be an element in P and let x = x1 + x2

with x1 ∈ M and x2 ∈ M⊥. Then x2 ∈ P⊥ and one has x ∈ P⊥ + M . Conversely,
let x1 ∈ M and x2 ∈ P⊥. By definition there is some y ∈ P , say y = y1 + y2 with
y1 ∈ M and y2 ∈ M⊥ such that y2 = x2. Since M is a part of the asymptotic cone
of P , one deduces that

x = x1 + x2 = y1 + (x1 − y1) + y2 = y + (x1 − y1) ∈ y + M ⊆ P,

showing that x belongs to P . Further, we claim that the asymptotic cone of P⊥
is pointed. In fact, if not, say it contains a straight line d. Then the convexity of
P implies that the space M + d belongs to the asymptotic cone of P . This is a
contradiction because d lies in M⊥ and M is already the biggest linear subspace
contained in P . Let Q denote the convex hull of the set of all vertices of P⊥ which
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is nonempty by Corollary 2.3.14. It follows from Corollary 2.3.18 below that the
asymptotic cone of P is the sum of the asymptotic cone of P⊥ and M . We deduce
P = Q + (P⊥)∞ + M = Q + P∞ as requested. �

The following calculus rule for asymptotic directions under linear transformations
is useful.

Corollary 2.3.17 Let P be the polyhedron determined by the system (2.6) and let L
be a linear operator from R

n to R
m . Then

L(P∞) = [L(P)]∞.

Proof The inclusion L(P∞) ⊆ [L(P)]∞ is true for any closed convex set. Indeed,
if u is an asymptotic direction of P , then for every x in P and for every positive
number t one has x + tu ∈ P . Consequently, L(x) + t L(u) belongs to L(P) for all
t � 0. This means that L(u) is an asymptotic direction of L(P). For the converse
inclusion, let v be a nonzero asymptotic direction of L(P). By definition, for a fixed
x of P , vectors L(x)+ tv belong to L(P) for any t � 0. Thus, there are x1, x2, · · · in
P such that L(xν) = L(x) + νv, or equivalently v = L( xν−x

ν ) for all ν = 1, 2, · · ·
Without loss of generality we may assume that the vectors xν−x

ν converge to some
nonzero vector u as ν tends to ∞. Then

〈ai , u〉 = lim
ν→∞

(
〈ai ,

xν

ν
〉 − 〈ai ,

x

ν
〉
)

� 0

for all i = 1, · · · , k. In viewofTheorem2.3.12 the vector u is an asymptotic direction
of P and v = L(u) ∈ L(P∞) as requested. �

Corollary 2.3.18 Let P, P1 and P2 be polyhedra in R
n with P ⊆ P1. Then

(P)∞ ⊆ (P1)∞
(P1 × P2)∞ = (P1)∞ × (P2)∞
(P1 + P2)∞ = (P1)∞ + (P2)∞.

Proof The first two expressions are direct from the definition of asymptotic direc-
tions. For the third expression consider the linear transformation L from R

n ×R
n to

R
n defined by L(x, y) = x+y, and applyCorollary 2.3.17 and the second expression

to conclude. �

Polar cones

Given a cone C in Rn , the (negative) polar cone of C (Fig. 2.11) is the set

C◦ :=
{
v ∈ R

n : 〈v, x〉 � 0 for all x ∈ C
}
.
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The polar cone of C◦ is called the bipolar cone of C . Here is a formula to compute
the polar cone of a polyhedral cone.

Theorem 2.3.19 The polar cone of the polyhedral cone determined by the system

〈ai , x〉 � 0, i = 1, · · · , k,

is the positive hull of the vectors a1, · · · , ak .

Proof It is clear that any positive combination of vectors a1, · · · , ak belongs to the
polar cone of the polyhedral cone. Let v be a nonzero vector in the polar cone. Then
the following system has no solution

〈ai , x〉 � 0, i = 1, · · · , k,

〈v, x〉 > 0.

According to Farkas’ theorem the system

y1a1 + · · · + ykak = v,

y1, · · · , yk � 0

has a solution, which completes the proof. �

Example 2.3.20 Let C be a polyhedral cone in R
3 defined by the system:

x1 − x2 � 0,

x3 = 0.

By expressing the latter equality as two inequalities x3 � 0 and −x3 � 0,
we deduce that the polar cone of C is the positive hull of the three vectors
(1,−1, 0)T , (0, 0,−1)T and (0, 0, 1)T . In other words, the polar cone C◦ consists
of vectors (t,−t, s)T with t ∈ R+ and s ∈ R.

Corollary 2.3.21 Let C1 and C2 be polyhedral cones in R
n. Then the following

calculus rules hold

Fig. 2.11 Polar cone

C

C◦
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(C1 + C2)
◦ = C◦

1 ∩ C◦
2

(C1 ∩ C2)
◦ = C◦

1 + C◦
2 .

Proof Let v ∈ (C1 + C2)
◦. We have

〈v, x + y〉 � 0 for all x ∈ C1, y ∈ C2.

By setting y = 0 in this inequality we deduce v ∈ C◦
1 . Similarly, by setting x = 0

we obtain v ∈ C◦
2 , and hence v ∈ C◦

1 ∩ C◦
2 . Conversely, if v belongs to both C◦

1
and C◦

2 , then 〈v, ·〉 is negative on C1 and C2. Consequently, it is negative on the sum
C1 + C2 by linearity, which shows that v ∈ (C1 + C2)

◦.
For the second equality we observe that the inclusion C◦

1 + C◦
2 ⊆ (C1 ∩ C2)

◦
follows from the definition. To prove the opposite inclusion we assume that C1 is
determined by the system described in Theorem 2.3.19 with i = 1, · · · , k1 and C2 is
determined by that system with i = k1 + 1, · · · , k1 + k2. Then the polyhedral
cone C1 ∩ C2 is determined by that system with i = 1, · · · , k1 + k2. In view
of Theorem 2.3.19, the polar cone of C1 ∩ C2 is the positive hull of the vectors
a1, · · · , ak1+k2 , which is evidently the sum of the positive hulls pos{a1, · · · , ak1}
and pos{ak1+1, · · · , ak1+k2}, that is the sum of the polar cones C◦

1 and C◦
2 . �

Corollary 2.3.22 The bipolar cone of a polyhedral cone C coincides with the cone
C itself.

Proof According to Theorem 2.3.19 a vector v belongs to the bipolar cone C◦◦ if
and only if 〈

v,

k∑
i=1

λi a
i
〉
� 0 for all λi � 0, i = 1, · · · , k.

The latter system is equivalent to

〈ai , v〉 � 0, i = 1, · · · , k,

which is exactly the system determining the cone C . �

Corollary 2.3.23 A vector v belongs to the polar cone of the asymptotic cone of a
convex polyhedron if and only if the linear functional 〈v, .〉 attains its maximum on
the polyhedron.

Proof It suffices to consider the case where v is nonzero. Assume v belongs to the
polar cone of the asymptotic cone P∞. In virtue of Theorems 2.3.12 and 2.3.19, it is
a positive combination of the vectors a1, · · · , ak . Then the linear functional 〈v, .〉 is
majorized by the same combination of real numbers b1, · · · , bk on P . Let α be its
supremum on P . Our aim is to show that this value is realizable, or equivalently, the
system
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〈ai , x〉 � bi , i = 1, · · · , k

〈v, x〉 � α

is solvable. Suppose to the contrary that the system has no solution. In view of
Corollary 2.2.4, there are a positive vector y and a real number t � 0 such that

tv = AT y,

tα = 〈b, y〉 + 1.

We claim that t is strictly positive. Indeed, if t = 0, then AT y = 0 and 〈b, y〉 = −1
and for a vector x in P we would deduce

0 = 〈AT y, x〉 = 〈y, Ax〉 � 〈y, b〉 = −1,

a contradiction. We obtain expressions for v and α as follows

v = 1

t
AT y and α = 1

t

(〈b, y〉 + 1
)
.

Let {xr }r�1 be a maximizing sequence of the functional 〈v, .〉 on P , which means
limr→∞〈v, xr 〉 = α. Then, for every r one has

〈v, xr 〉 = 1

t
〈AT y, xr 〉

� 1

t
〈y, b〉

� α − 1

t
,

which is a contradiction when r is sufficiently large.
For the converse part, let x be a point in P where the functional 〈v, .〉 achieves its

maximum. Then
〈v, x − x〉 � 0 for all x ∈ P.

In particular,
〈v, u〉 � 0 for all u ∈ P∞,

and hence v belongs to the polar cone of P∞. �

Normal cones

Given a convex polyhedron P determined by the system (2.6) and a point x in P , we
say that a vector v is a normal vector to P at x if

〈v, y − x〉 � 0 for all y ∈ P.
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The set of all normal vectors to P at x forms a convex cone called the normal cone to
P at x and denoted NP (x) (Fig. 2.12). When x is an interior point of P , the normal
cone at that point is zero. When x is a boundary point, the normal cone is computed
by the next result.

Theorem 2.3.24 The normal cone to the polyhedron P at a boundary point x of P
is the positive hull of the vectors ai with i being active indices at the point x.

Proof Let x be a boundary point in P . Then the active index set I (x) is nonempty.
Let v be an element of the positive hull of the vectors ai , i ∈ I (x), say

v =
∑

i∈I (x)

λi a
i with λi � 0, i ∈ I (x).

Then for every point x in P and every active index i ∈ I (x), one has

〈ai , x − x〉 = 〈ai , x〉 − bi � 0,

which yields
〈v, x − x〉 =

∑
i∈I (x)

λi 〈ai , x − x〉 � 0.

Hence v is normal to P at x . For the converse, assume that v is a nonzero vector
satisfying

〈v, x − x〉 � 0 for all x ∈ P. (2.18)

We wish to establish that v is a normal vector at 0 to the polyhedron, denoted Q, that
is determined by the system

〈ai , y〉 � 0, i ∈ I (x).

This will certainly complete the proof because the normal cone to that polyhedron
is exactly its polar cone, the formula of which was already given in Theorem 2.3.19.

Observe that normality condition (2.18) can be written as

〈v, y〉 � 0 for all y ∈ cone(P − x).

Therefore, v will be a normal vector to Q at zero if Q coincides with cone(P − x).
Indeed, let y be a vector of cone(P − x), say y = t (x − x) for some x in P and some
positive number t . Then

〈ai , y〉 = t〈ai , x − x〉 � 0,

which yields y ∈ Q. Thus, cone(P − x) is a subset of Q. For the reverse inclusion
we notice that inequalities with inactive indices are strict at x . Therefore, given a
vector y in Q, one can find a small positive number t such that
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Fig. 2.12 Normal cone

P

y
x

NP (x) + x

NP (y) + y

〈a j , x〉 + t〈a j , y〉 � b j

for all j inactive. Of course, when i is active, it is true that

〈ai , x + t y〉 = 〈ai , x〉 + t〈ai , y〉 � bi .

Hence, x + t y belongs to P , or equivalently y belongs to cone(P − x). This achieves
the proof. �

Example 2.3.25 Consider the polyhedron in R3 defined by the system:

x1 + x2 + x3 � 1,
−2x1 − 3x2 � −1,

x1, x2, x3 � 0.

This is a convex polytope with six vertices

v1 =
⎛
⎝ 1
0
0

⎞
⎠ , v2 =

⎛
⎝ 0
1
0

⎞
⎠ , v3 =

⎛
⎝ 0
1/3
0

⎞
⎠ ,

v4 =
⎛
⎝ 1/2

0
0

⎞
⎠ , v5 =

⎛
⎝1/2

0
1/2

⎞
⎠ , v6 =

⎛
⎝ 0
1/3
2/3

⎞
⎠

and five two-dimensional faces

co{v1, v2, v5, v6}, co{v1, v2, v3, v4}, co{v1, v4, v5},
co{v3, v4, v5, v6}, co{v2, v3, v6}.
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At the vertex v1 there are three active constraints:

x1 + x2 + x3 = 1,
x2 = 0,

x3 = 0,

and two non-active constraints

−2x1 − 3x2 � −1,
−x1 � 0.

Hence the normal cone at the vertex v1 is the positive hull of the vectors u1 =
(1, 1, 1)T , u2 = (0,−1, 0)T and u3 = (0, 0,−1)T . Notice that u1 generates
the normal cone at the point (1/3, 1/3, 1/3)T on the two-dimensional face F1 =
co{v1, v2, v6, v5}, u2 generates the normal cone at the point (2/3, 0, 1/4)T on the
two-dimensional face F2 = co{v1, v4, v5}, and the positive hull of u1 and u2 is the
normal cone at the point (3/4, 0, 1/4)T on the one-dimensional face [v1, v5] that is
the intersection of the two-dimensional faces F1 and F2.

As a direct consequence of Theorem 2.3.24, we observe that the normal cone is
the same at any relative interior point of a face. We refer to this cone as the normal
cone to a face. In view of Corollary 2.3.7 we obtain a collection of all normal cones
of faces, whose union is called the normal cone of P and denoted by NP . Thus, if
F := {F1, · · · , Fq} is the collection of all faces of P , then

NP =
q⋃

i=1

N (Fi ).

It is to point out a distinction between this cone and the cone N (P), the normal cone
to P when P is considered as a face of itself. We shall see now that the collectionN
of all normal cones N (Fi ), i = 1, · · · , q, is a nice dual object of the collection F .

Theorem 2.3.26 Assume that P is a convex polyhedron given by the system

〈ai , x〉 � bi , i = 1, · · · , k.

Then the following assertions hold.

(i) The normal cone of P is composed of all normal cones to P at its points, that is

NP =
⋃
x∈P

NP (x)

and coincides with the polar cone of the asymptotic cone of P. In particular,
it is a polyhedral cone, and it is the whole space if and only if P is a polytope
(bounded polyhedron).
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(ii) In the collectionF , if Fi is a face of Fj , then N (Fj ) is a face of N (Fi ). Moreover,
if i �= j , then the normal cones N (Fi ) and N (Fj ) have no relative interior point
in common.

(iii) In the collection N , if N is a face of N (Fi ), then there is a face F� containing
the face Fi such that N = N (F�).

Proof For the first property it is evident that NP is contained in the union of the right
hand side. Let x ∈ P . There exists an index i ∈ {1, · · · , k} such that x ∈ ri(Fi ).
Then NP (x) = N (Fi ) and equality of (i) is satisfied. To prove that NP coincides
with (P∞)◦, let v be a vector of the normal cone N (Fi ) for some i . Choose a relative
interior point x0 of the face Fi . Then, by definition,

〈v, x − x0〉 � 0 for all x ∈ P.

ByCorollary 2.3.23 the vectorv belongs to the polar cone of the cone P∞. Conversely,
let v be in (P∞)◦. In view of the same corollary, the linear functional 〈v, .〉 attains
its maximum on P at some point x , which means that

〈v, x − x〉 � 0 for all x ∈ P.

By definition, v is a normal vector to P at x .
For (ii), assume that Fi is a face of Fj with i �= j , which implies that the active

index set IFi of Fi contains the active index set IFj of Fj . Let x j be a relative interior
point of Fj . Then one has

N (Fj ) = NP (x j ) ⊂ N (Fi ).

Suppose that N (Fj ) is not a face of N (Fi ). There exists a face

N0 = pos{a� : � ∈ I0} ⊆ N (Fi )

for some I0 ⊆ IFi , which contains N (Fj ) as a proper subset and such that its relative
interior meets N (Fj ) at some point, say v0. Let F0 be the solution set to the system

〈a�, x〉 = b� , � ∈ I0,
〈a�, x〉 � b� , � ∈ {1, · · · , p}\I0 .

We see that IFj ⊆ I0 ⊆ IFi , hence Fi ⊆ F0 ⊆ Fj . In particular F0 �= ∅, hence it is
a face of P . Let x0 be a relative interior point of F0. We claim that

〈v, x j − x0〉 = 0 for all v ∈ N0.

Indeed, consider the linear functional v �→ 〈v, x j − x0〉 on N0. On the one hand,
〈v, x j − x0〉 � 0 for all v ∈ N0 because x0 ∈ ri(F0). On the other hand, for
v0 ∈ ri(N0) ∩ N (Fj ) above, one has 〈v0, x0 − x j 〉 � 0, hence 〈v0, x j − x0〉 = 0.
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Consequently, 〈v, x j − x0〉 = 0 on N0. Using this fact we derive for every v ∈ N0
that

〈v, x − x j 〉 = 〈v, x − x0〉 + 〈v, x0 − x j 〉 � 0,

for all x ∈ M,which implies v ∈ N (Fj ) and arrive at the contradiction N (Fj ) = N0.

To prove the second part of assertion (ii), suppose to the contrary that the normal
cones N (Fi ) and N (Fj ) have a relative interior point v in common. Then for each
x ∈ Fi and y ∈ Fj one has

〈v, x − y〉 = 0.

Since 〈u, y − x〉 � 0 for all u ∈ N (Fi ) and v is a relative interior point of N (Fi ),
one deduces

〈u, x − y〉 = 0 for all u ∈ N (Fi ).

Consequently, for u ∈ N (Fi ) it is true that

〈u, z − y〉 = 〈u, z − x〉 + 〈u, x − y〉 � 0 for all z ∈ P,

which shows u ∈ N (Fj ). In other words N (Fi ) ⊆ N (Fj ). The same argument with
i and j interchanging the roles, leads to equality N (Fi ) = N (Fj ). In view of the
first part we arrive at the contradiction Fi = Fj .

We proceed to (iii). Let N be a face of N (Fi ) for some i : 1 � i � k. The case
N = N (Fi ) being trivial, we may assume N �= N (Fi ). Let I ⊆ IFi be a subset of
indices such that

N = cone{a� : � ∈ I } ⊆ N (Fi ) = cone{a� : � ∈ IFi } .

Let F be the solution set to the system

〈a�, x〉 = b� , � ∈ I,
〈a�, x〉 � b� , � ∈ {1, · · · , p}\I .

Since I ⊆ IFi , we have Fi ⊆ F . In particular F �= ∅ and F is a face of P . Now we
show that N (F) = N and Fi is a proper face of F . Indeed, as N is a proper face of
N (Fi ), I is a proper subset of IFi and there is a nonzero vector u ∈ Rn such that

〈a�, u〉 = 0 for � ∈ I,
〈a�, u〉 < 0 for � ∈ IFi \I .

Take x ∈ ri(Fi ) and consider the point x + tu with t > 0. One obtains

〈a�, x + tu〉 = b� , � ∈ I,

〈a�, x + tu〉 = 〈a�, x〉 + t〈a�, u〉 < b� , � ∈ IFi \I .
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Moreover, since 〈a�, x〉 < b� for � ∈ {1, · · · , p}\IFi , when t is sufficiently small,
one also has

〈a�, x + tu〉 < b� , � ∈ {1, · · · p}\IFi .

Consequently,
N (F) = NP (x + tu) = pos{a� : � ∈ I } = N

when t is sufficiently small. It is evident that F �= Fi . The proof is complete. �

Example 2.3.27 Consider the polyhedron P in R2 defined by the system:

−x1 − x2 � −1,

−x1 + x2 � 1,

−x2 � 0.

It has two vertices F1 and F2 determined respectively by

⎧⎨
⎩

−x1 −x2 = −1
−x1 +x2 � 1

−x2 = 0
and

⎧⎨
⎩

−x1 −x2 = −1
−x1 +x2 = 1

−x2 � 0

three one-dimensional faces F3, F4 and F5 determined respectively by

⎧⎨
⎩

−x1 −x2 � −1
−x1 +x2 � 1

−x2 = 0
,

⎧⎨
⎩

−x1 −x2 = −1
−x1 +x2 � 1

−x2 � 0
and

⎧⎨
⎩

−x1 −x2 � −1
−x1 +x2 = 1

−x2 � 0

and P itself is the unique two-dimensional face. Denote by v1 = (−1,−1)T , v2 =
(−1, 1)T and v3 = (0,−1)T . Then the normal cones of the faces F1,· · · , F5 are
respectively the positive hulls of the families {v1, v3}, {v1, v2}, {v3}, {v1} and {v2}.
The normal cone of P is zero. Moreover, the union NP of these normal cones is the
positive hull of the vectors v2 and v3. It is the polar cone of the asymptotic cone of
P which is defined by the system

−x1 − x2 � 0,

−x1 + x2 � 0,

−x2 � 0,

in which the first inequality is redundant and hence it is reduced to x1 � x2 � 0.

Next we prove that the normal cone of a face is obtained from the normal cones
of its vertices.
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Corollary 2.3.28 Assume that a face F of P is the convex hull of its vertices
v1, · · · , vq . Then

N (F) =
q⋂

i=1

NP (vi ).

Proof The inclusion N (F) ⊆ ⋂q
i=1 NP (vi ) is clear from (ii) of Theorem 2.3.26.

We prove the converse inclusion. Let u be a nonzero vector of the intersection⋂q
i=1 NP (vi ). Let x be a relative interior point of F . Then x is a convex combi-

nation of the vertices v1, · · · , vq :

x =
q∑

i=1

λiv
i

with λi � 0, i = 1, · · · , q and λ1 + · · · + λq = 1. We have then

〈u, x ′ − vi 〉 � 0 for all x ′ ∈ P, i = 1, · · · , q.

This implies

〈u, x ′ − x〉 = 〈u,

q∑
i=1

λi x ′ −
q∑

i=1

λiv
i 〉

=
q∑

i=1

λi 〈u, x ′ − vi 〉 � 0

By this, u is a normal vector to P at x , and u ∈ N (F). �

Combining this corollary with Corollary 2.3.8 we conclude that the normal cone
of a bounded face is the intersection of the normal cones of all proper faces of that
bounded face. This is not true for unbounded faces, for instance when a face has no
proper face.

2.4 Basis and Vertices

In this section we consider a polyhedron P given by the system

Ax = b (2.19)

x � 0.
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We assume throughout that the matrix A has n columns denoted a1, · · · , an and
k rows that are transposes of a1, · · · , ak and linearly independent, and that the
components b1, · · · , bk of the vector b are non-negative numbers. A point x in P is
said to be an extreme point of P if it cannot be expressed as a convex combination
x = ta + (1− t)a′ for some 0 < t < 1 and a, a′ ∈ P with a �= a′. It can be seen that
extreme points correspond to verticeswe have defined in the previous section. Certain
results we have obtained for polyhedra given in a general form (by inequalities) will
be recaptured here, but our emphasis will be laid on computing issues which are
much simplified under equality form (2.19).

A k × k-submatrix B composed of columns of A is said to be a basis if it is
invertible.

Let B be a basis. By using a permutation one may assume that B is composed
of the first k columns of A, and the remaining columns form a k × (n − k)-
submatrix N , called a non-basic part of A. Let x be a vector with components xB

and xN , where xB is a k-dimensional vector and xN is an (n − k)-dimensional vector
satisfying

BxB = b,

xN = 0.

If xB is a positive vector, then x is a solution to (2.19) and called a feasible basic
solution (associated with the basis B). If in addition xB has no zero component, it is
called non-degenerate; otherwise it is degenerate.

Example 2.4.1 Consider the polyhedron in R3 defined by the system:

x1 + x2 + x3 = 1,
3x1 + 2x2 = 1,

x1, x2 , x3 � 0.

The vectors a1 = (1, 1, 1)T and a2 = (3, 2, 0)T are linear independent. There are
three bases

B1 =
(
1 1
3 2

)
, B2 =

(
1 1
3 0

)
and B3 =

(
1 1
2 0

)
.

The basic solutions corresponding to B1, B2 and B3 are respectively (−1, 2, 0)T ,
(1/3, 0, 2/3)T and (0, 1/2, 1/2)T . The first solution is unfeasible, while the two last
ones are feasible and non-degenerate.

Given a vector x ∈ R
n , its support, denoted supp(x), consists of indices i for which

the component xi is nonzero. The support of a nonzero vector is always nonempty.

Theorem 2.4.2 A vector x is a vertex of the polyhedron P if and only if it is a feasible
basic solution of the system (2.19).
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Proof Let x be a feasible basic solution. Assume that it is a convex combination of
two solutions y and z of the system (2.19), say x = t y + (1 − t)z with t ∈ (0, 1).
Then for any nonbasic index j , the component x j is zero, so that t y j +(1− t)z j = 0.
Remembering that y and z are positive vectors, we derive y j = z j = 0. Moreover,
the basic components of solutions to (2.19) satisfy equation

BxB = b

with B nonsingular. Therefore, they are unique, that is xB = yB = zB . Consequently,
the three solutions x , y and z are the same.

Conversely, let x be an extreme point of the polyhedron. Our aim is to show that
the columns ai , i ∈ supp(x) are linearly independent. It is then easy to find a basis
B such that x is the basic solution associated with that basis. To this end, we prove
first that supp(x) is minimal by inclusion among solutions of the system (2.19). In
fact, if not, one can find another solution, say y, with minimal support such that
supp(y) is a proper subset of supp(x). Choose an index j from the support of y such
that x j

y j
= min{ xi

yi
: i ∈ supp(y)}.

Let t > 0 be that quotient. Then

A(x − t y) = (1 − t)b and x − t y � 0.

If t � 1, then by setting z = x − y we can express

x = 1

2
(y + 2

3
z) + 1

2
(y + 4

3
z),

a convex combination of two distinct solutions of (2.19), which is a contradiction. If
t < 1, then take

z = 1

1 − t
(x − t y).

We see that z is a solution to (2.19) and different from x because its support
is strictly contained in the support of x . It is also different from y because the
component y j is not zero while the component z j is zero. We derive from the de-
finition of z that x is a strict convex combination of y and z, which is again a
contradiction.

Now we prove that the columns ai , i ∈ supp(x) are linearly independent. Sup-
pose the contrary: there is a vector y different from x (if not take 2y instead)
with

Ay = 0 and supp(y) ⊆ supp(x).
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By setting

t =
{

−min{ xi
yi

: i ∈ supp(y)} if y � 0
min{− xi

yi
: i ∈ supp(y), yi < 0} else

we obtain that z = x + t y is a solution to (2.19) whose support is strictly contained
in the support of x and arrive at a contradiction with the minimality of the support of
x . It remains to complete the vectors ai , i ∈ supp(x) to a basis to see that x is indeed
a basic solution. �
Corollary 2.4.3 The number of vertices of the polyhedron P does not exceed the

binomial coefficient

(
n
k

)
.

Proof This follows from Theorem 2.4.2 and the fact that the number of bases of

the matrix A is at most

(
n
k

)
. Notice that not every basic solution has positive

components. �
We deduce again Corollary 2.3.8 about the description of polytopes in terms of

extreme points (vertices), but this time for a polytope determined by the system
(2.19).

Corollary 2.4.4 If P is a polytope, then any point in it can be expressed as a convex
combination of vertices.

Proof Let x be any solution of (2.19). If the support of x is minimal, then in view of
Theorem 2.4.2 that point is a vertex. If not, then there is a solution y1 different from
x , with minimal support and supp(y1) ⊂ supp(x). Set

t1 = min
{ x j

y1j
: j ∈ supp(y1)

}
.

This number is positive and strictly smaller than one, because otherwise the nonzero
vector x − y1 should be an asymptotic direction of the polyhedron and P should be
unbounded. Consider the vector

z1 = 1

1 − t1
(x − t1y1).

It is clear that this vector is a solution to (2.19) and its support is strictly smaller than
the support of x . If the support of z1 is minimal, then z1 is a vertex and we obtain a
convex combination

x = t1y1 + (1 − t1)z
1,

in which y1 and z1 are vertices. If not, we continue the process to find a vertex
y2 whose support is strictly contained in the support of z1 and so on. In view of
Corollary 2.4.3 after a finite number of steps one finds vertices y1, · · · , y p such that
x is a convex combination of them. �
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Extreme rays

Extreme direction of a convex polyhedron P inRn can be defined to be a direction that
cannot be expressed as a strictly positive combination of two linearly independent
asymptotic vectors of P . As the case when a polyhedron is given by a system of
linear inequalities (Corollary 2.3.15), we shall see that a polyhedron determined by
(2.19) is completely determined by its vertices and extreme directions.

Theorem 2.4.5 Assume that the convex polyhedron P is given by the system (2.19).
Then

(i) A nonzero vector v is an asymptotic direction of P if and only if it is a solution
to the associated homogenous system

Ax = 0,

x � 0.

(ii) A nonzero vector v is an extreme asymptotic direction of P if and only if it is a
positive multiple of a vertex of the polyhedron determined by the system

Ay = 0 (2.20)

y1 + · · · + yn = 1,

y � 0.

Consequently P∞ consists of all positive combinations of the vertices of this
latter polyhedron.

Proof The first assertion is proven as in Theorem 2.3.12. For the second assertion,
let v be a nonzero extreme direction. Then Av = 0 by (i) and t := v1+· · ·+vn > 0.
The vector v/t is in the polyhedron of (ii), denoted Q. Since each point of that
polyhedron is an asymptotic direction of P , if v/t were a convex combination of
two distinct points y1 and y2 in Q, then v would be a convex combination of two
linearly independent asymptotic directions t y1 and t y2 of P , which is a contradiction.
Conversely, let v be a vertex of Q. It is clear that v is nonzero. If v = t x + (1− t)y
for some nonzero asymptotic directions x and y of P and some t ∈ (0, 1), then with

t ′ = t
∑n

i=1 xi

t
∑n

i=1 xi + (1 − t)
∑n

i=1 yi
= t

n∑
i=1

xi ,

x ′ = 1∑n
i=1 xi

x,

y′ = 1∑n
i=1 yi

y,
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we express v as a convex combination t ′x ′ + (1− t ′)y′ of two points of Q. Note that
t ′ > 0. By hypothesis, x ′ = y′ which means that x and y are linearly dependent.
The proof is complete. �

Corollary 2.4.6 A nonzero vector is an extreme asymptotic direction of P if and
only if it is a basic feasible solution of the system (2.20). Consequently, the num-
ber of extreme asymptotic directions of P does not exceed the binomial coefficient(

n
k + 1

)
.

Proof This is obtained from Theorems2.4.2 and 2.4.5. �

Example 2.4.7 Consider the polyhedron in R3 defined by the system:

x1 − x2 = 1
x1, x2, x3 � 0.

The asymptotic cone of this polyhedron is the solution set to the system

x1 − x2 = 0
x1, x2, x3 � 0.

Any vector (t, t, s)T with t � 0 and s � 0 is an asymptotic direction. To obtain
extreme asymptotic directions we solve the system

y1 − y2 = 0
y1 + y2 + y3 = 1

y1, y2, y3 � 0.

There are three bases corresponding to basic variables {y1, y2}, {y1, y3} and {y2, y3}:

B1 =
(
1 −1
1 1

)
, B2 =

(
1 0
1 1

)
and B3 =

(−1 0
1 1

)
.

The basic solution y = (1/2, 1/2, 0)T is associated with B1 and the basic solution
y = (0, 0, 1)T is associated with B2 and B3. Both of them are feasible, and hence
they are extreme asymptotic directions.

In the following we describe a practical way to compute extreme rays of the
polyhedron P .

Corollary 2.4.8 Assume that B is a basis of the matrix A and as is a non-basic
column of A such that the system

By = −as
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has a positive solution y � 0. Then the vector x whose basic components are equal
to y, the sth component is equal to 1 and the other non-basic components are all
zero, is an extreme ray of the polyhedron P.

Proof It is easy to check that the submatrix corresponding to the variables of y and
the variable ys is a feasible basis of the system (2.20). It remains to apply Corollary
2.4.6 to conclude. �

In Example 2.4.7 we have A = (1,−1, 0). For the basis B = (1) corresponding
to the basic variable x1 and the second non-basic column, the system By = −as

takes the form y = 1 and has a positive solution y = 1. In view of Corollary 2.4.8
the vector (1, 1, 0)T is an extreme asymptotic direction. Note that using the same
basis B and the non-basic column a3 = (0) we obtain the system y = 0 which has
a positive (null) solution. Hence the vector (0, 0, 1)T is also an extreme asymptotic
direction.

Representation of Elements of a Polyhedron

A finitely generated convex set is defined to be a set which is the convex hull of a
finite set of points and directions, that is, each element of it is the sum of a convex
combination of a finite set of points and a positive combination of a finite set of
directions. The next theorem states that convex polyhedra are finitely generated,
which is Corollary 2.3.15 for a polyhedron determined by the system (2.19).

Theorem 2.4.9 Every point of a convex polyhedron given by the system (2.19) can
be expressed as a convex combination of its vertices, possibly added to a positive
combination of the extreme asymptotic directions.

Proof Let x be any point in P . If its support is minimal, then, according to the proof
of Theorem 2.4.2 that point is a vertex. If not, there is a vertex v1 whose support is
minimal and strictly contained in the support of x . Set

t = min
{ x j

v1j
: j ∈ supp(v1)

}

and consider the vector x − tv1. If t � 1, then the vector z = x −v1 is an asymptotic
direction of the polyhedron and then x is the sum of the vertex v1 and an asymptotic
direction. The direction z, in its turn, is expressed as a convex combination of extreme
asymptotic directions. So the corollary follows. If t < 1, the technique of proof of
Theorem 2.4.2 can be applied. Expressly, setting z = (x − tv1)/(1 − t) we deduce
that z � 0 and

Az = 1

1 − t
b − t

1 − t
b = b.

Moreover, the support of z is a proper subset of the support of x because the compo-
nents j of z with j realizing the value of t = x j/v

1
j are zero. Then x = tv1+(1− t)z

with strict inclusion supp(z) ⊂ supp(x). Continuing this process we arrive at finding
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a finite number of vertices v1, · · · , v p and an asymptotic direction z such that x is
the sum of a convex combination of v1, · · · , v p and z. Then expressing z as a convex
combination of asymptotic extreme directions we obtain the conclusion. �

In view of Corollaries 2.4.3 and 2.4.6 the numbers of vertices and extreme asymp-
totic directions of a polyhedron P are finite. Denote them respectively by v1, · · · , v p

and z1, · · · , zq . Then each element x of P is expressed as

x =
p∑

i=1

λiv
i +

q∑
j=1

μ j z
j

with
p∑

i=1

λi = 1,λi � 0, i = 1, · · · , p and μ j � 0, j = 1, · · · , q.

Notice that the above representation is not unique, that is, an element x of P can
be written as several combinations of vi , i = 1, · · · , p and z j , j = 1, · · · , q with
different coefficients λi and μ j . An easy example can be observed for the center x
of the square with vertices

v1 =
(
0
0

)
, v2 =

(
1
0

)
, v3 =

(
0
1

)
and v4 =

(
1
1

)
.

It is clear that x can be seen as the middle point of v1 and v4, and as the middle point
of v2 and v3 too.

Another point that should bemade clear is the fact that the results of this section are
related to polyhedra given by the system (2.19) and theymight be false under systems
of different type. For instance, in view of Theorem 2.4.9 a polyhedron determined by
(2.19) has at least a vertex. This is no longer true if a polyhedron is given by another
system. Take a hyperplane determined by equation 〈d, x〉 = 0 for some nonzero
vector d ∈ R

2. It is a polyhedron without vertices. An equivalent system is given in
form of (2.19) as follows

〈d, x+〉 − 〈d, x−〉 = 0,

x+, x− � 0.

The latter system generates a polyhedron in R
4 that does have vertices. However, a

vertex (x+, x−)T of this polyhedron gives an element x = x+ − x− of the former
polyhedron, but not a vertex of it.



Chapter 3
Linear Programming

A linear mathematical programming problem is a problem of finding a maximum or
minimum of a linear functional over a convex polyhedron. The functional to optimize
is called an objective or cost function, and the linear equalities and linear inequalities
that define the polyhedron are called constraints.

3.1 Optimal Solutions

We consider the following linear programming problem, denoted (LP):

maximize 〈c, x〉
subject to Ax = b (3.1)

x � 0, (3.2)

where c is an n-vector, A is an m × n-matrix and b is an m-vector. Under these
constraints we say (LP) is given in standard form. It is given in canonical form when
the constraints (3.1) and (3.2) are substituted by inequalities Ax � b. As we have
already discussed in Sect. 2.2, linear equalities can be converted to linear inequalities
and vice versa, any linear programming problem may be set in form as (LP) above.
We denote the feasible set of the problem (LP) by X , that is, X is the solution set to
the system (3.1–3.2). A feasible solution x ∈ X is optimal if 〈c, x〉 � 〈c, x〉 for all
x ∈ X . The linear function x �→ 〈c, x〉 is called the cost function of the problem. A
fundamental theorem of linear programming is given next.

Theorem 3.1.1 Assume that X is nonempty. Then the four conditions below are
equivalent.

(i) (LP) admits an optimal solution.
(ii) (LP) admits an optimal vertex solution.
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(iii) The cost function is non-positive on every asymptotic direction of X.
(iv) The cost function is bounded above on X.

Proof The scheme of our proof is as follows: (i)⇒ (iv) ⇒ (iii) ⇒ (ii) ⇒ (i). The
first and the last implications are immediate. We proceed to the second implication.
Let α be an upper bound of the cost function on X and let u be a nonzero asymptotic
direction of X if it exists. Pick any point x in X which is nonempty by hypothesis.
Then for every positive number t , the point x + tu belongs to X . Hence

〈c, x + tu〉 = 〈c, x〉 + t〈c, u〉 � α.

This inequality being true for all t positive, we must have 〈c, u〉 � 0.
To establish the third implication let {v1, · · · , v p} be the collection of all vertices

and let {u1, · · · , uq} be the collection of all extreme rays of the polyhedron X . The
collection of extreme rays may be empty. Choose a vertex vi0 such that

〈c, vi0〉 = max{〈c, v1〉, · · · , 〈c, v p〉}.

Let x be any point in X . In view of Theorem 2.4.9, there are non-negative numbers
ti and s j with

∑p
i=1 ti = 1 such that

x =
p∑

i=1

tiv
i +

q∑
j=1

s j u
j .

We deduce

〈c, x〉 =
p∑

i=1

ti 〈c, vi 〉 +
q∑

j=1

s j 〈c, u j 〉

� 〈c, vi0〉,

which shows that the vertex vi0 is an optimal solution. The proof is complete. �

Existence of optimal solutions is always guaranteed when the feasible solution
set is bounded as the next corollary shows.

Corollary 3.1.2 If the problem (LP) has a bounded feasible set, then it has optimal
solutions.

Proof When the set X is bounded, it has no nonzero asymptotic direction. Hence
condition (iii) of the previous theorem is fulfilled and the problem (LP) has optimal
solutions. �

The result below expresses a necessary and sufficient condition for optimal solu-
tions in terms of normal directions.

http://dx.doi.org/10.1007/978-3-319-21091-9_2
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Theorem 3.1.3 Assume that X is nonempty. Then the following statements are equiv-
alent.

(i) x is an optimal solution of (LP).
(ii) The vector c belongs to the normal cone to the set X at x.
(iii) The whole face of X which contains x as a relative interior point is an optimal

solution face.

Consequently, if (LP) has an optimal solution, then the optimal solution set is a face
of the feasible polyhedron.

Proof The implication (iii) ⇒ (i) is evident, so we have to show the implications (i)
⇒ (ii) and (ii) ⇒ (iii). For the first implication we observe that if x is an optimal
solution, then

〈c, x − x〉 � 0 for all x ∈ X.

By definition, c is a normal vector to X at x which yields (ii). Now, assume (ii) and
let x be any point in the face that has x as a relative interior point. There is a positive
number δ such that the points x + δ(x − x) and x − δ(x − x) belong to X . We have
then

〈c, x + δ(x − x) − x〉 � 0,

〈c, x − δ(x − x) − x〉 � 0.

This produces

〈c, x − x〉 � 0,

〈c,−(x − x)〉 � 0.

Consequently, 〈c, x〉 = 〈c, x〉, which together with the normality of c at x shows
that x is an optimal solution too.

For the second part of the theorem, set α = 〈c, x〉 where x is an optimal solution
of (LP). Then the intersection of the hyperplane

H = {
x ∈ R

n : 〈c, x〉 = α
}

with the feasible set X is a face of X and contains all optimal solutions of the
problem. �

Given a feasible basis B, we call it an optimal basis if the associated basic solution
is an optimal solution of (LP). We shall decompose the cost vector c into the basic
component vector cB and non-basic component vector cN . The vector

cN = cN − (B−1N )T cB

is called the reduced cost vector.
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Theorem 3.1.4 Let B be a feasible basis and x the feasible basic solution associated
with B. The following statements hold.

(i) If the reduced cost vector cN is negative, then B is optimal.
(ii) When B is non-degenerate, it is optimal if and only if the reduced cost vector

cN is negative.

Proof Up to a suitable permutation we may assume that the matrix A is decomposed
by (B N ), the basic index set is {1, · · · , m} and the non-basic index set is {m +
1, · · · , n}. To prove (i) let x be any feasible solution of the problem. Since x is a
solution to the system Ax = b, the basic part xB of x corresponding to the basic
columns of B is expressed by its non-basic components via

xB = B−1b − B−1N xN = x B − B−1N xN . (3.3)

The cost function at x is then given by

〈c, x〉 = 〈cB, xB〉 + 〈cN , xN 〉
= 〈cB, B−1b − B−1N xN 〉 + 〈cN , xN 〉
= 〈cB, x B〉 + 〈cN , xN 〉
= 〈c, x〉 + 〈cN , xN 〉.

Since xN is positive and by hypothesis cN is negative, we deduce

〈c, x〉 � 〈c, x〉.

As x was an arbitrary feasible solution of the problem, we deduce that x is an optimal
solution and B is an optimal basis.

For (ii) we need to prove the “only if” part. Suppose to the contrary that the
reduced cost vector is not negative, that is, c j > 0 for some non-basic index j . Our
aim is to find a new feasible solution x̂ with

〈c, x〉 < 〈c, x̂〉 (3.4)

which yields a contradiction. We look for a solution x̂ in special form:

x̂ =
(

x̂B

x̂N

)
with x̂N = x N + te j = te j

where e j is the non-basic part of the j th coordinate unit vector in R
n and t is a

positive number to be chosen such that x̂ be feasible. Since x̂N is positive, in view
of (3.3) the feasibility of x̂ means that

x̂B = x B − t B−1Ne j � 0.
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The basis B being non-degenerate, the vector x B is strictly positive, hence x̂B is
positive whenever t > 0 is sufficiently small. We fix such a value of t and calculate
the cost function at that point by using (3.3):

〈c, x̂〉 = 〈cB, x̂B〉 + 〈cN , x̂N 〉
= 〈cB, x B〉 − t〈cB, B−1Ne j 〉 + t〈cN , ej〉
= 〈cB, x B〉 + tc j

> 〈cB, x B〉,

which contradicts the optimality of x . �

We note that degeneracy is caused by redundancy of equality constraints that
define a vertex under consideration.When some of the equality constraints are redun-
dant, that vertex is the solution of at least two different sets of equality constraints
and may be associated with several bases. When a feasible basis B is degenerate,
three things may happen. First, a strictly positive solution t to determine a new basic
feasible solution in the proof of the preceding theorem does not necessarily exist. In
such a situation onemust look for another basis that defines the same feasible solution
as B does and search for t with this new basis. Second, even if a new feasible solution
can be found, it is not necessary that the value of the objective function increases
when moving to the new solution. In principle, when a feasible vertex is not optimal,
there always exists a basis associated with it, which allows to find a new feasible
solution where the value of the objective function is strictly bigger than its value at
the current vertex. Third, the current vertex may be optimal even if the reduced cost
vector is not negative. In other words, the second conclusion of Theorem3.1.4 is not
true if the basis under consideration is degenerate.

Example 3.1.5 Consider the following linear programming problem

maximize x1 − 3x2
subject to −x1 + x2 + x3 = 0

x1 − 2x2 + x4 = 0
x1, x2, x3, x4 � 0.

A tangible basis corresponding to basic variables x3 and x4 is given by

B3,4 =
(
1 0
0 1

)
.

Its associated solution is the vector x = (0, 0, 0, 0)T , which is feasible and degen-
erate. The reduced cost vector at this basis is given by

cN =
(

1
−3

)
−

[(
1 0
0 1

) (−1 1
1 −2

)]T (
0
0

)
=

(
1

−3

)
.
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It has a strictly positive component. However the basic solution x obtained above is
optimal. Indeed, let us examine another basis with which the solution x is associated,
namely the basis corresponding to the basic variables x1 and x3:

B1,3 =
(−1 1

1 0

)
.

Of course, like the preceding one, this basis is degenerate. Its reduced cost vector is
computed by

cN =
(−3

0

)
−

[(
0 1
1 1

) (
1 0

−2 1

)]T (
1
0

)
=

(−1
0

)
.

It is a negative vector. In view of Theorem3.1.4 (i), the solution x is optimal.

Example 3.1.6 Consider the following linear programming problem

maximize x1 + x2 + x3
subject to x1 + x2 +x4 = 8

− x2 + x3 + x5 = 0
x1, · · · , x5 � 0.

A visible basis corresponding to basic variables x4 and x5 is given by

B4,5 =
(
1 0
0 1

)
.

Its associated solution is the vector x = (0, 0, 0, 8, 0)T , which is feasible and degen-
erate. The reduced cost vector is given by

cN =
⎛
⎝1
1
1

⎞
⎠ −

[(
1 0
0 1

) (
1 1 0
0 −1 1

)]T (
0
0

)
=

⎛
⎝ 1
1
1

⎞
⎠ .

At this stage Theorem3.1.4 is not applicable as the basic solution is degenerate. Let
us try to find a new feasible solution with a bigger cost value. To this end, we observe
that the reduced cost vector has three strictly positive components, and so any of
the coordinate unit vectors e j

N , j = 1, 2, 3 is a suitable choice to determine a new
feasible solution x̂ as described in the proof of Theorem3.1.4. We set for instance
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x̂N = t

⎛
⎝ 1
0
0

⎞
⎠

x̂B =
(
8
0

)
− t

(
1 0
0 1

)(
1 1 0
0 −1 1

) ⎛
⎝ 1
0
0

⎞
⎠ =

(
8 − t
0

)
.

Since x̂ is positive, the largest t forwhich x̂N and x̂B are positive is the value t = 8.We
obtain then a new feasible solution x̂ = (8, 0, 0, 0, 0)T . This solution is degenerate.
A basis associated to it is B1,5 which is identical with B4,5. The reduced cost vector
at x̂ using the basis B1,5 is given by

cN = cN − (B−1
1,5N )T cB

=
⎛
⎝ 1
1
0

⎞
⎠ −

[(
1 0
0 1

)(
1 0 1

−1 1 0

)]T (
1
0

)

=
⎛
⎝ 0

1
−1

⎞
⎠ .

As before, the solution x̂ being degenerate, Theorem3.1.4 is not applicable. We try
again to find a better feasible solution. As the second component of the reduced cost
vector is strictly positive,we choose a solution y by help of the vector e3N = (0, 1, 0)T

(basic components being y1 and y5):

yN = t

⎛
⎝0
1
0

⎞
⎠

yB =
(
8
0

)
− t

(
1 0
0 1

) (
1 0 1

−1 1 0

)⎛
⎝ 0
1
0

⎞
⎠ =

(
8
−t

)
.

The feasibility of y requires yN � 0 and yB � 0, which enforce t = 0. Thus,
with the basis B1,5 we move nowhere and remain at the same solution x̂ . One notes
nevertheless two more bases associated with the solution x̂ . They are given below

B1,2 =
(
1 1
0 −1

)
and B1,3 =

(
1 0
0 1

)
,

which correspond to the pairs of basic variables x1, x2 and x1, x3 respectively. The
reduced cost vectors at x̂ related to these bases are then
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ĉ2,4,5 =
⎛
⎝ 1

−1
−1

⎞
⎠ and ĉ3,4,5 =

⎛
⎝ 1

−1
0

⎞
⎠ .

Both of these reduced cost vectors suggest to find a new feasible solution z that may
increase the cost value, with help of the coordinate vector e1N = (1, 0, 0)T . Thus, by
picking for instance the basis B1,3 we obtain a system that determines z as follows

zN = t

⎛
⎝ 1
0
0

⎞
⎠

zB =
(
8
0

)
− t

(
1 0
0 1

) (
1 1 0

−1 0 1

)⎛
⎝ 1
0
0

⎞
⎠ =

(
8 − t

t

)
.

The biggest t that makes z feasible is the value t = 8. The new feasible solution is
then z = (0, 8, 8, 0, 0)T . Its associated basis is

B2,3 =
(

1 0
−1 1

)
.

It is feasible and non-degenerate. A direct calculation gives the negative reduced cost
vector ĉN = (−1,−2,−1)T . By Theorem3.1.4 the basis B2,3 is optimal.

The following corollary is useful in computing optimal solutions.

Corollary 3.1.7 Let B be a feasible non-degenerate basis and let x be the associated
basic feasible solution. If there is a non-basic variable xs for which the sth component
cs is strictly positive, then

(i) either the variable xs can take any value bigger than xs without getting out of
the feasible region X, in which case the optimal value of (LP) is unbounded;

(ii) or another feasible basis B can be obtained to which the associated feasible
basic solution x̂ satisfies

〈c, x̂〉 > 〈c, x〉.

Proof Under the hypothesis of the corollary the basic solution x is not optimal by
the preceding theorem. Our aim is to find another feasible solution that produces a
bigger value of the objective function. To this purpose choose x̂ with

x̂N = tes

x̂B = b − tas
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where b denotes the vector B−1b which is the same as x B and as = B−1Nes . If the
vector as is negative, then x̂B is positive and hence x̂ is feasible for every positive
value of t . Moreover,

〈c, x̂〉 = 〈cB, x B〉 + tcs

which diverges to ∞ as t tends to ∞. The optimal value of (LP) is then unbounded.
If the vector as is not negative, say ais > 0 for some index i , then x̂ cannot be

feasible (positive) when t is large. A necessary and sufficient condition for that vector
to be feasible is that t be smaller than the value

t̂ := min
{ bi

ais
: i ∈ {1, · · · , m}, ais > 0

}
.

Let r be a basic index for which the above minimum is reached. Then the solution

x̂ =
(

b − t̂as

t̂es

)

is feasible. The r th component xr > 0 becomes x̂r = 0, while the sth component
xs = 0 becomes x̂s > 0. Denote by B̂ the matrix deduced from B by using the
column as instead of ar , so that they differ from each other by one column only. We
show that this new matrix is a basis. Remember that as = Bas which means that
as is a vector in the column space of the matrix B. The coefficient corresponding
to the vector ar in that linear combination is ars > 0. Consequently, the vector ar

can be expressed as a linear combination of the remaining column vectors of B and
the vector as . Since the columns of B are linearly independent, we deduce the same
property for the columns of the matrix B̂. Thus B̂ is a basis. It is clear that x̂ is the
basic feasible solution associated with this basis.Moreover, the value of the objective
function at this solution is given by 〈c, x̂〉 = 〈c, x〉 + t̂ cs that is strictly bigger than
the value 〈c, x〉. The proof is complete. �

Example 3.1.8 Consider the following linear programming problem

maximize x1 − x2 + x3
subject to x1 + x2 + x3 = 1

3x1 + 2x2 = 1
x1, x2, x3 � 0.

There are three bases

B1,2 =
(
1 1
3 2

)
, B1,3 =

(
1 1
3 0

)
and B2,3 =

(
1 1
2 0

)
.
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The first basis is not feasible because the associated solution (−1, 2, 0)T is not feasi-
ble, having one negative component. The second and the third bases are feasible and
non-degenerate. Their associated basic solutions are respectively u = (1/3, 0, 2/3)T

and v = (0, 1/2, 1/2)T . For the basis B2,3, the non-basic variable is x1, the basic
component cost vector c2,3 = (−1, 1)T and the non-basic part of the constraint
matrix is N1 = (1, 3)T . By definition, the reduced cost one-dimensional vector is
computed by

c1 = 1 − (−1, 1)

(
0 1/2
1 −1/2

) (
1
3

)
= 3.

In view of Theorem3.1.4 the vertex v is not optimal. Let us follow the method of
Corollary3.1.7 to get a better solution. Remembering that x1 is the non-basic variable
with the corresponding reduced cost c1 = 3 > 0 we compute b and a1 by

b = (B3)
−1b =

(
0 1/2
1 −1/2

)(
1
1

)
=

(
1/2
1/2

)

and

a1 = (B3)
−1a1 =

(
0 1/2
1 −1/2

) (
1
3

)
=

(
3/2

−1/2

)
.

The positive number t̂ in the proof of Corollary3.1.7 expressing the length to move
from v to a new vertex is t̂ = b1/a11 = (1/2)/(3/2) = 1/3. Hence the new feasible
solution x̂ is given by

x̂ =
(

t̂ e1
b − t̂a1

)
=

⎛
⎝ 1/3

0
2/3

⎞
⎠ .

This is exactly the feasible basic solution u. For this solution the non-basic variable
is x2 and the corresponding reduced cost c2 is given by

c2 = −1 − (1, 1)

(
0 1/3
1 −1/3

) (
1
2

)
= −2 < 0.

By Theorem3.1.4 the solution u is optimal and the optimal value of the problem is
equal to 〈c, v〉 = 1.
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3.2 Dual Problems

Associated with the linear problem (LP) we define a new linear problem, denoted
(LD) and called the dual of (LP). We display both (LP) and (LD) below

maximize 〈c, x〉
subject to Ax = b

x � 0,

minimize 〈b, y〉
subject to AT y � c.

In this dual formulation the problem (LP) is called the primal problem. Using the
method of converting linear inequalities to linear equalities, one may obtain from
the pair (LP) and (LD) above the dual of a linear problem given in canonical form.
In fact, suppose we are given the problem

maximize 〈c, x〉
subject to Ax � b.

It is equivalent to the following problem

maximize (c,−c, 0)

⎛
⎝ x+

x−
z

⎞
⎠

subject to (A,−A, I )

⎛
⎝ x+

x−
z

⎞
⎠ = b

x+, x−, z � 0,

in which I is the identity m ×m matrix and z is an m-vector variable. It follows from
the scheme (LP)-(LD) that the dual of the latter problem is given by

minimize 〈b, y〉

subject to

⎛
⎝ AT

−AT

I

⎞
⎠ y �

⎛
⎝ cT

−cT

0

⎞
⎠ ,

which is equivalent to

minimize 〈b, y〉
subject to AT y = c

y � 0.

On the other hand, by putting the minimization of the function 〈b, y〉 as minus of the
maximization of the function 〈−b, y〉 and applying the primal-dual scheme above
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we come to conclusion that the dual of (LD) is exactly (LP). In other words the dual
of the dual is the primal. In this sense the pair (LP) and (LD) is known as a symmetric
form of duality. This symmetry can also be seen when we write down a primal and
dual pair in a general mixed form in which both equality and inequality constraints
as well as positive, negative variables and free (unrestricted) variables are present:

maximize
∑3

i=1〈ci , xi 〉
subject to A1x � b1

A2x � b2

A3x = b3

x1 � 0

x2 � 0

x3 free

minimize
∑3

i=1〈bi , yi 〉
subject to y1 � 0

y2 � 0

y3 free

AT
1 y � c1

AT
2 y � c2

AT
3 y = c3

in which the variables x and y are decomposed into three parts: positive part, negative
part and unrestricted part, and the dimensions of the vectors ci , bi and the matrices
Ai , i = 1, 2, 3 are in concordance. The matrices A1, A2 and A3 are composed

of the columns of the matrix

⎛
⎝ A1

A2

A3

⎞
⎠ corresponding to the variables x1, x2 and x3

respectively. The aforementioned scheme of duality is clearly seen in the following
example.

Example 3.2.1 Consider the following problem of three variables:

maximize c1x1 + c2x2 + c3x3
subject to a11x1 + a12x2 + a13x3 � b1

a21x1 + a22x2 + a23x3 � b2
a31x1 + a32x2 + a33x3 = b3

x1 � 0
x2 � 0
x3 free.

By using the duality scheme we obtain the dual problem

minimize b1y1 + b2y2 + b3y3
subject to y1 � 0

y2 � 0
y3 free

a11y1 + a21y2 + a31y3 � c1
a12y1 + a22y2 + a32y3 � c2
a13y1 + a23y2 + a33Y3 = c3.
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Lagrangian functions

There are several ways to obtain the dual problem (LD) from the primal problem.
Here is a method by Lagrangian functions. Let us define a function of two variables x
and y in the product space R

n ×R
m with values in the extended real line R∪{±∞}:

L(x, y) =
{ 〈c, x〉 + 〈y, b − Ax〉 if x � 0

−∞ else.

The inner product 〈y, b − Ax〉 can be interpreted as a measure of violation of the
equality constraint Ax = b, which is added to the objective function as a penalty.
The function L(x, y) is called the Lagrangian function of (LP). We see now that
both problems (LP) and (LD) are obtained from this function.

Proposition 3.2.2 For every fixed vector x in R
n and every fixed vector y in R

m one
has

inf
y′∈Rm

L(x, y′) =
{ 〈c, x〉 if Ax = b, x � 0

−∞ else

sup
x ′∈Rn

L(x ′, y) =
{ 〈b, y〉 if AT y � c

+∞ else.

Proof To compute the first formula of the proposition we distinguish three possible
cases of x : (a) x � 0; (b) x � 0 with Ax �= b, and (c) x � 0 and Ax = b. In the
case (a), the function L(x, y′) takes the value −∞ for any y′. In the case (b) we put
yt = t (Ax − b) for t > 0. Then

lim
t→∞ L(x, yt ) = lim

t→∞〈c, x〉 − t‖Ax − b‖2 = −∞.

In the last case, it is obvious that L(x, y′) = 〈c, x〉 for every y′. By this the first
formula is proven.

As to the second formula we have

sup
x ′∈Rn

L(x ′, y) = sup
x ′∈Rn+

L(x ′, y)

= sup
x ′∈Rn+

(〈c, x ′〉 + 〈y, b − Ax ′〉)
= sup

x ′∈Rn+

(〈c − AT y, x ′〉 + 〈b, y〉).
Given y inR

m , if c− AT y � 0, then themaximumon the right hand side is attained at
x ′ = 0 and equal to 〈b, y〉. If c− AT y � 0, there is a strictly positive component, say
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ci − (AT x)i > 0. Then by setting xt = tei for t > 0, where ei is the i th coordinate
unit vector of R

n we obtain

〈c − AT y, xt 〉 + 〈b, y〉 = t (ci − (AT y)i ) + 〈b, y〉,

which tends to ∞ as t tends to ∞. This completes the proof. �

As a consequence of Proposition3.2.2 the primal problem is written in form

maximize
{
inf y∈Rm L(x, y)

}
subject to x ∈ R

n

and the dual problem is written in form

minimize
{
supx∈Rn L(x, y)

}
subject to y ∈ R

m .

The utility of dual problems will be clear in the sequel.

Duality relations

Intimate and mutual ties between the primal and dual problems stimulate our insight
of existence and sensibility of optimal solutions as well as solving methods of a
linear problem and economic interpretation of the models where that came from.
The theorem below describes a complete relationship between (LP) and (LD), their
values and variables.

Theorem 3.2.3 For the couple of the primal and dual problems (LP) and (LD) the
following statements hold.

(i) (Weak duality) For each feasible solution x of (LP) and each feasible solution
y of (LD),

〈c, x〉 � 〈b, y〉.

In particular, if inequality becomes equality, then x and y are optimal solu-
tions. Moreover, two feasible solutions x and y are optimal if and only if the
complementary slackness holds:

〈AT y − c, x〉 = 0.

(ii) (Strong duality) If the primal and the dual problems have feasible solutions,
then they have optimal solutions and the two optimal values are equal.

(iii) If either problem has unbounded optimal value, then the other problem has no
feasible solution.
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Proof For the weak duality relation we have b = Ax and AT y � c. As x is positive,
we deduce

〈b, y〉 = 〈Ax, y〉 = 〈x, AT y〉 � 〈c, x〉.

Assume now equality holds for some feasible solutions x0 and y0 of (LP) and (LD).
Then for every feasible solutions x and y the weak duality yields respectively

〈c, x0〉 = 〈b, y0〉 � 〈c, x〉,
〈b, y0〉 = 〈c, x0〉 � 〈b, y〉,

which prove that x0 and y0 are optimal.
Furthermore, if the complementary slackness holds for feasible solutions x and

y, then the weak duality relation becomes equality, and hence they are optimal.
Conversely, let x and y be primal and dual optimal solutions. We wish to establish
equality in the weak duality relation. Suppose to the contrary that for these optimal
solutions, the weak duality relation is strict, which means that the system

AT y � c

〈b, y〉 � 〈c, x〉

is not solvable. In view of Corollary 2.2.4 there exist a positive vector x ′ and a real
number t � 0 such that

(A − b)

(
x ′
t

)
= 0〈(

c
−〈c, x〉

)
,

(
x ′
t

)〉
= 1.

If t = 0, then Ax ′ = 0 and 〈c, x ′〉 = 1. This means that the objective function is
strictly positive on an asymptotic direction of X and shows that the problem has
unbounded optimal value. Thus, t is strictly positive and the vector 1

t x ′ is a feasible
solution at which the value of the objective function is

〈c, 1
t

x ′〉 = 〈c, x〉 + 1

t
> 〈c, x〉.

This is a contradiction and hence the two optimal values are equal.
We proceed to (ii). Assume that (LP) and (LD) have feasible solutions. By the

weak duality the cost function 〈c, .〉 of (LP) is bounded above on the feasible set. In
view of Theorem3.1.1, (LP) has an optimal solution. The same argument shows that
the dual (LD) possesses an optimal solution too. Let x be an optimal solution of (LP)

http://dx.doi.org/10.1007/978-3-319-21091-9_2
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and y an optimal solution of (LD). By the first part, they satisfy the complementary
slackness condition. Taking into account the fact that Ax = b we deduce

〈c, x〉 = 〈AT y, x〉 = 〈Ax, y〉 = 〈b, y〉,

and so the two optimal values are equal.
The last statement is an immediate consequence of the weak duality relation

because if the primal has a feasible solution x , then the dual is bounded below
by 〈c, y〉. Likewise, if the dual has a feasible solution, then the primal is bounded
above. �

So far the preceding theorem describes almost all possible situations of the primal
and dual pair, it remains to notice the last one when both of them are infeasible. Here
is an example of such a situation.

Example 3.2.4 Consider the problem

maximize x1 + x2
subject to x1 − x2 � 1

−x1 + x2 � −2
x1, x2 � 0,

which is infeasible. Its dual takes the form

minimize y1 − 2y2
subject to y1 − y2 � 1

−y1 + y2 � 1
y1, y2 � 0.

It is evident that the dual problem has no feasible solution.

The next corollary shows how to obtain an optimal dual vertex from an optimal
primal basis.

Corollary 3.2.5 If x is an optimal basic solution of (LP) corresponding to a basis
B and the reduced cost vector cN is negative, then the vector y = (B−1)T cB is an
optimal basic solution of (LD).

Proof We show that y = (B−1)T cB is feasible. In fact,

AT y = AT (B−1)T cB = (B N )T (B−1)T cB =
(

cB

(B−1N )T cB

)
.

By hypothesis x =
(

xB

0

)
and the vector (B−1N )T cB − cN (the opposite of the

reduced cost vector) is positive. Hence AT y � c and y is feasible. To prove that y is
optimal, we calculate
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〈AT y, x〉 = 〈cB, xB〉 + 〈(B−1N )T cB, xN 〉 = 〈cB, xB〉 = 〈c, x〉.

By Theorem3.2.3, y is optimal. �

The hypothesis of the preceding corollary is satisfied if the basis is optimal and
non-degenerate. When it is degenerate, the reduced cost vector is not necessarily
negative, and so there is no guarantee that the vector y defined by the formula of the
corollary is dual feasible.

Example 3.2.6 Consider the problem

maximize x1 + x2
subject to x1 + x2 + x3 = 1

x1 + 2x2 + x4 = 2
x1, x2, x3, x4 � 0.

The dual is written as follows

minimize y1 + 2y2
subject to y1 + y2 � 1

y1 + 2y2 � 1
y1, y2 � 0.

We choose the basis B2,3 =
(
1 1
2 0

)
that corresponds to the basic variables x2 and

x3. The associated basic solution x = (0, 1, 0, 0)T is degenerate. The reduced cost
vector at this basis is

cN = cN −
[

B−1
2,3N

]T
cB

=
(
1
0

)
−

[(
0 1/2
1 −1/2

) (
1 0
1 1

)]T (
1
0

)

=
(

1/2
−1/2

)
.

This vector is not negative, and the dual vector

y =
[

B−1
2,3

]T
cB =

(
0 1/2
1 −1/2

)T (
1
0

)
=

(
0

1/2

)

is not feasible for the dual problem.

On the other hand, if we choose the basis B2,4 =
(
1 0
2 1

)
that corresponds to the

basic variables x2 and x4, then its associated basic solution is exactly the same as
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that of the basis B2,3, that is x = (0, 1, 0, 0)T . The reduced cost vector at this basis
is different, however, and given below

cN = cN −
[

B−1
2,4N

]T
cB

=
(
1
0

)
−

[(
1 0

−2 1

) (
1 1
1 0

)]T (
1
0

)

=
(

0
−1

)
.

This time, the reduced cost vector is negative. The dual vector defined by the formula
of the corollary

y =
[

B−1
2,4

]T
cB =

(
1
0

)

is feasible for the dual problem.

Sensitivity

The duality result of Corollary3.2.5 yields a nice estimate for the change of the
optimal value when the constraint vector b undergoes small perturbations.

Corollary 3.2.7 Assume that x =
(

x B

0

)
is an optimal non-degenerate basic solu-

tion of (LP) and B is the corresponding basis. Then for a small perturbation b +Δb
of the vector b, the vector

x̂ =
(

x B + B−1Δb
0

)

is an optimal basic solution of the perturbed problem (LPΔb):

maximize 〈c, x〉
subject to Ax = b + Δb

x � 0

and the change in the optimal value is given by

〈c, x̂〉 − 〈c, x〉 = (cB)T B−1Δb.

In particular, as a function of b, the optimal value of (LP) is differentiable at b and
its derivative is the optimal dual solution y = (B−1)T cB.
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Proof Let Δb be a small increment of b. Consider a perturbed problem (LPΔb)
described in the corollary. We show that x̂ is feasible. Indeed,

Ax̂ = (B N )

(
x B + B−1Δb

0

)
= Bx B + Δb

= b + Δb.

Since x B is strictly positive, when Δb is sufficiently small, the vector x B + B−1Δb
is positive. Hence x̂ is feasible. We deduce also that B remains a feasible basis of
the perturbed problem. According to Corollary3.2.5 the vector y = (B−1)T cB is an
optimal solution of the dual problem of (LP). It is also a feasible solution of the dual
of the perturbed problem as they share the same feasible set. Moreover,

〈b + Δb, y〉 = 〈b + Δb, (B−1)T cB〉
= 〈B−1b + B−1Δb, cB〉
= 〈x̂B, cB〉 = 〈c, x̂〉.

By duality, x̂ is an optimal solution of the perturbed problem and y is an optimal
solution of its dual. We deduce also the change of the optimal value:

〈c, x̂〉 − 〈c, x〉 = 〈cB, x̂B〉 − 〈cB, x B〉
= 〈b + Δb, y〉 − 〈b, y〉
= 〈Δb, (B−1)T cB〉
= (cB)T B−1Δb,

which yields the requested formula. The last assertion is immediate from the formula
of the change of the optimal value. �

3.3 The Simplex Method

The simplex method is aimed at solving the linear problem (LP). Its strategy is to
start with a feasible vertex and search an adjacent vertex that increases the value of
the objective function until either a ray on which the objective function is unbounded
is identified or an optimal vertex is found.
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Description of the method

Let us assume for a moment that we have a feasible basis B0 in our disposition. Here
is the algorithm.

Step 1: Compute the associated feasible vertex x0 whose components are x0B =
(B0)

−1b and x0N = 0. Iteration k = 0.
Step 2. Set k := k + 1. Let Bk be the current feasible basis and its associated basic
vertex xk with two components xk

B and xk
N . Compute

b = B−1
k b

cN = cN − [B−1
k N ]T cB .

Step 3. If cN � 0, then stop. The current vertex xk is optimal.
Otherwise go to the next step.
Step 4. Let s be an index for which cs > 0. Pick the column as of the matrix A and
compute

as = B−1
k as .

If this vector is negative, then stop. The problem is unbounded.
Otherwise find an index � such that

x̂s := b�

a�s
= min

{ bi

ais
: ais > 0

}
.

Step 5. Form a new feasible basis Bk+1 from Bk by deleting the column a� and
entering the column as instead. The new associated vertex xk+1 is obtained from xk

by setting the variable xs = x̂s > 0 and the variable x� = 0.
Step 6. Compute the inverse matrix B−1

k+1 of the new basis Bk+1 and return to Step 2.

The element a�s obtained above from the matrix A is called a pivot, the column
as = (a1s, · · · , ams)

T and the row a� = (a�1, · · · , a�n) are called the pivotal
column and the pivotal row of the algorithm.

Theorem 3.3.1 If all feasible bases of the matrix A are non-degenerate, then the
simplex algorithm terminates at a finite number of iterations.

Proof Note that the number of the vertices of the polyhedron X is finite, say equal
to p. Moreover, in the simplexmethod, the objective function increases its value each
time when passes from a vertex to a vertex. Thus, after a finite number of iterations
(at most p), one obtains a vertex which is either optimal, or the objective function
increases along a ray starting from it. �



3.3 The Simplex Method 69

Finding a feasible basis

We are considering the constraints of the problem (LP)

Ax = b and x � 0.

By multiplying both side of an equality by (−1) one may assume that the right hand
side vector b has non-negative components only. Moreover, as we saw in the first
chapter when the constraints have a solution, one may remove some of them so that
the constraints remain without redundant equations and producing the same solution
set. From now on, we suppose the two conditions on the constraints: (1) the vector
b is positive, and (2) no equality is redundant.

Since the choice of a feasible basis for starting the simplex algorithm is not evident,
one introduces a vector of artificial variables y = (y1, · · · , ym)T and consider the
linear problem

minimize y1 + · · · + ym (3.5)

subject to Ax + y = b and x � 0, y � 0.

Proposition 3.3.2 The problem (LP) has a feasible solution if and only if the problem
(3.5) has a minimum value equal to zero with y = 0.

Proof Assume that x is a feasible solution of (LP). Then (x, y) with y = 0 is a
feasible solution of (3.5), and the minimum value is zero. Conversely, if the optimal
value of (3.5) is zero, then at an optimal solution (x, y) one has y = 0, which implies
that x is a feasible solution of (LP). �

Notice that the artificial problem (3.5) has optimal solutions. This is because
the feasible set is nonempty, it contains, for instance, the solution with x = 0 and
y = b which is a basic feasible solution associated with the feasible basis B = I
the identity matrix, and the objective function is bounded from below. Suppose that
an optimal vertex (x, 0) is found for (3.5) in which no yi is basic variable. Then the
corresponding columns of the matrix A are linear independent and form a feasible
basis of (LP). If one of yi is a basic variable, say, for the sake of simple writing,
y1 is the unique basic variable together with m − 1 basic variables x1, · · · , xm−1,
then by applying the simplex method one may arrive at the point that either the basic
variable y1 is replaced by a new basic variable x j with m � j � n, or it is impossible
to substitute y1 by those x j . The latter case can happen only when the coefficients
y1 j , j = 2m, · · · , m +n of the matrix B−1N are all zero. This shows that the rank of
the matrix A is m − 1, and so the constraints of (LP) are redundant, a contradiction.
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The product form of the inverse

By looking at the basic matrices Bk and Bk+1 we notice that they differ from each
other only in one column, that is they are adjacent. This enables us to compute the
inverse of Bk+1 from the inverse of Bk . In fact, denote by D the elementary m × m-
matrix, called the matrix for change of basis, which is the identity matrix except for
the �th column equal to the vector

(
−a1s

a�s
, · · · ,

1

a�s
, · · · ,−ams

a�s

)T

.

Namely,

D =

⎡
⎢⎢⎢⎢⎣
1 · · · −a1s/a�s · · · 0

0 · · · 1/a�s · · · 0

0 · · · −ams/a�s · · · 1

⎤
⎥⎥⎥⎥⎦

Proposition 3.3.3 With the matrix D above, one has

B−1
k+1 = DB−1

k .

In particular, if the first basis is the identity matrix, then

B−1
k = Dk · · · D1

where Di are change matrices.

Proof Let β1, · · · ,βm be the columns of the matrix Bk . Then the columns of Bk+1
are the same, with its �th column substituted by the column as of the matrix A. By
multiplying Bk+1 by D we obtain a matrix whose columns are exactly as Bk except
for the �th one given by

1

a�s
(Bk(−as) + as) + β�.

By definition, as = B−1
k as , we deduce that Bk(−as) + as = 0 and the �th column

of the product Bk+1D is equal to β�. Consequently, Bk+1D = Bk and the requested
formula follows. �

It would be noticed that each elementary matrix D is uniquely determined by
the number � and its �th column. Thus, it is sufficient to store m + 1 numbers
(�,−a1s/a�s, · · · , 1/a�s, · · · ,−ams/a�s) in order to fully restitute D.
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The simplex tableau

In order to solve the problem (LP):

maximize 〈c, x〉
subject to Ax = b and x � 0

we assume that b is a positive vector and the matrix A is written in the form (B N )

where B is a feasible basis. To simplify the writing, the cost vector c is set in row
form. The simplex tableau is of the form, denoted T ,

cT = (cT
B cT

N ) 0

A = (B N ) b

By pre-multiplying the tableau T by the extended inverse of B,

1 −cT
B B−1

0 B−1

we obtain the tableau T ∗ as follows

0 cT
N = cT

N − cT
B B−1N −cT

B B−1b

I N = B−1N B−1b

The tableau T ∗ contains all information necessary for the simplex algorithm.

• The associated basic solution is found in the right bottom box: x =
(

xB

xN

)
with

xB = B−1b and xN = 0.
• The value of the objective function at this basic solution is equal to 〈c, x〉 =

(cB)T B−1b, the opposite of the value given in the upper right corner.
• The reduced cost cN is given in the upper middle box. If all components of this
vector are negative, then the current basic vertex is optimal.

• If some of the components of the reduced cost vector are positive, choose an index,
say s, with cs largest. The variable xs will enter the basis. A variable x� with the
index � satisfying
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b�

a�s
= min

{
bi

ais
: ais > 0

}

will leave the basis.

The simplex tableau of the next iteration is obtained from T ∗ by pre-multiplying
it by the matrix

S =

1 0 · · · −cs/a�s · · · 0
0 1 · · · −a1s/a�s · · · . 0

· · ·
: : 1/a�s :

· · ·
0 0 · · · −ams/a�s · · · 1

We find again the matrix of change D in the right low box. The pivot of the simplex
tableau is the element a�s .

Note that after identifying the pivot a�s , the simplex tableau of the next iteration
is obtained from the current one by multiplying the pivot row by the inverse of the
pivot and by adding the pivot row multiplied by a number to other rows so that the
pivot column becomes a vector whose �th component is equal to one and the other
components are zero. This is exactly what the pre-multiplication of T ∗ by S does.

Example 3.3.4 We consider the problem

maximize x1 + 2x2
subject to −3x1 + 2x2 � 2

−x1 + 2x2 � 4
x1 + x2 � 5

x1, x2 � 0.

It is equivalent to the following problem in standard form

maximize x1 + 2x2
subject to −3x1 + 2x2 + x3 = 2

−x1 + 2x2 + x4 = 4
x1 + x2 + x5 = 5

x1, · · · , x5 � 0.

The initial simplex tableau is given as

1 2 0 0 0 0
−3 2 1 0 0 2
−1 2 0 1 0 4
1 1 0 0 1 5
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Choose an evident basis B = I the identity matrix corresponding to the basic vari-
ables x3, x4 and x5. Since the basic part of the cost vector cB is null, the reduced cost
vector of this basis is

cN = cN − [B−1N ]T cB = cN =
(
1
2

)
.

In view of Theorem3.1.4 this basis is not optimal. To move to a better solution we
make a change of basis by introducing the non-basic variable x2 corresponding to
the biggest reduced cost c2 = 2 into the basic variables. We have

a2 = B−1a2 = a2 =
⎛
⎝ 2
2
1

⎞
⎠

t̂ = min

{
bi

ai2
: ai2 > 0

}
= min

{
2

2
,
4

2
,
5

1

}
= 1

We see that t̂ is reached at i = 1 which corresponds to the basic variable x3. Thus,
x3 leaves the basis and x2 enters it. The pivot is the element a12 = 2 with the pivotal
row � = 1 and the pivotal column s = 2. The matrix of change D and S are given by

D1 =
⎛
⎝ 1/2 0 0

−2/2 1 0
−1/2 0 1

⎞
⎠ and S1 =

1 −1 0 0
0 1/2 0 0
0 −1 1 0
0 −1/2 0 1

The new tableau T2 is obtained by the product S1T1 and is displayed below

4 0 −1 0 0 −2
−3/2 1 1/2 0 0 1

2 0 −1 1 0 2
5/2 0 −1/2 0 1 4

The current basic variables are x2, x4 and x5. We read from the simplex tableau that

the reduced cost vector cN =
(

4
−1

)
and by Theorem3.1.4 the current basis is

not optimal. The unique non-basic variable with the positive reduced cost is x1 (the
reduced cost c1 = 4). We have
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a1 = B−1a1 =
⎛
⎝−3/2

2
5/2

⎞
⎠

t̂ = min

{
bi

ai1
: ai1 > 0

}
= min

{
2

2
,

4

5/2

}
= 1.

The value t̂ is reached at i = 2 which corresponds to the basic variable x4. Thus, x4
leaves the basis and x1 enters it. The pivot is the element a21 = 2 with the pivotal
row � = 2 and the pivotal column s = 1. The matrix S is given by

S2 =
1 0 −4/2 0
0 1 3/4 0
0 0 1/2 0
0 0 −5/4 1

The new tableau T3 is obtained by the product S2T2 and is displayed below

0 0 1 −2 0 −6
0 1 −1/4 3/4 0 5/2
1 0 −1/2 1/2 0 1
0 0 3/4 −5/4 1 3/2

The current basic variables are x1, x2 and x5. The reduced cost vector is cN =
(

1
−2

)
and again by Theorem3.1.4 the current basis is not optimal. The unique non-basic
variable with the positive reduced cost is x3 (the reduced cost c3 = 1). We have

a3 = B−1a3 =
⎛
⎝−1/4

−1/2
3/4

⎞
⎠

t̂ = min

{
bi

ai3
: ai3 > 0

}
= 3/2

3/4
= 2.

The value t̂ is reached at i = 3 which corresponds to the basic variable x5. Thus, x5
leaves the basis and x3 enters it. The pivot is the element a33 = 3/4 with the pivotal
row: � = 3, and the pivotal column: s = 3. The matrix S is given by

S3 =
1 0 0 −4/3
0 1 0 1/3
0 0 1 2/3
0 0 0 4/3
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The new tableau T4 is obtained by the product S3T3 and is displayed below

0 0 0 −1/3 −4/3 −8
0 1 0 1/3 1/3 3
1 0 0 −1/3 2/3 2
0 0 1 −5/3 4/3 2

The current basic variables are x1, x2 and x3. The reduced cost vector cN =
(−1/3

−4/3

)
is negative, hence the current basis is optimal.We obtain immediately x1 = 2, x2 = 3
and x3 = 2. The optimal value is 8 (the opposite of the number at the upper right
corner of the tableau). At this iteration the algorithm terminates.

The Two-phase method

When a feasible basis for starting the simplex algorithm is not apparent, the auxiliary
problem (3.5) with artificial variables represents Phase I of the simplexmethod. Once
a basic feasible solution is found from Phase I, one applies Phase II to find an optimal
solution. In Phase II the artificial variables and its objective function play no role and
so they are omitted.

Example 3.3.5 We consider the problem

maximize x1 + x2 + x3
subject to 2x1 + x2 + 2x3 = 4

3x1 + 3x2 + x3 = 3
x1, x2, x3 � 0.

Since a feasible basic solution is not evident, we introduce two artificial variables x4
and x5. Phase I of the simplex algorithm consists of solving the problem

maximize − x4 − x5
subject to 2x1 + x2 + 2x3 + x4 = 4

3x1 + 3x2 + x3 + x5 = 3
x1, · · · , x5 � 0.

The initial simplex tableau in Phase I is given as

0 0 0 −1 −1 0
2 1 2 1 0 4
3 3 1 0 1 3
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Choose the evident basis B = I the identity matrix corresponding to the basic
variables x4 and x5. Since the non-basic component of the cost vector c is null, the
reduced cost vector of this basis is

cN = −[B−1N ]T cB =
⎛
⎝ 5
4
3

⎞
⎠ .

In view of Theorem3.1.4 this basis is not optimal. Since B is the identity matrix, the
new tableau differs from the former one only by the first row equal to (5, 4, 3, 0, 0, 7)
and is displayed below

5 4 3 0 0 7
2 1 2 1 0 4
3 3 1 0 1 3

In fact the new tableau is obtained from the initial one by updating the first row so
that components corresponding to the basic variables are zero. The first component
of this row has the biggest positive value equal to 5, we choose the pivot a21 = 3
with the pivotal row � = 2 and pivotal column s = 1 and obtain the next tableau

0 −1 4/3 0 −5/3 2
0 −1 4/3 1 −2/3 2
1 1 1/3 0 1/3 1

It is clear that a suitable pivot is a13 = 4/3 with pivot row � = 1 and pivot column
s = 3. The next tableau is given as

0 0 0 −1 −1 0
0 −3/4 1 3/4 −1/2 3/2
1 5/4 0 −1/4 1/2 1/2

Phase I of the algorithm terminated, we obtain a basic feasible solution x1 = 1/2
and x3 = 3/2. Now we proceed to Phase II by starting from the feasible basis

B =
(
2 2
3 1

)
corresponding to the basic variables x1 and x3. The initial tableau of

this phase is given below

1 1 1 0
0 −3/4 1 3/2
1 5/4 0 1/2
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By subtracting the sum of the second and the third rows from the first row to make
zero all components of the first row which correspond to the basic variables, we
obtain a new tableau

0 1/2 0 −2
0 −3/4 1 3/2
1 5/4 0 1/2

It is clear that this basic feasible solution is not optimal. The pivot element is a22 =
5/4. Making this column equal to (0, 0, 1)T by row operations we deduce the next
tableau

− 2/5 0 0 −11/5
3/5 0 1 9/5
4/5 1 0 2/5

At this iteration the reduced cost vector is negative, and so the algorithm terminates.
The solution x1 = 0, x2 = 2/5 and x3 = 9/5 is optimal.

Degeneracy

As we experienced in Example3.1.6 when a basis is degenerate, there is a possi-
bility that a new basis is also degenerate and the value of the objective function
does not change and that even if a basis changes, the associated solution remains
unchanged. A sequence of such degenerate feasible solutions may make no increase
in the value of the objective function and causes cycling. The simplex algorithm
then never terminates. To avoid cycling, there are some techniques to modify the
algorithm.We cite below two that are frequently used. The first one is Bland’s rule to
tighten pivot choice. It consists of selecting the pivotal columns as with the smallest
subscript among those with strictly positive entries and selecting the pivotal row
corresponding to the basic variable with lowest subscript among rows i having the
same minimum ratio bi/ais equal to x̂s . With this rule the simplex method cannot
cycle and hence is finite.

The second technique consists of perturbing the constraints, replacing Ax = b by
Ax = b+A(ε, ε2, · · · , εn)T with a small ε > 0. For a certain range of ε, a degenerate
basis B will be non-degenerate for the perturbed system and leads to a new feasible
basic solution. This way the simplex method avoids cycling and terminates in a finite
number of iterations too.

It is worthwhile noticing that rigorous techniques to overcome cycling require
additional operations at each iteration and become costly when solving very large
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sized problems. On the other hand experience indicates that cycling in the simplex
algorithm is very rare. Therefore,most of commercial codes apply themethodwithout
paying any attention to it.

The primal-dual method

The primal-dual method is based on duality relations between the primal and the
dual problems. Namely, if a feasible solution y of the dual problem is known, and
if we succeed in finding a feasible solution x of the primal problem so that the
complementary slackness condition 〈AT y − c, x〉 = 0 holds, then x is an optimal
solution of (LP) and y is an optimal solution of (LD). In order to find a feasible
solution of (LP) that satisfies the complementary slackness we evoke the auxiliary
problem (3.5) with an additional constraint xi = 0 for all i outside of the active index
set I (y).

Thus, given a feasible solution of (LD)we consider the restricted problem, denoted
(Py)

maximize

〈
d,

(
x
y

)〉
subject to Ax + y = b

x � 0, y � 0
xi = 0, i /∈ I (y),

where d = (0, · · · , 0,−1, · · · ,−1)T , and its dual, denoted (Dy)

minimize 〈b, z〉
subject to 〈ai , z〉 � 0, i ∈ I (y)

z � (−1, ...,−1)T .

Here is a relationship between solutions of the primal and dual problems and their
restricted problems.

Theorem 3.3.6 Let (x0, y0) be an optimal solution of the restricted problem asso-
ciated with a feasible solution y of the dual problem (LD) and B a non-degenerate
basis associated with this optimal solution. The following statements hold.

(i) If y0 = 0, then x0 is an optimal solution of (LP) and y is an optimal solution
of (LD).

(ii) If y0 �= 0 and if the feasible solution z0 = (B−1)T dB of the dual problem
(Dy) satisfies

〈ai , z0〉 � 0 for all i /∈ I (y), (3.6)

then the primal problem (LP) is infeasible.
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(iii) If y0 �= 0 and (3.6) does not hold, then the vector ŷ = y + t z0 with

t = min

{
ci − 〈ai , y〉

〈ai , z0〉 : 〈ai , z0〉 < 0

}

is a feasible solution of (LD) satisfying 〈b, ŷ〉 < 〈b, y〉.
Proof For the first statement we observe that x0 is a feasible solution of (LP) under
y0 = 0. Moreover, for active indices i ∈ I (y) we have

〈ai , y〉 − ci = 0

while for inactive indices j /∈ I (y) the components x0j are zero. Consequently,

〈AT y − c, x0〉 =
n∑

i=1

(〈ai , y〉 − ci
)
x0i = 0.

By Theorem3.2.3, x0 is an optimal solution of (LP) and y is an optimal solution of
(LD).

For (ii) we set

yt = y + t z0 for t � 0.

We make two observations. First, for every positive number t , the vector yt is a
feasible solution of (LD). In fact, by hypothesis, AT z0 � 0, and hence

AT yt = AT y + t AT z0 � AT y � c.

Second, the optimal values of the primal restricted problem (Py) and its dual (Dy)
being equal, we deduce from Theorem3.1.4 and Corollary3.2.5 that

〈b, z0〉 = −y01 − · · · − y0m < 0.

It follows that

lim
t→∞〈b, yt 〉 = −∞.

Thus, the dual problem (LD) is unbounded below. In view of Theorem3.2.3 the
primal problem (LP) is infeasible.

To prove (iii), we find conditions on t such that yt is a feasible solution of (LD).
For those indices i with 〈ai , z0〉 � 0, the i th constraints are evidently satisfied when
t is positive because

〈ai , yt 〉 = 〈ai , y〉 + t〈ai , z0〉 � 〈ai , y〉 � ci .
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For those i with 〈ai , z0〉 < 0, the i th constraints are evidently satisfied if

t〈ai , z0〉 � ci − 〈ai , y〉.

It follows readily that the value t given in (iii) is the biggest that makes ŷ feasible
for the dual problem (LD). Finally, we have

〈b, ŷ〉 = 〈b, y〉 + t〈b, z0〉 < 〈b, y〉

because t is strictly positive and 〈b, z0〉 is strictly negative. �

We shall proceed now to describe the primal-dual algorithm, assuming a feasible
solution y of the dual problem (LD) at our disposition.

Step 1: Solve the restricted problem (Py) associated with y.

If the optimal value is zero, then stop. The vector x0, where

(
x0

y0

)
with y0 = 0 is

an optimal solution of (Pȳ), is optimal for (LP) and y is optimal for (LD).
Otherwise, go the the next step.
Step 2. Compute z0 = (B−1)T dB where B is an optimal non-degenerate basis asso-

ciated with the optimal solution

(
x0

y0

)
with y0 �= 0 and dB is the basic component

of the vector d determining the objective function of the restricted problem.
If 〈ai , z0〉 � 0 for all i /∈ I (y), then stop. The primal problem (LP) is infeasible.
Otherwise, go to the next step.
Step 3. Compute

t = min

{
ci − 〈ai , y〉

〈ai , z0〉 : 〈ai , z0〉 < 0

}

and return to Step 1, replacing y by y + t z0.

A few useful comments on the implementation of the algorithm are in order. First,
to solve the restricted primal problem an evident basis corresponding to the basic
variables y1, · · · , ym can be started with. Remember that b � 0 is assumed.
Second, if an index k realizes the minimum in the formula of t in Step 3, then it is
also active index at the new dual feasible solution y + t z0 because

〈ak, y + t z0〉 = 〈ak, y〉 + ck − 〈ak, y〉
〈ak, z0〉 〈ak, z0〉 = ck .

Moreover, if a component x0j of the optimal solution

(
x0

y0

)
obtained in Step 1 is

strictly positive, then the complementary slackness 〈a j , z0〉 = 0 implies

〈a j , y + t z0〉 = 〈a j , y〉 = c j .
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Hence j is an active index too.
Third, it follows from the preceding comment that when an index i is not active at

the new feasible solution y + t z0, that is 〈ai , y + t z0〉 > ci , then the corresponding

i th component of x0 is zero. By this, the optimal solution

(
x0

y0

)
is feasible for the

new restricted problem (Py+t z0 ).
Finally, we may claim that under non-degeneracy the algorithm terminates after a

finite number of iterations. Indeed, at each iterationwe arrive at either the infeasibility
of (LP), or a new feasible basic solution of the dual problem (LD)whose value strictly
decreases. Since the number of bases of the dual problem is finite, the algorithm is
finite too.

Example 3.3.7 We consider the problem

maximize −x1 − x2 − x3
subject to x1 + 2x2 + x3 = 2

2x1 + 3x2 + x3 = 3
x1, x2, x3 � 0,

and its dual problem

minimize 2y1 + 3y2
subject to y1 + 2y2 � −1

2y1 + 3y2 � −1
y1 + y2 � −1.

An evident feasible solution of the dual problem is y =
(
1
0

)
whose active index

set I (y) is empty. The restricted primal problem associated with this solution is the
following

maximize − z1 − z2
subject to x1 + 2x2 + x3 + z1 = 2

2x1 + 3x2 + x3 + z2 = 3
x1 = x2 = x3 = 0

z1, z2 � 0.

Since the latter problem has only one feasible solution, its optimal value is strictly
negative. The solution x0 = (0, 0, 0)T is not feasible for (LP). The optimal basis

corresponding to the basic variables z1 and z2 is the identity matrix B =
(
1 0
0 1

)
and

the basic component of the objective vector is dB = (−1,−1)T . By Corollary3.2.5,
the vector u0 = (B−1)T dB = dB is a feasible solution of the dual problem of the
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restricted primal problem. We compute the value of t given by the formula in the
Step 3 of the primal-dual algorithm, which is exactly the maximal t such that

⎛
⎝ 1 2
2 3
1 1

⎞
⎠[(

1
0

)
+ t

(−1
−1

)]
�

⎛
⎝−1

−1
−1

⎞
⎠ ,

which yields t = 3/5. The new feasible solution of the dual problem (LD) for the

next iteration is y + tu0 =
(

2/5
−3/5

)
. Its active index set is I (y + tu0) = {2}. The

restricted primal problem associated with it is now

maximize − z1 − z2
subject to x1 + 2x2 + x3 + z1 = 2

2x1 + 3x2 + x3 + z2 = 3
x1 = x3 = 0

x2, z1, z2 � 0.

Solving this problem by the simplex method we have the initial tableau without the
variables x1 and x3 which are zero

0 −1 −1 0
2 1 0 2
3 0 1 3

Using the basis corresponding to the basic variables z1 and z2 the tableau becomes

5 0 0 5
2 1 0 2
3 0 1 3

The pivot a21 = 3 leads to the final tableau

0 0 −5/3 0
0 1 −2/3 0
1 0 1/3 1

which indicates that the solution x1 = 0, x2 = 1, x3 = 0, z1 = 0, z2 = 0 is
optimal with the optimal value equal to zero. According to the algorithm the solution
x1 = 0, x2 = 1, x2 = 0 is feasible for (LP), and hence it is an optimal solution of it.
The dual solution y1 = 2/5, y2 = −3/5 is an optimal solution of the dual problem
(LD).
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Theory



Chapter 4
Pareto Optimality

In a multi-dimensional Euclidean space there are several ways to classify elements
of a given set of vectors. The componentwise order relation introduced in the very
beginning of the second chapter seems to be the most appropriate for this classifica-
tion purpose and leads to the concept of Pareto optimality or efficiency, a cornerstone
of multiobjective optimization that we are going to study in the present chapter.

4.1 Pareto Maximal Points

In the space R
k with k > 1 the componentwise order x � y signifies that each

component of x is bigger than or equal to the corresponding component of y. Equiv-
alently, x � y if and only if the difference vector x − y has non-negative components
only. This order is not complete in the sense that not every couple of vectors is com-
parable, and hence the usual notion of maximum or minimum does not apply. We
recall also that x > y means that all components of the vector x − y are strictly
positive, and x ≥ y signifies x � y and x �= y. The following definition lays the
basis for our study of multiobjective optimization problems.

Definition 4.1.1 Let Q be a nonempty set in R
k . A point y ∈ Q is said to be a

(Pareto) maximal point of the set Q if there is no point y′ ∈ Q such that y′ � y and
y′ �= y. And it is said to be a (Pareto) weakly maximal point if there is no y′ ∈ Q
such that y′ > y.

The sets of maximal points andweaklymaximal points of Q are respectively denoted
Max(Q) andWMax(Q) (Figs. 4.1 and 4.2). They are traditionally called the efficient
and weakly efficient sets or the non-dominated and weakly non-dominated sets of Q.
The set of minimal points Min(Q) and weakly minimal pointsWMin(Q) are defined
in a similar manner. When no confusion likely occurs between maximal and minimal
elements, the set Min(Q) and WMin(Q) are called the efficient and weakly efficient
sets of Q too. The terminology of efficiency is advantageous in certain circumstances
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Fig. 4.1 Max and Min

Q Max(Q)

Min(Q)

Fig. 4.2 WMax and WMin

Q

WMax(Q)

WMin(Q)

in which we deal simultaneously with maximal points of a set as introduced above
and maximal elements of a family of subsets which are defined to be maximal with
respect to inclusion. Thus, given a convex polyhedron, a face of it is efficient if it
consists of maximal points only. When we refer to a maximal efficient face, it is
understood that that face is efficient and maximal by inclusion which means that no
efficient face of the polyhedron contains it as a proper subset. In some situations one
is interested in an ideal maximal point (called also a utopia point), which is defined
to be a point y ∈ Q that satisfies

y � y′ for all y′ ∈ Q.

Such a point is generally unattainable, and if it exists it is unique and denoted by
IMax(Q) (Fig. 4.3).

Geometrically, a point y of Q is an efficient (maximal) point if the intersection
of the set Q with the positive orthant shifted at y consists of y only, that is,

Q ∩ (y + R
k+) = {y}

and it is weakly maximal if the intersection of Q with the interior of the positive
orthant shifted at y is empty, that is,
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Fig. 4.3 IMax

IMAX (Q)

Q

Q ∩ (y + int(Rk+)) = ∅.

Of course, maximal points are weakly maximal, and the converse is not true in
general. Here are some examples in R

2.

Example 4.1.2 Let Q be the triangle of vertices a =
(
0
0

)
, b =

(
1
0

)
and c =

(
0
1

)
in R

2. Then Max(Q) = WMax(Q) = [b, c], Min(Q) = {a} and WMin(Q) =
[a, b] ∪ [a, c].
Example 4.1.3 Let Q be the polytope in the space R

3, determined by two
inequalities

y2 + y3 � 0

y3 � 0.

Then Max(Q) = WMax(Q) = ∅, Min(Q) = ∅ and WMin(Q) = Q \ int(Q).

Existence of pareto maximal points

As we have already seen in Example 4.1.3, a polyhedron may have no weakly max-
imal points. This happens when some components of elements of the set are un-
bounded above. Positive functionals provide an easy test for such situations.

Theorem 4.1.4 Let Q be a nonempty set and let λ be a nonzero vector in R
k . Assume

that y ∈ Q is a maximizer of the functional 〈λ, .〉 on Q. Then
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(i) y is a weakly maximal point of Q if λ is a positive vector;
(ii) y is a maximal point of Q if either λ is a strictly positive vector, or λ is a positive

vector and y is the unique maximizer.

In particular, if Q is a nonempty compact set, then it has a maximal point.

Proof Assume λ is a nonzero positive vector. If y were not weakly maximal, then
there would exist another vector y′ in Q such that the vector y′− y is strictly positive.
This would yield 〈λ, y′〉 > 〈λ, y〉, a contradiction.

Now, if λ is strictly positive, then for any y′ � y and y′ �= y, one has 〈λ, y′〉 >

〈λ, y〉 as well. Hence y is a Pareto maximal point of Q.
When λ is positive (not necessarily strictly positive) and not zero, the above

inequality is not strict. Actually, we have equality because y is a maximizer. But, in
that case y′ is also a maximizer of the functional 〈λ, .〉 on Q, which contradicts the
hypothesis.

When Q is compact, any strictly positive vector λ produces a maximizer on Q,
hence a Pareto maximal point too. �

Maximizers of the functional 〈λ, .〉 with λ positive, but not strictly positive, may
produce no maximal points as seen in the following example.

Example 4.1.5 Consider the set Q in R
3 consisting of the vectors x = (x1, x2, x3)T

with x3 � 0. Choose λ = (0, 0, 1)T . Then every element x of Q with x3 = 0
is a maximizer of the functional 〈λ, .〉 on Q, hence it is weakly maximal, but not
maximal, for the set Q has no maximal element.

Given a reference point a in the space, the set of all elements of a set Q that are
bigger than the point a forms a dominant subset, called a section of Q at a. The
lemma below shows that maximal elements of a section are also maximal elements
of the given set.

Lemma 4.1.6 Let Q be a nonempty set in R
k . Then for every point a in R

k one has

Max
(
Q ∩ (a + R

k+)
) ⊆ Max(Q)

WMax
(
Q ∩ (a + R

k+)
) ⊆ WMax(Q).

Proof Let y be a Pareto maximal point of the section Q ∩ (a + R
k+). If y were not

maximal, then one would find some y′ in Q such that y′ � y and y′ �= y. It would
follow that y′ belongs to the section Q ∩ (a + R

k+) and yield a contradiction. The
second inclusion is proven by the same argument. �

For convex polyhedra existence of maximal points is characterized by position of
asymptotic directions with respect to the positive orthant of the space.

Theorem 4.1.7 Let Q be a convex polyhedron in R
k . The following assertions hold.

(i) Q has maximal points if and only if

Q∞ ∩ R
k+ = {0}.
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(ii) Q has weakly maximal points if and only if

Q∞ ∩ int(Rk+) = ∅.

In particular, every polytope has a maximal vertex.

Proof Let y be a maximal point of Q and let v be any nonzero asymptotic direction
of Q. Since y + v belongs to Q and Q ∩ (y + R

k+) = {y}, we deduce that v does not
belong to R

k+. Conversely, assume Q has no nonzero asymptotic direction. Then for
a fixed vector y in Q the section Q ∩ (y + R

k+) is bounded; otherwise any nonzero
asymptotic direction of that closed convex intersection, which exists due to Corollary
2.3.16, should be a positive asymptotic vector of Q. In view of Theorem 4.1.4 the
compact section Q ∩ (y +R

k+) possesses a maximal point, hence, in view of Lemma
4.1.6, so does Q.

For the second assertion, the same argument as above shows that when Q has
a weakly maximal point, no asymptotic direction of it is strictly positive. For the
converse part, by the hypothesis we know that Q∞ andR

k+ are two convex polyhedra
without relative interior points in common. Hence, in view of Theorem 2.3.10 there
is a nonzero vector λ ∈ R

k separating them, that is

〈λ, v〉 � 〈λ, d〉 for all v ∈ Q∞ and d ∈ R
k+.

In particular, for v = 0 and for d being usual coordinate unit vectors, we deduce
from the above relation that λ is positive. Moreover, the linear function 〈λ, .〉 is then
non-positive on every asymptotic direction of Q. We apply Theorem 3.1.1 to obtain
a maximum of 〈λ, .〉 on Q. In view of Theorem 4.1.4 that maximum is a weakly
maximal point of Q.

Finally, if Q is a polytope, then its asymptotic cone is trivial. Hence, by the first
assertion, it has maximal points. To prove that it has a maximal vertex, choose any
strictly positive vector λ ∈ R

k and consider the linear problem of maximizing 〈λ, .〉
over Q. In view of Theorem 3.1.3 the optimal solution set contains a vertex, which,
by Theorem 4.1.4, is also a maximal vertex of Q. �

In Example 4.1.5 a positive functional 〈λ, .〉 was given on a polyhedron having
no maximizer that is maximal. This, however, is impossible when the polyhedron
has maximal elements.

Corollary 4.1.8 Assume that Q is a convex polyhedron and λ is a nonzero positive
vector in R

k . If Q has a maximal point and the linear functional 〈λ, .〉 has maximizers
on Q, then among its maximizers there is a maximal point of Q.

Proof Let us denote by Q0 the nonempty intersection of Q with the hyperplane
{y ∈ R

k : 〈λ, y〉 = d} where d is the maximum of 〈λ, .〉 on Q. It is a convex
polyhedron. Since Q has maximal elements, in view of Theorem 4.1.7 one has
Q∞ ∩ R

k+ = {0}, which implies that (Q0)∞ ∩ R
k+ = {0} too. By the same theorem,

Q0 has a maximal element, say y0. We show that this y0 is also a maximal element

http://dx.doi.org/10.1007/978-3-319-21091-9_2
http://dx.doi.org/10.1007/978-3-319-21091-9_2
http://dx.doi.org/10.1007/978-3-319-21091-9_3
http://dx.doi.org/10.1007/978-3-319-21091-9_3
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of Q. Indeed, if not, one could find some y ∈ Q such that y � y0 and y �= y0. Since
λ is positive, we deduce that 〈λ, y〉 � 〈λ, y0〉 = d. Moreover, as y does not belong
to Q0, this inequality must be strict which is a contradiction. �

We say a set Q in the space R
k has the domination property if its elements are

dominated by maximal elements, that is, for every y ∈ Q there is some maximal
element a of Q such that a � y. The weak domination property refers to domination
by weakly maximal elements.

Corollary 4.1.9 A convex polyhedron has the domination property (respectively
weak domination property) if and only if it has maximal elements (respectively weakly
maximal elements).

Proof The “only if” part is clear. Assume a convex polyhedron Q has maximal
elements. In view of Theorem 4.1.7, the asymptotic cone of Q has no nonzero vector
in common with the positive orthant R

k+. Hence so does the section of Q at a given
point a ∈ Q. Again by Theorem 4.1.7 that section has maximal points that dominate
a and by Lemma 4.1.6 they are maximal points of Q. Hence Q has the domination
property. The weak domination property is proven by the same argument. �

We learned in Sect. 2.3 how to compute the normal cone at a given point of a
polyhedron. It turns out that by looking at the normal directions it is possible to say
whether a given point is maximal or not.

Theorem 4.1.10 Let Q be a convex polyhedron in R
k . The following assertions

hold.

(i) y ∈ Q is a maximal point if and only if the normal cone NQ(y) to Q at y contains
a strictly positive vector.

(ii) y ∈ Q is a weakly maximal point if and only if the normal cone NQ(y) to Q at
y contains a nonzero positive vector.

Proof Let y be a point in Q. If the normal cone to Q at y contains a strictly positive
vector, say λ, then by the definition of normal vectors, the functional 〈λ, .〉 attains
its maximum on Q at y. In view of Theorem 4.1.4, y is a maximal point of Q. The
proof of the “only if” part of (i) is based on Farkas’ theorem. We assume that y is
a maximal point of Q and suppose to the contrary that the normal cone to Q at that
point has no vector in common with the interior of the positive orthant R

k+. We may
assume that Q is given by a system of inequalities

〈ai , z〉 � bi , i = 1, · · · , m. (4.1)

The active index set at y is denoted I (y). By Theorem 2.3.24, the normal cone to
Q at y is the positive hull of the vectors ai , i ∈ I (y). Its empty intersection with
int(Rk+) means that the following system has no solution

AI (y)λ � e

λ � 0,

http://dx.doi.org/10.1007/978-3-319-21091-9_2
http://dx.doi.org/10.1007/978-3-319-21091-9_2
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where AI (y) denotes the matrix whose columns are ai , i ∈ I (y) and e is the vector
whose components are all equal to one. By introducing artificial variables z, the
above system is equivalent to the system

[
AI (y) (−I )

] (
λ
z

)
= e

λ � 0

z � 0.

Apply Farkas’ theorem (Theorem 2.2.3) to obtain a nonzero positive vector v such
that

〈ai , v〉 � 0 for all i ∈ I (y).

The inequalities (4.1) corresponding to the inactive indices at y being strict, we may
find a strictly positive number t such that

〈ai , y + tv〉 � bi for all i = 1, · · · , m.

In other words, the point y + tv belongs to Q. Moreover, y + tv � y and y + tv �= y
which contradicts the hypothesis. This proves (i).

As to the second assertion, the “if" part is clear, again, Theorem 4.1.4 is in use. For
the converse part, we proceed the same way as in (i). The fact that the intersection
of NQ(y) with the positive orthant R

k+ consists of the zero vector only, means that
the system

AI (y)λ � 0

λ � 0

has no nonzero solution. Applying Corollary 2.2.5 we deduce the existence of a
strictly positive vector v such that

〈ai , v〉 � 0 for all i ∈ I (y).

Then, as before, the vector y + tv with t > 0 sufficiently small, belongs to Q and
y + tv > y, which is a contradiction. �

Example 4.1.11 Consider a convex polyhedron Q in R
3 determined by the system

⎛
⎜⎜⎜⎜⎝
1 1 1
0 1 1
1 0 1
0 0 −1
0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎝ x1

x2
x3

⎞
⎠ �

⎛
⎜⎜⎜⎜⎝
1
1
1
0
1

⎞
⎟⎟⎟⎟⎠ .

http://dx.doi.org/10.1007/978-3-319-21091-9_2
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We analyze the point y = (1/3, 1/3, 1/3)T ∈ Q. Its active index set is I (y) = {1}.
By Theorem 2.3.24 the normal cone to Q at that point is generated by the vector
(1, 1, 1)T . According to Theorem 4.1.10 the point y is a maximal point of Q. Now,
take another point of Q, say z = (−1, 0, 1)T . Its active index set consists of two
indices 2 and 5. The normal cone to Q at z is generated by two directions (0, 1, 1)T

and (0, 0, 1)T . It is clear that this normal cone contains no strictly positive vector,
hence the point z is not a maximal point of Q because zT ≤ (0, 0, 1)T . It is a weakly
maximal point, however, because normal directions at z are positive. Finally, we
choose a point w = (0, 0, 0)T in Q. Its active index set is I (w) = {4}. The normal
cone to Q atw is the cone generated by the direction (0, 0,−1)T . This cone contains
no positive vector, hence the point w is not weakly maximal. This can also be seen
from the fact that w is strictly dominated by y.

Scalarizing vectors

In remaining of this section we shall use the terminology of efficient points instead
of (Pareto) maximal points in order to avoid possible confusion with the concept of
maximal element of a family of sets by inclusion. Given a family {Ai : i ∈ I } of
sets, we say that Ai0 is maximal (respectively minimal) if there is no element Ai

of the family such that Ai �= Ai0 and Ai0 ⊂ Ai (respectively Ai0 ⊃ Ai ). Another
formulation of Theorem 4.1.10 is viewed by maximizing linear functionals on the
set Q.

Corollary 4.1.12 Let Q be a convex polyhedron in R
k . Then the following statements

hold.

(i) y ∈ Q is an efficient point if and only if there is a strictly positive vector λ ∈ R
k

such that y maximizes the functional 〈λ, .〉 on Q.
(ii) y ∈ Q is a weakly efficient point if and only if there is a nonzero positive vector

λ ∈ R
k such that y maximizes the functional 〈λ, .〉 on Q.

Proof This is immediate from the definition of normal cones and from Theorem
4.1.10. �

The vector λ mentioned in this corollary is called a scalarizing vector (or weakly
scalarizing vector in (ii)) of the set Q. We remark that not every strictly positive
vector is a scalarizing vector of Q like not every strictly positive functional attains
its maximum on Q. Moreover, an efficient point of Q may maximize a number of
scalarizing vectors that are linearly independent, and vice versa, a scalarizing vector
may determine several maximizers on Q. For a given polyhedron Q that has efficient
elements, the question of how to choose a vector λ so that the functional associated
with it furnishes a maximizer is not evident. Analytical choice of positive directions
such as the one discussed in Example 4.1.11 is conceivable andwill be given in details
later. Random generating methods or uniform divisions of the standard simplex do
not work in many instances. In fact, look at a simple problem of finding efficient
points of the convex polyhedral set given by the inequality

http://dx.doi.org/10.1007/978-3-319-21091-9_2
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x1 + √
2x2 � 1

in the two-dimensional space R
2. Except for one direction, every positive vector λ

leads to a linear problem of maximizing 〈λ, x〉 over that polyhedron with unbounded
objective. Hence, using positive vectors λi of a uniform partition

λi = i

p

(
1
0

)
+ p − i

p

(
0
1

)

of the simplex [(1, 0)T , (0, 1)T ] of the space R
2 for whatever the positive integer p

be, will never generate efficient points of the set.

Any nonzero positive vector of the spaceR
k is a positive multiple of a vector from

the standard simplex Δ. This combined with Corollary 4.1.12 yields the following
equalities

Max(Q) =
⋃

λ∈riΔ
argmaxQ〈λ, .〉

WMax(Q) =
⋃
λ∈Δ

argmaxQ〈λ, .〉

where argmaxQ〈λ, .〉 is the set of all maximizers of the functional 〈λ, .〉 on Q. Given
a point y ∈ Q denote

Δy = {
λ ∈ Δ : y ∈ argmaxQ〈λ, .〉}

ΔQ =
⋃
y∈Q

Δy .

The setΔQ is called the weakly scalarizing set of Q andΔy is the weakly scalarizing
set of Q at y (Fig. 4.4). By Corollary 4.1.12 the set Δy is nonempty if and only if
the point y is a weakly efficient element of Q. Hence when Q has weakly efficient
points, the set ΔQ can be expressed as

ΔQ =
⋃

y∈WMax(Q)

Δy, (4.2)

in which every set Δy is nonempty. By definition a vector λ ∈ Δ belongs to Δy if
and only if

〈λ, y′ − y〉 � 0 for all y′ ∈ Q.

The latter inequality signifies thatλ is a normal vector to Q at y, and so (4.2) becomes

ΔQ =
⋃

y∈WMax(Q)

NQ(y) ∩ Δ.
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Fig. 4.4 Scalarizing set at y

y

Q

Δy

Let F = {F1, · · · , Fq} be the collection of all faces of Q and let N (Fi ) be the
normal cone to Fi , which, by definition, is the normal cone to Q at a relative interior
point of Fi . Since each element of Q is a relative interior point of some face, the
decomposition (4.2) produces the following decomposition of ΔQ :

ΔQ =
⋃
i∈I

Δi , (4.3)

where Δi = N (Fi ) ∩ Δ and I is the set of those indices i from {1, · · · , q} such that
the faces Fi are weakly efficient. We note that when a face is not weakly efficient, the
normal cone to it does not meet the simplex Δ. Remember that a face of Q is weakly
efficient if all elements of it are weakly efficient elements of Q, or equivalently if a
relative interior point of it is a weakly efficient element. A face that is not weakly
efficient may contain weakly efficient elements on its proper faces.

We say a face of Q is a maximal weakly efficient face if it is weakly efficient and
no weakly efficient face of Q contains it as a proper subset. It is clear that when
a convex polyhedron has weakly efficient elements, it does have maximal weakly
efficient faces. Below we present some properties of the decompositions (4.2) and
(4.3) of the weakly scalarizing set.

Lemma 4.1.13 If P and Q are convex polyhedra with P ∩ Q �= ∅, then there are
faces P ′ ⊆ P and Q′ ⊆ Q such that P ∩ Q = P ′ ∩ Q′ and ri(P ′) ∩ ri(Q′) �= ∅.

Moreover, if the interior of Q is nonempty and contains some elements of P, then
ri(P) ∩ int(Q) �= ∅ and ri(P ∩ Q) = ri(P) ∩ int(Q).

Proof Let x be a relative interior point of the intersection P ∩ Q. Let P ′ ⊆ P
and Q′ ⊆ Q be faces that contain x in their relative interiors. These faces meet
the requirements of the lemma. Indeed, it suffices to show that every point y from
P ∩ Q belongs to P ′ ∩ Q′. Since x is a relative interior point of P ∩ Q, the segment
[x − ε(x − y), x + ε(x − y)] belongs to that intersection when ε > 0 is sufficiently
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small. Moreover, as P ′ is a face, this segment must lie in P ′ which implies that y
lies in P ′. The same argument shows that y lies in Q′, proving the first part of the
lemma.

For the second part it suffices to observe that P is the closure of its relative interior.
Hence it has relative interior points inside the interior of Q. The last equality of the
conclusion is then immediate. �

Theorem 4.1.14 The weakly scalarizing set ΔQ is a polytope. Moreover, if ΔQ is
nonempty, the elements of the decomposition (4.2) and (4.3) are polytopes and satisfy
the following conditions:

(i) If Δy = Δz for some weakly efficient elements y and z, then there is i ∈ I such
that y, z ∈ Fi and Δy = Δz = Δi .

(ii) If Fi is a maximal weakly efficient face of Q, then Δi is a minimal element of
the decomposition (4.3). Conversely, if the polytope Δi is minimal among the
polytopes of the decomposition (4.3), then there is a maximal weakly efficient
face Fj such that Δ j = Δi .

(iii) For all i, j ∈ I with i �= j , one has either Δi = Δ j or ri(Δi ) ∩ ri(Δ j ) = ∅.
(iv) Let Fi and Fj be two weakly efficient adjacent vertices (zero-dimensional faces)

of Q. Then the edge joining them is weakly efficient if and only if Δi ∩Δ j �= ∅.

Proof SinceΔy is emptywhen y is not a weakly efficient point of Q, wemay express
ΔQ as

ΔQ =
⋃
y∈Q

Δy =
⋃
y∈Q

(NQ(y) ∩ Δ) = NQ ∩ Δ

which proves that ΔQ is a bounded polyhedron because the normal cone NQ is a
polyhedral cone. Likewise, the sets Δy = NQ(y) ∩ Δ and Δi = N (Fi ) ∩ Δ are
convex polytopes.

To establish (i) we apply Lemma 4.1.13 to the intersections Δy = NQ(y) ∩ Δ

and Δz = NQ(z)∩Δ. There exist faces N ⊆ NQ(y), M ⊆ NQ(z) and Δy,Δz ⊆ Δ

such that

NQ(y) ∩ Δ = N ∩ Δy, ri(N ) ∩ ri(Δy) �= ∅
NQ(z) ∩ Δ = M ∩ Δz, ri(M) ∩ ri(Δz) �= ∅.

Choose any vector ξ from the relative interior ofΔy . Then it is also a relative interior
vector of the faces N , M ,Δy andΔz . This implies that N = M andΔy = Δz . Using
Theorem 2.3.26 we find a face Fi of Q such that N (Fi ) = N . Then Fi contains y
and z and satisfies

Δi = N (Fi ) ∩ Δ = N ∩ Δ = Δy = Δz .

For (ii) assume Fi is a maximal weakly efficient face. Assume that Δ j is a subset
of Δi for some j ∈ I . We choose any vector ξ from Δ j and consider the face F ′

http://dx.doi.org/10.1007/978-3-319-21091-9_2
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consisting of all maximizers of 〈ξ, .〉 on Q. Then F ′ is a weakly efficient face and
contains Fj and Fi . As Fi is maximal, we must have F ′ = Fi . Thus, Fj ⊆ Fi and

Δi = N (Fi ) ∩ Δ ⊆ N (Fj ) ∩ Δ = Δ j .

Conversely, let Δi be a minimal element among the polytopes Δ j , j ∈ I . If Fi is
maximal weakly efficient face, we are done. If it is not, we find a maximal weakly
efficient face Fj containing Fi . Then Δ j = N (Fj ) ∩ Δ ⊆ N (Fi ) ∩ Δ = Δi and
Δ j = Δi by hypothesis.

We proceed to (iii). Assume that the relative interior ofΔi and the relative interior
of Δ j have a vector ξ in common. In view of Lemma 4.1.13 one can find four faces:
N i of N (Fi ), N j of N (Fj ), Δi and Δ j of Δ such that

N (Fi ) ∩ Δ = N i ∩ Δi , ri(N i ) ∩ ri(Δi ) �= ∅
N (Fj ) ∩ Δ = N j ∩ Δ j , ri(N j ) ∩ ri(Δ j ) �= ∅.

According to Theorem 2.3.26 there are faces F� and Fm of Q which respectively
contain Fi and Fj with N (F�) = N i and N (Fm) = N j . Then ξ is a relative interior
vector of the faces N (F�), N (Fm), Δi and Δ j . We deduce that the face Δi coincides
with Δ j , and F� coincides with Fm . Consequently, Δi = Δ j .

To prove the last property we assume Fi and Fj are adjacent vertices (zero-
dimensional faces) of Q. Let a one-dimensional face Fl be the edge joining them.
According to Corollary 2.3.28 we have N (Fl) = N (Fi ) ∩ N (Fj ). Then Δl =
Δi ∩ Δ j which shows that Fl is weakly efficient if and only if the latter intersection
is nonempty. �

Note that two different faces of Q may have the same weakly scalarizing set.
For instance the singleton {(0, 0, 1)T } is the weakly scalarizing set for all weakly
efficient faces of the polyhedron R

2+ × {0} in R
3.

In order to treat efficient elements of Q we need to work with the relative interior
of Δ. Corresponding notations will be set as follows

Δr
Q = ΔQ ∩ ri(Δ)

Δr
y = Δy ∩ ri(Δ)

Δr
i = Δi ∩ ri(Δ).

The set Δr
Q is called the scalarizing set of Q. It is clear that y ∈ Q is efficient if and

only if Δr
y is nonempty, and it is weakly efficient, but not efficient if and only if Δy

lies on the border of Δ. The decompositions of the weakly scalarizing set induce the
following decompositions of the scalarizing set

Δr
Q =

⋃
y∈Max(Q)

Δr
y (4.4)

http://dx.doi.org/10.1007/978-3-319-21091-9_2
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and

Δr
Q =

⋃
i∈I0

Δr
i (4.5)

where I0 consists of those indices i from {1, · · · , q} for which Fi are efficient.

Theorem 4.1.15 Assume that the scalarizing set Δr
Q is nonempty. Then

ΔQ = cl(Δr
Q).

Moreover the decompositions (4.4) and (4.5) of Δr
Q satisfy the following properties:

(i) If Δr
y = Δr

z for some efficient elements y and z, then there is s ∈ I0 such that
y, z ∈ ri(Fs) and Δr

y = Δr
z = Δr

s .
(ii) For i ∈ I0 the face Fi is a maximal efficient face if and only if Δr

i is a minimal
element of the decomposition (4.5).

(iii) For all i, j ∈ I0 with i �= j , one has ri(Δr
i ) ∩ ri(Δr

j ) = ∅.
(iv) Let Fi and Fj be two efficient adjacent vertices (zero-dimensional efficient

faces) of Q. Then the edge joining them is efficient if and only if Δr
i ∩ Δr

j �= ∅.

Proof Since the set Δr
Q is nonempty, the set ΔQ does not lie on the border of Δ.

Being a closed convex set,ΔQ is the closure of its relative interior. Hence the relative
interior of ΔQ and the relative interior of Δ have at least one point in common and
we deduce

ΔQ = ΔQ ∩ Δ = cl
(
ri(ΔQ ∩ Δ)

)
= cl

(
riΔQ ∩ riΔ

) ⊆ cl
(
ΔQ ∩ riΔ

)
⊆ cl

(
Δr

Q

)
.

The converse inclusion being evident, we obtain equality ΔQ = cl(Δr
Q).

To prove (i) we apply the second part of Lemma 4.1.13 to have

ri
[
cone(Δr

y)
] = ri

[
NQ(y) ∩ R

k+
] = ri

[
NQ(y)

] ∩ int(Rk+)

ri
[
cone(Δr

z)
] = ri

[
NQ(z) ∩ R

k+
] = ri

[
NQ(z)

] ∩ int(Rk+).

If y and z were relative interior points of two different faces, in view of Theorem
2.3.26 we would have ri[NQ(y)] ∩ ri[NQ(z)] = ∅ that contradicts the hypothesis.
Hence they are relative interior points of the same face, say Fs . By definition N (Fs) =
NQ(y) and we deduce Δr

s = Δr
y .

For (ii) assume Fi is amaximal efficient face. If for some j ∈ I0 one hasΔr
j ⊆ Δr

i ,
then by Lemma 4.1.13 there is some strictly positive vector that lies in the relative
interior of the normal cone N (Fj ) and in the normal cone N (Fi ). We deduce that
either Fi = Fj , or Fi is a proper face of Fj . The last case is impossible because Fj is
also an efficient face and Fi is maximal. Conversely, if Fi is not maximal, then there

http://dx.doi.org/10.1007/978-3-319-21091-9_2
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is a face Fj that is efficient and contains Fi as a proper face. We have Δ j ⊆ Δi .
This inclusion is strict because the relative interiors of N (Fi ) and N (Fj ) do not meet
each other. Thus, Δi is not minimal.

We proceed to (iii). If ri(Δr
i ) ∩ ri(Δr

j ) �= ∅, in view of Theorem 4.1.14 one has
Δi = Δ j , and henceΔr

i = Δr
j . By (i), there is some face that contains relative interior

points of Fi and Fj in its relative interior. This implies Fi = Fj a contradiction.
For the last property we know that the normal cone to the edge joining the vertices

Fi and Fj satisfies N ([Fi , Fj ]) = N (Fi )∩N (Fj ). Hence the edge [Fi , Fj ] is efficient
if and only if the normal cone to it meets the set ri(Δ), or equivalently Δr

i ∩ Δr
j is

nonempty. �

A practical way to compute the weakly scalarizing set is to solve a system of
linear equalities when the polyhedron Q is given by a system of linear inequalities.

Corollary 4.1.16 Assume the polyhedron Q in R
k is determined by the system

〈ai , y〉 � bi , i = 1, · · · , m.

Then for every y ∈ Q, the set Δy consists of all solutions z to the following system

z1 + · · · + zk = 1∑
i∈I (y)

αi a
i = z

zi � 0, i = 1, · · · , k,αi � 0, i ∈ I (y).

In particular the weakly scalarizing set ΔQ is the solution set to the above system
with I = {1, · · · , m}.
Proof According to Theorem 2.3.24 the normal cone to Q at y is the positive hull
of the vectors ai , i ∈ I (y). Hence the set Δy is the intersection of the positive
hull of these vectors and the simplex Δ, which is exactly the solution set to the
system described in the corollary. For the second part of the corollary it suffices to
observe that the normal cone of Q is the polar cone of the asymptotic cone of Q
(Theorem 2.3.26) which, in view of Theorem 2.3.19, is the positive hull of the vectors
ai , i = 1, · · · , m. �

Example 4.1.17 Consider the polyhedron defined by

y1 − y2 − y3 � 1
2y1 + y3 � 0.

http://dx.doi.org/10.1007/978-3-319-21091-9_2
http://dx.doi.org/10.1007/978-3-319-21091-9_2
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By Corollary 4.1.16 the weakly scalarizing set ΔQ is the solution set to the system

z1 + z2 + z3 = 1

α1 + 2α2 = z1
−α1 = z2

−α1 + α2 = z3
z1, z2, z3,α1,α2 � 0.

This produces a unique solution z with z1 = 2/3, z2 = 0 and z3 = 1/3. Then ΔQ

consists of this solution only. The scalarizing set Δr
Q is empty, which shows that Q

has no efficient point. Its weakly efficient set is determined by the problem

maximize 2
3 y1 + 1

3 y3
subject to y ∈ Q.

It follows from the second inequality determining Q that the maximum value of the
objective function is zero and attained on the face given by the equations 2y1+y3 = 0
and y1 − y2 − y3 � 1.

In the next example we show how to compute the scalarizing set when the poly-
hedron is given by a system of equalities (see also Exercise 4.4.13 at the end of this
chapter).

Example 4.1.18 Let Q be a polyhedron in R
3 determined by the sytem

y1 + y2 + y3 = 1
y1 − y2 = 0

y3 � 0.

We consider the solution y = (1/2, 1/2, 0)T and want to compute the scalarizing set
at this solution if it exists. As the proof of Theorem 4.1.14 indicates, a vector λ ∈ Δ

in R
3 is a weakly scalarizing vector of Q at y if and only if it is normal to Q at that

point. Since the last component of y is zero, a vector λ is normal to Q at y if and
only if there are real numbers α,β and a positive number γ such that

λ = α

⎛
⎝1
1
1

⎞
⎠ + β

⎛
⎝ 1

−1
0

⎞
⎠ − γ

⎛
⎝ 0
0
1

⎞
⎠ .

We deduce λ ∈ Δy if and only if

α + β � 0

α − β � 0
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α − γ � 0

(α + β) + (α − β) + (α − γ) = 1

and hence Δy consists of vectors λ whose components satisfy 0 � λ3 � 1/3,
λ1 + λ2 = 1 − λ3 and λ1,λ2 � 0.

To obtain the scalarizing vectors, it suffices to chooseλ as abovewith an additional
requirement that λi > 0 for i = 1, 2, 3.

Structure of the set of efficient points

Given a convex polyhedron Q in the space R
k , the set of its efficient elements is not

simple. For instance, it is generally not convex, and an edge of it is not necessarily
efficient even if its two extreme end-points are efficient vertices. Despite of this, a
number of nice properties of this set can be scrutinized.

Corollary 4.1.19 Let Q be a convex polyhedron in R
k . The following statements

hold.

(i) If a relative interior point of a face of Q is efficient or weakly efficient, then so
is every point of that face.

(ii) If Q has vertices, it has an efficient vertex (respectively a weakly efficient vertex)
provided that it has efficient (respectively weakly efficient) elements.

Proof Since the normal cone to Q at every point of a face contains the normal cone
at a relative interior point, the first statement follows directly from Theorem 4.1.10.

For the second statement let y be an efficient point of the polyhedron Q. By
Theorem 4.1.10 one can find a strictly positive vector λ such that y is a maximizer
of the linear functional 〈λ, .〉 on Q. The face which contains y in its relative interior
maximizes the above functional. According to Corollary 2.3.14 there is a vertex of
Q inside that face and in view of Theorem 4.1.10 this vertex is an efficient point of
Q. The case of weakly efficient points is proven by the same argument. �

A subset P of R
k is called arcwise connected if for any pair of points y and z in

P , there are a finite number of points y0, · · · , y� in P such that y0 = y, y� = z and
the segments [yi , yi+1], i = 0, · · · , � − 1 lie all in P .

Theorem 4.1.20 The sets of all efficient points and weakly efficient points of a convex
polyhedron consist of faces of the polyhedron and are closed and arcwise connected.

Proof By analogy, it suffices to prove the theorem for the efficient set. According to
Corollary 4.1.19, if a point ȳ in Q is efficient, then the whole face containing y in
its relative interior is a face of efficient elements. Hence, Max(Q) consists of faces
of Q if it is nonempty. Moreover, as faces are closed, their union is a closed set.

Now we prove the connectedness of this set by assuming that Q has efficient
elements. Let y and z be any pair of efficient points of Q. We may assume without
loss of generality that y is a relative interior point of a face Qy and z is a relative
interior point of a face Qz . Consider the decomposition (4.5) of the scalarizing set

http://dx.doi.org/10.1007/978-3-319-21091-9_2
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Δr
Q . For a face F of Q, the scalarizing set N (F)∩ ri(Δ) is denoted by Δr

i(F). Let λy

be a relative interior point of the set Δr
i(Qy)

and λz a relative interior point of Δr
i(Qz)

.
Then the segment joining λy and λz lies in Δr

Q . The decomposition of the latter set
induces a decomposition of the segment [λy,λz] by [λi ,λi+1], i = 0, · · · , � − 1
where λ0 = λy , λ� = λz . Let Q1, · · · , Q� be faces of Q such that

[λ j ,λ j+1] ⊆ Δr
i(Q j+1)

j = 0, · · · , � − 1.

For every j , we choose a relative interior point y j of the face Q j . Then λ j belongs
to the normal cones to Q at y j and y j+1. Consequently, the points y j and y j+1 lie
in the face argmaxQ〈λ j , .〉 and so does the segment joining them. As λ j ∈ Δr

Q , by

Theorem 4.1.10 the segment [y j , y j+1] consists of efficient points of Q. Moreover,
as the vector λ0 belongs to the normal cones to Q at y and at y1, we conclude that
the segment [y, y1] is composed of efficient points of Q. Similarly we have that
[y�−1, z] lies in the set Max(Q). Thus, the union [y, y1] ∪ [y1, y2] ∪ · · · [y�−1, z]
forms a path of efficient elements joining y and z. This completes the proof. �

We know that every efficient point of a convex polyhedron is contained in a
maximal efficient face. Hence the set of efficient points is the union of maximal
efficient faces. Dimension of a maximal efficient face may vary from zero to k − 1.

Corollary 4.1.21 Let Q be a convex polyhedron in R
k . The following statements

hold.

(i) Q has a zero-dimensional maximal efficient face if and only if its efficient set is
a singleton.

(ii) Every (k − 1)-dimensional efficient face of Q, if any exists, is maximal. In
particular in the two dimensional space R

2 every efficient edge of Q is maximal
if the efficient set of Q consists of more than two elements.

(iii) An efficient face F of Q is maximal if and only if the restriction of the decom-
position of Δr

Q on ΔF consists of one element only.

Proof The first statement follows from the arcwise connectedness of the efficient
set of Q. In R

k a proper face of Q is of dimension at most k − 1. Moreover, a k-
dimensional polyhedron cannot be efficient, for its interior points are not maximal.
Hence, if the dimension of an efficient face is equal to k − 1, it is maximal.

The last statement follows immediately from Theorem 4.1.15. �

Example 4.1.22 Let Q be a polyhedron in R
3 defined by the system

x1 + x3 � 1
x2 + x3 � 1

x1, x2, x3 � 0.
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Since Q is bounded, it is evident that the weakly scalarizing set ΔQ is the whole
standard simplex Δ and the scalarizing set is the relative interior of Δ. Denote

q1 =
⎛
⎝ 1
0
0

⎞
⎠ , q2 =

⎛
⎝ 0
1
0

⎞
⎠ , q3 =

⎛
⎝0
0
1

⎞
⎠ , q4 =

⎛
⎝1/2

0
1/2

⎞
⎠ , q5 =

⎛
⎝ 0
1/2
1/2

⎞
⎠ .

Applying Corollary 4.1.16 we obtain the following decomposition of Δr
Q :

(i) ri[q4, q5] is the scalarizing set of the face determined by the equalities x1+x3 =
1 and x2 + x3 = 1;

(ii) ri(co([q3, q4, q5])) is the scalarizing set of the face determined by the equali-
ties x1 + x3 = 1, x2 + x3 = 1 and x1 = x2 = 0;

(iii) ri(co([q1, q2, q4, q5])) is the scalarizing set of the face determined by the equal-
ities x1 + x3 = 1, x2 + x3 = 1 and x3 = 0.

In view of Corollary 4.1.21 the one dimensional face (edge) determined by x1+x3 =
1 and x2 + x3 = 1 is a maximal efficient face.

4.2 Multiobjective Linear Problems

The central multiobjective linear programming problem which we propose to study
throughout is denoted (MOLP) and written in the form :

Maximize Cx

subject to x ∈ X,

where X is a nonempty convex polyhedron in R
n and C is a real k × n-matrix. This

problem means finding a Pareto efficient (Pareto maximal) solution x̄ ∈ X such that
Cx̄ ∈ Max(C(X)). In other words, a feasible solution x̄ solves (MOLP) if there is
no feasible solution x ∈ X such that

Cx̄ � Cx and Cx̄ �= Cx .

The efficient solution set of (MOLP) is denoted S(MOLP). When x is an efficient
solution, the vector Cx is called an efficient or maximal value of the problem. In
a similar manner one defines the set of weakly efficient solutions WS(MOLP) to be
the set of all feasible solutions whose image by C belong to the weakly efficient
set WMax(C(X)). It is clear that an efficient solution is a weakly efficient solution,
but not vice versa as we have already discussed in the preceding section. When the
feasible set X is given by the system

Ax = b

x � 0,
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where A is a real m ×n-matrix and b is a real m-vector, we say that (MOLP) is given
in standard form, and it is given in canonical form if X is determined by the system

Ax � b.

The matrix C is also considered as a linear operator from R
n to R

k , and so its kernel
consists of vectors x with Cx = 0.

Theorem 4.2.1 Assume that the problem (MOLP) has feasible solutions. Then the
following assertions hold.

(i) (MOLP) admits efficient solutions if and only if

C(X∞) ∩ R
k+ = {0}.

(ii) (MOLP) admits weakly efficient solutions if and only if

C(X∞) ∩ int(Rk+) = ∅.

In particular, if all asymptotic rays of X belong to the kernel of C, then (MOLP) has
an efficient solution.

Proof By definition, (MOLP) has an efficient solution if and only if the set C(X)

has an efficient point, which, in virtue of Theorem 4.1.7, is equivalent with

[C(X)]∞ ∩ R
k+ = {0}.

Now the first assertion is deduced from this equivalence and from the fact that the
asymptotic cone of C(X) coincides with the cone C(X∞) (Corollary 2.3.17). The
second assertion is proven by a similar argument. �

Example 4.2.2 Assume that the feasible set X of the problem (MOLP) is given by
the system

x1 + x2 − x3 = 5

x1 − x2 = 4

x1, x2, x3 � 0.

It is nonempty and parametrically presented as

X =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

t + 4

t

2t − 1

⎞
⎟⎠ : t � 1

2

⎫⎪⎬
⎪⎭ .

http://dx.doi.org/10.1007/978-3-319-21091-9_2
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Its asymptotic cone is given by

X∞ =
⎧⎨
⎩

⎛
⎝ t

t
2t

⎞
⎠ : t � 0

⎫⎬
⎭ .

Consider an objective function C with values in R
2 given by the matrix

C =
(

1 0 1
−2 −4 0

)
.

Then the image of X∞ under C is the set

C(X∞) =
{(

3t
−6t

)
: t � 0

}
,

that has only the zero vector in commonwith the positive orthant. In view of Theorem
4.2.1 the problem has maximal solutions.

Now we choose another objective function C ′ given by

C ′ =
(−1 1 0

0 0 1

)
.

Then the image of X∞ under C ′ is the set

C ′(X∞) =
{(

0
2t

)
: t � 0

}
,

that has no common point with the interior of the positive orthant. Hence the problem
admits weakly efficient solutions. It has no efficient solution because the intersection
of C ′(X∞) with the positive orthant does contain positive vectors.

Definition 4.2.3 The objective function of the problem (MOLP) is said to be
bounded (respectively weakly bounded) from above if there is no vector v ∈ X∞
such that

Cv ≥ 0 (respectively Cv > 0).

We shall simply say that (MOLP) is bounded if its objective function is bounded
from above. Of course, a bounded problem is weakly bounded and not every weakly
bounded problem is bounded. A sufficient condition for a problem to be bounded is
given by the inequality

Cx � a for every x ∈ X,

where a is some vector from R
k . This condition is also necessary when k = 1, but

not so when k > 1.
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Example 4.2.4 Consider the bi-objective problem

Maximize

(−3 1 1
0 1 0

) ⎛
⎝ x1

x2
x3

⎞
⎠

subject to

(
1 −1 0
0 0 1

) ⎛
⎝ x1

x2
x3

⎞
⎠ =

(
0
1

)

x1, x2, x3 � 0.

The feasible set and its asymptotic cone are given respectively by

X =
⎧⎨
⎩

⎛
⎝ t

t
1

⎞
⎠ ∈ R

3 : t � 0

⎫⎬
⎭

and

X∞ =
⎧⎨
⎩

⎛
⎝ t

t
0

⎞
⎠ ∈ R

3 : t � 0

⎫⎬
⎭

Then for every asymptotic direction v = (t, t, 0)T ∈ X∞ one has

Cv =
(−2t

t

)
� 0.

By definition the objective function is bounded. Nevertheless the value set of the
problem consists of vectors

C(X) =
{(−2t + 1

t

)
: t � 0

}

for which no vector a ∈ R
2 satisfies Cx � a for all x ∈ X .

Corollary 4.2.5 The problem (MOLP) has efficient solutions (respectively weakly
efficient solutions) if and only if its objective function is bounded (respectively weakly
bounded).

Proof This is immediate from Theorem 4.2.1. �

The following theorem provides a criterion for efficiency in terms of normal
directions.
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Theorem 4.2.6 Let x̄ be a feasible solution of (MOLP). Then

(i) x̄ is an efficient solution if and only if the normal cone NX (x̄) to X at x̄ contains
some vector CT λ with λ a strictly positive vector of R

k;
(ii) x̄ is a weakly efficient point if and only if the normal cone NX (x̄) to X at x̄

contains some vector CT λ with λ a nonzero positive vector of R
k .

Proof If the vector CT λ with λ strictly positive, is normal to X at x̄ , then

〈CT λ, x − x̄〉 ≤ 0 for every x ∈ X

which means that

〈λ, Cx〉 ≤ 〈λ, Cx̄〉 for every x ∈ X.

By Theorem 4.1.4 the vector Cx̄ is an efficient point of the set C(X). By definition,
x̄ is an efficient solution of (MOLP).

Conversely, if Cx̄ is an efficient point of C(X), then by Theorem 4.1.10, the
normal cone to C(X) at Cx̄ contains a strictly positive vector, denoted by λ. We
deduce that

〈CT λ, x − x̄〉 ≤ 0 for all x ∈ X.

This shows that the vector CT λ is normal to X at x̄ . The second assertion is proven
similarly. �

Example 4.2.7 We reconsider the bi-objective problem given in Example 4.2.2

Maximize

(
1 0 1

−2 −4 0

)⎛
⎝ x1

x2
x3

⎞
⎠

subject to
x1 + x2 − x3 = 5
x1 − x2 = 4

x1, x2, x3 � 0.

Choose a feasible solution x = (9/2, 1/2, 0)T corresponding to t = 1/2. The
normal cone to the feasible set at x is the positive hull of the hyperplane of basis
{(1, 1,−1)T , (1,−1, 0)T } (the row vectors of the constraint matrix) and the vector
(0, 0,−1)T (the constraint x3 � 0 is active at this point). In other words, this normal
cone is the half-space determined by the inequality

x1 + x2 + 2x3 � 0. (4.6)

The image of the positive orthant of the value space R
2 under CT is the positive hull

of the vectors
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v1 =
⎛
⎝ 1 −2
0 −4
1 0

⎞
⎠ (

1
0

)
=

⎛
⎝ 1
0
1

⎞
⎠ and v2 =

⎛
⎝ 1 −2
0 −4
1 0

⎞
⎠ (

0
1

)
=

⎛
⎝−2

−4
0

⎞
⎠ .

Using inequality (4.6) we deduce that the vector v2 lies in the interior of the normal
cone to the feasible set at x . Hence that normal cone does contain a vector CT λ with
some strictly positive vector λ. By Theorem 4.2.6 the solution x is efficient. It is
routine to check that the solution x is a vertex of the feasible set.

If we pick another feasible solution, say z = (5, 1, 1)T , then the normal cone to
the feasible set at z is the hyperplane determine by equation

x1 + x2 + 2x3 = 0.

Direct calculation shows that the vectors v1 and v2 lie in different sides of the normal
cone at z. Hence there does exist a strictly positive vector λ in R

2 such that CT λ is
contained in that cone. Consequently, the solution z is efficient too.

4.3 Scalarization

We associate with a nonzero k-vector λ a scalar linear problem, denoted (LPλ)

maximize 〈λ, Cx〉
subject to x ∈ X.

This problem is referred to as a scalarized problem of (MOLP) and λ is called a
scalarizing vector. Now we shall see how useful scalarized problems are in solving
multiobjective problems.

Theorem 4.3.1 The following statements hold.

(i) A feasible solution x̄ of (MOLP) is efficient if and only if there is a strictly positive
k-vector λ such that x̄ is an optimal solution of the scalarized problem (LPλ).

(ii) A feasible solution x̄ of (MOLP) is weakly efficient if and only if there is a nonzero
positive k-vector λ such that x̄ is an optimal solution of the scalarized problem
(LPλ).

Proof If x̄ is an efficient solution of (MOLP), then, in view of Theorem 4.2.6, there
is a strictly positive vector λ such that CT λ is a normal vector to X at x̄ . This implies
that x̄ maximizes the linear functional 〈λ, C(.)〉 on X , that is, x̄ is an optimal solution
of (LPλ).

Conversely, if x̄ solves the problem (LPλ) with λ strictly positive, then CT λ is a
normal cone to X at x̄ . Again, in view of Theorem 4.2.6, the point x̄ is an efficient
solution of (MOLP). The proof of the second statement follows the same line. �
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We notice that Theorem 4.3.1 remains valid if the scalarizing vector λ is taken
from the standard simplex, that is λ1 + · · · + λk = 1. Then another formulation of
the theorem is given by equalities

S(MOLP) =
⋃

λ∈riΔ
S(LPλ) (4.7)

WS(MOLP) =
⋃
λ∈Δ

S(LPλ) (4.8)

where S(LPλ) denotes the optimal solution set of (LPλ). It was already mentioned
that a weakly efficient solution is not necessarily an efficient solution. Consequently
a positive, but not strictly positive vector λ may produce weakly efficient solutions
which are not efficient. Here is an exception.

Corollary 4.3.2 Assume for a positive vector λ, the set consisting of the values Cx
with x being optimal solution of (LPλ) is a singleton, in particular when (LPλ) has
a unique solution. Then every optimal solution of (LPλ) is an efficient solution of
(MOLP).

Proof Let x be an optimal solution of (LPλ) and let y be a feasible solution of
(MOLP) such that Cy � Cx . Since λ is positive, one has

〈λ, Cx〉 � 〈λ, Cy〉.

Actually we have equality because x solves (LPλ). Hence y solves (LPλ) too. By
hypothesis Cx = Cy which shows that x is an efficient solution of (MOLP). �

Equalities (4.7) and (4.8) show that efficient and weakly efficient solutions of
(MOLP) can be generated by solving a family of scalar problems. It turns out that
a finite number of such problems are sufficient to generate the whole efficient and
weakly efficient solution sets of (MOLP).

Corollary 4.3.3 There exists a finite number of strictly positive vectors (respectively
positive vectors) λi , i = 1, · · · , p such that

S(MOLP) =
p⋃

i=1

S(LPλi )

(respectively WS(MOLP) =
p⋃

i=1

S(LPλi ))

Proof It follows from Theorem 3.1.3 that if an efficient solution is a relative interior
of a face of the feasible polyhedron and an optimal solution of (LPλ) for some
strictly positive vector λ, then the whole face is optimal for (LPλ). Since the number
of faces is finite, a finite number of such vectors λ is sufficient to generate all efficient

http://dx.doi.org/10.1007/978-3-319-21091-9_3
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solutions of (MOLP). The case of weakly efficient solutions is treated in the same
way. �

Corollary 4.3.4 Assume that (MOLP) has an efficient solution and (LPλ), where
λ is a nonzero positive vector, has an optimal solution. Then there is an efficient
solution of (MOLP) among the optimal solutions of (LPλ).

Proof Apply Theorem 4.3.1 and the method of Corollary 4.1.8. �

Corollary 4.3.5 Assume that the scalarized problems

maximize 〈ci , x〉
subject to x ∈ X

where ci , i = 1, · · · , k are the columns of the matrix CT , are solvable. Then (MOLP)
has an efficient solution.

Proof The linear problems mentioned in the corollary correspond to the scalarized
problems (LPλ) with λ = (0, · · · , 1, · · · , 0)T where the one is on the i th place,
i = 1, · · · , k. These problems provide weakly efficient solutions of (MOLP). The
linear problem whose objective is the sum 〈c1, x〉+ · · ·+ 〈ck, x〉 is solvable too. It is
the scalarized problemwith λ = (1, · · · , 1)T , and hence by Theorem 4.3.1, (MOLP)
has efficient solutions. �

Decomposition of the scalarizing set

Given a feasible solution x of (MOLP) we denote the set of all vectors λ ∈ Δ such
that x solves (LPλ) by �(x), and the union of all these �(x) over x ∈ X by �(X).
We denote also

�r (x) = �(x) ∩ ri(Δ)

�r (X) = �(X) ∩ ri(Δ).

The sets �r (X) and �(X) are respectively called the scalarizing and weakly scalar-
izing sets of (MOLP). The decomposition results for efficient elements (Theorems
4.1.14 and 4.1.15) are easily adapted to decompose theweakly scalarizing and scalar-
izing sets of the problem (MOLP).We deduce a useful corollary below for computing
purposes.

Corollary 4.3.6 The following assertions hold for (MOLP).

(i) A feasible solution x ∈ X is efficient (respectively weakly efficient ) if and only
if �r (x) (respectively �(x)) is nonempty.

(ii) If X has vertices, then the set �r (X) (respectively �(X)) is the union of the
sets �r (xi ) ( respectively �(xi )) where xi runs over the set of all efficient
(respectively weakly efficient ) vertices of (MOLP).
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(iii) If X is given by system

〈ai , x〉 � bi , i = 1, · · · , m

and x is a feasible solution, then the set �(x) consists of all solutions λ to the
following system

λ1 + · · · + λk = 1∑
i∈I (x)

αi a
i = λ1c1 + · · · + λkck

λi � 0, i = 1, · · · , k,αi � 0, i ∈ I (x).

In particular the weakly scalarizing set �(X) is the solution set to the above
system with I = {1, · · · , m}.

Proof The first assertion is clear from Theorem 4.3.1. For the second assertion we
observe that when X has vertices, every face of X has vertices too (Corollary 2.3.6).
Hence the normal cone of X is the union of the normal cones to X at its vertices.
Moreover, by writing the objective function 〈λ, C(.)〉 of (LPλ) in the form 〈CT λ, .〉,
we deduce that

�(x) = {λ ∈ R
k : CT λ ∈ NX (x) ∩ CT (Δ)}. (4.9)

Consequently,

�(X) =
⋃
x∈X

�(x)

=
⋃{

λ : CT λ ∈ NX (x) ∩ CT (Δ), x ∈ X
}

=
⋃{

λ : CT λ ∈ NX (x) ∩ CT (Δ), x is a vertex of X
}

=
⋃{

�(x) : x is a weakly efficient vertex of X
}
.

The proof for efficient solutions is similar. The last assertion is derived from (4.9)
and Corollary 4.1.16. �

Example 4.3.7 We reconsider the bi-objective problem

Maximize

(
1 1
2 −1

) (
x1
x2

)

subject to
x1 + x2 � 1

3x1 + 2x2 � 2.

Wewish to find theweakly scalarizing set of this problem.According to the preceding
corollary, it consists of positive vectors λ from the standard simplex of R

2, solutions
to the following system:

http://dx.doi.org/10.1007/978-3-319-21091-9_2
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λ1 + λ2 = 1

α1

(
1
1

)
+ α2

(
3
2

)
= λ1

(
1
1

)
+ λ2

(
2

−1

)
α1,α2 � 0,λ1,λ2 � 0.

Solving this system we obtain λ =
(

t
1 − t

)
with 7/8 � t � 1. For t = 1, the

scalarized problem associated with λ is of the form

maximize x1 + x2

subject to
x1 + x2 � 1

3x1 + 2x2 � 2.

It can be seen that x solves this problem if and only if x1+ x2 = 1 and x1 � 0. These
solutions form the set of weakly efficient solutions of the multiobjective problem.

For t = 7/8, the scalarized problem associated with λ = (7/8, 1/8)T is of the
form

maximize
9

8
x1 + 3

4
x2

subject to
x1 + x2 � 1

3x1 + 2x2 � 2.

Its optimal solutions are given by 3x1 + 2x2 = 2 and x1 � 0. Since λ is strictly
positive, these solutions are efficient solutions of the multiobjective problem. If we
choose λ = (1/2, 1/2)T outside of the scalarizing set, then the associated scalarized
problem has no optimal solution.

Structure of the efficient solution set

We knew in Chap.3 that the optimal solution set of a scalar linear problem is a
face of the feasible set. This property, unfortunately, is no longer true when the
problem is multiobjective. However, a few interesting properties of the efficient set
of a polyhedron we established in the first section are still valid for the efficient
solution set and exposed in the next theorem.

Theorem 4.3.8 The efficient solutions of the problem (MOLP) have the following
properties.

(i) If a relative interior point of a face of X is an efficient or weakly efficient solution,
then so is every point of that face.

(ii) If X has a vertex and (MOLP) has an efficient (weakly efficient) solution, then
it has an efficient (weakly efficient) vertex solution.

(iii) The efficient and weakly efficient solution sets of (MOLP) consist of faces of the
feasible polyhedron and are closed and arcwise connected.

http://dx.doi.org/10.1007/978-3-319-21091-9_3
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Proof Since the normal cone to X at every point of a face contains the normal cone
at a relative interior point, the first property follows directly from Theorem 4.2.6.

Further, under the hypothesis of (ii) there is a strictly positive vector λ ∈ R
k

such that the scalarized problem (LPλ) is solvable. The argument in proving (ii) of
Corollary 4.1.19 is applicable to obtain an optimal vertex of (LPλ) which is also an
efficient vertex solution of (MOLP).

The proof of the last property is much similar to the one of Theorem 4.1.15.
We first notice that in view of (i) the efficient and weakly efficient solution sets are
composed of faces of the feasible set X , and as the number of faces of X is finite, they
are closed. We now prove the arcwise connectedness of the weakly efficient solution
set, the argument going through for efficient solutions too. Let x and y be twoweakly
efficient solutions, relative interior points of efficient faces Xx and X y of X . Let λx

and λy be relative interior vectors of the weakly scalarizing sets �(Xx ) and �(X y).
The decomposition of the weakly scalarizing set �(X) induces a decomposition of
the segment joining λx and λy by

[λx ,λy] = [λ1,λ2] ∪ [λ2,λ3] ∪ · · · ∪ [λ�−1,λ�]

withλ1 = λx ,λ� = λy and [λi ,λi+1] ⊆ �(Xi ) for some face Xi of X , i = 1, ..., �−
1. Since λi belongs simultaneously to �(Xi ) and �(Xi+1), there is some common
point xi ∈ Xi ∩Xi+1, i = 1, ..., �−1. It is clear that [x, x1]∪[x1, x2]∪· · ·∪[x�−1, y]
is an arcwise path joining x and y and each member segment [xi , xi+1] is efficient
because being in the face Xi , i = 1, ..., � with x� = y. �

4.4 Exercises

4.4.1 Find maximal elements of the sets determined by the following systems

(a)

⎧⎨
⎩
2x + y � 15

x + 3y � 20
x, y � 0.

(b)

⎧⎨
⎩

x + 4y � 12
−2x + y � 0

x, y � 0.

(c)

⎧⎪⎪⎨
⎪⎪⎩

x + 2y � 20
7x + z � 6

3y + 4z � 30
x, y, z � 0.

(d)

⎧⎪⎪⎨
⎪⎪⎩

x + 2y + 3z � 70
x + y + z � 50

− y + z � 0
x, y, z � 0.
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4.4.2 Find maximal and weakly maximal elements of the following sets

Q1 =
⎧⎨
⎩

⎛
⎝ x1

x2
x3

⎞
⎠ ∈ R

3 : x1 � 0, x2 � 0, x3 � 0, x22 + x23 � 1

⎫⎬
⎭

Q2 =co(A, B) with A =
⎧⎨
⎩

⎛
⎝ 1
0
s

⎞
⎠ ∈ R

3 : 0 � s � 1

⎫⎬
⎭

and B =
⎧⎨
⎩

⎛
⎝ 0

x2
x3

⎞
⎠ ∈ R

3 : x2 � 0, x3 � 0, x22 + x23 � 1

⎫⎬
⎭ .

4.4.3 We say a real function g on R
k is increasing if x, y ∈ R

k and x ≥ y imply
g(x) > g(y), and it is weakly increasing if x > y implies g(x) > g(y). Prove that g
is increasing (respectively weakly increasing) if and only if for every nonempty subset
Q of R

k , every maximizer of g on Q is an efficient (respectively weakly maximal)
element of Q.

4.4.4 Let Q be a closed set in R
k . Prove the following statements.

(i) The set WMax(Q) is closed.
(ii) The set Max(Q) is closed provided that k = 2 and Q − R

2+ is convex.
(iii) Max(−Q) = − Min(Q) and Max(αQ) = α Max(Q) for every α > 0.

4.4.5 Let P and Q be two convex polyhedra in R
k .

(i) Prove that Max(P + Q) ⊆ Max(P)+ Max(Q).
(ii) Find conditions under which equality holds in (i).

4.4.6 Prove that the set of maximal elements of a convex polytope is included in the
convex hull of the maximal vertices. Is the converse true?

4.4.7 An element x of a set P in R
k is said to be dominated if there is some x ′ ∈ P

such that x ′ ≥ x. Prove that the set of dominated elements of a convex polyhedral
set is convex and if a face contains a dominated element, its relative interior points
are dominated too.

4.4.8 A diet problem. A multiobjective version of the diet problem in hospital
consists of finding a combination of foods for a patient to minimize simultaneously
the cost of the menu and the number of calories under certain nutritional requirements
prescribed by a treating physician. Assume a menu is composed of three main types of
foods: meat with potatoes, fish with rice and vegetables. The nutrition facts, calories
in foods and price per servings are given below

Fats Carbohydrates Vitamin Calories Prices/serving
Meat + potatoes 0.2 0.2 0.06 400 1.5
Fish + rice 0.1 0.2 0.08 300 1.5
Vegetables 0 0.05 0.8 50 0.8
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Using three variables: x= number of servings of meat, y= number of servings of fish
and z= number of servings of vegetables, formulate a bi-objective linear problem
whose objective functions are the cost and the number of calories of the menu while
maintaining the physician’s prescription of at least one unit and at most one and half
unit for each nutritional substance. Discuss the menus that minimize the cost and the
number of calories separately.

4.4.9 An investment problem. An investor disposes a budget of 20,000 USD and
wishes to invest into three product projects with amounts x, y and z respectively. The
total profit is given by

P(x, y, z) = 20x + 10y + 100z

and the total sale is given by

S(x, y, z) = 10x + 2y + z.

Find x, y and z to maximize the total profit and total sale.

4.4.10 Bilevel linear programming problem. A typical bilevel programming prob-
lem consists of two problems: the upper level problem of the form

maximize 〈c, x〉 + 〈d, y〉
subject to A1x � b1

x � 0

and the lower level problem for which y is an optimal solution:

maximize 〈p, z〉
subject to A2x + A3z � b2

z � 0.

Here c, p, d, b1 and b2 are vectors of dimension n1, n2, n2, m1 and m2 respectively;
A1, A2 and A3 are matrices of dimension m1 × n1, m2 × n1 and m2 × n2 corre-
spondingly.

Consider the following multiobjective problem

Maximize

⎛
⎝ x

−〈e, x〉
〈p, y〉

⎞
⎠

subject to A1x � b1
A2x + A3y � b2

x � 0, y � 0
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where e is the vector whose components are all equal to one. Prove that (x, y) is an
efficient solution of this latter problem if and only if it is a feasible solution of the
upper level problem described above.

4.4.11 Apply Theorem 4.1.15 to find a decomposition of the scalarizing set for the
polyhedron defined by the system

2x1 + x2 + 2x3 � 5

x1 + 2x2 + 2x3 � 5

x1, x2, x3 � 0.

4.4.12 Find the weakly scalarizing set of a polyhedron in R
k determined by the

system

〈ai , y〉 = bi , i = 1, · · · , m

y � 0,

and apply it to find the weakly scalarizing set of a multiobjective problem given in
standard form.

4.4.13 Scalarizing set at a vertex solution. Consider the problem (MOLP) in stan-
dard form

Maximize Cx
subject to Ax = b

x � 0,

where C is a k × n-matrix, A is an m × n-matrix and b is an m-vector. Assume
x is a feasible solution associated with a non-degenerate basis B. The non-basic
part of A is denoted N, the basic and non-basic parts of C are denoted CB and CN

respectively. Prove the following statements.

(a) A vector λ belongs to �(x) if and only if it belongs to Δ and solves the following
system

[CT
N − (B−1N )T CT

B ]λ � 0.

(b) If the vector on the left hand side of the system in (a) is strictly negative for some
λ, then x is a unique solution of the scalarized problem

maximize 〈λ, Cx〉
subject to Ax = b

x � 0.

In particular, if in addition λ is positive, then x is an efficient solution of (MOLP).
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4.4.14 Pascoletti-Serafini’s method. Let λ ∈ R
k be a strictly positive vector and

Cx � 0 for every feasible solution x ∈ X of (MOLP). Show that if (x,α) is an
optimal solution of the problem

maximize α

subject to 〈c j , x〉 � α, j = 1, ..., k

x ∈ X,

then x is a weakly efficient solution of (MOLP).

4.4.15 Weighted constraint method. Prove that a feasible solution x ∈ X is a
weakly efficient solution of (MOLP) if and only if there is some strictly positive
vector λ ∈ R

k such that x solves

maximize λ�〈c�, x〉
subject to λ j 〈c j , x〉 � λ�〈c�, x〉, j = 1, · · · , k, j �= �

x ∈ X

for � = 1, · · · , k.

4.4.16 Constraint method. Choose � ∈ {1, · · · , k}, L j ∈ R, j = 1, · · · , k, j �= �,
and solve the scalar problem (P�):

maximize 〈c�, x〉
subject to 〈c j , x〉 ≥ L j , j = 1, · · · , k, j �= �

Ax = b, x � 0.

Note that if L j are big, then (P�) may have no feasible solution. A constraint 〈c j , x〉 ≥
L j is called binding if equality 〈c j , x〉 = L j is satisfied at every optimal solution of
(P�). Prove that

(a) every optimal solution of (P�) is a weakly efficient solution of (MOLP);
(b) if an optimal solution of (P�) is unique or all constraints of (P�) are binding,

then it is an efficient solution of (MOLP);
(c) a feasible solution x0 of (MOLP) is efficient if and only if it is optimal for all

(P�), � = 1, ..., k and

L� = (〈c1, x0〉, · · · , 〈c�−1, x0〉, 〈c�+1, x0〉, · · · , 〈ck, x0〉).

4.4.17 Let d be a k-vector such that Cx � d for some feasible solution x of (MOLP).
Consider the problem (P)



4.4 Exercises 117

maximize 〈e, y〉
subject to Cx = d + y

Ax = b, x � 0, y � 0,

where e is the vector of ones in R
k . Show that

(a) a feasible solution x0 of (MOLP) is efficient if and only if the optimal value of
(P) with d = Cx0 is equal to zero;

(b) (MOLP) has efficient solutions if and only if the optimal value of (P) is finite.

4.4.18 Let x̄ be a feasible solution of the problem

Maximize Cx

subject to Ax � b.

Show that the following statements are equivalent.

(i) x̄ is a weak Pareto maximal solution.
(ii) The system {

Ax � b
Cx > Cx

is inconsistent.
(iii) For every t > 0, the system

{
Ax � b − Ax
Cx � te

is inconsistent, where e is the vector of ones.
(iv) For every t > 0, the system

⎧⎨
⎩

CT λ − AT μ = 0
〈Ax̄ − b,μ〉 + t〈e,λ〉 = 1

λ,μ � 0

is consistent.

4.4.19 Consider the multiobjective problem described in the preceding exercise.
Assume that the cone pos{c1, · · · , ck} contains the origin in its relative interior.
Prove that if the interior of the feasible set is nonempty, then every feasible solution
of (MOLP) is an efficient solution.

4.4.20 Let X denote the feasible set of the problem (MOLP) given in Exercise 4.4.18.
Consider the following function

h(x) = max
x ′∈X

min
λ∈Δ

〈λ, Cx ′ − Cx〉.



118 4 Pareto Optimality

Prove that x is a weakly maximal solution of (MOLP) if and only if h(x) = 0.

4.4.21 Geoffrion’s proper efficient solutions. Let X be a nonempty set in R
n and let

f be a vector-valued function from R
n to R

k . Consider the following multiobjective
problem

Maximize f (x)

subject to x ∈ X.

A feasible solution x of this problem is said to be a proper efficient solution if there
exists a constant α > 0 such that for every i ∈ {1, · · · , k} and x ∈ X satisfying
fi (x) > fi (x) there exists some j ∈ {1, · · · , k} for which f j (x) < f j (x) and

fi (x) − fi (x)

f j (x) − f j (x)
� α.

(i) Justify that every proper efficient solution is efficient. Give an example of efficient
solutions that are not proper.

(ii) Prove that when f is linear and X is a polyhedral set, every efficient solution is
proper.

4.4.22 Maximality with respect to a convex cone. Let C be a convex cone in R
k

with C ∩ (−C) = {0} (one says C is pointed). For y, z ∈ R
k define y �C z by

y − z ∈ C. A point z of a set A is called C-maximal if there is no y ∈ A such that
y �C z and y �= z. Prove the following properties:

(i) A point z ∈ A is C-maximal if and only if (A − a) ∩ R
k = {0};

(ii) If R
k+ ⊆ C, then every C-maximal point is Pareto maximal, and if R

k+ ⊇ C,
then every Pareto maximal point is C-maximal;

(iii) If A is a polyhedral set, then there is a polyhedral cone C satisfying R
k+ ⊆

int(C) ∪ {0} such that a point of A is C-maximal if and only if it is Pareto
maximal. Find such a cone for the sets in Exercise 4.4.1 (a) and (b).

4.4.23 Lexicographical order. The lexicographical order �lex in R
k is defined as

y �lex z for y, z ∈ R
k if and only if either y = z or there is some j ∈ {1, · · · , k}

such that yi = zi for i < j and y j > z j . A point z of a nonempty set A in R
k is

called lex-maximal if there is no y ∈ A such that y �lex z and y �= z.

(i) Show that the lexicographical order is total in the sense that for every y, z ∈ R
k

one has either y �lex z or z �lex y.
(ii) Find a convex cone C such that y �lex z if and only if y − z ∈ C.

(iii) Prove that every lex-maximal element of a set is Pareto maximal.

Do the same for the colexicographical order: y �colex z if and only if either y = z
or there is some j ∈ {1, · · · , k} such that yi = zi for i > j and y j > z j .



Chapter 5
Duality

In linear programming associated with every maximization problem is a dual mini-
mization problem whose feasible solutions yield upper bounds on the values of the
former problem. This property is known as weak duality between the primal and dual
problems.When the optimal values of the two problems are finite, they are equal, and
so strong duality holds. The interpretation of weak duality is not unique in a multi-
dimensional Euclidean space, therefore, there are different dual constructions for a
given primal problem. This chapter is concerned with three most important duality
developments. The first duality is based on dual sets in the value space, the second
duality is obtained from the Lagrangian function associated with a given multiobjec-
tive linear problem and the last one uses polar cones and normal cones of the value set.

5.1 Dual Sets and Dual Problems

Given a nonempty convex polyhedral set W in R
k , we consider a nonempty subset

W d of R
k and three relations connecting them

y � w for all w ∈ W, y ∈ W d (5.1)

y � w for all w ∈ W, y ∈ W d (5.2)

y �< w for all w ∈ W, y ∈ W d . (5.3)

Under the above relations the set W d is called respectively an ideal dual set, a strong
dual set and a weak dual set of W . A dual set of W is referred to any of these three
types. It is clear that (5.1) is equivalent to each of the following inclusions

W d ⊆
⋂

w∈W

(w + R
k+),

W ⊆
⋂

y∈W d

(y − R
k+).
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Similarly, equivalent inclusions for (5.2) and (5.3) are respectively given by

W d ∩ (
W − R

k+ \ {0}) = ∅,

W ∩ (
W d + R

k+ \ {0}) = ∅,

and

W d ∩ (
W − int(Rk+)

) = ∅,

W ∩ (
W d + int(Rk+)

) = ∅.

The next theorem expresses a weak duality relation between W and its dual sets.

Theorem 5.1.1 Let W be a convex polyhedral set and W d a subset in R
k . Then the

following statements hold.

(i) W ∩ W d = IMax(W ) ∩ IMin(W d) if W d is an ideal dual set of W .
(ii) W ∩ W d = Max(W ) ∩ Min(W d) if W d is a strong dual set of W .
(iii) W ∩ W d = WMax(W ) ∩ WMin(W d) if W d is a weak dual set of W .

Proof It is evident that in each statement the set on the right hand side is included
in the set on the left hand side. The converse inclusions follow from the relations
(5.1)–(5.3). �

We notice that given a nonempty polyhedral set W it is not necessary that a dual
set exists (nonempty). On the other hand when W has an ideal element (respectively
maximal and weakly maximal elements), ideal dual set (respectively strong dual and
weak dual sets) does exist and it is not unique in general. Moreover, the union of
dual sets of any type is again a dual set of the same type. Therefore, we may speak
about the biggest dual sets for a given polyhedral set W . To this end let us define the
following dual sets associated with W (Figs. 5.1, 5.2 and 5.3),

W ∗ = sup(W ) + R
k+

W ∗∗ = (Rk \ (W − R
k+)
) ∪ Max(W )

W ∗∗∗ = R
k \ (W − int(Rk+)

)
.

In this definition sup(W ) stands for the vector whose components are the suprema
of the projection of W on the coordinate axes. The value sup(W ) is infinite if at least
one of its components is not finite, in which case the set W ∗ is empty by convention.
When the value sup(W ) is finite and belongs to the set W , it is the ideal maximal
point of W , that is

sup(W ) = IMax(W ).

It is clear that the sets W ∗, W ∗∗ and W ∗∗∗ satisfy respectively (5.1)–(5.3). Moreover,
they are the biggest among dual sets of their types. Indeed, let W d be a nonempty
ideal dual set of W . Then sup(W ) is finite. Let y ∈ W d . By definition y � w for all
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Fig. 5.1 The first dual set

W

W ∗

Fig. 5.2 The second dual set

W

W ∗∗

Fig. 5.3 The third dual set

W

W ∗∗∗

w ∈ W which implies y � sup(W ). Hence y ∈ W ∗ and W ∗ contains W d . Now, if
W d is a nonempty strong dual set of W , then every y ∈ W d belongs either to W or
not. If y belongs to W , then it is a maximal element of W . If y does not belong to
W , then it does not belong to W − R

k+ either, because otherwise there would exist
some w ∈ W such that w ≥ y contradicting the hypothesis. Thus, y belongs to W ∗∗
and W ∗∗ contains W d . The proof for the set W ∗∗∗ uses the same argument.

The following result presents a relationship between efficient elements of W ∗,
W ∗∗, W ∗∗∗ and W .

Theorem 5.1.2 Let W be a convex polyhedral set in R
k . Then we have

sup(W ) = IMin(W ∗)
Max(W ) = Min(W ∗∗)

WMax(W − R
k+) = WMin(W ∗∗∗).
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Proof The first equality is clear. For the second equality, notice that if Max(W ) is
empty, then the set W ∗∗ is open, hence it cannot have minimal points. Let a be a
maximal point of W , and let z be any element of W ∗∗. If z belongs to Max(W ), then
z ≤ a is false. If z does not belong to MaxW, then z /∈ W − R

k+, which implies
that z ≤ a is false too. Hence a is a minimal element of W ∗∗. Conversely, if a is
a minimal element of W ∗∗, then it cannot belong to R

k \ (W − R
k+) because the

latter set is open, hence it belongs to Max(W ). For the last equality, let a be a weakly
maximal element of W − R

k+, say a = z − v for some z ∈ W and v ∈ R
k+. Then

a clearly belongs to W ∗∗∗. If it were not a weakly minimal element of W ∗∗∗, there
would exist some a′ from W ∗∗∗ such that a − a′ > 0. Consequently,

a′ = a − (a − a′) = z − (v + (a − a′)) ∈ W − int(Rk+)

which contradicts the fact that a′ belongs to W ∗∗∗. Conversely, let a be a weakly
minimal element of W ∗∗∗. Then a belongs to W − R

k+, because otherwise it would
belong to the interior of W ∗∗∗ and could not be weakly minimal. If it were not a
weakly maximal element of W − R

k+, then there would exist some z ∈ W and
v ∈ R

k+ such that z − v > a. We deduce

a = (z − v)+ (a − (z − v)) = z − (v + (z − v − a)) ∈ z − int(Rk+) ⊆ W − int(Rk+)

which contradicts the fact that a belongs to W ∗∗∗. �

The ideal dual set W ∗ is a convex polyhedral set, while the dual sets W ∗∗ and
W ∗∗∗ are not. But all of them can be generated by closed half-spaces.

Theorem 5.1.3 Let W be a convex polyhedral set in R
k . Then we have

W ∗ =
⋂

λ∈Δ

{
y ∈ R

k : 〈λ, y〉 � sup
w∈W

〈λ, w〉}

W ∗∗ =
⋃

λ∈riΔ

{
y ∈ R

k : 〈λ, y〉 � sup
w∈W

〈λ, w〉} provided that Max(W ) �= ∅

W ∗∗∗ =
⋃

λ∈Δ

{
y ∈ R

k : 〈λ, y〉 � sup
w∈W

〈λ, w〉}.

Proof If the set W ∗ is empty, then sup(W ) is infinite. There is at least one index i
such that

sup
x∈W

〈ei , w〉 = ∞, (5.4)

where ei is the i th coordinate unit vector. This shows that the set in the right hand side
of the first equality of the theorem is empty. Conversely, if the latter set is empty, then
there is some index i such that (5.4) holds true because Δ is the convex hull of the
coordinate unit vectors e1, · · · , ek , which implies that sup(W ) is infinite. Assume
W ∗ is nonempty. Then the i th coordinate of the vector a := sup(W ) is the finite
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maximum of (5.4). We have

〈ei , a〉 � 〈ei , w〉 for all w ∈ W, i = 1, · · · , k.

Hence a belongs to the set on the right hand side of the first equality of the theorem,
and so does any element of W ∗. Conversely, assume that y satisfies

〈λ, y〉 � 〈λ, w〉 for all w ∈ W,λ ∈ Δ.

Then by setting λ = ei , i = 1, · · · , k we deduce that sup(W ) is finite and y �
sup(W ).Consequently, y belongs to W ∗ and the first equality of the theorem follows.

To prove the second equality, assume that y satisfies

〈λ, y〉 � 〈λ, w〉 for all w ∈ W and some λ ∈ ri(Δ). (5.5)

If y is a maximal element of W , we are done. If not, it does not belong to W − R
k+,

because otherwise one should express y = y′ − u with y′ ∈ W and u � 0. Then
〈λ, y〉 = 〈λ, y′〉 − 〈λ, u〉. If u �= 0, the value 〈λ, u〉 being strictly positive, the latter
equality contradicts (5.5). Thus, y belongs to W ∗∗. Conversely, if y is an element of
W ∗∗, then either it is a maximal element of W , or y does not belong to the convex
polyhedral set W − R

k+. In the first case, in view of Theorem 4.3.1 there is some
strictly positive vector λ ∈ Δ such that

〈λ, y〉 � 〈λ, w〉 for all w ∈ W

which shows that y belongs to the set on the right hand side of the second equality
of the theorem. In the second case we claim that for ε > 0 sufficiently small,

(W − R
k+) ∩ (

y + R
k+(ε)

) = ∅, (5.6)

where

R
k+(ε) = pos{ei − εe : i = 1, · · · , k}

with e = (1, · · · , 1)T . Indeed, suppose on the contrary that for every s > 0 we find
some ws ∈ W, us and vs ∈ R

k+ such that

y = ws − (us + vs) + 1

s

( k∑

i=1

vs
i

)
e. (5.7)

If the sequence {∑k
i=1 vs

i /s}s�1 converges to zero, then y = lims→∞(ws −(us +vs))

and belongs to W − R
k+. This contradicts the hypothesis. If that consequence does

not converge to zero, we may assume that the sequence {∑k
i=1(u

s
i +vs

i )}s converges

http://dx.doi.org/10.1007/978-3-319-21091-9_4
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to ∞. Dividing (5.7) by the positive number
∑k

i=1(u
s
i + vs

i ) and passing to the limit
as s → ∞, we deduce

lim
s→∞

ws

∑k
i=1(u

s
i + vs

i )
= lim

s→∞
us + vs

∑k
i=1(u

s
i + vs

i )
.

In view of Theorem 2.3.11 the limit on the left hand side is an asymptotic direction of
W and the limit on the right hand side is a nonzero positive vector. This contradicts
the hypothesis that W has maximal elements (see Theorem 4.1.7) and hence (5.6)
is true. We now apply the separation theorem (Theorem 2.3.10) to obtain a nonzero
vector λ ∈ R

k such that

〈λ, w〉 � 〈λ, y + v〉 for all w ∈ W, v ∈ R
k+(ε).

In particular this implies λ > 0 that may be assumed to be in ri(Δ) and

〈λ, y〉 � sup
w∈W

〈λ, w〉

as requested. The third equality of the theorem is proven by a similar argument. �

We observe that the second equality of the above theorem is not true when the set
W has no maximal point (see Example5.2.4).

General scheme of matrix dual construction

Consider the multiobjective linear problem (MOLP)

Maximize Cx

subject to Ax = b

x � 0,

where C is a real k × n-matrix, A is a real m × n-matrix and b is a real m-vector. A
dual problem, denoted by (VD), of (MOLP) is a minimization problem of the form

Minimize Y b

subject to Y ∈ Y(A, C),

where Y(A, C) consists of k × m-matrices satisfying certain inequalities involving
the matrices A and C . Weak duality between (MOLP) and (VD) expresses the fact
that the value Cx of a feasible solution x of the primal problem (MOLP) cannot be
bigger than the value Y b of the dual problem. There are several ways to interpret
the weak duality requirement. Most relevant ones, based on (5.1)–(5.3), are given
below:

http://dx.doi.org/10.1007/978-3-319-21091-9_2
http://dx.doi.org/10.1007/978-3-319-21091-9_4
http://dx.doi.org/10.1007/978-3-319-21091-9_2
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Cx � Y b, (5.8)

Cx � Y b, (5.9)

Cx �> Y b. (5.10)

It is clear that (5.8) implies (5.9), which in its turn implies (5.10), but the converse is
not true except for the case when k = 1. We shall exploit these duality inequalities
to construct different dual problems for (MOLP). Notice further that if the primal
maximization problem is given in canonical form

Maximize Cx

subject to Ax � b

x � 0,

then by introducing a slack variable v of dimension m we may rewrite the primal
problem in standard form

Maximize Cx

subject to A

(
x
v

)
= b

(
x
v

)
� 0,

where A = (AI ) with I being the identity m × m-matrix and C = (C O) with O
being the null m × m-matrix. Its dual is then

Minimize Y b

subject to Y ∈ Y(A, C),

where again Y(A, C) is a set of (k + m) × m-matrices involving A and C to be
specified. To this purpose let us define three dual feasible sets in the space of k × m-
matrices:

Y1 = {Y : Y A � C}
Y2 = {Y : λT Y A � λT C for some λ ∈ R

k,λ > 0}
Y3 = {Y : λT Y A � λT C for some λ ∈ R

k,λ ≥ 0}.

It is clear that Y1 ⊆ Y2 ⊆ Y3, and the inclusions are strict except for the case k = 1.
The dual problems (VD) associated with these dual feasible sets will be respectively
denoted by (VD1), (VD2) and (VD3) and displayed below.
The first dual (VD1)
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Minimize Y b

subject to Y A � C.

The second dual (VD2)

Minimize Y b

subject to λT Y A � λT C for some λ ∈ R
k,λ > 0.

The third dual (VD3)

Minimize Y b

subject to λT Y A � λT C for some λ ∈ R
k,λ ≥ 0.

We denote the value set of (MOLP) by Q, that is

Q = {Cx : Ax = b, x � 0}

and thevalue sets of (VD1)–(VD3) respectively by Q D1, Q D2 and Q D3. Themaximal
solution set of (MOLP) consists of those feasible vectors x for whichCx is amaximal
element of Q.

Lemma 5.1.4 Assume that (MOLP) has feasible solutions. If the set Q D1 (respec-
tively Q D2 and Q D3) is nonempty, it is an ideal dual set (respectively a strong dual
set and a weak dual set) of Q.

Proof Let y be an arbitrary element of Q, say y = Cx for some feasible solution x
of (MOLP). If z is an element of Q D1, say z = Y b for some Y satisfying Y A � C ,
then

Y b = Y Ax � Cx = y

because x is a positive vector and Ax = b. Consequently, z � y, which shows that
Q D1 is an ideal dual set of Q. Furthermore, if z is an element of Q D2, then there are
some Y and λ ∈ ri(Δ) such that z = Y b and

λT Y A � λT C.

Multiplying both sides of the latter inequality by the positive feasible vector x we
deduce

λT z = λT Y b = λT Y Ax � λT Cx = λT y.

This implies that y � z and proves that Q D2 is a strong dual set of Q. The proof for
Q D3 is similar. �

Here is a weak duality relation between the primal problem (MOLP) and its dual
problems (VD1)–(VD3).
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Theorem 5.1.5 (Weak duality) For every pair of feasible solutions x and Y of
the problems (MOLP) and (VD1) (respectively (VD2) and (VD3)) the weak duality
relation (5.8) (respectively (5.9) and (5.10)) holds.

Moreover, if equality holds in (5.8), then x and Y are ideal efficient solutions of
the respective problems; and if equality holds in (5.9) (respectively in (5.10)), then
Y is a minimal solution of (VD2) (respectively weakly minimal solution of (VD3))
and x is a maximal solution (respectively weakly maximal solution) of (MOLP).

Proof The weak duality relations (5.8)–(5.10) are obtained from the fact that Q D1,
Q D2 and Q D3 are dual sets of Q as stated in Lemma5.1.4. The second part of the
theorem is derived from Lemma5.1.4 and Theorem5.1.1. �

5.2 Ideal Dual Problem

Consider the linear multiobjective problem (MOLP) described in the previous
section. Our aim is to study the dual problem (VD1), called the ideal dual (or Corley’s
dual):

Minimize Y b

subject to Y A � C.

As we have already seen in Lemma5.1.4 the value set Q D1 of (VD1) is an ideal dual
set of the value set Q of (MOLP). According to Theorem5.1.5 for every feasible
solutions x and Y , one has weak duality relation Cx � Y b, and if in addition
equality holds, both solutions are ideal, which means that x is ideal for (MOLP) and
Y is ideal for (VD1). This dual is a linear problem and shares a certain symmetry of
the duality of linear programming. It provides the best upper bound for the primal
problem as we shall see later. In what follows c1, · · · , ck denote the columns of the
matrix CT . The columns of an m × k-matrix Y T are denoted y1, · · · , yk .

Lemma 5.2.1 Assume that (MOLP) has feasible solutions. Then

Q∗ = Q D1 + R
k+.

Consequently, the ideal minimal points of Q∗ and Q D1 coincide if they exist.

Proof Consider the scalar problem (Pi ) for i = 1, · · · , k,

maximize 〈ci , x〉
subject to Ax = b

x � 0

and denote its optimal value by αi . If this problem is unbounded, αi takes the infinite
value. If all αi ’s are finite, the vector composed of these values, denoted α, is exactly
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sup(Q). Further, consider the dual problem (Di ) of (Pi ):

minimize 〈b, y〉
subject to AT y � ci .

If αi takes the infinite value, then (Di ) has no feasible solutions (see Theorem3.2.3).
Hence (VD1) has no feasible solutions either. This is because the i th row of a feasible
matrix of (VD1) would be a feasible solution for (Di ). If all αi ’s are finite, by the
strongduality (Theorem3.2.3) there are couples of optimal solutions (x(i), y(i)) such
that 〈ci , x(i)〉 = 〈b, y(i)〉. Let Ȳ be the matrix whose rows are the transposes of the
vectors y(1), · · · , y(k). It is a feasible solution of (VD1) and Ȳ b = (α1, · · · ,αk)

T .

Moreover, for a feasible solution Y , every column yi of Y T is a feasible solution of
(Di ), hence by the weak duality, 〈b, yi 〉 � αi . By this, equality stated in the lemma
is true. The second part of the lemma is direct from the first part. �

In general the set Q D1 is smaller than Q∗. For instance when b is the zero vector,
the set Q D1 reduces to the singleton {0} while Q∗ contains all positive vectors. Now
we deduce a strong duality relation between (MOLP) and (VD1).

Theorem 5.2.2 Let x be a feasible solution of (MOLP). Then it is an ideal maximal
solution if and only if there is a feasible solution Y of (VD1) such that Cx = Y b, in
which case Y is an ideal minimal solution of (VD1).

Similarly, let Y be a feasible solution of (VD1). Then it is an ideal minimal solution
of (VD1) if and only if sup(Q) = Y b.

Proof Let x be a feasible solution of (MOLP). If it is an ideal solution of (MOLP),
then Cx is the supremum of Q. By Theorem5.1.2, it is an ideal minimal element
of Q∗. In view of Lemma5.2.1 this supremum is the ideal minimal value of (VD1),
and hence there is a feasible solution Y such that Cx = Y b. Now, if Y is a feasible
solution of (VD1) such that Y b = Cx , by Theorem5.1.2 both x and Y are ideal
solutions.

We proceed to the second part of the theorem. Let Y ∈ Y1. By the weak duality,
the value set Q of (MOLP) is bounded from above, and its supremum is finite. If
Y is an ideal solution of (VD1), then in view of Theorem5.1.2 and Lemma5.2.1,
the supremum of Q is equal to Y b. Conversely, if Y b coincides with sup(Q), then
Y ′b � sup(Q) for all Y ′ ∈ Y1. By this, Y is an ideal minimal solution of (VD1). �

When we say that the objective function of (MOLP) is unbounded (from above)
we means Cv ≥ 0 for some asymptotic direction v of the feasible set. Similarly,
the objective function of (VD1) is unbounded (from below) if there is an asymptotic
direction Y 0 of the feasible set of (VD1) such that Y 0b ≤ 0.

Theorem 5.2.3 For the couple of primal and dual problems (MOLP) and (VD1) the
following assertions hold.

(i) If either of the problems (MOLP) and (VD1) has an unbounded objective, the
other has no feasible solution.

http://dx.doi.org/10.1007/978-3-319-21091-9_3
http://dx.doi.org/10.1007/978-3-319-21091-9_3
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(ii) The primal problem (MOLP) has maximal solutions and its maximal value set
is bounded if and only if the dual problem (VD1) has ideal minimal solutions.
Moreover there exist k maximal solutions x∗

1 , · · · , x∗
k of (MOLP) such that the

ideal minimal value of (VD1) has its components 〈ci , x∗
i 〉, i = 1, · · · , k.

Proof The first assertion is obtained fromTheorem5.1.5.We prove the second asser-
tion. If (MOLP) has maximal solutions and its maximal value set is bounded, then
the problems (P1), · · · , (Pk) have finite optimal values α1, · · · ,αk .By Lemma5.2.1
the dual problem (VD1) has minimal solutions and its minimal value set consists of
the vector (α1, · · · ,αk)

T only. It is clear that optimal solutions of each problem
(Pi ) are weakly maximal solutions for (MOLP). However, as (MOLP) has maximal
solutions, among those optimal solutions there are maximal solutions of as well.
Choosing any optimal solution x∗

i of (Pi ) which is maximal for (MOLP) we obtain
that the unique minimal value of (VD1) has components 〈ci , x∗

i 〉, i = 1, · · · , k.
Conversely, if (VD1) hasminimal solutions, then (MOLP) has a bounded objective

on its feasible domain, and therefore it admits maximal solutions. We prove that the
set of all maximal values of (MOLP) is bounded. Indeed, if not, there would exist a
strictly positive vector λ ∈ R

k such that the face F of Q consisting of all maximizers
of the linear function 〈λ, .〉 on Q is unbounded. Let z be any element and v a nonzero
recession direction of F . Then 〈λ, v〉 = 0 and the points z + tv ∈ F with t ≥ 0
are maximal values for (MOLP). Since λ is strictly positive, some component of
v must be strictly positive. Then the corresponding component of z + tv tends to
infinity as t goes to ∞, which contradicts the fact that it is bounded from above by
the corresponding component of the minimal value of (VD1). �

Let us remark that when x∗ is a maximal solution to (MOLP), it is not nec-
essary that a minimal solution Y ∗ to (VD1) exists for which Cx∗ = Y ∗b and
Y ∗(b − Ax∗) = 0.

Example 5.2.4 Consider a multiobjective problem

Maximize

(
1 0
0 1

)(
x1
x2

)

subject to

(
1 1
0 0

)(
x1
x2

)
=
(
1
0

)

x1, x2 � 0.

Then the dual problem is written as

Minimize

(
y1 y2
y3 y4

)(
1
0

)

subject to

(
y1 y2
y3 y4

)(
1 1
0 0

)
�
(
1 0
0 1

)
.

It is clear that the optimal solution set of the primal problem is the segment
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[(
1
0

)
,

(
0
1

)]

and the optimal solution set of the dual problem consists of the matrices

(
1 y2
1 y4

)
, y2, y4 ∈ R.

In the outcome (value) spaceR
2, the optimal value set of the primal problemcoincides

with the optimal solution set because the objective function is the identity map; while
the optimal value set of the dual problem is the point (1, 1)T . Weak duality inequality
is satisfied, but equality is not.

Extended dual problem

We introduce an auxiliary real variable t and write (MOLP) in the following equiv-
alent form, denoted (MOLP′):

Maximize (C 0)

(
x
t

)

subject to

(
A 0
0 1

)(
x
t

)
=
(

b
1

)

x � 0, t � 0.

The variable t takes a constant value and has no effect on the objective function. It is

clear that a vector x is feasible for (MOLP) if and only if the vector

(
x
1

)
is feasible

for (MOLP′); and it is an ideal maximal solution (respectively maximal solution and

weakly maximal solution) of (MOLP) if and only if

(
x
1

)
is so for (MOLP′). Then

the ideal dual of (MOLP′) is written as

Minimize (Y Ym+1)

(
b
1

)

subject to (Y Ym+1)

(
A 0
0 1

)
� (C, 0) ,

which is the same as

Minimize Y b + Ym+1

subject to Y A � C

Ym+1 � 0.
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The latter problem is called the ideal extended dual of (MOLP) and denoted (VD1′).
The variable of (VD1) is a k × m-matrix and the variable of (VD1′) is a k × (m +1)-
matrix. Problems (VD1) and (VD2) are equivalent in the sense that a matrix Y is a
feasible solution of (VD1) if and only if the matrix (Y Ym+1) with Ym+1 a positive
vector is a feasible solution of (VD1′), and a feasible solution Y of (VD1) is ideal
if and only if the matrix (Y 0) is ideal for (VD1′). We notice, however, that the
value sets of these problems do not coincide in general. Actually it follows from
Lemma5.2.1 that the value set of (VD1′) is exactly the ideal dual set Q∗.

5.3 Strong Dual Problem

In this sectionwe study the dual problem (VD2), called the strong dual (or Isermann’s
dual):

Minimize Y b
subject to λT Y A � λT C for some λ ∈ R

k,λ > 0.

A weak duality relation between the primal problem (MOLP) and the strong dual
problem has already presented in Theorem5.1.5. Namely, if x and Y are feasible
solutions, then Cx � Y b, and if in addition Cx = Y b, then x is a maximal solution
of (MOLP) and Y is a minimal solution of (VD2). The dual problem (VD2) is not
linear because the constraint set is not a convex polyhedron. Our main task is to
establish a strong duality relation: the maximal value set of (MOLP) coincides with
the minimal value set of (VD2).We begin with some lemmas. The value set of (VD2)
is already denoted by Q D2.

Lemma 5.3.1 Assume that the value set Q of (MOLP) has maximal elements. Then
for every a ∈ [Rk \ (Q − R

k+)] ∩ [Rk \ (Max(Q) + R
k+)] there is a strictly positive

vector λ ∈ R
k+ such that

〈λ, a〉 = max
z∈Q

〈λ, z〉.

Proof Let us decompose Q into two parts: Q = Q0 + Q∞ according to Corollary
2.3.16, where Q0 is a bounded convex polytope and Q∞ is the asymptotic cone of
Q. Then it can be verified that the closed convex hull of Q with a (denoted by Qa)
is a convex polyhedron which is the sum of the convex hull of Q0 with a and the
asymptotic cone Q∞. We claim that a belongs to the maximal set of Qa . Indeed,
suppose on the contrary that there is some positive vector v �= 0 such that a+v ∈ Qa .
Then there are some t ∈ [0, 1], z ∈ Q0 and u ∈ Q∞ such that

a + v = ta + (1 − t)z + u. (5.11)

Since Q has maximal elements, in view of Theorem 4.2.1, Q∞ ∩ R
k+ = {0}. This

implies that t �= 1 and in view of (5.11),

http://dx.doi.org/10.1007/978-3-319-21091-9_2
http://dx.doi.org/10.1007/978-3-319-21091-9_4
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a = z + 1

1 − t
u − 1

1 − t
v ∈ Q − R

k+.

The latter inclusion is a contradictionwith the choice of a.We claim also thatMax(Q)

has an element that belongs to Max(Qa). Indeed, observe first that a cannot be the
uniquemaximal element of Qa , because otherwise it should belong toMax(Q)+R

k+,
which contradicts its choice. Furthermore, by Theorem 4.1.20 the setMax(Qa) being
a connected set consisting of faces of Qa , there must be some maximal face F that is
included in Max(Q) and containing both a and an element of Q at least. To complete
the proof it remains to apply Theorem 4.2.6 to obtain a strictly positive vector λ from
the normal cone to Qa at a relative interior point of the maximal face F . This vector
λ fulfils our request. �

Lemma 5.3.2 Assume that the value set Q of (MOLP) is nonempty, b is nonzero
and that Max(Q) is nonempty. Then

Q∗∗ = Q D2 + R
k+. (5.12)

Proof We observe that in view of Theorem5.1.5, Y b belongs to Q∗∗ whenever Y is
a feasible solution of (VD2). Moreover, as Q∗∗ + R

k+ is contained in Q∗∗, the set
Q∗∗ contains the set in the right hand side of (5.12). For the converse, let a be an
arbitrary element of Q∗∗. We distinguish three possible cases

a ∈ Max(Q) (5.13)

a ∈ Max(Q) + R
k+ (5.14)

a ∈ [
R

k \ (Q − R
k+)
] ∩ [

R
k \ (Max(Q) + R

k+
)]

. (5.15)

Our aim is to prove existence of Y ∈ Y2 such that a = Y b when a is given in (5.13)
and (5.15). The case (5.14) follows from (5.13) and needs no proof. Under (5.13),
by scalarization (see Theorem 4.3.1) there is a strictly positive vector λ of R

k such
that

〈λ, a〉 = max
z∈Q

〈λ, z〉. (5.16)

Under (5.15), in view of Lemma5.3.1, there exists a strictly positive vector λ satis-
fying (5.16) too. With this λ in hand, we consider a linear system of k × m variables
yi j , i = 1, · · · , k; j = 1, · · · , m (the entries of the matrix Y ):

Y b = a

λT Y A � λT C.

To prove the solvability of this system, let us expose it in a familiar form

http://dx.doi.org/10.1007/978-3-319-21091-9_4
http://dx.doi.org/10.1007/978-3-319-21091-9_4
http://dx.doi.org/10.1007/978-3-319-21091-9_4
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⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 · · · bm · · · 0 · · · 0
...

...
...

...

0 · · · 0 · · · b1 · · · bm

−b1 · · · −bm · · · 0 · · · 0
...

...
...

...

0 · · · 0 · · · −b1 · · · −bm

λ1a11 · · · λ1am1 · · · λka11 · · · λkam1
...

...
...

...

λ1a1n · · · λ1amn · · · λka1n · · · λkamn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y11
...

y1m
...

yk1
...

ykm

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

⎛

⎝
a

−a
CT λ

⎞

⎠ .

Suppose to the contrary that this system has no solution. Direct application of Corol-
lary 2.2.4 shows that there exists a positive vector (u, v, w) from R

k ×R
k ×R

n such
that

λi Aw = b(vi − ui ), i = 1, · · · , k (5.17)

〈λ, Cw〉 = 1 + 〈a, v − u〉. (5.18)

Since all λi
′s are strictly positive and b is nonzero, there is a real number t such that

t = (vi − ui )/λi for all i = 1, · · · , k and (5.17) and (5.18) become

Aw = tb (5.19)

〈λ, Cw〉 = 1 + t〈λ, a〉. (5.20)

Indeed, if t = 0, then (5.19) and (5.20) prove that the vectorw is a recession direction
of the feasible set of (MOLP) on which the function 〈λT C, .〉 is strictly positive. This
contradicts (5.16). If t < 0, choose a feasible solution x of (MOLP) that realizes the
maximum in (5.16) and set

q := x + 1

|t |w.

The relations (5.19) and (5.20) yield

Aq = Ax + 1

|t | Aw = b − b = 0

〈λ, Cq〉 = 〈λ, Cx〉 + 1

|t | 〈λ, Cw〉

= 〈λ, Cx〉 + 1

|t | − 〈λ, a〉

= 1

|t | > 0.

Consequently, q is a recession direction of the feasible set of (MOLP) on which the
function 〈λT C, .〉 is strictly positive. This again leads to a contradiction with (5.16).

http://dx.doi.org/10.1007/978-3-319-21091-9_2
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Nowwe assume t > 0. It follows that the vectorw/t is a feasible solution of (MOLP)
and C(w/t) belongs to Q. We deduce from (5.20) that

〈
λ, C(

w

t
)
〉 = 1

t
+ 〈λ, a〉 > 〈λ, a〉

which contradicts (5.16), and (5.12) follows. �

Notice that equality in (5.12) is not true without the non-emptiness of Max(Q).
This is illustrated by the following example.

Example 5.3.3 Consider the following problem

Maximize

(
1 1
0 0

)(
x1
x2

)

subject to
(
1 −1

) ( x1
x2

)
= 0

x1, x2 � 0.

In the value space R
2, the value set Q consists of the vectors (2x1 0)T , x1 � 0.

Hence it has no maximal element. We have Q∗∗ = {(x1, x2)T : x2 > 0}, which is
evidently nonempty. Let Y = (y1 y2)T satisfy

λT Y (1 − 1) � λT
(
1 1
0 0

)

for some λ > 0, which is equivalent to the system

λ1y1 + λ2y2 � λ1

−λ1y1 − λ2y2 � λ1.

However the latter system is not solvable because both λ1 and λ2 are strictly positive.
Thus, the set Y2 is empty, and equality in (5.12) is impossible.

We are now able to prove a strong duality relation between (MOLP) and (VD2).

Theorem 5.3.4 Assume b is nonzero. Then a feasible solution x of (MOLP) is a
maximal solution if and only if there is a feasible solution Y of (VD2) such that
Cx = Y b, in which case Y is a minimal solution of (VD2).

Similarly, let Y be a feasible solution of (VD2). Then it is a minimal solution of
(VD2) if and only if there is a feasible solution x of (MOLP) such that Cx = Y b, in
which case x is a maximal solution of (MOLP).

Proof For the first part of the theorem, let x be a feasible solution of (MOLP). If x is a
maximal solution of (MOLP), thenCx is amaximal element of Q. By Theorem5.1.2,
Cx is a minimal element of Q∗∗ and by Lemma5.3.2 there is some Y ∈ Y2 such that
Cx = Y b. The converse follows from Theorem5.1.5.
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We proceed to the second part of the theorem. Let Y ∈ Y2, say with a correspond-
ing λ > 0. Then

〈λ, Y b〉 � 〈λ, z〉

for all z ∈ Q. Hence Q∞ ∩ R
k+ = {0}. By Theorem 4.1.7 the set Q has max-

imal elements. In view of Theorem5.1.2 and Lemma5.3.2, Y is a minimal solu-
tion of (VD2) if and only if there is a maximal solution x of (MOLP) such that
Y b = Cx . �

We recall that the objective function of (MOLP) is said to be bounded from above
(respectively bounded from below) on the feasible set X if

C(X∞) ∩ R
k+ = {0} (respectively C(X∞) ∩ (−R

k+) = {0}).

This definition is equivalent, as the reader is aware from Corollary 2.3.17, to the fact
that the asymptotic one Q∞ contains no positive vector.When k = 1 this is equivalent
to the statement that sup(Q) is finite. When k > 1, the condition sup(Q) � a for
some a ∈ R

k means that the set Q is bounded from above and implies that the
objective function C is bounded from above on X , but the converse is not true as
already explained in Sect. 4.2.

Theorem 5.3.5 Assume b is nonzero. For the pair of dual problems (MOLP) and
(VD2) the following assertions hold.

(i) Each problem has feasible solutions if and only if they have the same (nonempty)
efficient values.

(ii) Let (MOLP) have feasible solutions. Then (VD2) has no feasible solution if
and only if the objective function of (MOLP) is unbounded from above on its
feasible set. Similarly, let (VD2) have feasible solutions. Then (MOLP) has no
feasible solution if and only if the objective function of (VD2) is unbounded
from below on its feasible set.

(iii) A feasible solution x of the primal problem (MOLP) is maximal if and only
if there exists a minimal solution Y of the dual (VD2) such that Cx = Y b.
Similarly, a feasible solution Y of the dual problem (VD2) is minimal if and
only if there exists a maximal solution x of the primal problem (MOLP) such
that Cx = Y b.

Proof For (i) it suffices to show the “only if” part. Assume that both problems
(MOLP) and (VD2) have feasible solutions. Then there is somematrix Y and a vector
λ > 0 such that λT Y A � λT C which implies that the function 〈λ, .〉 is bounded
from above on Q. Consequently Q has maximal elements. By Theorem5.1.2 and
Lemma5.3.2 the problems (MOLP) and (VD2) have the same efficient value set. For
(ii) assume that Q is nonempty. If it is unbounded from above, then it has nomaximal
element, and by (i), (VD2) has no feasible solutions. Conversely, if (VD2) has no
feasible solution, then Q cannot be bounded from above, because otherwise it should
have maximal elements which are also minimal values of (VD2) by Theorem5.1.2

http://dx.doi.org/10.1007/978-3-319-21091-9_4
http://dx.doi.org/10.1007/978-3-319-21091-9_2
http://dx.doi.org/10.1007/978-3-319-21091-9_4
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and Lemma5.3.2. Finally, assumeY2 nonempty. If the objective function of (VD2) is
unbounded from below, then by (i), Q is empty. For the converse, let Y be a feasible
solution of (VD2). If Q is empty, then by Farkas’ theorem there is some vector y
such that AT y � 0 and 〈b, y〉 < 0. Let Y0 be the k × m matrix eyT with e being the
vector of ones. Then for every t � 0, Y + tY0 is feasible. For (VD2), by considering
the value (Y + tY0)b as t tends to ∞, we conclude that the objective function of
(VD2) is unbounded from below. The last assertion is a part of Theorem5.3.4. �

Example 5.3.6 Consider the multiobjective problem

Maximize

(
1 0
0 1

)(
x1
x2

)

subject to

(
2 1
1 2

)(
x1
x2

)
�
(
6
6

)

x1, x2 � 0.

For α > 0 denote by Yα the set of all 2 × 2 matrices Y satisfying

(1 α)

(
Y

(
2 1
1 2

)
−
(
1 0
0 1

))
� 0 and Y � 0.

The dual (VD2) is written in the form

Minimize Y

(
6
6

)

subject to Y ∈
⋃

α>0

Yα.

It is clear that a matrix Y with entries y1, · · · , y4 belongs to Yα if and only if

2y1 + y2 + α(2y3 + y4) � 1 (5.21)

y1 + 2y2 + α(y3 + 2y4) � α (5.22)

y1, y2, y3, y4 � 0. (5.23)

We wish to find the value set of the dual (VD2) that we denote by Q D2. It consists of
the vectors Y b = 6(y1 + y2, y3 + y4)T with Y feasible, that is, Y satisfying (5.21)–
(5.23) for some α > 0. Observe that if inequalities (5.21) and (5.22) are strict for
Y , then there is a feasible solution Y ′ such that Y ′b ≤ Y b. On the other hand, for
a given feasible solution Y and a vector w ≥ Y b, by increasing y1 and y3 only, we
may obtain a new feasible solution Y ′ such that Y ′b = w. In other words, the value
set Q D2 is expressed by

Q D2 =
⋃

α>0

{
6

(
y1 + y2
y3 + y4

)
: yi � 0, i = 1, · · · , 4, satisfying (5.21),
and (5.22) with at least one equality

}
+ R

2+.
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We distinguish three possible cases of α: 1) 0 < α � 1/2; 2) 1/2 < α � 2 ; and 3)
α > 2. In the first case (5.22) is superfluous, while in the third case (5.22) is super-
fluous. In other words, the value set Q D2 is composed of the sum of R

2+ and three
sets Q1, Q2, Q3 and Q4 below

Q1 =
⋃

0<α�1/2

{
6

(
y1 + y2
y3 + y4

)
: Y � 0 satisfying (5.21) as equality

}

Q2 =
⋃

1/2<α�2

{
6

(
y1 + y2
y3 + y4

)
: Y is feasible with (5.21) being equality

}

Q3 =
⋃

1/2<α�2

{
6

(
y1 + y2
y3 + y4

)
: Y is feasible with (5.22) being equality

}

Q4 =
⋃

α>2

{
6

(
y1 + y2
y3 + y4

)
: Y � 0 satisfying (5.22) as equality

}
.

Actually the set Q1 is composed of the vectors 6(y1 + y2, y3 + y4)T with Y solution
of either a) the system (5.21) and (5.22) with the first equation being equality, or b)
the system (5.21) and (5.22) with the second equation being equality. However, by
setting p = 2y1 + y2 and q = 2y3 + y4 the case a) is written as

p + αq = 1

p + αq � 2α − 3(y2 + αy4).

Since the entries y2 and y4 are positive and α � 1/2, the second inequality above
is superfluous. Furthermore, in the case b), if the inequality (5.21) is strict, the
second one cannot be equality. This explains the description of Q1 by equality
2y1 + y2 + α(2y3 + y4) = 1 only. A similar argument proves the expression of
Q4 when α > 2. To compute the set Q1, we put

u = y1 + y2
v = y3 + y4
t = y1 + αy3.

Then Q1 is composed of vectors 6(u, v)T with u, v and t positive and satisfying

u + αv = 1 − t.

We remember also that u + αv � t , therefore t � 1/2 and the minimum value of
1 − t is equal to 1/2. Consequently,

Q1 + R
2+ =

⋃

0<α�1/2

{
6

(
u
v

)
: u + αv = 1

2
, u � 0, v � 0

}
+ R

2+.
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Similarly,

Q4 + R
2+ =

⋃

α>2

{
6

(
u
v

)
: u + αv = 2, u � 0, v � 0

}
+ R

2+.

Moreover,
Q2 ∪ Q3 + R

2+ ⊆ Q1 ∪ Q4 + R
2+.

It follows that the minimal values of the dual (DV2) consists of the segments

[(
3
0

)
,

(
2
2

)]
∪
[(

0
3

)
,

(
2
2

)]
,

which clearly coincides with the maximal values of the primal problem (MOLP).

Extended dual problem

It is evident that Lemma5.3.2, Theorems5.3.4 and 5.3.5 are not true without the
assumption that b is nonzero. The extended dual problem allows us to remedy this
gap. We consider the problem (MOLP′):

Maximize (C0)

(
x
t

)

subject to

(
A 0
0 1

)(
x
t

)
=
(

b
1

)

x � 0, t � 0.

In this problem the vector on the right hand side of the equality constraint is always
nonzero, and so we may apply strong duality to obtain the following dual problem,
denoted (VD2′):

Minimize Y b + Ym+1

subject to λT Y A � λT C
λT Ym+1 � 0 for some λ ∈ R

k,λ > 0.

It is evident that a k × m-matrix Y is a feasible solution of (VD2) for some λ > 0
if and only if the k × (m + 1)-matrix (Y Ym+1) with λT Ym+1 � 0 is feasible for
(VD2′). Less evident is the fact that the value set of (VD2′) coincides with the dual
set Q∗∗. Notice that when b = 0, the value set of (VD2) consists of the zero vector
only, and when b �= 0, by Lemma5.3.7 below and Theorem5.1.2 one has

Q D2 ⊆ Q D2′
(5.24)

Min(Q D2′
) = Min(Q D2) = Max(Q).
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Lemma 5.3.7 If (MOLP) admits maximal solutions, then the value set of the
extended problem (VD2′) coincides with the dual set Q∗∗.

Proof Since the vector in the right hand side of the equality constraint of (MOLP)
is nonzero, we apply Lemma5.3.2 to obtain equality

Q∗∗ = Q D2′ + R
k+.

Observe that if a matrix (Y Ym+1) is a feasible solution of (VD2′), then so is the
matrix (Y (Ym+1 + u)) where u is any positive vector because λ being positive,

λT (Ym+1 + u) = λT Ym+1 + λT u � λT Ym+1 � 0.

This implies
Q D2′ + R

k+ ⊆ Q D2′

and equality Q∗∗ = Q D2′
follows. �

Corollary 5.3.8 Assume that (MOLP) has feasible solutions and that b is nonzero.
Then a feasible solution Y of (VD2) is minimal if and only if (Y 0) is a minimal
solution of (VD2′).

Proof In view of Theorem5.3.5, the primal problem (MOLP) hasmaximal solutions.
It is clear that if (Y 0) is a minimal solution of (VD2′), then by (5.24), Y is a
minimal solution of (VD2). For the converse, suppose on the contrary that Y is a
minimal solution of (VD2), but there is a feasible solution (Y ′ y) of (VD2′) such that
Y ′b + y ≤ Y b. By Lemmas5.3.2 and 5.3.7 there are a feasible solution Z of (VD2)
and a positive vector u such that Y ′b + y = Zb + u. Then

Zb � Zb + u = Y ′b + y ≤ Y b

which contradicts the hypothesis on Y . �

Under the condition that b �= 0,minimal solutions of the extended problem (VD2′)
do not necessarily have last column Ym+1 null, but it follows from Corollary5.3.8
that for a minimal solution (Y Ym+1) there does exist another minimal solution of
the form (Y ′ 0) such that Y ′b = Y b + Ym+1.

5.4 Weak Dual Problem

In this section we study the dual problem (VD3), called the weak dual problem:

Minimize Y b
subject to λT Y A � λT C for some λ ∈ R

k,λ > 0.
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A weak duality relation between the primal problem (MOLP) and the weak dual
problem has already been presented in Theorem5.1.5. Namely, if x and Y are feasible
solutions, then Cx �> Y b, and if in addition Cx = Y b, then x is a weakly maximal
solution of (MOLP) and Y is a weakly minimal solution of (VD3). Similar to the
strong dual case, the dual problem (VD3) is not linear because the constraint set is
not a convex polyhedron. Our aim is to establish a strong duality relation: the weakly
maximal value set of (MOLP) is included in the weakly minimal value set of (VD3).
We begin with some lemmas. The value set of (VD3) is already denoted by Q D3.

Lemma 5.4.1 Assume that the value set Q of (MOLP) is nonempty and that b is
nonzero. Then

Q∗∗∗ = Q D3 + R
k+.

Proof If Y belongs toY3, then Y b cannot belong to Q − int (Rk+), because otherwise
one would have

λT Cx > λT Y b = λT Y Ax

for some positive vector x and for every λ ≥ 0 and arrive at an evident contradiction.
Moreover, as Q∗∗∗ + R

k+ is included in Q∗∗∗, the set Q D3 + R
k+ is contained in

Q∗∗∗. To prove the converse inclusionwe notice first that if Q has noweaklymaximal
element, then Q−int(Rk+) is thewhole space and Q∗∗∗ is empty, hence equality holds
trivially. If Q has weakly minimal elements, then by Theorem5.1.2 WMax(Q) =
WMin(Q∗∗∗). We claim that Q∗∗∗ has the weak domination property, that is, every
element of it is dominated by someweakly minimal element. In other words, Q∗∗∗ =
WMin(Q∗∗∗)+R

k+. Indeed, let z be any element of Q∗∗∗. Consider themaximization
problem

maximize t
subject to z + te ∈ Q − R

k+,

where e is the vector whose components are all equal to 1. It is clear that the feasible
set of this problem is nonempty, closed and bounded from above by 0. Hence it
admits an optimal solution t0 � 0. Direct verification shows that z + t0e is a weakly
maximal element of Q − R

k+, and by Theorem5.1.2 it is also a weakly minimal
element of Q∗∗∗. Thus, z belongs to the set WMin(Q∗∗∗)+R

k+. By this, to complete
the proof it suffices to show that for every element a fromWMin(Q∗∗∗) there is some
Y ∈ Y3 such that a = Y b. To this end, as already mentioned, by Theorem5.1.2, the
vector a is a weakly maximal element of Q −R

k+.By scalarization there is a positive
vector λ from R

k such that

〈λ, a〉 = max
z∈Q−R

k+
〈λ, z〉.

By supposing the contrary as in the proof of (5.12), we arrive at relations (5.17)
and (5.18). Notice that not all λi

′s are strictly positive, but at least one of them is.



5.4 Weak Dual Problem 141

Consequently (5.19) and (5.20) are still available. The remaining part of the proof
of Lemma5.3.2 goes through. The proof is complete. �

We are now able to prove a strong duality relation between (MOLP) and (VD3).

Theorem 5.4.2 Assume b is nonzero. Then a feasible solution x of (MOLP) is a
weakly maximal solution if and only if there is a feasible solution Y of (VD3) such
that Cx = Y b, in which case Y is a weakly minimal solution of (VD3).

Similarly, let Y be a feasible solution of (VD3). Then it is a weakly minimal
solution of (VD3) if and only if there is a feasible solution x of (MOLP) such that
Cx � Y b, in which case x is a weakly maximal solution of (MOLP).

Proof Let x be a weakly maximal solution of (MOLP), thenCx is a weakly maximal
element of Q and of Q − R

k+ as well. By Theorem5.1.2, Cx is a weakly minimal
element of Q∗∗∗. According to Lemma5.4.1, there is some weakly minimal solution
Y from Y3 such that Cx � Y b. Actually, setting a = Cx in the last part of the proof
of Lemma5.4.1, we obtain some Y ∈ Y3 such that Cx = Y b. Conversely, if there is
some Y ∈ Y3 such that Cx = Y b, then by Theorem5.1.5 the solution x is weakly
maximal.

Let Y ∈ Y3. If Y is a weakly minimal solution of (VD3), then by Lemma5.4.1,
Y b is a weakly minimal element of Q∗∗∗. In view of Theorem5.1.2, there is a weakly
maximal solution of (MOLP) such that Cx � Y b. Conversely, assume that the latter
inequality is true for some feasible solution x of (MOLP). If the solution Y were not
weakly minimal to (VD3), there would exist some Y ′ ∈ Y3 such that Y b > Y ′b.
This implies Cx > Y ′b and contradicts the weak duality (Theorem5.1.5). �

It is interesting to notice that in the strong duality relation of the above theorem
equality Cx = Y b is not true in general. This can be seen by the example below.

Example 5.4.3 Consider a modified problem of Example5.2.4

Maximize

(
1 1
0 0

)(
x1
x2

)

subject to
(
1 −1

) ( x1
x2

)
= 1

x1, x2 � 0.

In the value space R
2 the value set Q consists of the vectors (2x1 − 1 0)T , x1 � 1.

Hence every feasible solution isweaklymaximal. ForY = (1/2, 0)T andλ = (0, 1)T

we have

λT Y A = (0, 1) × (1/2, 0)T × (1,−1) = (0, 0)

λT C = (0, 1)

(
1 1
0 0

)
= (0, 0).
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ConsequentlyY is a feasible solution of (VD3). However, there is no feasible solution
x of the primal problem such that Y b = Cx . This is because for every feasible x we
have Cx = (2x1 − 1 0)T with x1 � 1, while Y b = (1/2, 0)T .

Extended dual problem

It is evident that Lemma5.4.1 and Theorem5.4.2 are not true without the assumption
that b is nonzero. The extended dual problem is again our best recourse to amend this
issue. We consider the problem (MOLP′) as defined in Sect. 5.3 in which the vector
on the right hand side of the equality constraint is always nonzero, and so we may
apply the above duality to obtain the following weak dual problem, denoted (VD3′):

Minimize Y b + Ym+1

subject to λT Y A � λT C
λT Ym+1 � 0 for some λ ∈ R

k,λ ≥ 0.

It is evident that a k × m-matrix Y is a feasible solution of (VD3) for some λ ≥ 0
if and only if the k × (m + 1)-matrix (Y Ym+1) with λT Ym+1 � 0 is feasible for
(VD3′). Applying the same method of the extended problem (VD2) we obtain the
following conclusions related to (VD3):

(i) Q D3 + R
k+ ⊆ Q D3′ = Q∗∗∗ and equality holds if b �= 0;

(ii) Provided that b �= 0, a feasible solution Y of (VD3) is minimal if and only if the
solution (Y 0) is minimal for (VD3′).

Kolumban’s duality

We consider the following dual problem, denoted (KD):

Minimize z

subject to 〈b, u〉 = 〈λ, z〉,
AT u � CT λ,

λ ≥ 0,

with variables (u,λ, z) ∈ R
m ×R

k ×R
k . It is not linear because of the first constraint

equality, but it fulfils a strong duality relation (see Corollary5.4.5 below). Moreover,
since the data of the problem are positively homogeneous with respect to (u,λ), we
may replace the constraint λ ≥ 0 by λ ∈ Δ. Actually (KD) and (VD3) are equivalent
in the sense that their value sets coincide.

Lemma 5.4.4 Assume that Q is nonempty and let QK D be the value set of the dual
problem (KD). Then

QK D + R
k+ = R

k \ (Q − int(Rk+)
)
.
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Proof When Q − intRk+ coincides with R
k , the scalar linear problem (Pλ)

maximize 〈λ, Cx〉
subject to Ax = b,

x � 0,

is unbounded for every λ ≥ 0. Hence its dual problem (Dλ)

minimize 〈b, u〉
subject to AT u � CT λ

has no feasible solution and so does the problem (KD). Conversely, if QK D is empty,
then for all λ ≥ 0, the problems (Dλ) have no feasible solution, which implies that
the problems (Pλ) are unbounded. This is possible only when Q − int(Rk+) coincides
with the whole space R

k . Assume now that QK D is nonempty. Let z be any element
of it and let (u,λ, z) be a feasible solution of (KD). Suppose to the contrary that z
belongs to the set Q − int(Rk+), say z = Cx − v for some feasible solution x of
(MOLP) and v ∈ int(Rk+). Then x and u are feasible solutions of the problems (Pλ)
and (Dλ). We have

〈b, u〉 = 〈λ, z〉 = 〈λ, Cx〉 − 〈λ, v〉 < 〈λ, Cx〉,

which contradicts the duality between (Pλ) and (Dλ). Thus QK D is included in
R

k \ (
Q − int(Rk+)

)
, and equality follows. Conversely, let z /∈ Q − int(Rk+). If

z ∈ Q − R
k+, then it is clear that z is a weakly maximal element of Q − R

k+. By
scalarization (Theorem 4.3.1) there is some vector λ ∈ Δ such that z maximizes
〈λ, .〉 on Q − R

k+. Let x be a feasible solution of (MOLP) such that z = Cx − v for
some v ∈ R

k+. Then 〈λ, z〉 = 〈λ, Cx〉 and x is an optimal solution of the problem
(Pλ). Consequently, the dual problem (Dλ) admits also an optimal solution u ∈ R

m

with 〈b, u〉 = 〈λ, Cx〉 = 〈λ, z〉, which shows that (u,λ, z) is a feasible solution of
(KD). If z /∈ Q − R

k+, then one may find some positive vector v such that z − v

belongs to Q − R
k+, but outside of Q − int(Rk+). Then, as we have already proven,

z − v belongs to QK D which yields z ∈ QK D + R
k+. �

Below is a strong duality relation for (KD).

Corollary 5.4.5 For the couple of primal and dual problems (MOLP) and (KD) the
following assertions hold.

(i) A feasible solution x of (MOLP) is a weakly maximal solution if and only if
there is a weakly minimal solution (u,λ, z) of (KD) such that Cx = z and
〈b, u〉 = 〈λ, Cx〉.

(ii) A feasible solution (u,λ, z) of (KD) is a weakly minimal solution if and only
if there is a weakly maximal solution x of (MOLP) such that Cx � z and
〈b, u〉 = 〈λ, Cx〉.

http://dx.doi.org/10.1007/978-3-319-21091-9_4
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Proof The first assertion is clear from scalarization. For the second assertion, let
(u,λ, u) be a weakly minimal solution of (KD). Then, by Lemma5.4.4, z is a weakly
minimal element of the set Q∗∗∗. By Theorem5.1.2 there is a positive vector v and
a feasible solution x of (MOLP) such that z = Cx − v. Hence Cx � z. This latter
inequality and theweak duality between (Pλ) and (Dλ) yield 〈b, u〉 = 〈λ, Cx〉.Hence
it is a weakly minimal point of the set QK D , which implies also that (u,λ, z) is a
weakly minimal solution. �

5.5 Lagrangian Duality

In order to develop a theory of Lagrangian duality we consider the problem (MOLP)

Maximize Cx

subject to Ax = b

x � 0

and define theLagrangian function associatedwith it to be a function of two variables:
x from R

n+ and Y from the space of k × m-matrices L(Rm, R
k) given by

L(x, Y ) = Cx + Y b − Y Ax .

It is clear that L is a linear function in each variable when the other is fixed. Before
we can establish a connection between the Lagrangian function and (MOLP) and its
duals, we introduce an important concept.

Saddle points

Given a point (x, Y ) in R
n+ × L(Rm, R

k) we consider three relations issued from

three orders in the space R
k :

L(x, Y ) � L(x, Y ) (5.25)

L(x, Y ) � L(x, Y ) (5.26)

L(x, Y ) �> L(x, Y ) (5.27)

for every x � 0 and Y ∈ L(Rm, R
k). It is obvious that (5.25) implies (5.26) and

(5.26) implies (5.27), but the converse is not true.

Definition 5.5.1 The point (x, Y ) is called an ideal saddle point (respectively a
strong saddle point and a weak saddle point) of the Lagrangian function L if it
satisfies (5.25) (respectively (5.26) and (5.27)).
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Of course, an ideal saddle point is a strong saddle point and a strong saddle point is
a weak saddle point, but the converse is not true in general. Given a vector x in R

n

and a k × m-matrix Y we set

Π(x) =
{{

L(x, Y ′) : Y ′ ∈ L(Rm, R
k)
}

if x � 0
∅ else,

Θ(Y ) = {
L(x ′, Y ) : x ′ � 0

}
.

Then the relations (5.25)–(5.27) are respectively equivalent to the following ones

Π(x) ⊆ L(x, Y ) + R
k+ and Θ(Y ) ⊆ L(x, Y ) − R

k+ (5.28)
(
Θ(Y ) − Π(x)

) ∩ R
k+ = {0} (5.29)

(
Θ(Y ) − Π(x)

) ∩ int(Rk+) = ∅. (5.30)

In the case k = 1, the three relations above are identical and so there is no distinction
between ideal, strong andweak saddle points. In fact, saddle points of vector functions
can be characterized by saddle points of real-valued functions.

Theorem 5.5.2 Let x be a vector in R
n and Y a k × m-matrix. The following

assertions hold.

(i) The point (x, Y ) is an ideal saddle point of L if and only if it is a saddle point
of the real-valued function 〈λ, L〉 for all positive vectors λ ∈ R

k .
(ii) The point (x, Y ) is a strong saddle point of L if and only if it is a saddle point

of the real-valued function 〈λ, L〉 for some strictly positive vector λ ∈ R
k .

(iii) The point (x, Y ) is a weak saddle point of L if and only if it is a saddle point of
the real-valued function 〈λ, L〉 for some (nonzero) positive vector λ ∈ R

k .

Proof The first assertion is clear from (5.28). To prove (ii), we observe that the “if”
part is evident. For the “only if” part, we assume that (x, Y ) is a strong saddle point
of L(x, Y ). It follows from (5.29) that

pos
(
Θ(Y ) − Π(x)

) ∩ R
k+ = {0}.

Taking the polar cone in the both sides of the latter equality and applying Corollary
2.3.21 yield [

pos
(
Θ(Y ) − Π(x)

)]o − R
k+ = R

k .

Consequently, the polar cone of the cone pos(Θ(Y ) − Π(x)) contains a strictly
positive vector λ satisfying

〈λ, z′ − z〉 � 0 for all z′ ∈ Θ(Y ), z ∈ Π(x). (5.31)

http://dx.doi.org/10.1007/978-3-319-21091-9_2
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Equivalently,

〈λ, L(x, Y )〉 � 〈λ, L(x, Y )〉 for all x � 0, Y ∈ L(Rm, R
k).

By this, (x, Y ) is a saddle point of the real function 〈λ, L(x, Y )〉.
Toprove the last assertion,weassume (5.30) anddistinguish twocases: 1) (Θ(Y )−

Π(x)) ∩ R
k+ = {0}, and 2) (Θ(Y ) − Π(x)) ∩ R

k+ �= {0}. The first case has already
been treated in (ii). Moreover, since the set Θ(Y )−Π(x) is convex, the second case
can happen onlywhen there is an index i among 1, · · · , k such that the i th component
of every element of Θ(Y ) − Π(x) is negative or zero. In other words, (5.31) holds
with λ = ei the i th axis unit direction. We conclude as before that (x, Y ) is a saddle
point of the real function 〈λ, L(x, Y )〉. �

To establish some more characterizations of saddle points we need the following
lemma.

Lemma 5.5.3 Given nonzero vectors d ∈ R
m and λ ∈ R

k , for every vectors w ∈ R
m

and z ∈ R
k with 〈d, w〉 = 〈λ, z〉, there is a k × m-matrix Y such that Y d = z and

Y T λ = w. In particular, for any vector u ∈ R
m, one has

{
Y u : Y ∈ L(Rm, R

k)
} =

{
R

k if u �= 0
{0} else.

Consequently the set {Y u : Y ∈ L(Rm, R
k)} has minimal/maximal points if and only

if u = 0.

Proof Since the vectors d and λ are nonzero, the values ‖d‖ and ‖λ‖ are nonzero.
We define

Y = 1

‖λ‖2λwT + 1

‖d‖2 zdT − 1

‖λ‖2 ‖d‖2λλT zdT .

By the hypothesis that wT d = λT z we deduce

Y d = 1

‖λ‖2λwT d + 1

‖d‖2 zdT d − 1

‖λ‖2 ‖d‖2λλT zdT d

= 1

‖λ‖2λλT z + 1

‖d‖2 z‖d‖2 − 1

‖λ‖2 ‖d‖2λλT z‖d‖2
= z

and

λT Y = 1

‖λ‖2λT λwT + 1

‖d‖2 λT zdT − 1

‖λ‖2 ‖d‖2λT λλT zdT

= wT + 1

‖d‖2wT ddT − 1

‖λ‖2 ‖d‖2 ‖λ‖2wT ddT

= wT
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which shows thatY is amatrixwe need.Now, let u be a vector fromR
m . If u = 0, then

Y u = 0 for any matrix Y . If u �= 0, then for every w ∈ R
m by choosing any nonzero

vector λ and z = 〈d,w〉
‖λ‖2 λ, we have 〈d, w〉 = 〈λ, z〉. It remains to apply the first part

of the lemma to find Y such that Y u = w. Finally, the set {Y u : Y ∈ L(Rm, R
k)}

has a minimal/maximal point if and only if it reduces to {0}, that is when u = 0. �

The next theorem has relevant implications.

Theorem 5.5.4 Let x be a vector in R
n and Y a k × m-matrix. The following

statements hold.

(i) The point (x, Y ) is an ideal saddle point of L if and only if the following
conditions are satisfied

Ax = b (5.32)

C − Y A � 0 (5.33)

(C − Y A)x = 0. (5.34)

(ii) The point (x, Y ) is a strong saddle point of L if and only if there is a strictly
positive vector λ in R

k such that (5.32) and the following conditions are satisfied

λT (C − Y A) � 0 (5.35)

λT (C − Y A)x = 0. (5.36)

(iii) The point (x, Y ) is a weak saddle point of L if and only if there is a nonzero
positive vector λ in R

k such that the conditions (5.32), (5.35) and (5.36) are
satisfied.

Proof Let (x, Y ) be an ideal saddle point of the Lagrangian function L . Setting
Y = Y in (5.25), we deduce

(C − Y A)(x − x) � 0 (5.37)

for every positive vector x . Specifying x = 2x and then x = x/2, we obtain (5.34).
Thus, inequality (5.37) becomes (C − Y A)x � 0 for all x � 0. This evidently
implies (5.33). In order to obtain (5.32), we set x = x in (5.25) and deduce

(Y − Y )(b − Ax) � 0 for all Y.

This clearly yields (5.32) in view of Lemma5.5.3. For the converse assume that the
three conditions in (i) hold. Then for every positive vector x and for every matrix Y
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we have

L(x, Y ) = Y b + (C − Y A)x

= Y Ax + (C − Y A)x + (C − Y A)x

� Cx

� L(x, Y ),

which shows that (x, Y ) is an ideal saddle point of L .
To prove the second statement we apply Theorem5.5.2. Let (x, Y ) be a strong

saddle point of L . There is a strictly positive vector λ from R
k such that it is a saddle

point of the real-valued function 〈λ, L〉, that is

λT (Y b + (C − Y A)x
)

� λT (Y b + (C − Y A)x
)

(5.38)

for all x � 0 and Y . Like the first part of the proof, by setting Y = Y in (5.38), we
deduce

λT (C − Y A)(x − x) � 0

for every x � 0. This evidently implies (5.35) and (5.36). Similarly, by setting x = x
in (5.38), we have

λT (Y − Y )(b − Ax) � 0

which yields (5.32). Conversely, assume that the conditions (5.32), (5.35) and (5.36)
are satisfied for some strictly positive vector λ. Then for every positive vector x and
matrix Y we have

〈
λ, L(x, Y )

〉 = λT (Y b + (C − Y A)x
)

= λT (Y Ax + (C − Y A)x + (C − Y A)x
)

� λT (Cx + Y b − Y Ax)

�
〈
λ, L(x, Y )

〉
.

In view of Theorem5.5.2, we conclude that (x, Y ) is a strong saddle point of L . The
third statement is proven by the same method. �

In the previous chapter we proved that the set of maximal solutions of a multiob-
jective linear problem consists of faces of the feasible set and is arcwise connected.
We now show that this nice structure is also valid for the set of saddle points.

Corollary 5.5.5 The following properties are true.

(i) If (x, Y ) is an ideal saddle point of L, then Cx = Y b and this value is unique.
Consequently, the set of ideal saddle points of L is a convex polyhedral set.

(ii) If (x, Y ) is a strong saddle point (respectively weak saddle point) of L and if x
is a relative interior point of a face F of the feasible set of (MOLP), then for
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every x ′ ∈ F, the couple (x ′, Y ) is a strong saddle point (respectively weak
saddle point) of L.

(iii) The sets of strong as well as weak saddle points of L are composed of convex
polyhedral sets and are arcwise connected.

Proof It follows from Theorem5.5.4 that if (x, Y ) and (x ′, Y ′) are ideal saddle
points, then (x ′, Y ) and (x, Y ′) are ideal saddle points too. The first part of (i) is
then obtained from (5.34). Under (5.32) the system of equations and inequalities
determining ideal saddle points in Theorem5.5.4 are linear, hence the solution set is
a convex polyhedral set.

For (ii) let λ be a vector associated with a strong saddle point (x, Y ) which is
defined by (ii) of Theorem5.5.4. Then CT λ is a normal vector to the feasible set of
(MOLP) at x , and for every vector x ′ in F we have λT Cx ′ = λT Cx (see Theorem
3.1.3). This latter equality and the feasibility of x ′ show that conditions (5.32), (5.35)
and (5.36) are satisfied for (x ′, Y ). Hence (x ′, Y ) is a strong saddle point.

To prove the last statement we observe that for a fixed vector λ, the system
(5.32), (5.35) and (5.36) is linear in (x, Y ), hence its solution set is a convex poly-
hedral set. Notice further that λ determines an efficient solution face of (MOLP),
and since the number of such faces is finite, the set of strong saddle points being
solutions of the above system with a finite number of λ is a finite union of con-
vex polyhedral sets. To prove the arcwise connectedness of this set, let (x, Y ) and
(x ′, Y ′) be two strong saddle points of L . Because the set of maximal solutions
of (MOLP) is arcwise connected, we find a finite number of maximal solutions
x1 = x, · · · , x� = x ′ such that the segments [xi , xi+1], i = 1, · · · , � − 1 are
efficient. Let Fi be an efficient face containing zi = (xi + xi+1)/2 in its relative
interior, and let Y i and W i be matrices with Y 1 = Y and Y � = Y ′ for which
(xi , Y i ) and (zi , W i ) are strong saddle points (see Theorem5.5.15 for existence of
suchmatrices). By (ii), the segments [(xi , Y i ), (xi , W i )], [(xi , W i ), (xi+1, W i )] and
[(xi+1, W i ), (xi+1, Y i+1)] belong to the set of strong saddle points and joint (xi , Y i )

with (xi+1, Y i+1) for i = 1, · · · , � − 1. This proves that the set of strong saddle
points is arcwise connected. The proof for the set of weak saddle points follows the
same line. �

Primal problem

We shall see now that the objective function Cx of (MOLP) can be obtained by
minimizing the Lagrangian function over the set of matrices Y .

Corollary 5.5.6 For every vector x, one has

IMin
(
Π(x)

) = Min
(
Π(x)

) = WMin
(
Π(x)

) =
{ {Cx} if Ax = b, x � 0

∅ else.

Proof When x � 0, by definitionΠ(x) is empty.When Ax −b �= 0, by Lemma5.5.3
for every vector z in R

k there is a matrix Y such that Y (b − Ax) = z, which implies

http://dx.doi.org/10.1007/978-3-319-21091-9_3
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that Π(x) has no weakly minimal point, hence no minimal point and no ideal point
at all. Finally, if Ax = b and x � 0, then Π(x) consists of a singleton Cx and the
corollary follows immediately. �

In consequence,wemay express (MOLP) as amax-min problemof theLagrangian
function

Maximize Min
(
Π(x)

)

subject to x ∈ R
n .

When amaximal solution x̄ exists with an associatedmatrix Ȳ , that isCx̄ = L(x̄, Ȳ ),
the matrix Ȳ is called a multiplier of (MOLP). In the classical framework the dimen-
sion of the multiplier vector is the number of the constraints of the initial problem,
which is equal to m in our case. However, as we have k objective functions, the
number of multiplier components is equal to km. This explains why multipliers of
multiobjective problems are matrices.

We know now that (MOLP) is the max-min problem of the Lagrangian function.
What happens if we switch max and min? It is to hope that the min-max problemwill
yield a dual problem for (MOLP) as in the case of the linear programming (Sect. 3.2).
It is worthwhile to note that even if for the set Π(x) three concepts of minimality
coincide (Corollary5.5.6), it is not so for the set Θ(Y ). This peculiarity leads to
different dual problems that we develop next.

Ideal dual problem

Given a matrix Y , we define a function of variable Y with values in R
k by

G1(Y ) = sup
{

L(x, Y ) : x � 0
}
.

Lemma 5.5.7 For every matrix Y one has

G1(Y ) =
{ {Y b} if Y A � C

∅ else.

Proof When Y A − C � 0, it is clear that Y b � L(x, Y ) for all x � 0. Hence
G1(Y ) = Y b. Assume that Y A � C . There exist a row Y i of Y and a column a j of
A such that ci j − Y i a j > 0, where ci j is the ijth entry of C . Choose x = te j for
t � 0 and e j being the j th axis unit direction. Then the j th component of the vector
(C − Y A)x tends to ∞ as t goes to ∞. By this, the set G1(Y ) is empty. �

The min-max problem of the Lagrangian function will take form

Minimize G1(Y )

subject to Y ∈ L(Rm, R
k),

http://dx.doi.org/10.1007/978-3-319-21091-9_3
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which is exactly the ideal dual problem we have studied in Sect. 5.2.

Theorem 5.5.8 A point (x, Y ) is an ideal saddle point of L if and only if x and Y
are ideal solutions of (MOLP) and (VD1), in which case Cx = Y b.

Moreover, if x is an ideal solution of (MOLP), then there exists an ideal solution
Y of (VD1) such that (x, Y ) is an ideal saddle point of L; and if Y is an ideal solution
of (VD1), then (MOLP) has at least k maximal solutions each of which forms with
Y a weak saddle point of L.

Proof Assume that (x, Y ) is an ideal saddle point of L . In view of Theorem5.5.4
both x and Y are feasible solutions. Moreover, for every feasible solutions x and Y
one has

Cx = Cx + Y b − Y Ax � Cx + Y b − Y Ax

which yields Cx � Cx when setting Y = Y in the expression on the right hand side
and Y b � Y b when setting x = x in the expression on the left hand side. Thus,
x and Y are ideal solutions. Conversely, assume that x and Y are ideal solutions of
(MOLP) and (VD1) respectively. Then for every matrix Y we have

L(x, Y ) = Cx + Y b − Y Ax = Cx + Y (b − Ax) � L(x, Y )

because b − Ax = 0. It remains to prove L(x, Y ) � L(x, Y ). To this end, we claim
that (5.34) holds, that is,

(C − Y A)x = 0.

Indeed, since x and Y are ideal solutions, the feasible solution x is an optimal solution
of the scalar problem (Pi ):

maximize 〈ci , x〉
subject to Ax = b

x � 0

and the i th column yi of Y
T
is an optimal solution of the dual (Di ):

minimize 〈b, y〉
subject to AT y � ci .

By duality for scalar problems, one has 〈ci , x〉 = 〈yi , b〉. This being true for all
i = 1, · · · , k, we deduce Cx = Y b = Y Ax . Thus (5.34) is valid. Theorem5.5.4
along with the feasibility of x and Y and (5.34) imply that (x, Y ) is an ideal saddle
point of L .

To prove the second part we assume x is an ideal solution of (MOLP). Then it is an
optimal solution of the problems (Pi ), i = 1, · · · , k. By duality, the dual problems
(Di ) have optimal solutions, say yi , i = 1, · · · , k that satisfy 〈ci , x〉 = 〈yi , b〉
for all i = 1, · · · , k. Define Y to be the matrix whose rows are the transposes of
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y1, · · · , yk . It is clear that Cx = Y b and (x, Y ) is a saddle point of L . Now let Y be
an ideal solution of (VD1). Then the columns y1, · · · , yk of Y T are optimal solutions
of the problems (D1),· · · ,(Dk) respectively. Again, by duality the primal problems
(P1),· · · ,(Pk) have solutions, which imply that the value set of (MOLP) is bounded
above. Hence each problem (Pi ) admits optimal solutions among which there exists
at least one maximal solution xi of (MOLP). To prove that (xi , Y ) is a weak saddle
point of L we define λ to be the i th coordinate unit vector in R

k . Then

λT L(x, Y ) = 〈yi , b〉 + 〈ci − AT yi , x〉

which is the classical Lagrangian function associated with the problem (Pi ), and
deduce that (xi , Y ) is a saddle point of the real Lagrangian function 〈λ, L〉. By
Theorem5.5.2 it is a weak saddle point of L . �

Note that when (VD1) has an ideal solution it is not necessary that L has ideal
saddle points or strong saddle points. This is illustrated by the next example.

Example 5.5.9 Consider the following problem

Maximize

(
1 0
0 1

)(
x1
x2

)

subject to x1 + x2 = 1

x1, x2 � 0.

The Lagrangian function associated with this problem takes the form

L(x, Y ) = (1 − x1 − x2)

(
y1
y2

)
+
(

x1
x2

)
,

where Y is a 2×1-matrix with the entries y1 and y2. It is clear that the matrix Y with
y1 = y2 = 1 is an ideal solution of the dual problem

Mimimize
(

y1 y2
)

subject to

(
y1
y2

)
(1 1) �

(
1 0
0 1

)
.

However, the Lagrangian function L has no strong saddle point because the system
(5.32) and (5.36) becomes

x1 + x1 = 1

(λ1 λ2)

(
0 −1

−1 0

)(
x1
x2

)
= 0

x1, x2 � 0;λ1,λ2 > 0

and is not solvable.
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Strong dual problem

Given a matrix Y , we define a function of variable Y with set-values in R
k by

G2(Y ) = Max
(
Θ(Y )

) = Max
{

L(x, Y ) : x � 0
}
.

Our aim at the moment is to compute the value G2(Y ) for a given matrix Y . We need
some auxiliary lemmas.

Lemma 5.5.10 Let M be a k × n-matrix whose columns are denoted M1, · · · , Mn.
Then

Max{Mx : x � 0} =
⋃

λ>0:λT M�0

pos
{

Mi : λT Mi = 0, i ∈ {1, · · · , n}
}
.

Proof Since the set {Mx : x � 0} is the positive hull of the columns M1, · · · , Mn ,
it is a polyhedral cone. Therefore, it has maximal points if and only if its intersection
with the positive orthant R

k+ consists of the zero vector only. In other words, that
positive hull has maximal points if and only if there is a strictly positive vector λ
such that λT Mi � 0 for all i = 1, · · · , n, in which case the set of maximal points is
composed of faces spanned by the columns Mi that satisfy equation λT Mi = 0 or
the zero vector if λT Mi < 0 for all i = 1, · · · , n. �
Lemma 5.5.11 For every matrix Y one has

G2(Y ) = Y b +
⋃

λ>0:λT (C−Y A)�0

pos
{
(C − Y A)i : λT (C − Y A)i = 0,

i ∈ {1, · · · , n}
}

= Y b +
⋃

λ>0:λT (C−Y A)�0

{
(C − Y A)u : u � 0,λT (C − Y A)u = 0}

}
.

Proof If there is no λ > 0 such that λT (C − Y A) � 0, then the second term on the
right hand side of the expression ofG2(Y ) is empty, and soG2(Y ) is empty. This is the
case when the positive hull of the columns of the matrix C − Y A contains a nonzero
positive vector, and hence the set {L(x, Y ) : x � 0} = {Y b + (C − Y A)x : x � 0}
has no maximal point. When the set {L(x, Y ) : x � 0} has maximal points, we may
apply Lemma5.5.10 to obtain

G2(Y ) = Max{L(x, Y ) : x � 0}
= Max

{
Y b + (C − Y A)x : x � 0

}

= Y b +
⋃

λ>0:λT (C−Y A)�0

pos
{
(C − Y A)i : λT (C − Y A)i = 0,

i ∈ {1, · · · , n}
}
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as requested. To prove the second equality it suffices to observe that a vector z belongs
to the cone pos

{
(C − Y A)i : λT (C − Y A)i = 0, i ∈ {1, · · · , n}} for some λ > 0

such that λT (C − Y A) � 0 if and only if z = (C − Y A)u for some positive vector
u whose components corresponding to λT (C − Y A)i < 0 are zero. �

The min-max problem of the Lagrangian function with G2 yields a dual problem,
denoted (VD2)L :

Minimize Y b + (C − Y A)u
subject to λT Y A � λT C

λ > 0, u � 0
λT (C − Y A)u = 0.

Notice that once Y is given with λT Y A � λT C for some λ > 0, the polyhedral
cone pos{(C − Y A)i : λT (C − Y A)i = 0, i ∈ {1, · · · , n}} is completely defined
and contains all value vectors (C − Y A)u.

We consider also the following maps:

G ′
2(Y ) = Y b +

⋃

λ>0:λT (C−Y A)�0

{
z ∈ R

k : 〈λ, z〉 � 0
}

and

G ′′
2(Y ) = Y b +

⋃

λ>0:λT (C−Y A)�0

{
z ∈ R

k : 〈λ, z〉 = 0
}

.

The dual problem obtained from G ′
2 is denoted (VD2′):

Minimize Y b + z

subject to λT Y A � λT C

〈λ, z〉 � 0,λ > 0,

and the dual problem obtained from G ′′
2 is denoted (VD2′′):

Minimize Y b + z

subject to λT Y A � λT C

〈λ, z〉 = 0,λ > 0.

The dual problem (VD2′) was given in Sect. 5.3 and called the extended dual problem
of (MOLP). It is clear that if (Y,λ, z) is a feasible solution of (VD2′′), then it is a
feasible solution of (VD2′).Moreover, since for every z ∈ R

k with 〈λ, z〉 > 0 there is
some z0 ≤ z such that 〈λ, z0〉 = 0, we deduce easily that for every feasible solution
(Y,λ, z) of (VD2′) there is some vector z0 � z such that (Y,λ, z0) is a feasible
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solution of (VD2′′). Consequently, every minimal solution of (VD2′) is a minimal
solution of (VD2′′) and vice versa. In this sense the two problems (VD2′) and (VD2′′)
are equivalent. The problems (VD2)L and (VD2′′) apparently differ from each other.
Namely, given a matrix Y , we have the following inclusions

Y b ∈ G2(Y ) ⊆ G ′′
2(Y ) ⊆ G ′

2(Y ) (5.39)

in which equality does not hold in general. Remember that the strong dual problem
(VD2) is given by

Minimize Y b
subject to λT Y A � λT C

for some λ > 0.

The value sets of the problems (VD2), (VD2)L and (VD2") are denoted Q D2, QL

and Q′′ respectively. Recall also Q∗∗ := (
R

k \ (Q − R
k+)
) ∪ Max(Q).

Lemma 5.5.12 Assume that (MOLP) has maximal solutions. Then the following
inclusions hold

Q D2 ⊆ QL ⊆ Q′′ ⊆ Q∗∗.

In addition, if A �= 0 and b = 0, then QL = Q′′.

Proof The first two inclusions of the lemma are clear. We prove the last one. Let
Y b + z be an element of Q′′, say with 〈λ, z〉 = 0 and λT (C − Y A) � 0 for some
strictly positive vector λ. We claim that Y b + z belongs to Q∗∗. Indeed, if this is not
true, then one can find some feasible solution x of (MOLP) and a positive vector v

such that
Y b + z = Cx − v.

Multiplying both side of the above equality by λT and using the fact that Ax = b
we obtain

λT (Y A − C)x = −λT (v + z).

Since the value on the left hand side is nonnegative because x � 0 andλT (C−Y A) �
0, and λ is strictly positive, one must have v = 0, which implies that Y b + z = Cx .
This latter vector being not a maximal element of Q, we find some feasible solution
x̄ of (MOLP) such that

Y Ax + z = Y b + z ≤ Cx .

Again, multiplying both sides of this inequality by λT we derive

λT (Y A − C)x < 0

which is a contradiction.
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For the second part of the lemma it suffices to show that given any feasible solution
(Y,λ, z) of (VD2′′), there is a feasible solution (Y ′,λ, u) of (VD2)L such that

z = (C − Y ′ A)u. (5.40)

To this end, consider the scalarized problem (Pλ) of maximizing λT Cx under the
constraint Ax = 0 and x � 0.

Claim 1. There exists a coordinate unit vector e � 0 in R
n such that Ae �= 0 and the

problem (Pe) below has the optimal value equal to 0:

maximize λT Cx

subject to Ax = 0

x − te � 0

(x, t) ∈ R
n × R.

In fact, suppose to the contrary that for every coordinate unit vector e j with Ae j �= 0,
the problem (Pe j ) has its optimal value strictly positive. Observe first that since A �=
0, the index set J = { j ∈ {1, · · · , n} : Ae j �= 0} is nonempty. Then for j ∈ J , there
is an optimal solution x j such that λT Cx j > 0. The vectors x j , j /∈ J and e j , j ∈ J
all belong to the kernel of thematrix A, hence they are linearly dependent, that is there
are coefficients α1, · · · ,αn not all zero such that

∑
j∈J α j x j + ∑

j /∈J α j e j = 0.
Set

x =
∑

j∈J

|α j |x j .

We prove that x is a feasible solution of (Pλ) and λT Cx > 0, which is a contradiction
due to the fact that x is also an asymptotic direction of the feasible set. Indeed, since
the coordinate vectors e j are linear independent, at least one of the coefficients
α j , j ∈ J is non zero. Let J+ be the set of indices j with α j � 0 and J− the set
of all j with α j < 0. Then the i th component (x j )i of the vector x j is positive for
every ( j, i) ∈ (J+ × J−)∪ (J− × J+). Moreover, for every i /∈ J , the i th component
of x is nonnegative, while for i ∈ J ,

∑

j∈J−
α j (x j )i +

∑

j∈J+
α j (x j )i = 0,

which implies

xi =
∑

j∈J−
(−α j )(x j )i +

∑

j∈J+
α j (x j )i =

{
2
∑

j∈J+ α j (x j )i � 0
−2

∑
j∈J− α j (x j )i � 0.

By this, x � 0. Moreover, Ax = ∑
j∈J |α j |Ax j = 0 and
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λT Cx =
∑

j∈J

|α j |λT Cx j > 0,

which contradicts the hypothesis.

Claim 2. Let y be a dual optimal solution of (Pe). There exists a matrix Y ′ such that
Y ′T λ = y and Y ′ Au = Cu − z. Indeed, since y is a dual optimal solution, we have
AT y � CT λ and 〈AT y − CT λ, u〉 = 0. Consider the vectors Au, y, Cu − z and
λ in which Au and λ are nonzero and 〈λ, Cu − z〉 = 〈λ, Cu〉 = 〈Au, y〉 because
〈λ, z〉 = 0. It remains to apply Lemma5.5.3 to find a matrix Y ′ satisfying (5.40) as
requested. �

It should be noticed that when A = 0 and b = 0, it is not necessary that equality
QL = Q′′ be true as the next example shows.

Example 5.5.13 Consider the following problem

Maximize

(−1 0
0 −1

)(
x1
x2

)

subject to x1, x2 � 0.

The dual problems (VD2′′) and (VD2)L are respectively given by

Mimimize

(
z1
z2

)

subject to (0 0) � (λ1 λ2)

(−1 0
0 −1

)

λ1z1 + λ2z2 = 0

λ1,λ2 > 0

and

Mimimize

(−1 0
0 −1

)(
u1
u2

)

subject to (0 0) � (λ1 λ2)

(−1 0
0 −1

)

λ1u1 + λ2u2 = 0

u1, u2 � 0

λ1,λ2 > 0.

It is easy to see that QL = {0} and Q′′ = R
2 \ ( − R

2+ \ {0}) which proves that the
inclusion QL ⊂ Q′′ is strict.
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Lemma 5.5.14 Assume that (MOLP) has maximal solutions. Then

Max(Q) = Min(QL).

Proof If b �= 0, then in view of Lemma5.3.2, we have

Q D2 + R
k+ = (

R
k \ (Q − R

k+)
) ∪ Max(Q)

and deduce from Lemma5.5.12 equalities

Q∗∗ = Q D2 + R
k+ = QL + R

k+ = Q′′ + R
k+

which shows that the problems (VD2), (VD2)L and (VD2′′) have the same minimal
value set.

If b = 0 and A �= 0, then by Lemma5.5.12 we have Min(QL) = Min(Q′′).
Since Min(Q′′) and Min(Q∗∗) coincide, and Min(Q′′) = Max(Q) according to
Theorem5.1.2 and Lemma5.3.7, we deduce Max(Q) = Min(QL).

Finally, if A = 0 and b = 0, then Cx̄ with x̄ � 0 is a maximal element of the set
{Cx : x � 0} if and only if there is a vector λ > 0 such that 0 = λT Cx̄ � λT Cu for
every u � 0, which implies that λT C � 0 and Cx̄ is a minimal element of (VD2)L .
Therefore, we have equality Max(Q) = Min(QL) as well. �

A relationship between saddle points of the Lagrangian function L and efficient
solutions of the primal problem and the dual problems is given next.

Theorem 5.5.15 The following statements hold true.

(i) A point (x, Y ) is a strong saddle point of L if and only if there is λ > 0 such
that x is an optimal solution of (Pλ) and maximal solution of (MOLP), (Y,λ, x)

is a minimal solution of (VD2)L and Y T λ is an optimal solution of (Dλ).
Moreover, if x is a maximal solution of (MOLP) and (Y,λ, u) is a minimal
solution of (VD2)L with 〈λ, Cx〉 = 〈λ, Y b〉, then (x, Y ) is a saddle point of
λT L and hence a strong saddle point of L.

(ii) For every maximal solution x of (MOLP) there exists a minimal solution (Y,λ, u)

of (VD2)L such that (x, Y ) is a saddle point of λT L, and hence a strong saddle
point of L; and for every minimal solution (Y,λ, u) of (VD2)L there is a maximal
solution x of (MOLP) such that (x, Y ) is a saddle point of λT L and thus a strong
saddle point of L.

Proof Assume that (x, Y ) is a strong saddle point of L . In view of Theorem5.5.2
there is λ > 0 such that it is a saddle point of the real-valued function 〈λ, L(., .)〉,
which implies that x is an optimal solution of (Pλ), and hence a maximal solution of
(MOLP). Furthermore, Y T λ is an optimal solution of (Dλ) and λT (Cx − Y b) = 0
which imply that (Y,λ, x) is a feasible solution of (VD2)L . Suppose (Y,λ, x) is not
minimal for (VD2)L . Since Y b + (C − Y A)x = Cx , there exists a feasible solution
(Y,λ′, u) of (VD2)L such that Y b + (C − Y A)u ≤ Cx . By multiplying each side of



5.5 Lagrangian Duality 159

this inequality by λ′T , we get λ′T Y b < λ′T Cx and hence λ′T (Y A − C)x < 0 which
is impossible. So (Y,λ, x) is a minimal solution of (VD2)L .

Conversely, let x and (Y,λ, x) be efficient solutions of respectively (MOLP) and
(VD2)L . One directly obtains that (x, Y ) satisfies conditions (5.32), (5.35) and (5.36)
of Theorem 5.5.4 by which (x, Y ) is a strong saddle point of L . For the second part
of (i), (5.32), (5.35) and (5.36) are satisfied. We deduce that (x, Y ) is a saddle point
of λT L and hence a strong saddle point of L .

For (ii), we assume that x is a maximal solution of (MOLP). Then there is λ > 0
such that x is an optimal solution of (Pλ) and y an optimal solution of the dual
problem (Dλ). Choose Y such that Y T λ = y (Lemma5.5.3). Then (5.32), (5.35)
and (5.36) are satisfied. By Theorem5.5.4 (x, Y ) is a strong saddle point. Finally,
let (Y,λ, u) be a minimal solution of (VD2)L . By Lemma5.5.14, there is a maximal
solution x of (MOLP) such that Cx = Y b + (C − Y A)u and it is easy to check that
(x, Y ) is a saddle point of λT L and thus a strong saddle point of L . �

Weak dual problem

Given a matrix Y , we define a function of variable Y with set-values in R
k by

G3(Y ) = WMax(Θ(Y )) = WMax
{

L(x, Y ) : x � 0
}
.

Using the same method as for strong saddle points one may express G3(Y ) by

G3(Y ) = Y b +
⋃

λ≥0:λT (C−Y A)�0

pos
{
(C − Y A)i : λT (C − Y A)i = 0,

i ∈ {1, · · · , n}
}

= Y b +
⋃

λ≥0:λT (C−Y A)�0

{
(C − Y A)u : u � 0,λT (C − Y A)u = 0}

}
.

and obtain a dual problem, denoted (VD3)L :

Minimize Y b + (C − Y A)u
subject to λT Y A � λT C

λ ≥ 0, u � 0
λT (C − Y A)u = 0.

Two related dual problems denoted (VD3′) and (VD3′′) are given respectively by

Minimize Y b + z
subject to λT Y A � λT C

〈λ, z〉 � 0
λ ≥ 0,
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and

Minimize Y b + z
subject to λT Y A � λT C

〈λ, z〉 = 0
λ ≥ 0.

The problem (VD3′) was obtained in Sect. 5.4 as an extended weak dual problem.
The problems (VD3)L , (VD3′) and (VD3′′) are distinct, having the different value
sets, which are denoted respectively Q̂L , Q̂

′
and Q̂′′. It is clear that (VD3′) and

(VD3′′) are equivalent, which means that their weakly minimal value sets coincide.
We recall also that Q(D3) + R

k+ ⊆ Q̂′ = Q∗∗∗, and equality is true when b �= 0
(Lemma5.4.1).

Lemma 5.5.16 The following inclusions hold true:

WMin(Q̂L) ⊆ WMin(Q̂′′ + R
k+) = WMax(Q − R

k+). (5.41)

Proof It is clear that Q(D3) + R
k+ ⊆ Q̂L + R

k+ ⊆ Q̂′′ + R
k+ ⊆ Q̂′. When b �= 0

these inclusions become equalities. We deduce from Theorem5.1.2 that

WMin(Q̂L) ⊆ WMin(Q̂′′ + R
k+) = WMin(Q∗∗∗) = WMax(Q − R

k+).

If b = 0 and A �= 0, the same argument of proof of Lemma5.5.12 shows that
Q̂L = Q̂′′. By this, the conclusion of the lemma remains true.

Finally, if A = 0 and b = 0, then, as in the proof of Lemma5.5.14 we
have WMin(Q̂L) = WMax(Q) ⊆ WMax(Q − R

k+) as requested. The proof is
complete. �

The next result is an analogy of Theorem5.5.15 for weak saddle points.

Theorem 5.5.17 The following statements hold.

(i) A point (x, Y ) is a weak saddle point of L if and only if there is λ ≥ 0 such
that x is an optimal solution of (Pλ) and weakly maximal solution of (MOLP),
(Y,λ, x) is a weakly minimal solution of (LD3) and Y T λ is an optimal solution
of (Dλ).
Moreover, if x is a weakly maximal solution of (MOLP) and (Y,λ, u) is a weakly
minimal solution of (LD3) with 〈λ, Cx〉 = 〈λ, Y b〉, then (x, Y ) is a saddle point
of λT L and hence a weak saddle point of L.

(ii) For every weakly maximal solution x of (MOLP) there exists a weakly minimal
solution (Y,λ, u) of (LD3) such that (x, Y ) is a saddle point of λT L, and hence
a weak saddle point of L; And for every weakly minimal solution (Y,λ, u) of
(LD3) there is a weakly maximal solution x of (MOLP) such that (x, Y ) is a
saddle point of λT L and thus a weak saddle point of L.
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Proof We apply the same method of Theorem5.5.15 to prove the first item and the
first part of the second item. We now proceed to prove the second part of (ii). Let
(Y,λ, u) be a weakly minimal solution (LD3). If b = 0, then x = 0 is an optimal
solution of (Pλ), while λT Y is a feasible solution, hence an optimal solution of (Dλ).
By this, (x, Y ) is a saddle point of λT L . We apply (5.41) to find a feasible solution
x of (MOLP) and a positive vector v such that

Y b + (C − Y A)u = Cx − v.

We deduce that

〈λ, Y b〉 = 〈λ, Y b + (C − Y A)u〉 = 〈λ, Cx − v〉 � 〈λ, Cx〉.

Actually the last inequality is equality because x and λT Y are feasible solutions of
(Pλ) and (Dλ). Hence x and Y form a saddle point of λT L as requested. �

Notice again that when (x, Y ) is a weak saddle point of L , the matrix Y is not
necessarily a minimal solution of (VD3)L .

Scalarizing sets

Given a weak saddle point (x, Y ) of L , according to Lemma5.5.2, there is some
positive vector λ ∈ R

k such that (x, Y ) is a saddle point of the real valued function
λT L . The set of all such λ ≥ 0 is called a scalarizing set for the saddle point (x, Y )

and denotedΛ(x, Y ). We recall that for a weakly maximal solution x of (MOLP), the
set of scalarizing vectors Λ(x) consists of λ ≥ 0 such that x is an optimal solution
of (Pλ). For a matrix Y we denote Λ(Y ) the set of vectors λ ≥ 0 such that (Y,λ, u)

is a weakly minimal solution of (VD3)L for some u � 0. In this part we study the
set Λ(x, Y ) by establishing some of its properties in relation with Λ(x) and Λ(Y ).
Below is an explicit formula of the scalarizing setsΛ(x) andΛ(Y ) in terms of normal
cones.

Lemma 5.5.18 The following assertions hold:

Λ(x) = NQ(Cx) ∩ (
R

k+ \ {0} ).
Λ(Y ) =

⋃

u�0
Y b+(C−Y A)u∈Q

Nco(Y b,Q)

(
Y b + (C − Y A)u

)

⋂{
λ ∈ R

k+ \ {0} : λT (C − Y A) � 0
}

.

Proof The first item follows from Theorem 4.2.6. We prove the second formula. Let
λ ∈ Λ(Y ). There is u � 0 such that (Y,λ, u) is aweaklyminimal solution of (LD3)L .
In particular λ ≥ 0 and λT (C − Y A) � 0. Moreover, according to Theorem5.5.17
(ii), there exists a feasible solution x of (MOLP) such that (x, Y ) is a saddle point of
λT L . We have then

http://dx.doi.org/10.1007/978-3-319-21091-9_4
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Y b + (C − Y A)x = Cx ∈ Q and

λT Cx � λT (Cx ′ + Y b − Y Ax ′) for every x ′ � 0.

It follows that λT Cx � λT Y b (taking x ′ = 0 in the latter inequality) and λT Cx �
λT Cx ′′ for every feasible solution x ′′ of (MOLP). Consequently,

λT Cx � λT (tY b + (1 − t)Cx ′′)

for every t ∈ [0, 1] and Cx ′′ ∈ Q, which proves that λ belongs to the normal cone
N (co(Y b, Q), Y b + (C − Y A)x).

For the converse inclusion, let λ be a positive k-vector such that λT (C −Y A) � 0
and λ ∈ N (co(Y b, Q), Y b + (C − Y A)u) where Y b + (C − Y A)u = Cx ∈ Q for
some u � 0 and Cx ∈ Q. We have

λT Cx = λT (Y b + (C − Y A)u) � λT Y b,

which implies λT (C − Y A)u � 0. The latter inequality is actually equality because
λT (C − Y A) � 0 and u � 0. We deduce that (x, Y ) is a saddle point of λT L and by
Theorem5.5.17, λ ∈ Λ(Y ). �

In the next result SL and ŜL denote respectively the set of weak saddle points and
the set of exact weak saddle points of L (in the sense that Y b = Cx).

Theorem 5.5.19 Let (x, Y ) be a weak saddle point of L. Then the scalarizing set
Λ(x, Y ) is a convex polyhedral cone without apex and satisfies

Λ(x, Y ) = Λ(x) ∩ Λ(Y ).

Moreover, the following relations hold true

(i) Λ(x) = ⋃
(x,Y ′)∈SL

Λ(x, Y ′) ⊇ ⋃
(x,Y ′)∈ŜL

Λ(x, Y ′). Equality holds if b �= 0.
(ii) Λ(Y ) = ⋃

(x ′,Y )∈SL
Λ(x ′, Y ).

Proof Given a weak saddle point (x, Y ), in view of Theorem5.5.4 the set Λ(x, Y )

consists of the solutions to the homogenous linear system (5.35) and (5.36). Hence
it is a convex polyhedral cone without apex because λ ≥ 0. In view of (i) and (ii), to
establish Λ(x, Y ) = Λ(x) ∩ Λ(Y ) it suffices to show that every λ ∈ Λ(x) ∩ Λ(Y )

belongs to Λ(x, Y ). Indeed, since (Y,λ, u) is a weakly minimal solution of (LD3)
for some u � 0, by Theorem5.5.17 (ii) there is a weakly maximal solution x ′ of
(MOLP) such that (x ′, Y ) is a saddle point of λT L . Hence both of x and x ′ are
optimal solutions of (Pλ) and λT Cx = λT Cx ′ = λT Y b. We deduce that (x, Y ) is a
saddle point of λT L .

We now proceed to prove (i). It clear that Λ(x, Y ′) ⊂ Λ(x) for every Y ′ such
that (x, Y ′) ∈ SL . For the converse, let λ ∈ Λ(x). Then x is an optimal solution
of (Pλ), and hence (Dλ) admits some optimal dual solution y. Apply Lemma5.5.3
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to find some Ỹ such that Ỹ T λ = y. Then (x, Ỹ ) is a saddle point of λT L , that is
λ ∈ Λ(x, Ỹ ). Moreover, when b �= 0, in view of Lemma5.5.3, it is possible to find
Ỹ satisfying Ỹ b = Cx which shows that (x, Ỹ ) is an exact weak saddle point.

To establish (ii) we observe that if (x ′, Y ) is a weak saddle point of L and λ ∈
Λ(x ′, Y ), then the argument of the proof of Theorem5.5.15 (i) shows that (Y,λ, x ′)
is a weakly minimal solution of (LD3), by which λ belongs to Λ(Y ). Conversely, if
λ ∈ Λ(Y ), then Y T λ is an optimal solution of (Dλ). Let x ′ be an optimal solution of
(Pλ). We have λT Cx ′ = λT Y A proving that (x ′, Y ) is a saddle point of λT L , that is
λ ∈ Λ(x ′, Y ). �

We recall that for a convex set G in R
k , its relative interior is denoted ri(G).

Corollary 5.5.20 Let x and x ′ be weakly maximal solutions of (MOLP) and G be a
face of Q. Then the following assertions hold.

(i) Λ(x, Y ) ⊆ Λ(x ′, Y ) if Cx ∈ ri(G) and Cx ′ ∈ G, and equality is true when
both Cx and Cx ′ are in ri(G).

(ii) Λ(x, Y ) = Λ(x ′, Y ) = Λ(Y ) for every x, x ′ ∈ G if Y b ∈ ri(G). In particular
if Y b = Cx, then Λ(x) = Λ(Y ) = Λ(x, Y ).

(iii) If G ⊂ Max(Q) and both of Cx and Cx ′ are boundary points of G, then there
exists Y such that Λ(x, Y ) ∩ Λ(x ′, Y ) �= ∅.

Proof The inclusion in (i) is clear from the equality given in Theorem5.5.19 and
from the fact that NQ(Cx) ⊆ NQ(Cx ′). When both Cx and Cx ′ are relative interior
points of G equality is immediate from the inclusion.

To prove (ii) assume Y b ∈ ri(G). Then co(Y b, Q) = Q and for every λ ∈
NQ(Y b + (C − Y A)u) with λT (C − Y A) � 0, λ ≥ 0 and Y b + (C − Y A)u ∈ Q,
we have λT (C − Y A)u = 0, which implies that λ ∈ NQ(Y b). It follows that

Λ(Y ) = NQ(Y b) ∩ {λ ∈ R
k+ \ {0} : λT (C − Y A) � 0}.

Since Y b is a relative interior point of G, we deduce the equalities in (ii) for every
x, x ′ ∈ G. When Cx = Y b, we choose a face G of Q that contains Cx in its
relative interior. Then Λ(Y ) = Λ(x, Y ). Moreover, for every λ ∈ Λ(x),λ ≥ 0, the
vector λT Y is an optimal solution of (Dλ), by which λT (C − Y A) � 0. In view of
Lemma5.5.3 we deduce Λ(x) = Λ(x, Y ).

For the last assertion it suffices to choose a feasible solution x ′′ of (MOLP) such
that Cx ′′ is a relative interior point of G, find Y such that Λ(x ′′, Y ) �= ∅ (such
a matrix Y exists in view of Theorem5.5.17) and apply (i) to obtain the inclusion
Λ(x ′′, Y ) ⊆ Λ(x, Y ) ∩ Λ(x ′, Y ). �

A natural question arises whether for a weakly maximal solution x of (MOLP)
there is some Y such that Λ(x) = Λ(x, Y ). An immediate answer is obtained from
Theorem5.5.4 (iii): such a matrix Y exists if and only if the system

λT (C − Y A) � 0,

λT (Cx − Y b) = 0 for all λ ∈ Λ(x)
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is consistent. In general it is difficult to check the consistency of this system because
Λ(x) is an infinite set. However, in some particular situations such a matrix Y can
be easily obtained.

Corollary 5.5.21 Let x be a weakly maximal solution of (MOLP). Each of the fol-
lowing conditions is sufficient for existence of Y such that Λ(x) = Λ(x, Y ):

(i) x is a non-degenerate vertex of (MOLP);
(ii) the extreme directions of Λ(x) are linearly independent.

Proof We prove the first assertion. Without loss of generality we may assume that
the matrix A is composed of a basic square submatrix AB and the remaining part
AN such that the basic part xB of x is strictly positive and given by A−1

B b, and the
non-basic part xN is zero. We set Y = CB A−1

B where CB is the submatrix of C
corresponding to the basic variable xB . Then Y b = CB A−1

B b = CB xB = Cx . It
follows from Corollary5.5.20 that Λ(x) = Λ(x, Y ).

For the second assertion, let Λ(x) = pos(λ1, · · · ,λ�), with � � k where the
family {λ1, · · · ,λ�} is linearly independent. Since x is an optimal solution of (Pλi )

for i = 1, · · · , �, we may find dual optimal solutions yλi of (Dλi ) for i = 1, · · · , �.
Let Λ be the k × �-matrix with the i th column equal to λi and YΛ the � × m-matrix
with the i th row equal to yT

λi
. Then it is easy to check that Y = Λ(ΛT Λ)−1YΛ

satisfies Λ(x) = Λ(x, Y ). �

We notice that (ii) trivially holds for bi-criteria problems ( k = 2) because Λ(x)

has either one extreme direction or two linearly independent extreme directions.
Below is an example in which no Y exists such that Λ(x) = Λ(x, Y ) for a given
weakly maximal solution x of (MOLP).

Example 5.5.22 Consider the following problem

Maximize

⎛

⎝
1 −0.5 0 0 0

−0.5 1 0 0 0
−1 −1 0.5 0 0

⎞

⎠

⎛

⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5

⎞

⎟⎟⎟⎟⎠

subject to x1 + x3 + x4 = 1

0.5x1 + 0.5x2 + x3 + x5 = 1

x1, x2, x3, x4, x5 ≥ 0.

The feasible set is bounded and defined by its 5 vertices. One of these vertices is
degenerate and a maximal solution of (MOLP), namely x = (0, 0, 1, 0, 0)T . The
other vertices are

x1 = (1, 1, 0, 0, 0)T , x2 = (1, 0, 0, 0, 0.5)T ,

x3 = (0, 2, 0, 1, 0)T , x4 = (0, 0, 0, 1, 1)T .
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They all are efficient solutions of (MOLP) except the last one which is merely a
weakly efficient solution. By solving the system of 4 inequalities λT Cx ≥ λT Cxi ,
i = 1, · · · , 4 we can show that Λ(x) is the cone generated by the following vectors:

λ1 = (5, 5, 2)T , λ2 = (8, 7, 3)T , λ3 = (3, 0, 2)T , λ4 = (0, 0, 1)T , λ5 = (0, 5, 4)T .

Thenwework out Theorem5.5.4 to find Y such thatΛ(x) = Λ(x, Y ). Using λT (C −
Y A)x = 0 for λ ∈ Λ(x) we get

y31 + y32 − 0.5 = 0, y11 + y12 = 0, y21 + y22 = 0.

Computing the second and the fourth columns of (λ5)T (C − Y A), we get 5y21 +
4y31 = 0. Similarly, the first and the fifth columns of (λ3)T (C − Y A), yield 6y11 −
5y21−2 = 0; and the first and the second columns of (λ1)T (C −Y A) yield 8y11 = 1.
Finally, these necessary conditions for verifying Λ(x) = Λ(x, Y ) imply that Y =
1
16

⎛

⎝
2 −2

−4 4
5 3

⎞

⎠. But then, one can see that (λ2)T (C − Y A) � 0, proving impossible

to find Y such that Λ(x) = Λ(x, Y ) in this example.

Computing saddle points

In the previous sectionwe proved that when (x, Y ) is a saddle point of the Lagrangian
function, the matrix Y is a maximal solution of a dual problem, which represents the
rate of change of the value Cx with respect to the change of the constraint vector b
(see Corollary 3.2.7). This explains the importance of computing Y when a minimal
solution x of (MOLP) is known. We concentrate on the case of strong saddle points
in this subsection and assume b nonzero.

Let x̄ be a maximal vertex solution of (MOLP) and let λ be a strictly positive
scalarizing vector (see Theorem 4.3.1), that is x̄ solves the linear problem

maximize 〈CT λ, x〉
subject to Ax = b

x � 0.

Without loss of generality wemay assume that the last component bm of b is nonzero.
Since the optimal solution set of this problem is a face of the feasible polyhedron, in
view of Theorem 3.1.3 it has vertices and extreme rays that we denote respectively
by x1, · · · , x p and x p+1, · · · , x p+q . There exist positive numbers t1, · · · , tp+q with∑p

i=1 ti = 1 such that
x̄ = t1x1 + · · · + tp+q x p+q .

http://dx.doi.org/10.1007/978-3-319-21091-9_3
http://dx.doi.org/10.1007/978-3-319-21091-9_4
http://dx.doi.org/10.1007/978-3-319-21091-9_3
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Let Bi be the optimal basis associated with the optimal vertex xi ,i = 1, · · · , p; and
let (Bs, ais ) be a couple of basis and non-basic column that determine the extreme ray
xs , s = p + 1, · · · , p + q , that is the basic components of xs are equal to −B−1

s ais ,
its is th component is one and the other non-basic components are zero (see Corollary
2.4.8). Define

Y i = CBi B−1
i , i = 1, · · · , p,

where CBi is the submatrix of the matrix C corresponding to the basis Bi (see the
proof of Corollary5.5.21). Then

λT (Y i A − C) � 0, i = 1, · · · , p. (5.42)

For s = p +1, · · · , p +q, denote by Cis the is th column of the reduced cost matrix,
that is

Cis = Cis − CBs B−1
s ais

and define Y s the k × m-matrix whose first (m − 1) columns are all zero and the last
column is 1

bm
Cis . Then Y s satisfies the following relations

Cxs = Y sb = Cis (5.43)

〈CT λ, xs〉 = 0 (5.44)

λT Y s A = 0. (5.45)

The first relation is direct from the definition of xs and Y s . The second equality is
obtained from the fact that xs is an extreme ray of the optimal solution face of the
problem (MOLP). The last equality follows from (5.44) and from the fact that

Y s A = 1

bm
Cis am .

Finally, let us define Y by

Y =
p+q∑

i=1

ti Y
i

and prove that it is what we are looking for. Indeed, in view of (5.42) and (5.45), we
have

λT (Y A − C) = λT (

p+q∑

i=1

ti Y
i A − C)

= λT
p∑

i=1

ti (Y
i A − C) + λT

p+q∑

i=p+1

ti Y
i A

� 0.

http://dx.doi.org/10.1007/978-3-319-21091-9_2
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Since λ is strictly positive, the latter inequality shows that Y is a feasible solution of
(VD2). Moreover, by the definition of Y i , one has

Cxi = CBi B−1
i b = Y i b, i = 1, · · · , p

which together with (5.43) produces

Cx =
p+q∑

i=1

ti Cxi =
p+q∑

i=1

ti Y
i b = Y b.

5.6 Parametric Duality

The correspondence we established in the previous chapter, between the efficient set
of a polyhedron and the positive normal vectors suggests an approach to duality via
polar cones.

Duality of polar cones

Let Γ be a convex polyhedral set in R
k . The polar cone of Γ and the normal cone

to Γ at a point a ∈ Γ are denoted Γ ◦ and NΓ (a) (Chap. 2). If F is a face of Γ , the
normal cone to Γ at a relative interior point of F is denoted N (F). We consider the
support function of Γ given by

δ∗(ξ) := sup
z∈Γ

〈ξ, z〉 for ξ ∈ R
k .

It is clear that δ∗ is a polyhedral convex function, its effective domain is nonempty
and its epigraph

epi(δ∗) := {
(ξ, t) ∈ R

k × R : δ∗(ξ) � t
}

is a convex polyhedral cone in the product space R
k × R. Given a subset F of R

k ,
the closed positive hull of the set F × {−1} in the space R

k × R is denoted F̂ . Here
is a relationship between faces of Γ and those of Γ̂ . Below, when speaking about
faces, we mean nonempty faces.

Lemma 5.6.1 Let Γ be a convex polyhedral set in R
k . Then the following assertions

hold.

(i) A subset F ⊆ Γ is a face of Γ if and only if F̂ is a face of Γ̂ .
(ii) The face Γ̂0 := Γ̂ ∩ (

R
k × {0}) coincides with Γ∞ × {0}.

(iii) For every face G of Γ̂ , not lying in the hyperplane R
k × {0}, there is a face F

of Γ such that F̂ = G.

http://dx.doi.org/10.1007/978-3-319-21091-9_2
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Proof Let F be a face of Γ . There is some nonzero vector u such that the function
〈u, .〉 determines F , that is,

〈u, z〉 � 〈u, z′〉 for all z ∈ F, z′ ∈ Γ.

Inequality is strict when z′ /∈ F . Then the function 〈u, .〉 is constant on F , say with
value β. Consider the linear function φ on R

k × R defined by

φ(z, s) := 〈u, z〉 + βs for every

(
z
s

)
∈ R

k × R.

Then for every

(
z
s

)
∈ F̂ and

(
z′
s′
)

∈ Γ̂ one has

φ(z, s) � φ(z′, s′) (5.46)

which shows that F̂ is a face of Γ̂ . Conversely, let F be a nonempty subset of Γ such
that F̂ is a face of Γ̂ . Suppose that F̂ is determined by (5.46) with some nonzero

vector

(
u
β

)
(defining φ). It is clear that u �= 0, because otherwise β, satisfying

βs � βs′ for all negative values of s and s′, is zero. Now, setting s = s′ = −1 in
(5.46), we deduce that F is a face of Γ determined by the nonzero linear function
〈u, .〉. To prove the second assertion, we consider the linear function

φ0(z, s) = s for all

(
z
s

)
∈ R

k × R.

It determines the face Γ̂0 via inequality

0 = φ0(z, s) � φ0(z
′, s′) for all

(
z
s

)
∈ Γ̂0,

(
z′
s′
)

∈ Γ̂ .

By definition, a vector

(
z
s

)
belongs to Γ̂0 if and only if s = 0 and there are zi ∈ Γ ,

ti > 0 such that

(
z
s

)
= limi→∞ ti

(
zi

−1

)
. By Theorem 2.3.11, z is a recession

direction ofΓ . The converse is evidently true by the definition of recession directions.

Finally, if G is a face of Γ̂ , say defined by (5.46) with some nonzero vector

(
u
β

)
,

and does not lie in the hyperplane R
k × {0}, then it contains elements whose last

component is strictly negative. Define F̂ = G ∩ (
R

k ×{−1}). Then F̂ is a nonempty
set, and, in view of (5.46), one has

〈u, z〉 � 〈u, z′〉

http://dx.doi.org/10.1007/978-3-319-21091-9_2
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for every z ∈ F and z′ ∈ Γ . Hence F is a face of Γ , and G = F̂ . �

The following lemma explains a link between the epigraph of δ∗ and the set Γ .

Lemma 5.6.2 Let Γ be a convex polyhedral set. The following assertions hold.

(i) The epigraph of δ∗ is the polar cone of the set Γ̂ .
(ii) If a nonempty set F ⊆ Γ is a face of Γ , then N (F̂) is a face of epi(δ∗).

Conversely, if a nonempty set F∗ is a face of epi(δ∗), then N (F∗) is a face of Γ̂ .
In particular, if F∗ does not contain the ray {0}×R+, then N (F∗)∩(Γ ×{−1})
is a face of Γ × {−1}.

(iii) If F and F ′ are faces of Γ with F ⊆ F ′, then N (F̂ ′) is a face of N (F̂).

Proof To prove (i), let

(
ξ
t

)
∈ epi(δ∗) and z ∈ Γ . Then

〈(
ξ
t

)
,

(
z

−1

)〉
= 〈ξ, z〉 − t � 〈ξ, z〉 − δ∗(ξ) � 0.

Hence epi(δ∗) ⊆ (Γ ×{−1})◦. On the other hand every vector
(

ξ
t

)
∈ (Γ ×{−1})◦

satisfies inequality
〈ξ, z〉 − t � 0

for all z ∈ Γ and yields t � δ∗(ξ). This proves that
(

ξ
t

)
∈ epi(δ∗) and epi(δ∗) =

(Γ × {−1})◦ too. It remains to notice that, by homogeneity the epigraph of δ∗ is the
polar cone of Γ̂ .

For (ii), let F be a face of Γ . By Lemma5.6.1, F̂ is a face of Γ̂ , hence N (F̂)

is a face of (Γ̂ )◦ = epi(δ∗). The converse is clear because N (F∗) is a face of
(epi(δ∗))◦ = (Γ̂ )◦◦ = Γ̂ , the set Γ̂ being a closed convex cone. Now, assume that

F∗ contains no vector

(
0
s

)
with s > 0. Then N (F∗) does not lie in R

k × {0}. By
Lemma5.6.1 there is a face F of Γ such that F̂ = N (F∗). The proof of Lemma5.6.1
shows that N (F∗) ∩ (Γ × {−1}) = F × {−1}. The last assertion is evident because
F is a face of F ′ if and only if F̂ is a face of F̂ ′ (Lemma5.6.1). �

In the rest of this subsection we consider Γ = Q − R
k+, where Q is a convex

polyhedral set in R
k . Notice that for this Γ , the effective domain of δ∗ is entirely

included in the positive orthant R
k+ and δ∗ coincides with the support function of

Q on this domain. Maximal and weakly maximal elements of Q are obtained from
maximal and weakly maximal elements of Γ by the formulas

Max(Q) = Max(Γ )

WMax(Q) = WMax(Γ ) ∩ Q.
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Furthermore, except for the trivial case when the domain of δ∗ consists of one point
at the origin of the space, the polyhedral cone epi(δ∗) is completely characterized by
its intersection with the set Δ × R that we denote by Γ Δ, where Δ is the standard
simplex in R

k . More precisely, for a nonzero vector ξ = (ξ1, · · · , ξk)
T , the vector(

ξ
t

)
belongs to the epigraph of δ∗ if and only if the vector

(
ξ
t

)
/
∑k

i=1 ξi belongs

to Γ Δ. For convenience let us make the following notations

NΔ(z) := N
Γ̂

(
z

−1

)
∩ Γ Δ

NΔ(F) := N (F̂) ∩ Γ Δ,

for any element z and face F ofΓ . Here are some relations between efficient elements
of Γ and Γ Δ.

Theorem 5.6.3 An element z ∈ Q is maximal (respectively weakly maximal) if and
only if there is some λ from the relative interior of Δ (respectively from Δ) such that(

λ
δ∗(λ)

)
∈ NΔ(z), in which case

(
λ

δ∗(λ)

)
is a minimal element of Γ Δ.

Furthermore, an element

(
λ
t

)
∈ Γ Δ is minimal if and only if there is some

element z ∈ Q such that

(
z

−1

)
∈ Nepi(δ∗)

(
λ
t

)
in which case t = δ∗(λ) and z is

maximal when λ > 0 and weakly maximal when λ ≥ 0.

Proof We begin with the following characterization of minimal elements of the set
Γ Δ: (

λ
t

)
∈ Min(Γ Δ) ⇔

(
λ
t

)
∈ Γ Δ, t = δ∗(λ). (5.47)

Indeed, if

(
λ
t

)
∈ Min(Γ Δ), then

(
λ
t

)
∈ Γ Δ and

(
λ
t

)
�

(
λ

δ∗(λ)

)
and we

deduce t = δ∗(λ). Conversely, for any

(
λ′
t ′
)

∈ Γ Δ with

(
λ

δ∗(λ)

)
�

(
λ′
t ′
)
we

have λ = λ′ and δ∗(λ) � t ′ which yields δ∗(λ) = t ′. By this
(

λ
δ∗(λ)

)
is a minimal

element.
Now assume that z is a maximal element of Q. By scalarization there is a strictly

positive vector λ ∈ Δ such that 〈λ, z〉 = δ∗(λ).This implies evidently that

(
λ

δ∗(λ)

)

belongs to NΔ(z). By (5.47),

(
λ

δ∗(λ)

)
is a minimal element of Γ Δ. Conversely, if

(
λ

δ∗(λ)

)
∈ NΔ(z) with λ ∈ Δ and λ > 0, then for every z′ ∈ Q one has
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0 �
〈(

λ
δ∗(λ)

)
,

(
z′
−1

)
−
(

z
−1

)〉
= 〈λ, z′ − z〉,

which shows that z is a maximal element of Q.

To proceed to the second part, let

(
λ
t

)
∈ Γ Δ be a minimal element with λ > 0.

By (5.47), t = δ∗(λ) and 〈λ, .〉 attains its maximum on Q at some point z with value
δ∗(λ). Since λ > 0, by scalarization z is a maximal element of Q. Moreover, for

every

(
λ′
t ′
)

∈ epi(δ∗) one has

〈(
z

−1

)
,

(
λ′
t ′
)

−
(

λ
δ∗(λ)

)〉
= 〈z,λ′〉 − t ′ − (〈z,λ〉 − δ∗(λ))

= 〈z,λ′〉 − t ′

� 〈z,λ′〉 − δ∗(λ′) � 0,

which shows that

(
z

−1

)
is normal to epi(δ∗) at

(
λ

δ∗(λ)

)
.Conversely, let

(
z

−1

)
∈

Nepi(δ∗)

(
λ
t

)
. Then for every

(
λ′
t ′
)

∈ epi(δ∗) we have

0 �
〈(

z
−1

)
,

(
λ′
t ′
)

−
(

λ
t

)〉
= 〈z,λ′ − λ〉 − t ′ + t.

In particular this implies t = δ∗(λ). By (5.47), (λ t)T is a minimal element of Γ Δ.

By polarity, the vector

(
λ

δ∗(λ)

)
belongs to the normal cone to Γ̂ at

(
z

−1

)
, and in

view of (i), the vector z is a maximal element of Q whenever λ is strictly positive.
The proof for weakly efficient elements is done in the same way. �

A relation between efficient faces of Γ and efficient faces of Γ Δ can also be
established.

Theorem 5.6.4 If F is a face of weakly maximal (respectively maximal) elements
of Γ , then NΔ(F) is a face of minimal elements of Γ Δ (respectively, having at least
one point from int(Rk+)× R). Conversely, if FΔ is a face of minimal elements of Γ Δ

(respectively, containing at least one element from int(Rk+)×R), then N (FΔ)∩(Rk ×
{−1}) is a face of weakly maximal (respectively, maximal) elements of Γ × {−1}.
Proof Let F be a face ofmaximal elements ofΓ . ByLemma5.6.2 andTheorem5.6.3

the normal cone N (F̂) is a face of epi(δ∗) and contains some element

(
λ

δ∗(λ)

)
with

λ ∈ Δ and λ > 0. By this, NΔ(F) is a face of Γ Δ. We observe that

(
λ
t

)
∈ NΔ(F)

implies that t = δ∗(λ), hence it is a minimal element in view of (5.47).
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Conversely, let FΔ be a face of minimal elements of Γ Δ containing some

(
λ
t

)

withλ > 0.Then t = δ∗(λ) and the closed cone generated by FΔ is a face of epi(δ∗).
Its normal cone N (cone(FΔ)) is then a face of the cone Γ̂ . Denote by F ⊆ Γ such
that F × {−1} = N (cone(FΔ)) ∩ (Rk × {−1}). Then F is a face of Γ . Moreover,
for z ∈ F and z′ ∈ Γ one has

0 �
〈(

λ
δ∗(λ)

)
,

(
z′
−1

)
−
(

z
−1

)〉
= 〈λ, z′ − z〉,

which shows that F is a face of maximal elements. The proof for weakly maximal
elements uses the same argument. �

Parametric dual

It is time to derive a dual problem for the problem (MOLP) from the duality features
of polar cones and normal cones. Set

Q = {
Cx : Ax = b, x � 0

}

Γ = Q − R
k+.

Let us compute the epigraph of the support function δ∗. A vector

(
ξ
t

)
with ξ � 0

belongs to the epigraph of δ∗ if and only if

t � δ∗(ξ) = sup{〈ξ, Cx〉 : Ax = b, x � 0}.

Hence,

(
ξ
t

)
belongs to Γ̂ ◦ if and only if ξ ∈ Δ, δ∗(ξ) is finite, t � δ∗(ξ) and

δ∗(ξ) = inf
{〈b, u〉 : AT u � CT ξ

}
in view of duality in linear programming. The

minimal elements ofΓ Δ are then efficient values of the following dual problem (D*):

Minimize

(
λ

〈b, u〉
)

subject to AT u � CT λ

λ ∈ Δ.

This is a linear problem with values in the space R
k+1 in which the parameter λ is

considered as a variable. In order to have a primal problem in the same value space,
it suffices to embed (MOLP) into R

k+1 by considering the problem (P*):
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Maximize

(
Cx
−1

)

subject to Ax = b

x � 0,

or the problem (P**):

Maximize

(
Cx
t

)

subject to Ax = b

x � 0, t ∈ R.

It is clear that the feasible sets as well as the maximal solution set of (MOLP) and

(P*) coincide, while x is a weakly maximal solution of (MOLP) if and only if

(
x
t

)

with t ∈ R is a weakly maximal solution of (P**). Here are the main duality results
between (MOLP) and (D*).

Corollary 5.6.5 (Weak duality) If x is a feasible solution of (MOLP) and

(
λ
u

)
is

a feasible solution of (D*), then

〈(
Cx
−1

)
,

(
λ

〈b, u〉
)〉

� 0. (5.48)

Moreover, if in addition equality holds and λ > 0 (respectively λ ≥ 0), then x is a

maximal (respectively weakly maximal) solution of (MOLP) and

(
λ
u

)
is a minimal

solution of (D*).

Proof If x and

(
λ
u

)
are feasible, then Cx belongs to Q and

(
λ

〈b, u〉
)
belongs to

the epigraph of δ∗. Inequality (5.48) follows from polarity between the epigraph of
δ∗ and Q × {−1}. If equality holds, we obtain

(
Cx
−1

)
∈ Nepi(δ∗)

(
λ

〈b, u〉
)

(
λ

〈b, u〉
)

∈ NΔ(Cx).

By Theorem5.6.3, the vector

(
λ
u

)
is a minimal solution of (D*) and x is a maximal

or weakly maximal solution of (MOLP) depending on whether λ > 0 or λ ≥ 0. �

When (MOLP) has a maximal solution, a strong duality relation can be obtained.
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Corollary 5.6.6 (Strong duality) Let x be a feasible solution of (MOLP). The fol-
lowing assertions are equivalent.

(i) x is a maximal (respectively weakly maximal) solution of (MOLP).

(ii) There is a feasible solution

(
λ
u

)
of (D*) with λ > 0 (respectively λ ≥ 0) such

that 〈(
Cx
−1

)
,

(
λ

〈b, u〉
)〉

= 0,

in which case

(
λ
u

)
is a minimal solution of (D*) and the vector

(
Cx
−1

)
is

normal to the polytope Γ Δ at

(
λ

〈b, u〉
)

.

(iii) There is a feasible solution

(
λ
u

)
of (D*) with λ > 0 (respectively λ ≥ 0) such

that the vector

(
λ

〈b, u〉
)

is normal to the polytope Γ × {−1} at

(
Cx
−1

)
.

Proof If x is a maximal solution of (MOLP), then z = Cx is a maximal element
of Q. By Theorem5.6.3 there is some λ > 0 from the relative interior of Δ such

that

(
λ

δ∗(λ)

)
belongs to NΔ(z) and

(
λ

δ∗(λ)

)
is a minimal element of Γ Δ. Let

u be an optimal solution of the dual problem (Dλ) ( see this dual in the proof of
Lemma5.4.4). Then δ∗(λ) = 〈b, u〉 = 〈λ, z〉 and (ii) follows. Conversely, under (ii),(

λ
δ∗(λ)

)
belongs to NΔ(z)where δ∗(λ) = 〈b, u〉 = 〈λ, Cx〉. ByTheorem5.6.3,Cx

is a maximal element of Q, and x is a maximal solution of (MOLP). The equivalence
between (ii) and (iii) is clear. A similar argument goes through for weakly maximal
solutions. �

In like manner, when (D*) has a minimal solution one may realize the strong
duality relation given in the preceding corollary.

Corollary 5.6.7 ( Strong duality) Let

(
λ
u

)
be a feasible solution of (D*) with λ > 0

(respectively λ ≥ 0). The following assertions are equivalent.

(i)

(
λ
u

)
is a minimal solution of (D*).

(ii) There is a feasible solution x of (MOLP) such that

〈(
Cx
−1

)
,

(
λ

〈b, u〉
)〉

= 0,

in which case x is a maximal (respectively weakly maximal) solution of (P*)

and the vector

(
λ

〈b, u〉
)

is normal to the polytope Γ × {−1} at

(
Cx
−1

)
.
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(iii) There is a feasible solution x of (MOLP) such that the vector

(
Cx
−1

)
is normal

to the polytope Γ Δ at

(
λ

〈b, u〉
)

.

Proof The equivalence between (ii) and (iii) is clear. Let us prove the equivalence

between the first two assertions. If

(
λ
u

)
, say with λ > 0, is a minimal solution of

(D*), then

(
λ

〈b, u〉
)
is a minimal element of Γ ∗. By Theorem5.6.3 there exists a

maximal element z ∈ Q such that

(
z

−1

)
∈ Nepi(δ∗)

(
λ

〈b, u〉
)
and δ∗(λ) = 〈b, u〉.

Let x be a feasible solutionof (MOLP) such thatCx = z. Then x is amaximal solution
and (ii) is fulfilled. Conversely, if (λ, u) satisfies (ii), then by Corollary5.6.5, it is a
minimal solution of (D*). The proof of the case λ ≥ 0 follows the same line. �

Duality between faces of maximal values of (MOLP) and faces of minimal values
of (D*) can also be deduced.

Corollary 5.6.8 Let F be a face of Γ . Then it is a face of maximal (respectively
weakly maximal) values of (MOLP) if and only if the set

F∗ :=
⋂

z∈F

{(
λ
t

)
∈ Γ Δ :

〈(
z

−1

)
,

(
λ
t

)〉
= 0

}

in which at least one λ is strictly positive (respectively λ ≥ 0), is a face of minimal
elements of Γ Δ.

Similarly, given a face F∗ of Γ Δ, it is a face of minimal values of (D*) if and only
if the set

F :=
⋂

(λT ,t)T ∈F∗

{
z ∈ Γ :

〈(
z

−1

)
,

(
λ
t

)〉
= 0

}
,

in which at least one λ is strictly positive (respectively λ ≥ 0), is a face of maximal
(respectively weakly maximal) elements of Γ .

Proof This follows from Theorem5.6.4 and Lemma5.6.2. �

Example 5.6.9 Consider the problem

Maximize

(
2 1
2 1

)(
x1
x2

)

subject to

(
1 1
0 0

)(
x1
x2

)
=
(
1
0

)

x1, x2 � 0.

By definition the dual (D*) is given by
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Minimize

⎛

⎝
λ1
λ2
u1

⎞

⎠

subject to

(
1 0
1 0

)(
u1
u2

)
�
(
2 2
1 1

)(
λ1
λ2

)

λ1,λ2 � 0,λ1 + λ2 = 1.

It reveals from the proof of Theorem5.6.3 that for the dual (D∗) a feasible solu-
tion (λ1,λ2, u1, u2)

T is minimal if and only if u1 takes the minimum value. Thus,
taking the dual constraints into account the minimal values of (D*) are of form
(λ1,λ2, 2, u2)

T . The complementarity condition in Corollaries 5.6.6 and 5.6.7 yields

(2x1 + x2)(λ1 + λ2) = 2

which gives x1 = 1, x2 = 0 the unique maximal solution of (MOLP).

5.7 Exercises

5.7.1 Construct the dual problems (VD1), (VD2) and (VD3) for the following
primal problem and discuss their feasible sets and value sets.

Maximize

(
1 0
0 1

)(
x1
x2

)

subject to

(
1 1
0 0

)(
x1
x2

)
=
(
1
0

)

x1, x2 � 0.

5.7.2 Construct a linear problem (MOLP) with b nonzero and sup(Q) finite such
that for some z � sup(Q) the system

Y b = z

Y A � C

has no solution.

5.7.3 Consider the primal linear problem:

Maximize

(−1 0
0 1

)(
x1
x2

)

subject to

(
1 1
0 0

)(
x1
x2

)
=
(
0
0

)

x1, x2 � 0.
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Find the extended dual problems (VD1′), (VD2′) and (VD3′). Compare their optimal
solutions.

5.7.4 Given a problem

Maximize

(
1 0
0 1

)(
x1
x2

)

subject to

(
1 1
0 0

)(
x1
x2

)
=
(
1
0

)

x1, x2 � 0.

Check that the feasible vertices are maximal solutions and find the corresponding
dual minimal solutions such that Cx = Y b.

5.7.5 Kornbluth’s duality. Let R be an m × r -matrix and let μ ∈ R
r be a strictly

positive vector. Prove that x is a maximal solution of the problem (MOLP) with
b = Rμ:

Maximize Cx

subject to Ax = Rμ

x � 0

if and only if there exist a strictly positive vector λ ∈ R
k and a minimal solution

y ∈ R
m of the dual problem (called Kornbluth’s dual)

Minimize RT y

subject to AT y � CT λ

such that 〈AT y − CT λ, x〉 = 0.

5.7.6 Symmetry of ideal duality. Express the ideal dual problem in form

−Maximize −
(

bT ,−bT , 0
)
⎛

⎜⎝
Y T+
Y T−
Z T

⎞

⎟⎠

subject to
(

AT ,−AT , I
)
⎛

⎜⎝
Y T+
Y T−
Z T

⎞

⎟⎠ = CT

Y+, Y−, Z � 0

where I is the identity m ×m-matrix, Y+ and Y− are k ×m-matrix variables and Z is
an m × m-matrix slack variable. Find the dual problem (VD1) for this maximization
problem and prove that it consists of m maximization problems each of which is
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identical to (MOLP). Generalize the method of ideal duality to the primal problem
(MOLP) in which the variable x is a matrix.

5.7.7 Heyde, Löhne and Tammer’s set-valued duality. Consider the following
dual problem, denoted (HD):

Minimize H(u,λ)

subject to AT u � CT λ,

λ ∈ Δ,

where

H(u,λ) := {
z ∈ R

k : 〈b, u〉 = 〈λ, z〉}

and the set-valued minimization problem is understood in the sense that a feasible
solution (u,λ) is weakly efficient if and only if the hyperplane H(u,λ) contains a
weakly minimal point of the value set

Q H D = {
z ∈ R

k : z ∈ H(u,λ), AT u � CT λ,λ ∈ Δ
}
.

Prove the following properties

(a) a vector (u,λ) is a feasible solution of (HD) if and only if the vector (u,λ, z)
with z ∈ H(u,λ) is a feasible solution of (KD), and a feasible solution (u,λ)

of (HD) is a weakly efficient solution if and only if (u,λ, z) with z ∈ H(u,λ)∩
WMin(QH D) is a weakly minimal solution of (KD).

(b) The value sets of (HD) and (KD) coincide.
(c) A feasible solution (u,λ) is a weakly minimal solution of (HD) if and only if

each of the following equivalent conditions holds:

(1) H(u,λ) ∩ WMin(Q H D) �= ∅;
(2) there is a feasible solution x of (MOLP) such that 〈b, u〉 = 〈λ, Cx〉;
(3) u is an optimal solution of (Dλ) given in the proof of Lemma5.4.4.

(d) If feasible solutions x and (u,λ) satisfy 〈b, u〉 = 〈λ, Cx〉, then they are weakly
minimal solutions.

5.7.8 Galperin and Guerra’s duality. This is a duality based on the duality for
scalar problems (Pi ) and the weak duality relation of the ideal duality approach.
Assume that the feasible set X of the primal problem (MOLP) is bounded. Then
the optimal values αi ’s (Lemma5.2.1) are finite, the vector α := (α1, · · · ,αk)

T is
finite. For ξ = (ξ1, · · · , ξk)

T ∈ −R
k+ set
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Xi (ξi ) = {
x ∈ X : 〈ci , x〉 � αi + ξi

}

X (ξ) =
k⋂

i=1

Xi (ξi )

B = {
ξ ∈ R

k : α + ξ ∈ Q − R
k+
}
.

The problem (MOLP) is said to be balanced if X (0) is nonempty, the set Max(B)

is called the balance set, and (MOLP) is said to be of general position if X (ξ) is a
singleton for all ξ from the balance set. Prove the following assertions.

(a) (MOLP) is balanced if and only if it has an ideal maximal solution.
(b) B is a subset of −R

k+ and
α + B = Q − R

k+.

(c) C(X (ξ)) = Q ∩ (α + ξ + R
k+) for every ξ ∈ −R

k+.

(d) A vector ξ belongs to the balance set if and only if the vector α+ ξ is a maximal
value of (MOLP).

(e) If (MOLP) is in general position and if a vector ξ belongs to the balance set,
then the following system has a unique solution

Cx = α + ξ

Ax = b

x � 0, ξ � 0.

(f) The balance set is composed of faces determined by certain equalities over X .
(g) Consider the dual problems (Di ) (given in the proof of Lemma5.2.1) and for

feasible solutions x and y of (MOLP) and (Di ), i = 1, · · · , k, define

ηi = 〈b, y〉 − αi

δ(x, y) =
k∑

i=1

〈ci , x〉 − 〈b, y〉 =
k∑

i=1

(ξi + ηi ).

The amount δ(x, y) is called the total duality gap. Show that if (MOLP) is
unbalanced, the total duality gap is strictly positive.

(h) Assume that (MOLP) is unbalanced. For every maximal solution vertex x∗ of
(MOLP), consider scalar subproblems (Pi (x∗)):

Maximize 〈ci , x〉
subject to Ax = b

x � 0

Cx � Cx∗,
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and their dual problems (Di (x∗)), with optimal solutions, say y∗(i), i =
1, · · · , k. The vectors η = (η1, · · · , ηk)

T with ηi = 〈b, y∗(i)〉 − αi form a
set, called a dual balance set. Then the multiple objective problem (MOLP(x∗))
obtained from (MOLP) by adding the last constraint of (Pi (x∗)) is balanced (x∗
is an ideal solution), and hence its corresponding ideal dual problem (VD1) has
a solution Y ∗ whose rows are optimal solutions of the dual problems (Di (x∗)),
i = 1, · · · , k. This Y ∗ is called a dual cluster corresponding to x∗. Show that
Cx∗ = Y ∗b which implies that the dual balance set is exactly the opposite of
the balance set.

5.7.9 Kolumban’s dual problem. Consider a dual system of two variables:

AT u � CT λ

λ ≥ 0.

A solution (u,λ) is said to be optimal if there are k real numbers r1, · · · , rk such
that

(i) 〈b, u〉 = ∑k
i=1 riλi

(ii) there is no solution of the dual system (u′,λ′) and real numbers r ′
1, · · · , r ′

k such

that ri > r ′
i , i = 1, · · · , k and 〈b, u′〉 = ∑k

i=1 r ′
iλ

′
i .

Prove that optimal solutions are exactly weakly minimal solutions of (KD).

5.7.10 Heyde and Lohne’s geometric duality. Consider the problem (MOLP)
defined in Sect. 5.1. The geometric dual problem, given by Heyde and Lohne, is
defined as

K-Minimize
(
λ1, · · · ,λk−1, 〈b, u〉)T

subject to λ ∈ Δ,

AT u � CT λ,

where K is the positive kth axis of R
k and K -minimization means minimizing with

respect to the order a �K b if and only if a − b ∈ K , which implies that the
last component of a is bigger or equal to the last component of b, while the other
components are equal. Denote

D = {(λ1, · · · ,λk−1, t)T ∈ R
k : t � 〈b, u〉, AT u � CT λ,λ ∈ Δ}

and for a face F∗ of D, set

Φ(F∗) =
⋂

ξ∈F∗

{
z ∈ R

k :
k−1∑

i=1

ξi yi + (1 −
k−1∑

i=1

ξi )yk − ξk = 0
}⋂

Γ

where Γ = Q − R
k+.
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(i) Define a projection Π : Γ ∗ → D by

Π
(
(λ1, · · · ,λn), t

) = (λ1, · · · ,λk−1, t)

for every (λ1, · · · ,λk) ∈ Δ and t ∈ R. Show that Π is isomorphic and order-
preserving, that is for w,w′ ∈ Γ ∗, one has w � w′ if and only if Π(w) �K

Π(w′).
(ii) Prove that a face of Γ ∗ consists of minimal elements if and only if its image by

Π is a face of K -minimal elements of D, and vice versa.
(iii) Deduce that the map Φ is an inclusion-reserving one-to-one map between the

set of all faces of K -minimal elements of D and the set of all faces of weakly
maximal elements of Γ .

5.7.11 Exact saddle points. A saddle point (x, Y ) of L is said to be exact if
Cx = Y b.

(i) Show that all ideal saddle points of L are exact saddle points, but that is not the
case for weak or strong saddle points of L .

(ii) Assume that b is a nonzero vector. Prove that for every maximal solution x of
(MOLP) there exists a minimal solution (Y,λ, 0) of (VD2)Lsuch that (x, Y ) is
an exact strong saddle point of L , and that for every minimal solution (Y,λ, 0)
of (VD2)L , there exist a maximal solution x of (MOLP) such that (x, Y ) is an
exact strong saddle point of L .

(iii) Is the conclusion of (ii) true if b = 0?

5.7.12 Consider the problem

Maximize

(
1 0
0 1

)(
x1
x2

)

subject to x1 + x2 = 1

x1, x2 � 0.

Show that there is some feasible solution x such that (x, Y ) where Y = (2,−1)T ,
is a strong saddle point of the Lagrangian function associated with this problem,
but no feasible solution of type (Y,λ, 0) of the Lagrangian dual problem (VD2)L is
minimal.

5.7.13 Consider an extended problem (MOLP)′:

Maximize (C 0)

(
x
t

)

subject to

(
A 0
0 1

)(
x
t

)
=
(

b
1

)

(
x
t

)
� 0
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and the associated Lagrangian function

L
(( x

t

)
, (Y z)

)
= Y b + z + (C − Y A)x − t z

where x is from R
n+, Y is a k × m-matrix, z is from R

k and t is from R+.

(i) Establish that the feasible sets of (MOLP) and (MOLP)′ coincide.
(ii) Construct the Lagrangian dual problem of (MOLP)′ and prove that its value set

coincides with the value set Q′′ of the problem (VD2′′) (Sect. 5.5).
(iii) Apply (ii) of Exercise5.7.11 to obtain a relationship between saddle points of

the extended Lagrangian function L and efficient solutions of (MOLP) and
(VD2′′).

5.7.14 Wolfe-type duality. Consider a (MOLP) of the form

Maximize Cx

subject to Ax � b

and a dual problem, called a Wolfe-type dual and denoted (WD)

Minimize Cy − μT (Ay − b)e

subject to AT μ − CT λ = 0 (5.49)

μT (Ay − b) � 0

λT e = 1 (5.50)

λ � 0,μ � 0. (5.51)

Establish the following statements.

(i) For every feasible solutions x of (MOLP) and (λ,μ, y) of (WD) one has

Cx �> Cy − μT (Ay − b)e.

(ii) If (λ,μ, y) is a feasible solution of (WD) such that y is a feasible solution of
(MOLP), then (λ,μ, y) is a weakly minimal solution of (WD) and y is a weakly
maximal solution of (MOLP).

(iii) Assume that there are positive numbers α and δ such that

– μT b � α for all (λ,μ) satisfying (5.49)–(5.51)
– the system A′x � b′ is consistent for all A′ and b′ with max{‖A − A′‖, ‖b −

b′‖} � δ.

Then for every weakly maximal solution x of (MOLP) there exists (λ,μ) such
that (α,μ, x) is a weakly minimal solution of (WD).



Chapter 6
Sensitivity and Stability

In practice the objective function and the constraints of a multiobjective optimization
problem may undergo a small perturbation or depend on a parameter. It is crucial to
know how the efficient solution set and the efficient value set change. This question is
particularly useful in computational error estimation when the decision makers have
only partial information on the data. We shall analyze the multiobjective problem
(MOLP) in which the objective matrix C , the constraint matrix A and the second
term b continuously or smoothly depend on a parameter or are slightly perturbed.

6.1 Parametric Convex Polyhedra

Weconsider a convexpolyhedronΓ (ω)dependingon aparameterω fromanonempty
open set Ω in a finite dimensional Euclidean space. It is assumed that Γ (ω) is
determined by a parametric system of inequalities

〈ai (ω), x〉 − bi (ω) � 0, i = 1, · · · , m (6.1)

where ai , i = 1, · · · , m are vector functions on Ω with values in R
n and bi , i =

1, · · · , m are real functions on Ω . We distinguish two types of constraints: those
that can be reduced to equalities and the remaining ones. For convenience we write
(6.1) as

〈ai (ω), x〉 − bi (ω) � 0, i = 1, · · · , p; (6.2)

〈a j (ω), x〉 − b j (ω) = 0, j = p + 1, · · · , p + q = m. (6.3)

We are interested in the change of Γ (ω) in dependence on ω. To be more specific we
consider the set-valued map Γ : Ω ⇒ R

n which associates with every parameter
ω from Ω a subset Γ (ω) of the space Rn and study its stability or continuity with
regard to the perturbation of ω. The solution sets to the systems (6.2) and (6.3) are

© Springer International Publishing Switzerland 2016
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184 6 Sensitivity and Stability

denoted respectively by P(ω) and Q(ω). The following notations will be also in use.
For subsets of indices I ⊆ {1, · · · , p} and J ⊆ {1, · · · , m},

PI (ω) := {x ∈ R
n : 〈ai (ω), x〉 − bi (ω) � 0, i ∈ I

}
P̂I (ω) := {x ∈ R

n : 〈ai (ω), x〉 − bi (ω) < 0, i ∈ I
}

P I (ω) := {x ∈ R
n : 〈ai (ω), x〉 − bi (ω) � 0, i ∈ {1, · · · , p}\I

}
Q J (ω) := {x ∈ R

n : 〈a j (ω), x〉 − b j (ω) = 0, j ∈ J
}

and AI (ω) is the matrix whose rows are the transposes of ai (ω), i ∈ I , and bI (ω) is
the vector whose components are bi (ω), i ∈ I .

Continuity of set-valued maps

We consider a set-valued map G : Ω ⇒ R
n . The graph of G is the set

gr(G) = {(ω, x) ∈ Ω × R
n : x ∈ G(ω)

}
.

Definition 6.1.1 We say that G is closed at ω0 ∈ Ω if the limit of every convergent
sequence {(ωr , xr )}r�1 in Ω ×R

n with xr ∈ G(ωr ) and limr→∞ ωr = ω0, belongs
to the graph of G.

The map G is said to be lower semi-continuous at ω0 ∈ Ω if for every open set
V in R

n with G(ω0) ∩ V 	= ∅, there exists a neighborhood U of ω0 in Ω such that
G(ω) ∩ V 	= ∅ whenever ω ∈ U. And G is upper semi-continuous at ω0 ∈ Ω if for
every open set containing G(ω0) there exists a neighborhood U of ω0 in Ω such that
G(ω) ⊆ V whenever ω ∈ U.

A set-valued map is closed, lower semi-continuous or upper semi-continuous on
Ω if it is so at any point of Ω (Figs. 6.1 and 6.2). Continuous maps are those that are
simultaneously lower and upper semi-continuous.

By convention if a map has empty values on an open set, it is continuous there.
Usual (single valued) functions are a particular case of set-valued maps. For them
the concepts of closedness, lower semi-continuity or upper semi-continuity above
connote the concept of continuity in the classical sense. The closed hull of a set-valued
map G is the map clG whose value at every ω is the closure of the set G(ω).

Below we list some useful properties of set-valued maps which are quite obvious
from the definition.

(1) The union of two closed (respectively lower semi-continuous/upper semi-
continuous) set-valuedmaps is closed (respectively lower semi-continuous/upper
semi-continuous);

(2) The intersection of two closed maps is closed;
(3) If amap has closed values in a compact subset of the spaceRn , then its closedness

is equivalent to its upper semi-continuity on that subset;
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Fig. 6.1 Upper
semi-continuity, but not
lower semi-continuity at ω0

Fig. 6.2 Lower
semi-continuity, but not
upper semi-continuity at ω0

(4) A set-valued map G is lower semi-continuous at ω0 if for any sequence {ωr }r�1

in Ω converging to ω0 and for every element x0 ∈ G(ω0) there is a sequence
{xr }r�1 with xr ∈ G(ωr ) converging to x0;

(5) The closed hull of a lower semi-continuous map is lower semi-continuous;
(6) The intersection map G1 ∩ G2 of two set-valued maps G1 and G2 is lower

semi-continuous at ω0 ∈ Ω if the following conditions hold: a) G1 is lower
semi-continuous at ω; b) there is a subset D ⊆ G2(ω0) such that for every
element x of D one can find a neighborhood W of ω0 and a neighborhood U
of x with U ⊆ G2(ω) for all ω ∈ W ; c) G1(ω0) ∩ G2(ω0) coincides with the
closure of the set G1(ω0) ∩ D.

Continuity of the map Γ (ω)

We assume throughout this subsection that the vector functions a1(ω), · · · , am(ω)

and b(ω) := (b1(ω), · · · , bm(ω))T are continuous. The next example shows that the
set-valued map Γ (ω) is neither upper semi-continuous, nor lower semi-continuous
even though a1(ω), · · · , am(ω) and b(ω) are continuous.
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Example 6.1.2 Consider the following system in R
2:

−ωx1 + x2 � 0

−x1 � 0

−x2 � 0

for ω ∈ (−1, 1) ⊆ R. At ω = 0 the solution set Γ (0) is the set R+ × {0}. Let V be
the set of vectors x with −1 < x1 and −1 < x2 < 1. It is an open set containing
Γ (0). For every ω > 0 the set Γ (ω) contains the ray x2 = ωx1, x1 � 0, and cannot
be included in V . Hence Γ is not upper semi-continuous at ω = 0. For ω < 0
the set Γ (ω) consists of the singleton {0} while Γ (0) contains nonzero element.
Consequently Γ is not lower semi-continuous at ω = 0 either.

In the above example the map Γ is upper semi-continuous at no point ω � 0, but
it is lower semi-continuous at every point except for ω = 0. This generic property
of lower semi-continuity is the main concern of the present subsection. Namely, we
shall prove the following theorem.

Theorem 6.1.3 Assume that the functions a1(ω), · · · , am(ω) and b(ω) are continu-
ous. Then the set-valued map Γ (ω) is closed. Moreover, for every open set W0 ⊆ Ω

there is an open subset W of W0 such that Γ (ω) is lower semi-continuous on W .
Consequently, the set on which Γ (ω) is not lower semi-continuous is nowhere dense.

The proof of this result is based on a number of auxiliary statements that we
present as lemmas.

Lemma 6.1.4 Let ω0 be a point in Ω and J ⊆ {1, · · · , m} be nonempty. If the family
{a j (ω0) : j ∈ J } is linearly independent, then there is a neighborhood W of ω0 in
Ω such that the set-valued map Q J (ω) is lower semi-continuous on W .

Proof Without loss of generality, we may suppose that J = {1, · · · , �} for some
1 � � � m. Denote by A(ω) the � × n-matrix whose rows are the transposes of
a1(ω), · · · , a�(ω). It is clear that � � n because at ω = ω0 those rows are linearly
independent, and so the matrix A(ω0) possesses a nonsingular � × �-submatrix,
denoted C(ω0). The complementary part of C(ω0) in A(ω0) is denoted D(ω0). We
may assume that A(ω) is written as (C(ω), D(ω)). The system of equalities deter-
mining Q J (ω) is then

(
C(ω), D(ω)

) ( xC

xD

)
= b(ω),

where xC is the vector of the first � components, and xD is the vector of the (n − �)

remaining components of a vector x in Rn . The set Q J (ω0) is given by

Q J (ω0) =
{

x ∈ R
n : xC = (C(ω0))

−1(b(ω0) − D(ω0)xD
)
, xD ∈ R

n−�
}

(6.4)
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where
(
C(ω0)

)−1 is the inverse of the matrix C(ω0). By the continuity hypothesis of
the entries of C(ω0), there is a neighborhood W of ω0 such that C(ω) is nonsingular
for all ω ∈ W . Then, the formula (6.4) remain true for all ω ∈ W . Now, let ω ∈ W
and x ∈ Q J (ω)with the components xC and xD as above. Let {ωr }r�1 be a sequence
in W converging to ω. Set

xr
C = (C(ωr )

)−1(
b(ωr ) − D(ωr )xD

)
.

It is clear that xr belongs to Q J (ωr ) and converges to x as r tends to ∞. Hence Q J

is lower semi-continuous on W . �
Lemma 6.1.5 Let W0 be an open set in Ω and let J ⊆ {1, · · · , m} be nonempty. If
the family {a j (ω) : j ∈ J } is linearly dependent for every ω ∈ W0, then there is an
open subset W of W0 and a proper subset J ′ of J such that the family {a j (ω) : j ∈ J ′}
is a maximal linearly independent subfamily of the family {a j (ω) : j ∈ J } for every
ω ∈ W .

Proof As in the proof of Lemma 6.1.4, we assume that J = {1, · · · , �}. For all ω
in W0 the rank of the system {a j (ω) : j = 1, · · · , �} does not exceed � − 1. We
may find a point ω0 in W0 such that the rank of the latter system is maximal, say
equal to r < � with {a j (ω0) : j = 1, · · · , r} linearly independent. The r × n-matrix
A(ω0) constituted from the rows transposes of the vectors a1(ω0), · · · , ar (ω0) has a
nonsingular r × r -submatrix C(ω0). Let W be a neighborhood of ω0 in W0 on which
C(ω) remains nonsingular. Then for every ω ∈ W , the system {a1(ω), · · · , ar (ω)}
has rank r and is a maximal linearly independent subsystem of

{
a j (ω) : j ∈ J

}
. �

Lemma 6.1.6 For every open set W0 in Ω there is an open subset W of W0 such
that the set-valued map Q(ω) is lower semi-continuous on W .

Proof If there exists a point ω0 in W0 such that the system {a j (ω0) : j = p +
1, · · · , m} is linearly independent, then in view of Lemma 6.1.4 the map Q is lower
semi-continuous on some neighborhood W of ω0 in W0. If that system is linearly
dependent for all ω in W0, one applies Lemma 6.1.5 to get an open subset W1
of W0 and a proper subset J ⊂ {p + 1, · · · , m} such that for all ω ∈ W1 the
system {a j (ω) : j ∈ J } is a maximal linearly independent subsystem of the system
{a j (ω) : j = p + 1, · · · , m}. We claim that there exists an open set W in W1 such
that either Q(ω) is empty for all ω ∈ W , or Q(ω) coincides with Q J (ω) for all
ω ∈ W . In fact, take any index j0 from the index set {p + 1, · · · , m}\J . The system
{a j (ω) : j ∈ J ∪ { j0}} being linearly dependent, one is able to find coefficients
t j (ω) ∈ R such that

a j0(ω) =
∑
j∈J

t j (ω)a j (ω),

where t j (ω), j ∈ J are uniquely determined because the system {a j (ω) : j ∈ J } is
linearly independent. Moreover, t j (ω), j ∈ J are continuous in some neighborhood
of ω when the latter ω is fixed. If at some ω from W1 one has
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b j0(ω) 	=
∑
j∈J

t j (ω)b j (ω)

then, by continuity there is a neighborhood W of ω in W1 such that

b j0(ω
′) 	=
∑
j∈J

t j (ω
′)b j (ω

′) for all ω′ ∈ W.

Consequently, the set Q(ω′) is empty for all w′ ∈ W . Now, if

b j0(ω) =
∑
j∈J

t j (ω)b j (ω) for all ω ∈ W1,

the j0-th equality in the system determining Q is redundant, and so

Q J (ω) = Q J∪{ j0}(ω) for all w ∈ W1.

Continuing this process for other indices from the set {p + 1, · · · , p + q}\J , we
arrive at the conclusion that either Q(ω) is empty for all ω ∈ W , or Q(ω) = Q J (ω)

for all ω ∈ W . In both cases the map Q is lower semi-continuous on W in view of
Lemma 6.1.4. �

Lemma 6.1.7 Let ω0 be a point in Ω and I ⊆ {1, · · · , p} be nonempty. If the set
P̂I (ω0) is nonempty, then for every element x0 of it, there exist a neighborhood U of
x0 in R

n and a neighborhood W of ω0 in Ω such that U is included in P̂I (ω) for all
ω ∈ W . Consequently the set-valued map PI (ω) is lower semi-continuous on W .

Proof For every element x from P̂I (ω0) we have strict inequality

〈ai (ω0), x〉 − bi (ω0) < 0 for all i ∈ I.

One can find a positive number ε such that

〈ai (ω0) + αi , x + x ′〉 − (bi (ω0) + βi ) < 0

for every index i ∈ I , for all vectors αi and x ′ from R
n and real number βi with

max{‖αi‖, ‖x ′‖, |βi |} < ε. Since all ai (ω) and bi (ω) are continuous, there is a
neighborhood W of ω0 such that

max{‖ai (ω) − ai (ω0)‖, |bi (ω) − bi (ω0)|} < ε for all ω ∈ W.

By choosing U = {x ′ ∈ R
n : ‖x ′ − x‖ < ε} we conclude that

〈ai (ω), x ′〉 − bi (ω) < 0
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for all i ∈ I, x ′ ∈ U and ω ∈ W , which implies that U lies in P̂I (ω) for all ω ∈ W .
The lower semi-continuity of PI follows because it is the closure of P̂I . �

Lemma 6.1.8 For every open set W0 in Ω there exist an open subset W of W0 and
a subset I ⊆ {1, · · · , p} such that for every w ∈ W one has

P(ω) = PI (ω) ∩ Q J (ω)

P̂I (ω) 	= ∅,

where J = {1, · · · , m}\I .

Proof First we observe that P̂i (ω) is empty only if ai (ω) = 0 and bi (ω) � 0, and
that if at some point ω0, the set P̂i (ω0) is nonempty, then P̂i (ω) is nonempty for all
ω in a small neighborhood of ω0. Hence, without loss of generality, one may assume
that

P̂i (ω) 	= ∅ for all ω ∈ W0, i = 1, · · · , p.

Let I (ω) denote a maximal subset of the index set {1, · · · , p} for which P̂I (ω)(ω) is
nonempty (with respect to the inclusion order), that is,

P̂I (ω)(ω) ∩ P̂i (ω) = ∅ for i /∈ I (ω).

Since the cardinal of I (ω) is less or equal to p, there is some point ω0 of W0 such
that

|I (ω0)| = max{|I (ω)| : ω ∈ W0}.

We claim that there is a neighborhood W of ω0 such that I (ω) = I (ω0) for all
ω ∈ W . In fact, as in the proof of Lemma 6.1.7, P̂I (ω0)(ω0) 	= ∅ implies that there
is a neighborhood W of ω0 such that P̂I (ω0)(ω) 	= ∅ for every ω ∈ W . Hence I (ω0)

is a subset of I (ω) as soon as ω lies in W . Actually we have equality because the
cardinality of I (ω0) is already maximal. Set I = I (ω0). On the one hand, for every
ω ∈ W one has that

PI (ω) ∩ Q J (ω) ⊆ P(ω).

On the other hand, x ∈ P(ω) implies that

〈a j (ω), x〉 − b j (ω) = 0, j ∈ J.

Indeed, if this were not true, for some j ∈ J one would have

〈a j (ω), x〉 − b j (ω) < 0,
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and would find a neighborhood U of x in Rn such that

〈a j (ω), x ′〉 − b j (ω) < 0, for all x ′ ∈ U.

Since PI (ω) is the closure of P̂I (ω) that is nonempty, we can find some common
point x ′ of U and P̂I (ω). Consequently, that x ′ belongs to the intersection of P̂I (ω)

with P̂j (ω), which contradicts the maximality of I . In this way, we have P(ω) =
PI (ω) ∩ Q J (ω) with P̂I (ω) nonempty for all ω ∈ W . �

Here is the detailed proof we promised for Theorem 6.1.3.

Proof of Theorem6.1.3 To prove that Γ (ω) is closed, we consider a sequence
{(ωr , xr )}r�1 of elements of the graph of Γ that converges to some (ω0, x0) with
ω0 ∈ Ω . By definition, the system (6.1) is satisfied at ω = ωr and x = xr for all
r � 1. Since the functions ai and bi , i = 1, · · · , m are continuous, by passing the
inequalities (6.1) with ω = ωr and x = xr to the limit as r tends to ∞ we deduce
that (6.1) holds true for ω = ω0 and x = x0 too. Hence x0 belongs to Γ (ω0), by
which Γ is closed.

The proof of the lower semi-continuity of Γ (ω) is based on the lemmas we have
proven above. Let us write Γ (ω) as the intersection of P(ω) and Q(ω). In view of
Lemma 6.1.8, there exists an open subset W1 of W0 such that

P(ω) = PI (ω) ∩ Q J (ω)

P̂I (ω) 	= ∅

for all ω ∈ W1, where J = {1, · · · , m}\I . Express the map Γ by

Γ (ω) = P(ω) ∩ Q(ω)

= PI (ω) ∩ [Q(ω) ∩ Q J (ω)
]

for every ω ∈ W1. Apply Lemma 6.1.6 to the map Q ∩ Q J we find an open subset W
ofW1 onwhich themap Q∩Q J is lower semi-continuous. It remains to applyLemma
6.1.7 and the property 6) of set-valued maps to deduce the lower semi-continuity of
the intersection map PI ∩ (Q ∩ Q J ) and the map Γ . The proof is complete. �

Smooth representation of the map Γ (ω)

In this subsection we assume that the vector functions a1(ω), · · · , am(ω) and b(ω)

are of class Cr (r -times continuously differentiable functions) with r � 0. Recall
that AJ (ω) denotes thematrix whose rows are the transposes of the vectors a j , j ∈ J
for a subset J of the index set {1, · · · , m} and A−1

J denotes the inverse of the matrix
AJ if it exists. We begin with the case where Γ (ω) has vertices.
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Theorem 6.1.9 Assume that Γ is lower semi-continuous on an open subset W of Ω

and that Γ (ω0) possesses at least one vertex for some ω0 ∈ W. Then there exists an
open subset W0 of W, and a finite number of subsets J1, · · · , Jκ ⊆ {1, · · · , m} with
cardinality |J1| = · · · = |Jκ| = n such that for every ω ∈ W0, the polyhedral convex
set Γ (ω) possesses exactly κ vertices v1(ω), · · · , vκ(ω) defined by equations:

vi (ω) = A−1
Ji

(ω)
(
bJi (ω)

)
, i = 1, · · · ,κ.

Proof Let us denote by κ(ω) the number of vertices of Γ (ω). We show that for each
ω0 ∈ W there is a neighborhood W0 of ω0 in W such that κ(ω) � κ(ω0) for all
ω ∈ W0. In fact, since κ(ω0) is finite, there can be found a positive t such that all the
vertices of Γ (ω0) are located in the interior of the box

B := {x = (x1, · · · , xn)T ∈ R
n : max

i=1,··· ,n |xi | � t
}
.

We claim that around each vertex of Γ (ω0) must at least one vertex of Γ (ω) be
found once ω is sufficiently close to ω0, thereby establishing the required inequality.
Indeed, let v0 be a vertex of Γ (ω0). By the lower semi-continuity of Γ there is
xω ∈ Γ (ω) such that limω→ω0 xω = v0. One can express xω = yω + zω where
yω is a convex combination of vertices of Γ (ω) and zω is a direction of Γ (ω). It is
evident that limω→ω0 zω = 0.Otherwise, one should choose a sequence {yωi }�1 ⊆ B

converging to some y0 ∈ Γ (ω0), a sequence {zωi }i�1 converging to some nonzero

direction z0 of Γ (ω0) as ωi tends to ω0, and arrive at a contradiction v0 = y0 + z0

(remembering that v0 is a vertex). Moreover, there is at least one vertex v(ω) in the
convex combination yω such that limω→ω0 v(ω) = v0. Otherwise, since the number

of vertices of Γ (ω) is bounded from above by

(
m
n

)
, there should exist a sequence

{yωi }i�1 converging to a convex combination of some points of Γ (ω0) which are

distinct from v0 and we again should arrive at a contradiction that the vertex v0 is
represented by a convex combination of other points of Γ (ω0).

Let ω0 be a point which maximizes κ(ω) on W . Such a point exists because κ(ω)

is bounded from above, as already said. Then there is a neighborhood W0 ⊆ W of
ω0 such that κ(ω) = κ(ω0) for all ω ∈ W0. Let vi (ω0), i = 1, · · · ,κ(ω0) be the
vertices of Γ (ω0). We may assume that W0 is so small that in a small neighborhood
of each vertex vi (ω0) there is exactly one vertex, say vi (ω) of Γ (ω). For every fixed
index i, let

J (vi (ω)) = { j ∈ {1, · · · , p + q} : 〈a j (ω), vi (ω)〉 − b j (ω) = 0
}
.

Then |J (vi (ω))| � n and evidently, if an index j does not belong to J
(
vi (ω)
)
,

neither does it belong to J
(
vi (ω′)

)
when ω′ is sufficiently close to ω. In other words

J
(
vi (ω′)

)
is a subset of J

(
vi (ω)
)
for every ω′ in a sufficiently small neighborhood



192 6 Sensitivity and Stability

of ω. Choose a point ω1 which minimizes the cardinality of J
(
vi (ω)
)
on W0. Then

one can find a neighborhood W1 of ω1 in W0 such that

J
(
vi (ω1)

) = J
(
vi (ω)
)
for all ω ∈ W1.

Pick any n indices from the set J (vi (ω1)) with the property that the corresponding
vectors a j (ω1) form a linearly independent system. There is a smaller neighborhood
W2 ⊆ W1 where these vectors are still linearly independent. The vertex vi (ω),ω ∈
W2, is then determined by the equation given in the theorem with κ = κ(ω0). �

To study the general case in which Γ (ω) may have no vertex, we denote by L(ω)

the lineality space of Γ (ω) that is

L(ω) = (Γ (ω)
)
∞ ∩ (− (Γ (ω)

)
∞
)
.

Lemma 6.1.10 Assume that Γ is nonempty valued and continuous on W. Then
there exists an open subset W0 ⊆ W and a subset J0 ⊆ {1, · · · , m} such that for
every ω ∈ W0, L(ω) is the orthogonal space of the space spanned by the vectors{
ai (ω) : i ∈ J0

}
. Consequently, there can be found s functions u1, · · · , us of class

Cr on W0 where s = n − |J0|, such that u1(ω), · · · , us(ω) form a basis of L(ω),

for every ω ∈ W0.

Proof Let ω0 ∈ W. We show first that there is a neighborhood W0 of ω0 in W such
that

dimL(ω) � dimL(ω0) for all ω ∈ W0.

In fact, since the lineality space L(ω) is defined by equations

〈
ai (ω), x

〉 = 0, i = 1, · · · , m,

one has

dimL(ω) = n − rank
{
a1(ω), · · · , am(ω)

}
.

For a fixed ω0 ∈ W, one can find a neighborhood W0 of ω0 in W such that

rank
{
a1(ω0), · · · , am(ω0)

}
� rank

{
a1(ω), · · · , am(ω)

}
,

whenever ω ∈ W0. Hence dimL(ω) � dimL(ω0) for every ω ∈ W0. By this, if we
take ω0 ∈ W0 with the property that

dimL(ω0) = min
{
dimL(ω) : ω ∈ W

}
,
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then dimL(ω0) = dimL(ω) for every ω ∈ W0. Let J0 ⊆ {1, · · · , m} be an index
subset such that

{
ai (ω0) : i ∈ J0

}
is a maximal linearly independent subsystem of

the system
{
ai (ω0) : i = 1, · · · , m

}
. It is clear that

L(ω0) = {x ∈ R
n : 〈ai (ω0), x〉 = 0, i ∈ J0

}
and that dimL(ω0) = n−|J0|.Set s := dimL(ω0).By taking a smaller neighborhood
if necessary, we may assume that

{
ai (ω) : i ∈ J0

}
is still a linearly independent

system whenever ω ∈ W0. Since dimL(ω0) = dimL(ω), one has

L(ω) = {x ∈ R
n : 〈ai (ω), x

〉 = 0, i ∈ J0
}
,

and hence L(ω) is the orthogonal space to the space spanned by {ai (ω) : i ∈ J0}.
Let A0(ω0) be a nonsingular |J0| × |J0|-submatrix of AJ0(ω0). Without loss of
generality, one may also assume that the matrix A0(ω) is nonsingular for ω ∈ W0.

To facilitate the writing, assume that AJ0(ω) = (A0(ω)|B(ω)
)
. Denote by ei ∈ R

n

the i th coordinate unit vector, i = 1, · · · , n. It is evident that the vectors

ui (ω) =
(−(A0(ω))−1B(ω)e|J0|+i

0

)
+ e|J0|+i , i = 1, · · · , s

form a basis of L(ω) and are functions of class Cr on W0. �

Now we are able to give the main representation theorem in the general case.

Theorem 6.1.11 Assume as before that the functions a1(ω), · · · , a p+q(ω) and b(ω)

are of class Cr . Then for every open set W ⊆ Ω, there exists an open subset W0 of
W such that either Γ is empty valued on W0, or one can find μ functions v1, · · · , vμ

of class Cr on W0 and an integer κ, 0 < κ � μ, such that

Γ (ω) =
{

x ∈ R
n : x =

μ∑
i=1

λiv
i (ω),

κ∑
i=1

λi = 1,λi � 0, i = 1, · · · ,μ

}
,

for every ω ∈ W0.

Proof By Theorem 6.1.3 we may assume that Γ is lower semi-continuous on W. If
Γ (ω) = ∅ for all ω ∈ W, we are done. If not, by the lower semi-continuity there is a
neighborhood in W where the values of Γ are nonempty. Therefore without loss of
generality, it can be assumed that Γ (ω) is nonempty for all ω ∈ W. Let ω0 ∈ W be
a point where dimL(ω0) is minimal among dimL(ω),ω ∈ W. In virtue of Lemma
6.1.10, there is a neighborhood W1 of ω0 in W and s functions u1, · · · , us of class
Cr on W1 such that L(ω) is generated by the vectors u1(ω), · · · , us(ω) for each
ω ∈ W1. Let

Γ0(ω) := Γ (ω) ∩ {x ∈ R
n : 〈ui (ω), x

〉 = 0, i = 1, · · · , s
}
.
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In other words, Γ0(ω) := Γ (ω) ∩ L⊥(ω), where L⊥(ω) is the orthogonal space
to L(ω). The proof of Corollary 2.3.16 shows that Γ (ω) = Γ0(ω) + L(ω), and
Γ0(ω) has no lines which means that it has at least one vertex (see Corollary 2.3.14).
Using Theorem 6.1.3, we may assume that the map Γ0 is lower semi-continuous
on W1. By Theorem 6.1.9, one can find an open subset W2 ⊆ W1 and κ func-
tions v1, · · · , vκ of class Cr on W0 such that for every ω ∈ W2, the polyhedral
set Γ0(ω) has exactly κ vertices: v1(ω), · · · , vκ(ω). If for some ω̄ ∈ W2, the set
Γ0(ω̄) has no nonzero asymptotic direction, that is, it is a polytope, then there is a
neighborhood W̄ of ω̄ in W2 such that Γ (ω) is a polytope too, ω ∈ W̄ . In this event,
v1, · · · , vκ, u1, · · · , us,−u1, · · · ,−us are the functions we need to represent Γ. In
the other case, we fix any ω̄ in W2. Since Γ is lower semi-continuous on W2, one
can find a neighborhood W̄ of ω̄ in W2 and a vector d ∈ R

n such that 〈d, v〉 > 0 for
every v ∈ (Γ0(ω)

)
∞\{0} and very ω ∈ W̄ . Let us consider the convex polyhedron

Γ1(ω) := (Γ0(ω)
)
∞ ∩ {x ∈ R

n : 〈d, x〉 = 1
}
,

for ω ∈ W̄ . It is clearly bounded. In view of Theorem 6.1.9, we can find an open
subset W0 ⊆ W̄2 and l functions vκ+1, · · · , vκ+l of class Cr on W0 such that for
every ω ∈ W0, the polytope Γ1(ω) has exactly l vertices vκ+1(ω), · · · , vκ+l(ω). It
is evident that

(Γ0(ω))∞ =
{

x ∈ R
n : x =

κ+l∑
i=κ+1

λiv
i (ω),λi � 0, i = κ + 1, · · · ,κ + l

}
,

and also

Γ0(ω) =
{

x ∈ R
n : x =

κ+l∑
i=1

λiv
i (ω),

κ∑
i=1

λi = 1,λi � 0, i = 1, · · · ,κ + l

}
.

The functions v1, · · · , vκ+l , u1, · · · , us,−u1, · · · ,−us are those we look for. The
number μ of functions to represent Γ (ω) is equal to κ + l + 2s. �

We conclude this section by observing that if Γ (ω) possesses vertices, the lin-
eality space L(ω) must be null. Moreover, all the vertices of Γ (ω) must be among
v1, · · · , vκ; while all its extreme directions must appear among vκ+1, · · · , vκ+l .

Non-extremepoints andnon-extremedirections of the system {v1, · · · , vκ+l}become
superfluous in the representation ofΓ (ω).Thus, in this caseΓ (ω)maybe represented
by extreme points and extreme directions only.

http://dx.doi.org/10.1007/978-3-319-21091-9_2
http://dx.doi.org/10.1007/978-3-319-21091-9_2
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6.2 Sensitivity

We consider the following parametric multiobjective linear problem denoted (MO
LPω):

Maximize C(ω)x
subject to x ∈ Γ (ω)

where ω is a parameter from an open set Ω of a finite dimensional Euclidean space,
C(ω) is a real k × n-matrix, Γ (ω) is a polyhedral convex set, determined by the
system (6.1). Throughout this section the entries of C(ω) and the entries of the
system defining Γ (ω) are supposed to be of class Cr with r � 0. The marginal
function or the efficient value map of the problem (MOLPω) is defined by

Φ(ω) := Max
{
C(ω)x : x ∈ Γ (ω)

}
and the efficient solution map is given by

S(ω) := {x ∈ Γ (ω) : C(ω)x ∈ Φ(ω)
}
.

The aim of this section is to show that generically the marginal function and the
efficient solution map are of class Cr in the sense that they are polyhedral sets, not
necessarily convex, whose faces are convex combinations of vertices and extreme
directions that are Cr functions of the parameter ω. Let us first develop some more
details on representations of parametric polyhedra. Assume that W is an open set
in the parameter space Ω on which the polyhedron Γ (ω) admits a representation
as described in Theorem 6.1.11. Thus, Γ (ω) is written as the sum of a bounded
polyhedron P(ω) and a polyhedral cone Q(ω) of the form

P(ω) =
{

x ∈ R
n : x =

κ∑
i=1

λi u
i (ω), λi � 0, i = 1, · · · ,κ,

κ∑
i=1

λi = 1

}

Q(ω) =
{

x ∈ R
n : x =

μ∑
i=κ+1

λi u
i (ω), λi � 0, i = κ + 1, · · · ,μ

}
,

where u1(ω), · · · , uμ(ω) are of class Cr on W and for any fixed ω ∈ W ,
u1(ω), · · · , uκ(ω) are vertices of P(ω), while uκ+1(ω), · · · , uμ(ω) are extreme
directions of Q(ω). Notice that κ and μ depend on ω.

Lemma 6.2.1 Let Γ (ω) and W be specified as in Theorem 6.1.11. There are an
open set W0 ⊆ W , an integer l � 1 and 2l index sets

I1, · · · , Il ⊆ {1, · · · ,κ},
J1, · · · , Jl ⊆ {κ + 1, · · · ,μ}
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such that for any ω ∈ W0, the polyhedral set Γ (ω) consists of exactly l faces, each
face Γi (ω) of which can be written as Pi (ω)+ Qi (ω) with Pi (ω) being a face of P(ω)

generated by vertices ui ′(ω), i ′ ∈ Ii and Qi (ω) being a face of Q(ω) generated by
directions u j ′(ω), j ′ ∈ Ji , i = 1, ..., l.

Proof Choose two arbitrary index sets I from {1, · · · ,κ} and J from {κ+1, · · · ,μ},
and choose i0 ∈ I . Consider the following system of equations

〈
ξ, ui (ω) − ui0(ω)

〉 = 0, i ∈ I (6.5)〈
ξ, u j (ω)

〉 = 0, j ∈ J. (6.6)

In view of Theorem 6.1.11 there is an open set W1 ⊆ W such that either this system
has no solution, or there are p functions ξ1(ω), · · · , ξ p(ω) of the class Cr on W1
such that every solution of this system can be written in the form

ξ =
p∑

i=1

λiξ
i (ω), λi � 0, i = 1, · · · , p,

p′∑
i=1

λi = 1, p′ � p. (6.7)

Since the number of index subsets of the set {1, · · · ,μ} is finite, we may assume that
for arbitrary index sets I ⊆ {1, · · · ,κ} and J ⊆ {κ + 1, · · · ,μ} either the system
(6.5), (6.6) has no solution, or it has solutions written in the form (6.7). Of course,
the number p and the functions ξ1, · · · , ξp depend on I and J .

Now, choose a point ω0 ∈ W1, that maximizes the number of faces of Γ (ω) over
W1. Such a point exists because the number of faces of Γ (ω) is bounded. As before,
we have Γ (ω0) = P(ω0) + Q(ω0). Let Γ0(ω0) be a face of Γ (ω0). Then we have a
decomposition

Γ0(ω0) = P0(ω0) + Q0(ω0),

where P0(ω0) is a face of P(ω0) and is generated by some vertices, say ui (ω0), i ∈
I0 ⊆ {1, · · · ,κ}, and Q0(ω0) is a face of Q(ω0) and is generated by some directions,
say u j (ω0), j ∈ J0 ⊆ {κ + 1, · · · ,μ}. It is known that the set Γ0(ω0) is a face of
Γ (ω0) if and only if it is the set of all minima of some linear function 〈ξ0, y〉 on
Γ (ω0). In other words, the system (6.5), (6.6) with I = I0 and J = J0 has ξ0 as a
solution satisfying the following inequalities

〈
ξ, ui (ω0) − ui0(ω0)

〉
> 0, i /∈ I0 (6.8)〈

ξ, u j (ω0)
〉
> 0, j /∈ J0 (6.9)

Since ui are continuous, we may assume that (6.8) and (6.9) are satisfied for all
ω ∈ W1 and all ξ with ‖ξ − ξ0‖ < ε, where ε > 0 is a sufficiently small number.
Moreover, since the system (6.5), (6.6) has solutions at ω0, and by the way we have
chosen W1, it has solutions at every ω ∈ W1 and its solutions can be written by (6.7).
Let
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ξ0 =
p∑

i=1

λiξi (ω0).

Then ξ0(ω) = ∑p
i=1 λiξ

i (ω) is a solution of (6.5), (6.6) with I = I0, J = J0.
Now for the given ε > 0, one can find an open neighborhood W2 ⊆ W1 of ω0
such that ‖ξ0(ω) − ξ0‖ < ε whenever ω ∈ W2. Thus, ξ0(ω) satisfies the system
(6.5), (6.6) and the inequalities (6.8), (6.9) with ω instead of ω0. This shows that
the set Γ0(ω) = P0(ω) + Q0(ω), where P0(ω) is the polyhedron generated by the
vertices ui (ω), i ∈ I0 and Q0(ω) is the polyhedral cone generated by the directions
u j (ω), j ∈ J0, is a face of Γ (ω) whenever ω is in W2. The above reasoning is valid
for any face of Γ (ω0). Hence we may find a neighborhood W0 ⊆ W1, index sets
I1, · · · , Il ⊆ {1, · · · ,κ}, J1, · · · , Jl ⊆ {κ + 1, · · · ,μ}, where l is the number of
all faces of Γ (ω0), to satisfy the requirements of the lemma. Since l is the biggest
number of faces that Γ (ω) may have on W1, actually Γ (ω),ω ∈ W0 has exactly l
faces as stated in the lemma. �

We shall make use of a terminology already mentioned in Chap.3: a face of a
polyhedral set in R

n is said to be an efficient solution face (respectively a weakly
efficient solution face) if every point of it is efficient (resp. weakly efficient).

Lemma 6.2.2 Let Γ (ω) and W0 ⊆ W be as in the preceding lemma. If Γ ′(ω0) is
an efficient solution face of Γ (ω0) for some ω0 ∈ W0, then there is a neighborhood
W1 ⊆ W0 of ω0 such that Γ ′(ω) is an efficient solution face of Γ (ω) for all ω ∈ W1.

Proof It follows from Theorem 4.2.6 that the face Γ ′(ω0) is efficient if and only if
there is a strictly positive vector λ in R

k such that Γ ′(ω0) coincides with the set of
all maximizers of the linear function 〈CT (ω)λ, x〉 over Γ (ω0). In other words, the
system (6.5), (6.6) and the inequalities (6.8), (6.9) with ω = ω0, I0 = I = Ii , J0 =
J = Ji have a common solution CT (ω)λ. Represent this solution in the form (6.7),
we can find a small neighborhood W1 ⊆ W0 of ω0 such that the above systems have
a strictly positive vector λ(ω) as a solution for all ω ∈ W1. This shows that Γ ′(ω) is
an efficient solution face of Γ (ω) for all ω ∈ W1. �

Lemma 6.2.3 Let Γ (ω) and W0 ⊆ W be as in Lemma 6.2.1. If Γi (ω0) is not a weakly
efficient solution face of Γ (ω0) for some ω0 ∈ W0, then there exists a neighborhood
W1 ⊆ W0 of ω0 such that Γi (ω) is not a weakly efficient face of Γ (ω) for all ω ∈ W1.

Proof If Γi (ω0) is not a weakly efficient face of Γ (ω0), then there is y0 ∈ Γi (ω0)

and x0 ∈ Γ (ω0) such that C(ω0)(x0 − y0) is strictly positive. By the continuity of
C(ω) and Lemma 6.2.1, for ω sufficiently close to ω0 there are yω ∈ Γi (ω), and
xω ∈ Γ (ω) such that limω→ω0 yω = y0, limω→ω0 xω = x0 and C(ω)(yω − xω)

remains strictly positive. This shows that the face Γi (ω) is not a weakly efficient
solution face of (MOLPω). �

Observe that in general, the conclusion of Lemma 6.2.2 is not true for weakly
efficient faces, while the conclusion of Lemma 6.2.3 is not true if we replace “weakly
efficient” by “efficient”. This can be seen by the following example.

http://dx.doi.org/10.1007/978-3-319-21091-9_3
http://dx.doi.org/10.1007/978-3-319-21091-9_4
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Example 6.2.4 For ω ∈ R we define Γ (ω) ⊆ R
2 by

Γ (ω) = {(x, y) ∈ R
2 : y = ωx

}
.

For ω0 = 0, the whole set Γ (ω0) is a weakly efficient face, but it is not an efficient
face. There is no neighborhood V of ω0 such that Γ (ω) continues to be a weakly
efficient face or not to be an efficient face for all ω ∈ V .

Now we are able to prove the main result of this section.

Theorem 6.2.5 Let W be an open subset of the parameter space Ω on which the
representation described in Theorem 6.1.11 is true. Then there exists an open subset
W0 of W such that either of the following statements holds.

(i) S(ω) = ∅ for all ω ∈ W0.
(ii) There exists a number l∗ � 1 and 2l∗ index sets

I1, · · · , Il∗ ⊆ {1, · · · ,κ}
J1, · · · , Jl∗ ⊆ {κ + 1, · · · ,μ}

such that S(ω) consists of exactly l∗ faces of the set Γ (ω) each of which is
generated by points ui ′(ω), i ′ ∈ Ii and by directions u j ′(ω), j ′ ∈ Ji , i =
1, · · · , l∗ for each ω ∈ W0.

Proof Without loss of generality we may assume that W is an open set on which
Lemma6.2.1 is true. If S(ω) is empty for allω ∈ W ,we are done. If there is somepoint
ω0 in W such that S(ω0) is nonempty, then by Lemma 6.2.2 it remains nonempty on
some open neighborhood of ω0. Therefore, we may assume that S(ω) is nonempty at
every ω of W . Applying Lemma 6.2.1 to obtain an integer l and index sets I1, · · · , Il

and J1, · · · , Jl as described there. Since the efficient solution set S(ω) consists of
faces along with the fact that the number of faces of Γ is unchanged and equal to
l on W , we may find a point ω∗ at which S(ω∗) has the largest number of efficient
solution faces. For the sake of convenience we assume they are Γ1(ω), · · · , Γl∗(ω)

with 1 � l∗ � l. By Lemmas 6.2.2 and 6.2.3 there is an open subset W0 of W on
which these faces remain efficient. There are no more efficient solution faces beyond
those ones by the choice of l∗. Thus, S(ω) consists of exactly l efficient solution
faces given by the points ui (ω) as described in Lemma 6.2.1. �

Corollary 6.2.6 Let W be an open subset of the parameter space Ω on which the
representation described in Theorem 6.1.11 is true. Then there exist an open subset
W0 ⊆ W such that either of the following holds

(i) Φ(ω) = ∅ for each ω ∈ W0;
(ii) There exists a number l∗ � 1 and 2l∗ index sets

I1, · · · , Il∗ ⊆ {1, · · · ,κ}
J1, · · · , Jl∗ ⊆ {κ + 1, · · · ,μ}
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such that Φ(ω) consists of exactly l∗ faces of the set C(ω)
(
Γ (ω)
)

each of which

is generated by points vi ′(ω), i ′ ∈ Ii and by directions v j ′(ω), j ′ ∈ Ji , i =
1, · · · , l∗ for each ω ∈ W0.

Proof Since Φ(ω) is the image of the solution set S(ω) under the linear function
C(ω) we may apply Theorem 6.2.5 to obtain an open subset W0 in W on which Φ

has only empty values, or only nonempty values. Moreover, Φ(ω) is the efficient
solution set of the problem of maximizing the identity function over the polyhedron
C(ω)
(
Γ (ω)
)
. Hence the method of Theorem 6.2.5 goes through. �

It is to remark that the numbersκ andμ of Theorem6.2.5 and the ones of Corollary
6.2.6 are distinct. The next result deals with weakly efficient solutions.

Theorem 6.2.7 The conclusions of Theorem 6.2.5 and Corollary 6.2.6 remain true
for the set of weakly efficient solutions and the set of weakly efficient values.

Proof We follow the argument of Theorem 6.2.5. Let W be an open subset on which
the representation given in Theorem 6.1.11 holds. If the weakly efficient solution set
is empty at some point ω ∈ W , then in view of Lemma 6.2.3 it remains empty on a
neighborhood of ω. We may therefore assume that the weak solution set is nonempty
at every point of W and that the decomposition of Γ (ω) by its faces as described in
Lemma6.2.1 is true. Choose a pointω∗ inW forwhich the number ofweakly efficient
faces of (MOLPω∗) is the least. We assume that they are Γ1(ω∗), · · · , Γl∗(ω∗) with
1 � l∗ � l. The number of faces that are not weakly efficient is the largest at ω∗. By
Lemmas 6.2.3 there is an open subsetW0 ofW onwhich these latter faces remain non-
weakly efficient, and only they are non-weakly efficient. Hence the weakly efficient
set of (MOLPω) consists of exactly l∗ faces Γ1(ω), · · · , Γl∗(ω) with description
in Lemma 6.2.1. The proof of the counterpart for Corollary 6.2.6 is by the same
argument. �

Below we present an example to illustrate the analysis described in this section.

Example 6.2.8 Let Γ (ω) = Γ be a triangle with three vertices

(
0
0

)
,

(
1
0

)
and(

0
1

)
in R2. Let C be a 2 × 2-matrix that depends on a parameter ω ∈ (−π,π):

C(ω) =
(− cosω sinω

− sinω − cosω

)
.

We study the following parametric problem:

Maximize C(ω)x
subject to x ∈ Γ.
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It is clear that the image C(ω)(Γ ) is the triangle with vertices

u0(ω) =
(
0
0

)
, u1(ω) =

(− cosω
− sinω

)
and u2(ω) =

(
sinω

− cosω

)
.

At the point ω0 = 0, the unique efficient value face is {u0}. According to Lemma
6.2.2, there exists a neighborhood W1 of ω0 in (−π,π) such that {u0} is an efficient
value face of the problem for ω ∈ W1. In order to compute this neighborhood we

exploit the proof of Lemma 6.2.2. Let us take the strictly positive vector λ0 =
(
1
1

)
and consider the system:

〈
λ0, ui (ω) − u0(ω)

〉
< 0, i = 1, 2.

This system holds for all ω ∈ (−π/4,π/4). Hence, the open interval (−π/4, π/4) is
a neighborhood on which {u0} is an efficient value face of the problem. Note that by
choosing another strictly positive vector λ0 one obtains another neighborhood that
has the same property.

Observe further that ω = 0 is not the point ω∗ that has a neighborhood W0
mentioned in the proof of Theorem 6.2.5. According to that proof, we choose a point
ω∗ ∈ W1 such that the number of efficient value faces of the problem is the largest
at this point. In our case, any point of W1 different from 0 will do. For instance,
with ω∗ = π/8, the efficient value set of consists of the faces: [u0, u2(ω∗)], {u0}
and {u2(ω∗)}. Since other faces of the value set C(ω)(Γ ) at ω∗ are not weakly
efficient, by Lemma 6.2.3, they cannot be weakly efficient whenever ω is sufficiently
close to ω∗. This implies that the number of efficient value faces of C(ω)(Γ ) is
the largest at this point. Consequently, in view of the proof of Theorem 6.2.5 one
has Φ(ω) = [u0, u1(ω)] for ω sufficiently close to ω∗. In order to determine a
neighborhood W0 of the point ω∗ where Φ(ω) has this representation, we again
invoke the proof of Theorem 6.2.5. We have to solve the system:

〈
λ, u1(ω) − u0〉 = 0〈
λ, u2(ω) − u0〉 > 0,

with λ =
(

λ1
λ2

)
, λ1 > 0 and λ2 > 0. It is evident that for each ω ∈ (0,π/4) the

above system has a solution. Consequently, the interval (0,π/4) is a neighborhood
we wanted.

6.3 Error Bounds and Stability

We consider a linear system in matrix form that defines a convex polyhedron Γ in
the space Rn :
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Ax − b � 0, (6.10)

where A is an m × n-matrix whose rows are the transposes of a1, · · · , am and b
is an m-dimensional vector. It follows that an element x is a solution of the system
(6.10) if and only if the distance of Ax − b to the negative orthant −R

m+ is zero.
When x is not a solution, we wish to know how far it is away from the solution set Γ
once the distance from Ax − b to −R

m+ is computed. This question is important in
computation of solutions of (6.10). In fact, when solving the above system, at each
iteration an error is committed. At the final stage the obtained solution may not solve
the system, but it is possible to estimate an upper bound for the total error. Given a
vector a in R

m , the vector obtained from a by substituting all negative components
of a by zero is denoted by a+. It is clear that the distance d(a,−R

m+) from a to the
negative orthant −R

m+ is exactly the norm of the vector a+.

Definition 6.3.1 Apositive numberα is called an error bound of the system (6.10) if

d(x, Γ ) � α‖(Ax − b)+‖ for all x ∈ R
n .

Distance to a polyhedron

Given I ⊆ {1, · · · , m}, the matrix AI is composed of the rows i, i ∈ I of the
matrix A. Similarly the vector bI has components bi , i ∈ I . The cardinality of I is
denoted |I |.
Lemma 6.3.2 Assume that the system (6.10) is homogeneous that is b = 0 and let
Γ ◦ be the polar cone of the polyhedral cone Γ . Then for every x from the polar cone
Γ ◦ there exist an index set I ⊆ {1, · · · , m} and a nonzero positive vector λ from the
space R

|I | such that the vectors ai , i ∈ I are linearly independent and

d(x, Γ ) = ‖x‖ = 〈λ, AI x〉
‖AT

I λ‖ .

Proof The conclusion being trivial for x = 0, we consider the case x 	= 0. The
equality d(x, Γ ) = ‖x‖ is clear because otherwise one would find some point y ∈ Γ

such that

‖x − y‖2 < ‖x‖2

which implies

‖y‖2 < 2〈x, y〉.

The latter inequality is impossible because x belongs to the polar cone Γ ◦ and
hence the value on the right hand side must be nonpositive. On the other hand, by
Theorem 2.3.19 the polar cone Γ ◦ is the positive hull of the vectors a1, · · · , am . By

http://dx.doi.org/10.1007/978-3-319-21091-9_2


202 6 Sensitivity and Stability

Caratheodory’s Theorem 2.1.2 there exists an index set I ⊆ {1, · · · , m} and positive
numbers λi , i ∈ I such that the vectors ai , i ∈ I are linearly independent and

x =
∑
i∈I

λi a
i .

Let λ be the vector whose components are λi , i ∈ I . We deduce that

‖x‖ = 〈x, x〉
‖x‖ = 〈λ, AI x〉

‖AT
I λ‖ .

Finally, we note that ‖AT
I λ‖ is not zero because it is exactly the norm of the

vector x . �

It is clear from the proof of the lemma above that the index set I can be chosen
among those indices i such that ai are extreme directions of the polar cone Γ . Given
y ∈ Γ , we denote by I0(y) the set of active indices i such that ai are extreme
directions of the positive hull pos

{
ai : i ∈ I (y)

}
.

Theorem 6.3.3 Assume that the system (6.10) is consistent. Then for every x /∈ Γ

there exist a point y ∈ Γ , an index set I ⊆ {1, · · · , m} and a positive vector λ from
R

|I | such that

(i) I ⊆ I0(y);
(ii) the vectors ai , i ∈ I of the matrix A are linearly independent;
(iii) the distance from x to Γ is given by

d(x, Γ ) = ‖x − y‖ = 〈λ, AI x − bI 〉
‖AT

I λ‖ .

Proof Because Γ is a closed set, there exists some point y ∈ Γ such that

‖x − y‖ = d(x, Γ ). (6.11)

Denote by Hi the half-space defined by the inequality 〈ai , x〉 − bi � 0. We claim
that

‖x − y‖ = d
(
x,
⋂

i∈I (y)

Hi
)
, (6.12)

where I (y) is the active index set at y. Notice that y cannot be an interior point of Γ ,
so that the active index set I (y) is nonempty. Suppose (6.12) is not true. The set Γ

being included in the set ∩i∈I (y) Hi , one may find some z from the latter intersection
such that ‖x − z‖ < ‖x − y‖. Consider the point t z + (1 − t)y for t ∈ [0, 1]. For

http://dx.doi.org/10.1007/978-3-319-21091-9_2
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inactive indices j /∈ I (y) one has 〈a j , y〉 − b j < 0, hence for t > 0 sufficiently
small, 〈a j , t z + (1 − t)y〉 − b j � 0 which means that t z + (1 − t)y belongs to
Hj . For active indices i ∈ I (y), it is clear that t z + (1 − t)y belongs to Hi . By this
t z + (1 − t)y belongs to Γ . With such a value of t we deduce

‖x − (t z + (1 − t)y)‖ ≤ t‖x − z‖ + (1 − t)‖x − y‖ < ‖x − y‖

which contradicts (6.11).
By translation the distance from x to the set ∩i∈I (y) Hi is equal to the distance

from x − y to the polyhedral cone ∩i∈I (y) Hi − y which is given by the system

〈ai , x〉 � 0, i ∈ I (y).

Since y realizes the distance from x to the set ∩i∈I (y) Hi , the vector x − y is normal
to it at y. It follows that x − y belongs to the polar cone of the cone ∩i∈I (y) Hi − y.
Applying Lemma 6.3.2 we find some index set I ⊆ I0(y) and a positive vector
λ ∈ R

|I | such that (ii) holds and

‖x − y‖ = 〈λ, AI (x − y)〉
‖AT

I λ‖
which completes the proof. �

Let I denote the set of index subsets I ⊆ {1, · · · , m} satisfying two conditions:
(1) I is nonempty and {ai : i ∈ I } is a linearly independent family, and
(2) there is some y ∈ Γ such that I ⊆ I0(y).

Theorem 6.3.4 Assume that the system (6.10) is consistent. Then for every x /∈ Γ

the distance from x to Γ is given by the formula

d(x, Γ ) = max
I∈I

max
λ∈R|I |

+ \{0}
〈λ, AI x − bI 〉

‖AT
I λ‖ .

Proof Let J ∈ I and λ ∈ R
|J |
+ with λ 	= 0. It is clear that the vector AT

J λ is nonzero
because the vectors a j , j ∈ J are linearly independent. Let y be the vector given in
Theorem 6.3.3. Since λ is positive and AJ y − bJ � 0, we have

〈λ, AJ (x − y)〉 � 〈λ, AJ x − bJ 〉.

Consequently,
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d(x, Γ ) �
〈

AT
J λ

‖AT
J λ‖ , x − y

〉

� 〈λ, AJ (x − y)〉
‖AT

J λ‖
� 〈λ, AJ x − bJ 〉

‖AT
J λ‖

which, combining with (iii) of Theorem 6.3.3, yields the requested formula. �

Another expressions of the distance d(x, Γ ) are given below.

Corollary 6.3.5 Assume that the system (6.10) is consistent. Then for every x /∈ Γ

we have

d(x, Γ ) = max
I∈I,λ≥0,‖AT

I λ‖=1

∑
i∈I

λi (〈ai , x〉 − bi )

= max
I∈I,λ≥0,

∑
i∈I λi =1

∑
i∈I λi (〈ai , x〉 − bi )

‖AT
I λ‖ .

Proof It suffices to note that the function on the right hand side of the formula
for d(x, Γ ) in the preceding theorem is positively homogeneous with respect to λ.
Therefore the maximum over λ can be restricted either on λ with

∑
i∈I λi = 1 or on

λ with ‖AT
I λ‖ = 1 and yield the desired conclusion. �

Here are some constants, called Hoffman constants , which help to estimate non
solutions of the system (6.10):

κ = max
I∈I,λ≥0,‖AT

I λ‖=1

∑
i∈I

λi (6.13)

σ = min
I∈I,λ∈R|I |

+ ,
∑

i∈I λi =1
‖AT

I λ‖. (6.14)

The next result is known as error bound of the system (6.10).

Corollary 6.3.6 Assume that the system (6.10) is consistent. Then κ = 1/σ and for
every x ∈ R

n one has

d(x, Γ ) � κmax{0, 〈ai , x〉 − bi , i = 1, · · · , m}.

Proof Let I and λ realize the maximum in (6.13). Setting μ = λ/
∑

i∈I λi we have
μ ≥ 0 and

∑
i∈I μi = 1 and deduce

σ � ‖AT
I μ‖ = ‖AT

I λ‖∑
i∈I λi

= 1

κ
.
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Conversely, let λ and I realize (6.14). We set η = λ/‖AT
I λ‖ and deduce

κ �
∑
i∈I

ηi =
∑

i∈I λi

‖AT
I λ‖ = 1

σ

which yields equality as requested.
Further, if x belongs to Γ , then d(x, Γ ) = 0 and the formula is evident. If x does

not belong to Γ , we apply Theorem 6.3.3 to obtain the formula in (iii). The vectors
λ and AT

I λ being nonzero, we may choose λ so that ‖AT
I λ‖ = 1. Moreover,

〈λ, AI x − bI 〉 =
∑
i∈I

λi (〈ai , x〉 − bi )

�
(∑

i∈I

λi
)

max
i=1,··· ,m(〈ai , x〉 − bi )

which yields the inequality of the corollary. �

The max-norm ‖u‖∞ of a vector u ∈ R
m is given by

‖u‖∞ = max{|ui | : i = 1, · · · , m}.

Using this norm we may give the error bound stated in Corollary 6.3.6 in the form

d(x, Γ ) � κ‖(Ax − b)+‖∞.

To express the error bound by the Euclidean norm we introduce a new constant

β := min
I∈I,λ∈R|I |

+ ∩S|I |
‖AT

I λ‖, (6.15)

where S|I | denotes the unit sphere in R
|I |. This value is strictly positive because

otherwise AT
I λ = 0 for some λ 	= 0 which contradicts the fact that AI is of full rank.

Corollary 6.3.7 Assume that the system (6.10) is consistent. Then

d(x, Γ ) � 1

β
‖(Ax − b)+‖.

Proof The inequality is evident for x ∈ Γ . Consider x /∈ Γ . Let λ, y and I be as in
Theorem 6.3.3. Since λ is positive, we have

〈λ, AI x − bI 〉
‖AT

I λ‖ � 〈λ, (AI x − bI )
+〉

‖AT
I λ‖

� ‖λ‖
‖AT

I λ‖‖(AI x − bI )
+‖. (6.16)
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Observe also that

‖(AI x − bI )
+‖ = d(AI x − bI ,−R

|I |
+ )

� d(Ax − b,−R
m+).

Combining this with (6.16) and Theorem 6.3.4 we deduce that

d(x, Γ ) � max
I∈I

max
λ∈R|I |

+ \{0}
‖λ‖

‖AT
I λ‖‖AI x − bI ‖

� 1

β
d(Ax − b,−R

m+),

as requested. �

Stability of linear systems

Given the system (6.10) we wish to compare it with a perturbed system

A′x − b′ � 0, (6.17)

where A′ is an m × n-matrix and b′ is an m-dimensional vector. The solution set of
this system is denoted Γ ′. To find a relation between Γ and Γ ′ we use the Hausdorff
distance which is defined by the formula

h(Γ, Γ ′) = max
{
sup
x∈Γ

d(x, Γ ′); sup
x ′∈Γ ′

d(x ′, Γ )
}
.

This value may be infinite when one of the two sets is unbounded.

Theorem 6.3.8 Assume that the systems (6.10) and (6.17) are consistent and that
A = A′. Then

h(Γ, Γ ′) � κ‖b′ − b‖∞

where κ is given by (6.13).

Proof Let x ∈ Γ . In view of Theorem 6.3.3 there exist a point y ∈ Γ ′, an index set
I ⊆ I (y) and λ ∈ R

|I |
+ such that

d(x, Γ ′) = ‖x − y‖ = 〈λ, AI x − b′
I 〉

‖AT
I λ‖ .
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Since AI x � bI and λ is positive, we deduce

d(x, Γ ′) �
〈λ, bI − b′

I 〉
‖AT

I λ‖
� κ‖b′

I − bI ‖∞
� κ‖b′ − b‖∞.

The same argument works for x ′ ∈ Γ ′ and leads to the inequality stated in the
theorem. �

When the matrix A is also perturbed, an estimate for the Hausdorff distance
between Γ and Γ ′ can be given when both of them are bounded.

Theorem 6.3.9 Assume that the systems (6.10) and (6.17) are consistent and that
both Γ and Γ ′ are contained in a ball of radius r > 0. Then

h(Γ, Γ ′) � max{κ,κ′}(‖b′ − b‖∞ + r‖A′ − A‖∞
)
,

where κ′ is given by (6.13) with A′ substituting A.

Proof Let x ∈ Γ and y ∈ Γ ′ be as in the proof of the preceding theorem. We have

d(x, Γ ′) �
〈λ, A′

I x − b′
I 〉

‖A′T
I λ‖

�
〈λ, (A′

I − AI )x + AI x − b′
I 〉

‖A′T
I λ‖

�
〈λ, (A′

I − AI )x〉
‖A′T

I λ‖ + 〈λ, bI − b′
I 〉

‖A′T
I λ‖

� κ′(r‖A′ − A‖∞ + ‖b′ − b‖∞
)
.

A similar inequality can be obtained for d(x ′, Γ ), x ′ ∈ Γ ′ and completes the
proof. �

When one of Γ and Γ ′ is bounded and the other is unbounded, the Hausdorff dis-
tance between them is clearly unbounded. However, if both of them are unbounded,
it is not excluded that the Hausdorff distance between them is bounded. When it is
the case an estimate for h(Γ, Γ ′) similar to the one of Theorem 6.3.9 is available.

Lemma 6.3.10 Assume that the systems (6.10) and (6.17) are consistent and both
sets Γ and Γ ′ are unbounded. Then the Hausdorff distance between Γ and Γ ′ is
finite if and only if the rows of A and A′ generate the same positive hull.

Proof According to the representation theorem (Theorem 2.4.9) the polyhedra Γ

and Γ ′ can be decomposed by sums of bounded polyhedra and polyhedral cones,

http://dx.doi.org/10.1007/978-3-319-21091-9_2
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say Γ = P + Q and Γ ′ = P ′ + Q′ with P and P ′ bounded polyhedra and Q
and Q′ polyhedral cones. The cones Q and Q′ are determined respectively by the
homogeneous systems Ax � 0 and A′x � 0. It is clear that the Hausdorff distance
between Γ and Γ ′ is finite if and only if Q and Q′ coincide, which means that
the two above mentioned homogeneous systems share the same solution set. By
Theorem 2.3.19 the polar cones of Q and Q′ are positive hulls of the rows of A and
A′ respectively. Since Q = Q′ if and only if their polar cones coincide (Corollary
2.3.22), the conclusion of the theorem follows at once. �

Corollary 6.3.11 Assume that the systems (6.10) and (6.17) are consistent and that
the rows of A and A′ generate the same positive hulls. Then there exists a positive
number r > 0 such that

h(Γ, Γ ′) � max{κ,κ′}(‖b′ − b‖∞ + r‖A′ − A‖∞
)
,

where κ′ is given by (6.13) with A′ substituting A.

Proof Let Q denote the asymptotic cone of Γ , which, by the hypothesis, is also the
asymptotic cone of Γ ′. In view of Theorem 2.3.9, Γ = P + Q and Γ ′ = P ′ + Q
with P and P ′ bounded polyhedra. Define r to be a positive number such that P and
P ′ are contained in the ball of radius r . Let x ∈ Γ , say x = u + v for some u ∈ P
and v ∈ Q. Let y ∈ Γ ′ that realizes the distance d(x, Γ ′) and I ⊆ I (y) the index
set as given in Theorem 6.3.3. We obtain

d(x, Γ ′) �
〈λ, A′

I (u + v) − b′
I 〉

‖A′T
I λ‖

�
〈λ, (A′

I − AI )u + A′
I v + AI u − b′

I 〉
‖A′T

I λ‖
�

〈λ, (A′
I − AI )u〉

‖A′T
I λ‖ + 〈λ, bI − b′

I 〉
‖A′T

I λ‖
� κ′(r‖A′ − A‖∞ + ‖b′ − b‖∞).

To pass from the second inequality to the third one we have used the fact that λ is
a positive vector, AI u � bI , and A′

I v � 0 because v is an asymptotic direction
of Γ ′. �

Regular system

The solvability of the system (6.10) expresses the fact that the vector b belongs to
the set A(Rn) + R

m+. If b is on the boundary of that set, then there is a vector b′
outside of that set as close to b as we wish. For such a b′ and A′ = A the perturbed
system (6.17) has no solution. On the other hand, if b is an interior point of the set

http://dx.doi.org/10.1007/978-3-319-21091-9_2
http://dx.doi.org/10.1007/978-3-319-21091-9_2
http://dx.doi.org/10.1007/978-3-319-21091-9_2
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A(Rn) + R
m+, then any b′ sufficiently close to b still belongs to that set, and hence

the perturbed system (6.17) with A′ = A is solvable.

Definition 6.3.12 The system Ax − b � 0 is said to be regular if b is an interior
point of the set A(Rn) + R

m+.

The theorem below shows that regularity is necessary and sufficient for stability.

Theorem 6.3.13 The system (6.10) is regular if and only if there is some η > 0 such
that for every couple (A′, b′) with max(‖A − A′‖, ‖b − b′‖) < η the system (6.17)
has a solution.

Proof If the system is irregular, then it is clear that the system (6.17) has no solution
if A′ = A and b′ is outside the set A(Rn) + R

m+ and close to b as we have already
discussed. Assume that the system is regular. We proceed by contradiction. If there
are couples (Aν, bν) converging to (A, b) such that the systems Aν x − bν � 0 have
no solutions, then by Corollary 2.2.4 (a version of Farkas’ theorem) there are nonzero
vectors ξν ≥ 0 such that

〈bν, ξν〉 = −1

AT
ν ξν = 0.

We may assume that ξν/‖ξν‖ converges to some ξ 	= 0. Then AT ξ = 0 and 〈b, ξ〉
� 0. Since the vector ξ is positive, the above equality yields that

〈Ax + v, ξ〉 � 0 for all x ∈ R
n, v ∈ R

m+.

This shows b cannot be an interior point of the set A(Rn) + R
m+ and contradicts the

hypothesis. �

Stability of multiobjective linear problems

Consider a multiobjective linear problem (MOLP)

Maximize Cx
subject to Ax � b

where C is a real k × n-matrix, A is a real m × n-matrix and b is an m-vector, and
its dual (VD2)

Minimize Y b
subject to λT Y A = λT C

λT Y � 0 for some λ ∈ R
k,λ > 0,

where Y is a real variable k ×m-matrix. We remember that the columns of the matrix
CT are denoted c1, · · · , ck .

http://dx.doi.org/10.1007/978-3-319-21091-9_2
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Definition 6.3.14 The constraint of (VD2) is said to be regular if the following
conditions hold:

ci ∈ AT (Rm+), i = 1, · · · , k;
c1 + · · · + ck ∈ int(AT (Rm+)).

It is plain to see that the constraint of (VD2) is regular if and only if for every vector
λ > 0 the vector CT λ belongs to the interior of the set AT (Rm+). In this section
S(A, b, C) denotes the set of efficient solutions of (MOLP) and S∗(A, b, C) the set
of efficient solutions of (VD2).

Theorem 6.3.15 Assume that b is nonzero. The following assertions are equivalent.

(i) The constraints of (MOLP) and (VD2) are regular.
(ii) The set of efficient solutions of (MOLP) is nonempty and bounded, and for every

fixed vector λ > 0 of Rk , the set of vectors λT Y with Y being efficient solutions
of (VD2) and satisfying the constraint λT Y A = λT C is bounded.

(iii) There exists a positive number ε such that for any A′, b′, C ′ with max(‖A −
A′‖, ‖b − b′‖, ‖C ′ − C‖) < ε the primal and dual problems (MOLP’)

Maximize C ′x
subject to A′x � b′

and (VD2*)

Minimize Y b′
subject to λT Y A′ = λT C ′

λT Y � 0 for some λ ∈ R
k,λ > 0.

have efficient solutions.

Proof We prove implication from (i) to (ii) first. Assume (i) holds. For every vector
λ > 0 we consider the scalarized problem (Pλ)

Maximize 〈λ, Cx〉
subject to Ax � b

and its dual (Dλ)

Minimize 〈u, b〉
subject to uT A = λT C

u � 0.

Since both primal and dual problems have feasible solutions, they have optimal
solutions. By scalarization (MOLP) has efficient solutions and in view of Theorem
5.3.5 the dual (VD2) has feasible solutions and efficient solutions too. We prove that
the set of efficient solutions of (MOLP) is bounded. Indeed, if not there is some

http://dx.doi.org/10.1007/978-3-319-21091-9_5
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vector λ > 0 such that the set of optimal solutions of (Pλ) is unbounded. One finds
some nonzero vector v with Av � 0 such that

〈λ, Cv〉 = λT Cv = 0. (6.18)

Since Av � 0, one also has that

〈v, AT u〉 = 〈Av, u〉 � 0

for all u � 0. Moreover, as (VD2) is regular, the vector CT λ is in the interior of the
set {AT u : u ∈ R

m+} which together with (6.18) implies that v = 0, a contradiction.
Once the set of efficient solutions of (MOLP) is bounded, the set of optimal solutions
of (Pλ) is bounded for all λ > 0. By symmetry the set of optimal solutions of (Dλ)
is bounded too. Since the set S∗(A, b, C) is included in the union of those matrices
Y for which λY is an optimal solution of (Dλ) with λ > 0, we conclude that the set
{λT Y : Y ∈ S∗(A, b, C)} is bounded.

Next we prove that (ii) implies (iii). Assume (ii) and suppose the contrary that
there are (Aν, bν , Cν), ν = 1, 2, · · · converging to (A, b, C) for which at least either
the problem (MOLPν)

Maximize Cνx
subject to Aνx � bν

or the dual problem (VD2ν)

Minimize Y bν

subject to λT Y Aν = λT Cν

λT Y � 0 for some λ ∈ R
k,λ > 0

is not solvable. Actually both of the problems are not solvable according to the
duality relation given in Theorem 5.3.5. We may then assume that either (MOLPν),
ν = 1, 2, · · · are all infeasible, or they are feasible and their objective functions
are unbounded from above. The first case does not happen because (ii) implies that
(MOLP) is regular and so (MOLPν) is feasible when ν is sufficiently large. In the
second case there exist vectors vν such that Aνv

ν � 0 and Cνv
ν ≥ 0. Without loss

of generality we may assume that vν converges to some nonzero vector v which
satisfies Cv � 0 and Av � 0. Let x be any efficient solution of (MOLP). Then for
every positive number t , we have C(x + tv) � Cx and A(x + tv) � b, which shows
that the set of efficient solutions of (MOLP) is unbounded. This contradiction proves
that (ii) implies (iii).

We proceed to the final implication from (iii) to (i). Under (iii), the problems
(MOLP’) are feasible. In view of Theorem6.3.13 the constraint of (MOLP) is regular.
We argue that the constraint of (VD2) is regular too. Indeed, if not, there exists λ > 0
such that the vector CT λ is not an interior point to the image AT (Rm+). Then, we
may choose a matrix C ′ as close to C as we wish such that C ′T λ does not belong

http://dx.doi.org/10.1007/978-3-319-21091-9_5
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to AT (Rm+). Consequently, there is no matrix Y satisfying the constraint of (VD2’)
with A′ = A, b′ = b, and so (VD2’) is infeasible, a contradiction. �

We remark that in (ii) of Theorem 6.3.15 the set of efficient solutions of (VD2) is
not necessarily bounded.

Example 6.3.16 We consider a linear problem of type (MOLP) with

C =
(
1 0
0 1

)
, A =

⎛
⎝0 1
1 1
1 0

⎞
⎠ , b =

⎛
⎝1
1
1

⎞
⎠ .

The dual (VD2) is given by

Minimize

(
y1 y2 y3
y4 y5 y6

)⎛⎝1
1
1

⎞
⎠

subject to (λ1,λ2)

(
y1 y2 y3
y4 y5 y6

)⎛⎝ 0 1
1 1
1 0

⎞
⎠ = (λ1,λ2)

(
1 0
0 1

)

(λ1,λ2)

(
y1 y2 y3
y4 y5 y6

)
� 0

for some λ1 > 0,λ2 > 0.

It is clear that the set of efficient solutions of (MOLP) consists of the vectors

(
x1
x2

)
∈

R
2 satisfying

x1 + x2 = 1, x1 � 0 and x2 � 0.

The constraint of (MOLP) is regular because the vector b lies in the interior of the
set A(R2) + R

3+ which evidently contains R3+. Moreover, the set AT (R3+ contains
R
2+, and so it contains also the column vectors of the matrix CT , and the sum of the

two columns lies in its interior. By this (VD2) is regular.

Let us fix a vector λ =
(
1
1

)
and find dual efficient solutions that satisfy the

system

λT Y A = λT C
λT Y � 0
Y b = Cx

where x =
(
1
0

)
is an efficient solution of (MOLP) that solves (Pλ). Here is a system

for the entries of Y :
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y2 + y3 + y5 + y6 = 1

y1 + y2 + y4 + y5 = 1

y1 + y4 � 0

y2 + y5 � 0

y3 + y6 � 0

y1 + y2 + y3 = 1

y4 + y5 + y6 = 0.

We deduce from this system the matrices Y efficient solutions of (VD2) in the form

Y =
(

t s 1 − t − s
−t −s t + s

)

with real numbers t and s. It is clear that the set of these Y is unbounded. However,
the set of λY for all Y above is bounded, which is actually a singleton (0, 0, 1)T .

Weak sharp maxima

We consider the problem (MOLP) as in the preceding subsection. The feasible solu-
tion set is given by Γ = {x ∈ R

n : Ax � b}. In this subsection we wish to compare
the distance from a feasible solution x to a given set of efficient solutions with the
distance between their images by C .

Definition 6.3.17 A nonempty set of efficient solutions F of (MOLP) is called a set
of weak sharp maxima if there exists a strictly positive number r such that

d(x, F) � r d(Cx, C(F)) for all x ∈ Γ. (6.19)

We note that not every set of efficient solutions is a set of weak sharp maxima.
For instance when C is not injective on the efficient solution set of (MOLP), say
Cx = Cx ′ for two distinct efficient solutions x and x ′, the set F = {x} is not a set
of weak sharp maxima for, d(Cx, Cx ′) = 0 and d(x, x ′) > 0.

Lemma 6.3.18 Let F1, · · · , Fp be nonempty sets of weak sharp maxima. Then their
union F1 ∪ · · · ∪ Fp is a set of weak sharp maxima too.

Proof Let ri be a strictly positive constant with which (6.19) is satisfied for Fi , i =
1, · · · , p. Set r = max{ri : i = 1, · · · , p}. For every x ∈ Γ there is some j ∈
{1, · · · , p} such that

d(Cx, C(F1 ∪ · · · ∪ Fp)) = d(Cx, C(Fj )).
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From (6.19) we obtain

d(x, F1 ∪ · · · ∪ Fp) � d(x, Fj )

� r j d(Cx, C(Fj ))

≤ rd(Cx, C(F1 ∪ · · · ∪ Fp)),

which proves that F1 ∪ · · · ∪ Fp is a set of weak sharp maxima. �

Theorem 6.3.19 Every efficient face of (MOLP) is a set of weak sharp maxima.
Consequently, the efficient solution set of (MOLP) is a set of weak sharp maxima
too.

Proof Let E be an efficient face of (MOLP). Let x̄ be a relative interior point of E .
In view of Theorem 4.3.1 there is a strictly positive vector λ ∈ R

k with ‖λ‖ = 1
such that x̄ solves the scalarized problem

maximize 〈λ, Cx〉
subject to x ∈ Γ

and E is its optimal solution set. It is clear that E is the solution set to the system

Ax � b

−λT Cx � −λT Cx̄ .

Given x ∈ Γ , let x0 ∈ C(E) such that d(Cx, C(E)) = ‖Cx − Cx0‖. Then
〈λ, Cx0〉 = 〈λ, Cx̄〉. In view of Corollary 6.3.6 there exists a strictly positive number
r such that

d(x, E) ≤ r

∥∥∥∥∥
[(

A
−λT C

)
x −
(

b
−λT Cx̄

)]+∥∥∥∥∥
� r | − λT Cx + λT Cx̄ |
� r | − λT Cx + λT Cx0|
� rd(Cx, C(E)).

Because −λT Cx̄ = −λT Cx̄ ′ for all x̄ and x̄ ′ from E , we deduce that rE is indepen-
dent upon x ∈ Γ . Thus, E is a set of weak maxima.

The last conclusion of the theorem follows from the first statement and from the
fact that the efficient solution set of (MOLP) consists of finite number of efficient
faces (Theorem 4.3.8). �

The same argument of proof shows that weakly efficient faces and the weakly
efficient solution set of (MOLP) are sets of weak sharp maxima.

http://dx.doi.org/10.1007/978-3-319-21091-9_4
http://dx.doi.org/10.1007/978-3-319-21091-9_4
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6.4 Post-optimal Analysis

Among efficient solutions of (MOLP) those that are sensitive to perturbations in the
data are often not useful in practical application. Therefore it is important to determine
less sensitive efficient solutions and conditions under which a given efficient solution
is still efficient when the objective matrix C undergoes a perturbation, an addition
or removal of some of its rows.

Extension and reduction of the objective matrix

We assume throughout this paragraph that x is a fixed feasible solution of (MOLP).
We now add some objective row vectors to the objective matrix C by considering
the following extended problem, denoted (MOLP)D:

Maximize

(
C
D

)
x

subject to Ax � b,

where D is a k′ × n matrix. Two problems associated to the matrix D are also
considered. They are denoted respectively by (MOLP1) and (MOLP2) and given
below:

Maximize Dx
subject to Ax � b

Cx � Cx

and

Maximize Dx
subject to Ax � b

Cx = Cx .

The problem (MOLP) is considered as a reduction of the problem (MOLP)D by
removing the rows of the matrix D. Here is a relationship between the problems
(MOLP), (MOLP)D , (MOLP1) and (MOLP2).

Theorem 6.4.1 Given a feasible solution x of (MOLP), the following hold.

(i) If x is an efficient solution of (MOLP)D, then it is an efficient solution of
(MOLP1).

(ii) If x is an efficient solution of (MOLP1), then it is an efficient solution of
(MOLP2).
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(iii) If x is an efficient solution of (MOLP) and (MOLP2), then it is an efficient
solution of (MOLP)D.

(iv) If x is an efficient solution of (MOLP)D and Dx � Dx for all feasible solutions
of (MOLP1), then it is an efficient solution of (MOLP).

Proof To prove (i) let x be a feasible solution of (MOLP1) that satisfies Dx � Dx .

Then it is also a feasible solution of (MOLP)D and satisfies

(
C
D

)
x �
(

C
D

)
x .

Since x solves (MOLP)D , the latter inequality is equality. In particular Dx = Dx
and shows that x is an efficient solution of (MOLP1).

For (ii) it sufficies to observe that the feasible set of (MOLP2) is a subset of the
feasible set of (MOLP1). Hence any feasible solution of (MOLP2) which solves
(MOLP1) is also an efficient solution of (MOLP2).

To prove (iii) let x be a feasible solution of (MOLP)D satisfying

(
C
D

)
x �(

C
D

)
x . Then x is a feasible solution of (MOLP) and by hypothesis Cx = Cx .

Consequently x is a feasible solution of (MOLP2). It follows from the hypothesis

that Dx = Dx . Thus, we have

(
C
D

)
x =
(

C
D

)
x , by which x solves (MOLP)D .

Finally, let x be a feasible solution of (MOLP) and satisfy Cx � Cx . Then it is a

feasible solution of (MOLP1). By hypothesis Dx � Dx . We have then

(
C
D

)
x �(

C
D

)
x , which in fact is equality because x solves (MOLP)D . In particularCx = Cx ,

by which x solves (MOLP). �
Corollary 6.4.2 If D = Y C for some k′×k-matrix Y , then every efficient solution of
(MOLP) is efficient solution of (MOLP)D. Conversely, if D = Y C where the entries
of Y are all positive or zero, then every efficient solution of (MOLP)D is efficient
solution of (MOLP).

Proof Assume that x̄ is an efficient solution of (MOLP). For every feasible solution
x of (MOLP2) we haveCx = Cx̄ and deduce Dx = Dx̄ , which implies that x̄ is also
an efficient solution of (MOLP2). By Theorem 6.4.1 (iii), x̄ is an efficient solution
of (MOLP)D . Conversely, if x̄ is an efficient solution of (MOLP)D , then for every
feasible solution of (MOLP1) one has Cx � Cx̄ , implying Dx � Dx̄ . By Theorem
6.4.1 (iv), x̄ is an efficient solution of (MOLP). �

Convex combinations of two objective matrices

When thematrix D has the samedimension asC wewish to knowwhether an efficient
solution of (MOLP) is still efficient for the problem whose objective function is a
convex combination of C and D:

Maximize
(
αC + (1 − α)D

)
x

subject to Ax � b
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with some α ∈ (0, 1). This problem is denoted by (MOLPα) which coincides with
(MOLP) when α = 1.

Theorem 6.4.3 Assume that x is an efficient solution of (MOLP) and (MOLP0), and
that there are a vector d ∈ R

n and real numbers of the same sign p1, · · · , pk such
that the columns of CT and DT satisfy di = ci + pi d, i = 1, · · · , k. Then x is an
efficient solution of (MOLPα) for all α ∈ [0, 1].
Proof According to Theorem 4.2.6 there are strictly positive numbers λ1, · · · ,λk,

μ1, · · · ,μk such that the vectors

v1 =
k∑

i=1

λi c
i

v2 =
k∑

i=1

μi d
i

belong to the normal cone to the feasible set of (MOLP) at x . Without loss of gener-
ality we may assume that at least one of pi is nonzero. Let α ∈ (0, 1). Define t and
γi to be real numbers

t = α〈μ, p〉
α〈μ, p〉 + (1 − α)〈λ, p〉

γi = tλi + (1 − t)μi , i = 1, · · · , k.

It is clear that 0 < t < 1 and γi , i = 1, · · · , k are strictly positive. We also have

(1 − t)〈μ, p〉 = (1 − α)
〈λ, p〉〈μ, p〉

α〈μ, p〉 + (1 − α〈λ, p〉
= (1 − α)(t〈λ, p〉 + (1 − t)〈μ, p〉)
= (1 − α)〈γ, p〉. (6.20)

Let us compute the image of the vector γ under (αC + (1 − α)D)T :

(αC + (1 − α)D)T γ =
k∑

i=1

(
αci + (1 − α)di )γi

=
k∑

i=1

ciγi +
k∑

i=1

(1 − α)γi pi d

=
k∑

i=1

(
tλi c

i + (1 − t)μi c
i )+ (1 − α)〈γ, p〉d.

http://dx.doi.org/10.1007/978-3-319-21091-9_4
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The latter equality and (6.20) yield

(αC + (1 − α)D)T γ = t
k∑

i=1

λi c
i + (1 − t)

k∑
i=1

(μi c
i + μi pi d)

= tv1 + (1 − t)v2.

Since the normal cone to the feasible set at x is convex, the above equality shows that
the vector (αC + (1 − α)D)T γ is a normal vector at x . It remains to apply Theorem
4.2.6 to conclude that x is an efficient solution of the problem (MOLPα). �

Under the hypothesis of Theorem 6.4.3 the matrix D −C has at most rank one. In
the next examples we shall see that the conclusion is no more available when D − C
has a rank greater than one, or when it has rank one, but the coefficients pi are of
different signs.

Example 6.4.4 We consider the following two linear problems denoted respectively
by (MOLP1) and (MOLP2):

Maximize

(
0 0 1
1 1 0

)⎛⎝ x1
x2
x3

⎞
⎠

subject to

⎛
⎜⎜⎝
0 1 0
1 1 1
1 0 0
0 0 1

⎞
⎟⎟⎠
⎛
⎝ x1

x2
x3

⎞
⎠ �

⎛
⎜⎜⎝
1
1
1
1

⎞
⎟⎟⎠

and

Maximize

(
0 2 1
3/2 1/2 1

)⎛⎝ x1
x2
x3

⎞
⎠

subject to

⎛
⎜⎜⎝
0 1 0
1 1 1
1 0 0
0 0 1

⎞
⎟⎟⎠
⎛
⎝ x1

x2
x3

⎞
⎠ �

⎛
⎜⎜⎝
1
1
1
1

⎞
⎟⎟⎠ .

The objective functions of these problems are denoted respectively by C and D.
We choose x = 1

3 (1, 1, 1)
T . It is a feasible solution of the two problems. The active

index set at this solution is I (x) = {2} and the normal cone to the feasible set at it is

the cone pos{(1, 1, 1)T }. For λ =
(
1
1

)
and μ =

(
1/3
2/3

)
we have

CT λ =
⎛
⎝ 1
1
1

⎞
⎠ and DT μ =

⎛
⎝1
1
1

⎞
⎠

http://dx.doi.org/10.1007/978-3-319-21091-9_4
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which belong to the normal cone to the feasible set at x . By Theorem 4.2.6 the
solution is efficient for both (MOLP1) and (MOLP2). Let us now consider a problem
with a convex combination of C and D:

Maximize

[
1
2

(
0 0 1
1 1 0

)
+ 1

2

(
0 2 1
3/2 1/2 1

)]⎛⎝ x1
x2
x3

⎞
⎠

subject to

⎛
⎜⎜⎝
0 1 0
1 1 1
1 0 0
0 0 1

⎞
⎟⎟⎠
⎛
⎝ x1

x2
x3

⎞
⎠ �

⎛
⎜⎜⎝
1
1
1
1

⎞
⎟⎟⎠ .

Weobserve that x no longer solves this problemobtainedby a convex combination.

This is because for any strictly positive vector λ in R
2 the vector

( 1
2C + 1

2 D
)T

λ is
a normal vector to the feasible set at x if and only if the components of λ satisfy the
system

5

4
λ2 = λ1 + 3

4
λ2 = λ1 + 1

2
λ2,

which evidently has no solution. In view of Theorem 4.2.6 the solution x is not
efficient.

Example 6.4.5 In this example we consider two linear problems denoted (MOLP1)
and (MOLP2) as follows

Maximize

(
3 1 2
0 1 2

)⎛⎝ x1
x2
x3

⎞
⎠

subject to

⎛
⎜⎜⎜⎜⎝
2 1 2
1 2 2
1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎠
⎛
⎝ x1

x2
x3

⎞
⎠ �

⎛
⎜⎜⎜⎜⎝
6
6
3
3
3

⎞
⎟⎟⎟⎟⎠

and

Maximize

(
3 −2 2
0 4 2

)⎛⎝ x1
x2
x3

⎞
⎠

subject to

⎛
⎜⎜⎜⎜⎝
2 1 2
1 2 2
1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎠
⎛
⎝ x1

x2
x3

⎞
⎠ �

⎛
⎜⎜⎜⎜⎝
6
6
3
3
3

⎞
⎟⎟⎟⎟⎠ .

http://dx.doi.org/10.1007/978-3-319-21091-9_4
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The objective matrices of these problems are denoted by C and D. Choose a feasible
solution x = (1, 1, 3/2)T . The active index set at x is given by I (x = {1, 2}, and the
normal cone to the feasible set at it is the cone pos{(2, 1, 2)T , (1, 2, 2)T }. Hence it
is an efficient solution for both (MOLP1) and (MOLP2) because with λ =

(
2/3
1/3

)

and μ =
(
1/3
2/3

)
we have

CT λ =
⎛
⎝2
1
2

⎞
⎠ and DT μ =

⎛
⎝ 1
2
2

⎞
⎠

which both belong to the normal cone to the feasible set at x . For the linear problem
whose objective function is the convex combination

1

2
C + 1

2
D =
(
3 −1/2 2
0 5/2 2

)

the feasible solution x is not efficient because the system

3λ1 = 2μ1 + μ2

−1

2
λ1 + 5

2
λ2 = μ1 + 2μ2

2λ1 + 2λ2 = 2μ1 + 2μ2

λ1,λ2 > 0, μ1,μ2 � 0

which characterize the efficiency of x (Theorem 4.2.6), has no solutions. We notice
that the rows of the objective matrices C and D are linked by equalities

d1 = c1 + d

d2 = c2 − d

where d = (0,−3, 0)T . This proves that the conclusion of Theorem 6.4.3 is not valid
when the coefficients p1, · · · , pk are of different sign.

Robust efficient solutions

In line with change of the objective function we are particularly interested in the
efficient solutions which remain efficient when the objective matrix are slightly per-
turbed.

http://dx.doi.org/10.1007/978-3-319-21091-9_4
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Definition 6.4.6 Let x be an efficient solution of (MOLP). It is said to be robust if
there is a positive ε such that it is an efficient solution of the problem (MOLP’)

Maximize C ′x
subject to Ax � b

for every C ′ with ‖C − C ′‖ < ε.

The concept of robustness should be formulated for weakly efficient solutions in
the same manner. However, it is quite useless because weakly efficient solutions are
never robust. In fact, let x be a weakly efficient solution of (MOLP) which is not
efficient. Let x be a feasible solution such that Cx ≥ Cx . Denote by J the set of
indices i such that 〈ci , x〉 = 〈ci , x〉. It is clear that J is nonempty. Given any ε > 0,
there are vectors c′ j with ‖c′ j −c j‖ < ε/n, for all j ∈ J such that 〈c′ j

, x〈> 〈c′ j
, x〉,

j ∈ J . Then for the matrix C ′ obtained from C by substituting c j by c′ j for j ∈ J
satisfies ‖C ′ − C‖ < ε and C ′x > Cx , showing that x is no more a weakly efficient
solution of (MOLP’).

It is clear that robust solutions exist. For instance when the feasible solution set
is a singleton, it is a robust solution whatever the objective function be. We observe
also that not every problem having efficient solutions has robust solutions. This is
illustrated by the next example.

Example 6.4.7 We consider the following linear problem:

Maximize

(
1 1
1 1

)(
x1
x2

)
subject to x1 + x2 � 0

x2 � 0.

Then the efficient solution set is composed of vectors (x1, x2)T , solutions to the
system x1 + x2 = 0 and x2 � 0. It is clear that no element from this solution set is
robust.

To prove a necessary and sufficient condition for robust efficient solutions we
need the following lemmas.

Lemma 6.4.8 Let a1, · · · , ak be given inRn. Then a vector x belongs to the relative
interior of the convex hull of the family {a1, · · · , ak} if and only if there exist strictly
positive numbers λ1, · · · ,λk with

∑k
i=1 λi = 1 such that

x = λ1a1 + · · · + λkak .

Proof Let x be a relative interior point of P := co{a1, · · · , ak} and x = λ1a1+· · ·+
λkak for some positive numbers λ1, · · · ,λk with

∑k
i=1 λi = 1. If all coefficients λi

are strictly positive, we are done. If not, sayλ j = 0 for some j ∈ {1, · · · , k}. Because
x is a relative interior point, there exists some δ > 0 such that y := x+δ(x−a j ) ∈ P .
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Let y = α1a1+· · ·+αkak for some positive numbersα1, · · · ,αk with
∑k

i=1 αi = 1.
Then 2x + δx = x + y + δa j implying

x = 1

2 + δ
(x + y + δa j )

= 1

2 + δ

(
k∑

i=1

(λi + αi )a
i + δa j

)
.

The latter expression is a new convex combination for x , in which the number of
strictly positive coefficients increases at least by one. Continue this procedure to
arrive at a final convex combination in which all coefficients are strictly positive.

Conversely, assume x = λ1a1+· · ·+λkak withλ1, · · · ,λk being strictly positive
numbers and

∑k
i=1 λi = 1. Let y be any element of P , say y = α1a1 + · · · + αkak

for some positive numbers α1, · · · ,αk with
∑k

i=1 αi = 1. Then there is some δ > 0
sufficiently small such that λi + δ(λi − αi ) > 0, i = 1, · · · , k. We deduce

x + δ(x − y) =
k∑

i=1

(
λi + δ(λi − αi )

)
ai

which belongs to P . Hence x is a relative interior point of P . �

Lemma 6.4.9 Let P be a polytope in R
n and a /∈ P. Then the relative interior of

the convex hull co{a, P} consists of convex combinations ta +(1− t)p for p ∈ ri(P)

and 0 < t < 1.

Proof Because P is a polytope, it is the convex hull of its vertices by Corollary 2.3.8,
say P = co{a1, · · · , ak} for some a1, · · · , ak ∈ R

n . Then

co{a, P} = co{a, a1, · · · , ak}.

In view of Lemma 6.4.8, the relative interior of co{a, P} consists of x such that

x = λa +
k∑

i=1

λi a
i

with λ > 0,λi > 0, i = 1, · · · , k and
∑k

i=1 λi = 1. Set

p =
k∑

i=1

λi∑k
i=1 λi

ai .

Then, again due to Lemma 6.4.8, p is a relative interior point of P . We have then
x = λa + (1 − λ)p with λ ∈ (0, 1) and p ∈ ri(P) as requested. �

http://dx.doi.org/10.1007/978-3-319-21091-9_2
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Lemma 6.4.10 Let d1, · · · , dk be nonzero vectors of Rn. Then a vector d belongs
to the relative interior of the cone pos{d1, · · · , dk} if and only if there exist strictly
positive numbers λ1, · · · ,λk such that

d = λ1d1 + · · · + λkdk .

Proof We proceed by induction on k. For k = 1 it is clear that d belongs to the
relative interior of pos{d1} if and only if d = λ1d1 for some λ1 > 0. Suppose that
for a fixed k � 1 the conclusion of the lemma is true for any di , i = 1, · · · , k
and d in R

n . Let d1, · · · , dk+1 be given and let d ∈ R
n . To prove the “only if”

part, we assume that d is a relative interior point of the cone pos{d1, · · · , dk+1}. We
distinguish two cases: (a) the vector dk+1 belongs to the cone pos{d1, · · · , dk}, and
(b) the vector dk+1 is outside of that cone. In the first case there are some positive
numbers t1, · · · , tk not all zero such that

dk+1 = t1d1 + · · · + tkdk . (6.21)

Then, if d is a relative interior point of pos{d1, · · · , dk+1}, it is also a relative
interior point of pos{d1, · · · , dk}. By induction, there are strictly positive numbers
μ1, · · · ,μk such that

d = μ1d1 + · · · + μkdk . (6.22)

Choose λk+1 > 0 so small that λi := μi −λk+1ti > 0 for all i = 1, · · · , k. It follows
from (6.21) and (6.22) that

d = (μ1 − λk+1t1)d
1 + · · · + (μk − λk+1tk)d

k + λk+1(t1d1 + · · · + tkdk)

= λ1d1 + .. + λkdk + λk+1dk+1

with all λi strictly positive as requested.
In the case (b), we observe without difficulty that

pos{d1, · · · , dk+1} =
⋃
t�0

t co{0, d1, · · · , dk+1}

ri
(
pos{d1, · · · , dk+1}) =⋃

t>0

t ri
(
co{0, d1, · · · , dk+1}).

Hence there exist t > 0 such that d is a relative interior point of the set

tco{0, d1, · · · , dk+1} = co{tdk+1, P}

with P = co{0, td1, · · · , tdk}.Apply Lemma 6.4.9 to obtain a strict positive number
s ∈ (0, 1) and a relative interior point u of P such that

d = stdk+1 + (1 − s)u.
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By induction, there are strictly positive numbers μ1, · · · ,μk such that

u = μ1d1 + · · · + μkdk .

Setting λi = (1 − s)μi for i = 1, · · · , k and λk+1 = st we deduce d = λ1d1 +
· · · + λk+1dk+1 with all λi strictly positive.

Conversely, assume that d is a strictly positive combination of d1, · · · , dk+1, say
d = λ1d1 + · · · + λk+1dk+1 with λi > 0 for all i = 1, · · · , k + 1. By induc-
tion the vector u := λ1d1 + · · · + λkdk belongs to the relative interior of the cone
pos{d1, · · · , dk}, hence it is a relative interior point of the polytope t P for some
t > 0. In view of Lemma 6.4.9 the point (u + λk+1dk+1)/(1 + λk+1) is a rela-
tive interior point of the set co{dk+1, t P}, and so d is a relative interior point of
pos{d1, · · · , dk+1}. �

In the next theorem “span(.)” stands for the subspace spanned by the vectors in
the parentheses. We adopt a convention that the span and the positive hull of the
empty set are the trivial set {0}.
Theorem 6.4.11 Assume that all rows of the matrix C are nonzero. An efficient
solution x of the problem (MOLP) is robust if and only if the following conditions
hold

(i) ri(pos{ai : i ∈ I (x)}) ∩ ri(pos{c j : j = 1, · · · , k}) 	= ∅,
where I (x) is the active index set at x, ai is the i th column of AT and c j is the
j th column of CT ;

(ii) span{ai : i ∈ I (x)} + span{c1, · · · , ck} = R
n.

Proof We consider first the case I (x) = ∅, that is, x is an interior point of the feasible
solution set. In view of Theorem 4.3.1 it is an efficient solution if and only if there
exists a strictly positive k-vectorλ such thatCT λ is the zero vector. ByLemma 6.4.10
the zero vector belongs to the relative interior of the cone pos{c j : j = 1, · · · , k}
and (i) holds. Moreover, we have also

pos{c j : j = 1, · · · , k} = span{c j : j = 1, · · · , k}.

If x is robust, then span{c j : j = 1, · · · , k} = R
n , because otherwise there would

exist some nonzero vector u ∈ R
n such that

〈u, c j 〉 = 0 for all j = 1, · · · , k

and a small perturbation c j + εu, j = 1, · · · , k with ε > 0 would result 0 /∈
ri(pos{c j : j = 1, · · · , k}), which proves that x is not efficient for the perturbed
problem. Conversely, if span{c j : j = 1, · · · , k} = R

n , then the matrix C has rank
equal to n. It is clear that if C ′ is closed to C , then C ′ has rank n too. By this, the zero
vector still belongs to the positive cone generated by the rows of C ′, and therefore x
remains an efficient solution of the perturbed problem, or in other word x is robust.

http://dx.doi.org/10.1007/978-3-319-21091-9_4
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We turn now to discuss the case I (x) 	= ∅. Let x be a robust solution of (MOLP).
Suppose that the first necessary condition (i) does not hold. In view of the separation
theorem (Theorem 2.3.10) there is a unit vector v such that

〈v, ai 〉 � 0 � 〈v, c j 〉 for all i ∈ I (x), j = 1, · · · , k.

For any ε > 0, by defining c′ j = c j − ε
2n2

v, j = 1, · · · , k we obtain a matrix C ′,
whose transpose is composed of the columns c′1, · · · , c′k satisfying ‖C ′ − C‖ < ε
and

〈v, c′ j 〉 < 0, j = 1, · · · , k.

Consequently, the cones pos{ai : i ∈ I (x)} and pos{c′ j : j = 1, · · · , k} have
only the zero vector in their intersection. This is impossible because x is an efficient
solution of (MOLP’) with C ′ sufficiently close to C (Theorem 4.2.6).

We proceed to (ii) by contradiction. Assume that (ii) does not hold. Let v be a unit
vector orthogonal to the proper subspace span{ai : i ∈ I (x)} + span{c1, · · · , ck}.
Define c′ j = (ε/n)v, j = 1, · · · , k when a small positive ε is given. We claim

pos
{
ai : i ∈ I (x)

} ∩ pos
{
c′ j : j = 1, · · · , k

} = {0}.

Indeed, let d be a nonzero vector belonging to the intersection on the left hand side of
the latter equality. Then there are positive numbers ti , i ∈ I (x) and s j , j = 1, · · · , k
such that

d =
∑

i∈I (x)

ti a
i =

k∑
j=1

s j (c
j + εv)

which yields ⎛
⎝ε

k∑
j=1

s j

⎞
⎠ v =

∑
i∈I (x)

ti a
i −

k∑
j=1

s j c
j .

It follows from the choice of v that
∑k

j=1 s j = 0 and hence s j = 0 for all j =
1, · · · , k because they are all nonnegative. Thus d = 0 and we arrive at the same
contradiction as for (i).

For the sufficient condition we assume that x is not robust, which means that
there is a sequence of matrices Cα converging to C such that x is not an efficient
solution of the problems with the objective matrices Cα. In view of Theorem 4.2.6
and Lemma 6.4.10 the cone pos{ai : i ∈ I (x)} does not meet the relative interior of
the cone pos{c j

α : j = 1, · · · , k}, where c1α, · · · , ck
α are the columns of the matrix

CT
α . According to Theorem 2.3.10 we find unit vectors vα separating these cones.

http://dx.doi.org/10.1007/978-3-319-21091-9_2
http://dx.doi.org/10.1007/978-3-319-21091-9_4
http://dx.doi.org/10.1007/978-3-319-21091-9_4
http://dx.doi.org/10.1007/978-3-319-21091-9_2
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By picking a subsequence if necessary we may assume that vα converges to some
nonzero vector v. Then it is clear that v separates the cone pos{ai : i ∈ I (x)} and
the cone pos{c j : j = 1, · · · , k}, that is

〈v, ai 〉 � 0, i ∈ I (x)

〈v, c j 〉 � 0, j = 1, · · · , k.

There are two possible cases about this separation:

(i) both of the two systems of inequalities are systems of equalities; and
(ii) at least one inequality is strict.

The first case shows that the vectors ai and c j are all on the hyperplane orthogonal
to v, by which condition (ii) cannot be true. In the second case, say a strict inequality
holds for c j , some j among 1, · · · , k. Then the relative interior of the cone pos{c j :
j = 1, · · · , k} must lie in the open half-space given by 〈v, x〉 < 0. Consequently
condition (i) is not true. This achieves the proof. �

In the next corollary we obtain another characterization of robust solutions.

Corollary 6.4.12 An efficient solution x̄ of (MOLP) is robust if and only if

Ker(C) ∩ cone(Γ − x̄) = {0}.

Proof Let x̄ be a robust solution. Assume the contrary that there is some feasible
solution y 	= x̄ such that y − x̄ ∈ Ker(C). Then by (ii) of Theorem 6.4.11,

〈ai , y − x̄〉 	= 0 for some i ∈ I (x̄)

because

[span{ai : i ∈ I (x̄)}]⊥ ∩ Ker(C) = {0}.

This implies that the vector y − x̄ separates ri
(
pos{ai : i ∈ I (x)}) and ri

(
pos{c j :

j = 1, · · · , k}) which contradicts (i) of Theorem 6.4.11.
For the converse, suppose that x̄ is not robust. We find a sequence of matrices Cν

converging toC and a sequence of feasible solutions yν such thatCν(yν− x̄) ≥ 0.We
may assumewithout loss of generality that the sequence of vectors (yν − x̄)/‖yν − x̄‖
converges to some unit vector u from cone(Γ − x̄) as ν tends to infinity. Then,
Cu � 0. But since x̄ is efficient, we deduce that Cu = 0, which contradicts the
hypothesis. �

We notice that the second condition of Theorem 6.4.11 evidently holds when
either the matrix C has rank n or the normal cone at x has a nonempty interior. Here
are some useful particular cases under such conditions.

Corollary 6.4.13 If the rank of the objective matrix C is equal to n, then every
efficient solution of (MOLP) is robust.
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Proof As already noticed the second condition of Theorem 6.4.11 is always satisfied
because the cone pos{c j : j = 1, · · · , k} has a nonempty interior. Moreover, if x
is an efficient solution of the problem, then, in view of Theorem 4.2.6 the normal
cone to the feasible set at x , which is exactly the cone pos{ai : i ∈ I (x)} meets
the interior of the cone pos{c j : j = 1, · · · , k}. This implies the first condition of
Theorem 6.4.11, by which x is robust. �

Corollary 6.4.14 A feasible vertex x of (MOLP) is robust if and only if the cone
pos{c j : j = 1, · · · , k} meets the interior of the normal cone to the feasible set at x.

Proof If the vertex x is robust, then the first condition of Theorem 6.4.11 holds in
which the interior of the cone pos{ai : i ∈ I (x)} is nonempty, and so its intersection
with the cone pos{c j : j = 1, · · · , k} is nonempty. Conversely, when x is a vertex,
the second condition of Theorem 6.4.11 is satisfied trivially, again, because the cone
pos{ai : i ∈ I (x)} has a nonempty interior. Moreover, if the cone pos{c j : j =
1, · · · , k}has a nonempty intersectionwith the interior of the conepos{ai : i ∈ I (x)},
then so does its relative interior. By Theorem 4.2.6, x is robust. �

We deduce a generic property of robustness when the number of criteria is larger
then the number of variables. We need the concept of Lebesgue measure in R

n . By
an open interval in Rn we mean the box

L = L1 × · · · × Ln

where L1, · · · , Ln are finite open intervals in R. Each open interval Ls = (as, bs)

in R has a length �(Ls) = bs − as . The volume of L is defined to be

vol(L) = �(L1) × · · · × �(Ln).

Given a nonempty set Q in Rn , the Lebesgue outer measure of Q is defined by

μ(Q) = inf

{∑
ν

vol(Lν) : Lν is open interval in R
n such that Q ⊆

⋃
ν

Lν

}
.

We say that Q is of measure zero if μ(Q) = 0 and it is of full measure if its
complement is of measure zero.

Corollary 6.4.15 Assume that m � n. Then the set of perturbations of C for which
efficient solutions are robust is of full measure.

Proof Since the set of matrices of full rank is of full measure, when m � n, the set
of matrices of rank n is of full measure too. Then the conclusion follows from the
first part of Corollary6.4.14. �

When a solution is robust, by definition it is efficient for any small perturbation
of the matrix C . We are now interested in a question in which direction we may

http://dx.doi.org/10.1007/978-3-319-21091-9_4
http://dx.doi.org/10.1007/978-3-319-21091-9_4
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perturb C such that a given efficient, but not robust solution remains efficient along
that perturbation. In other words, we wish to find a k × n-matrix D such that an
efficient solution x̄ of (MOLP) solves the problem, denoted (Pt D)

Maximize (C + t D)

subject to Ax � b

for all t > 0 sufficiently small. If this is true we call x̄ robust in direction D. Of
course such a direction always exists, for instance D = C itself, which is a trivial
one, and so we look for nontrivial directions. Here is a sufficient condition of such
directions.

Corollary 6.4.16 Assume that x̄ is efficient solution of (MOLP) and λ is a strictly
positive vector such that CT λ belongs to the cone pos{ai : i ∈ I (x̄)}. Then x̄
is robust in any direction D whose rows (d j )T , j = 1, · · · , k belong to the cone
cone{pos{ai : i ∈ I (x̄)} − CT λ}. Moreover, if x̄ is an efficient vertex solution of
(MOLP) and there is a nonzero vector u ∈ R

n such that

〈ai , u〉 � 〈CT λ, u〉, i ∈ I (x̄)

〈c j , u〉 � 〈CT λ, u〉, j = 1, · · · , k,

and if the rows of D satisfy

〈d j , u〉 < 〈CT λ, u〉, j = 1, · · · , k,

then x̄ is not efficient for (Pt D) with t > 0.

Proof We note that a strictly positive vector λ stated in the corollary exists because
x̄ is efficient. By hypothesis we have

DT λ ∈ cone
{
pos{ai : i ∈ I (x̄)} − CT λ

}
.

We find a positive number s such that

DT λ ∈ s
(
pos{ai : i ∈ I (x̄)} − CT λ

)
.

If s = 0, then DT λ = 0 and we are done. If s > 0, we deduce that

(C + 1

s
D)T λ ∈ pos{ai : i ∈ I (x̄)}.

This combining with the fact that CT λ belongs to the cone pos{ai : i ∈ I (x̄)} we
deduce that

(C + t D)T λ ∈ pos{ai : i ∈ I (x̄)}

which proves that x̄ is efficient for (Pt D) for every t ∈ [0, 1/s].
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For the second part of the corollary we observe that in view of Theorem 6.4.11, x̄
is not robust because the vector u separates the interior of the cone pos{ai : i ∈ I (x̄)}
and the cone pos{c j : j = 1, · · · , k}. If the rows of D satisfies the hypothesis, then
for every t > 0, the vector u strictly separates the cone pos{ai : i ∈ I (x̄)} and the
relative interior of the cone pos{c j + td j : j = 1, · · · , k}. This implies that x̄ is not
efficient for (Pt D) as requested. �

We notice that if x̄ is a vertex efficient solution which is not robust, then a vector u
as stated in the corollary always exists, and the inequalities for c j become equalities.
This is because by Theorem 6.4.11, the interior of the cone pos{ai : i ∈ I (x̄)} does
not meet the relative interior of the cone pos{c j : j = 1, · · · , k}, and so they can
be separated. Moreover, since CT λ is a relative interior point of the latter cone and
belongs also to the cone pos{ai : i ∈ I (x̄)}, inequalities for c j become equalities.
Note further that the condition given in the first part of the corollary is sufficient, but
not necessary for x̄ to be robust in direction D, while the condition of the second part
is sufficient but not necessary for x̄ to not be robust in direction D. We turn next to
robust solutions when adding objective functions and taking convex combinations
of two objective matrices.

Corollary 6.4.17 Assume that the row vectors of the matrices C and D are nonzero.
If x is a robust efficient solution of (MOLP) and an efficient solution of (MOLP)D,
then it is a robust efficient solution of (MOLP)D.

Proof We wish to apply Theorem 6.4.11. Since the subspace span{ci , d j : i =
1, · · · , k; j = 1, · · · , k′} contains the subspace span{ci : i = 1, · · · , k} the second
condition of that theorem holds true for (MOLP)D . To check the first condition we
pick any vector p from the intersection of the relative interior of the cone pos{ai : i ∈
I (x)} and the relative interior of the cone pos{c j : j = 1, · · · , k}which is nonempty
because x is a robust efficient solution of (MOLP). As x is an efficient solution of
(MOLP)D , there is some nonzero vector q from the cone pos{ai : i ∈ I (x)} and
strictly positive numbers λ j , j = 1, · · · , k and μl , l = 1, · · · , k′ such that

q =
k∑

j=1

λi c
i +

k′∑
l=1

μld
l .

In view of Lemma 6.4.10, the vector q belongs to the relative interior of the cone
pos{c j , dl : j = 1, · · · , k; l = 1, · · · , k′}. It follows then that the vector 1

2 (p + q)

lies in both the relative interior of the cone pos{ai : i ∈ I (x)} and the relative interior
of the cone pos{c j , dl : j = 1, · · · , k; l = 1, · · · , k′}. Thus condition (i) of Theorem
6.4.11 is satisfied and the proof is complete. �
Corollary 6.4.18 Assume that x is a robust efficient solution of (MOLP) and
(MOLP0), and that there are a vector d ∈ R

n and real numbers of the same sign
p1, · · · , pk such that the rows of C and D satisfy

di = ci + pi d, i = 1, · · · , k.
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Then x is a robust efficient solution of (MOLPα) for all α ∈ [0, 1].
Proof The case when p j , j = 1, · · · , k are all zero being trivial we assume that at
least one of them is nonzero. Let 0 < α < 1 be given. We wish to prove the two
conditions

(1) ri(pos{ai : i ∈ I (x)}) ∩ ri(pos{c j + (1 − α)p j d : j = 1, · · · , k}) 	= ∅, and
(2) span{ai : i ∈ I (x)} + span{c j + (1 − α)p j d : j = 1, · · · , k} = R

n,

which, according to Theorem 6.4.11, are sufficient for the solution x to be robust
for the problem (MOLPα). We proceed by contradiction. If condition (2) is not true,
then we find a nonzero vector v such that

〈v, ai 〉 = 0, i ∈ I (x)

〈v, c j 〉 = (α − 1)p j 〈v, d〉, j = 1, · · · , k. (6.23)

Since x is a robust efficient solution of (MOLP), the value 〈v, d〉 is nonzero in view
of condition (ii) of Theorem 6.4.11. We note also that all the values on the right hand
side of (6.23) are of the same sign and at least one of them is nonzero. Consequently,
the relative interior of the cone pos{ai : i ∈ I (x)} does not meet the relative interior
of the cone pos{c j : j = 1, · · · , k}. This is a contradiction with the necessary
condition (i) of Theorem 6.4.11.

If condition (1) is not true, then by applying the separation theorem (Theorem
2.3.10) we find a nonzero vector v such that

〈v, ai 〉 � 0, i ∈ I (x)

〈v, c j 〉 � (α − 1)p j 〈v, d〉, j = 1, · · · , k. (6.24)

As it has already been noticed the values on the right hand side of (6.24) are all
nonpositive or nonnegative. If they are all nonpositive and at least one of them is
strictly negative, we deduce

〈v, ai 〉 � 0, i ∈ I (x)

〈v, c j 〉 � 0, j = 1, · · · , k

in which at least one inequality is strict, and arrive at a contradiction that the relative
interior of the cone pos{ai : i ∈ I (x)} does not meet the relative interior of the cone
pos{c j : j = 1, · · · , k}. If the values on the right hand side of (6.24) are nonnegative
and at least one of them is strictly positive, then

αp j 〈v, d〉 � 0, j = 1, · · · , k.

We obtain a system

〈v, ai 〉 � 0, i ∈ I (x)

〈v, c j + p j d〉 � 0, j = 1, · · · , k.

http://dx.doi.org/10.1007/978-3-319-21091-9_2
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If none of the above inequalities is strict, then v is orthogonal to the subspace span{ai :
i ∈ I (x)}+ span{c1, · · · , ck} which is a contradiction because x is a robust solution
of (MOLP0). If one of the inequalities is strict, then the two cones pos{ai : i ∈ I (x)}
and pos{c j + p j d : j = 1, · · · , k} have no relative interior points in common. This
again is a contradiction, and the proof is complete. �

We saw in Chap.4, Sect. 4.3 that the set of efficient solutions of a linear prob-
lem is arcwise connected. This property is no longer true for robust solutions as
demonstrated by the next example.

Example 6.4.19 Let X be the unit cube of side length equal to one. Consider the
bi-objective problem

Maximize

(
1 1 1
1 −1 −1

)⎛⎝ x1
x2
x3

⎞
⎠

subject to x ∈ X.

Then the efficient solution set is the two-dimensional face with x1 = 1. A brute-
force computation in combination with Theorem 6.4.11 shows that only two vertices
(1, 1, 1)T and (1, 0, 0)T are robust.

Even being disconnected in some circumstances robust solutions of a problem
form a set of nice structure.

Corollary 6.4.20 The set of robust solutions consists of faces. Consequently if the
feasible set has vertices and the problem has robust solutions, it has a robust vertex
solution.

Proof Let x be a robust solution and let F be a face that contains x in its relative
interior. By definition there is a positive ε such that x remains an efficient solution
of the problem (MOLP’) with ‖C ′ − C‖ < ε. Hence every point of F is an efficient
solution of (MOLP’) and F is robust. The second part of the corollary follows from
the fact that any feasible face has a vertex if the feasible set has vertices. �

Radius of robustness

In this subsection we are interested in finding the largest number ε for which a
given efficient solution of (MOLP) remains efficient with C ′ replacing C within
the ε distance ‖C ′ − C‖ < ε. Such a number (finite or infinite) is called radius of
robustness of the problem at x̄ and denoted r(x̄). Given a vector a inRk , the negative
vector a− is obtained from a by substituting all positive components by zero. It is
clear that ‖a−‖ is equal to the distance from a to the positive orthant Rk+.

http://dx.doi.org/10.1007/978-3-319-21091-9_4
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Lemma 6.4.21 Assume that u is a unit vector in R
n such that Cu /∈ R

n+. Then

sup
{

t : (C + t M)(u) /∈ R
k+ for all matrix M with ‖M‖ � 1

}
= ‖(Cu)−‖.

Proof Let us denote the supremum on the left hand side of the equality in the lemma
by ρ. Let 0 � t < ‖(Cu)−‖. Then for any unit norm matrix M , the distance from
(C + t M)(u) to the positive orthant is evaluated as follows

d((C + t M)(u),Rk+) � d(Cu,Rk+) − d(t M,Rk+)

� ‖(Cu])−‖ − ‖t M‖
> 0.

This implies that ρ � ‖(Cu)−‖. Now, let t > ‖(Cu)−‖ > 0. Let v be a unit vector
of Rn such that 〈v, u〉 = 1. Define a linear operator M (which is represented by a
matrix denoted M too) from R

n to Rk by

Mx = 〈v, x〉(− (Cu)−

‖(Cu)−‖ ).

Then ‖M‖ = 1 and

(C + t M)(u) = (Cu)+ + (Cu)− − t

‖(Cu)−‖ (Cu)− � 0

which shows that (C + t M)(u) ∈ R
k+. By this ρ � ‖(Cu)−‖ and the lemma

follows. �

Here is a formula to compute the radius of robustness.

Theorem 6.4.22 Assume that x̄ is a robust solution and u1, · · · , ul are unit direc-
tions generating cone(Γ − x̄). Then the radius of robustness at x̄ is given by the
formula

r(x̄) = min

{
‖[C(α1u1 + · · · + αlu

l)
]−‖ : α1, · · · ,αl � 0 and

l∑
i=1

αi = 1

}
.

Proof Let us denote the minimum on the right hand side by ρ. We show first that
ρ > 0. Indeed, if ‖[C(α1u1 + · · · + αlul)

]−‖ = 0 for some α1, · · · ,αl � 0 and∑l
i=1 αi = 1, then C(α1u1 + · · · + αlul) = 0 because x̄ is efficient. For any ε > 0,

define M by

Mx = ε

2
√

n
〈v, x〉e
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where v is a unit vector such that 〈v,α1u1 + · · · + αlul〉 = 1 and e is the vector in
R

k whose components are all equal to one. Then ‖M‖ ≤ ε
2 , and for t > 0 for which

x̄ + t (α1u1 + · · · + αlul) is feasible, one has

(C + M)(x̄ + t (α1u1 + · · · + αlu
l)) = (C + M)x̄ + t M(α1u1 + · · · + αlu

l)

> (C + M)x̄ .

This proves that x̄ is not efficient when C is perturbed to C + M , a contradiction.
Now, let M be a matrix with ‖M‖ < ρ. Then, in view of Lemma 6.4.21, (C +

M)(α1u1+· · ·+αlul) does not meetRk+ for all α1, · · · ,αl � 0 with
∑l

i=1 αi = 1.
Consequently,

(C + M)(Γ − x̄) ∩ R
k+ = {0},

which shows that x̄ is efficient solution when C + M replacing C . Hence, r(x̄) � ρ.
Further, if t > ρ, then for a vector

u = α1Cu1 + · · · + αlCul

with α1, · · · ,αl � 0 and
∑l

i=1 αi = 1, at which ρ is realized, by Lemma 6.4.21,
there is some matrix M of norm t such that (C + M)u ∈ R

k+ \ {0}. Choose s > 0
such that x̄ + su is feasible. We deduce

(C + M)(x̄ + su) = (C + M)x̄ + s(C + M)(u)

≤ (C + M)x̄

which proves that x̄ is not efficient when C + M replacing C . Thus, r(x̄) � ρ and
equality follows. �

There are some particular cases in which it is easy to find directions ui , i =
1, · · · , l that generate the cone cone(Γ −x). For instance when x is a relative interior
point of a proper face ofΓ , that is a face of dimension n−1, there is a column ai of the
matrix AT such that the set cone(Γ − x̄) is the half-space determined by inequality
〈ai , x〉 � 0. It suffices then to choose any n − 1 unit norm vectors u1, · · · , un−1

forming a basis of the hyperplane 〈ai , x〉 = 0 and apply the formulae of the theorems
to these ui . When x̄ is a vertex, the set cone(Γ − x̄) is generated by the directions
of adjacent edges incident to x̄ and the extreme rays of Γ . Any technique of linear
programming for finding adjacent edges and extreme rays can be applied to obtain
ui .
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6.5 Exercises

6.5.1 Consider the following parametric problem with ω ∈ R:

Maximize

⎛
⎝ω 1

1 ω
3 1

⎞
⎠( x1

x2

)

subject to x1 + x2 � 1
x1, x2 � 0.

Express the maximal solution set as a set-valued map of ω and find those points at
which the map is not continuous.

6.5.2 Assume that the matrix D in the problem (MOLP)D (Sect.6.4) is a vector and
Γ is the feasible set of (MOLP). Prove the following assertions:

(i) If a maximal solution of (MOLP)D minimizes the function 〈D, .〉 on Γ , then it
is a maximal solution of (MOLP).

(ii) If a maximal solution of (MOLP) maximizes the function 〈D, .〉 on Γ , then it is
a maximal solution of (MOLP)D.

6.5.3 Let A be an m × n-matrix, I the identity n × n-matrix and b an m-vector.
Consider two conditions:

(i) b ∈ int
(

A(Rn+)
)
;

(ii)

⎛
⎝ b

−b
0

⎞
⎠ ∈ int

⎡
⎣
⎛
⎝ A

−A
−I

⎞
⎠ (Rn) + R

m+m+n

⎤
⎦ .

Show that (ii) implies (i), but the converse is not true.
Note that (i) expresses the regularity of the system Ax = b, x � 0, and (ii)

expresses the regularity of the equivalent system Ax � b,−Ax � −b, x � 0.
Consequently two systems having the same solution set are not necessarily regular
simultaneously.

6.5.4 Best Hoffman constant Assume that a point x is not a solution to the system
(6.10) which means that f (x) := max{〈ai , x〉 − bi : i = 1, · · · , m} > 0. Define
J (x) to be the set of indices j such that 〈a j , x〉− b j = f (x) and J0(x) the subset of
J (x) such that a j , j ∈ J0(x) are extreme directions of the cone pos{a j : j ∈ J (x)}.
Denote by J the family of index sets J ⊆ {1, · · · , m} satisfying the condition (ii)
of Theorem 6.3.3 and the following one: there is some x /∈ Γ such that J ⊆ J0(x).
Define

σ̄ = min
J∈J ,λ∈R|J |

+ ,
∑

i∈J λi =1
‖AT

J λ‖.
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Prove that if for every y ∈ Γ , the vectors ai , i ∈ I (y) are linearly independent, then
σ̄ = σ. Actually σ̄ is the best Hoffman constant in the sense that

σ̄ = inf
x /∈Γ

maxi=1,··· ,m(〈ai , x〉 − bi )

d(x, Γ )
.

6.5.5 Pareto eigenvalues and Hoffman constants Let I ∈ I be given. Consider
the following minimization problem

minimize yT MI y

subject to y ∈ R
|I |
+ , ‖y‖2 = 1

where MI = AI AT
I . The optimal value of this problem is denoted by γ(I ). Prove the

following properties

(i) β := minI∈I
√

γ(I ) > 0
(ii) d(x, Γ ) � 1

β d(Ax − b,−R
m+).

(Note: Any optimal solution y of the above minimization problem satisfies the fol-
lowing optimality conditions

MI y − θy � 0

〈MI y − θy, y〉 = 0 (6.25)

‖y‖ = 1, y � 0.

Solutions y of this system are called Pareto eigenvectors and the corresponding θ are
called Pareto eigenvalues of the matrix MI . The value γ(I ) is equal to the smallest
Pareto eigenvalue of MI .)

6.5.6 Weak sharp maxima with respect to a function Consider (MOLP) presented
in Sect.6.3. Assume that it has a weakly efficient solution. Define

h(x) = min
λ∈Δ

max
y∈Γ

λT C(y − x),

where Δ is the standard simplex in R
k and Γ = {x ∈ R

n : Ax � b} is the feasible
set of (MOLP). A set of weakly efficient solutions E of (MOLP) is called a set of
h-weak sharp maxima if there is a strictly positive constant r such that

d(x, E) � rh(x) for all x ∈ Γ.

(i) Prove that for every x ∈ Γ there are some λ ∈ Δ and a weakly efficient solution

x̄ that maximizes 〈λ, x〉 on Γ such that h(x) = λ
T

C(x̄ − x).
(ii) Deduce that the weakly efficient solution set of (MOLP) is a set of h-weak sharp

maxima.
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6.5.7 For (MOLP) in the preceding exercise define

g(x) = max
y∈Γ

min{ci (y − x) : i = 1, · · · , k}

where ci is the i th row of C.

(i) Prove that g(x) = maxy∈Γ minλ∈Δ λT C(y − x) (see also Exercice 4.4.20).
(ii) (Min-max theorem) Consider the linear problem

Maximize (0 1)

(
x
v

)

subject to

(−C e
A 0

)(
x
v

)
�
(
0
b

)
,

where e is the vector of ones, and its dual to prove existence of x̄ ∈ Γ and
λ̄ ∈ Δ such that minλ∈Δ λT Cx̄ = maxx∈X λ̄T Cx.

(iii) Show that if the weakly efficient solution set of (MOLP) is nonempty, then it is
a set of g-weak sharp maxima.

6.5.8 Find robust efficient solutions of the problem

Maximize

⎛
⎝ 2 1
0 1
3 1

⎞
⎠( x1

x2

)

subject to

⎛
⎝ 1 0
1 1
0 1

⎞
⎠( x1

x2

)
�

⎛
⎝ 1
1
1

⎞
⎠ .

6.5.9 Let Γ be a polyhedron in R
2, C a k × 2-matrix and D a k × 2-matrix. Prove

that if x is an efficient solution of the problems

Maximize Cx
subject to x ∈ Γ

and

Maximize Dx
subject to x ∈ Γ,

then it is also an efficient solution of the convex combination problem

Maximize [αC + (1 − α)D]x
subject to x ∈ Γ,

http://dx.doi.org/10.1007/978-3-319-21091-9_4
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for all α ∈ [0, 1]. This shows that the conclusion of Theorem 6.4.3 is true without
any condition on the objective functions C and D when the dimension of the decision
variable x is two.

6.5.10 Show that if the rank of the objective matrix C in the problem (MOLP) is
equal to n, then every efficient solution of the problem (MOLP) is robust.

6.5.11 Let p1, p2, q1, q2 ∈ R
n with n � 3 be in general linear position (no plane

contains all of them) and v1 ∈ [p1, q1], v2 ∈ [p2, q2]. Prove that for every p ∈
[p1, p2] there exist v ∈ [v1, v2] and q ∈ [q1, q2] such that v ∈ [p, q].

Deduce that if x solves the bi-objective problems

Maximize

(
c1

c2

)
x

subject to x ∈ Γ,

and

Maximize

(
d1

d2

)
x

subject to x ∈ Γ,

where Γ is a nonempty polyhedron, then for every α ∈ [0, 1], there is β ∈ [0, 1]
such that x solves the problem

Maximize

(
αc1 + (1 − α)d1

βc2 + (1 − β)d2

)
x

subject to x ∈ Γ.

Discuss the case of k-objective functions with k > 2.

6.5.12 Let M be an m × n-matrix. A Moore-Penrose pseudo-inverse of M, denoted
M+, is defined as an n × m-matrix satisfying the following properties:

(i) M M+M = M+
(ii) M+M M+ = M

(iii) both M+M and M M+ are symmetric.

It is known that the Moore-Penrose pseudo-inverse exists and is unique. Moreover, if
the system Mz = a has any solutions, then z = M+a is a solution of minimum norm.
Prove that if x̄ is a robust solution and if u1, · · · , ul are unit directions generating
cone(Γ − x̄), then the radius of robustness at x̄ is given by the formula

r(x̄) = min
{‖CT (CCT )+C(α1u1 + · · · + αlu

l)−‖ : α1, · · · ,αl � 0

and
l∑

i=1

αi = 1
}
.
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Chapter 7
Multiobjective Simplex Method

The simplexmethod is the firstmethod to solve linear programmingproblems and one
of the most popular methods in computing mathematics. In this chapter we present
an extension of it to multiobjective problems. The problem, denoted (MOLP), that
we are going to study is given in standard form:

Maximize Cx
subject to Ax = b

x � 0,

where C is a k × n-matrix, A is an m × n-matrix and b is an m-vector.

7.1 Description of the Method

A general scheme for finding efficient vertices and efficient rays of (MOLP) consists
of the following phases:

Phase 1. Find a feasible basis to start with. This phase is carried out by the simplex
method described in Chap.3. Let x be a basic feasible solution.

Phase 2. Check the efficiency of x .
Phase 3. Move to adjacent vertices to find efficient adjacent vertices or efficient

infinite rays.
Phase 4. Store all founded efficient vertices in one list and dominated vertices in

another list, and stop when all vertices have been explored.

© Springer International Publishing Switzerland 2016
D.T. Luc, Multiobjective Linear Programming,
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Checking efficiency of the current basis

In order to check whether a vertex x is efficient or not, we compute

b = B−1b

C N = CN − CB B−1N ,

where B is a feasible basis corresponding to x which is assumed to be non-degenerate
and A = (B N ). The objective matrix C is decomposed into the basic and non-basic
submatrices CB and CN correspondingly. The submatrix C N is called reduced cost
matrix at the basis B. As before the columns of thematrixCT are denoted c1, · · · , ck .

Theorem 7.1.1 Let x be a basic feasible solution. The following conditions are
equivalent.

(i) The solution x is efficient.
(ii) The solution x solves the following problem

maximize 〈c1 + · · · + ck, x〉
subject to Ax = b

Cx � Cx
x � 0.

If in addition x is non-degenerate, (i) is equivalent to each of the two conditions
below.

(iii) The following system has a solution

−[C N ]T y � 0

y > 0, y ∈ R
k .

(iv) The optimal value of the following problem is zero

maximize y1 + · · · + yk

subject to −C N z + y = 0,
y � 0, z � 0, y ∈ R

k, z ∈ R
n−k .

In particular the following assertions hold.

(a) If all entries of the reduced cost matrix C N are negative or zero, then the current
vertex x is an ideal efficient solution.

(b) If the reduced cost matrix has a strictly negative row, then x is efficient.
(c) If the reduced cost matrix has a nonzero positive column, then the current vertex

x is not efficient.
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Proof We prove the equivalence between (i) and (ii) first. If x is an efficient solution,
then for every feasible solution x of the problem in (ii), one has Cx = Cx , which
shows that x is an optimal solution. Conversely, suppose that x is not efficient, then
there is some x � 0 with Ax = b and Cx ≥ Cx . We deduce

〈c1 + · · · + ck, x〉 > 〈c1 + · · · + ck, x〉

and x does not solve the problem of (ii).
Further, according to Theorem 4.3.1, x is efficient if and only if there is a strictly

positive k-vector y such that x is an optimal solution of the scalarized problem

maximize 〈y, Cx〉
subject to Ax = b

x � 0.

Assume that x is non-degenerate. In view of Theorem 3.1.4 the latter problem has x
as an optimal solution if and only if its reduced cost vector (CT y)N has non-positive
entries only. We have

[(CT y)N ]T = [(CT y)N ]T − [(CT y)B]T B−1N

= yT CN − yT CB B−1N

= yT C N

and obtain the system in (iii). Thus, (i) is equivalent to (iii). The equivalence between
(iii) and (iv) is proved in the same manner as that of Proposition 3.3.2 in Chap. 3.
Namely, the system of (iii) has a solution if and only if the problem

minimize 〈0, y〉
subject to −[C N ]T y � 0

y � e,

where e is the vector from R
k , the components of which are all equal to one, has an

optimal solution and its optimal value is zero. Its dual is exactly the maximization
problem figured in (iv). Then the equivalence follows from the duality relation in
Theorem 3.2.3 and Corollary 2.2.5.

Now, if all entries of C N are non-positive, then for every strictly positive k-vector
y the system in (iii) is true. Hence x is efficient. Moreover each feasible solution x
of (MOLP) can be decomposed by the basic part xB and the non-basic part xN with
BxB + N xN = b. We deduce that xB = B−1b − B−1N xN and

Cx = CB xB + CN xN = CB B−1b + (CN − CB B−1N )xN .

Since xN is a positive vector and CBb = Cx , we deduce that Cx � Cx for every
feasible solution x , thereby proving that x is an ideal solution of the problem.

http://dx.doi.org/10.1007/978-3-319-21091-9_4
http://dx.doi.org/10.1007/978-3-319-21091-9_3
http://dx.doi.org/10.1007/978-3-319-21091-9_3
http://dx.doi.org/10.1007/978-3-319-21091-9_3
http://dx.doi.org/10.1007/978-3-319-21091-9_3
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Furthermore, under (b), a strictly positive k-vector y with all components equal
to one except for the component corresponding to the negative row, which takes
a sufficiently large positive value, will certainly satisfy the system in (iii) of the
theorem. Hence x is efficient.

Finally, under condition (c) the system in (iii) has no solution, so x cannot be
efficient. �

We note that the solution x is not necessarily efficient if the reduced cost matrix
has a negative row. See the example below.

Example 7.1.2 Consider the problem

Maximize

(
1 0 0 0
0 1 0 0

)
⎛

⎜⎜⎝

x1
x2
x3
x4

⎞

⎟⎟⎠

subject to

(
1 −1 1 0
0 1 0 1

)
⎛

⎜⎜⎝

x1
x2
x3
x4

⎞

⎟⎟⎠ =
(
0
1

)

and x � 0.

The basis corresponding to the variables x2 and x3 is given by B =
(−1 1

1 0

)
. The

associated basic solution is x = (0, 1, 1, 0)T and the reduced cost matrix is

C1,4 = C1,4 − C2,3B−1A1,4

=
(
1 0
0 0

)
−

(
0 0
1 0

) (
0 1
1 1

) (
1 0
0 1

)

=
(
1 0
0 −1

)
.

Here thematrixCi, j is constituted of the i-th and j-th columns ofC . The first column
of the reduced cost matrix C1,4 is nonzero positive, hence in view of Theorem 7.1.1
the basic solution x is not efficient. Observe, however, that its second row is negative,
but not strictly negative.

Moving to adjacent vertices

Let s be a non-basic index. We know that if the column as = B−1as is negative, then
the ray x + tvs, t � 0 is feasible, where the basic and the non-basic components of
vs are given by

vs
B = −as

vs
N = es (7.1)
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in which es is the non-basic part of the s-th coordinate unit vector of Rn . Otherwise,
set

ts := b�

a�s
= min

{
bi

ais
: ais > 0

}
(7.2)

and a new basis is obtained from B by introducing the column s in the place of the
column �. The new solution vertex is given by x̂ = x + tsvs .

Theorem 7.1.3 Assume that the column as is negative. The following assertions are
true.

(i) If x is non-efficient, then every element of the ray x + tvs, t � 0 is non-efficient.
(ii) If x is efficient and if the column Cs from the reduced cost matrix is zero, then

the ray x + tvs, t � 0 is efficient.
(iii) If x is efficient and if the column Cs is negative, then every point of the ray

x + tvs, t � 0 is dominated by x.
(iv) If x is non-degenerate, efficient and if the column Cs has negative as well as

positive components, then the ray x + tvs, t � 0, is efficient if and only if the
following system has a solution:

−(C N )T y � 0

(C N es)T y = 0

y ∈ R
k, y > 0,

which is equivalent to the zero optimal value of the linear problem

maximize y1 + · · · + yk

subject to C N (z + tes) + y = 0
t ∈ R, y � 0 z � 0.

(v) If x is efficient and if non-basic columns Cs and Cr of the reduced cost matrix
C N corresponding to negative columns as and ar , have mixed components
with αCs ≥ Cr for some positive number α, then the ray corresponding to the
column ar is dominated.

Proof We suppose, to the contrary, that x is not efficient, but x + t0vs is efficient
for some t0 > 0. In view of Theorem 4.3.8, the solution x + t0vs is contained in
an efficient solution face of the feasible set. This face must contain also the ray
x + tvs, t � 0, because the solution x + t0vs is a relative interior point of the ray.
Hence x is efficient, a contradiction.

To prove the remaining part of the theorem, we express the value C(x + tvs) in
terms of Cx and Cs as

http://dx.doi.org/10.1007/978-3-319-21091-9_4
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C(x + tvs) = (CB CN )

(
x B − tas

tes

)

= CB x B + t (−CBas + CN es)

= Cx + tCs .

We assume that x is an efficient solution. It is clear that if Cs = 0, then C(x + tvs) =
Cx and hence x + tv is efficient for every t � 0 as well.

Moreover, if Cs � 0, then C(x + tvs) � Cx , which means that the solution
x + tvs is dominated by x .

Consider the case when Cs has both negative and positive components. In view
of Theorem 3.3.5, the ray x + tvs, t � 0, is efficient if and only if there is a strictly
positive k-vector y such that this ray is optimal for the scalarized problem

maximize 〈CT y, x〉
subject to Ax = b

x � 0.

In other words, the ray x + tvs, t � 0, is efficient if and only if there is a strictly
positive k-vector y such that x is optimal and the objective function 〈CT y, ·〉 along
the direction vs is zero. In view of Theorem 7.1.1, the latter condition is equivalent
to the consistence of the system given in (iii) of that theorem. To obtain equiv-
alence between that system and the maximization problem mentioned in (iv), it
suffices to write the dual problem and apply Theorem 3.2.3 as we did in the proof of
Theorem 7.1.1.

Finally, under (v), for every element x + tvr of the feasible ray corresponding to
the negative column ar one chooses the element x + αtvs of the ray corresponding
to the negative column as and deduces

C(x + αtvs) − C(x + tvr ) = t (αCs − Cr ) ≥ 0

showing that the ray x + tvr , t � 0 is dominated. �

When the column as is not negative, the ray x + tvs, t � 0 does not entirely lie
in the feasible set. The feasible portion of this ray is the edge joining the vertex x
and the new vertex x̂ = x + tsvs . The variable xs enters the basis while the variable
x� leaves the basis because of (7.2). We shall explicitly write x̂ s instead of x̂ if the
vertex x has other feasible adjacent vertices. The next theorem tells us whether it is
worthwhile to move to a new vertex if the current vertex is not efficient.

Theorem 7.1.4 Assume that the column as has positive components. The following
assertions are true.

(i) If the column Cs is negative, then the new vertex x̂ is dominated by the old
vertex x .

(ii) If for any non-basic indices s and r for which x̂s and x̂r are finite, one has
tsCs − tr Cr ≥ 0, then the new vertex with xr entering the basis is non-efficient.

http://dx.doi.org/10.1007/978-3-319-21091-9_3
http://dx.doi.org/10.1007/978-3-319-21091-9_3
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Proof We know that Cx̂ = Cx + tsCs . Therefore, when Cs is negative, one deduces
that Cx̂ � Cx .

Now, if x̂ s and x̂r are two feasible adjacent vertices of x with corresponding ts > 0
and tr > 0, then

Cx̂s − Cx̂r = tsCs − tr Cr .

Under the hypothesis of (ii), we have Cx̂s ≥ Cx̂r , which means that x̂r is not
efficient. �

Theorem 7.1.5 If all feasible bases of the matrix A are non-degenerate, then the
simplex algorithm terminates at a finite number of iterations.

Proof Under the non-degeneracy condition, the simplex algorithm explores all ver-
tices of the feasible set, and determines at each iteration whether the current ver-
tex is efficient or not. Therefore the algorithm terminates after a finite number of
iterations. �

7.2 The Multiobjective Simplex Tableau

In order to solve the problem (MOLP), we assume that b is a positive vector and the
matrix A is given by (B N ) where B is a non-degenerate feasible basis and N is the
non-basic part of A. The initial simplex tableau, denoted T , is of the form

T =
CB CN 0k×1

B N b

By pre-multiplying the tableau T by the extended inverse of B,

Ik×k −CB B−1

0m×k B−1

we obtain the tableau T ∗ as follows

T ∗ =
0k×m C N = CN − CB B−1N −CB B−1b

Im×m N = B−1N B−1b
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The tableau T ∗ contains all information necessary for the simplex algorithm.

• The basic solution associated with B is found in the right bottom box: x =
(

xB

xN

)

with xB = B−1b and xN = 0.
• The value of the objective function at this basic solution is given in the right upper
box −Cx = −CB B−1b.

• The reduced cost matrix C N is given in the upper middle box.

With this tableau we move on finding a basic efficient solution.

Finding a basic efficient solution

The tableau T ∗ allows us to determine the efficiency or the non-efficiency of the
basic feasible solution x in some evident situations listed below:

• x is not efficient if C N has a nonzero positive column.
• x is ideal efficient if the entries of C N are non-positive.
• x is efficient if at least one of the rows of C N is strictly negative.

In all remaining situations checking the efficiency of x is necessary. This can be done
by solving an auxiliary problem described in Theorem 7.1.1 (ii). By introducing m
surplus variables y1, · · · , ym that problem, denoted (P), is written in the standard
form

maximize 〈c1 + · · · + ck, x〉
subject to

(−I C
0 A

) (
y
x

)
=

(
Cx
b

)

y � 0, x � 0.

The feasible solution

(
0
x

)
is basic and associatedwith the basis B̂ =

(−Ik×k CB

0m×k B

)
.

The simplex tableau at this basis is obtained from the tableau T ∗ as follows

T̂ ∗ =
01×k 01×m cN − cB B−1N cB B−1b

Ik×k 0k×m −CN + CB B−1N 0k×1

0m×k Im×m B−1N B−1b

In this tableau c stands for the sum of the rows of matrix C . From this tableau we
deduce the following conclusion on the efficiency of x :

• x is efficient if the reduced cost vector cN is negative.
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If the reduced cost vector c has all strictly positive components, nothing can be
said about the efficiency of x because the basis B̂ is degenerate. By introducing a
non-basic variable x j corresponding to a strictly positive component of c we may

either remove a surplus variable or obtain some feasible solution

(
y
x

)
with y ≥ 0.

If no such feasible solutions are obtained, then x is efficient. Otherwise, x is non-
efficient. Then apply usual pivots of the simplex algorithm (Chap.3, Sect. 3.3) to
(P). Its outcome provides either an optimal vertex solution (y, x) of (P) in which
case x is a vertex efficient solution of (MOLP), or shows that (P) has unbounded
optimal value. In the latter circumstance (MOLP) has no efficient solution because
the value set consisting of Cx with Cx � Cx and x feasible, is unbounded. Its
nontrivial asymptotic cone lies in the positive orthant Rk+. Consequently, the value
set of (MOLP) has nonzero positive asymptotic direction too. In view of Theorem
4.1.7, (MOLP) has no maximal element, hence it has no efficient solution.
When the matrix A is not given in the form (B N ), particular attention must be paid
on the columns of B and N . For instance, in the next example, the matrix B of the
second problem with three slack variables x4, x5 and x6, consists of the last three
columns of A, while the matrix N consists of the first three columns.

Example 7.2.1 Consider the problem

Maximize

(
5 4 3
3 1 −1

) ⎛

⎝
x1
x2
x3

⎞

⎠

subject to

⎛

⎝
2 3 1
4 1 2
3 4 2

⎞

⎠

⎛

⎝
x1
x2
x3

⎞

⎠ �

⎛

⎝
5
11
8

⎞

⎠

x � 0.

By introducing three slack variables x4, x5 and x6 we transform the problem to
standard form

Maximize

(
5 4 3 0 0 0
3 1 −1 0 0 0

)

⎛

⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5
x6

⎞

⎟⎟⎟⎟⎟⎟⎠

subject to

⎛

⎝
2 3 1 1 0 0
4 1 2 0 1 0
3 4 2 0 0 1

⎞

⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5
x6

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎝
5
11
8

⎞

⎠

x � 0.

http://dx.doi.org/10.1007/978-3-319-21091-9_3
http://dx.doi.org/10.1007/978-3-319-21091-9_3
http://dx.doi.org/10.1007/978-3-319-21091-9_4
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An evident basic solution is x = (0, 0, 0, 5, 11, 8)T and the associated basis is the
identity matrix corresponding to the slack variables. The initial simplex tableau is
given next

T =

5 4 3 0 0 0 0
3 1 −1 0 0 0 0
2 3 1 1 0 0 5
4 1 2 0 1 0 11
3 4 2 0 0 1 8

Since the cost matrixCB is null, the reduced cost matrix coincides with the non-basic
part CN of the objective matrix C . It has nonzero positive columns, and hence by
Theorem 7.1.1 the basic solution x is not efficient. In order to find an efficient vertex
we perform a pivot by choosing any non-basic index among columns of the reduced
matrix with positive components, say the first one. The element a11 = 2 realizing
the minimummin

{ 5
2 ; 11

4 ; 8
3

}
is a pivot; the pivotal row � = 1 and the pivotal column

s = 1. The variable x1 enters the new basis and the variable x4 leaves the basis. At
this stage the basic variables are x1, x5 and x6. By pre-multiplying T by the extended
matrix for change of basis

S =

1 0 −5/2 0 0
0 1 −3/2 0 0
0 0 1/2 0 0
0 0 −2 1 0
0 0 −3/2 0 1

we obtain the new tableau

T 1 =

0 −7/2 1/2 −5/2 0 0 −25/2
0 −7/2 −5/2 −3/2 0 0 −15/2
1 3/2 1/2 1/2 0 0 5/2
0 −5 0 −2 1 0 1
0 −1/2 1/2 −3/2 0 1 1/2

From this tableauwe observe that the second row of the reduced cost matrix is strictly
negative. In view of Theorem 7.1.1 the new basic solution x ′ = (2.5, 0, 0, 0, 1, 0.5)T

is efficient.

Moving from an efficient vertex to adjacent efficient vertices

After having found an efficient basic solution our task is to explore other efficient
basic solutions. We knew that the set of efficient solutions is arcwise connected, and
so if the solution value is not unique, there must exist basic solutions adjacent to
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the given basic solution. In this subsection we discuss how to find all these adjacent
solutions using the simplex tableau T ∗.

Assume that x is a basic, not ideal, efficient solution. In view of Theorem 7.1.1
the reduced cost matrix C N has strictly positive entries among others and no nonzero
positive columns. We classify the non-basic indices into two categories: those s with
Cs negative and the remaining indices s with Cs not comparable with the zero vec-
tor. In view of Theorem 7.1.4 we deduce some rules for not introducing a non-basic
variable xs into a new basis:

• If Cs = 0 and as � 0, then the ray x + tvs, t � 0, where vs is given by (7.1), is
an efficient ray.

• If Cs ≤ 0, then xs is not for introduction because xs entering a basis leads to a
dominated solution.

• If Cs and Cr have mixed components, where j is another non-basic index, with
ts and tr strictly positive, and if tr Cr − tsCs ≥ 0, then xs is not for introduction.

It is now clear that a non-basic variable xs is eligible for introduction ifCs is not com-
parable with the zero vector and also not comparable with other non-basic reduced
cost vectors. We assume that xs is such a variable with ts > 0. It enters the basis and
x� leaves the basis. The pivot of the current simplex tableau is the element a�s . The
new simplex tableau corresponding to the basis with xs entering and x� leaving is
obtained by pre-multiplying the tableau T ∗ by the extended matrix of change

S =

Ik×k 0k×1 · · · −Cs/a�s · · · 0k×1

1 · · · −a1s/a�s · · · 0
· · ·

0m×k 1/a�s

· · ·
0 · · · −ams/a�s · · · 1

The new tableau will allow us to determine whether the new basis produces an
efficient adjacent vertex of x or not.

Example 7.2.2 We continue Example 7.2.1 by starting now with the efficient basic
solution x ′ = (2.5, 0, 0, 0, 1, 0.5)T and the simplex tableau T 1. The basic variables
are x1, x5 and x6. Since the second and the fourth columns of the tableau are negative,
the non-basic variables x2 and x4 are not for introduction into the basis. The variable
x3 is eligible for entering the basis. Thus, for s = 3we have t3 = min

{ 5/2
1/2 ,

1/2
1/2

} = 1.
The variable x3 enters the basis and x6 leaves the basis. The pivot is a33 = 1/2, the
pivotal row is 3 and the pivotal column is 3. The extendedmatrix of change is given as
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S =

1 0 0 0 −1
0 1 0 0 5
0 0 1 0 −1
0 0 0 1 0
0 0 0 0 2

and the new tableau corresponding to the new basic variables x1, x3 and x5 is given by

T 2 = ST 1 =

0 −3 0 −1 0 −1 −13
0 −6 0 −9 0 5 −5
1 2 0 2 0 −1 2
0 −5 0 −2 1 0 1
0 −1 1 −3 0 2 1

By reading this tableau we conclude that the new basic solution
x ′′ = (2, 0, 1, 0, 1, 0)T is an efficient adjacent vertex of x ′.

Generating all efficient vertex solutions

As already discussed, due to the arcwise connectedness of the efficient solution set of
(MOLP), all efficient basic solutions can be generated by exploring adjacent vertices.
Here is a scheme among others to perform it. Given a basic feasible solution v, the
set of efficient adjacent vertices of v is denoted G(v).

Method 1.

• Let v0 be the initial basic efficient solution.
• Set E0 = {v0} (the initial generation) and

W0 = G(v0) \ E0 (the first generation).
• Set E1 = E0 ∪ W0 and

W1 = ∪v∈W0G(v) \ E1 (the second generation).
• For s ≥ 1, if Ws = ∅, all efficient vertices are in Es .
Otherwise, set

Es+1 = Es ∪ Ws and
Ws+1 = ∪v∈Ws G(v) \ Es (it is the (s + 1)-th generation).

Continue the procedure until no new generation is obtained, that is, until Ws is
empty.

Example 7.2.3 Let us assume that the feasible polytope of (MOLP) has 11 vertices
listed below together with efficient adjacent vertices and non-efficient adjacent ver-
tices:
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vertex efficient adjacent vertices non-efficient adjacentvertices

v0 v1, v4, v10 v5

v1 v0, v7, v8, v10

v2 v7, v8

v3 v4 v5
v4 v0, v3, v10

v5 v0, v3, v7 v6

v6 v7 v5

v7 v1, v8 v2, v6

v8 v1, v7, v9 v2

v9 v1, v8, v10

v10 v0, v1, v4, v9

By starting with v0 we have

E0 = {v0} W0 = {v1, v4, v10}
E1 = {v0, v1, v4, v10} W1 = {v3, v7, v8, v9}
E2 = {v0, v1, v3, v4, v7, v8, v9, v10} W2 = ∅

We stop the algorithm at the second generation. The set E2 contains all efficient
vertex solutions of the problem.

One should remark that in order to obtain the efficient vertices of the (s + 1)-th
generation, all simplex tableaux of the s-th generation and their related information
(inverse matrices, extended matrices of change etc.) are to be stored, which require
a lot of computing memory. Another method consists of obtaining only one efficient
vertex at each iteration, and so less memory is needed. Given two basic solutions u
and v, the distance used below between them is measured by the number of columns
that is needed to be introduced to the basis associated with u in order to obtain the
basis associated with v. Thus, if u �= v, the distance from u to v is at least one, which
is the case when they are adjacent to each other, and at most m, the total number of
columns of a basis.

Method 2.

• Let v0 be the initial basic efficient solution.
• Set E0 = {v0} and

W0 = G(v0) \ E0.
• Choose v1 from W0 that is closest to v0 and set

E1 = E0 ∪ {v1} and
W1 = W0 ∪ G(v1) \ E1 .

• For s ≥ 1, if Ws = ∅, all efficient vertices are in Es . Otherwise choose vs from
Ws that is closest to vs−1 the last vertex adhered Es and set
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Es+1 = Es ∪ {vs} and
Ws+1 = Ws ∪ G(vs+1) \ Es .

Continue the procedure until Ws is empty.

Example 7.2.4 By starting with v0 the method 2 applied to Example 7.2.3 is per-
formed as follows

E0 = {v0} W0 = {v1, v4, v10}
E1 = {v0, v1} W1 = {v4, v10, v7, v8}
E2 = {v0, v1, v10} W2 = {v4, v9, v7, v8}
E3 = {v0, v1, v10, v4} W3 = {v3, v9, v7, v8}
E4 = {v0, v1, v10, v4, v3} W4 = {v9, v7, v8}
E5 = {v0, v1, v10, v4, v3, v9} W5 = {v7, v8}
E6 = {v0, v1, v10, v4, v3, v9, v8} W6 = {v7}
E7 = {v0, v1, v10, v4, v3, v9, v8, v7} W7 = ∅

Note that after putting v3 in E4, there are no adjacent vertices to v3 from the set W4.
At this stage we choose any from v7, v8 and v9 because they are at equal distance to
v3. The set E7 contains all efficient vertex solutions of the problem.

The simplex procedure

We summarize the simplex procedure to compute efficient vertices and store them
in V as follows.

Step 1. Find the initial feasible vertex by solving the linear problem

minimize y1 + · · · + ym

subject to Ax + y = b
x, y � 0.

• If no feasible vertex exists, stop. The problem is infeasible.
• Otherwise let x0 be a feasible vertex. Set i = 1 and vi = x0.

Step 2. Compute the simplex tableau at vi and go to Step 4 if i � 1.
Step 3. Check the rows of the reduced cost matrix C N .

• If C N � 0, stop. All efficient solutions x of (MOLP) satisfy equality Cx =
Cvi . They are ideal solutions.

• Otherwise go to Step 4.

Step 4. Check whether any row of C N is strictly negative, or the sum of the rows of
C N is negative or not.
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• If yes, this solution is efficient. Go to Step 6.
• Otherwise go to Step 5.

Step 5. Check the efficiency of the current solution or find an efficient vertex domi-
nating the current solution by solving the linear problem

maximize 〈c1 + · · · + ck, x〉
subject to Ax = b

Cx � Cvi

x � 0.

• If it has unbounded optimal value, stop. The problem (MOLP) has no efficient
solutions.

• If the optimal value is finite and if vi is an optimal solution, then it is efficient
and go to Step 6.

• If x is an optimal vertex with Cx ≥ Cvi , then vi is not efficient and x is
efficient. Compute the simplex tableau at x and go to Step 6.

Step 6. Store this efficient vertex in V .
Step 7. Find all non-basic indices r of the last stored vertex satisfying

(i) Cr contains mixed components (negative and positive ones).
(ii) There is no other non-basic index s satisfying (i) such that tsCs ≥ tr Cr .

Step 8. Store all unexplored bases by introducing r from the preceding step.

• If no such bases exist, stop.
• Otherwise obtain vi+1 the basic solution with r entering the basis.

Step 9. Set i = i + 1 and return to Step 2.

Let us illustrate the simplex procedure by a hand computing example.

Example 7.2.5 Consider the problem

Maximize

(
6 4 5
0 0 1

) ⎛

⎝
x1
x2
x3

⎞

⎠

subject to

⎛

⎝
1 1 2
1 2 1
2 1 1

⎞

⎠

⎛

⎝
x1
x2
x3

⎞

⎠ �

⎛

⎝
12
12
12

⎞

⎠

xi � 0, i = 1, 2, 3.

We write this problem in standard form by introducing three slack variables x4, x5
and x6:
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Maximize

(
6 4 5 0 0 0
0 0 1 0 0 0

)

⎛

⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5
x6

⎞

⎟⎟⎟⎟⎟⎟⎠

subject to

⎛

⎝
1 1 2 1 0 0
1 2 1 0 1 0
2 1 1 0 0 1

⎞

⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5
x6

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎝
12
12
12

⎞

⎠

xi � 0, i = 1, · · · , 6.

We will identify a basis BJ with its index set J . An evident basis to start with is
J 1 = [4, 5, 6], that is x4, x5 and x6 are basic variables. The matrix BJ 1 is the identity
3 × 3-matrix. The initial simplex tableau is below

T 1 =

6 4 5 0 0 0 0
0 0 1 0 0 0 0
1 1 2 1 0 0 12
1 2 1 0 1 0 12
2 1 1 0 0 1 12

It is clear from this tableau that the basis J 1 is not efficient. We solve the linear
problem of Step 5 to find an efficient vertex dominating the current solution v1 =
(0, 0, 0, 12, 12, 12)T . As Cv1 = 0, the problem takes the form

maximize 6x1 + 4x2 + 6x3

subject to

⎛

⎝
1 1 2 1 0 0
1 2 1 0 1 0
2 1 1 0 0 1

⎞

⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5
x6

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎝
12
12
12

⎞

⎠

6x1 + 4x2 + 5x3 � 0
xi � 0, i = 1, · · · , 6.

Note that inequality Cx � Cv1 consists of two inequalities in which the second
one is exactly x3 � 0. Note further that the constraint 6x1 + 4x2 + 5x3 � 0 is
consequence of the positivity of the variables, and so it is superfluous. We deal again
with the linear problem whose simplex tableau at the basis J 1 = [4, 5, 6] is obtained
from the tableau T by substituting the two rows of the objective function by their
sum. We perform a pivot with the pivot a13 = 2 (the pivotal row � = 1 and the
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pivotal column s = 3). The new basis is J 2 = [3, 5, 6], that is the basic variables
are x3, x5, x6. We write the new simplex tableau for both the linear problem and the
(MOLP):

T 2 =

3 1 0 −3 0 0 −36
7/2 3/2 0 −5/2 0 0 −30

−1/2 −1/2 0 −1/2 0 0 −6
1/2 1/2 1 1/2 0 0 6
1/2 3/2 0 −1/2 1 0 6
3/2 1/2 0 −1/2 0 1 6

The basic solution associated with the basis J 2 is v2 = (0, 0, 6, 0, 6, 6)T . Although
it is not optimal for the linear problem, it is efficient for the (MOLP) because the
second row of the reduced cost matrix is strictly negative. From the tableau we obtain
two columns eligible for introduction into the basis: C1 and C2. We compute t1 =
min

{ 6
1/2 ,

6
1/2 ,

6
3/2

} = 4 and t2 = min
{ 6
1/2 ,

6
3/2 ,

6
1/2

} = 4 yielding respectively the

pivots a31 = 3/2 and a22 = 3/2. Notice, however, that t1C1 ≥ t2C2, which in view
of Theorem 7.1.3 means that the basic solution obtained from v2 by introducing x2
into the basis is dominated by the solution obtained from v2 by introducing x1 into
the basis. The pivot a31 = 3/2 gives the following tableau including the sum of the
reduced cost rows

T 3 =

0 0 0 −2 0 −2 −48
0 1/3 0 −4/3 0 −7/3 −44
0 −1/3 0 −2/3 0 1/3 −4
0 1/3 1 2/3 0 −/3 4
0 4/3 0 −1/3 1 −1/3 4
1 1/3 0 −1/3 0 2/3 4

Although the reduced cost matrix does not allow us to conclude about the effi-
ciency of this basis J 3 = [1, 3, 5], but reading the reduced cost vector sum of
the reduced cost rows proves that this basis is efficient. Its associated solution is
v3 = (4, 0, 4, 0, 4, 0)T .

From the tableauwehave twonon-basic variables that are eligible for introduction:
x2 and x6. The introduction of x6 leads to the basis [3, 5, 6] that was already explored.
We introduce x2 by performing the pivot a32. The basic variable x5 leaves the basis.
The new basis is J 4 = [1, 2, 3] and its associated tableau is below

T 4 =

0 0 0 −2 0 −2 −48
0 0 0 −5/4 −1/4 −9/4 −45
0 0 0 −3/4 1/4 1/4 −3
1 0 0 −1/4 −1/4 3/4 3
0 1 0 −1/4 3/4 −1/4 3
0 0 1 3/4 −1/4 −1/4 3
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It is clear that this basis is optimal. Its associated solution is the vector v4 =
(3, 3, 3, 0, 0, 0)T . The fourth column of C being strictly negative, introduction of
x4 leads to a dominated solution. For the fifth and the sixth columns we compute
t5 = t6 = 4. Since t5C5 ≥ t6C6 the introduction of x6 leads to a dominated solution.
Thus, this time the pivot is a52 with x2 leaving the basis. The basis obtained from
this pivot is [1, 3, 5] which is J 3 already explored. The algorithm terminates. The
initial problem has three efficient vertices (0, 0, 6)T , (4, 0, 4)T and (3, 3, 3)T .

7.3 Exercises

7.3.1 Let B be a basis of (MOLP) considered in Sect. 7.1 and x the feasible basic
solution associated with B. One defines �(B) = {λ ∈ R

k : λT C N � 0} where C N

is the reduced cost matrix at x .

(a) Prove that x maximizes the function λT Cx over the feasible set of (MOLP) for
every λ ∈ �(B).

(b) Show that if�(B)∩ int(Rk+) �= ∅, then x is efficient. Conversely, if x is efficient
and if B is non-degenerate, then �(B) ∩ int(Rk+) �= ∅.

(c) If B ′ is the new feasible basis obtained from B by introducing a non-basic
variable xr into the basis, then �(B) = �(B ′) if the reduced cost column Cr is
zero, and ri

(
�(B)

) ∩ ri
(
�(B ′)

) = ∅ if Cr is nonzero.

7.3.2 Maximize two functions f1(x, y) = 3x + y and f2(x, y) = x − y on the
polyhedral set defined by the system

⎧
⎨

⎩

x + y � 4
2x + y � 5

x, y � 0.

7.3.3 Maximize three functions f1(x, y) = x+y, f2(x, y) = x+2y and f3(x, y) =
x − y on the polyhedral set defined by the system

⎧
⎪⎪⎨

⎪⎪⎩

x − y � 4
−x + y � 4

x + y � 8
x, y � 0.
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7.3.4 Consider the problem

Maximize

(
x

2x − y

)

subject to y − 2x � 1
x − 3y � 1
y − x � 1.5
x � 0, y � 0

Find asymptotic directions of the feasible set and show that the problem is unbounded.

7.3.5 Find a basic feasible solution of the problem

Maximize

(
x1 + x2 + x3

−x1 − x2 + x3

)

subject to 2x1 + x2 − 2x3 = 4
3x1 − 3x2 + x3 = 3
x1, x2, x3 � 0

and prove that the problem is unbounded.

7.3.6 Let C be a 2 × 3-matrix. Consider the problem of maximizing Cx under the
constraints as defined in the preceding exercise. Find conditions on C such that the
problem has efficient solutions.

7.3.7 What can be said about the solution set of a multiobjective problem in which
the objective matrix has rank one?

7.3.8 Solve the following problem using the simplex method

Maximize

(
x1 + x2 + x3

−3x1 + x2 + 3x3 − x4

)

subject to x1 − x2 + 2x3 − x4 = 6
2x1 − 2x2 + 3x3 + 3x4 = 9
x1, x2, x3, x4 � 0

7.3.9 Solve the following problem by simplex method

Maximize

⎛

⎝
x1 + 2x2 − x3 + 3x4 + 2x5 + x7

x2 + x3 + 2x4 + 3x5 + x6
x1 + x3 − x4 − x6 − x7

⎞

⎠

subject to x1 + 2x2 + x3 + x4 + 2x5 + x6 + 2x7 � 16
−2x1 − x2 + x4 + 2x5 + x7 � 16
x2 + 2x3 − x4 + x5 − 2x6 − x7 � 16
xi � 0, i = 1, · · · , 7.
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(The efficient vertices are:

(0, 0, 0, 0, 8, 0, 0)T (0, 0, 0, 16, 0, 0, 0)T (16, 0, 0, 0, 0, 0, 0)T

(8, 0, 8, 0, 0, 0, 0)T (0, 0, 32
3 , 16

3 , 0, 0, 0)T (0, 0, 16
3 , 0, 16

3 , 0, 0)T )



Chapter 8
Normal Cone Method

An important characterization of efficient faces of a polyhedral set is the fact that
their normal cones contain strictly positive vectors. This will be utilized to develop an
algorithm to find the efficient solution set and the efficient value set of a multiobjective
linear problem.

8.1 Normal Index Sets

We consider a finite system of linear inequalities

〈ai , x〉 � bi , i = 1, · · · , m, (8.1)

where a1, · · · , am are n-dimensional column vectors and b1, · · · , bm are real num-
bers. The solution set of this system is denoted X . Throughout this chapter we assume
the following hypothesis:

(A1) The system (8.1) is non-redundant and consistent.
Recall that the set of active indices at a point x0 ∈ X is denoted I (x0), which

consists of indices i ∈ {1, · · · , m} such that 〈ai , x0〉 = bi for i ∈ I (x0) and
〈ai , x0〉 < bi for i /∈ I (x0). We also recall that given a face F of X , the index set
I (F) (sometimes denoted IF ) of F is the active index set at a relative interior point
of F , and pos(X ) is the positive hull of X .

Definition 8.1.1 A nonempty index set I ⊆ {1, · · · , m} is said to be normal if there
is some point x ∈ X such that

NX (x) = pos{ai : i ∈ I }.

It is clear that when X has a boundary point, that is, at least one vector among
ai , i = 1, · · · , m is nonzero, then normal index sets exist. Moreover, not every
subset of the index set {1, · · · , m} is normal.
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262 8 Normal Cone Method

Example 8.1.2 Consider a system of four inequalities in R
2:

x1 � 2
−x1 � −1

x1 + x2 � 3
−x1 − x2 � −2.

This system consists of four inequalities that we enumerate from one to four. It
is clear that the index sets {1}, {2}, {3}, {4}, {1, 3}, {1, 4}, {2, 3} and {2, 4} are all
normal, while the remaining subsets of the index set {1, 2, 3, 4} are not. For instance
I = {1, 2} is not normal because

pos{a1, a2} = pos

{(
1
0

)
,

(−1
0

)}
= pos

{(
t
0

)
, t ∈ R

}

is a normal cone to X at no point.

Lemma 8.1.3 An index set I ⊆ {1, · · · , m} is normal if and only if the following
system has a solution

〈ai , x〉 = bi , i ∈ I
〈a j , x〉 < b j , j ∈ {1, · · · , m}\I.

(8.2)

Proof Assume that the system (8.2) has a solution, denoted x . Then x is a boundary
point of X and the active index set at x is I . In view of Theorem 2.3.24, we have
NX (x) = pos{ai : i ∈ I }. By definition I is a normal index set.

Conversely, let I be a normal index set and let x ∈ X be a point such that NX (x) =
pos{ai : i ∈ I }. Since x is an element of X , it satisfies the system

〈ai , x〉 = bi , i ∈ I (x)

〈a j , x〉 < b j , j ∈ {1, · · · , m}\I (x).

In view of Theorem 2.3.24, we have NX (x) = pos{ai : i ∈ I (x)} and deduce

pos{ai : i ∈ I (x)} = pos{ai : i ∈ I }.

We claim that every vector ai for i ∈ I (x) is an extreme ray of the cone pos{ai :
i ∈ I (x)}. Indeed, assume to the contrary, that for some index i0 ∈ I (x) one finds
ti � 0, i ∈ I (x) \ {i0} such that ai0 = ∑

i∈I (x)\{i0} ti ai . Then

bi0 = 〈ai0 , x〉 =
∑

i∈I (x)\{i0}
ti 〈ai , x〉 =

∑
i∈I (x)\{i0}

ti bi .

http://dx.doi.org/10.1007/978-3-319-21091-9_2
http://dx.doi.org/10.1007/978-3-319-21091-9_2
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Let y ∈ R
n satisfy

〈ai , y〉 � bi for i ∈ I (x) \ {i0}.

We deduce

〈ai0 , y〉 =
∑

i∈I (x)\{i0}
ti 〈ai , y〉 �

∑
i∈I (x)\{i0}

ti bi = bi0 .

This shows that inequality 〈ai0 , y〉 � bi0 is redundant in (8.1), a contradiction to
(A1). By this, I (x) ⊆ I and each of vectors a j , j ∈ I can be expressed as a positive
combination of the vectors ai , i ∈ I (x). Again, by a similar argument as above, one
proves that I = I (x) due to the non-redundancy hypothesis (A1). Consequently the
system (8.2) is consistent. �

There is a close relation between normal index sets and faces of X . We remember
that an index set I ⊆ {1, · · · , m} is said to determine a face F of X if F is the
solution set to the system

〈ai , x〉 = bi , i ∈ I
〈a j , x〉 � b j , j ∈ {1, · · · , m}\I

(8.3)

and if no inequality can be replaced by equality. We know from Corollary 2.3.5 that
I , denoted also I (F), coincides with the active index set of a relative interior point
of F . Moreover, if F is the solution set of another system corresponding to another
index set I ′ ⊆ {1, · · · , m}, then I ′ ⊆ I (F).

Theorem 8.1.4 A nonempty index set I ⊆ {1, · · · , m} is normal if and only if the
solution set to the system (8.3) is determined by I . Moreover, a nonempty subset F
of X is a face if and only if it is determined by a normal index set.

Proof Let I ⊆ {1, · · · , m} be a normal index set and let F be the solution set to the
system (8.3). By definition there is some point x̄ ∈ X such that NX (x̄) = pos{ai :
i ∈ I }. We wish to prove that I determines F . Towards this end, we first show that
F is nonempty, namely it contains x̄ , that is

〈ai , x̄〉 = bi for i ∈ I.

Suppose, to the contrary, that there is some index i0 ∈ I such that 〈ai0 , x̄〉 < bi0 . It
follows from the definition of the normal cone that

〈ai0 , y〉 � 〈ai0 , x̄〉 < bi0 (8.4)

for every y ∈ X . Consider the system

〈ai , y〉 � bi for i ∈ {1, · · · , m} \ {i0}.

http://dx.doi.org/10.1007/978-3-319-21091-9_2
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We claim that every solution y of this system lies in X . This is because if for some
solution y one has 〈ai0 , y〉 > bi0 , then there is a real number t ∈ [0, 1] such that
〈ai0 , t x̄ + (1− t)y〉 = bi0 . As the point t x̄ + (1− t)y belongs to X , the latter equality
contradicts (8.4). Thus, inequality 〈ai0 , y〉 � bi0 is redundant, which contradicts
(A1). Next, we prove I = I (x̄). Inclusion I ⊆ I (x̄) is evident. If there is some
j ∈ I (x̄) \ I , then in view of Theorem 2.3.24, a j is a normal vector at x̄ , and hence
there are ti � 0, i ∈ I such that a j = ∑

i∈I ti ai . This expression of a j leads to a
contradiction that inequality 〈a j , y〉 � b j is redundant. Hence we conclude that I
determines the face F .

To show the second part of the theorem, let F be a face of X . Pick any relative
interior point x̄ of F . Then 〈a j , x̄〉 < b j for j ∈ {1, · · · , m}\I (x̄) and 〈ai , x̄〉 = bi

for i ∈ I (x̄). In view of Lemma 8.1.3, I (x̄) is a normal index set that determines F .
The converse statement is clear because if F is nonempty and given by the system
(8.3), then it is a face of X by Theorem 2.3.3. �

Let x̄ be a vertex of X . It is a zero-dimensional face, hence the index set I (x̄) has
at least n elements. We recall that a point x̄ is a non-degenerate vertex of X if there
are exactly n linearly independent inequalities in (8.1) that are satisfied as equalities
at x̄ . It follows that the active index set at a non-degenerate vertex has n elements.
The next result tells us when a subset I ⊆ I (x̄) is a normal set.

Corollary 8.1.5 Let x̄ be a non-degenerate vertex of X. Then every nonempty subset
I ⊆ I (x̄) is normal.

Proof Without loss of generality we may assume that I (x̄) = {1, · · · , n}. Let I be
a nonempty subset of I (x̄). Consider the system

〈ai , x〉 = bi , i ∈ I

〈a j , x〉 � b j , j ∈ {1, · · · , m} \ I.

This system is consistent, for instance x̄ is a solution. Hence the solution set, denoted
F , is a face of X . Since the vectors ai , i = 1, · · · , n are linearly independent, the
dimension of F is equal to n − |I |. Let IF be the index set that determines the face
F and is the active index set at a relative interior point of F . Then I ⊆ IF and
dimF = n − rank{ai : i ∈ IF } = n − |I |. We conclude I = IF . By Theorem 8.1.4,
I is a normal index set. �

Corollary 8.1.6 Let I 1 and I 2 be two normal index sets. Then the intersection
I 1 ∩ I 2 is normal if it is nonempty.

Proof Since I 1 and I 2 are normal, when I = I 1 (respectively I = I 2) the system
(8.2) has at least one solution, say x (respectively y). Set z = (x + y)/2. Then for
i ∈ I 1 ∩ I 2 we have

〈ai , z〉 = 1

2

(〈ai , x〉 + 〈ai , y〉) = 1

2
(bi + bi ) = bi .

http://dx.doi.org/10.1007/978-3-319-21091-9_2
http://dx.doi.org/10.1007/978-3-319-21091-9_2
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For j ∈ {1, · · · , m} \ (I 1 ∩ I 2) we have either j /∈ I 1 which implies 〈a j , x〉 < b j ,

or j /∈ I 2 which implies 〈a j , y〉 < b j . This implies

〈a j , z〉 = 1

2

(〈a j , x〉 + 〈a j , y〉) <
1

2
(b j + b j ) = b j

for all j ∈ {1, · · · , m} \ (I 1 ∩ I 2). Consequently, z is a solution to the system (8.2),
in which I = I 1 ∩ I 2. In view of Lemma 8.1.3, the index set I 1 ∩ I 2 is normal. �

Assume that there exist � edges F1, · · · , F� emanating from a vertex x̄ . Then, each
of I (F1), · · · , I (F�) has at least (n − 1) elements (remember that I (Fi ) denotes
the active index set of a relative interior point of Fi ). Let J ⊆ {1, · · · , �} with
|J | = r ≤ min{�, n − 1}. Take xi ∈ Fi \ {x̄}, i = 1, · · · , � and set

x J = x̄

r + 1
+

∑
j∈J

x j

r + 1
.

The next result allows us to determine the largest face that contains x J as a relative
interior point.

Proposition 8.1.7 Assume that the active index set I (x J ) is nonempty. Then it is a
normal set and the face F determined by the system

〈ai , x〉 = bi , i ∈ I (x J )

〈a j , x〉 � b j , j ∈ {1, · · · , m} \ I (x J ),

contains the convex hull of all edges Fj , j ∈ {1, · · · , m} that satisfy the containment
I (Fj ) ⊇ I (x J ), including j ∈ J .

Proof Since x J belongs to X , it is a solution of the system described in the propo-
sition. Hence F is a face of X . It follows from the definition of active index sets, x J

is a solution to the system

〈ai , xi 〉 = bi , i ∈ I (x J )

〈a j , xi 〉 < b j , j ∈ {1, · · · , m} \ I (x J ).

By Lemma 8.1.3, I (x J ) is a normal index set. Furthermore, if for some index j ∈
{1, · · · , m} one has I (Fj ) ⊇ I (x J ), then NX (Fj ) ⊇ NX (F), and hence Fj ⊆ F .
Being convex, the face F contains the convex hull of all such edges. Finally, for
i ∈ I (x), equality

bi = 〈ai , x J 〉 = 〈ai ,
x̄

r + 1
+

∑
j∈J

x j

r + 1
〉



266 8 Normal Cone Method

holds if and only if 〈ai , x j 〉 = bi for all i ∈ I (x̄) and j ∈ J . We conclude that
Fj ⊆ F for all j ∈ J . �

8.2 Positive Index Sets

Let C be a k × n-matrix and let the columns of CT be denoted by c1, · · · , ck .

Definition 8.2.1 A vector v ∈ R
n is called C-positive if there exist strictly positive

numbers λ1, · · · ,λk such that v =
k∑

i=1
λi ci , and it is C-negative if −v is C-positive.

In the matrix form, a column vector v is C-positive if and only if v = CT λ for
some strictly positive vector λ ∈ R

k . Throughout this chapter we also assume the
following

(A2) the cone pos{c1, · · · , ck} is not a linear subspace.
This assumption is clearly equivalent to the fact that the origin of the space is not C-

positive. When the zero vector of Rn is a strictly positive combination of c1, · · · , ck ,
the problem of vector maximizing Cx over a set X ⊆ R

n becomes trivial because
every feasible solution is maximal. Some more properties of C-positive vectors are
given next.

Lemma 8.2.2 The following properties hold true.

(i) If C is the identity matrix, then a vector v ∈ R
n is C-positive if and only if it is

strictly positive.
(ii) The set of C-positive vectors coincides with the relative interior of the cone

pos{c1, · · · , ck}.
(iii) If there is a vector simultaneously C-positive and C-negative, then the rows of

C are linearly dependent.
(iv) For x ∈ R

n, one has Cx � 0 (respectively Cx > 0) in R
k if and only if

〈v, x〉 � 0 (respectively 〈v, x〉 > 0) for every C-positive vector v of Rn.

Proof The first property is immediate from the definition. The second one follows
from Lemma 6.4.10. For the third property, we notice that when a vector is simulta-
neously C-positive and C-negative, then the zero vector is a linear combination of the
rows of C . Hence the rows of C are linearly dependant. Let us prove the last property.
We have Cx � 0 if and only if 0 � 〈Cx,λ〉 = 〈x, CT λ〉 for every λ ∈ R

k,λ > 0,
or equivalently 〈x, v〉 � 0 for every C-positive vector v ∈ R

n . The strict inequality
Cx > 0 is proven in a similar way. �

Definition 8.2.3 Let a1, · · · , am be (column) vectors in R
n . An index set I ⊆

{1, · · · , m} is said to be positive if pos{ai : i ∈ I } contains a C-positive vector.

It is clear that if an index set is positive, any index set that contains it is also positive,
while a smaller subset is not necessarily positive.

http://dx.doi.org/10.1007/978-3-319-21091-9_6
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Example 8.2.4 Consider a matrix C =
(

2 −3 −1
3 1 0

)
and a system of inequalities

given by ⎛
⎜⎜⎜⎜⎝

1 1 1
−2 −2 −1
−1 0 0

0 −1 0
0 0 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎝ x1

x2
x3

⎞
⎠ �

⎛
⎜⎜⎜⎜⎝

1
−1

0
0
0

⎞
⎟⎟⎟⎟⎠ .

The transposes of the row vectors of this system are denoted by a1, · · · , a5. Direct
calculation shows that the index set {2, 4} is not positive. The set {1, 4, 5} is positive
because the cone pos{a1, a4, a5}, where a1 = (1, 1, 1)T , a4 = (0,−1, 0)T and a5 =
(0, 0,−1)T , contains a C-positive vector v = (7/2,−5/2,−1)T = (2,−3,−1)T +
1
2 (3, 1, 0)T .

Proposition 8.2.5 An index set I ⊆ {1, · · · , m} is positive if and only if the following
system is consistent

∑
i∈I

μi a
i −

k∑
j=1

λ j c
j = 0

μi � 0, i ∈ I and λ j � 1, j = 1, · · · , k.

(8.5)

Proof It is clear that if the system has a solution, then pos{ai : i ∈ I } contains
the C-positive vector

∑k
j=1 λ j c j . Conversely, if there are strictly positive numbers

λ1, · · · ,λk such that
∑k

j=1 λ j c j belongs to the cone pos{ai : i ∈ I }, then the vector∑k
j=1

λ j
min{λ1,··· ,λk }c j belongs to that cone too, by which the system given in the

proposition has a solution. �

Given a family of vectors a1, · · · , am we denote

I 1 = {
i ∈ {1, · · · , m} : ai is C−positive

}
I 3 = {

i ∈ {1, · · · , m} : ai is C−negative
}

I 2 = {1, · · · , m} \ (I 1 ∪ I 3).

Under (A2) we have a partition of the index set {1, · · · , k} = I 1 ∪ I 2 ∪ I 3 by disjoint
subsets. The next result shows how to find positive normal sets outside I 1.

Theorem 8.2.6 Assume that I ⊆ {1, · · · , m} is a positive and normal index set such
that the cone pos{ai : i ∈ I } is not a linear subspace. Then there exists a positive
and normal set I0 ⊆ I ∩ (I 1 ∪ I 2).

Proof Let I = {i1, · · · , il} be a positive and normal index set. We prove the theorem
by induction on l. If l = 1, then tai1 is C-positive for some t � 0 since pos{ai1} is a
positive normal cone. Actually t > 0 because otherwise the zero vector would belong
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to the relative interior of the cone pos{c1, · · · , ck}, which contradicts the assumption
that pos{c1, · · · , ck} is not a linear subspace. It follows that ai1 is C-positive and
I0 = I satisfies the requirements of the theorem.

Now, let l > 1. We claim that I ∩ (I 1 ∪ I 2) �= ∅. Indeed, if not, then one has
I ⊆ I 3. Let v be a C-positive vector that belongs to the cone pos{ai : i ∈ I }. As all
ai , i ∈ I are C-negative, the vector v is C-negative too. We deduce that 0 = v − v

is a C-positive vector and arrive at the same contradiction as above. Consider two
possible cases: I ∩ I 3 = ∅ and I ∩ I 3 �= ∅, say il is a common element of I and
I 3. In the first case, the index set I0 = I will be suitable to achieve the proof. In the
second case we claim that the cone pos{ai : i ∈ I } does not contain all C-positive
vectors in its relative interior. In fact, if not, this relative interior should contain the
vector −ail because ail is C-negative, and hence pos{ai : i ∈ I } contains the zero
vector 0 = ail −ail in its relative interior, which contradicts the hypothesis. Let u be
a C-positive vector outside the relative interior of the cone pos{ai : i ∈ I }. Joining
v and u we find a C-positive vector w on a proper face of the cone pos{ai : i ∈ I }.
Let I ′ be a proper subset of I such that the face is the cone pos{ai : i ∈ I ′}. In view
of Theorem 2.3.26 the index set I ′ determines a face of P , which contains the face
determined by I . In other words, I ′ is a normal index set. It is positive because it
contains the C-positive vector w. By induction, there is a positive normal index set
I0 ⊆ I ′ ∩ (I 1 ∪ I 2) ⊆ I ∩ (I 1 ∪ I 2) as requested. �

Efficient solution faces

Let us consider the following multiobjective linear programming problem (MOLP)

Maximize Cx

subject to Ax � b,

where C is a real k × n-matrix, A is a real m × n-matrix and b is a column m-vector.
The feasible solution set of (MOLP) is denoted X and its efficient (maximal) solution
set is denoted S(M O L P). We will assume throughout that X is nonempty. Moreover,
if the zero vector of Rn is C-positive, then every feasible solution is efficient because
there is a strictly positive vector λ ∈ R

k such that 0 = CT λ which implies that every
element of X is an optimal solution of the scalarized problem (Pλ)

maximize 〈λ, Cx〉
subject to Ax � b,

and hence, in view of Theorem 4.3.1, it is an efficient solution of (MOLP). For this
reason, we will assume henceforth (A2) as before, that is, the cone pos{c1, · · · , ck}
is not a linear subspace.

http://dx.doi.org/10.1007/978-3-319-21091-9_2
http://dx.doi.org/10.1007/978-3-319-21091-9_4
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Theorem 8.2.7 A feasible solution of (MOLP) is an efficient solution if and only if
the active index set at this solution is positive.

Proof Let x0 ∈ X be an efficient solution. In view of Theorem 4.3.1 there is a strictly
positive vector λ such that x0 solves the problem (Pλ). In particular,

〈CT λ, x0 − x〉 � 0 for all x ∈ X (8.6)

which proves that the vector CT λ is a normal vector to X at x0. If I (x0) is empty,
then x0 is an interior point of X . Hence CT λ is the zero vector and contradicts
the assumption. In view of Theorem 2.3.24 the normal cone to X at x0 is the cone
pos{ai : i ∈ I (x0)}. Hence I (x0) is a positive and normal index set.

Conversely, assume that I (x0) is positive. There is a strictly positive vector λ such
that CT λ belongs to the cone pos{ai : i ∈ I (x0)}. In particular CT λ is normal to
the set X at x0. Consequently, (8.6) is true, and therefore x0 solves (Pλ). We deduce
from Theorem 4.3.1 that x0 is an efficient solution of (MOLP). �

Corollary 8.2.8 (MOLP) has an efficient solution if and only if the index set
{1, · · · , m} is positive, or equivalently, the following system is consistent

m∑
i=1

μi a
i −

k∑
j=1

λ j c
j = 0

μi � 0, i = 1, · · · , m and λ j � 1, j = 1, · · · , k.

Proof Let x0 be an efficient solution of (MOLP). In view of Theorem 8.2.7 the
index set I (x0) is positive. As the set {1, · · · , m} contains I (x0), it is positive too.
Conversely, if the set {1, · · · , m} is positive, the cone pos{a1, · · · , am} which is
exactly the normal cone of X contains a C-positive vector. Hence there is some
point x0 ∈ X such that the normal cone to X at x0 contains that C-positive vector.
Again, by Theorem 8.2.7, the point x0 is efficient, and therefore (MOLP) has efficient
solutions. The equivalence between the consistency of the linear system mentioned
in the corollary and the positivity of the index set {1, · · · , m} is immediate from the
definition. �

Corollary 8.2.9 Let F be a face of X and I (F) the index set of F. Then F is
efficient if and only if I (F) is positive, in which case the dimension of F is equal to
n − rank{ai : i ∈ IF }. In particular, when X is of full dimension, (MOLP) admits
an (n − 1)-dimensional efficient face if and only if there is an index i0 ∈ {1, · · · , m}
such that ai0 is C-positive, in which case the (n − 1)-dimensional face determined
by the linear system

〈ai0 , x〉 = bi0

〈a j , x〉 � b j , j ∈ {1, · · · , m}\{i0},

is an efficient face.

http://dx.doi.org/10.1007/978-3-319-21091-9_4
http://dx.doi.org/10.1007/978-3-319-21091-9_2
http://dx.doi.org/10.1007/978-3-319-21091-9_4
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Proof Let x be a relative interior point of the face F . Then I (x) = I (F). By Theorem
4.3.8 the face F is efficient if and only if x is efficient. It remains to apply Theorem
8.2.7 to conclude the first part of the corollary. If the dimension of X is equal to n,
then a face F is of dimension n − 1 if and only if it is given by the (non-redundant)
system determining X in which only one inequality is equality. In other words the
index set of an (n −1)-dimensional face consists of one element. Therefore, this face
is efficient if and only if that unique index is positive. �

Let x̄ be an efficient vertex of (MOLP) and F1, · · · , F� the efficient edges ema-
nating from x̄ . The active index set of each Fi is denoted I (Fi ). Below is a condition
for an efficient face adjacent to x̄ to be maximal, that is, it is not a proper face of any
other efficient face of the problem.

Corollary 8.2.10 Let J ⊆ {1, . . . , �} and IJ =
⋂
i∈J

I (Fi ). Then the face F adjacent

to x̄ determined by the system

〈ai , x〉 = bi , i ∈ IJ

〈a j , x〉 � b j , j ∈ {1, · · · , m}\IJ ,

is a maximal efficient face if the following conditions hold:

(i) IJ is positive;
(ii) For every i /∈ IJ such that I (Fi ) �⊃ IJ , the index set IJ ∩ I (Fi ) is either empty

or not positive.

Proof It is clear that under (i), F is an efficient face. If it is not maximal, then it is
contained in a bigger efficient face, say F ′. We may find an edge Fj of F ′ emanating
from x̄ which does not belong to F . Then

IJ ∩ I (Fj ) �= ∅.

Since this index set contains the positive index set I (F ′) we conclude that IJ ∩ I (Fj )

is positive, which contradicts the hypothesis. �

The support of a vector μ ∈ R
m+ is denoted by supp(μ) and defined as

supp(μ) = {
i ∈ {1, · · · , m} : μi > 0

}
.

We shall use also the following notations: Γ is the solution set to the system formu-
lated in Corollary 8.2.8 and

I0 = {
I ⊆ {1, · · · , m} : I = supp(μ) for some (μ,λ) ∈ Γ

}
I1 = {

I ∈ I0 : I = supp(μ) for some vertex (μ,λ) ∈ Γ
}

and I denotes the set of all minimal elements of I1 with respect to inclusion. We
recall also that for a subset I ⊆ {1, · · · , m}, the set F(I ) consists of feasible solutions

http://dx.doi.org/10.1007/978-3-319-21091-9_4
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x of (MOLP) such that 〈ai , x〉 = bi , i ∈ I . In particular when I is the empty set,
F(I ) = X .

Corollary 8.2.11 The following statements hold.

(i) Let (μi ,λi ), i = 1, · · · , l be vertices of Γ . Then for all ti ∈ (0, 1) with
l∑

i=1

ti =
1 one has

F
(
supp(

l∑
i=1

tiμ
i )

) =
l⋂

i=1

F
(
supp(μi )

)
.

(ii) S(M O L P) =
⋃
I∈I0

F(I ) =
⋃
I∈I1

F(I ) =
⋃
I∈I

F(I )

(iii) Given an index set I ⊆ {1, · · · , m}, the set F(I ) is a maximal efficient face if
and only if it is nonempty and I ∈ I.

Proof It follows from the definition that

supp
( l∑

i=1

tiμ
i ) =

l⋃
i=1

supp(μi ).

This implies the equality in the first statement.
For the second statement, it is clear that for every I ∈ I0, if nonempty, the set

F(I ) is a face of X . Hence the index set of F(I ) that is included in I is positive.
By Corollary 8.2.9, F(I ) is efficient. Thus,

⋃
I∈I0

F(I ) ⊆ S(M O L P) is true.
Conversely, let x be an efficient solution of (MOLP). In view of Theorem 8.2.7, the
active index set I (x) is positive, which means that the system

∑
i∈I (x)

μi a
i −

k∑
j=1

λ j c
j = 0

μi � 0, i ∈ I (x) and λ j � 1, j = 1, · · · , k

is solvable. Let (μ,λ) be a solution. Define μ to be the vector the coordinates of
which are given by

μi =
{

μi for i ∈ I
0 else.

It is then clear that

x ∈ F
(
I (x)

) ⊆ F
(
supp(μ)

)
with supp(μ) ∈ I0 and the first equality in (ii) follows. Furthermore, since I ⊆ I1 ⊆
I0, we deduce inclusions
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⋃
I∈I0

F(I ) ⊇
⋃
I∈I1

F(I ) ⊇
⋃
I∈I

F(I ).

For the converse inclusions we notice that for each element I 1 ∈ I1, we find an
element I ∈ I such that I ⊆ I 1. Then F(I 1) ⊆ F(I ), which proves

⋃
I∈I1

F(I ) ⊆
⋃
I∈I

F(I ).

Moreover, for every element I 0 ∈ I0, say I =supp(μ) for some (μ,λ) ∈ Γ , there
exist vertices (μi ,λi ) ∈ Γ and positive numbers ti , i = 1, · · · , l such that

∑l
i=1 ti =

1 and (μ,λ) = ∑l
i=1 ti (μi ,λi ). It follows from the first part that

F(I 0) ⊆ F
(
supp(μi )

)
for every i = 1, · · · , l.

We conclude that ⋃
I∈I0

F(I ) ⊆
⋃
I∈I1

F(I ),

by which equalities in the second statement hold.
To prove the last statement we assume that F(I ) is a maximal efficient face of

(MOLP). By Corollary 8.2.9 the index set I belongs to I0. According to (ii), there
is a minimal index set I ′ ∈ I such that F(I ) ⊆ F(I ′). Since F(I ) is maximal,
we deduce F(I ) = F(I ′). Under the non-redundancy hypothesis (A1), we obtain
I = I ′. The converse statement is clear because if the efficient face F(I ) were not
maximal for I ∈ I, then one would find an efficient face F ′ that contains F(I ) as a
proper face. Then the index set of F ′ is strictly smaller than the index set of F(I ),
which is a contradiction because the index set of F(I ) is equal to I . �

Notice that the family I as well as the families I0 and I1 gathers positive index
sets which uniquely depend on the objective matrix C and the constraint matrix A
of (MOLP) and do not depend on the second term b of the constraints. This latter
term intervenes in the normality of the index sets, that is the nonemptiness of the
faces determined by these index sets. Therefore, for a given b, some of subsets in the
unions described in (ii) of Corollary 8.2.11 may be empty, which are precisely the
case when the corresponding index sets are not normal.

8.3 The Normal Cone Method

In this section we shall give a method for numerically solving the problem (MOLP).
The study of normal cones and their relationship with efficient faces that we have
developed in the previous sections allow us to construct simple algorithms to
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determine efficient faces of any dimension. Throughout this section we will make
the following assumption.

(A3) The feasible set X is an n-dimensional polyhedral set and contains no lines
and there is no redundant inequality in the constraint system of (MOLP).

The method we are going to describe consists of three main procedures:

1—Determine whether (MOLP) has efficient solutions and if it has, find an initial
efficient solution.

2—Starting from an efficient vertex, find all efficient edges and efficient rays
emanating from it. Since the efficient solution set of (MOLP) is arcwise connected,
this procedure allows us to find all efficient vertices and all efficient edges of the
problem.

3—Find all efficient faces adjacent to (i.e. containing) a given efficient vertex
when all the efficient edges adjacent to this vertex are already known.

Existence of efficient solutions and finding an initial efficient solution for
(MOLP)

According to Corollary 8.2.8, (MOLP) has an efficient solution if and only if the
system

AT μ − CT λ = 0
μ ∈ R

m,μ � 0
λ ∈ R

k,λ � e,
(8.7)

where e is the vector of ones, has a solution. Remember that the columns of AT are
a1, · · · , am and the columns of CT are c1, · · · , ck .

Procedure 1.

• Step 1. Solve the system (8.7).
(a) If the system has no solution, then stop. (MOLP) has no efficient solution.
(b) Otherwise, go to Step 2.

• Step 2. Let λ > 0 be a solution and v = CT λ. If v = 0 , then every feasible solu-
tion of (MOLP) is an efficient solution. Otherwise, solve the linear programming
problem

maximize 〈v, x〉
subject to Ax � b.

This problem has a solution, say x̄ . Then x̄ is an initial efficient solution of (MOLP).
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Example 8.3.1 We consider the following (MOLP)

Maximize

(
2 −3 1
3 1 0

) ⎛
⎝ x1

x2
x3

⎞
⎠

subject to

⎛
⎜⎜⎜⎜⎝

1 1 1
−2 −2 −1
−1 0 0

0 −1 0
0 0 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎝ x1

x2
x3

⎞
⎠ �

⎛
⎜⎜⎜⎜⎝

1
−1

0
0
0

⎞
⎟⎟⎟⎟⎠ .

By solving the system (8.7) we find a solution λ = (2, 1)T . The vector v in Step 2
is v = (7,−5, 2)T and the problem to solve in this step is to maximize the function
7x1−5x2+2x3 over the feasible set of (MOLP). The simplex method of Chap. 3 yields
a vertex solution x0 = (1, 0, 0)T , which is also an efficient solution of (MOLP).

Determination of efficient vertices and efficient edges

When (MOLP) has an efficient solution, by solving the linear problem in Step 2 of
Procedure 1 one may obtain an efficient vertex. Let x̄ be such a vertex. Then the active
index set I (x̄) has at least n elements. Any edge emanating from x is determined
by n − 1 linearly independent equations among the m inequality constraints, and of
course its index set is a subset of I (x̄). An index set I ⊆ I (x̄) the cardinality of
which is equal to n − 1 determines a one-dimensional space that may give rise to an
edge of X by the system

〈ai , v〉 = 0, i ∈ I

provided that the vectors ai , i ∈ I are linearly independent. Otherwise the solution
set of this system would be of higher dimension. Moreover, if I is normal, then there
is some real number t �= 0 such that x̄ + tv is a solution to the system

〈ai , x〉 = bi , i ∈ I
〈a j , x〉 � b j , j ∈ {1, · · · , m}\I.

The edge emanating from x̄ in direction v above is efficient if, in addition, I is pos-
itive. We are now able to describe the second procedure to solve (MOLP).

Procedure 2.

• Step 0 (Initialization). Determine the active index set

I (x̄) = {
i ∈ {1, · · · , m} : 〈ai , x̄〉 = bi

}
.

Choose I ⊂ I (x̄) with |I | = n − 1.

http://dx.doi.org/10.1007/978-3-319-21091-9_3
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• Step 1. Check the linear independence of the family {ai : i ∈ I }.
If not, choose another I ⊆ I (x̄) with |I | = n − 1.
If yes, go further.

• Step 2. (I is positive?) Solve

∑
i∈I

μi a
i −

k∑
j=1

λ j c
j = 0

μi � 0, i ∈ I and λ j � 1, j = 1, · · · , k.

(a) If it has no solution, pick another I ⊆ I (x̄) with |I | = n − 1 and return to
Step 1.
(b) Otherwise, I is a positive set, go further.

• Step 3. (I is normal? If yes, find the corresponding efficient edge)

– Step 3.1. Find a direction v �= 0 of a possible edge emanating from x̄ by solving

〈ai , v〉 = 0, i ∈ I.

– Step 3.2. Solve the following system

〈ai , x̄ + tv〉 � bi , i = 1, · · · , m.

Let the solution set be [t0, 0] or [0, t0] according to t0 < 0 or t0 > 0. The values
t0 = −∞ and t0 = ∞ are possible.

(a) If t0 = 0, no edge of X emanating from x̄ along v. I is not normal. Pick
another I ⊆ I (x̄) and go to Step 1.
(b) If t0 �= 0 and is finite, then x̄ + t0v is an efficient vertex and [x̄, x̄ + t0v] is
an efficient edge. Store them if they have not been stored before. Pick another
I ⊆ I (x̄) and go to Step 1.
(c) If t0 is infinite, say t0 = ∞, then the ray {x̄ + tv : t ≥ 0} is efficient. Store
the result. Pick another I ⊆ I (x̄) and go to Step 1.

We notice that if x̄ is a non-degenerate vertex, that is |I (x̄)| = n, then Step 1 can
be skipped because the family of vectors ai , i ∈ I (x̄) is already linearly independent,
and any subset of I (x̄) is normal (see Corollary 8.1.5).

Moreover, by solving the system of Step 3.2 we mean finding the solution set of
type [t0, 0] or [0, t0] with t0 negative or positive respectively. The infinite values +∞
and −∞ are possible. If t0 �= 0, then this solution set is a 1-dimensional face of X
determined by the system

〈ai , x〉 = bi , i ∈ I
〈a j , x〉 � b j , j ∈ {1, · · · , m}\I.
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The active index set of this face contains I , but does not necessarily coincide with
I , unless x̄ is non-degenerate. It can be found by checking the number of equalities
〈ai , x̄ + tv〉 = bi with i ∈ I (x̄) for some 0 < t < t0 if t0 > 0, or t0 < t < 0 if
t0 < 0.

Example 8.3.2 The aim of this example is to apply Procedure 2 to find all efficient
edges adjacent to an initial efficient vertex. We consider the following (MOLP)

Maximize

(
2 3 4
3 2 0

) ⎛
⎝ x1

x2
x3

⎞
⎠

subject to

⎛
⎜⎜⎜⎜⎝

1 1 1
−2 −2 −1
−1 0 0

0 −1 0
0 0 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎝ x1

x2
x3

⎞
⎠ �

⎛
⎜⎜⎜⎜⎝

1
−1

0
0
0

⎞
⎟⎟⎟⎟⎠ .

To find an initial efficient vertex we solve the system (8.7) that takes the form

μ1

⎛
⎝ 1

1
1

⎞
⎠ + μ2

⎛
⎝−2

−2
−1

⎞
⎠ + μ3

⎛
⎝−1

0
0

⎞
⎠ + μ4

⎛
⎝ 0

−1
0

⎞
⎠ + μ5

⎛
⎝ 0

0
−1

⎞
⎠ (8.8)

= λ1

⎛
⎝ 2

3
4

⎞
⎠ + λ2

⎛
⎝ 3

2
0

⎞
⎠

μi � 0, i = 1, · · · , 5, λ1 � 1,λ2 � 1.

A solution can be given as λ1 = 3,λ2 = 1,μ1 = 12,μ2 = 0,μ3 = 3,μ4 =
1, and μ5 = 0. The normal cone of the feasible set contains a C-positive vector
v = λ1c1T + λ2c2T = (9, 11, 12)T , which generates a denegerate efficient vertex
x0 = (0, 0, 1)T . The active index set of this solution is I (x0) = {1, 2, 3, 4}. In order
to find efficient edges emanating from x0 we check the normality and the positivity
of each of the 2-element index subsets of I (x0) and also the linear independence of
the corresponding vectors.

(1) For I1 = {1, 2} we have the vectors a1 = (1, 1, 1)T and a2 = (−2,−2,−1)T

linearly independent. To check its positivity we solve (8.8) by setting μ3 = μ4 =
μ5 = 0, which leads to

μ1 − 2μ2 = 2λ1 + 3λ2 = 3λ1 + 2λ2

μ1 − μ2 = 4λ1.

In particular μ2 = −λ1, which contradicts the constraints μ2 � 0 and λ1 � 1. Hence
I1 is not positive.
(2) For I2 = {1, 3}, we notice that the vectors a1 = (1, 1, 1)T and a3 = (−1, 0, 0)T



8.3 The Normal Cone Method 277

are linearly independent. To check its positivity we solve (8.8) by setting μ2 =
μ4 = μ5 = 0. A solution of it can be given as λ1 = 2, λ2 = 1, μ1 = 8,μ3 = 1.
As consequence, I2 is positive. To see whether it is normal we solve the constraint
inequalities of (MOLP) in which the first and the third inequations are equations. It
is easy to check that the solution set is the segment connecting the vertex x0 and the
vertex x2 = (0, 1, 0)T . Thus, I2 is positive and normal. By this, the segment [x0, x2]
is an efficient edge.
(3) For I3 = {1, 4}, we notice again that the vectors a1 = (1, 1, 1)T and a4 =
(0,−1, 0)T are linearly independent. We set μ2 = μ3 = μ5 = 0 in (8.8) for checking
the positivity of I3. Similarly to the case of I1, the system yields μ4 = −λ2/2, which
is a contradiction. Hence I3 is not positive.
(4) The index sets {2, 3}, {2, 4} and {3, 4} are evidently not positive because in the
corresponding systems obtained from (8.8) by setting at least μ1 = 0, the vector
on the left hand side is negative, while the vector on the right hand side is strictly
positive.
We conclude that there is only one efficient edge emanating from the vertex x0 and
ending at the vertex x2.

Determination of higher dimensional efficient solution faces

Assume that x̄ is an efficient vertex of problem (MOLP) and [x̄, x̄ + tivi ], i =
1, · · · , r are efficient edges emanating from x̄ with ti > 0. Here, for the convenience
we use ti = ∞ if the ray edge {x̄ + tvi : t ≥ 0} is efficient and [x̄, x̄ + tivi ] denotes
this ray. Let Ii ⊆ I (x̄), i = 1, · · · , r be the positive index sets determining these
edges.

Observe that except for the pathological case when the entire set X is efficient,
the largest dimension that an efficient face adjacent to x̄ may have is min{r, n − 1}.
For 1 < l � min{r, n − 1}, we have the following procedure to find l-dimensional
efficient faces adjacent to the given efficient vertex x̄ .

Procedure 3.

• Step 0 (Initialization). Pick J ⊆ {1, · · · , r} with |J | = l and determine I = ⋂
j∈J

I j .

Find rank{ai : i ∈ I }.
If rank{ai : i ∈ I } �= n − l, choose another J and repeat this step.
Otherwise go to the next step.

• Step 1. (I is positive?) Solve the system (8.5).
(a) If it has no solution, return to Step 0 by choosing another J .
(b) Otherwise, I is positive, go to Step 2.

• Step 2. Determine J0 = { j ∈ {1, · · · , r} : I j ⊇ I }. (It is evident that J ⊆ J0.)
The convex hull of the edges [x̄, x̄ + t jv j ], j ∈ J0 forms an l-dimensional efficient
face. Return to Step 0 by picking another not yet explored J that is not contained
in J0 with |J | = l until no such J left.



278 8 Normal Cone Method

The index set I obtained in the initialization step is normal whenever it is nonempty
because it is the intersection of normal sets I j , j ∈ J (Corollary 8.1.6). If in addition
the rank of the family {ai : i ∈ I } is equal to n − l, then the face determined by the
system

〈ai , x〉 = bi , i ∈ I
〈a j , x〉 � b j , j ∈ {1, · · · , m}\I,

has its dimension equal to l, and its active index set contains I . When the efficient
vertex x̄ is non-degenerate, the condition rank{ai : i ∈ I } = n − l is equivalent to
the fact that I has l elements.

Example 8.3.3 The aim of this example is to apply Procedure 3 to find all efficient
faces adjacent to an initial efficient vertex. We consider the following (MOLP)

Maximize

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠

⎛
⎝ x1

x2
x3

⎞
⎠

subject to

⎛
⎜⎜⎜⎜⎜⎜⎝

−2 −2 −1
2 1 2
1 2 2

−1 0 0
0 −1 0
0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎝ x1

x2
x3

⎞
⎠ �

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
2
2
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Applying Procedure 1 and Procedure 2 one finds an initial vertex x0 = (0, 0, 1)T

to start and the following efficient edges adjacent to x0: Fi = [x0, xi ], i = 1, 2, 3,
where x1 = (1, 0, 0)T , x2 = (0, 1, 0)T and x3 = (2/3, 2/3, 0)T . The index sets of
x0 and Fi are respectively given by

I (x0) = {1, 2, 3, 4, 5}
I1 = {2, 5}
I2 = {3, 4}
I3 = {2, 3}.

We use Procedure 3 to determine a two-dimensional efficient face adjacent to x0. At
Step 0, we choose for instance J = {1, 3} and consider I = I1 ∩ I3 = {2}. The rank
of a2 = (2, 1, 2)T is equal to 1, hence we may go further. In Step 2, we check the
positivity of I by solving the system (8.5) applied to our example:

μ

⎛
⎝ 2

1
2

⎞
⎠ = λ1

⎛
⎝ 1

0
0

⎞
⎠ + λ2

⎛
⎝ 0

1
0

⎞
⎠ + λ3

⎛
⎝ 0

0
1

⎞
⎠ .
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A solution is given by λ1 = 2,λ2 = 1,λ3 = 2 and μ = 1. We conclude that the
two-dimensional face determined by the system of constraints in which the second
inequality is set to equation is efficient. Since I is contained in I1 and I3, this face
contains the edges F1 and F3. The edge F2 is not included in it because I2 does not
contain I .

Determination of all maximal efficient faces adjacent to an efficient vertex

Let x̄ be an efficient vertex of (MOLP) and let {p1, · · · , pr } be the collection of
all efficient edges (possibly rays) emanating from x̄ which have been obtained by
Procedure 2. The positive index sets determining these edges are denoted I1, · · · , Ir .
Thus, each edge pi is the solution to the system

〈a j , x〉 = b j , j ∈ Ii

〈a j , x〉 � b j , j ∈ {1, · · · , m} \ Ii .

The next algorithm determines all maximal efficient faces adjacent to x̄ . The biggest
dimension of these faces does not exceed min{r, n−1} as we have already discussed.

Procedure 4.

• Step 0. For l = 2, · · · , r pick J ⊆ {1, · · · , r} with |J | = l and compute

I =
⋂
j∈J

I j .

If either I = ∅, or I is not positive, then choose another J .
If I is nonempty positive, go to the next step.

• Step 1. For each j ∈ {1, · · · , r} \ J , compute I ′ = I ∩ I j .

(a) If either I ′ = ∅ or I ′ is not positive, proceed for other j . If this is the case for
all j ∈ {1, · · · , r} \ I , the face FJ generated by the edges p j with I ⊆ I j

including j ∈ J , is a maximal efficient face to be stocked together with the
index set J = {i : I ⊆ Ii }. Return to Step 0 for other J .

(b) If I ′ is nonempty positive, set J = J ∪{ j} (then |J | � l +1) and repeat Step 1
until no J left.

• Step 2. Set l := l + 1 and return to Step 0 by choosing J not yet exploited or not
contained in any index subset already stocked in Step 1.

The positivity of I in Step 0 and of I ′ in Step 1 is checked by solving the system
(8.5). The maximality of the efficient faces stocked in Step 1 is due to Corollary
8.2.10.
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Example 8.3.4 We continue Example 8.3.3 by choosing x0 = (0, 0, 1)T as an initial
vertex. Its efficient edges Fi = [x0, xi ], i = 1, 2, 3 where x1 = (1, 0, 0)T , x2 =
(0, 1, 0)T , x3 = (2/3, 2/3, 0)T . The index set of x0 is I (x0) = {1, 2, 3, 4, 5} and
the index sets of Fi , i = 1, 2, 3 are respectively

I (F1) = {2, 5}, I (F2) = {3, 4}, I (F3) = {2, 3}.

We apply Procedure 4 to determine all maximal efficient faces adjacent to x0. In
Step 0, for l = 2, we choose J ⊆ {1, 2, 3} with |J | = 2.

• For J = {1, 3} one has I = I (F1) ∩ I (F3) = {2, 5} ∩ {2, 3} = {2}. This index
set I is positive (see Example 8.3.3), we go to Step 1. Let j ∈ {1, 2, 3}\J = {2}.
Compute I

′ = I ∩ I (F2) = {2} ∩ {3, 4} = ∅. Thus, the face generated by the
index set {2} is a maximal efficient face that contains the edges Fj , j ∈ J.

• For J = {1, 2} we have I = I (F1) ∩ I (F2) = ∅. Return to Step 0.
• For J = {2, 3} we have I = I (F2)∩ I (F3) = {3}. It is positive because the system

μ

⎛
⎝ 1

2
2

⎞
⎠ = λ1

⎛
⎝ 1

0
0

⎞
⎠ + λ2

⎛
⎝ 0

1
0

⎞
⎠ + λ3

⎛
⎝ 0

0
1

⎞
⎠ , λ1,λ2,λ3 � 1, μ � 0

admits a solution λ1 = 1,λ2 = 2,λ3 = 2 and μ = 1. We go to Step 1. Let
j ∈ {1, 2, 3}\J = {1}. Compute I

′ = I ∩ I (F1) = {3} ∩ {2, 5} = ∅. The face
generated by the index set I = {1} is maximal efficient and contains the edges
Fj , j ∈ J = {2, 3}.

The algorithm yields two maximal efficient faces that contain respectively the edges
F1, F3 and F2, F3.

Determination of the entire efficient solution set of (MOLP)

Since every efficient solution of (MOLP) is contained in a maximal efficient face,
the efficient solution set of the problem will be completely found if we can identify
all maximal efficient faces. The next algorithm for generating all maximal efficient
faces is based on Procedures 1, 2 and 4 and on the fact that the solution set of a
multiobjective linear problem is arcwise connected, that is any two efficient vertices
can be joined by a finite number of efficient edges.

The Algorithm

• Step 1. Determine whether (MOLP) has maximal solutions. If yes, find an efficient
vertex to start by using Procedure 1.

• Step 2. Find all efficient edges adjacent to this efficient vertex by Procedure 2.
• Step 3. Determine all maximal efficient faces adjacent to the given vertex by

Procedure 4 and stock them together with the active index set of each such a face.
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• Step 4. Choose a new efficient vertex adjacent to the given vertex and return to
Step 2 with this vertex to start unless no such efficient vertex left.

So far the analysis made in this chapter requires three assumptions (A1–A3), under
which the algorithm terminates after a finite number of iterations because this is
so for the three procedures we apply. There are some simple situations when one
or some of the above mentioned assumptions do not hold and there is no need to
solve the problem. For instance when (1) the feasible set is empty; or (2) the cone
pos{c1, · · · ck} is a linear subspace (the zero vector is C-positive, and hence every
feasible solution is maximal).

Particular case 1: Efficient sets in R
2

Sometimes we wish to compute the efficient set of a polyhedron (a bounded poly-
hedral convex set) which corresponds to the efficient solution set of the problem
(MOLP) with C being the identity matrix. Below we provide an effective and direct
algorithm to do this in the case X ⊆ R

2.

By renumbering the indices if necessary, we may assume

0 < θ1 < θ2 < · · · < θl <
1

2
π ≤ θl+1 < · · · < θm ≤ 2π,

where θ1, · · · , θm are the angular coordinates of a1, · · · , am in the polar coordinate
system of R2 (Fig. 8.1).

Fig. 8.1 Angular
coordinates

a1

a2

a3

a4

θ1

θ2θ3

θ4

Q
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It is evident that a1, · · · , al are positive vectors and hence each of them determines
an efficient edge. Moreover, each of the pairs of indices {m, 1}, {1, 2}, · · · , {l, l+1} is
positive and normal. So, by Corollary 8.2.9 they determine all 0-dimensional efficient
faces (vertices) of X. Denote by xi the intersection point of the lines

〈ai , x〉 = bi

〈ai+1, x〉 = bi+1,

i = 0, · · · , l, where a0 = am , b0 = bm . Then the efficient set of X is given by

l⋃
i=0

[xi , xi+1].

Particular case 2: Efficient sets in R
3

If the dimension of X is three, then it may have efficient faces of dimension 0 or 1
or 2. We recall that a point x̄ ∈ X is said to be an ideal efficient point if x̄ � x for
all x ∈ X. It is easy to see that X does not possess ideal efficient points if and only
if it has efficient faces of dimension 1 or 2, or it has no efficient point at all. Now we
describe an algorithm to determine the set of all efficient points of X ⊆ R

3. With one
exceptional case when Max(X ) consists of only one point, the efficient set Max(X )
can be completely determined if we know all efficient edges.

• Step 1 (Determine whether X possesses an ideal efficient point).
Solve the linear problem

maximize 〈ei , x〉
subject to x ∈ X.

for i = 1, 2, 3, where e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T . Let
x∗

1 , x∗
2 , x∗

3 be the optimal values of these problems. If x∗ = (x∗
1 , x∗

2 , x∗
3 ) ∈ X, then

x∗ is an ideal efficient point of X and Max(X) = {x∗};
Otherwise, go to Step 2.

• Step 2. Decompose the index set {1, · · · , m} into I 1 , I 2 , I 3 , where I 1 = {i :
ai > 0}, I 3 = {i : ai < 0}, I 2 = {1, · · · , m} \ (I 1 ∪ I 3).

If I 1 = ∅, then there are no efficient faces of dimension 2. Go to Step 3 to find
efficient faces of smaller dimension.
Otherwise, each ai , i ∈ I 1 determines an efficient face of dimension 2 by the
system

〈ai , x〉 = bi

〈a j , x〉 � b j , j ∈ {1, · · · , m}\{i}.
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Go to Step 3 to find efficient faces of smaller dimension, not included in the above
2-dimensional efficient faces.

• Step 3. Choose i, j ∈ I 2.

– Step 3.1. (Is {i, j} positive ?)
Solve the system

tai + (1 − t)a j > 0

1 � t � 0.

If it has a solution, then {i, j} is positive. Go to Step 3.2.
Otherwise, {i, j} is not positive. Pick other pair i, j ∈ I 2 and return to Step 3.1.

– Step 3.2. (Is {i, j} normal?)
Determine the set �i j := {x ∈ X : 〈ai , x〉 = bi , 〈a j , x〉 = b j }. If �i j = ∅ or
�i j is a point , then either {i, j} is not normal or dim�i j = 0. Pick other pair
i, j ∈ I 2 and Return to Step 3.1.
Otherwise �i j is a segment. This segment is an efficient edge. Store it. Pick
another i, j ∈ I 2 and return Step 3.1.

Remark According to Corollary 8.2.9, Step 2 and Step 3 allow us to generate the
entire efficient set of X because other efficient faces are included in those that were
found in these steps.

Computing weakly efficient solutions

The normal cone method we presented above to compute efficient solutions of
(MOLP) is also suitable to find weakly efficient solutions. The only difference is
that the C-positivity must be substituted by the weak C-positivity in all procedures.
Namely, we say that an index set I is weakly C-positive if there are nonnegative

numbers λ1, · · · ,λk , not all zero, such that v =
k∑

i=1
λi ci . Here are some results that

provide theoretical basis of the normal method for weakly efficient solutions:

• A face F of X is weakly efficient if and only if its active index set I (F) is weakly
C-positive.

• (MOLP) has weakly efficient solutions if and only if the following system is
consistent

m∑
i=1

μi a
i −

k∑
j=1

λ j c
j = 0

μi � 0, λ j � 0,

k∑
j=1

λ j = 1.
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• If the above system has a solution (μ1, · · · ,μm,λ1 · · · ,λk), then the function
x �→ 〈∑k

j=1 λ j c j , x〉 attains its maximum on X and every maximum point is a
weakly efficient solution of (MOLP).

8.4 Exercises

8.4.1 Find a counter-example to show that without the non-redundancy hypothesis
(A1), an index set I may be normal while the system

〈ai , x〉 = bi , i ∈ I
〈a j , x〉 < b j , j ∈ {1, · · · , m}\I

is inconsistent.

8.4.2 Consider (MOLP) described in Sect. 8.2 and assume that I ⊆ {1, · · · , m} is a
positive and normal index set. Prove that the efficient face determined by the system

〈ai , x〉 = bi , i ∈ I
〈a j , x〉 � b j , j ∈ {1, · · · , m}\I,

is not a maximal efficient face if the system

∑
i∈I

μi a
i −

k∑
j=1

λ j c
j = 0

μi � 1, i ∈ I and λ j � 1, j = 1, · · · , k,

is inconsistent. Show that the converse statement is not always true.

8.4.3 Find all normal index sets of the following systems:

(1)

⎧⎨
⎩

x1 − x2 + 2x3 � 3
x1 − 2x2 � −2

− x2 � 0
(2)

⎧⎨
⎩

x1 + x2 + x3 � 6
5x1 + 3x2 + 6x3 � 15
−x1 − x2 − x3 � 0.

8.4.4 Consider (MOLP) described in Sect. 8.2. Let X be the solution set of a linear
system Ax � b.

(1) Prove that if the polar cone of the asymptotic cone of X contains a C-positive
vector, then positive and normal index sets exist. In particular, when X is bounded,
there always exists a positive and normal index set.
(2) Assume that the system 〈ai , x〉 � bi , i = 1 · · · , m is non-redundant. Prove
that it has an (n − 1)-dimensional efficient face if and only if there is some i0 ∈
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{1, · · · , m} such that ai0 is C-positive, and that such an index is unique for each
(n − 1)-dimensional efficient face.

8.4.5 Solve the following problem by the normal cone method

Minimize

(−x1 − x2 − 0.25x3
x1 + x2 + 1.5x3

)

subject to

⎛
⎝ 2 1 2

1 2 1
−1 −1 −1

⎞
⎠

⎛
⎝ x1

x2
x3

⎞
⎠ �

⎛
⎝ 2

2
−6

⎞
⎠

x1, x2, x3 � 0.

and prove that the index set I = {6} determines a 2-dimensional maximal ef-
ficient face whose vertices are x1 = (0.67, 0.67, 0)T , x2 = (2, 0, 0)T , x3 =
(0, 2, 0)T , x4 = (6, 0, 0)T , x5 = (0, 6, 0)T .

8.4.6 Solve the problem

Minimize

⎛
⎝−x1 + 100x2 + 0x3

−x1 − 100x2 + 0x3
0x1 + 0x2 − 1x3

⎞
⎠

subject to

⎛
⎝ 1 2 2

2 1 2
5 5 6

⎞
⎠

⎛
⎝ x1

x2
x3

⎞
⎠ �

⎛
⎝ 10

10
30

⎞
⎠

x1, x2, x3 � 0.

We have obtained the following list of efficient vertices and faces.

(a) 3 two dimensional efficient faces F1, F2, F3 which are determined by I (F1) =
{1}, I (F2) = {2}, I (F3) = {3};

(b) Face F1 has 3 efficient vertices : x2 = (2, 4, 0), x4 = (0, 0, 5), x5 = (0, 5, 0)

and 3 efficient edges : :[x2, x4], [x2, x5], [x4, x5].
(c) Face F2 has 3 efficient vertices : x1 = (4, 2, 0), x3 = (5, 0, 0), x4 = (0, 0, 5)

and 3 efficient edges : :[x1, x3], [x1, x4], [x3, x4].
(d) Face F3 has 3 efficient vertices : x1 = (4, 2, 0), x2 = (2, 4, 0), x4 = (0, 0, 5)

and 3 efficient edges : :[x1, x2], [x1, x4], [x2, x4].
Write problems to determine

• an initial weakly efficient solution;
• all weakly efficient edges emanating from a given weakly efficient vertex;
• all maximal weakly efficient faces adjacent to a given weakly efficient vertex;
• the weakly efficient solution set of (MOLP).



286 8 Normal Cone Method

8.4.7 Consider the following problem

Minimize

⎛
⎝−1 −1 −0.25

1 1 1.5
0 1 1

⎞
⎠

⎛
⎝ x1

x2
x3

⎞
⎠

subject to

⎛
⎝−1 −1 1

−1 −1 −1
−2 −2 −1

⎞
⎠

⎛
⎝ x1

x2
x3

⎞
⎠ �

⎛
⎝−3

−5
−8

⎞
⎠

x1, x2, x3 � 0.

Using the normal method establish the following result

(a) 5 weakly efficient vertices:

v1 = (3, 0, 0), v2 = (0, 0, 0), v3 = (0, 3, 0),

v4 = (3.667, 0, 0.667), v5 = (0, 3.667, 0.667);

(b) 6 weakly efficient edges:

[v1, v2], [v1, v3], [v1, v4],
[v2, v3], [v3, v5], [v4, v5];

(c) 2 maximal weakly efficient faces of dimension 2:

F1 = co{v1, v3, v4, v5}
F2 = co{v1, v2, v3}.

8.4.8 Consider the following problem

Minimize

⎛
⎝−1 100 0

−1 −100 0
0 0 −1

⎞
⎠

⎛
⎝ x1

x2
x3

⎞
⎠

subject to

⎛
⎝−1 −2 −2

−2 −1 −2
−5 −5 −6

⎞
⎠

⎛
⎝ x1

x2
x3

⎞
⎠ �

⎛
⎝−10

−10
−30

⎞
⎠

x1, x2, x3 � 0.

Using the normal cone method to obtain the following efficient vertices and faces.

(a) 6 weakly efficient vertices:

v1 = (5, 0, 0); v2 = (4, 2, 0); v3 = (0, 0, 5)

v4 = (2, 4, 0); v5 = (0, 0, 0); v6 = (0, 5, 0).
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(b) 8 weakly efficient edges:

[v1, v2], [v1, v3], [v2, v4], [v2, v3],
[v3, v5], [v4, v6], [v4, v3], [v6, v3],

(c) 3 maximal weakly efficient faces of dimension 2:

F1 = co{v1, v2, v3},
F2 = co{v2, v3, v4},
F3 = co{v3, v4, v6}.



Chapter 9
Outcome Space Method

In many applications the number of decision variables is large. The feasible decision
set is defined by many constraints in a high dimensional space, and therefore it has a
lot of vertices and faces. Its descriptive analysis becomes costly and time consuming.
On the other hand, the number of objective functions is limited, frequently does not
exceed four or five. This leads to the outcomeor value set having far fewer vertices and
faces and much simpler structure. Because of this advantage outcome space methods
are aimed at developing algorithms to compute efficient vertices and efficient faces
of the value set in the outcome space.

9.1 Analysis of the Efficient Set in the Outcome Space

We consider the problem (MOLP) in a general form

Maximize Cx

subject to x ∈ X,

where C is a k ×n-matrix and X ⊆ R
n is the feasible set or the decision set, which is

defined by a system of linear equations. The set Q = {Cx : x ∈ X} ⊆ R
k is the value

set or the outcome set of the problem. A face of X that consists of efficient solutions
is called an efficient face of X . We know that the value sets Max(Q) and WMax(Q)
as well as the solution sets S(MOLP) and WS(MOLP) are arcwise connected and
consist of faces. We wish to know how efficient faces of Q and efficient faces of X
are linked. This will help us to understand the structure of the set of efficient solutions
once properties of the set of efficient outcomes are established.

Theorem 9.1.1 Assume X has a vertex. For every vertex y0 ∈ Max(Q) (respec-
tively, y0 ∈ WMax(Q)) there exists a vertex x0 ∈ S(MOLP) (respectively,
x0 ∈ WS(MOLP)) such that Cx0 = y0.

© Springer International Publishing Switzerland 2016
D.T. Luc, Multiobjective Linear Programming,
DOI 10.1007/978-3-319-21091-9_9

289



290 9 Outcome Space Method

Proof Let y0 ∈ Max(Q) be a vertex. By definition, there is x ∈ S(MOLP) such
that Cx = y0. If x is a vertex of X , we are done. Otherwise, there exist vertices
x0, · · · , x p of X and strictly positive numbers λ0, · · · ,λp with

∑p
i=0 λi = 1 such

that
∑p

i=0 λi x i = x . Then y0 = ∑p
i=0 λi Cxi , by which y0 is a relative interior point

of Cx0, · · · , Cx p . Since y0 is a vertex of Q we deduce that Cx0 = · · · = Cx p and
hence y0 = Cx0. It is clear that x0 ∈ S(MOLP) because y0 ∈ Max(Q). The proof
for a weakly efficient vertex of Q follows on the same line. �

It is quite evident that for a given efficient vertex y ∈ Max(Q) there may exist a
number of vertices x ∈ S(MOLP) such that Cx = y. In a single objective problem
the optimal value is a real number, which is also a vertex of Q. Hence every opti-
mal solution vertex is mapped by C into the optimal outcome vertex. In a multiple
objective problem, an efficient solution vertex of X may map into a non-vertex point
of Q.

Example 9.1.2 Let X = {x ∈ R
2 : −1 � xi � 1, i = 1, 2} and letC =

(
1 −1

−1 1

)
.

Then Q is a line segment in R
2 connecting two points

(
2

−2

)
and

(−2
2

)
. With

these data every feasible solution of (MOLP) is efficient. The vertices

(−1
−1

)
and(

1
1

)
of X map into a relative interior point of Q.

According to Theorem9.1.1 and the remarks above, the number of vertices of
Max(Q) when Q is bounded, is generally less than the number of vertices of
S(MOLP). If Q is unbounded, then the efficient outcome set may contain more
vertices than the efficient solution set.

Example 9.1.3 Let X = {x ∈ R
3 : x1 � 0, x2 = 0} and C =

(
1 0 0
0 1 0

)
. The set

Q ⊆ R
2 is the negative ray of the x1-axis. We have Max(Q) =

{(
0
0

)}
, which

consists of the unique vertex of Q, while the set X has no vertex.

Theorem 9.1.4 Let G be an arbitrary face of Q. Then the set F = {x ∈ X : Cx ∈
G} is a face of X, and dim F � dimG.

Proof Choose y0 from the relative interior of G and λ from the relative interior of
the normal cone NQ(y0). We have

G = {y ∈ Q : 〈λ, y〉 = 〈λ, y0〉 � 〈λ, y′〉 for all y′ ∈ Q}. (9.1)

Define

F0 = {x ∈ X : 〈CT λ, x〉 = 〈λ, y0〉}.
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We claim that F0 is a face of X and F = F0. In fact, F0 is nonempty because it
contains all x0 ∈ X such that Cx0 = y0. Moreover, for every x ∈ X one has

〈CT λ, x〉 = 〈λ, Cx〉 � 〈λ, y0〉 = 〈CT λ, x0〉.

Hence the set H = {x ∈ R
n : 〈CT λ, x〉 = 〈λ, y0〉} is a supporting hyperplane of X

at x0, by which F0 = H ∩ X is a face of X . Furthermore, if x ∈ F , then it follows
from (9.1) that

〈CT λ, x〉 = 〈λ, Cx〉 = 〈λ, y0〉,

which implies x ∈ F0. Conversely, x ∈ F0 implies 〈CT λ, x〉 = 〈λ, y0〉. Hence
Cx ∈ G, by which x ∈ F as well.

Finally, let {y1, · · · , y p} ⊆ G be an affinely independent family in G. There are
some x ∈ F such that Cxi = yi , i = 1, · · · , p. Then {x1, · · · , x p} is an affinely
independent family in F . Consequently, dim F � dimG. �

Similar to the case of vertices, a face of X needs not be mapped by C onto a face
of Q, that is, if F is a face of X , its image C(F) is not necessarily a face of Q. This
fact, of course, is also true for efficient faces and weakly efficient faces of X . Here
is an exception when a face of X is maximal efficient or maximal weakly efficient.

Theorem 9.1.5 Let F be a maximal efficient (respectively maximal weakly efficient)
face of X. Then C(F) = {Cx : x ∈ F} is a maximal efficient (respectively maximal
weakly efficient) face of Q.

Proof Let F be amaximal efficient face.Choose x0 ∈ ri F . In viewofTheorem4.3.1,
there is a strictly positive k-vector λ such that

〈λ, Cx0〉 � 〈λ, Cx〉 for all x ∈ X.

Claim 1. F = {x ∈ X : 〈λ, Cx〉 = 〈λ, Cx0〉}.
Indeed, let F be the convex hull of its vertices x1, · · · , x p . By Corollary6.4.8 there
exist strictly positive numbers t1, · · · , tp with

∑p
i=1 ti = 1 such that x0 = ∑p

i=1 ti xi .

We have

〈λ, Cx0〉 =
p∑

i=1

ti 〈λ, Cxi 〉

Since 〈λ, Cx0〉 � 〈λ, Cxi 〉 for i = 1, · · · , p, we deduce

〈λ, Cx0〉 = 〈λ, Cxi 〉 for i = 1, · · · , p.

In otherwords, all xi belong to the set on the right hand side ofClaim1.Consequently,
F ⊆ {x ∈ X : 〈λ, Cx〉 = 〈λ, Cx0〉}. Conversely, let x ∈ X be such that 〈λ, Cx〉 =
〈λ, Cx0〉. If x /∈ F , then 1

2 (x + x0) /∈ F . Let F
′
be the face that contains 1

2 (x + x0)
in its relative interior. We have

http://dx.doi.org/10.1007/978-3-319-21091-9_4
http://dx.doi.org/10.1007/978-3-319-21091-9_6
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〈λ, C(
1

2
(x + x0))〉 = 1

2
(〈λ, Cx〉 + 〈λ, Cx0〉) = 〈λ, Cx0〉.

It follows that 1
2 (x + x0) is an efficient point, and therefore, F

′
is an efficient face.

Because F ′ contains the relative point x0 of F and also the point x outside of F ,
this face strictly contains F , which contradicts the maximality hypothesis. Claim1
is established.

Claim 2. C(F) is an efficient face.
Consider the linear function 〈λ, .〉. If y ∈ C(F) and y′ ∈ Q, then there are some
x ∈ F and x ′ ∈ X such that Cx = y and Cx ′ = y′. Then 〈λ, y〉 � 〈λ, y′〉 and
C(F) = {y ∈ Q : 〈λ, y〉 = 〈λ, Cx0〉 � 〈λ, y

′ 〉 for all y′ ∈ Q}. Consequently,
C(F) is an efficient face of Q.

Claim 3. C(F) is a maximal efficient face.
Indeed, if this is not true, there is an efficient face G of Q that contains C(F) and
satisfies C(F) �= G. Let y0 ∈ riG. Then y0 /∈ C(F) and there is some strictly
positive k-vector λ0 such that

G = {y ∈ Q : 〈λ0, y〉 = 〈λ0, Cx0〉 � 〈λ0, y′〉 for all y′ ∈ Q}.

Set F ′ = {x ∈ X : Cx ∈ G}. By Theorem9.1.4, F ′ is a face of X and efficient. It
strictly contains F because C(F) ⊆ G. For any x ∈ X such that Cx = y0, we have
x ∈ F ′ \ F , which contradicts the maximality of F .
For weakly efficient faces apply the same argument. �
Theorem 9.1.6 Let G be a maximal efficient (respectively maximal weakly efficient)
face of Q. Then the set F = {x ∈ X : Cx ∈ G} is a maximal efficient (respectively
maximal weakly efficient) face of X.

Proof In view of Theorem9.1.4, F is a face and by definition it is efficient. If it were
not maximal, one would find another efficient face F ′ of X that strictly contains F .
We may assume F ′ is maximal. By Theorem9.1.5, C(F ′) is an efficient face of Q.
Since F ⊆ F ′ and F �= F ′, C(F ′) ⊇ G and C(F ′) �= G. This contradicts the
maximality ofG. �
Corollary 9.1.7 The linear operator C induces a one-to-one correspondence
between maximal efficient faces of the solution set X and the value set Q of (MOLP).

Proof Let F be a maximal efficient face of X . By Theorem9.1.5, C(F) is a maximal
efficient face of Q. If F

′
is another maximal efficient face of X such that C(F

′
) =

C(F), then in view of Theorem9.1.6,

F
′′ = {x ∈ X : Cx ∈ C(F)}

is a maximal efficient face of X . But F ⊆ F
′′
, F

′ ⊆ F
′′
, we conclude F = F

′ = F
′′

and so the correspondence F 
→ C(F) is injective. The surjectivity of this corre-
spondence follows from Theorem9.1.6. �
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9.2 Free Disposal Hull

Definition 9.2.1 Let P be a nonempty set in R
k+. We say that P is free disposal if it

contains all positive vectors y smaller than some element of P .

Equivalently, P is free disposal if it satisfies P = (P − R
k+) ∩ R

k+ (Figs. 9.1 and
9.2).

Definition 9.2.2 Given an arbitrary set Q ⊆ R
k+, the set

Q̂ := (Q − R
k+) ∩ R

k+

is called the free disposal hull of Q.

Throughout this section we assume that Q is a polytope included in the set e+R
k+,

where e is the k-vector of ones. We will present some relationships between efficient
elements of Q and efficient elements of its free disposal hull Q̂ (Fig. 9.3).

Theorem 9.2.3 The following statements hold.

Fig. 9.1 A free disposal set

P

Fig. 9.2 A non-free disposal
set

Q
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Fig. 9.3 Free disposal hull

Q

Q̂

(i) Q̂ is a bounded, free disposal polyhedron of full dimension.
(ii) Max(Q) = Max(Q̂).

(iii) WMax(Q) = WMax(Q̂) ∩ Q.

Proof Since Q is a polytope set, the set Q − R
k+ is a polyhedral set and there is

some t > 0 such that Q ⊆ te − R
k+. Being an intersection of two polyhedral sets,

the set Q̂ is a polyhedron satisfying 0 � y � te for every y ∈ Q̂. In other words, Q̂
is a polytope. Further, let y be a positive vector such that y � y′ for some y′ ∈ Q̂.
There are some y′′ ∈ Q and v � 0 such that y′ = y′′ − v. Setting u = y′ − y � 0,
we deduce y = y′′ − (u + v) ∈ Q − R

k+ proving that y ∈ Q̂. By this, Q̂ is free
disposal. We also notice that every point y satisfying 0 < y < e is an interior point
of Q̂, which shows that Q̂ is of full dimension.

To prove (ii), let y ∈ Max(Q). Let z ∈ Max(Q̂) such that z � y. There are
some y′ ∈ Q and v � 0 such that z = y′ − v. We deduce y′ � y + v. Since y is
efficient, we have v = 0 and y = y′, which shows that y ∈ Max(Q̂). Conversely,
let z ∈ Max(Q̂) with z = y′ − v for some y′ ∈ Q ⊆ Q̂ and some v � 0. It follows
that v = 0 and z = y′ because otherwise y′ ≥ z, which contradicts the efficiency of
z. Hence z ∈ Q and z ∈ Max(Q).

For the last statement, let y ∈ WMax(Q). Then y ∈ Q ⊆ Q̂. If z > y for
some z ∈ Q̂, where z = y′ − v with y′ ∈ Q and v � 0, then y′ = z + v > y,
which contradicts the efficiency of y. By this, y ∈ WMax(Q̂) ∩ Q. Conversely, let

z ∈ WMax(Q̂) ∩ Q. Since Q ⊆ Q̂, we deduce z ∈ WMax(Q) too. The proof is
complete. �

Lemma 9.2.4 A point w ∈ Q̂ is a weakly efficient point of Q̂ if and only if the
optimal value of the following problem, denoted (Pw), is zero,

maximize t

subject to y − te � w

y ∈ Q, t ∈ R.
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Moreover, w is an efficient point of Q if and only if (w, 0) is the unique optimal
solution of (Pw).

Proof Assume thatw is a weakly efficient element of Q̂. Then the point (y, t), where
y is a vector from Q such that y � w and t = 0, is a feasible solution of (Pw). Hence
the optimal value (Pw) is not less than 0. On the other hand, if for some feasible
solution (y′, t) one has t > 0, then y′ > y′ − te � w implying that w is not weakly
efficient. Thus, the optimal value of (Pw) is equal to zero. Conversely, if w is not
weakly efficient, then there is some y ∈ Q such that y > w. For t > 0 sufficiently
small one has y − te > w, by which the optimal value of (Pw) is strictly positive.

To prove the second assertion, we assume that w is an efficient element of Q.
By Theorem9.2.3 it is also an efficient element of Q̂. It follows that if (y′, 0) is a
feasible solution of (Pw), then y′ = w. Hence (w, 0) is a unique optimal solution
of (Pw). The converse is clear because the uniqueness of the optimal solution (w, 0)
shows that w is an efficient element of Q̂, and hence an efficient element of Q by
Theorem9.2.3. �

Corollary 9.2.5 Every vertex of Q̂ having all strictly positive components is an
efficient element of Q.

Proof Letw be a vertex of Q̂ such thatw > 0. Consider the problem (Pw) introduced
in the preceding lemma. If there is some feasible solution (y, 0) satisfying y ≥ w,
then w is an interior point of the segment [w + ε(w − y), y] ⊆ Q̂ when ε > 0 is so
small that w + ε(w − y) > 0 (such an ε exists because w > 0). This contradicts the
hypothesis that w is a vertex. Hence (w, 0) is a unique optimal solution of (Pw). By
Lemma9.2.4, w is an efficient element of Q. �

In the rest of this section we consider a particular case of Q. Namely, we consider
the problem (MOLP) in standard form

Maximize Cx

subject to Ax = b

x � 0,

where C is a k × n-matrix, A is an m × n-matrix and b is an m-vector. The value
set of (MOLP), denoted Q, consists of the values Cx with x ∈ X , where X is the
feasible set. We assume that Q is bounded. Then the infimum of Q, denoted y0, is
the vector the components of which are given by

y0i = min{yi : y = (y1, · · · , yk)
T ∈ Q}, i = 1 · · · , k

is finite. By shifting Q to Q′ = Q − y0 + e we obtain Q′ ⊆ e + R
k+. Moreover, it is

clear that Max(Q) = Max(Q′)+ y0 − e and WMax(Q) = WMax(Q′)+ y0 − e, so
when solving (MOLP) we may assume without loss of generality that Q is contained
in e + R

k+.
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By applying Lemma9.2.4 we deduce thatw a weakly efficient point of Q̂ if and only
if the optimal value of the following problem, denoted also (Pw), is zero,

maximize t

subject to Cx − te � w

Ax = b

x � 0, t � 0, t ∈ R.

We consider the dual program of (Pw), denoted (Dw) given by

minimize −〈w,λ〉 + 〈b, γ〉
subject to −λT C + γT A � 0

〈e,λ〉 � 1,λ � 0.

Theorem 9.2.6 Assume that the feasible set X of (MOLP) is bounded and that w is
a weakly efficient element of Q̂. Then w is contained in a weakly efficient face of Q̂
determined by

〈λ, y〉 � 〈λ, w〉 = 〈b, γ〉, y ∈ Q̂

where (λ, γ) is an optimal solution of (Dw).

Proof Under the hypothesis of the theorem and in view of Lemma9.2.4, the program
(Pw) has the zero optimal value, hence so does its dual program (Dw). Let (λ, γ) be
an optimal solution. Then λ ≥ 0 and satisfies

−〈w,λ〉 + 〈b, γ〉 = 0,

−λT C + γT A � 0.

Let y ∈ Q̂, say y = Cx − v for some x ∈ X and v � 0. Then

−〈λ, y〉 + 〈γ, b〉 = −λT (Cx − v) + γT Ax

� −λT Cx + γT Ax � 0.

In other words,

〈w,λ〉 = 〈γ, b〉 � 〈λ, y〉

for every y ∈ Q̂. Since λ ≥ 0, the solution set to the latter inequality is a weakly
efficient face of Q̂ and contains w. �
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9.3 Outer Approximation

We consider a polytope Q ⊆ e + R
k+ and its free disposal hull Q̂. When Q is not

explicitly given by a system of linear inequalities or by a family of vertices, it is
difficult to describe the efficient set of Q. One of the methods to find the efficient
set of Q is to construct a finite sequence of free disposal polytopes Q0, · · · , Q� that
have a simple structure and provide more and more efficient elements of Q as the
construction progresses until the whole efficient set is produced.

Let us begin with the construction of a first outer approximation for Q̂. Consider
the linear function 〈e, y〉 = ∑k

i=1 yi on Q. Let α be its maximum, which is finite
because Q is bounded. Set (Fig. 9.4)

Q0 = R
k+ ∩ {y ∈ R

k : 〈e, y〉 � α}.

Theorem 9.3.1 The set Q0 is a k-dimensional simplex containing Q̂. Its vertex set
consists of the origin 0 and the vectors αei , i = 1, · · · , k. Moreover, the setMax(Q0)

contains an efficient face of Q̂.

Proof It is clear that α > 0 because y � e for every y ∈ Q, and that Q is con-
tained in Q0. We deduce that the vectors αei , i = 1, · · · , k are linearly independent.
Consequently, the vectors αei , i = 1, · · · , k and 0 are in general position (affinely
independent). Moreover, they are all satisfy the system defining Q0, therefore the
convex hull of these vectorswhich is a k-dimensional simplex, is contained in Q0. Let
y ∈ Q0. Since y � 0 there are positive numbers t1, · · · , tk such that y = ∑k

i=1 ti ei .
Moreover, we have

〈e, y〉 =
k∑

i=1

ti 〈e, ei 〉 =
k∑

i=1

ti � α,

Fig. 9.4 The simplex Q0

Q

Q0

y
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which implies ti/α ∈ [0, 1], i = 1, · · · , k and 1 − 1
α

∑k
i=1 ti ∈ [0, 1]. We express

y as

y = (1 − 1

α

k∑
i=1

ti )0 +
k∑

i=1

ti
α

(αei ).

In other words every element y of Q0 is a convex combination of the verticesαei , i =
1, · · · , k and 0. Hence Q0 is a simplex. It is plain that Q̂ is contained in Q0.

The second part of the theorem is clear because the vector e is strictly positive
and so by Corollary4.1.12 the face {y ∈ Q0 : 〈e, y〉 = α} is an efficient face of Q0

and its intersection with Q̂ is nonempty and an efficient face of Q̂. �

To proceed further, let us fix an interior point q ∈ Q̂, for instance q = e/2,
and show that if a free disposal polytope Q0 is an outer approximation of Q̂ and
does not coincide with it, then one can find a suitable cut in order to obtain a smaller
outer approximation that is a free disposal polytope, the weakly efficient set of which
contains a weakly efficient face of Q̂ not previously found in the weakly efficient set
of Q0.

Lemma 9.3.2 Let y � 0 be a point outside Q̂. Then the unique point w = q+t0(y−
q) on the segment connecting q and y, where t0 ∈ (0, 1) is the optimal solution of
the problem

maximize t

subject to q + t (y − q) ∈ Q̂,

is a weakly efficient element on the boundary of Q̂.

Proof Since Q̂ is bounded, the problem stated in this lemma has an optimal solution,
denoted t0. As q is an interior point of Q̂, we have t0 > 0, and as y is outside of Q̂,
t0 < 1. The uniqueness of the optimal solution is clear. We show that w (Fig. 9.5)
is on the boundary and a weakly efficient point of Q̂. Indeed, if w were an interior
point, one would find some t > t0 such that q + t (y −q) ∈ Q̂, which contradicts the
optimality of t0. Further, ifwwere not aweakly efficient point of Q̂, therewould exist
somew′ ∈ Q̂ such thatw′ > w. Thenw belongs to the interior ofw′−R

k+ ⊆ Q̂−R
k+.

It is also clear that for ε > 0 sufficiently small, q + (t0 + ε)(y − q) ∈ w′ − R
k+,

hence q + (t0 + ε)(y − q) ∈ Q̂ as well. This contradicts the definition of t0 and the
proof is complete. �

Theorem 9.3.3 Let P be a free disposal polytope that contains Q̂. If there is some
y0 ∈ P such that y0 /∈ Q̂, then there exist a nonzero positive vector λ and a weakly
efficient element w of Q̂ that is not weakly efficient element of P such that the polytope

P ′ = {
y ∈ P : 〈λ, y〉 � 〈λ, w〉}

http://dx.doi.org/10.1007/978-3-319-21091-9_4
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Fig. 9.5 The point
w = q + t0(y − q)

Q

Q0

q

y

w

is a free disposal polytope containing Q̂ and its weakly efficient set contains a weakly

efficient face of Q̂ that contains w.

Proof Since y0 ∈ P we have y0 � 0. Apply Lemma9.3.2 to find a weakly efficient
point w of Q̂ on the segment joining q and y0. It is clear that w is not a weakly
efficient element of P because it is an interior point of P being strictly inside of the
segment [q, y0]. According to Theorem9.2.6, there exists a vector λ ≥ 0 such that

〈λ, y〉 � 〈λ, w〉 for all y ∈ Q̂.

It is clear that the polytope P ′ as defined in the theorem is free disposal and satisfies
the inclusions Q̂ ⊆ P ′ ⊂ P . Of course P ′ is smaller than P because y0 belongs to
P , but does not belong to P ′. As the vector λ is positive, in view of Corollary4.1.12,
the set {y ∈ Q̂ : 〈λ, y〉 = 〈λ, w〉} is a weakly efficient face of Q̂ and containsw. It is
contained in the face {y ∈ P ′ : 〈λ, y〉 = 〈λ, w〉} of P ′ that is also a weakly efficient
face because λ ≥ 0. �

9.4 The Outcome Space Algorithm

The outcome space method, called also outer approximation method, is aimed at
computing the efficient vertex set of the value set Q for problem (MOLP) described
in Sect. 9.2. Normally, numerical methods in mathematical programming are devel-
oped for finding an optimal solution of the problem and thereby the optimal value is
obtained as a by-product. However, in multiple objective programming it is some-
times preferable to compute efficient values and then efficient solutions are deduced
as a by-product. There are some reasons for this. First, in most practical situations the
number of objective functions are much less than the number of variables. It is often

http://dx.doi.org/10.1007/978-3-319-21091-9_4
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the case when k is two or three, while n may be hundreds, thousands or more. Then
under the objective matrix C several feasible solutions may be mapped onto a single
value in the outcome spaceR

k . As a result, the value set Q may have a structuremuch
simpler than the structure of X , for its number of vertices is less than the number of
vertices of X , and so computing the set Max(Q) is less demanding than computing
the efficient solution set S(MOLP). Another reason is with post-optimal analysis. In
fact, without a decision maker’s interaction during the computing process, after the
problem has been solved the entire set S(MOLP) or at least a good portion thereof
must be presented to the decision maker for a final choice. The very high dimen-
sionality of the decision space and the complicated nature of the set S(MOLP) will
certainly overwhelm him or her. On the contrary, the efficient value set in the outcome
space of low dimension, especially when k is equal to 2 or 3, is easily visualized and
makes the choice much more manageable. Below is a description of the algorithm.
The vertex set of Q is denoted V (Q).

Step 0 (Initialization). Solve

maximize 〈e, Cx〉
subject to Ax = b

x � 0.

Let α be the optimal value of the problem. Set Q0 to be the simplex given in
Theorem9.3.1. Store V (Q0) and the inequality representation of Q0.
Set i = 0 and go to the next step.

Step 1. For i � 0 check V (Qi ) ⊆ Q̂.

If this is true, stop.
Otherwise, choose y ∈ V (Qi ) \ Q̂ and find wi ∈ WMax(Q̂) (Lemma9.3.2) by
solving

maximize t

subject to q + t (y − q) � Cx

Ax = b

x � 0, t � 0.

Step 2. Find λi ≥ 0 (Theorem9.2.6) by solving

minimize −〈wi ,λ〉 + 〈b, γ〉
subject to −λT C + γT A � 0

〈e,λ〉 � 1,λ � 0.

Set Qi+1 = Qi ∩ {y ∈ R
k : 〈λi , y〉 � 〈λi , wi 〉}.

Step 3. Store V (Qi+1). Set i := i + 1 and return to Step 1.



9.4 The Outcome Space Algorithm 301

Let us make some comments on implementations of the algorithm.
(1) In Step 1, in order to test a vertex y ∈ V (Qi ) for membership in Q̂ it suffices to
find a feasible solution of the linear program

maximize 0

subject to Cx � y

Ax = b, x � 0.

(2) In Step 0, the vertex set of Q0 was already given in Theorem9.3.1. In Step
3, the vertex set of Qi+1 is computed by using the vertices of Qi and the cutting
hyperplane that defines Qi+1 from Qi . Namely, those vertices that satisfy strict
inequality 〈λi , v〉 < 〈λi , wi 〉 remain in the collection V (Qi+1) and those satisfy
strict opposite inequality 〈λi , v〉 > 〈λi , wi 〉 do not enter V (Qi+1). New vertices will
appear in V (Qi+1), which are determined by equality 〈λi , v〉 = 〈λi , wi 〉, v ∈ Qi .

Example 9.4.1 We solve the following problem by the outcome space method.

Maximize

(
x1 + 3x2 + 2x3
x1 + x2 + 2x3

)
subject to x1 + x2 + x3 = 1

x1, x2, x3 � 0.

At the initialization step we solve the problem

maximize (x1 + 3x2 + 2x3) + (x1 + x2 + 2x3)

subject to x1 + x2 + x3 = 1

x1, x2, x3 � 0.

The optimal value α is equal to 4. The simplex Q0 (Fig. 9.6) is given by the system

y1 + y2 � 4

y1, y1 � 0.

Its vertex set is given by

V (Q0) =
{(

0
0

)
,

(
4
0

)
,

(
0
4

)}
.

Iteration i = 0. We have V (Q0) � Q̂. Choose v0 =
(
0
4

)
∈ V (Q0) \ Q̂ and

solve the problem formulated in Step 1 to find

w0 =
(
0
2

)
∈ WMax(Q̂).
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By solving the problem formulated in Step 2 we find λ0 =
(
0
1

)
. The second

approximation set Q1 (Fig. 9.7) of Q̂ is determined by the system

y1 + y2 � 4

y1, y1 � 0〈(
0
1

)
,

(
y1
y2

)〉
�

〈(
0
1

)
,

(
0
2

)〉
.

Then we store the vertex set of Q1:

V (Q1) =
{(

0
0

)
,

(
0
2

)
,

(
2
2

)
,

(
4
0

)}
.

Iteration i = 1. We still have V (Q1) � Q̂. Choose v1 =
(
4
0

)
∈ V (Q1) \ Q̂

and solve the problem formulated in Step 1 to find

w1 =
(
3
0

)
∈ WMax(Q̂).

By solving the problem formulated in Step 2 we find λ1 =
(
1
0

)
. The third approx-

imation set Q2 (Fig. 9.8) of Q̂ is determined by the system

y1 + y2 � 4

y1, y1 � 0

y2 � 2〈(
1
0

)
,

(
y1
y2

)〉
�

〈(
1
0

)
,

(
3
0

)〉
.

Then we store the vertex set of Q2:

V (Q2) =
{(

0
0

)
,

(
0
2

)
,

(
2
2

)
,

(
3
0

)
,

(
3
1

)}

and return to Step 1.
Iteration i = 2. At this iteration we have V (Q2) ⊆ Q̂. The algorithm terminates.

The efficient vertex set of Q consists of two strictly positive vertices of V (Q2):

(
2
2

)

and

(
3
1

)
.
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Fig. 9.6 The first
approximation of Q̂

w0

Q0

Q

Fig. 9.7 The second
approximation of Q̂

w1

Q1 Q

Theorem 9.4.2 The outcome space algorithm is finite. At the final iteration � � 0,
one has Q� = Q̂ and the efficient vertex set of Q consists of all vertices of Q� that
are strictly positive.

Proof By construction one has Q̂ ⊆ Qi for all iteration number i � 0. If Qi �= Q̂,
then there is some vertex yi of Qi and yi /∈ Q̂. By Theorem9.3.3, Step 2 generates a
new polytope Qi+1 that includes a weakly efficient face of Q̂ in its weakly efficient
set, not previously encountered in the weakly efficient set of Qi . Since the number of
faces of Q̂ is finite, the algorithm must terminate after a finite number of iterations,
say at the iteration � � 0. We then have Q� = Q̂. In view of Theorem9.2.3 and
Corollary9.2.5 the efficient vertex set of Q consists of strictly positive vertices of
Q� = Q̂. �
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Fig. 9.8 The third
approximation of Q̂

Q2 Q

Computing the weakly efficient value set of (MOLP)

The outcome space algorithm allows us to obtain not only the efficient vertex value
set of (MOLP), but it provides also scalarizing vectors for generating the weakly

efficient value set of (MOLP). Indeed, at the final iteration we have Q̂ = Q�. The
vectors λi , i = 0, · · · , � − 1 collected in Step 2 through the � iterations determine
all weakly faces of Q̂. Then, the weakly efficient faces of Q are given by

WMax(Q) =
�−1⋃
i=0

{
Cx ∈ R

k : 〈λi , Cx〉 = 〈λi , wi 〉, Ax = b, x � 0
}
.

It is the union of all vectors y ∈ R
k for which there is some x ∈ R

n such that (x, y)

is an optimal solution of the following linear problem

maximize 〈λi , y〉
subject to y = Cx

Ax = b, x � 0.

for i = 0, · · · , � − 1.

When the hypothesis Q ⊆ e + R
k+ is not satisfied

As we have already discussed when the value set Q of (MOLP) is bounded, but
the hypothesis Q ⊆ e + R

k+ is not guaranteed, one may shift Q to Q′ to meet this
requirement and performs the outcome space algorithm for Q′. Namely, one solves
the linear programs
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maximize 〈ei , y〉
subject to y = Cx

Ax = b, x � 0.

for i = 1, · · · , k to find the infimum y0 of Q that is the vector of optimal values of
these programs. The set Q shifted by the vector −y0 + e is given by

Q′ = Q − y0 + e

= {y ∈ R
k : y = Cx − y0 + e for some x ∈ X}.

The simplex Q0 in Step 0 and the free disposal hull Q̂ are shifted by −y0 + e. The
program in Step 1 is modified to

maximize t

subject to q + t (y − q) � Cx − y0 + e

Ax = b

x � 0, t � 0.

There is no change in the dual program of Step 2. At the final iteration the set of
efficient vertices of Q is equal to the set of efficient vertices of Q� shifted by the
vector −y0 + e.

9.5 Exercises

9.5.1 Let F be a face of X in (MOLP) such that x = 0 when Cx = 0. Prove that
dimC(F) = dim F.

9.5.2 Prove that the conclusion of 9.1.4 remains true when Q is unbounded, but has
a vertex.

9.5.3 Let Q be the value set of problem (MOLP) considered in this chapter such
that Q ⊆ e + R

k+ and Q̂ is its free disposal hull. Let q be an interior point of

e + R
k+ and y ∈ R

k+ \ Q̂. Prove that a point w is an efficient point of Q if and only
if w = q + t0(y − q) where t0 is an optimal value of the problem

maximize t

subject to q + t (y − q) � Cx

Ax = b

x � 0,

and for any two optimal solutions (t0, x1) and (t0, x2) one has Cx1 = Cx2.
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9.5.4 Consider the value set Q of problem (MOLP) that satisfies Q ⊆ e + R
k+ and

its free disposal set Q̂. Let w be a weakly efficient element of Q̂. Prove that a k-vector
λ ≥ 0 determines a face of Q̂ that contains w if and only if there is a vector μ ∈ R

m

such that (λ,μ) is a solution to the system

λT C − μT A � 0

〈v,λ〉 − 〈b,μ〉 = 0

λ ≥ 0.

9.5.5 Consider the outcome space algorithm described in Sect.9.4. Assume that at
the iteration i � 0, one obtains a strictly positive vector v that is a vertex of Qi .

(i) Show that v is an efficient element of Qi .
(ii) Deduce that if v ∈ Q̂, then v is also an efficient element of Q and the following

system is consistent:

λT C − μT A � 0

〈v,λ〉 − 〈b,μ〉 = 0

λ � e.

9.5.6 We consider the outcome algorithm for program (MOLP) having values in R
2

which terminates after � iterations.

(i) Show that among the vectors λi , i = 0, · · · , � − 1 obtained in Step 2 there are
at most two vectors that are not strictly positive.

(ii) Prove that if there are strictly positive vectors among the vectors λi , i =
0, · · · , � − 1, then

Max(Q) =
⋃

λi >0,i∈{0,··· ,�−1}

{
y ∈ R

2 : 〈λi , y〉 = 〈λi , wi 〉,
y = Cx for some x ∈ X

}
⋃ {

y ∈ R
2 : 〈e, y〉 = α, y = Cx for some x ∈ X

}
.

9.5.7 Solve the following problem by the outcome space method

Maximize

(
3x1 + 2x3
3x2 + 2x3

)
subject to x1 + x2 + x3 = 1

x1, x2, x3 � 0.
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9.5.8 Find the vertices of the efficient value set of the following problem by using
the outcome space method

Minimize

⎛
⎝ 1 0 0
0 1 −1
1 1 1

⎞
⎠

⎛
⎝ x1

x2
x3

⎞
⎠

subject to

⎛
⎝ 2 1 0

1 0 3
−1 0 1

⎞
⎠

⎛
⎝ x1

x2
x3

⎞
⎠ �

⎛
⎝4
4
6

⎞
⎠

x1, x2, x3 � 0.
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problems involve set-valued functions (see [34, 70, 136, 139, 184]) can be applied,
but the objective function of dual problems are set-valued and difficult to handle with.
The papers [44, 105, 123, 128, 177] are the first works that provide dual problems for
MOLP. Further investigations are [18, 19, 34, 50, 78, 81, 88, 94–96, 138, 177]. The
first approach to duality in this chapter is based on dual sets which are complements
to the value set of the primal problems. The second approach is a known method of
Lagrangian function. The results of this chapter are mainly taken from [88, 138].

Chapter6: Sensitivity and stability.
Although a large number of investigations have been carried out on stability of vector
optimization problems in general setting (see [87, 136] and the references given in
these), there exist quite few works specifically devoted to stability of multiobjective
linear problems (see [21, 58, 62, 77, 91, 144, 161, 219, 222]. Recent contributions
to tolerance study and robustness are given in [83, 85, 93, 97–101, 104, 115, 133,
175, 191–193, 211]. The results of the two first sections are essentially from [137,
211]. Theory of error bounds of linear systems is well known in [17, 102]. The result
on weak sharp maxima in Exercise 6.5.6 is due to [57]. The proof given by this
exercise is rather simple. The results of Sect. 6.4 on post-optimal analysis are mainly
taken from [85].

Chapter7: Multiobjective simplex method.
The popular simplex method of linear programming is adapted to MOLP. Detailed
descriptions of this method was given in [233] and also in [67, 68, 231, 232]. Using
this method to find all maximal vertex solutions is studied by a number of works [14,
15, 63, 64, 66, 104, 185]. The last exercise of this chapter is taken from [233].

Chapter8: Normal cone method.
This method was developed in [117, 118] for finding the set of efficient and weakly
efficient solutions ofMOLP. It makes use of normal directions to a convex polyhedral
set to determine efficient and weakly efficient faces. Related approaches are given
in [109, 213, 214].

Chapter9: Outcome space method.
Since in many practical problems the number of criteria is relatively much smaller
than the number of variables, the idea of working in the image space is quite helpful
in computing efficient vertices of the value set. Analysis of efficient sets in the image
space of MOLP was initiated in [23, 51, 54, 55, 80, 172]. The method described in
this chapter was developed in [25]. Most of the theoretical results are found in [23]
for which we give shorter proofs. Further developments of this method are given in
[22, 24, 26, 29, 30, 52, 53, 55, 69, 116, 119, 130, 146].

Further Reading.
There are some topics of MOLP that are not covered by this book. The interested
readers are asked to read the corresponding references, which are far from being
exhausted.

•Multiobjective stochastic linear programming:

http://dx.doi.org/10.1007/978-3-319-21091-9_6
http://dx.doi.org/10.1007/978-3-319-21091-9_6
http://dx.doi.org/10.1007/978-3-319-21091-9_6
http://dx.doi.org/10.1007/978-3-319-21091-9_7
http://dx.doi.org/10.1007/978-3-319-21091-9_8
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[1, 2, 153, 158, 227].

•Multiobjective fuzzy linear programming:
[12, 13, 33, 36, 39, 48, 103, 108, 113, 114, 134, 135, 147–149, 155, 164, 169,
178–183, 194, 219, 220, 225, 230, 235].

•Multiobjective integer linear programming:
[31, 56, 112, 121, 122, 147, 154, 207, 208, 218].

• Interactive and non-deterministic methods:
[4–8, 10, 11, 14–16, 20–23, 27, 28, 32, 35, 37, 38, 42, 45, 46, 60, 61, 63–66, 81,
82, 84, 90, 104, 109, 110, 120, 124–127, 129, 143, 162, 165–168, 170, 173, 174,
185, 186, 189, 190, 195–198, 200–206, 209, 212, 215, 221, 223, 228, 229, 236].

• Applications of multiobjective linear programming:
[3, 9, 40, 43, 56, 59, 62, 71–76, 79, 86, 89, 107, 111, 132, 142, 145, 147, 148,
150, 152, 156, 157, 159, 160, 171, 188, 199, 201, 210, 216, 224, 226, 237].
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Index

A
Active index, 22
Adjacent vertices, 20
Affine hull, 8
Affinely independent vectors, 12
Arcwise connected, 100
Asymptotic cone, 27
Asymptotic direction, 27

B
Basic solution, 42
Basis, 42
Bilevel linear problem, 114
Bipolar cone, 31
Bounded/ weakly bounded objective func-

tion, 104

C
Canonical form, 103
Caratheodory’s theorem, 11
Closed map, 184
Colexicographical order, 118
Complementary slackness, 62
Conic hull, 8
Constraint method, 116
Convex polyhedral cone, 20
Convex polyhedron, 19
Convex set, 9
Cost function, 49

D
Degeneracy, 77
Degenerate solution, 42
Diet problem, 113

Domination property, 90
Duality relation, 62
Dual problem, 59
Dual set/ideal, strong, weak, 119

E
Edge, 20
Efficient set, 85
Efficient solution, 102
Efficient solution map, 195
Efficient value, 102
Efficient value map, 195
Error bound, 201
Exact saddle point, 181
Exact weak saddle point, 162
Extended dual problem, 130, 138, 142
Extreme point, 42
Extreme ray, 45

F
Face, 20
Farkas’ theorem, 16
Feasible basic solution, 42
Free disposal hull, 293
Free disposal set, 293
Full measure, 227

G
Geometric duality, 180
Gordan’s theorem, 19
Graph, 184

H
Hausdorff distance, 206
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Hoffman constant, 204
Hyperplane, 13

I
Ideal dual problem, 127, 150
Ideal maximal point, 86, 120
Inactive index, 22
Investment problem, 114
Isermann’s dual problem, 131

K
Kolumban’s duality, 142

L
Lagrangian function, 61, 144
Lexicographical order, 118
Lineality space, 27
Linear functional, 13
Linear operator, 12
Linear problem, 49
Lower semi-continuous map, 184

M
Marginal function, 195
Matrix for change, 70
Maximal point, 85
Maximal solution, 102
Maximal solution set, 126
Maximal value, 102
Maximal weakly efficient face, 94
Motzkin’s theorem, 18
Multiobjective linear problem, 102
Multiplier, 150

N
Non-basic part, 42
Non-degenerate basic solution, 42
Non-dominated set, 85
Normal cone, 34
Normal index set, 261
Normal vector, 13

O
Optimal basis, 51
Optimal solution, 49
Outer approximation method, 299
Outer space method, 299

P
Parametric dual problem, 172
Pareto eigenvalue, 235
Pareto eigenvector, 235
Partition, 24
Pascoletti-Serafini’s method, 115
Pivot, 68
Pivotal column, 68
Pivotal row, 68
Pointed cone, 29, 118
Polar cone, 31
Polytope, 19
Positive hull, 8
Positive index set, 266
Primal-dual method, 78
Proper efficient solution, 118
Proper face, 20

R
Radius of robustness, 231
Recession direction, 27
Reduced cost matrix, 242
Reduced cost vector, 51
Redundant equation, 15
Regular constraint, 210
Regular system, 209
Relative interior, 10
Representation of polyhedron, 24, 29, 47
Robust solution, 221

S
Saddle point/ideal, 145
Saddle point/strong, 145
Saddle point/weak, 145
Scalarized problem, 107
Scalarizing set, 96, 109, 161
Scalarizing vector, 92
Section, 88
Separation, 26
Set-valued duality, 178
Simplex, 11
Simplex method, 67
Simplex tableau, 71, 247
Slack/ surplus variable, 15
Smooth representation, 190
Standard form, 103
Standard simplex, 11
Stiemke’s theorem, 19
Strong duality, 174
Strong dual problem, 131, 153
Support, 42



Index 325

Supporting hyperplane, 20
Surplus variable, 18

T
Theorem of the alternative, 16
Two-phase method, 75

U
Unbounded objective function, 128
Upper semi-continuous map, 184
Utopia point, 86

V
Value set, 126

Vertex, 20
Ville’s theorem, 19

W
Weak dual problem, 139, 159
Weak duality, 173
Weakly efficient set, 85
Weakly efficient solution, 102
Weakly maximal solution, 102
Weakly non-dominated set, 85
Weakly scalarizing set, 93, 109
Weakly scalarizing vector, 92
Weak sharp maxima, 213, 235
Weighted constraint method, 116


	Preface
	Contents
	Notations
	1 Introduction
	Part I 
Background
	2 Convex Polyhedra
	2.1 The Space mathbbRn
	2.2 System of Linear Inequalities
	2.3 Convex Polyhedra 
	2.4 Basis and Vertices

	3 Linear Programming
	3.1 Optimal Solutions
	3.2 Dual Problems
	3.3 The Simplex Method

	Part II 
Theory
	4 Pareto Optimality
	4.1 Pareto Maximal Points
	4.2 Multiobjective Linear Problems
	4.3 Scalarization
	4.4 Exercises

	5 Duality
	5.1 Dual Sets and Dual Problems
	5.2 Ideal Dual Problem
	5.3 Strong Dual Problem
	5.4 Weak Dual Problem
	5.5 Lagrangian Duality
	5.6 Parametric Duality
	5.7 Exercises

	6 Sensitivity and Stability
	6.1 Parametric Convex Polyhedra
	6.2 Sensitivity
	6.3 Error Bounds and Stability
	6.4 Post-optimal Analysis
	6.5 Exercises

	Part III 
Methods
	7 Multiobjective Simplex Method
	7.1 Description of the Method
	7.2 The Multiobjective Simplex Tableau
	7.3 Exercises

	8 Normal Cone Method
	8.1 Normal Index Sets 
	8.2 Positive Index Sets
	8.3 The Normal Cone Method
	8.4 Exercises

	9 Outcome Space Method
	9.1 Analysis of the Efficient Set in the Outcome Space
	9.2 Free Disposal Hull
	9.3 Outer Approximation
	9.4 The Outcome Space Algorithm
	9.5 Exercises

	 Bibliographical Notes
	 References
	Index



