Chapter 18
Acellular Lung Scaffolds in Lung
Bioengineering

Darcy E. Wagner, Franziska E. Uhl, and Daniel J. Weiss

Introduction

Chronic lung diseases such as chronic obstructive pulmonary disease (COPD) and
idiopathic pulmonary fibrosis (IPF) are significantly increasing in prevalence and
are predicted to be an increased major worldwide healthcare burden [1, 2]. There
are currently no cures for these diseases and end-stage disease is associated with
high mortality. While newly approved pharmaceutical interventions, such as
Pirfenidone for IPF, have generated some excitement, it remains to be seen how
effective these will be on a larger scale, and for what proportion of patients these
treatments are suitable. For most patients, the only available treatment option at
end-stage disease remains lung transplantation. However, there are not enough
donor lungs to meet current transplantation needs and there are further complica-
tions associated with lung transplantation. Transplantation recipients require life-
long immunosuppression and the 5-year survival after lung transplantation remains
approximately 50 % [1, 2]. Alternative options are therefore desperately needed for
this patient population.

One active and promising area of research is the generation of pulmonary tissue
using ex vivo methods. The basic concept is that a scaffold of either biologic or
artificial origin could be seeded with an appropriate cell source to regenerate
functional lung tissue for subsequent transplantation (Fig. 18.1). While both of
these techniques are still in their relatively early stages, one of their purported
benefits is that either biologic or synthetic scaffolds could be recellularized with
autologous cells, thus minimizing the immunological complications which
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Fig. 18.1 Schematic of ex vivo organ engineering. Autologous cells are obtained by a biopsy
from the eventual transplant recipient and expanded in ex vivo culture. A scaffold, either synthetic
or an acellular lung, is manufactured and repopulated ex vivo by the usage of a bioreactor to create
a functional tissue suitable for re-implantation

typically accompany lung transplantation. While this approach is not yet feasible in
lungs, similar approaches have already been used clinically in simpler tissues
including trachea, skin, and bone [3, 4]. Lung tissue, however, is a considerably
more structurally complex organ and consists of a variety of cell types which must
be functionally recapitulated in vivo. Due to these intrinsic differences in complex-
ity between tissues, progress has significantly lagged behind the advances made in
other organs. Synthetic scaffolds made from biocompatible or natural polymers are
one potential option. A number of different materials and manufacturing technol-
ogies have already been evaluated for lung and will be discussed in more detail in
this chapter.

An exciting new and active area of research involves the use of acellular lung
scaffolds derived from cadaveric or failed transplant lungs. Acellular tissue is
generated by removing cells from the native organ while preserving the 3D
macroarchitecture and the majority of the extracellular matrix (ECM) proteins
[5-17]. Whole organ decellularization as a platform for organ regeneration was
first described in the heart in 2008 [15] and beginning in 2010, several groups
described similar techniques in lung [18-23]. The use of acellular lungs has since
expanded beyond their usage in regenerative medicine and has become an incred-
ibly powerful in vitro tool for studying cell-ECM interactions or the impact of
diseased matrix on cellular behavior [24-29].

This chapter discusses the status of current areas of research investigating
ex vivo regeneration of lung tissue, and includes a discussion of concepts learned
from the literature on ex vivo tissue culture and organ preservation.
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Engineering a Scaffold

Designing and Manufacturing a Bioartificial Scaffold

Proposed bioartificial scaffolds for lung engineering have been manufactured by
various techniques and from a variety of different materials. An overview of the
current approaches is given in Table 18.1. In general two different methods of
scaffold generation can be distinguished: additive (layer-by-layer or unit-by-unit
generation) and subtractive methods (generation by removing material to form the
final scaffold). Additive techniques benefit from the possibility to generate scaf-
folds with interconnecting pores. Depending on the resolution needed, however,
these techniques may lead to long fabrication times. Examples for additive tech-
niques are rapid prototyping and 3D bioprinting [30]. Subtractive methods such as
porogen forming techniques and sphere-templating have also shown promising
initial results [31, 32] but are more limited regarding scaffold design. There are
various other methods to produce scaffolds for tissue engineering purposes like
solvent casting, particulate leaching, melt molding, or freeze drying. Synthetic
materials used thus far are polymers like polyglycolic acid (PGA), poly-lactic-co-
glycolic acid (PLGA), poly-L-lactic-acid (PLLA), polyurethane (PU), and polyvi-
nyl (PV) in order to match the mechanical properties of lung tissue. Hydrogels
made of collagen I, gelatin, Matrigel, alginate, fibrinogen—fibronectin—vitronectin
combinations or PGA combined with Pluronic F-127 have been used as scaffolds as
well [33, 34]. Further, synthetic scaffolds can be loaded with growth factors, ECM
components (e.g., collagen or whole lung extracts) or peptide sequences known to
facilitate cell attachment (e.g., RGD) [35].

The lung has a highly complex structure with varying structural composition and
mechanical properties which are still unable to be completely recapitulated using
synthetic approaches. While scaffolds fabricated via foaming techniques are struc-
turally similar to peripheral lung tissue (especially the alveoli), they lack a vascular
system and innervations. It is also difficult to tune the various mechanical properties
needed throughout the lung for proper breathing motions. Additionally, the chal-
lenge of scaffold recellularization to create a fully functional organ has not yet been
achieved. Thus, the use of the current methods exclusively may not solve the issue
of whole lung replacement, but there are many areas for improvement which can
still be explored.

Acellular Scaffolds

Synthetic scaffolds could one day be accurately and precisely manufactured for the
macro- and microarchitecture required for ex vivo lung bioengineering. However,
the instructional cues which are needed on the scaffold for critical events such as
initial cell attachment, potential cell-specific attachment cues, and differentiation
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cues are not known. Furthermore, if these criteria were known, the lung scaffold
would likely also need to be engineered with a material and manufacturing process
selection which matched the mechanical and gas diffusion properties of native lung.
This makes the engineering of a completely synthetic scaffold daunting. While
synthetic materials could be engineered to include specific integrin binding sites to
enhance cell adhesion (e.g., Arg-Gly-Asp (RGD) binding sites), it remains
unknown what specific integrin binding sites need to be included and in what
spatial arrangement they need to be. On the other hand, acellular scaffolds retain
many of the native integrin binding sites in their correct spatial arrangement, and
decellularization processes preserve the general organ architecture and ECM com-
position. Lung ECM has also long been known to provide instructional cues during
prenatal development, postnatal tissue regeneration, remodeling responses follow-
ing injury, and general tissue homeostasis [36—40]. Similarly, acellular scaffolds
have been shown to have biologically inductive clues [21, 22, 27, 41, 42]. While
hybrid materials, consisting of synthetic and acellular matrix components, are also
an attractive possibility, these concepts are in their infancy. Hybrid materials could
be utilized to enhance cell adhesion and biological activity while taking advantage
of the ability to more precisely manufacture scaffolds or scaffold components with
synthetic materials [21, 34, 35, 43, 44]. Differences between acellular and synthetic
scaffold approaches are summarized in Table 18.2. Owing to the current advantages
of acellular scaffolds, we will focus our discussion in the remainder of this chapter
on their manufacture, assessment, and usage.

Decellularization

Methods of Decellularization

The derivation of a cell-free ECM is not a new concept. Lwebuga-Mukasa and
colleagues first described the generation of acellular lung scaffolds in 1986 for the
study of rat type II alveolar epithelial (AEII) cell behavior on a native basement
membrane [45]. This technique was heavily explored in simple tissues in the 1990s
and early 2000s [46—49] and has made strides into the clinic. Acellular biologic
scaffolds have been created from a variety of different simple tissues, including
skin, esophagus, and trachea [4]. Decellularization was first applied to complex
tissues using whole organ perfusion decellularization in heart in 2008 [15]. Begin-
ning in 2010, several groups described similar techniques in lung [18-23] and since
this time, the field has grown rapidly.

The basic goal of any decellularization technique is to remove the endogenous
cell population while retaining the macroarchitecture of the organ or the tissue,
along with the ECM composition (Fig. 18.2). Maintenance of mechanical tissue
properties is also thought to be critical in evaluating decellularization protocols. A
variety of methods have been described to decellularize tissue. Most commonly, a
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Table 18.2 Comparison of biologic vs. synthetic scaffold approach for ex vivo bioengineering

Biologic (acellular)
scaffold Synthetic scaffold Potential hybrid design
Differentiation + | Retains native | — | Lacks specific + Could be engineered
and engraftment integrin binding integrin binding with specific ECM
cues sites sites (must be components or
engineered into engineered integrin
scaffolds) sites
Immunogenicity |+ | Antigen +/— | Unknown/vari- +/— | Unknown/variable
removal during able depending depending on the arti-
decellularization on material ficial matrix material
chosen
Manufacturability | + | Native architec- | — | Complex archi- | — | Complex architecture
ture largely tecture possible possible
retained
— | Large variability | + Precise control + More ability than
between donor possible (i.e., acellular to be con-
scaffolds repeatability) trolled, but ECM
incorporation intro-
duces a degree of
variability
Long-term — | Degradation + Improved storage | +/— | Improved storage
storage with long-term stability stability, but would
storage likely loose biologic
activity under long-
term storage

series or combination of detergents, solvents, acids/bases, and hypotonic or hyper-
tonic solutions are used to remove the majority of cellular components. Alternative
methods include physical methods such as freeze/thaw cycles and/or biological
agents such as enzymatic treatment [48]. Methods of decellularization are compre-
hensively reviewed elsewhere [50]. In general, most protocols last from 1 to 7 days.

There are a variety of published reports on techniques for decellularizing
mouse, rat, porcine nonhuman primate and human lungs (Tables 18.3 and 18.4).
In the lung, maintenance of both large and small airways and vessels is critical, in
addition to the more delicate structures such as alveolar, capillary, and lymphatic
systems which can be damaged through the use of excessive pressure during
decellularization [51]. Perfusion decellularization has been most commonly uti-
lized for whole lung decellularization, but there have also been reports of excising
segments or slices from native lung and decellularizing these smaller segments [28,
29, 52, 53]. Detergents are the most commonly utilized decellularization agents
used in perfusion based lung decellularization. There are several studies which have
directly compared differences between these methods, and endpoint comparisons
included assessment of proteomic composition, the mechanical properties of the
final acellular scaffold, and recellularization efficacy [23, 41, 52]. The most com-
monly utilized detergents for lung are either the ionic detergents sodium
deoxycholate (SDC) and sodium dodecyl sulfate (SDS), which are often used in
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Mouse Human

Native Decellularized Native Decellularized
A

Fig. 18.2 Overview of the decellularization and recellularization process. Representative images
of native and decellularized lungs from mice and humans (upper panel) demonstrating loss of
pigmentation following decellularization, whereby the lungs become translucent white in color.
H&E staining reveals complete cellular removal and gross maintenance of histological architec-
ture. Histological analysis following recellularization with murine alveolar epithelial cells (C10)
(left) and human bronchial epithelial cells (HBE) (right) into acellular mouse and human lung
slices. Cells can be seen to have attached to the acellular lungs after 1 day of slice culture

combination with the nonionic detergent Triton X-100 [18, 22-27, 29, 41, 54—
58]. Zwitterionic detergents such as 3-[(3-cholamidopropyl)dimethylammonio]-1-
propanesulfonate (CHAPS) have also been used [19, 52, 59, 60], but some reports
demonstrate that these may be more damaging than ionic or nonionic detergents
due to their efficiency in denaturing proteins [48]. Many protocols also incorporate
additional rinses and incubations for the purpose of removing organic components
which are difficult to remove with the other detergents. The most commonly
utilized additional steps are the use of hypertonic solution for lysis of cells (e.g.,
1 M NaCl), or DNase/RNase to clear residual DNA and RNA. While both vascular-
only perfusion and a combination of vascular and airway perfusion have produced
acellular scaffolds capable of supporting recellularization, there is no consensus on
the best route of administration and removal of decellularization agents.
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Table 18.4 Summary of decellularization methods for human and porcine lungs
Ref. | Species Decellularization agents Perfusion Instillation | Days
parameters route
[19] | Human CHAPS, NaCl, and EDTA Constant pressure Airway and |1
(25 mmHg) vasculature
[27] Human/ Triton X-100, SDC, NaCl, Unspecified Airway and |3
IPF DNase vasculature
[126] | Human/ SDS, Triton X-100 Constant pressure Vascular 4-7
porcine (30 cmH,0)
[52] |Human/ |(a) SDS; (b) CHAPS; None—lung seg- N/A 1
porcine (c) Tween-20, SDC, peracetic | ments and agitation
acid
[44] |Human/ |Freeze/thaw; graded SDS Varying flow rates | Airway and |7
porcine perfusion (100-500 mL/h) vasculature
[61] Porcine Triton X-100, SDC, NaCl 12-25 mL/min Airway and |1
(15 mmHg) vasculature
[29] Human/ SDS, Triton X-100, NaCl None—thin lung N/A 2
IPF slices
[26] Human/ Triton X-100, SDC, NaCl, Constant flow rates | Airway and | 3
porcine DNase Peracetic Acid (1L,2L,3L/min) | vasculature
[25] |Human/ | Triton X-100, SDC, NaCl, Constant flow rate Airway and |3
COPD DNase Peracetic Acid 2 L/min vasculature
[73] | Human/ SDS, Triton X-100 Constant pressure Vascular 4-7
rat (50 cmHZO)
[41] Human/ (a) SDS; (b) SDC; (c) CHAPS | Constant pressure Vascular 4-7
porcine/ (30 cmH,0)
rat

Abbreviations: CHAPS 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, COPD
chronic obstructive pulmonary disease, /PF idiopathic pulmonary fibrosis, NaCl sodium chloride,
SDC sodium deoxycholate, SDS sodium dodecyl sulfate

How differences in protocols and routes of administration for decellularization
reagents might affect recellularization protocols or potential immunogenicity of
implanted scaffolds is not yet known. There is currently no set of standards for
demonstrating that a protocol has generated an optimal acellular scaffold. However,
Crapo et al. proposed three minimal criteria: (1) <50 ng dsDNA per 1 mg ECM dry
weight; (2) <200 bp DNA fragment length; (3) absence of visible nuclear content in
histological sections by 4',6-diamidino-2-phenylindole (DAPI) or hematoxylin-
eosin (H&E) staining [50]. However, these are generic criteria for all acellular
scaffolds and there are tissue and organ-specific requirements, such as preservation
of mechanical properties that are likely important for lung. Furthermore, differ-
ences in retention of ECM components and mechanics have also been observed [23,
52] and these may be critical criteria in establishing lung-specific guidelines which
must be met with the various protocols utilized in different laboratories.
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Scaling Up Decellularization Protocols for the Clinic

Scaling up decellularization protocols from rodent lungs to potential clinical
sources (e.g., large animal xenogeneic sources: e.g., porcine or human scaffolds)
presents a new set of further challenges. In addition to anatomical differences, there
are practical differences in handling organs of this size and it is not a simple matter
of scaling up volumes. While rodent and macaque lungs have been decellularized
by hand, higher pressures and volumes must be utilized for sufficient inflation of
perfusion pathways (e.g., vasculature, airways, etc.) in larger organs. This ensures
that perfused solutions reach distal airspaces and capillary beds and that the ensuing
cellular debris is cleared from the lungs. All of the published protocols to date for
decellularizing whole large animal or human lungs utilize perfusion pumps to
generate acellular scaffolds which can support recellularization [19, 20, 25-27,
41, 44], and a recent report demonstrates a potential automated scheme which
minimizes many of the practical issues [61]. While not a model for clinical
translation, human and porcine lung segments have also been decellularized using
small segments in order to improve high throughput study [28, 29, 52, 53]
(Table 18.4). There are a variety of techniques which have been reported for
assessing the efficacy of the decellularization protocol as well as for characterizing
the remaining scaffold. Most reports characterize scaffolds using histologic, immu-
nofluorescent staining, and DNA detection/quantification (Fig. 18.2). We will next
discuss these endpoint assessments.

Residual Extracellular Matrix and Other Proteins

Owing to the importance of ECM components, retention of key ECM components
is a critical parameter to assess as an endpoint when evaluating potential
decellularization protocols. The precise combination of ECM proteins that must
be retained to preserve the ability of the acellular scaffold to give organotypic cues
for cellular differentiation and functional tissue level assembly remains unknown.
The major structural and functional molecules in the ECM include proteins such as
collagens, elastin, fibronectin, and laminins as well as a variety of glycoproteins
including glycosaminoglycans (GAGs). Collagens are the chief structural compo-
nents of the lung and are responsible for overall mechanical strength while elastin
gives the lung its elastic properties of reversible distension and intrinsic recoil.
GAG:s help control macromolecular and cellular movement across the basal lamina
and may also play a role in the mechanical integrity of the lung, although less is
known about their exact role, matrix molecules are generally highly conserved
proteins in eukaryotic organisms and therefore it is generally thought that these
scaffolds will have minimal to no immune response if used in a xenogeneic context.
This may theoretically explain the lack of an adverse immune response seen in
xenotransplantation of other decellularized organs such as skin, trachea, and esoph-
agus [4, 7, 11, 12].
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There are a variety of techniques which have been used to evaluate ECM
components, including histology, immunohistochemistry, western blotting, mass
spectrometry-based proteomics, and component-specific assays such as Sircol
Collagen Assay, Fastin elastase, etc. (Table 18.3). The majority of lung
decellularization techniques result in significant loss of elastin and sulfated GAGs
in all species studied thus far [18-20, 22-24, 54-56]. In head-to-head comparison
studies of lung decellularization protocols, SDS and SDC have been found to retain
more elastin as compared to CHAPS-based protocols [23, 60]. However, despite the
differences in retention of ECM components, inoculated cells appear to behave
similarly in the recellularization/repopulation assays currently used (including
histological and immunofluorescence evaluation). Therefore, it remains unknown
if there is an optimal decellularization protocol, and if so, which is best suited for
translation to the clinic.

A recently emerging trend is the use of mass spectrometry proteomic analysis to
help delineate differences between protein loss and retention in protocols or in
scaffold source [22-26, 41]. This assessment has also been used to aid in the
selection of optimal protocol parameters such as flow rates or pressures [26]. For
example, proteomic analysis can help delineate the impact of changes in protocols
during different steps, decellularization agents, or in decellularization parameters
(e.g., flow rate, pressure, rinse volumes, etc.) by quantifying or semiquantitatively
assessing which choices preferentially retain certain ECM components or mini-
mize/maximize retention of cellular-associated proteins [25-27]. In addition to
detecting ECM composition and residual proteins in acellular scaffolds, it has
been used for distinguishing differences between decellularization methods or
lung origin, including disease states or donor age [23-27, 41, 53, 55]. These
assessments also yield critical information for those studying cell-ECM interac-
tions as it can help delineate differences in the underlying matrix.

One particularly striking and consistent result amongst the various groups
utilizing this analytical approach is the amount and breadth of non-ECM proteins
detected in the scaffold following decellularization. In particular, cytoskeletal
elements and cell-associated proteins appear to be retained in the scaffolds, while
in general, lesser secreted proteins are detected. This suggests that transmembrane
proteins and their associated cytoskeletal elements may remain anchored to the
ECM with currently used decellularization protocols. The impact of these residual
proteins on recellularization, including potential immunogenicity remains
unknown. Furthermore, in the current reports, proteomic assessment has been
limited in scope and generally only the most abundantly expressed proteins are
reported.

Mechanical Assessments of Decellularized Scaffolds

A variety of in vitro assessments have been utilized to assess the mechanical
properties of acellular scaffolds. Investigators have explored both micro-[62, 63]
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and macroscale [22, 23, 44, 64, 65] mechanical measurements of acellular lungs as
well as force tension relationships in linear strips of decellularized lungs [52,
60]. While techniques such as atomic force microscopy (AFM) are useful in
obtaining topographical information and initially assessing mechanical properties
of the scaffolds [27, 62, 63, 65], these results have yet to be correlated to
recellularization or functional performance. Traditional lung mechanics testing of
acellular scaffolds has shown that in the absence of cells and surfactants, acellular
scaffolds are stiffer than their naive counterparts [22]. Introduction of exogenous
surfactant into the acellular scaffolds can partially restore lung compliance
[22]. This is an important finding and indicates that during recellularization strat-
egies, serial measurements of lung mechanics could be used as a noninvasive and
nondestructive means to assess functionality of the regenerating scaffold. For
example, decreases in elastance could be used as a measurement of de novo
surfactant production. However, as acellular lungs are often leaky following
decellularization, interpreting results in this context can be challenging [44]. The
importance and challenges of measuring mechanical properties in ex vivo bioengi-
neering is discussed in more detail in the review by Suki [66].

Recellularization

Recellularization of Acellular Scaffolds for Bioengineering
New Lung

The lung is a complex organ with a variety of different functions. These include gas
exchange, immune system surveillance, and ciliary clearance of inhaled foreign
objects. In order to accomplish all of these diverse functions, lung tissue utilizes a
variety of different cell types, all of which uniquely contribute to some critical
aspect of lung function [67]. Following a variety of acute injuries, such as infection
or chemical insult, the lung has the capability to repair itself through activation of
endogenous regeneration. The heterogeneous cell population of the lung is
replenished by resident stem or progenitor cells, which differentiate into the various
adult cell types [68]. Once implanted, it is thought that any ex vivo regeneration
strategy must recapitulate these functions, whether it is through a completely
biological strategy (i.e., functioning tissue) or some combined artificial and bio-
logical solution. It is therefore likely that lung tissue grown ex vivo require some
minimal restoration of these subtypes so that it will function once transplanted.
While a variety of cell sources are being investigated for recellularizing acellular
and artificial scaffolds, obtaining sufficient cell numbers with any source remains a
significant open question. The ideal solution is thought to be the usage of an
autologously derived source of cells to minimize post-transplantation immune
complications which are a significant cause of morbidity in transplanted patients.
One potential source is the use of fully differentiated primary adult cells. However,
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these cells may not have sufficient replicative capacity to fully recellularize the
organ, plus, normal repair and regeneration following normal lung injury (e.g.,
illness) may not be possible. Nevertheless, these sorts of repopulation studies may
shed light on recellularization strategies using other cell types. It remains unknown
if multiple cell types could be isolated from the eventual transplant recipient, grown
to sufficient numbers ex vivo and then used in a recellularization approach to
restore functionality. While it has been shown that a strategy such as integrin
blocking can be used to direct initial cell engraftment of a single cell population
[22, 69], scaling this clinically and further adding the complex challenge of
uniquely directing the right cell population to a specific architectural location
would be challenging. Alternatively, autologous endogenous lung progenitor cells
from the various compartments could be utilized (e.g., distal and proximal epithe-
lial progenitor cells, endothelial progenitor cells, etc.) along with stromal cells to
recellularize acellular scaffolds. However, the same challenges of obtaining suffi-
cient cell numbers for an initial seeding strategy and directing cells to their correct
compartment remain. In both instances, it remains unknown if normal cells could be
obtained from a patient with a preexisting lung disease or if isolated diseased cells
could be gene-corrected prior to subsequent recellularization. Recent work indi-
cates that the scaffold may more significantly contribute to phenotype than cell-
origin. Fibrotic scaffolds were found to induce a pro-fibrotic profile, independent of
whether normal or IPF-derived human fibroblasts were used in repopulation assays,
whereas the normal lung scaffold did not induce a pro-fibrotic profile if either cell
type was used [29]. An allogeneic cell source could also be used, but this
re-introduces the potential for immune complications following transplantation.
Furthermore, the identification of bona fide distal airway lung progenitor cells in the
adult human lung remains controversial.

A potentially more appealing autologous approach is the use of induced plurip-
otent stem cells (iPS) which are derived from reprogramming somatic cells to a
stem-cell-like state. While iPS cells avoid the ethical controversies surrounding the
use of embryonic stem cells (ESCs)—stem cells derived from the inner blastocyst
of in vitro fertilized embryos—iPS cells have been shown to retain epigenetic
memory of their tissue origin and have been shown to form teratomas [70]. iPS
cells are typically derived from dermal fibroblasts and thus, differentiating them
into the various lung cell types has been challenging. However, despite this
limitation, recent work has demonstrated that human iPS cells can be differentiated
into cells expressing a distal pulmonary epithelial cell immunophenotype and
seeded into acellular human lung scaffolds [71-73]. These results further encourage
the use of this approach in moving towards the clinic.

Other potential approaches include the use of fetal homogenates or ESCs. As
previously mentioned, ethical concerns remain for either of these approaches, as
well as the potential for teratoma formation with ESCs. While initial studies have
shown that ESCs can engraft in acellular murine lungs [21, 57], seeding into
acellular lungs was not sufficient to induce differentiation. Optimized in vitro
differentiation protocols must be used in conjunction with seeding and repopulation
strategies. Significantly, ESC-derived murine Nkx2-1GFP+ progenitor cells were
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able to recellularize acellular murine lungs and form alveolar structures, while in
contrast, seeding with undifferentiated ESCs resulted in nonspecific cell masses in
distal regions of acellular lungs. Fetal homogenates have the distinct advantage of
containing all the necessary cell populations, and have been shown to have some
capacity for self-assembly. These cells have been successfully used in the current
rodent models of ex vivo regeneration and transplantation. However, in both
instances, ethical concerns remain in obtaining these cells and the need for immu-
nosuppressive drug treatment post-transplantation remains unknown. Tables 18.5
and 18.6 summarize recellularization approaches in animal and human models and
the phenotype adopted by seeded cells.

Implantation of Recellularized Scaffolds

Important proof of concept studies have shown that recellularized scaffolds can be
implanted and participate in gas exchange for short time periods. Decellularized rat
lungs re-endothelialized with human umbilical vein endothelial cells (HUVEC) and
recellularized with fetal rat lung homogenates and A549 epithelial cells were
transplanted into rats that had undergone previous pneumonectomy [18,
19]. While the ex vivo regenerated lungs were shown to contribute to gas exchange
following transplantation, the transplants developed significant pulmonary edema
and/or hemorrhage resulting in respiratory failure after several hours. In a subse-
quent study, survival for 14 days was achieved after implantation but lung function
progressively declined and the histologic appearance of the graft at necropsy
demonstrated significant atelectasis and indications of fibrotic-like alterations
[58]. A third study also confirmed the feasibility of short-term survival (60 min)
following orthotopic transplantation of a rat lung recellularized with iPS cells
[73]. Transplanted grafts were perfused and partial pressure of carbon dioxide in
the blood was maintained within normal limits over the observation period. How-
ever, blood gas measurements were taken from the left pulmonary vein and
represent a mix of blood which had perfused both the left (bioartificial lung) and
the naive lung, and thus is likely not representative of active gas exchange in the
transplanted lobe. Additionally, occasional alveolar hemorrhage was observed.
Despite these limitations, these studies, nonetheless, provide proof of concept that
acellular lungs can be recellularized, surgically implanted, and might minimally
participate in gas exchange. However, they also demonstrate the significant chal-
lenges that remain in translating towards the clinic. A recellularized acellular lung
needs to meet a number of functional requirements in order to be clinically
transplantable: adequate gas exchange, waste transport, unidirectional mucociliary
clearance, and the ability to maintain physiologic airway pressures and volumes.
Thus far, there has been a compartmentalized approach to the respiratory system,
separating regeneration of the trachea, vasculature, proximal airways, and distal
lung. An animal model which accomplishes restoration of all of these functions has
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not been achieved and it will likely be several years before this can be
accomplished.

Most recellularized artificial scaffolds have been explored in a limited context
and primarily in vitro (Table 18.1). The main research focus up until now has been
on the structural development of candidate scaffold designs and materials for lung
tissue engineering. There have also been studies investigating cell differentiation of
progenitor cells to generate sufficient amounts of cells to repopulate the artificial/
decellularized organ. Implantation of artificial scaffolds has only been performed in
a few cases and was performed either subcutaneously [32] or into the pleural cavity
following pneumonectomy [74]. The distal lung has been the predominant research
focus to date. However, no candidate scaffolds have yet to include considerations
for vascularization and therefore it remains unclear if these scaffolds could be
viable once transplanted. Thus far, there have been no reports of an attempt to
transplant a whole bioartificial lung.

Immunogenicity of Implanted Scaffolds

The a priori assumption for clinical use of decellularized lung scaffolds is that
acellular scaffolds will be nonimmunogenic because the cellular material has been
removed, including cell-associated immunogens, such as Toll-like receptors (TLR)
and enzymes associated with xenogeneic immunogenicity, such as (alphal,3)
galactose. However, some ECM and other proteins identified in the remaining
decellularized scaffolds are known to be immunogenic [46, 75-77]. This issue
has not yet been adequately studied or resolved. Further, cells inoculated into
decellularized scaffolds secrete ECM and other proteins [22]. Thus, inoculated
cells may considerably remodel the scaffold and generate their own basement
membrane, shielding the denuded basement membrane, which can be
immunogenic [78].

Some of these remaining proteins may also be beneficial with regard to their
ability to induce an immune response. A growing body of literature suggests that
decellularized scaffolds can polarize macrophages to the anti-inflammatory M2
phenotype, which is viewed as a more permissive, regenerative phenotype [4, 7, 46,
79-81]. Further, recent work in lung repair and regeneration has demonstrated the
critical role that the immune system has in orchestrating normal repair and regen-
eration in adult lungs [82]. To date, with the exception of the use of fetal homog-
enates, no recellularization studies have included immune cells. Thus, it is unknown
whether retention of these immunogenic components may actually be beneficial in
aregeneration strategy. However, one study of interest demonstrated that co-culture
of a recellularized acellular lung slice with CD206+ macrophages was found to
increase fibroblast proliferation and prolong survival [28]. While this study was a
model of disease, it demonstrates the critical role that one immune cell population
can have on recellularization in the scaffolds through orchestrating paracrine
signaling.
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Some groups have implanted recellularized artificial scaffolds. Cortiella and
colleagues used PGA and Pluronic F-127 hydrogels and showed that the foreign
body response was reduced by usage of the latter [83]. A Gelfoam sponge
recellularized with fetal lung cells induced no severe local immune response [84]
while a Matrigel plug combined with FGF2-loaded polyvinyl sponge did [85]. This
provides evidence that the scaffold material is in part responsible for triggering the
immune reaction of the recipient, and that usage of natural matrices like collagen I,
fibrinogen—fibronectin—vitronectin, and gelatin seem to be less inflammatory than
PGA or polyvinyl [35, 74, 86].

Environmental Factors in Ex Vivo Lung Regeneration

The majority of published work focuses on decellularization methods, lung origin
(i.e., disease state or age), and cell sources. There have been limited investigations
into the addition or supplementation of exogenous growth factors to scaffolds, and
especially a lack of studies examining the role of environmental cues, such as
mechanical stretch or oxygen control, in generating functional lung tissue. Despite
the presumed importance that factors such as mechanical stimuli and oxygen
tension will have in regeneration schemes, they have remained largely unexplored
in acellular scaffolds. These critical factors are known to play roles in both
embryonic development and post natal repair and regeneration [87—89].

Traditional in vitro cell culture is performed at 20 % oxygen, however, physi-
ologic oxygen levels in individual cells vary depending on the tissue type, tissue
density, and cell/tissue proximity to blood vessels [90]. It has long been known that
hypoxia can mediate angiogenesis and that vascular endothelial growth factor
(VEGF) expression is upregulated in hypoxia [91]. During embryonic develop-
ment, the lung environment is hypoxic (1-5 % oxygen) [90] and lower oxygen
tension levels have been shown to positively influence in vitro differentiation.
Lowering oxygen tension to levels typically encountered by cells in the developing
embryo has been shown to enhance in vitro differentiation of ESC and iPS cells to
Nkx2-1* lung/thyroid progenitor cells [92]. Further studies of cellular differentia-
tion in acellular scaffolds are needed to clarify the potential role of oxygen tension
in an ex vivo regeneration strategy.

There is also a large and growing body of literature that delineates the impor-
tance of mechanical stimuli on embryonic lung development as well as in normal
and diseased tissue repair and regeneration in vivo and ex vivo [88, 89]. Mechanical
stretch is known to induce upregulation of surfactant protein C (SP-C) mRNA and
protein expression in ATII cells, while shear stress on endothelial cells is critical for
VEGF expression [93]. Several studies have examined the effect of
mechanotransduction on fetal or adult lung cells in vitro; [93-96] but there is no
available information on effects of stretch on development of lung epithelial tissue
from embryonic or adult stem cells or from endogenous lung progenitor cells. We
have observed upregulation of lung epithelial genes in murine bone-marrow-
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derived mesenchymal stem cells seeded into acellular mouse lungs and ventilated
(Wagner et al. unpublished data). In particular, we found that SP-C mRNA was
significantly upregulated at physiologic tidal volumes; a result we also observed in
human ATII cells ventilated in small segments of acellular human lung (Wagner
et al. unpublished data) using an artificial pleural coating on excised acellular
segments, permitting ventilation [97]. While perfusion parameters have not yet
been studied in detail, cultivation of a recellularized human lobe was done under
perfusion conditions [41] and a rotating bioreactor culture was found to have
positive effects on iPS cells differentiating into distal lung epithelial cells [42].

In addition to utilizing a scaffold from a suitable source and using an optimized
decellularization protocol, precise control of the mechanical and gaseous environ-
ment with bioreactor technologies (e.g., stimuli mimicking stretch from breathing
and shear stress induced by blood flow or breathing) will be necessary for a
successful regeneration scheme.

Lessons Learned from Ex Vivo Organ and tissue Culture

Despite rigorous research efforts, it remains challenging to keep normal, healthy
tissue slices and organ explants viable. Most in vitro studies (i.e., lung slices) are
not kept longer than a few days while the difficulties in maintaining adequate tissue
viability for more than a few hours for candidate donor lungs for transplantation is
known to be extremely difficult and is a major limiting factor in maximizing the
number of organs available for transplantation. In both of these research areas,
tissue slices and organs are generally derived from healthy tissue sources, which are
the end goals of an ex vivo strategy. Thus, the challenge of generating functional
lung tissue ex vivo is even more daunting considering the challenges experienced in
these fields.

Despite the fact that it is widely regarded that sophisticated bioreactor technol-
ogies will be needed for ex vivo lung tissue regeneration, there have been limited
reports to date examining the effect of the various parameters which could be
controlled in bioreactors (e.g., oxygen tension, mechanical ventilation, and vascular
perfusion). Additional factors, such as optimal media formulation, have also been
minimally explored in the current literature. However, several studies have strongly
established the groundwork and the necessity of incorporating bioreactor technol-
ogies with ex vivo schemes to maintain or enhance phenotypes. Culture of hATII
cells and hiPS-ATII cells in a rotating bioreactor at air—liquid-interface (ALI) was
found to be beneficial in maintaining the phenotypic expression of distal epithelial
lung cells [42]. In whole lungs or lobes, limited data is available on the viability of
cells following recellularization. A single study demonstrated that human small
airway epithelial cells (SAECs) instilled into a whole acellular human lung lobe
could be maintained for 3 days with constant media perfusion [41]. However, a
major limiting factor in both of these studies is that only short time points were
analyzed and longer ex vivo schemes will likely be necessary for generating
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functional lung tissue [30]. One resource which may be beneficial in guiding the
development of optimal lung bioengineering strategies is the ex vivo organ and
tissue culture literature describing practices and strategies utilized in those fields for
optimizing and maintaining the viability of tissue and organs.

Acellular Lungs as Ex Vivo Models of Disease

In addition to their potential use as scaffolds for tissue engineering, there has been
rapid growth in the use of acellular lungs as ex vivo models which more closely
recapitulate diseased in vivo environments. These experiments provide a new
opportunity for insight into cell-ECM interactions capable of driving disease
phenotypes. Human fibroblasts from normal human lungs seeded onto acellular
scaffolds derived from fibrotic lungs were found to increase their alpha-SMA
expression [27], and the ECM was found to contribute more significantly to IPF
correlated gene expression changes in fibroblasts rather than cell-origin (i.e., from
IPF or normal lungs) [29]. However, many cell-associated proteins, characteristic
of pulmonary fibrosis (e.g., TGF-beta, Ctnnbl, etc.) are retained in decellularized
mouse lungs following bleomycin injury [24]. In addition, ECM-associated pro-
teins and matrikines (ECM derived peptides which are liberated by partial proteol-
ysis of ECM macromolecules) are detectable by proteomic approaches following
decellularization [22, 23, 25-27, 53, 54]. These proteins, in addition to the detected
ECM components, may significantly contribute to the phenotypic changes observed
by several groups in recellularization assays. In particular, observation of acquisi-
tion of a more fibrotic phenotype by normal fibroblasts in acellular human IPF
lungs, may be attributed to these residual proteins, rather than the ECM components
alone [27, 29].

Similarly, in acellular lungs derived from murine models of emphysema and
from human patients with COPD, cells were unable to remain comparably viable as
the same cells seeded into healthy acellular scaffolds [24, 25]. This suggests that
either the matrix is impaired in COPD or that the residual protein composition is
significantly altered as compared to normal acellular lungs. These studies generate
exciting insight into the potential role of the matrix and matrix-associated proteins
in driving disease phenotypes and provide proof of concept for use of acellular
lungs as a novel platform for studying cell-matrix interactions.

A further novel use of acellular scaffolds in disease models has been utilized to
study the role of macrophages in IPF using a Transwell culture setup of thin
acellular lung slices recellularized in the Transwell insert, with macrophage
co-culture [28]. Decellularized mouse lung slices seeded with murine fibroblasts
were co-cultured with CD206* or CD206~ macrophages from day 14 of murine
lungs following bleomycin-induced lung injury (or in the absence of macrophages).
CD206" macrophages were found to increase fibroblast proliferation and survival in
the lung slices. However, there was no induction of a-SMA expression. Nonethe-
less, this study takes advantage of the ability to selectively study cells and cell
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combinations in isolation using acellular lungs. Similarly, the human fibroblast cell
line MRCS5 was seeded onto slices of normal human decellularized lung slices and
stimulated with thCHI3L1, a prototypic-chitinase-like protein recently shown to be
elevated in human IPF. The addition of rhCHI3L1 induced a-SMA expression in
the MRCS5 cells and they adopted a contractile phenotype, as assessed by
histology [28].

In addition to repopulation assays, it has also been suggested that recellularized
acellular scaffolds could also be used for studying infectious diseases [98] and used
as models for cancer development [99]. Thus, studies to date have likely only begun
to demonstrate the utility of acellular tissue as ex vivo models of disease which
more closely recapitulate in vivo microenvironments than traditional in vitro
setups.

Precision Cut Tissue Slices

“Precision cut tissue slices” for ex vivo analysis have been used since the
mid-nineteen eighties, when Smith et al. first reported on liver tissue that was sliced
into 250 pm thin sections with low variation in thickness (<5 %) [100]. Highly
delicate slices (thickness in general 25-300 pm) were fabricated with a device
called a Krumdieck tissue slicer. This device overcame the variations in thickness
previously seen due to manual cutting of tissue with a razorblade. This thickness
also reduced the risk of malnutrition and lack of oxygenation for cells inside the
tissue slice [101, 102]. Tissue slicers (Krumdieck or devices from Alabama
Research and Development or Leica) use a core, drilled from the tissue that is to
be sliced, and generate slices by cutting this core with a knife rotating perpendicular
to the core axis. Another possibility for slice generation is the use of vibratomes
(e.g., Leica, Zeiss), using a vibrating knife, thereby reducing mechanical impact to
the tissue [103]. Several organs have been used to produce tissue slices including
brain, heart, liver, kidney, and lung [102—-108].

In general, the stiffness of most organ tissue is itself sufficient for slice gener-
ation. However, as lung tissue requires high elasticity for breathing movements and
high surface area to volume for gas exchange, its density is low compared to other
organs. Therefore, it needs to be filled with a supporting material in order to be
sliced. One commonly used material to infiltrate the lungs is low melting agarose
(used at 37 °C between 1 and 3 % w/v). After allowing the filled lungs to cool and
the agarose to gel, the lung can be sliced. Slices have been used in diverse studies,
some of which are listed in Table 18.7. Typical experimental durations have been
reported in the range of 24-72 h [101, 102]. Using the current techniques, slice
cultures seem to decrease in viability after 72 h and thus there is currently no
possibility of long-term cultivation. Prolongation of this cultivation period would
greatly expand the repertoire of studies which can currently be conducted using this
technique. Some possible avenues of exploration of major interest would be the
study of disease development or tissue regeneration.
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Table 18.7 Studies applying slice cultivations

Study type Ref.

Pulmonary physiology [108, 128-134]
Pharmacology [128, 135-139]
Pathogenesis [140, 141]

Toxicity [107, 142]

Cellular effects of mechanical stretch [108, 129, 134, 143]
Cytokine release [142]

Viral infection and gene transfer [144, 145]

Viral exacerbations [146, 147]

Ex Vivo Maintenance of Explanted Organs for
Transplantation

The shortage of donor organs is a major limiting factor in the treatment options for
end-stage lung disease patients. It is further currently impossible to fully mimic all
the diverse lung functions in a sustainable and practical manner (i.e., portable) with
manmade technical devices. In addition to traditional allogeneic transplantation,
one alternative approach could be to use intact xenogeneic organs to restore the
function of complex organs as has been done with liver and kidney (Butler and
McAnulty refs).

In the lung, progress has been slower. Cypel and colleagues investigated whether
ventilation of explanted lungs for up to 4 h with subsequent inflation to full capacity
and storage in 4 °C Perfadex solution could improve transplantation outcomes
[109]. Although not reaching statistical significance, the incidence of primary
graft dysfunction 72 h after transplantation was lower in the ex vivo perfusion
group (15 %) compared to the control group (30 %, p=0.11). This ex vivo
perfusion at 37 °C (normothermic) and storage at 4 °C has been found to have no
drawbacks on transplantation outcome compared to normal donor lungs and there-
fore seems to be very promising. Still there is no consensus about which solution is
the best to use.

The US Food and Drug Administration (FDA) recently approved the “XVIVO
Perfusion System with STEEN Solution” (XVIVO Perfusion Inc. Englewood,
Colorado, USA) which has been shown to increase the time for evaluation of
the functional suitability of a donor organ for transplantation. Donor lungs are
kept at body temperature while flushing the vasculature up to 4 h with a sterile
solution (STEEN Solution). STEEN solution is a normal oncotic pressure solution
containing human serum albumin, dextran, and a low K* concentration. This
solution is designed to prevent edema formation, thrombogenesis, and vascular
spasm under normothermic conditions. Lungs remain ventilated during the evalu-
ation period and cells are thus maintained in more physiologic oxygen levels.
Waste products are removed by flushing of the vasculature. With this technique,
a proportion of organs once regarded as nonideal can become suitable for



18  Acellular Lung Scaffolds in Lung Bioengineering 337

transplantation with similar rejection and 12-month survival rates compared to
optimal donor organs.

For basic and translational research efforts, these studies are of major impor-
tance because they elucidate critical parameters, including perfusate content, tem-
perature, and perfusion rates and pressures that need to be controlled and optimized
for long-term cultivation of organs. It is likely that many of these parameters will
also be critical to control in ex vivo organ culture techniques, regardless of whether
it is simply for longer ex vivo culture for basic science or for preservation/mainte-
nance for candidate transplant organs or tissue engineering schemes.

Discussion and Outlook

While the prospect of utilizing acellular lung scaffolds clinically may still seem like
science fiction to many, the progress made in the last few years has rapidly
indicated that this may be a viable option in the not so distant future. The difficulties
encountered in maintaining ex vivo viability of freshly explanted healthy organs
highlight many of the challenges which the ex vivo regeneration field faces, in
addition to those unique to the field. Ex vivo whole organ cultures experience
decreases in viability, selective survival of specific cell types, and loss of pheno-
typic expression over time with current techniques. Many of these same problems
may plague ex vivo bioengineering strategies. Even in very thin tissue slice models
of naive tissue, where lack of nutrition and oxygenation is theoretically not of major
concern, cells can only maintain their functionality, proliferative capacity, and
viability for short periods of time (up to 72 h). This is exacerbated in cultivating
whole organs, such as lung, where the need for proper control of medium oxygen-
ation, osmolarity, pH, ventilation, and tissue perfusion in three dimensions is
required to keep the tissue viable for long-term cultivation. This likely reflects the
combination of a number of factors at play, whose importance we may not currently
be fully aware of.

Chiefly among these may be media formulation. Currently, media formulations
which have been optimized for two-dimensional (2D) cultivation of homogenous
cell populations are utilized in cultivation of both precision cut tissue slices and
recellularized acellular tissue slices. However, the media composition needed for
whole organ cultivation needs to be optimized for multiple cell types and it remains
unclear if the media formulations which are viewed as optimal in 2D are even
optimal in that setup. Furthermore, stem and progenitor cells should sustain their
capability to differentiate and replenish damaged or absent cell compartments and
using a media which pushes these populations into a differentiated state may not be
desirable. Therefore, the media formulation used should somehow be able to serve
multiple roles simultaneously. To achieve this, different cell types and stem cells
initially seeded into acellular scaffolds in an undifferentiated state may require the
timed sequential addition of different growth factors, nutrients, and amino acids to
regulate signaling pathways involved in cellular proliferation and differentiation.
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Means of surveying and controlling the cultivation conditions and media formula-
tion are needed. The knowledge from bioprocess engineering may help to fill the
knowledge gap in the needs of whole organ cultivation and ex vivo bioengineering
of lung. To date, no study has been conducted addressing the composition of organ-
specific cultivation medium supporting long-term cultivation and cellular mainte-
nance in recellularizing lung scaffolds.

Additionally, currently used cultivation conditions for either ex vivo naive tissue
or recellularized acellular scaffolds do not even remotely resemble the in vivo
environment. These environments lack proper mechanical (stretch) and environ-
mental stimuli (contact to certain media/air). For example in the lung, it has been
shown that isolated ATII cells in tissue culture lose SP-C expression over time and
transdifferentiate into alveolar epithelial type I (ATI) cells [110, 111]. A similar
decrease in SP-C expression was observed when we cultured naive murine and
human lung tissue slices for 7 days in submerged culture (Uhl et al. unpublished
data). As it is known that mechanical stimulation induces SP-C expression in ATII
cells [112—-114], this suggests, that ventilation of whole organ cultures or stretching
of lung slices may be necessary to retain ATII cells in their progenitor state. On the
other hand, nonphysiologic ventilation may cause alveolar epithelial cell damage.
In a healthy organ the tolerance of cells to mechanical stimuli may be different to
that in disease. Further, we know that the mechanics of the acellular lung are
dramatically different than naive lung [22], even despite administration of exoge-
nous surfactant. This indicates the importance of maintaining precise control of the
environmental parameters during the whole regenerative scheme.

Reseeding of decellularized matrices has currently been limited to only a few
different cell types and often times in monoculture. Each additional cell type adds
complexity, making interpretation of results utilizing homogenates or multiple cell
types challenging. Usage of stem and progenitor cells (e.g., embryonic stem cells,
mesenchymal stem cells, or iPS cells) is appealing for recellularization strategies
as these cells can potentially differentiate into the multitude of cell types needed in
a specific area of the scaffold. The potential for this approach was demonstrated
with the use of ESC-derived murine Nkx2-1"* in acellular lungs. These cells
repopulated distal airspaces and a subpopulation differentiated into Nkx2-19F~
and acquired a morphology characteristic of ATI cells and expressed the pheno-
typic ATI marker podoplanin (T1a) [57]. While encouraging, the necessity of
regenerating the multitude of cell types in the lung remains a challenge.

A clinical translation scheme of recellularization of decellularized organs will
require precise process control. Metrics for assessing successful decellularization
need to be established and a consistent decellularization scheme should be utilized.
During recellularization phases, the initial seeding may be accomplished by attach-
ment followed by migration and/or proliferation. We have observed that during this
initial seeding phase, physiologic ventilation and perfusion are not feasible until
cells have adequately adhered to the scaffold, and in fact, inclusion of these stimuli
may even be detrimental. The initial properties and composition of the organ are not
comparable to the in vivo situation. For example, in decellularized lungs, there is a
lack of surfactant in the alveoli prior to recellularization, and this dramatically
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effects mechanical properties [77]. It has also been shown that there is a loss of
ECM components, such as elastin, following perfusion decellularization using most
protocols [115]. The effect of the loss of these ECM components on initial engraft-
ment and subsequent recellularization and regeneration remain unknown, but may
be critical to the success of a regenerative scheme. The importance of preserving
the native integrin binding sites in recellularization schemes has already been
demonstrated and cells can be directed to certain ECM binding sites through
integrin blocking [22]. It has been shown that fibroblasts seeded into acellular
mouse lungs utilize a B;-integrin-dependent pathway and thus preservation of
these integrin epitopes seems to be critical. As an accessory technology, a collagen
I and Matrigel solution has been used as a pretreatment to coat the decellularized
lungs via the trachea before cell seeding to enhance engraftment [56]. Alternatively,
cells have also been injected in a hydrogel (Pluronic-F127) for recellularization [21,
44]. Addressing the question of how the matrix should be prepared before inocu-
lation might be an extremely important aspect not yet explored in detail.

There are still major hurdles to overcome for ex vivo engineering. Using state-
of-the-art ex vivo preservation techniques, freshly explanted organs, such as kidney
and liver, can only maintain viability and function for 5 days [116, 117]. Perfusion
at physiologic flow rates is needed in conjunction with the appropriate perfusates
tailored in their chemical composition for lungs. This will also be essential for
ex vivo recellularization strategies using acellular or synthetic scaffolds and unfor-
tunately, these approaches are not yet mature enough for use. As cells first need to
be distributed by migration and likely undergo differentiation inside the matrix,
optimal media composition and environmental stimuli will be crucial for ex vivo
bioengineering strategies. In order to control for and adapt these stimuli to the
regenerating organ during the cultivation period, a range of ancillary technologies
need to be integrated and developed into existing bioreactor technologies (e.g.,
sensors, pumps, and analytic and process control systems). While the road to
translating acellular scaffolds into the clinic is long, steady progress has been
made in this relatively young field and it has a promising future.
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