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Role of Mechanical Stress in Lung Repair

and Regeneration

Connie C.W. Hsia and Priya Ravikumar

Introduction

The mammalian lung and its thoracic container, bounded by the diaphragm and the

rib cage and partitioned by the mediastinum, arise from distinct embryonic origins

but are mechanically linked as a single functional unit of gas transport. The scaffold

is essentially a suspended elastic fiber continuum stabilized by surfactant, subjected

to constant and cyclic physical stresses arising from two interdependent pumps

(respiratory and cardiac) that bring air and blood into close proximity over a vast

interface area. From rest to peak exercise, minute ventilation can increase tenfold

while blood flow through lung capillaries, the largest microvascular network in the

body that receives the entire right ventricular cardiac output, can increase fivefold

in elite athletes. Respiratory mechanical stresses are hardwired for transmission via

elastic fibers from central airways to distal alveolar septa and the pleura, then via

cell junctions and the cytoskeleton from the cell surface to the nucleus where they

transduce a host of molecular and biochemical processes culminating in structural

growth and remodeling. As physical tension and compression of tissue constituents

is essential for maintaining whole lung integrity (termed tensegrity) [1], growth and

function of the lung are mechanically constrained by the size, shape, and compli-

ance of its container, the thorax.

In general, branching morphogenesis is the result of mechanical forces acting at

an interface between two material phases (e.g., air–tissue or tissue–fluid). Inhomo-

geneity in either the applied force or the encountered resistance creates pressure

gradients that drive iterative bronchoalveolar and vascular bifurcations until all

available intrathoracic spaces are filled [2]. The characteristic fractal or “self-

similar” branching networks allow efficient inspired gas delivery by convection
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to each of some 30,000 human acini, the basic units of gas exchange, and maximize

the diffusion surface area of some 480 million alveolar subdivisions [3]. This

anatomical plan fundamentally dictates physiology in that ventilation, perfusion,

and diffusion also exhibit fractal behavior at different scales [4]. Through the

modulation of intrathoracic pressures, generated passively by the opposing elastic

recoil of the chest wall and the lung and actively by respiratory muscle contractions,

pathophysiological changes in the lung and the thorax directly influence each other

[5]. The simple fact of mechanical thoraco-pulmonary coupling leads to complex

consequences on the initiation, perpetuation, and re-initiation of lung growth,

remodeling, and functional outcome. In this chapter, we briefly review the nature

of thoraco-pulmonary mechanical interactions and their contribution to growth,

regrowth, and physiological compensation of the postnatal lung.

Mechanical Stress Modulates Lung Development

Normal respiratory development invokes nearly all of the major homeostatic

signaling pathways, leading to coordinated enlargement of the rib cage, diaphragm,

and lung. In the embryonic lung bud, the positive pressure exerted by tracheal

luminal fluid sustains iterative airway branching. Increasing luminal pressure by

tracheal ligation accelerates branching and the increase in lung size. Reducing

luminal pressure has the opposite effect. Pressure-accelerated branching morpho-

genesis proceeds in the absence of fibroblast growth factor-10 (FGF-10), although

FGF-10 expression accentuates the response [6, 7]. Respiratory movements are

essential for lung maturation in later fetal life [8, 9]. Postnatal lung distention by

continuous positive airway pressure [10] or perfluorocarbon instillation [11]

increases lung volume and protein and DNA contents. New alveoli form predom-

inantly at the lung periphery [12, 13] where mechanical forces are borne by the

septa in the absence of major bronchovascular support. Restricted lung expansion in

congenital diaphragmatic hernia causes lung hypoplasia [14]; correcting the dia-

phragmatic defect allows lung expansion, “catch-up” growth, and vascular

remodeling, eventually reversing pulmonary arterial hypertension [15] and nearly

normalizing lung diffusing capacity in long-term survivors [16, 17]. Temporary

tracheal occlusion to increase airway luminal pressure has been used in congenital

diaphragmatic hernia to enhance antenatal lung growth as a bridge to surgical repair

[18]. In severe childhood kyphoscoliosis chest wall deformity restricts both lung

and thorax growth [19–22]. Conversely, inhibition of lung growth may deform the

growing rib cage [23].

The balance between the inward lung recoil and the outward rib cage recoil

mutually determines their dimensions at a given transpulmonary pressure. During

maturation, the enlarging rib cage imposes mechanical traction on lung parenchyma

(Fig. 12.1). Stretching lung cells or tissue broadly increases permeability and ion

flux [24, 25], signal transduction [26, 27], gene transcription [28], and cytokine

release [29, 30], culminating in cell proliferation [27, 31], apoptosis [32], protein
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turnover [24, 33, 34], and other metabolic processes. Tissue growth and remodeling

in turn relieve stress and strain. Recoil of the lung exerts reciprocal traction on and

modulates the growth of the rib cage. These feedback interactions continue until the

closure of bony epiphyses upon reaching somatic maturity. Thereafter, mechanical

signals diminish so that both the lung and the thorax stop growing [5]. Subsequent

re-initiation of lung growth is possible only if the appropriate thoraco-pulmonary

mechanical stress is reimposed and intrathoracic space is available for growth to

occur without significant architectural distortion.

Innate Potential for Compensatory Lung Growth

Lower vertebrates such as newts and salamanders are well known for their ability to

regrow a completely new and fully functional limb or tail to replace one that has

been lost [35]. While mammals cannot regenerate an entire lung, under appropriate

stimulation, mature mammalian lungs retain the ability to add new gas exchange
structures including the intra-acinar airways (respiratory bronchioles, alveolar

ducts, and alveolar sacs) and alveolar septa (cells, matrix, fibers, and capillaries).

When some lung units are destroyed by disease or surgery, the remaining units

expand under the negative intrathoracic pressure leading to unfolding of alveolar

surfaces. Simultaneously, pulmonary perfusion to these units increases at a given

cardiac output, leading to microvascular recruitment and augmentation of lung

diffusing capacity (Fig. 12.2). As loss of lung units continues, physical stress and

deformation of tissue and microvasculature exceed a critical threshold, at which

point structural growth is stimulated. The newly generated cells, matrix, fibers, and

Fig. 12.1 Growth and development of the lung are mechanically coupled to that of the thorax.

Adapted from [5]
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capillaries undergo remodeling or architectural adjustment of the alveolar septa,

fibroelastic scaffold, and broncho-vasculature, ultimately leading to balanced

increases in all major acinar components. Remodeling is a critical step that redis-

tributes mechanical stress, maximizes air–tissue and tissue–blood interface areas,

minimizes tissue–blood barrier resistance to diffusion, and optimizes ventilation-

to-perfusion and perfusion-to-diffusion matching. The end result is a larger gas

exchanger with a higher lung diffusing capacity above that expected from the

initially remaining fraction of lung units under a given set of conditions, thus

achieving the goal of functional compensation (Fig. 12.2). Conversely, generation

of structural components that fail to directly or indirectly support the functional

goal is not compensatory growth.

Pneumonectomy Model of Compensatory Lung Growth

Owing to the invasive procedures needed to obtain human lung tissue, animal

models have been indispensible in the investigation of lung growth. From a

mechanistic standpoint, major surgical lung resection (e.g., pneumonectomy), a

Fig. 12.2 Two types of complex mechanical signals following loss of lung units—expansion of

the remaining parenchyma, and increased perfusion to the remaining microvasculature. These

signals recruit alveolar-capillary volumes and surface areas, leading to a higher lung diffusing

capacity as blood flow per unit of remaining lung increases (blue line and symbols). When

mechanical signals exceed a threshold intensity, structural growth is stimulated with a further

increase in lung diffusing capacity at any given pulmonary blood flow above that expected per unit

of initially remaining lung
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widely investigated model that consistently demonstrates robust compensatory

growth of the remaining lung in all species examined including the mouse, rat,

rabbit, ferret, dog [36–45], and indirectly in human subjects with functional loss of

one lung [16, 17, 46–49]. Major lung resection mimics the loss of gas exchange

units caused by obliterative disease, e.g., pulmonary fibrosis. However, unlike most

models of lung injury, pneumonectomy removes a known and highly reproducible

fraction of functioning lung units; the resulting signals and responses of the

remaining lung units are readily quantifiable. Over more than a century, this

model has been extensively characterized at physiological, structural, cellular,

and molecular levels and utilized to study the sources and magnitudes of adaptation,

the determinants of structural growth and remodeling as well as eventual functional

outcome. Cumulative results strongly implicate mechanical stimuli in the

re-initiation, modulation, and limitation of lung growth.

Pneumonectomy was first performed in dogs and rabbits in 1881, reviewed by

[50]. By the 1920s, it was known that animals function quite well with one

expanded remaining lung that fills the entire thoracic cavity [51–53], and surgeons

began to perform major lung resection in patients. Studies in the 1950s showed that

dogs [54] and patients [55] tolerate staged removal of up to 70 % of lung mass.

Subsequently, rodents were used extensively for characterizing the cellular and

molecular basis of accelerated post-pneumonectomy lung growth while the canine

model remains useful for relating structure to function, defining the sources and

limits of adaptation, and evaluating translational interventions.

Mechanical Signal–Response Relationships

In all species, the magnitude of post-pneumonectomy compensatory lung growth

correlates inversely with age and maturation stage. Thus, compared to young

animals compensatory growth in adults requires a higher threshold for initiation,

a longer time course of adaptation [49] with early cell proliferation and progressive

scaffold remodeling [56] that only partially normalizes structure–function [57,

58]. Critical pathways that are normally activated during lung development are

further upregulated; nondevelopmental pathways may also be recruited [59]. The

magnitude and distribution of compensatory growth vary with the fraction of lung

units removed. Following canine left pneumonectomy (~42% resection), only the

most caudal (infracardiac) remaining lobe exhibits significant growth of alveolar

tissue and surface area; compensation is derived predominantly from alveolar-

capillary recruitment and parenchyma remodeling. Following right pneumonec-

tomy (58 % resection), alveolar growth intensifies in magnitude and uniformity in

all lobes; compensatory gains in structure and function exceed that following 42 %

resection [60]. Following 65–70 % lung resection, alveolar growth is still vigorous

but with diminishing gains in structure and function [57] (Fig. 12.3). This pattern

signifies a threshold, an optimal range, and an upper limit of the mechanical signal–

response relationship following increasing loss of lung units.
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Fig. 12.3 Structural response to increasing loss of lung units by pneumonectomy—42, 58, and

70 % balanced and 70 % unbalanced resection. (a) The adult canine lobes removed are shaded in

gray. (b) Coronal HRCT images are shown at the level of the carina. The color scale indicates

in vivo fractional tissue volume (FTV) of lung parenchyma. (c) Representative micrographs of the

distal lung. Bar¼ 200 μm. (d) Average fold changes in airspace volume (upper) and extravascular
alveolar tissue volume (lower) in individual remaining lobes following different degrees of lung

resection, expressed as ratios with respect to the same lobe in normal control animals. The lobes

were fixed by tracheal instillation at a constant airway pressure. Left: 42 % resection.Middle: 58 %
resection. Right: 70 % resection (balanced and unbalanced groups combined). Right lobes: RCr
right cranial (gray), RM right middle (yellow), RCa right caudal (magenta), RI right infracardiac
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Following 42 % resection, lobar expansion initially unfolds the remaining

alveolar septa with little tissue stress in most lobes except the infracardiac lobe,

which lies between the heart and the diaphragm, preferentially expands across the

midline, increases nearly twofold increase in tissue volume and partially reconsti-

tutes the cardiac fossa. Type-2 pneumocyte volume increases first, before that of

other septal cell types, suggesting its sensitivity to mechanical stress and consistent

with its role as a resident progenitor cell [61]. Following 58 % lung resection,

expansion and stress in all lobes exceed a critical threshold, leading to uniform

growth initiation, stress relief, and greater functional enhancement per unit of

initially remaining lung compared to 42 % resection. The initial rapid post-pneu-

monectomy airspace expansion is followed by further gradual expansion in the

subsequent days as intrathoracic air and fluid are resorbed. An increase in tissue

permeability recruits fluid, cells (especially monocytes and macrophages),

chemokines, and cytokines to the remaining lung leading to a disproportionate

(3.6-fold) increase in the volume of septal interstitial cells and matrix (excluding

collagen). With time, the gain in interstitial volume wanes, and all major septal

components—epithelium, interstitium, endothelium, and capillary blood—increase

to about two (1.5–2.5) fold of that in the control lung (sham pneumonectomy)

(Fig. 12.4). Signals related to airspace expansion account for approximately half of

the observed post-pneumonectomy structure–function compensation (Fig. 12.5);

⁄�

Fig. 12.3 (continued) (aqua). Left lobes: LCr left cranial (green), LM left middle (red), LCa left

caudal (blue). Mean� SD. P� 0.05: *vs. control (1.0); {vs. 42 %; avs. RM, bvs. RI, cvs. LCr.

Adapted from [57]

Fig. 12.4 Increases in the compartmental volumes of the alveolar septa in young dogs (2.5 months

age) 3 weeks and 1 year following 58 % resection by right pneumonectomy (PNX), expressed as

ratios to the corresponding mean values in litter- and gender-matched control animals following

sham pneumonectomy. Note the early disproportionate increase in the volume of non-collagen

septal interstitium

12 Role of Mechanical Stress in Lung Repair and Regeneration 197



Fig. 12.5 Contribution of lung expansion to post-pneumonectomy (PNX) growth and compen-

sation. Upper panels: Adult canine right lung was replaced with custom-shaped inflated silicone

prosthesis following right PNX to minimize expansion of the remaining lobes. High-resolution

computed tomography was performed at a transpulmonary pressure of 30 cmH2O pre- and

4 months post-PNX (with inflated prosthesis, INF), and then 4 months following acute deflation

of the prosthesis (~8 months after surgery, DEF). Control animals underwent right PNX with

continuously inflated prosthesis and also studied at 4 and 8 months post-PNX (INF1 and INF2,

respectively). Middle: Lung diffusing capacity (DLCO) was measured during exercise and
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the remainder is attributable to perfusion-related stimuli although nonmechanical

factors may also play a role [62, 63]. As resection increases from 58 to 65–70 %, the

diminishing gains in growth and compensation suggest the counter-balancing

effects of excessive mechanical stress that may heighten cellular oxidative stress

and damage tissue integrity at the expense of growth-related activities. An exces-

sive increase in pulmonary vascular resistance may also impair tissue adaptive

response. However, new capillaries (evidenced by an increase in double alveolar-

capillary profiles) continue to form with increasing loss of lung units without

reaching a plateau up to 70 % resection, suggesting the existence of separate

perfusion-related stimuli for microvascular growth [57].

Quantifying Regional Mechanical Stimuli

Using in vivo high-resolution computed tomography, nonrigid image registration

and deformation analysis, we visualized regional parenchyma deformation (dis-

placement, strain, and shear) and compliance, and quantified growth of the func-

tional parenchyma, which includes alveolar tissue as well as microvascular blood

[56, 64]. Results demonstrate markedly nonuniform regional displacement, defor-

mation, and growth with inflation (Fig. 12.6), with a prolonged course of adaptation

marked by initial parenchyma growth, progressive tissue relaxation, stress relief,

and gradual functional improvement over many months [56, 58, 64] (Fig. 12.7). A

protracted temporal course of adaptation is probably fundamentally important to

ensure the coordination and optimization of homeostatic pathways at micro and

macro scales and to minimize architectural distortion. Intuitively, one might expect

nonuniform spatial stimuli-response to weaken the average or the whole lung

compensation at a given stimulus intensity. On the other hand, nonuniformity

also prolongs the “window of susceptibility” during which mechanical stimuli

remain active at least in some parts of the lung, thereby rendering the overall

adaptive response amenable to intervention.

Structural Basis of Compensatory Growth and Remodeling

Postnatal compensatory lung growth is thought to be mediated mainly via recruit-

ment and activation of resident progenitor cells in response to local signals while

circulating bone marrow-derived cells or vascular progenitor cells play no role or at

⁄�

Fig. 12.5 (continued) expressed at a constant cardiac output of 400 mL (min kg)�1 in individual

animals pre-PNX and at the two time-points post-PNX. P� 0.05: *vs. pre-PNX and {vs. INF1 by

repeated measures ANOVA. Lower: Fold increase in volumes and surface areas of alveolar septal

components measured 1 year following right PNX in animals with inflated or deflated prosthesis,

expressed as ratios to the average values in normal controls. Mean� SD. P� 0.05: *vs. control

(1.0), {vs. INF. From [62, 63]
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best a minor role [65–67]. Alveolar septation is a four-dimensional event involving

spatio-temporal coordination of hundreds of genes and thousands of mediators. The

bulk of gas exchange occurs through the “thin side” of septa, which contains

minimal tissue with high barrier conductance. Structural support of septa is con-

centrated in the “thick side,” which contains most of the cells, matrix, and fibers. As

the elastin fibers coursing throughout the “thick side” of alveolar wall are pulled

under tension, they may lift and “fold” an existing alveolar capillary, create a tissue

pillar that transects the capillary lumen leading to a “double-capillary” profile

typical of the developing lung. Tension on elastin fibers may also lift tissue and

capillary constituents out of their two-dimensional plane to create a new septum.

Subsequently, cell proliferation, matrix deposition, and fiber rearrangement sepa-

rate the “double-capillary” and remodel it into two single capillaries typical of the

mature lung. This process, termed “intussusception” [68], could generate a new

septum or expand an existing alveolar tissue-capillary sheet depending on the

balance of forces (Fig. 12.8).

Fig. 12.6 Parenchyma deformation quantified by high-resolution computed tomography. Left upper
panels: Diagrams of normal adult canine lobes and those remaining following balanced 70 %

resection—the removed lobes are shaded in gray. Left lower panels: Representative three-

dimensional reconstruction shows marked expansion of the remaining three lobes (demarcated by

black lines) mainly in a caudal direction and around the mediastinum. The color map shows

heterogeneous subpleural fractional tissue volume (FTV). Lobes: Cr cranial, M middle, Ca caudal.

Right panels: Three-dimensional vector field maps of parenchyma displacement (upper) and prin-

cipal strain (lower) during inflation (from 15 to 30 cmH2O transpulmonary pressure) before and

3 and 15months after 70% resection illustrate temporal and spatial mechanical heterogeneity during

compensation. At 3 months post-compared to pre-resection, displacement magnitude is reduced and

principal strain increases nonuniformly in the enlarged remaining lobes compared to the same lobe

pre-resection. At 15 months compared to 3 months post-resection, displacement increases markedly

particularly in caudal regions, and regional strain is nonuniformly reduced [88, 89]
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At the level of acinar airways, alveolar ducts contain smooth muscle and other

contractile elements in their incomplete walls, which form the entrance rings to

alveolar sacs [3]. Following pneumonectomy, alveolar ducts increase in number

and volume [69]. Branching of the most distal alveolar ducts could add one more

airway generation to double the total alveolar tissue volume and surface areas. This

is a likely mechanism because tissue deformation is disproportionally larger in

subpleural than central lung regions [56] corresponding to a similar gradient of cell

proliferation and growth factor expression [12, 13]. Alternatively, alveolar sacs

may bud from the terminal bronchiole that forms the entrance to an acinus,

transforming the terminal bronchiole into another generation of respiratory bron-

chiole. It remains unclear which, or perhaps both, of these mechanisms are opera-

tive during compensatory growth.

At the level of the conducting broncho-vasculature, further branching is not

possible. A different type of growth occurs post-pneumonectomy, namely traction-

related elongation and dilatation, which must also involve the generation of addi-

tional tissue components. Elongation along each airway or vascular generation

Fig. 12.7 Growth and remodeling phases in the remaining lobes 3 and 15 months following 65–

70 % lung resection assessed by high-resolution computed tomography. Upper panels: Lobar air
and tissue volumes increase significantly from PRE to 3 months POST-resection then remain

stable between 3 and 15 months. Lower left panel: Specific compliance (Cs) of the remaining three

lobes continue to increase from 3 to 15 months POST-resection. Lower right panel: Whole lung Cs

(representing seven lobes PRE and three lobes POST) did not change from PRE to 3 months POST

then increased between 3 and 15 months POST. Mean� SD. Lobes: RC right cranial, LC left

cranial, LM left middle. Repeated measures ANOVA with post hoc analysis by Fisher’s Protected
Least Significant Difference. Comparison with respect to time: P< 0.05, *vs. PRE, {vs. 3 months

POST in all remaining lobes. Comparison among lobes: P< 0.05, #vs. RC, §vs. LC. From [56]
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increases, while dilatation mitigates, the increase in flow resistance. As luminal

flow resistance is directly proportional to the length and inversely proportional to

the fourth power of the radius (Poisuille’s Law), only a small increase in radius is

needed to offset the effects of lengthening. Bronchovascular adaptation is less

vigorous or complete than alveolar adaptation, leading to dissociated compensation

or “dysanaptic” lung growth [38, 70], where pulmonary limitation upon exercise is

primarily limited by the persistently and disproportionately elevated airway and

pulmonary vascular resistances and not by the reduction in lung diffusing

capacity [71].

Species Differences in Lung Growth and Compensation

Large mammalian lungs differ from rodent lungs in several aspects of anatomy,

development, and maturation that impact adaptation. Bronchovascular stratification

is simplified in rodents. Respiratory bronchioles are few and short in the rabbit,

guinea pig, hamster, gerbil, rat, and mice [72–74]. In human and canine lungs,

acinar airways bifurcate through several generations of respiratory bronchioles and

alveolar ducts to end in alveolar sacs. Extensive stratification allows modulation of

ventilation–perfusion distributions and the penetration, deposition, and clearance of

inhaled particles. Relative to rodent lungs, the highly stratified large lungs need

stronger connective tissue and fibers for support, which in turn requires a more rigid

rib cage to maintain stability but not too rigid as to restrict truncal flexibility in

locomotion. Stratification also creates a longer mean acinar path length, which

requires more smooth muscle and contractile elements to fine-tune ventilation–

perfusion–diffusion matching among the regions and at different stratified levels. In

Fig. 12.8 Diagram of intussusceptive capillary growth and formation of a new alveolar septum.

See text for explanation
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the vasculature, murine tracheobronchial capacitance vessels may not penetrate

into intrapulmonary airways [75, 76], and perturbation of pulmonary blood flow

readily stimulates angiogenesis of chest wall and pleural vessels [77]. In large

animals, extensive bronchial and pulmonary precapillary anastomoses [78] provide

ample collateral circulatory reserves, which may minimize the need for new vessel

formation. These structural differences could explain the ease with which the lungs

of small animals may be stimulated to regrow while the lungs of large animals rely

heavily on nonstructural adaptive mechanisms; structural growth is stimulated only

when the nonstructural reserves have been exhausted.

Translational Challenges in Lung Growth Induction

Mechanical signals are the only stimuli known to re-initiate adult lung growth de

novo [5, 79]. While the innate growth potential is retained in adult lungs, the

incomplete regrowth response is in need of ways of augmentation. This issue is

critical because current therapy for chronic lung disease is non-curative except for

lung transplantation, which is burdened by problems of donor availability and

complications. The key unanswered questions include the following: (1) How to

maximally realize the innate ability for regrowth and compensation of functioning

lung units in obliterative disease and reduce the need for lung transplantation or

replacement? (2) How to re-initiate lung growth in the absence of adequate

mechanical stimuli such as in emphysema? (3) How to optimize alveolar cellular

repopulation and capillary regrowth in bioengineered lungs?

The pneumonectomy model has proved useful for examining the integrated

network interactions elicited by mechanical stimulation and for evaluating the

efficacy of therapeutic approaches. Post-pneumonectomy exposure to ambient

hypoxia [80, 81] and the administration of exogenous growth promoter molecules,

proteins, and DNA [82, 83] have been shown to modestly enhance selective aspects

of lung growth in rodents, although none has been shown to improve function. We

examined this question in adult canines by administering oral all trans-retinoic acid

(RA) for 3 months post-pneumonectomy. In the absence of active endogenous

compensatory growth (left pneumonectomy), RA supplementation has no signifi-

cant effect [83]. In the presence of endogenous growth activities (right pneumo-

nectomy), RA supplementation modestly enhances growth of type-1 pneumocytes,

interstitium, endothelium, and capillary blood volume as well as alveolar and

capillary surface areas compared to placebo treatment [82, 84]. The expected

increase in double-capillary profiles is also accentuated consistent with

RA-enhanced capillary formation and remodeling. On the other hand, RA supple-

mentation minimally stimulates the growth of alveolar type-2 pneumocytes, causes

thickening of the alveolar-capillary basement membrane and the septa, and fails to

significantly enhance long-term whole lung function [82, 84, 85]. These results

suggest that pharmacological intervention could augment mechanically induced
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lung growth but is insufficient for re-initiating growth in the absence of sufficient

mechanical signals. What factors prevent the translation of exogenously enhanced

structural growth into functional gain? The answer remains speculative although a

few possibilities should be considered:

1. Most studies tested a single exogenous growth promoter at a pharmacological

dose over a short duration. This approach is conceptually inadequate because

endogenous compensatory lung growth involves sustained, low-intensity, bal-

anced amplification of numerous mechano-transduction pathways to gradually

enlarge all parts of the gas exchanger, minimize distortion, and optimize out-

come. Intense unbalanced stimulation could distort the blood gas barrier and

neutralize the intended benefit. Broad stimulation of multiple key pathways at a

low dose over a longer duration may be more effective in enhancing overall

growth and function.

2. Scaffold remodeling continues long after cessation of accelerated cellular pro-

liferation. As mechanical stress is redistributed and the local mechano-

transduction micro-milieu shifts, different molecular pathways may be favored

at different time points in the course of response. Selective administration of

exogenous growth promoters that sequentially target each specific phase of the

natural response may prove more effective.

3. Mechanical stimuli carry inherent risks of oxidative stress and tissue damage.

Mildly increased mechanical lung stress (e.g., positive pressure breathing) is

beneficial for maintaining airway patency. Moderate mechanical stress trans-

duces growth and remodeling while excessive mechanical stress causes lung

injury (e.g., ventilator-induced trauma). Balancing the competing adaptive

needs—enlarging the gas exchange units vs. protecting the integrity of existing

units—is a crucial part of the mechano-sensitive response spectrum (Fig. 12.9).

For a given mechanical stress, the equilibrium interactions between signaling

networks of growth/remodeling and those of cytoprotection determine the net

gain in structure and function. Consistent with this idea, many of the endogenous

growth/remodeling pathways that are upregulated post-pneumonectomy, e.g.,

hypoxia-inducible factor (HIF), erythropoietin (EPO), vascular endothelial

growth factor (VEGF), and hepatocyte growth factor (HGF) [86–92], are

multifunctional and simultaneously mediate cytoprotection. Strategies that aim

to fortify cytoprotective pathways in addition to growth-promoting pathways

may extend the upper limits of mechano-sensitive lung growth and function.

Implications for Chronic Lung Disease and Ex Vivo Lungs

Mechanically induced compensatory lung growth and remodeling enhances long-

term gas exchange and mechanical function in adult mammals. Pharmacological

manipulation [82, 83] and ambient hypoxia exposure [80, 81] modify already active

growth-related pathways. When mechanical stimuli are below the growth-initiating

threshold, these other attempts have little effect [83]. Thus, ambient hypoxia
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enhances lung growth and function in developing and not adult animals [93]. Young

animals with an enlarging thorax respond more vigorously to pneumonectomy, and

compensation is more complete, than older mature animals with fixed thoracic

dimensions [94–96]. Exogenous growth factor supplementation enhances lung

growth following 58 % and not 42 % resection [82–85]. Where mechanical signals

are diminished as in pulmonary emphysema, attempts to pharmacologically stim-

ulate lung growth have been uniformly unsuccessful. Whereas exogenous growth

promoter modestly augments some aspects of mechanically induced lung growth,

the response may be skewed leading to structural gain without functional enhance-

ment. The fact that independent factors (maturity, hypoxia, parenchyma and vas-

cular sources of mechanical stress) exert additive effects indicates plasticity of the

innate regrowth potential and suggests possible approaches for augmentation. On

the other hand, the risks of mechanically induced oxidative stress and tissue damage

cannot be ignored. In interstitial lung disease, in addition to inflammation the

typically patchy contracting fibrotic foci tether and deform the adjacent functioning

alveoli, which can be expected to mechanically influence their adaptive response.

Do these remaining functioning alveoli undergo compensatory growth/remodeling

or suffer secondary physical injury compounding the primary insult? Perhaps both

occur to varying degrees in different regions. Strategies that target the protection of

Fig. 12.9 A paradigm for

the spectrum of

mechanically induced

compensatory responses
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mechanically stressed remaining lung units might improve innate compensatory

response as well as the response to exogenous interventions. In pulmonary emphy-

sema, the priority will be to find novel ways of reconstituting normal mechano-

transduction of the native lung. In ex vivo and bioengineered lungs, it will be

imperative to optimize the magnitude and distribution of mechano-transduction

response to facilitate cell repopulation and matrix remodeling as well as protect

barrier integrity in all parts of the donor lung before and after in vivo implantation.

Meeting these challenges require multi-scale integrated understanding of mechano-

sensitive networks. There continues to be a need for models that mimic thoraco-

pulmonary interactions in the human lung to bridge these knowledge gaps, test high

impact interventions to harness the compensatory potential, and avoid translational

failure when novel therapeutics are brought to human applications.
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