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Abstract As introduction, high-performance computing (HPC) technology for
finite element analysis is explained. First, general notions, tips and techniques which
are useful for the programming on modern HPC and supercomputing environments
are introduced. Here, as a supercomputer, the authors assume mainly a distributed
memory parallel computer with each computational node having one or more
multi-core scalar processors. Both hardware and software aspects are covered, with
important concepts such as MPI, OpenMP and other compiler directives, as well
as network interconnect, cache, memory bandwidth, SIMD and peak performance
ratio. There are also some tips and advices about the software development process
specific for the supercomputers, such as software design, testing and debugging, and
profiling. Then, some important ideas and techniques for the development of FE-
based simulation code running on supercomputers, such as the selection of linear
algebraic solvers, domain decomposition method (DDM), element-by-element
(EBE), as well as mesh generation and visualization are explained. This chapter
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could also serve as the introduction of HPC and supercomputing to the following
chapters dealing with more specific problems and schemes.

1 Introduction

Welcome to the supercomputing world! Here in this chapter, we explain various
issues and techniques related to high-performance computing (HPC), and especially,
how to write your finite element code running on a modern supercomputer.

Before understanding the current modern HPC technology, it is beneficial to
know what had already happened in the past. Here we explain a brief history of
supercomputing. By the way, the keyword “supercomputer” is generally defined as
“a computer which is at least 1000 times faster than an ordinary computer like note
PC and tablet.”

About three decades ago, a supercomputer at that moment was a vector computer,
which equips a vector-processing unit. To take advantage of the vector supercom-
puter, we had to vectorize our program. Although it forced us to modify some
portions of our code, still it was a good old times because we needed to focus on
just only one thing, “vectorization.” Later on, shared memory parallel processing
was added to the vector supercomputer. And compiler directive approaches for
parallelization, which eventually evolved into OpenMP, also appeared at that time.
On the other hand, although not successful, another type of supercomputers based
on single instruction multiple data (SIMD) architecture was tried also. The usage of
these SIMD machines was almost similar to that of the vector processor, based on
the parallelization of loops.

Then, the 2nd wave of supercomputing, so-called massively parallel processors
(MPP) arrived. It was a distributed memory parallel computer, and classified as
multiple instruction multiple data (MIMD). Various kinds of message passing
approaches had been appearing, but finally they were merged into the MPI
standard. It actually had changed the fundamental design of our finite element
code drastically. The notion of domain decomposition became MUST to exploit the
potential power of MPP. Later on, MPP was taken over by so-called attack of killer
micro, PC cluster. This means, a supercomputer became just a bunch of PC boxes
connected each other by high-speed network. Each “box,” a computational node of
the supercomputer, contained one or a few scalar processors and their own memory
space. Still, it was relatively easier than now to write code because we needed to
think about MPI communication and domain decomposition only.

Currently, we are just in the midst of the 3rd on-going wave of supercomputing.
Some people call it the era of accelerator in general, or GPU in more specific.
Other people say multi-core or many-core age. In either way, while the number of
computational nodes in one supercomputer system had gradually grown to hundreds
of thousands, each computational node itself had become a kind of “beast.”

So now, we are in the truly massively parallel era. Here, “massively parallel”
means so many that it is virtually uncountable, while at the moment of the 2nd wave
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a typical MPP system had processors of only a thousand or less. The number of
cores in a current peta-scale supercomputer is already reaching near 1 million, and
it could increase to 1 billion in an exa-scale system which will soon appear in very
near future.

On the other hand, readers should not forget that your desktop PC or workstation
has also become very, very powerful. A typical workstation, which equips GPU
or many-core accelerator, enjoys more than 1 TFLOPS. Welcome to Desktop
Supercomputing! Unfortunately, something wrong about this machine is that a
typical simulation code developed by a researcher runs only 1 GFLOPS on the
machine, if without any performance tuning effort. It is simply because the clock
frequency of these processors itself is only around a few GHz. Anyway, between
Giga and Tera, 1000 times of difference! Is it a kind of cheat or FLOPS fraud? That’s
why we call it a “beast,” which cannot be tamed easily. The same thing applies to
supercomputing because currently the architecture of each computational node of
a supercomputer is virtually the same as that of a desktop PC or a workstation.
Thus, a bunch of “beasts” forms a “monster,” the massively parallel many-core
supercomputer.

Here in this chapter, first, supercomputing hardware and software technologies
are explained from programmer’s point of view. Then, the more specific topic, “how
can I tune up my finite element code?” is explained.

Because of this limited space, each topic is explained only briefly, without
enough illustrations and examples. Through this chapter, however, readers can find
several important keywords, which are typically related to frequently occurring
troubles and issues during the development of simulation code. Starting from these
keywords, you can understand the challenge and also find the solution to them.
Hopefully, this chapter could serve you as a survival guide in the supercomputing
jungle.

2 Hardware

In this section, we start from hardware issues first. Here, we focus on three hardware
elements: processor, memory, and network interconnect. To highlight the potential
implication of these components to the performance design of simulation code, we
try to explain them from programmer’s point of view as much as possible.

A typical modern supercomputer consists of many computational nodes. They
are connected each other by high-speed network interconnect. Each computational
node holds one or a few processor chips and its associated memory chips, thus
forming a distributed memory parallel computer. As a result, both intra-node and
inter-node performance are important for the performance design of simulation
code.
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2.1 Processor

Nowadays, a processor can issue multiple instructions and execute multiple floating-
point operations for each clock cycle. For example, a pair of multiplication and
addition, or a set of multiply-add pairs packed in one SIMD instruction. It is called
instruction-level parallelism (ILP). For example, if a processor can handle eight
double precision (DP) floating-point operations per clock, and it runs with 2 GHz,
its DP peak performance is 8 � 2 D 16 GFLOPS. Theoretically, it is nice, if it always
works so. The reality, however, is not so simple. How can we write code which keeps
handling four add and four multiply operations in every clock? Anywhere branch or
procedure call appears, it doesn’t work so. It is so-called ILP wall problem. This is
one of the major issues to widen the gap between the ideal, peak performance of the
hardware and the actual, sustained performance when running real application code
on the hardware.

For example, let’s think about SIMD instruction. The SIMD mechanism allows
multiple operations of the same type to be packed in one instruction and executed
at once. The operation can be addition, subtraction, multiplication or division, or
even a pair of multiply and add/subtract, so-called fused multiply-add (FMA). If a
processor can handle a set of four FMA operations, which is called 4-way SIMD,
it sums up to eight operations per clock. A modern processor can handle 4, 8 or 16
operations in each clock. This number tends to grow up further as the density of
transistors in semiconductor design increases (Moore’s law).

Moreover, the above fact is merely for one core in a processor chip. In recent
years, the number of cores in a chip had also increased. Here, “core” means
“processor” in a traditional sense. Until recently, one processor corresponds to just
one chip, or sometimes to multiple chips in case of very complicated processor
design. But nowadays, because of Moore’s law, one processor chip can hold
multiple processors. To avoid ambiguity, the keyword “processor” is renamed to
“core.” Thus, it is called “multi-core.” Currently, a typical scalar processor has 2, 4,
6 or 8 cores in one chip, although there are some “many-core” chips having more
than ten cores. They can be regarded as a shared memory computer in one chip.
Either MPI or OpenMP can be used for parallel programming. However, multi-core
has more serious implication to memory access, which will be explained soon in the
next section.

2.2 Memory

Even if the processor can perform multiple operations per clock, in reality, it is no
meaning if data cannot be supplied from the memory system into the processor in
enough speed.

Let’s start from a simple example of adding two vectors, like “c(i) D a(i) C b(i).”
Also assume that a processor chip has 8 cores, and each core equips 4-way SIMD
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and perform four add operations per clock. If the chip runs in 3 GHz, it can perform
4 operations � 8 cores � 3 G times per second D 96 GFLOPS. Not so bad. Then,
think about data also. Data I/O required to read/write is, assuming double precision,
8 bytes per number, 8 bytes � 3 I/O (2 read, 1 write) � 96 G FP operations per
second D 2304 GB/s. Currently, no memory system can supply data in the speed
of such vast amount. Usually, only from 30 to 300 GB/s at most. It is so-called
memory wall problem.

Memory access pattern is the important keyword to understand the performance
characteristics of the memory system. Let’s imagine the memory access patterns in
a loop. It can be sequential, stride or random. In case of random access, actually
it may be indirect index access. For example, in the context of finite element code,
touching nodal data in each element loop is a typical example of this case. For each
finite element of the loop, its associated nodal data must be accessed through the
element connectivity data, in a form like “data(index(i)).” Of these access patterns,
typically, the sequential access pattern is the fastest. On the other hand, stride and
indirect index accesses have some problems. Therefore, if possible, data should be
rearranged so that the sequential access pattern dominates.

For example, let’s consider an element-by-element (EBE) loop. In this loop,
many floating-point operations have to be performed for each finite element.
However, its dominant memory access pattern is indirect index access. This memory
access pattern may prohibit efficient execution of the loop body. To overcome
the issue, an extra element loop is added just before the main loop, and in this
loop, nodal data are first copied into another element-wise array. Then, in the main
element loop, using this extra element-wise array, all the data access can be done in
element-wise manner, thus, sequentially. It can allow compiler to vectorize the main
loop. It is a useful technique if EBE involves relatively heavy calculation.

Cache memory is very important in the design of modern scalar processors, and it
is related to a memory access pattern called data locality. In short, the cache memory
is a fast but small special memory region, and it is separated from the main memory.
When the processor tries to read a small amount of data from the main memory, the
fetched data is once copied into the cache memory automatically. Then, suppose this
small data becomes necessary again. If the data still remains on the cache memory,
instead of reading the original data again from the slow main memory, it is sufficient
to access this copy from the fast cache. This means, it is better to keep using this
small amount of data as much as possible. If the size of frequently used data is larger
than the size of the cache, however, it doesn’t work in this way. While reading it,
most of data are kicked out of the cache, and it ends up virtually accessing to the
main memory. Thus, the cache mechanism works only if “a relatively small amount
of data is accessed repeatedly, repeatedly and repeatedly.”

Then, how can we utilize such tricky cache mechanism? There is a well-
known technique called blocking or tiling. In cache blocking, a big data region
is divided into many small data blocks first. For example, in case of a matrix, it
is decomposed into multiple sub-matrices. They look like tiles. Using associated
blocking algorithm, once a small block is read from the main memory, it is utilized
repeatedly before the next one is needed.
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From programmer’s point of view, there is one easy way to implement this cache
blocking. First, prepare explicitly small arrays as working area. The total size of
these arrays must fit on the cache memory. Then, copy data subset from the big
array into these small arrays. Using only this working area, perform relatively heavy
calculation. And finally, move the result back to the big array. Was it easy? If this
way of coding style works fine with your case, you are lucky to obtain a blocking
version of your algorithm.

However, if any blocking algorithm cannot be devised, how come? In this case,
sadly, you have to directly tackle against the slowness of the main memory. Now,
memory bandwidth becomes a serious issue.

To consider the memory bandwidth problem, it is useful to understand the
keyword, B/F ratio. B/F ratio measures how much data can be read/write from/to
the main memory for each execution of floating-point operation. This ratio typically
assumes a specific numerical algorithm. If the actual B/F ratio value is no less than
the value originally required by the algorithm, it is OK. Otherwise, there is memory
bandwidth bottleneck. You may switch to much better supercomputer, if possible.
Or you might be forced to modify your algorithm.

For example, let’s think about matrix–vector product. Suppose the size of matrix
and vector as N. Code can be written as “c( i ) D c( i ) C a(i, j) * b( j ),” with “i” as
outer loop and “j” as inner loop. Assuming “c( i )” fits on processor register, there
are two read accesses, “a(i, j)” and “b( j ).” Therefore, assuming double precision, 8
bytes per number, the total amount of data I/O is 16 N2 bytes, while that of floating-
point operations is 2 N2 operations. In this case, B/F ratio becomes 8. Furthermore,
a blocking algorithm can be applied to the case of this matrix–vector product.
Because vector “b( j )” can be moved on cache, so B/F ratio drops to 4. Still, a
supercomputer with a very strong memory system, having B/F ratio 4, is required
to perform this algorithm efficiently. Otherwise, the plenty of extra floating-point
hardware resources available in processor side is merely wasted.

In reality, the current situation is very bad. Most of scalar processors can supply
B/F ratio of only from 0.1 to 0.5 at most. This means, when the matrix–vector
product is performed, peak performance ratio becomes only a few percent! Is it
a kind of cheat or FLOPS fraud? That’s why it is so-called the issue of “memory
wall.”

The recent rapid growth of the raw computational power of a processor chip in
terms of floating-point operations, caused by the increase of both the number of
processor cores and the number of SIMD ways, has made this memory bandwidth
issue more serious and desperate. Thanks to Moore’s law, the growth pace of the FP
capability is far exceeding that of the memory bandwidth. While each core has its
own cache memory (roughly speaking), the path to the main memory is basically
shared among all the cores, because it is “shared memory.” As a result, only the
algorithms which can take advantage of cache mechanism can keep up with the
growth of the computational power, while B/F ratio will drop further.
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2.3 Network Interconnect

Of the three key hardware components, processor, memory and network intercon-
nect, the former two, explained already, are also related to the performance design
of simulation software running on a desktop PC and a workstation. In this sense,
the last one, network interconnect, is the only key component unique in super-
computing. In modern supercomputing, distributed memory parallel architecture
is the primary hardware architecture. A supercomputer is composed of multiple
computational nodes. Each of them has its own memory space. A computational
node cannot directly access memory owned by other nodes. Instead, it has to
send/receive data to/from others through this high-speed network interconnect.

As the architecture of the network interconnect, nowadays torus or fat tree is
utilized for a high-end supercomputer, while for low-end HPC environment like
a PC cluster, switching hardware is used. The fat tree can be said to be cascade
of switches. On the other hand, in case of the torus architecture, each node has
very high bandwidth connection directly, but to only a few neighbouring nodes. To
communicate to any node other than these neighbour nodes, data has to be relayed
through one or a few intermediate nodes. It is typically used to connect a relatively
large number of nodes.

To use such a distributed memory parallel computer, care must be taken about
communication patterns. Because some of the communication patterns are either
inherently efficient or strengthened by additional hardware mechanism, the use of
these special patterns should be considered first in the design of parallel software.

Global communication, such as barrier, broadcast and reduce operations are
frequently used in various kinds of parallel programs. High-speed interconnect sup-
ports those patterns directly in hardware level. Therefore, if these communication
patterns are recognized in your code, instead of ordinary send/receive protocol, the
corresponding special communication API or directives should be used. They are
the only routes to take advantage of the special network hardware mechanism.

On the other hand, neighbour communication is another important pattern. To
understand it, let’s consider the difference between bus and switch. Suppose there
are four nodes, A, B, C and D. In case of the bus architecture, nodes C and D cannot
communicate while nodes A and B are talking. In case of the switching architecture,
however, communication of A–B and C–D can work simultaneously. It can be easily
extended to the case of many, many nodes: A–B, C–D, E–F, G–H, and so on. All
of them can be invoked at once. Instead, if node A wants to receive data from more
than one, for example, nodes B and C, there will be conflict.

The neighbour communication pattern is very important in case of macro-scale,
continuum mechanics-based simulation. In this type of simulation, a whole analysis
domain can be decomposed into multiple subdomains. Typically, communication
between neighbouring subdomains frequently occurs. It can be represented as the
neighbour communication pattern. Thus, well-designed code for the continuum
mechanics field can easily scale on a supercomputer.
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As for the neighbour communication pattern, it is better to understand the
keyword, volume to area ratio. This means the ratio between amount of calculation
per subdomain as a volume, and that of the associated interface boundaries as an
area. As the problem size grows, this ratio is expected to grow as well, because of
comparison between volume N3 and area N2. That means, the bigger the problem
size is, the easier to parallelize. You can always enjoy good parallel efficiency, if
you specify the problem size big enough. Of course, there are some issues, too long
execution time and lack of memory.

In reality, however, you cannot wait so long. And more often, you may want
to solve the problem just faster, with the problem size fixed. In this case, further
intensive performance optimization of the communication routines will be required,
such as overlap of communication and computation. There is a notorious saying that,
“Using a supercomputer, you cannot shrink time. Instead, you can grow problem
size.”

3 Software

In the previous section, the hardware architecture of modern supercomputers is
described. It is also necessary to mention about more software-related topics,
especially, the software development process and environment of supercomputing
applications. In this section, starting from software design principle, basic program-
ming models, programming languages, compilers, libraries and tools are explained.

3.1 Performance-Centric Software Design

Anyway, why using a supercomputer? Of course, you want to run your simulation
code faster, and also you may want to make the problem size much larger, with a
finer mesh, more detailed geometry, much wider coverage of the analysis domain,
and more accurate modelling. If you can just use your original, un-tuned program as
is without modification, you will be very happy. The reality is much harder, however,
and you will be forced to optimize your code, to take advantage of the potential
power of the supercomputer.

Usually, the performance optimization task is only a small portion of the whole
software development cycle. Testing, debugging, trying to find much better design
for maintenance and extension in the future, and moreover, capturing true user
requirement (for example, in case of simulation, appropriate modelling of target
physical phenomena) are more important and essential tasks. As a result, the
performance tuning is often ignored. Once you have decided to use a supercomputer,
however, this task suddenly becomes more than essential, and the first priority. It
is simply because, if you failed to gain performance boost from the use of the
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supercomputer, it would be just a waste of time and money. The sole purpose of
using the supercomputer is, to make your code faster.

In the good old days, money could buy everything. All you need to do was, just
to prepare budget for renting a supercomputer. With the same, original code, you
could have enjoyed much faster simulation. Nowadays, however, money alone is not
enough. You need also time to modify your code. To do so, the design of the code
should be re-considered. “Why does this code run so slowly?” Then, here comes the
performance-centric software design.

To incorporate the performance tuning tasks into the software design process up-
front, there is an established systematic approach. It consists of three tasks, finding
hot spot, scaling test and unit node test.

First, hot spot has to be identified. Here, the hot spot means routines or portion
of the code which consume the majority of execution time. In most of simulation
programs, it could easily happen that only a few routines or loops spend more than
99 % of time. Then, it is good enough to focus your effort only on these hot spot
routines and loops. They may also be called as performance kernels.

Next, in case of parallel processing, scaling test is performed to check the
scalability of the code and also to identify the performance bottleneck if there exists.
There are two types of tests, strong scaling and weak scaling. The former test keeps
the problem size unchanged, and it can be used to make sure the computational time
shrinks as the number of processors increases. On the other hand, in case of the
latter one, both the number of processors and the problem size are increased. In an
ideal case, the execution time does not change. Instead, if the execution time also
increases, there would be the bottleneck against parallelization.

Recently, not only the scalability, but also the concept of peak performance ratio
becomes more and more important. This is the ratio between the peak performance
of the supercomputer as hardware and the actual speed of application code, both
measured in FLOPS. For example, if the simulation code runs with the speed of 100
TFLOPS on the machine with the peak performance 1 PFLOPS, the ratio is 10 %.
Usually, the scalability is pre-requisite for the high peak performance ratio, but more
is required to obtain good peak ratio. The unit node performance, the performance
measured on a single computational node, cannot be ignored as well. If the peak
ratio on a single node is less than 5 %, the ratio value using the whole system can be
also 5 % in the best case, and it is usually less than this value. Thus, the unit node
performance is another important measure, and the unit node test has to be carried
out.

Anyway, what the unit node performance actually means? In case of a modern
supercomputer, the hardware architecture of each computational node is almost the
same as that of a brand new PC on your desktop. Therefore, before porting your
code onto the supercomputer, it is a good idea to tune the code on your desktop PC
first. However, this task itself is getting harder and harder nowadays.
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3.2 Programming Model

To consider the software design for modern supercomputing applications, there are
some special programming models. Each model covers a specific HPC hardware
architecture. Here, we introduce two important programming models, hybrid paral-
lel and data parallel.

Suppose if a supercomputer is based on multi-core scalar processors, there are
two choices in programming models, flat MPI and hybrid parallel. In case of flat
MPI, it is just sufficient to re-use your MPI-based code without modification, but
you need to set the number of MPI ranks as same as the number of total cores using.
On the other hand, the hybrid parallel programming model is needed mainly for
two reasons. One is, to obtain the maximum parallel efficiency. The other one is, to
utilize processor cores of sub-million order or more.

Theoretically, it is better to utilize OpenMP for intra-node communication,
while MPI is used for inter-node one. In reality, it depends on applications and
problems. Typical trend is, when the problem size is relatively small while the
number of cores used is many, hybrid parallel programming model works well. If the
parallel efficiency is already good enough with the current flat MPI implementation,
however, the additional gain obtained from the hybrid parallel approach is marginal.
In case of domain decomposition-based approaches, because of the volume to
area ratio, explained before, the bigger the problem size is, the better the parallel
efficiency is.

On the other hand, if luckily you have a chance to utilize a world-class
supercomputer, then unluckily you will be forced to adopt the hybrid parallel
programming model, simply because the flat MPI model does not work in this
environment. Currently, no MPI implementation seems to work well more than ten
thousand MPI processes. The combination of MPI and OpenMP is the only way to
utilize millions of cores available on such a top-end supercomputer.

Data parallel programming model, or SIMD, is the programming model useful
for GPU, and also for SIMD instruction in modern scalar processors. SIMD is single
instruction multiple data. It usually involves the use of either compiler directives,
such as SIMD vectorization and OpenACC, or extension to existing programming
languages, such as CUDA and OpenCL. In the former cases, a loop is annotated by
compiler directives with additional information necessary to parallelize. In case of
CUDA and OpenCL, the loop body of a loop is extracted as a GPU-local routine,
which is associated to a thread when running on the GPU.

3.3 Programming Language and Compiler

To port your simulation code onto a supercomputer, more or less some amount
of code modification effort will be required. It typically involves inserting special
compiler directives such as vectorization, OpenMP and OpenACC into the code,
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and calling functions/subroutines of HPC-related libraries such as MPI and BLAS.
In the worst case, instead of keep using ordinary programming languages such
as Fortran, C and CCC, special programming languages dedicated for specific
HPC environments might have to be employed, and the code would be re-written
completely from scratch.

If the hybrid parallel programming model, explained before, is employed,
OpenMP is the primary choice for intra-node parallelization. OpenMP is mainly
a set of compiler directives designed for thread-level parallelization on shared
memory parallel environment. It fits well on modern multi-core or many-core scalar
processors. Programmer specifies OpenMP compiler directives on each loop which
can be parallelized. Instead, if your code is relatively simple and you are lucky, the
automatic parallelization capability of compiler may also work well.

OpenMP can be utilized if a computational node contains multiple processor
chips, each of which may further be multi-core. In this case, non-uniform memory
access (NUMA) memory architecture should be considered. Each processor chip
has direct connection to memory chips. That means, each processor has its own
memory. Access to own memory is fast, while access to other processor’s memory
tends to be much slower. Actually, it can be considered as distributed memory.
From programmer’s point of view, first touch principle can be applied. Data region
“touched” first by a thread running on a processor is owned and managed by the
processor, and it is allocated on its memory. Through the capability of OpenMP,
thread ID information is required to handle this situation.

Recently, the impact of SIMD instructions is becoming more and more important
for the performance design in supercomputing. To utilize the SIMD instructions,
there are three ways. One is, of course, directly use assembly language. Most of
people, including us, would want to ignore the first choice. Then, the second option
is, to use SIMD intrinsic functions/subroutines. Still, this option is very tedious.
Therefore, the third option, compiler-driven vectorization, is more practical for the
most of programmers.

Compiler-driven vectorization technique for SIMD is very similar to the so-
called “vectorization” in the vector supercomputer age. The idea itself has been
very simple, inserting compiler directives just before loops which can be vectorized.
However, there is one big difference between the current SIMD vectorization (also
called, short vectorization) and the old predecessor. While the vector processor can
aggressively read/write data from/to main memory, the SIMD mechanism of the
modern scalar processor is effective only to data on cache memory. That means,
before considering the use of SIMD instructions, first, you need to put your data on
cache.

So, how to put your data on cache? It depends on code design and numerical
algorithm itself. We have already explained that small amount of data with the
size fitting on the cache has to be accessed repeatedly. Some algorithms fit well
on cache architecture using the tiling/blocking technique, while others do not. For
example, addition of vector and vector cannot utilize cache at all. Then, in case of
matrix–vector product, at least the vector data can be placed on cache, while the
matrix side cannot be. Still by applying these cache-aware techniques, the code can
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be significantly accelerated on a modern cache-based scalar processor, because the
amount of data to be read from the main memory can be cut by half. Finally, in case
of matrix–matrix product, with cache blocking, the majority of the working data
set can be placed on cache, which makes further application of SIMD vectorization
very effective. Thus, whether SIMD and cache blocking are effective or not heavily
depends on the nature of the numerical algorithm employed and higher level design.

We need to mention about accelerators. The use of accelerators such as GPU and
many-core chip is gradually starting. On these environments, special programming
languages or extension to existing languages, such as CUDA and OpenCL, may
have to be utilized. Directive-based programming models such as OpenACC, which
require much less work, are also becoming available.

3.4 Library

Some HPC-related libraries are available. They may have to be employed into your
code if necessary.

Assuming the use of a modern distributed memory parallel supercomputer, for
inter-node parallelization, message passing interface (MPI) is the primary choice.
It is a message passing-based communication library among computational nodes.
In case of macro-scale simulation, domain decomposition is required. Especially
in case of unstructured grid or mesh-free/particle, identifying the boundary region
between subdomains is a bit complicated task. Instead of this really tedious
approach, some people have started using PGAS languages. Using these special
languages, programmer can parallelize code in much similar way as shared memory
environments like OpenMP.

In addition, the knowledge of linear algebra is often required. It is very useful
if matrix and vector-related libraries are available. Linear algebraic solver and
eigenvalue solver libraries are also important.

Basic linear algebraic subroutines (BLAS) is one of the famous libraries for
matrix and vector operations in the basic and fundamental level, such as various
kinds of vector–vector, matrix–vector and matrix–matrix operations. The scene
behind the fact that recently this library becomes very important is, however,
because nowadays highly tuned versions of this library prepared by hardware
vendors themselves are available. Especially, level-3 BLAS routines, which are
related to matrix–matrix operations, are really important. Usually, inside the
vendor-provided library, these routines are implemented as cache-aware and SIMD-
vectorized. And, by using these optimized routines, high peak ratio can be easily
obtained. Although BLAS is designed for dense matrix, recently, its sparse matrix
version becomes available.

As for the linear algebraic solver, a variety of libraries are available. LAPACK
contains direct solvers for dense and banded matrices [1]. ScaLAPACK is also
available for MPI-parallel environments. In case of sparse solvers, some are
direct and others are iterative. SuperLU, MUMPS, PARDISO and WSMP are
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examples of sparse direct solvers, while PETSc is an example of iterative solver
libraries.

3.5 Supporting Environment and Tools

Other than compiler, the most important programming tool for supercomputing is
profiler. This tool can be used to identify hot spot of the code. Finding the hot spot
is vital in performance-centric software design, described before. Moreover, the
profiler can measure how fast your code runs on the supercomputer. That means,
measuring FLOPS values.

They say that, “without measurement, no improvement.” This is absolutely right.
On a supercomputer, the profiler is a survival tool. The concept of peak performance
ratio has no meaning if one cannot measure FLOPS accurately. But if there is no
such profiler available in your environment, how can you survive? In theory, it
is very simple. First, have your program count the number of total floating-point
operations executed inside your code. Then, divide this number by the execution
time measured in seconds. That’s it. Yes, this is floating-point operation per second
(FLOPS)! Actually, this task is very tedious as you imagine. That’s why the profiler
is essential in HPC.

Compared to the profiler, debugger, which is usually another essential tool in
more general software development environment, seems to be of little use, at least
for us. We mean, although we can often find the situation where the debugger is
useful in this environment, it is far from enough. To supplement the debugger, we
can suggest two ways for debugging.

One is, to test/debug your code on a single processor and single core environment
first, and keep doing it until all the bugs disappear. Virtually, invoking the debugger
on the supercomputer is too late to find a bug.

The other is, to prepare additional debugging mechanism embedded in your code
explicitly. For example, it is convenient to add the functionality to compare internal
data set between single version and parallel one. While it is also a tedious task and
even the meaning of data comparison itself depends heavily on each problem, still
it is a great help if bugs are somewhere in your code and also such functionality is
ready. A cool and fancy parallel debugger would not help you so much.

In addition to these headaches, you might face more mysterious bugs on the
supercomputer. Although thread-level parallelization like OpenMP and CUDA
helps you write parallel code much easier, it could be often the source of serious
bugs, such as synchronization and subtle timing issues. You might also encounter
the bug of compiler, profiler, libraries and OS itself. For the most of the cases,
however, it will end up just caused by your mere misunderstanding about the actual
behaviour of these tools. But, based on our experiences, in very rare occasions, you
might actually see these bugs!

Anyway, even on ordinary, single core desktop PC environment, just using the
debugger, can you actually find the bug of a minus operator, which is wrong and
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should be plus instead, from a bunch of formulas in your code? Probably, intensive
and thorough code review, and verification test of the code against theoretical or
experimental data are required. Thus, in the development of simulation code, the
debugging and testing task itself has been very important and critical from long,
long time ago. It will be so in near future also, and perhaps forever. It is simply
because the debugger does not work well. It is noticed that, on the supercomputer,
without thorough and deliberate preparation for debugging, you could see the real
hell of debugging. Please be aware of this fact.

3.6 Other Issues

Here, we mention about some issues, advices and programming tips to take
advantage of these modern technologies in HPC and supercomputing.

3.6.1 Estimation and Measurement

For any scientific activity, measurement is an important task. Also, prediction
and estimation of the behaviour of the target object is useful to establish back-
ground theory behind the phenomena. Such kind of so-called Plan (prediction and
estimation)—Do (experiment)—See (measurement) cycle is also effective for the
performance optimization process of supercomputing applications.

For example, have you ever estimate and measure actually about the following
things? How much is the calculation cost and how much is the communication cost?
How much data is sent to/received from neighbour nodes? In this loop, how much
data is read/written from main memory, while how many FP operations are carried
out? Without estimation, there can be no reasoning and theory. And also, without
measurement, no justification or correction of them.

In HPC and supercomputing, “how many” is very important. How many times
the code becomes faster than before? How large problem the code can handle in
this supercomputer? And, in the end, how long does it take to run this job? It is
quite different from using other hardware devices and computer environments. For
example, to utilize a 3-D graphics device, it is anyway fine if you can draw lines
and triangles. The performance is a secondary issue, and it should be handled only
if necessary. That means, in 3-D graphics, “can do” is more important than “how
many.” However, in case of a supercomputer, merely using this expensive machine
has virtually no meaning. As we mentioned before, the sole purpose of using the
supercomputer is, making your code faster.
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3.6.2 Memory Access Patterns

In modern HPC environments, memory is one of the slowest components, and it
can easily become the performance bottleneck. Therefore, it is useful to design your
code considering memory access pattern. Nowadays, the execution time of the code
can be roughly estimated from memory access cost, rather than the number of FP
operations.

Whether to main memory, cache, SSD or hard disk, data access pattern to these
memory devices virtually defines the performance. If possible, sequential access is
the best. Otherwise, certain amount of penalty should be expected, depending on the
type of devices.

Because of memory hierarchy mechanism, automatic data movement between
a slow device and a fast one may occur also. Data access patterns considering data
locality control the actual behaviour of this mechanism, and you can identify “where
is this data actually placed now?”

3.6.3 Implicit or Explicit?

When discussing about issues of any programming language and compiler in HPC
and supercomputing, there is the argument of so-called implicit or explicit. In case
of implicit, the behaviour of the code is implicitly defined in a certain, hopefully
convenient for the programmer, way. On the other hand, in case of explicit, the
programmer has to explicitly define the behaviour of the code one by one, line by
line.

At a glance, the former one is easier and better. The latter one is usually so tedious
and error-prone, people tend to choose the former implicit or automatic approach.
The question is, “in the end, did your code actually get faster?” As we mentioned
before, using a supercomputer is not just using it, but also, “how fast” your code
runs on the supercomputer. In this sense, the implicit approach is something in
the middle. Your code may become faster, or not so much. It actually depends. It
depends on the design of your code.

It is our opinion that, whether implicit or explicit, the code performance is
virtually defined by the design of the code. Sometimes, it heavily depends on
the type of numerical algorithm adopted in the code. And the difference between
implicit and explicit is, while deep understanding about the implication of the code
design is required “before” using the explicit approach, in case of implicit, you can
easily jump start into the coding phase without thinking about these design issues.
As a result, if lucky, it works fine. Otherwise, and for the most of the cases in our
experiences, you are forced to re-consider the design of your code thoroughly from
scratch, or just give up and retreat from supercomputing.

Actually, in terms of the productivity, implicit approaches, such as OpenMP and
OpenACC, are far more superior than corresponding explicit approaches of much
lower level, such as p-thread and CUDA. Same is applied to SIMD vectorization
driven by compiler directives, over assembly languages. As for the discussion
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about MPI versus PGAS languages, we cannot say here, because we don’t have
so much experience of the latter approaches. In some HPC environments, only
implicit approaches are available. In this sense, virtual memory, cache mechanism
and NUMA are also classified into implicit approaches.

When an implicit approach is appropriate or the only one available, how to use it?
The key point is the thorough understanding of the actual behaviour of this implicit
approach, until the level of hardware layer. In case of NUMA, even if it looks like
shared memory, it is actually a kind of distributed memory, with each processor
having its own memory. In case of SIMD instruction, what kind of assembly code is
actually generated by compiler through SIMD vectorization? And also, what kind
of memory access pattern dominates the loop? Such level of understanding might
be required, if you are unlucky and something is not going well.

3.6.4 Software Design and Performance Optimization

As already mentioned, through this chapter, the concept of performance-centric
software design is introduced. The idea is, let’s think about the performance tuning
task up-front in the design phase of software, rather than mere hacking-like activity
after everything finished. And also, we have mentioned just before that, it is
necessary to consider some aspects of HPC hardware and software architecture in
the design phase. Here in this section, some more know-hows and tips are shown
for seeking the performance-centric design.

For example, portability. How to handle this issue in the code development for
HPC? In the extreme case, it might be the best to write code in assembly language
for each different HPC platform. In terms of portability, this is obviously the worst
case. In the modern supercomputing environments, however, it seems to be unavoid-
able to modify the code for each specific hardware platform and its associated
special software development environment. Even programming languages might
have to be chosen.

Let’s follow a well-known software design principle. The solution is modular-
ization, as always. Identification of hot spot helps to isolate performance-sensitive
portions of the code from the rest. Let’s move them into the device-dependent part,
and optimize only these portions thoroughly for each specific HPC environment.
Whatever tools and programming languages, even assembly language can be used
in these isolated portions. It is very similar to just maintaining portability among
various kinds of OS, network and GUI environment, found usually in the scene of
modern software development in other fields. Libraries such as MPI and BLAS can
be considered as examples of this case. In the similar way, each application can
prepare its own portability layer against platform diversity and future change of
hardware.
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4 Design and Implementation of Finite Element Code

The finite element method (FEM) is one of the famous approximation methods
for solving partial differential equations. Starting from structural mechanics, it has
mainly been applied to macro-scale problems in the continuum mechanics field.

As for the history of FEM on supercomputers, until recently, it used to be just
enough to tune only the direct solver part of the FE code. With sufficiently large
problem size, either band or skyline solver can be easily vectorized on vector
processor, or parallelized on shared memory environment.

With the emergence of distributed memory parallel supercomputers, however,
things have been drastically changed. Numerical schemes adopted in the applica-
tions running on PC cluster and MPP are mainly dominated by either static/implicit
time marching schemes using iterative solver as the linear equation solver, or explicit
time marching schemes. The whole analysis domain has to be domain-decomposed
into multiple subdomains. The use of sparse direct solvers on such a distributed
memory parallel environment has just begun recently with a relatively limited
number of computational nodes.

Here in this section, related to the implementation of FE code on supercomputers,
four topics are explained. Starting from EBE approaches, some issues about linear
algebraic solver are described, followed by the domain decomposition method
(DDM) as a parallel processing scheme. Finally, the issue of pre- and post-
processing in supercomputing applications is briefly described.

4.1 Element-by-Element

Although the typical performance bottleneck, or the hot spot, of a FE code is
its linear algebraic solver, the part of forming element-wise matrices and vectors
can also be another weak point. In case of an explicit code, this part typically
dominates. Even in an implicit or a static code, it can occupy a significant portion
of execution time, if non-linearity is strong and stress integration involves relatively
heavy calculation, or some of the terms in the weak form are explicitly evaluated.
The performance tuning effort of EBE operations is at least not negligible.

As for the performance optimization of the EBE routines, it is easy to parallelize
them. Because they are namely EBE operations, each of them can be done
independently. The granularity of parallelization can be any, because there will be
millions, or perhaps billions of elements to be processed.

Care should be taken for the assembly part, however. To assemble element-wise
matrices into a global matrix, and element-wise vectors into a global vector, conflict
occurs. Sorting of elements is required to avoid this conflict. In more general,
this assembly process corresponds to so-called scatter operation, from elements to
nodes. It distributes element data onto the corresponding nodes. The reverse one is
“gather” operation, from nodes to elements. It collects nodal data for each element.
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While the gather operation is read only operation from a nodal vector, the scatter
operation updates a nodal vector. It involves both read and write. When multiple
elements try to write their own data into the same nodal vector simultaneously,
it easily causes data update conflict. In case of shared memory environment, this
conflict must be suppressed by element reordering. Instead, if it is performed to
domain-decomposed data structure in distributed memory parallel environment,
data exchange occurs along the interface boundary between adjacent subdomains.

In addition to parallelization, what else? Intra-core optimization remains. For
example, SIMD vectorization. Assuming that there is no major IF/THEN branch
in forming an element-wise value, evaluation of this quantity in multiple elements
or multiple integration points in an element can be performed not only in parallel,
but also in exactly the same way. This fact naturally leads to SIMD. SIMD/short
vectorization can be applied. SIMD implementation on GPU is also possible if a
sufficient number of elements, for example, thousands or more, can be allocated in
each GPU.

4.2 Linear Algebraic Solver

Unless the scheme of your FE code is purely explicit, it is necessary to prepare a
linear algebraic solver to handle the matrix equation [A] fxg D fbg. The matrix [A]
may be represented as band, skyline or sparse. Here, sparse means storing only non-
zero components in a certain way, such as compressed row storage (CRS) format or
block CRS one.

If no iterative solver can be employed to solve the linear equation, because the
matrix [A] is highly ill-conditioned or some other reasons, direct solver is the only
choice. In this case, however, you’d better give up using a supercomputer. Even
a small-scale PC cluster may have difficulty in scaling, unless the problem size is
really huge. Currently, it can be said that it is very difficult or even impossible for
direct solver to take advantage of distributed memory parallel architecture. As for a
typical modern supercomputer with hundreds or thousands of computational nodes,
either implicit code employing iterative solver or explicit code using EBE operations
predominantly is the choice.

It can be said that iterative solver works fine on massively parallel environment,
if domain decomposition is properly performed [2]. At least, the matrix–vector
product, which is the main body of iterative solver, can be easily parallelized on
any parallel environment, from SIMD, share memory to MPP. However, this is the
case without pre-conditioner. In some problems, without efficient pre-conditioner,
the convergence ratio is very bad. Then, the question is, are there any parallel
pre-conditioners available? Currently, not so many pre-conditioners are ready. It
is because, the stronger and the more effective the pre-conditioner is, the more it
looks like a kind of direct solver. As we explained just before, it is very difficult
to parallelize direct solver. Currently, finding a good parallel pre-conditioner is
on-going challenge in this research field. Some parallel pre-conditioners based on
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hierarchical domain decomposition, in a similar way as that of sparse direct solver,
are available. Also, multi-grid approaches are effective. Either geometrical multi-
grid or algebraic multi-grid (AMG) solver may be used. The third way is, DDM,
described in the next section.

Although direct solver alone is almost useless on massively parallel environment,
it is still useful for two cases. One is, for a component of much more complicated
numerical software stack. The other is, on a desktop workstation with accelerator
like GPU or many-core. Basically, direct solver works very well with cache
mechanism. It is quite different from iterative solver, which is usually memory
bound. Especially, the factorization phase of the direct solver can easily achieve
near the peak performance on a single computational node. It also works well on
GPU and many-core accelerators. Therefore, it can be utilized as a sub-component
inside more sophisticated and complicated solver. Direct solver can be used, for
example, as the linear algebraic solver for the coarsest grid in multi-grid solver, as
the solver of the local models in non-linear homogenization code, and as the local
subdomain and the coarse grid solvers in DDM.

4.3 Domain Decomposition Method

The DDM is a way to solve partial differential equation, by solving each subdomain
problem separately [3]. The solution of each subdomain problem requires assumed
boundary condition. With the repetition of this process, this, initially assumed
boundary condition along subdomain interface gradually converges to the true one.
In this sense, it is a kind of iterative method. DDM is inherently parallel because
each subdomain local problem can be solved independently [4, 5]. To solve the
subdomain local problem, either iterative or direct solver may be used.

Anyway, DDM is different from just decomposing a mesh into multiple sub-
domains. This type of domain decomposition reduces the communication cost in
matrix–vector product operations, which is typically found in parallel iterative
solver and explicit code. Instead, DDM is an independent numerical scheme
originated from the mathematical field of partial differential equation. Sometimes,
it is also called as Shur complement method or iterative sub-structuring method in
the field of iterative solver.

DDM is a kind of hybrid method between iterative solver and direct one. The
global view of DDM is iterative, and pre-conditioner may be required in the similar
way as the case of iterative solver. Coarse grid solver is typically employed as
pre-conditioner. In this case, the coarse grid is derived from the graph structure
of domain decomposition itself, and it can be said to be a kind of two grid version in
multi-grid solver. To solve the coarse problem and the subdomain local problems,
direct solver may also be utilized.
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4.4 Pre- and Post-Processing: Where and How?

When a supercomputer is employed to solve a huge-scale problem, its input and
output data, namely, the mesh and the result data of such a huge-scale analysis can
also be very huge. Then, the pre- and post-processing becomes a critical issue.

Somehow, you need to perform these tedious tasks, but where? Perhaps, on the
supercomputer? No way! : : : Sorry, it is not a joke. There are two, more specific
questions about the issues to handle such a huge-scale analysis. The first one is,
where and how is the mesh generated? And the other one is, can we get back such
huge result data from the supercomputer onto our desktop workstation, through
campus LAN and the Internet?

For the first question, the mesh generator has to be ported onto the supercomputer
side. That means, it also has to be fully parallelized. Unfortunately, the development
of highly parallel automatic mesh generator is still the on-going research topic. To
overcome the issue, instead, mesh refiner may be utilized [6]. This tool simply
refines the given initial mesh into half. Speaking more exactly, in case of 3-D
solid/volume element, each element is divided into eight elements, by adding a mid-
node on each edge. One step refinement increases the number of elements 8 times.
Uniform mesh refinement itself can be easily parallelized. Because the refiner can
be invoked on the supercomputer, it is sufficient to create an initial coarse mesh on
your desktop PC and send it to the supercomputer through slow network.

For the second question about the visualization of the result data, however,
things are more complicated. One obvious answer is, generate images and movie
data on the supercomputer side [7]. Not only this post-processor simply runs on
the supercomputer, it should also be parallelized. Assuming the analysis domain is
already decomposed into subdomains, it is possible for each subdomain to generate
its own result image independently, and to gather these images and compose a single
image, by image convolution techniques. These processes can be parallelized. This
software rendering process can be contained as a part of the main analysis process.
After a job is completed, you can obtain not only the result data, but also their
images and movies. While waiting for the download of the huge result data, you can
quickly browse these images and movies.

Well, you may think that this solution is insufficient. We agree to you. Interactiv-
ity is missing. To do so, however, there are some challenges. First, how to bring back
such a huge data set? Some kinds of data compression techniques are needed. In case
of structural analysis, it might be sufficient to extract only the surface portion from
the volume data. Part-by-part visualization may be used also. Then, the next issue
is, how to handle such a huge data set on a single desktop workstation? Another PC
cluster, dedicated for visualization purpose, may be needed. The third question is
about the complexity itself of the huge result data. For example, the geometry data
of the model also tends to be highly complicated. Just rotating and zooming does
not work. Fly-through or walk-through visualization, typically found in the virtual
reality field, may be helpful.
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