
Chapter 8
Moving Discrete Breathers in 2D
and 3D Crystals

Sergey V. Dmitriev, Andrei A. Kistanov and Vladimir I. Dubinko

Abstract Discrete breathers (DB), also known as intrinsic localized modes, are
spatially localized large-amplitude vibrational modes in defect-free anharmonic lat-
tices. Crystals can be regarded as anharmonic lattices and it is natural to expect that
they support DB. The role of DB in the solid state physics is not yet well under-
stood because their experimental detection is difficult. Nevertheless there exist a
large number of theoretical works where the existence conditions and properties of
DB in crystals have been analyzed. The key issue actively discussed in the literature
is the mobility of DB. Moving DB can be a carrier of energy, momentum, electric
charge, etc. A DB can localize energy of the order of 1eV, while collision of prop-
agating DB can result in even higher energy localization. The high energy density
regions in crystals can act as the sources of crystal lattice defects, they can initiate
fracture or phase transitions. In this chapter the anzats for generating moving dis-
crete breathers in monatomic crystals is offered and successfully tested in molecular
dynamics simulations for the 2D Morse crystal and hcp cobalt and magnesium. It is
then demonstrated that two colliding DB can produce a DB with greater amplitude.
Gap DB wandering in an ionic crystal with NaCl structure are described.
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8.1 Introduction

Discrete breathers (DB), as exact solutions to a number of model nonlinear sys-
tems possessing translational symmetry, were a hot topic in the nonlinear science
in the last decade of the past century [13, 20, 21, 44, 50, 57]. An overwhelming
majority of those theoretical studies on DB dealt with the idealized one- or two-
dimensional nonlinear lattices of coupled oscillators interacting via oversimplified
pairwise potentials. In the last years, DB-mediated effects in solid state physics and
materials science have been the focus of a rapidly growing number of studies based
on more realistic atomistic models of crystals.

Let us recall some basic properties of DB important for the following discus-
sion. DB frequency lies outside the small amplitude vibration spectrum of the lattice
and thus, DB does not excite the small amplitude waves and remains localized for-
ever radiating no energy. The DB frequency can leave the linear vibration spectrum
because of the anharmonicity of the lattice. Indeed, it is well-known that the fre-
quency of a nonlinear oscillator is amplitude-dependent. In the case of the so-called
hard (soft) anharmonicity, DB frequency increases (decreases) with increase in its
amplitude and can cross the upper edge of the spectrum (can enter the spectrum
gap, if it exists). Most of the studies on DB have been done in frame of the strongly
idealized models of low dimensions and with simple types of anharmonicity. In real
physical systems DB are not single-frequency modes and they are not exactly time-
periodic. The concept of quasi-breathers, developed by Chechin with co-authors [8],
legitimizes the long-lived, spatially localized objects in defect-free crystal lattices,
even though they are not exact solutions to the dynamical equations.

During the last few years, the concept of DB (more precisely, quasi-breathers) has
been actively penetrating the solid state physics and materials science. Velarde with
co-authors have offered the concept of solectron [9–12, 60] which is the bound state
of DB and electron, the reaction rate theory in solids has been recently modified to
take into account the contribution from DB [2, 16, 18], the DBmediated mechanism
of defect annealing deep inside Ge single crystal has been proposed [1], the possi-
ble role of DB in thermally activated dehydrogenation of graphane [43] has been
discussed in the works [7, 42], molecular dynamics simulation of the DB-induced
defect formation in strained carbon nanotube has been reported [55]. Xiong et al.
have demonstrated that DB can contribute to thermal conductivity of 1D lattices
[65–67].

There exist several reports on experimental observation of DB in crystals. DB
have been detected by the resonant Raman scattering measurements in a complex
compound termed as PtCl [27, 58, 62], from inelastic x-ray and neutron scattering
data in α-uranium [46, 49], and from inelastic neutron scattering spectra in NaI
[29, 47, 48]. The existence of DB in NaI in thermal equilibrium has been debated
[28, 56] because the contribution from DB to the vibrational density of states is
masked by the contribution from thermal lattice vibrations. This discussion suggests
the importance of numerical studies on DB. Molecular dynamics based on empirical
interatomic potentials was used to identify DBs in NaI [30, 34], in Si and Ge [61],
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in Ni and Nb [24], in C60 fullerite nanocrystals [54], in carbon nanotubes [55], in
graphene [3, 32, 39, 40], and in graphane [42]. In the work [7] the existence of DB in
graphane was demonstrated for the first time with the use of the ab initio simulations
based on DFT theory.

The question of whether DB can move through crystal lattice is important for
understanding their role in the formation of physical properties of crystals. Often
DB are pinned to lattice sites, but in some cases they can be mobile [24]. Moving
DB, also known as quodons, are quasi-particles propagating along close-packed crys-
tallographic directions [53]. Their collisions with crystal defects can result in various
effects such as the anomalously accelerated diffusion and related phenomena [16].
Moving DB can collide with each other resulting in significant energy localization at
the collision point. This energy can be spent on the creation of crystal lattice defects
or on the triggering of phase transitions or fracture.

In this contributionwe discussmovingDB in 2DMorse crystal (Sect. 8.2),moving
DB in 3D metallic crystals (Sect. 8.3) and wandering DB in the ionic crystals with
NaCl structure (Sect. 8.4). A brief summary with the outline of some open problems
is given in Sect. 8.5.

8.2 Moving DB in 2D Hexagonal Lattice
with Long-Range Morse Potentials

In the theoretical work by Kiselev et al. [33] it has been shown that the 1D chains
with atoms interacting via classical pairwise potentials (Toda, Born-Mayer, Lennard-
Jones and Morse) cannot support DB with frequency above the phonon spectrum.
Let us demonstrate that introduction of the on-site potential in that model makes the
existence of DB with frequency above the phonon spectrum possible by suppressing
the dc displacements of the atoms and increasing the contribution of the hard core
of the potential into atomic dynamics.

We consider the 1D chain of identical atoms of unit mass whose dynamics is
described by the following equations of motion

ün = U ′(un+1 − un) − U ′(un − un−1) − V ′(un) , (8.1)

U (r) is the potential energy of the two particles at the distance r and V (un) is
the on-site potential. Interatomic interactions are described by the empirical Morse
potential

U (r) = D(e−2α(r−rm ) − 2e−α(r−rm )) , (8.2)

where r is the distance between two atoms, D, α, rm are the potential parameters.
The function U (r) has a minimum at r = rm , the depth of the potential (the binding
energy) is equal to D and α defines the stiffness of the bond. We take D = 1,
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Fig. 8.1 Displacements of the central atom of the DB, u0, and its three neighbors as the functions
of time. The DB is excited in the chain (8.1) with the parameters D = 1, rm = 1 and α = 5 in (8.2)
and A = 4 in (8.3). Results for the 1D chain of particles (8.1) interacting via Morse potential (8.2)
in the sinusoidal on-site potential (8.3)

rm = 1 and α = 5. For the considered case of the nearest-neighbor interactions
the equilibrium interatomic distance is unity. The on-site potential is taken in the
sinusoidal form,

V (un) = −A cos(2πun) , (8.3)

with the amplitude A = 4.
A DB excited by the try and error method is presented in Fig. 8.1. Shown are

the displacements of the central atom of the DB, u0, and its three neighbors as the
functions of time. DB frequency is ωDB = 21.33 which is above the upper edge of
the phonon spectrum ωmax = 18.92.

8.2.1 Simulation Setup and Moving DB Ansatz

In 2D crystal with Morse interatomic interactions, and without any on-site potential,
DB with frequency above the phonon spectrum are possible [36–38] because the
close-packed atomic row, in which the DB is excited, experiences the action of the
effective on-site potential induced by the rest of the crystal.
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Fig. 8.2 a Stroboscopic
picture of atomic motion
showing the moving DB
excited in a close-packed
atomic row with the help of
(8.4) for the parameters
A = 0.128, B = 0.015,
β = γ = 0.25, x0 = 0,
ω = 19.5, ϕ0 = 0.1π ,
δ = 0.04π . b DB frequency
as the function of amplitude.
The upper edge of the
phonon band is shown by the
horizontal line. Results for
the 2D hexagonal lattice with
long range Morse potential

(a)

(b)

A two-dimensional (2D) close packed lattice with the interatomic distance (lattice
constant) equal to a is considered. Interatomic interactions are described by the
empirical Morse potential (8.2). In the following, we choose scales of time, energy
and distance such that D = 1, rm = 1 and the atom mass is unity. We take α = 5,
for which the equilibrium interatomic distance is a = 0.98813. The cut-off radius is
chosen to be rc = 5. Due to the long-range interaction a < rm .

The computational cell, generated by the translation vectors a1 = a(1, 0),
a2 = (a/2)(1,

√
3) consists of 160 × 160 atoms. The cell is subjected to the peri-

odic boundary conditions. Discrete breathers are excited in the middle part of the
computational cell. In order to absorb the small-amplitude waves emitted by the DB,
an ad hoc viscosity term is introduced into the equations of motion for the atoms
close to the borders of the computational cell. The atoms in a close-packed row are
numbered by the index n as shown in Fig. 8.2a.

To excite a moving DB in a close-packed row of atoms the following moving DB
ansatz [38] is used

xn(t) = S0
n + (−1)nT 0

n cos(ωt + ϕ0 + δ),

yn(0) = 0, ẏn(0) = 0, (8.4)

where ω is the DB frequency, ϕ0 is the initial phase, δ is the parameter indicating the
phase difference for neighboring atoms, the atom vibration amplitudes, T 0

n , and the
displacements of the atom vibration centers, S0

n , are defined as follows

T 0
n = A

cosh[β(n − x0)] , S0
n = −B(n − x0)

cosh[γ (n − x0)] , (8.5)
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where A is the DB amplitude, B defines the amplitude of displacements of the
vibration centers of the atoms, β and γ define the degree of spatial localization of
DB, x0 is the DB initial position. For x0 = 0 the DB is centered on a lattice site,
while for x0 = 1/2 midway between two neighboring lattice sites. The DB velocity
depends on δ, and for δ = 0 it is equal to zero. Thus the functions T 0

n and S0
n in

(8.5) describe the amplitudes and the displacements of the vibration centers of the
atoms at t = 0, respectively. These quantities will be calculated for each period of
DB oscillation as

Tn = xn,max − xn,min

2
, Sn = xn,max + xn,min

2
, (8.6)

where xn,max and xn,min are the maximal and minimal values of the quasiperiodic
function xn(t) that describes the motion of nth atom of a close-packed atomic row.
For atoms in the atomic rows where DB is not excited we set xn(0) = yn(0) = 0
and ẋn(0) = ẏn(0) = 0.

The proposed ansatz is based on the data from [24] and takes into account the
fact that the DB is exponentially localized in space owing to hyperbolic functions in
(8.5). In addition, the frequency of the DB should lie above the phonon spectrum of
the crystal, which can be implemented only for the shortest wavelength vibrational
modes, when the neighboring atoms move in antiphase. This requirement is fulfilled
owing to the introduction of the factor (−1)n in (8.4) in front of the amplitudes of
atoms Tn . The term Sn in (8.4) takes into account the effect of dilation in the vicinity
of the DB caused by the asymmetric anharmonicity of the interatomic forces, when
the centers of vibrations of atoms of the close-packed row are displaced away from
the center of the DB. Finally, the motion of the discrete breather over the crystal is
provided by the introduction of a small phase difference δ in the vibrations of the
neighboring atoms in (8.4).

It should be noted that the ansatz (8.4, 8.5) is not an exact solution to the equations
of motion for the considered 2D crystal. That is why a part of the energy given to the
system at t = 0 is radiated in the form of small-amplitude extended waves and then
a stable and robust moving DB emerges, if the parameters in (8.4, 8.5) are properly
chosen.

In Fig. 8.2a the moving DB excited in a close-packed atomic row is depicted by
the stroboscopic picture of atomicmotion. TheDB is shown at t = 10. The following
parameter values were used for setting the initial conditions A = 0.128, B = 0.015,
β = γ = 0.25, x0 = 0, ω = 19.5, ϕ0 = 0.1π , δ = 0.04π . The frequency used
to excite the DB is above the phonon spectrum of the crystal. As it can be seen in
Fig. 8.2b, the DB frequency, ωDB, increases with the increase in the DB amplitude
A revealing the hard-type anharmonicity of this vibrational mode. The upper edge
of the phonon band, ωmax = 18.9, is shown in (b) by the horizontal line.
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Fig. 8.3 Head-on collision
of DB moving in a
close-packed atomic row.
Panels from the top to the
bottom are presented with
the time step of 10 time
units. Tn is the oscillation
amplitude of nth atom. As a
result of the collision the two
DB merge into one having
the amplitude larger than the
initial DB. Results for the 2D
hexagonal lattice with long
range Morse potential

8.2.2 Head-On Collision of Moving DB

Here we present an illustrative example of head-on collision of two identical DB
moving toward each other with equal velocities along the x axis in the same atomic
row of the 2DMorse crystal [36]. The initial velocity of DB for the chosen parameter
values is 0.35a in one time unit. Fig. 8.3 shows the outcome of the head-on collision
where two DB merge forming a single DB with amplitude greater than the initial
DB.

Head-off collisions of DB moving toward each other in parallel close-packed
atomic rows were also studied [36] and it was demonstrated that in some cases DB
were destroyed as a result of the collision, while in other cases one of them took a
part of energy from another.

Clearly a mechanism of energy gain by DB becomes available since two colliding
DB can produce a DB with the amplitude greater than the initial amplitudes of the
colliding DB. This is important because the concept of DB is used to explain various
effects observed in crystalline solids [1, 4, 18, 22, 45].
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Fig. 8.4 Computational cell in the form of a cuboid used to simulate DBs in hcp metals. To excite
a moving DB, initial positions and initial velocities of atoms belonging to a close-packed atomic
row (shown in light color) are calculated from (8.4, 8.5). All other atoms have zero initial positions
and initial velocities

8.3 DB in Pure Metals

Very recently the hard-type anharmonicity DB were identified in pure metals with
fcc lattice (Ni) and bcc lattice (Nb, Fe) [24, 25]. The latter studies have inspired
the development of the ansatz for the initial conditions to excite DBs with hard-type
nonlinearity [38]. The ansatz has been used to simulate the interaction of DBs with a
vacancy [37]. Note that the moving DB studied here are qualitatively different from
the soliton-like waves called crowdions (kinks), analyzed recently in [9–12, 26].

Here, with the use of the molecular dynamics simulations, we demonstrate that
moving DB can also be excited in hcp metals Co and Mg.

The simulations are performed using the large-scale atomic/molecular massively
parallel simulator (LAMMPS) package [51]with the embedded atommethod (EAM)
interatomic potentials [52].

Hard-type nonlinearity DB in Co and Mg is excited in a close-packed atomic row
(see Fig. 8.4) with the help of the ansatz (8.4, 8.5) [38].

8.3.1 Collision of Moving DB

In Figs. 8.5 and 8.6 collision of two DB moving in the same close-packed atomic
row in Co are presented by the time evolution of the functions Tn representing the



8 Moving Discrete Breathers in 2D and 3D Crystals 213

Fig. 8.5 Merger of two
symmetric DB moving
toward each other in Co in
the same close-packed
atomic row with equal
velocities. Tn is the
oscillation amplitude of nth
atom. The resulting standing
DB has the amplitude higher
than the initial ones.
Parameters of the ansatz
used for excitation of the DB
see in the text

Fig. 8.6 Same as in Fig. 8.5
but for the DB having
different initial phases. As a
result of collision DB are
reflected

amplitudes of atomic vibrations. In Fig. 8.5 two symmetric DB moving toward each
other with equal velocities collide to create a standing DB with the amplitude larger
than the initial DB amplitudes. The following parameters of the ansatz were used to
excite the DB: A = 0.3Å, B = 0.08Å, β = 0.5, γ = 0.6, ω = 14.8 THz, x0 = 1/2,
δ = ±0.1π , φ0 = π/2. In Fig. 8.6 both DB have the same parameters except for the
initial phase, which is equal to φ0 = π/2 and φ0 = π/4 for the DB moving from the
left and from the right, respectively. In this case DB are reflected after the collision.

Similar results are presented in Figs. 8.7 and 8.8 for DB collisions in Mg. In
Fig. 8.7 symmetric DB collide. Parameters of the ansatz (8.4, 8.5) are A = 0.5Å,
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Fig. 8.7 Merger of two symmetric DB moving toward each other in Mg in the same close-packed
atomic row with equal velocities. Tn is the oscillation amplitude of nth atom. Parameters of the
ansatz used for excitation of the DB see in the text

Fig. 8.8 Same as in Fig. 8.7 but for the DB having different initial phases. As a result of collision
one DB emerges and moves from the left to the right with the velocity greater than the initial DB
velocity

B = 0.08Å, β = 0.5, γ = 0.6, ω = 125 THz, x0 = 1/2, δ = ±0.03π , φ0 = π/2.
In Fig. 8.8 both DB have the same parameters except for the initial phase, which is
equal to φ0 = π/2 and φ0 = π/4 for the DB moving from the left and from the
right, respectively. Collision of DB with different initial phases in this case produces
one DBmoving from the left to the right with the velocity greater than the initial DB
velocity.

It can be concluded that at 0K the moving DB in pure hcp metals such as Co
and Mg are very robust, they can travel very long distances and can survive head-on
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collisions with each other. Energy exchange between colliding DB is possible and it
strongly depends on the mutual phase of colliding DB.

8.3.2 Application to Radiation Effects

Crystal lattice defects play a very important role in solid state physics and materials
science. It is interesting to study the effect ofDB scattering on the natural defects (e.g.
vacancies, voids, dislocations, and grain boundaries) [14–17, 30, 56]. In this respect,
the ability of DB to move in pure metals, demonstrated in the present chapter, is very
important since it greatly enhances the range of their interaction with the lattice
defects. This interaction may be responsible for the long-range interaction between
the defects resulting in their spatial ordering. A prominent example is the ordering
of vacancy voids into three-dimensional super-lattices under neutron and heavy-ion
irradiation of a number of bcc metals (Mo, W, Nb, Ta) and fcc Ni and Al [41],
where they copy the host lattice of the metal, and in hcp metals Zr and Mg [5]. The
void super-lattice copies the host lattice of the metal in bcc and fcc metals, while
voids are aligned in bands parallel to the basal planes in hcp metals. Irradiation may
cause continuous generation of DBs inside material due to external lattice excitation,
thus pumping the material with a gas of DBs propagating along close-packed lattice
directions. A scattering of DB on the void surfaces excites the surface atoms [59],
which enhances the rate of the vacancy emission from voids. As a result, the vacancy
solubility, Cirr

V , also known as the dynamic equilibrium concentration of vacancies
in the vicinity of the void surface, start to depend on the irradiation flux Firr of fast
particles that generate DB [14, 16]:

Cirr
V (Firr , T ) = Cth

V (T ) exp

(
Δφq(Firr , T )

kB T

)
,

Δφq(Firr , T ) ≡ 〈Est (Firr , T )〉2
kB T

, (8.7)

whereCth
V (T ) is the thermal vacancy solubility, kB is theBoltzmann constant, T is the

temperature, and 〈Est (Firr , T )〉 is the standard deviation of the vacancy formation
energy from the ground value caused by the DB-induced excitation, which is given
by the product of the frequency of DB-void collisions, the excitation amplitude and
lifetime. It is positive by definition, which means that Cirr

V > Cth
V . The void growth

rate is proportional to the difference between the net flux of vacancies from the bulk
to the void, J in

V , and the flux of vacancies from the void to the bulk, J out
V . The former

flux J in
V is determined by the difference between the fluxes of vacancy and self-

interstitial atoms (SIAs) produced by irradiation in the bulk, while the latter flux J out
V

is proportional to the vacancy solubility at the void surface, Cirr
V /J out

V ∼ DV Cirr
V ,

where DV is the vacancy diffusivity.
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Fig. 8.9 Illustration of the
dissolution of a void in the
interstitial position due to the
absorption of DB coming
from larger distances as
compared to locally ordered
voids that shield each other
from the breather fluxes
along the close packed
directions [15]

Radiation-induced DB can move along the close-packed directions until they
decay or collide with a void. If the DB propagating range is larger than the void
spacing, the voids can shield each other from DB fluxes along the close packed
directions, and so, the vacancy emission rate for voids, which have more immediate
neighbors along the close packed direction, becomes smaller than that for other voids,
and so they have some advantage in growth (Fig. 8.9). Quantitatively, it means that
Cirr

V for the locally ordered voids is lower that for the locally interstitial voids. If the
void number density is sufficiently high, the competition between them can be shown
to make the interstitial voids shrink away resulting in the void lattice formation, in
which the nearest neighbors are arranged along the close-packed directions of the
host lattice [15]. For cubic metals this means the void lattice copes the host lattice,
while in hcp metals, the alignment of voids in bands parallel to the basal planes (in
which DB propagate) is expected, in agreement with experimental data [5, 41]. This
driving force for the void ordering was proposed by Dubinko [15] well before the
existence of DB in metals was demonstrated. Subsequent results on the DB mobility
in bcc metals [59] and the present results on the DB mobility in hcp metals strongly
support this model, although further work is needed to demonstrate that DBs can be
robust at the elevated temperatures.

Another prominent phenomenon that can be expected from the anisotropy of DB
propagation in hcp metals is the irradiation growth (IG). IG is the name given to the
volume-conserved shape deformation that occurs in non-cubic crystalline materials
under irradiation in the absence of an applied stress [6, 19, 23, 63, 64]. The best
known examples of irradiation growth are found in graphite, uranium, zirconium and
its alloys (see [6, 19] for the review). In most cases, IG corresponds to an expansion
along the a-direction and a contraction along the c-direction in its constituent grains
[19]. Availablemodels of IG are based on the anisotropy ofmigration of point defects
(usually, self-interstitial atoms—SIAs) produced by irradiation [63, 64] or mobile
SIA-clusters produced by cascade damage [23]. However, diffusion anisotropy in
hcp is yet a subject of debates, while the IG related effects are observed also under
electron irradiation, which does not produce cascades, and hence, in-cascade SIA-
clusters cannot explain these effects. So, it becomes evident that the mechanisms
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Fig. 8.10 DB propagate within the basal planes in hcp metals. Accordingly, the DB-induced
vacancy emission from prismatic grains is enhanced as compared to that from the basal grains,
which should result in an expansion along the a-direction and a contraction along the c-direction

involved in the irradiation growth of hcp metals may be more complicated than those
that can be understood within the conventional rate theory models.

Here we note that IG can be based on a principally new mechanism related to the
anisotropy of DB propagation in hcp metals, where all the close-packed directions
lie within the basal plane (Fig. 8.10). Accordingly, the DB-induced vacancy emission
from prismatic grains, J out

V ∼ DV Cirr
V , is enhanced as compared to that from the

basal grains, J out
V ∼ DV Cth

V at which only thermally activated vacancy emission
takes place. This should result in a relative expansion along the a-direction and a
contraction along the c-direction at a rate IGR given by

I G R ≈ DV

l2G
(Cirr

V − Cth
V ), (8.8)

where lG is the grain size. This mechanism is similar to the Nabarro-Herring creep
mechanism, in which the vacancy concentration difference at different grains is
induced by the applied external stress. In the IG case, the concentration gradient is
induced by irradiation and by the anisotropy of DB propagation. This mechanism
predicts that IGR decreases with increasing grain size, which agrees with experi-
mental data [6, 19]. With increasing grain size, dislocations become the dominant
sinks and sources of vacancies, and the model should take into account interaction of
DBs with dislocations of different orientations, which could result in a more efficient
emission of vacancies from a-component dislocations as compared to c-component
dislocations. That would explain a break-away growth of Zr at high neutron fluences
caused by the generation of vacancy at the c-component dislocations loops, that
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would lead to shrinkage along the c-axis much in the same way as the vacancy loops
on basal planes that were originally proposed by Buckley to explain the observed
growth in uranium [19]. However, consideration of the DB-dislocation interaction
in hcp metals is beyond the scope of the present chapter and will be done elsewhere.

8.4 Wandering DB in an Ionic Crystal

In this section we give an example of a special type of DB motion when it moves not
along a straight line but wanders over the crystal changing the direction of motion.

8.4.1 Simulation Details

NaCl structure consists of two face-centered cubic lattices with lattice parameter a,
one occupied by anions and another one by cations, displaced one with respect to
another by the vector (a/2, 0, 0) so that one falls in the body centered position of the
other. Each atom has six neighbors of the opposite type which are at the vertices of
a regular octahedron. Thus, each cubic translational cell consists of four anions and
four cations as shown in Fig. 8.11a.

Interactions between atoms are described by the pairwise potentials that include
Coulomb interaction, Born-Mayer-type repulsion, and dispersive interaction. The
potentials and their parameters are given in [30]. For chosen parameters of potentials
the equilibrium lattice parameter of the NaCl structure was found to be a = 6.25Å.
The atomic weight of the heavy atom was fixed to M = 100 g/mol and for the light
atomwe took m = 10 g/mol. Large difference in the atomic weight of the anions and
cations ensures the existence of a wide gap in the phonon spectrum of the crystal [30,
35]. Computational cell used in our simulations included 8×8×8 cubic translational
cells, and it was subjected to periodic boundary conditions.

DB in the considered crystal model is highly localized on a light atom. The light
atom can vibrate with a large amplitude along one of the high-symmetry directions,
〈100〉, 〈110〉, or 〈111〉 [30, 34, 35]. Excitation of DBwith 〈111〉 polarization requires
a special procedure [35], while DB with the other two polarizations can be easily
excited by displacing one light atom away from its equilibrium position in the desired
direction by about 0.3–0.5Å. After a short transient period, a stable DB emerges,
while a part of the energy initially given to the exited atom spreads over the com-
putational cell in the form of small-amplitude vibrations. Magnitude of the initial
displacement defines the DB amplitude.

In Fig. 8.12 a the density of phonon states (DOS) for the considered crystal with
the NaCl structure is presented. The spectrum features a wide gap that is the nec-
essary condition for the existence of gap DB, i.e., DB having frequency within the
phonon gap.
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Fig. 8.11 a The NaCl crystal structure. Light (heavy) atoms are shown by filled (open) circles. b
Stroboscopic picture of atomic motion showing a pair of DBs in the crystal with the NaCl structure.
The atoms A and C oscillate out-of-phase along [110] direction with equal, large amplitudes

8.4.2 Pairs of Discrete Breathers

Three types of DB pairs were considered, namely, the atoms A and B oscillating
along [100] direction, the atoms A and C oscillating along [110] direction, and the
atoms A and D oscillating along [111] direction (see Fig. 8.11a).

The AB and AD pairs are easy to excite. However, for these two pairs, a heavy
atom is in between the two nearest light atoms oscillating with large amplitudes.
The heavy atom precludes from the energy exchange between the light atoms and
this makes the AB and AD pairs not interesting for the present study which focuses
on the energy exchange between DBs. On the other hand, in the AC pair the two
nearest light atoms are not separated by a heavy atom and it was found that they can
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(a) (b)

Fig. 8.12 a Density of phonon states (DOS) for the considered crystal with the NaCl structure. The
gap in the phonon spectrum ranges from 4.4 to 11.8 THz. b Frequency of DB pair of AC-type (see
Fig. 8.11b) as the function of DB amplitude (dots connected with the line). Horizontal lines show
the edges of the phonon spectrum gap

exchange by their energies. In the following the results will be presented only for the
AC pairs of DB.

In Fig. 8.12b, frequency of the DB pair of AC-type (see Fig. 8.11b) is plotted as
the function of DB amplitude (dots connected with the line). The DB in the pair
oscillate out of phase without energy exchange between them. Horizontal lines show
the edges of the phonon spectrum gap. Reduction of the DB frequency with the
increase in DB amplitude suggests that this vibrational modes demonstrate soft type
anharmonicity.

An example of AC-type DB pair is presented in Fig. 8.11b as a stroboscopic
picture of atomic motion. It can be seen that only two neighboring light atoms, A
and C, oscillate out-of-phase with large amplitudes, while the other atoms oscillate
with much smaller amplitudes.

In Figs. 8.13 and 8.14 two examples of AC-type DB pairs are given by plotting
the displacements ux = uy as the functions of dimensionless time t/� of the atoms
(a) A and (c) C. Here � is the oscillation period of DB. In (b) the phase difference is
shown for the atoms A and C. In Fig. 8.13 the atoms A and C oscillate out of phase,
while in Fig. 8.14 they oscillate with a phase shift. In the former case the amplitudes
of both atoms do not change in time, while in the latter case, the energy exchange
between twoDBs can be observed. The energy exchange is not exactly time periodic.
The possibility of energy exchange between neighboring light atoms suggests the
possibility of DB motion.
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(a)

(b)

(c)

Fig. 8.13 Displacements ux = uy for atom a A and c C in the NaCl structure crystal. b Phase
difference for atoms A and C. Initially only A and C atoms were excited with the amplitudes
Ax = Ay = 0.45Åwith the phase difference Δφ = π . Here θ is the DB oscillation period

The next example shows the possibility of complex energy transmission from
one atom to neighboring atoms so that even vibration polarization of atoms can be
changed. The light atoms a and c were initially excited to oscillate along 〈110〉
crystallographic direction with the initial amplitudes Ax = Ay = 0.455Åand phase
difference Δφ = 0.9π (see Fig. 8.15 for the schematic presentation of the energy
transmission and the changes in vibration polarization of atoms). More detailed
information is presented in Fig. 8.16a–e where the displacements of atoms a to e are
presented, respectively. Note that for the atoms b and c the x and y components of
the displacements are shown on separate panels because they are not equal and thus,
the vibration polarization differs from 〈110〉.

This example shows that the energy initially given only to the atoms a and c
wanders over the neighboring light atoms, the vibration polarization of atoms changes
and nevertheless the energy remains in the spatially localized form for a very long
time. Panel (c) of Fig. 8.16 reveals a large-amplitude vibration of the atom c along
〈100〉 crystallographic direction for t > 500θ . Partial energy exchange between atom
c and atom b can be observed. The simulation till t = 750θ did not reach the energy
dissipation of the excited DB over the computational cell.
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(a)

(b)

(c)

Fig. 8.14 Same as in Fig. 8.13 but for the case of small initial difference in the amplitudes of the
atoms A and C. Initially only A and C atoms were excited with the amplitudes Ax = 0.45Å,
Ay = 0.47Å, with the phase difference Δφ = π

Fig. 8.15 Schematic picture
of atomic motion for the case
when two atoms, a and c,
were initially excited in the
NaCl structure crystal with
the amplitudes
Ax = Ay = 0.455Åand
phase difference Δφ = 0.9π .
Vibration amplitudes of the
atoms (a–e) as the functions
of dimensionless time are
shown in Fig. 8.16
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(a)

(b)

(c)

(b )

(c )

(d)

(e)

Fig. 8.16 a–e Vibration amplitudes for the atoms labeled (a–e) in Fig. 8.15, respectively, as the
functions of dimensionless time. Here θ is the DB oscillation period

8.5 Summary

Molecular dynamics simulations based on the empirical interatomic potentials have
demonstrated that movable DB can be excited in 2D and 3D crystal models. In
monatomic crystals with one atom in a primitive translational cell, such as 2DMorse
crystal and pure fcc and bcc metals, phonon spectra cannot have gaps. hcp metals
typically do not feature a gap in the phonon spectrum even though they have two
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atoms in a primitive cell. In such crystals only hard-type anharmonicity DB with
frequencies above the phonon gap can exist. In complex crystals possessing gaps in
the phonon spectrum in addition to the hard-type anharmonicity DB, also soft-type
anharmonicity DB with frequencies within the gaps can exist.

Hard-type anharmonicity breathers studied here for 2D Morse crystal and for 3D
models of hcp metals can move along a close-packed atomic row with the velocities
of the order of 0.1 of the sound velocity [24]. Soft-type anharmonicity breathers
in the alkali-halide crystals with NaCl structure demonstrate the ability of random
wandering over the neighboring light atoms. Polarization of atomic vibrations can
change but the energy stays in the spatially localized form for hundreds and thousands
of vibration periods.

As an open problem let us mention the analysis of the DB concentration and
lifetime in different crystals at thermal equilibrium. Preliminary study for the 2D
crystal of the A3B composition was carried out in [31].
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