
Chapter 5
A Numerical Study of Weak Lateral
Dispersion in Discrete and Continuum
Models

Luis A. Cisneros-Ake and Antonmaria A. Minzoni

Abstract We consider two dimensional discrete lattices with anharmonic
interactions and weak transversal dispersion. We study the propagation of a con-
tinuum Kadomtsev-Petviashvili I lump and its semi discrete analogue and show the
formation of caustics, due to the emission of linear waves, in both cases. We perform
numerical experiments in different settings. We show how impurities and prestress
can produce new lumps in analogy with one dimensional soliton formation in near
critical flows.

5.1 Introduction

Effects of nonlinear interactions in the dynamics of discrete lattices in one and
two space dimensions have been considered since the striking pioneering numer-
ical experiments by Fermi, Pasta and Ulam (FPU) [5] in the middle of the last
century. From the equipartition of energy and ergodicity to the existence and propa-
gation of strongly localized structures (kinks, solitons, breathers or more generically
Intrinsic Localized Modes) in anharmonic lattices has been the interest due to its
relevance in a wide range of applications ranging from material science, nonlinear
optics, physiology and biology to name a few [1, 3, 8, 9, 15, 16].

Discrete lattice systems are relevant in applications when the microscopic struc-
ture becomes relevant, nevertheless, their appropriate long wave limit reproduces
the macroscopic phenomenology of the continuum medium of the models. There
are however some aspects, like non Galilean invariance and the birth of the Peierls-
Nabarro (PN) potential, that are inherent to the discrete systems that can only be
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studied in this limit. These kind of issues adds difficulties in the study of the dynam-
ics of discrete lattices. The increasing of the space dimensions is another difficulty.
For instance, it is well known in the literature that the one dimensional nonlinear
Schrödinger (NLS) soliton ceases to exist when the space dimensions is increased
[10], there are actually some time estimates, in terms of the space dimensions, for
the blow up of localized structures.

We are interested in this chapter in the propagation of coherent structures(localized
in space) in two dimensional lattices. This problem has been considered numerically
in [2] on the electron transport and one of the questions is to examine the possibility
of propagation of mechanical compressions, due to the presence of an electron for
instance, in directions different to the crystallographic axes. Since localized exci-
tations may percolate, depending on the mechanical excitation, in two dimensional
crystal lattices in finite times leaving finite-length traces, the key point is then to
find the mechanisms that could explain the define paths left by a moving localized
structure and its persistence along the crystal. These issues are also related to the
energy transport in solids and the tracks in mica, which is the main subject of this
book. Our findings in this work show that a possible mechanism is to consider two
dimensional semi discrete lattices which weakly laterally disperse.

Another set of problems is related to the effect of two dimensional impurities
on the propagation of coherent structures. Finally the problem of the formation of
coherent structures due to impurities in a prestressed lattice, which arises as the
two dimensional analogue of soliton formation in supercritical flows past obstacles
considered by Smyth [17], is also of interest. We study these type of questions in this
work.

To begin the study of these questions we will introduce a Kadomtsev-Petviashvili
(KP) type equationwhichwill describeweak lateral dispersion in a lattice. This equa-
tion will be continuous in the direction of propagation and discrete in the orthogonal
direction. We will assume an anisotropic lattice which in the linear regime oscillates
around a minimum of the potential energy when the displacements of the particles
are along the direction of propagation. On the other hand we will assume a bistable
potential in the perpendicular direction. This gives two possible equilibria for the
motion and an unstable equilibrium is between them.

Denote by un,m(t) = u(n, m, t) the compressional displacement around the equi-
librium in the n direction. We will have two contributions for the potential energy.
The first one is U (un+1,m − un,m) where U (r) has a minimum at r = 0. Along
the discrete vertical direction the strain is given by u(n, m + 1, t) − u(n, m, t) and
we assume the energy in that direction, V (r), to be a bistable potential with a max-
imum at r = 0. This gives for the total energy U (u(n + 1, m, t) − u(n, m, t)) +
V (u(n, m + 1, t) − u(n, m, t)) which upon linearization takes the form: α2

2 (u(n +
1, m, t) − u(n, m, t))2 − β2

2 (u(n, m + 1, t) − u(n, m, t))2. Thus the corresponding
equation of motion takes the form
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ün,m(t) = α2 (
un+1,m − 2un,m + un−1,m

) − β2 (
un,m+1 − 2un,m + un,m−1

)
.

(5.1)

The linear dispersion relation for the mode un,m(t) = ei(kn+lm−ωt) provides

ω2 = 4α2 sin2
k

2
− 4β2 sin2

l

2
, (5.2)

where the sin l term takes into account the discrete nature of the lattice in the vertical
direction. Clearly this dispersion relation is unstable for k << l. However, it is a
standard approach to look for one directional waves with l << k which have weak
lateral dispersion. This expansion is valid for time scales shorter than the scale of the
instability for a given choice of initial values. It provides a preliminary assessment
of the weak lateral dispersion. This gives the KP I type equation as follows

ω = ±2

√

α2 sin2
k

2
− β2 sin2

l

2
. (5.3)

Assume k << 1, but keep l << k, to take into account the discrete effect in the
m direction. Expanding to fourth order in k and assuming sin2 l

2 = O(k4), we obtain

ω = αk − α

24
k3 − 2β2

αk
sin2

l

2
(5.4)

which is the linear dispersion relation for the linear KP I equation in the form, often
moving with linear phase velocity α,

uxt +αuxx + α

24
uxxxx −β2

2α
(u(x, m + 1) − 2u(x, m) + u(x, m − 1)) = 0. (5.5)

When nonlinearities in U (ux ) are considered, it is well established that the con-
sistent nonlinear correction is of the KdV type. This gives a generic term γ (ux )u
which often differentiation gives the semi discrete KP I equation in the form:

uxt + uxxxx + 6(ux u)x − 3 (u(x, m + 1) − 2u(x, m) + u(x, m − 1)) = 0, (5.6)

where we transformed this equation into standard form by considering an appropriate

coordinate system and by taking β2

2α = 3, α
24 = 1 and γ = 6. Equation (5.6) describes

the effect of weak discrete lateral dispersion in a localized disturbance in a lattice.
The lattice is unstable to lateral disturbances but in the KP limit, for the continuum
case, the instability is satisfied by the nonlinear effect forming a stable lump solution.
Wewould like to study the effect of discrete dispersion in this context. The long wave
limit in the y = m direction of (5.6) gives the KP I equation:

uxt + uxxxx + 6(ux u)x − 3uyy = 0. (5.7)
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We recall [17] that the lump solution for the KP I equation (5.7) is given in the
form:

u(x, y, t) = 2
∂2

∂x2
log

[
(x ′ + ay′)2 + b2y′2 + 1

b2

]
= 4

−(x ′ + ay′)2 + b2y′2 + 1
b2

[
(x ′ + ay′)2 + b2y′2 + 1

b2

]2

(5.8)

where x ′ = x −3(a2 +b2)t and y′ = y +6at for free real parameters a and b. Thus,

the velocity of the lump is v =
√

v2x + v2y where vx = 3(a2 + b2) and vy = −6a.

We end presenting the organization of this chapter. In the next section we describe
the numerical method used in the numerical experiments. We then consider wave
propagation in the semi discrete and continuum KP I to show, using ray’s theory,
the caustic’s formation due to the emission of linear radiation of a traveling lump
profile. The third section is devoted to the numerical study of discrete structures
moving along the transverse direction and the dynamics of lump interaction. We also
consider in this section the lump interaction with impurities or obstacles in both the
semi discrete and continuum KP I. In the fourth section we study the elastic lattice
analogue of the problem of critical flow past obstacles.We provide a very preliminary
interpretation based on the fundamental work of [17]. We present our conclusions in
the last section.

5.2 Numerical Approximation to the
Kadomtsev-Petviashvili I Equation

Wefollow reference [4] to propose a second order central finite difference approxima-
tion in space and an implicit Crank-Nicolson to also get a second order approximation
in time. To this end, we define the finite difference operators [11]:

D+,x f j = 1

Δx
( f j+1 − f j ) = f ′(x j ) + O(Δx),

D0,x f j = 1

2Δx
( f j+1 − f j−1) = f ′(x j ) + O(Δx2),

D2
x f j = 1

Δx2
( f j−1 − 2 f j + f j+1) = f ′′(x j ) + O(Δx2),

D4
x f j = 1

Δx4
( f j+2 − 4 f j+1 + 6 f j − 4 f j−1 + f j−2) = f ′′′′(x j ) + O(Δx2),

where f j = f (x j ) and x j = jΔx . We thus get the finite difference scheme for (5.7)
in the form:

D0,x D+,t ul
n,m + D2

x ((3u2)l
n,m + (3u2)l+1

n,m)+ D4
x (ul

n,m + ul+1
n,m)−3D2

y(ul
n,m + ul+1

n,m) = 0,
(5.9)
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where ul
n,m = u(xn, ym, tl) = v(nΔx, mΔy, lΔt). Equation (5.9) provides an

implicit non linear algebraic system of equations for the unknowns ul+1
n,m provided

the previous values ul
n,m are known for l = 0, 1, ... where u0

n,m corresponds
to the initial condition at t = 0. One should solve the non linear system (5.9)
using, for example, a Newton method every time step. One can, however, linearize
(5.9) using Taylor’s expansions in Δt by keeping the second order approxima-
tion of the overall scheme. Doing this, we may approximate the nonlinear part
(3u2)l

n,m + (3u2)l+1
n,m = 6ul+1

n,mul
n,m + O(Δt2). We now rearrange (5.9) as a linear

system for the unknowns ul+1
n,m :

Alul+1 = dl (5.10)

where the mth entries of the previous vector identity are given by:

al
n,mul+1

n,m−1 + bl
n,mul+1

n−2,m + cl
n,mul+1

n−1,m + gl
n,mul+1

n,m

+el
n,mul+1

n+1,m + bl
l,mul+1

n+2,m + al
l,mul+1

n,m+1 = dl
n,m

with coefficients given by:

al
n,m = −3q, bl

n,m = r, cl
n,m = 6pul

n−1,m − 4r − 1,

gl
n,m = 6r − 12pul

n,m + 6q, el
n,m = 6pul

n+1,m − 4r + 1,

dl
n,m = ul

n+1,m − ul
n−1,m − r(ul

n+2,m − 4ul
n+1,m + 6ul

n,m − 4ul
n−1,m + ul

n−2,m)

+ 3q(ul
n,m+1 − 2ul

n,m + ul
n,m−1),

and p = Δt/Δx , q = ΔtΔx/Δy2, r = Δt/Δx3. The authors of [4] have checked
that the linearized implicit finite difference scheme for the KP I equation is uncon-
ditionally linearly stable. In practice, however, we must take sufficiently small steps
Δx , Δy and Δt to handle nonlinear stability. In [4] it is also shown that the numer-
ical dispersion, induced by central finite differences in the spatial derivatives, is
second order in space and time therefore the numerical dispersion does not exceed
the physical dispersion. Finally, for the numerical implementation of the finite dif-
ference method we consider numerical boundary conditions of the Neumann type:
ul

−N−2,m = ul
−N−1,m = ul

−N ,m , ul
N ,m = ul

N+1,m = ul
N+2,m for m = −M, ..., M

and ul
n,−M−1 = un,−M , ul

n,M+1 = ul
n,M for n = −N , ..., N .

5.2.1 Continuous and Discrete Lump Propagation

In Fig. 5.1a we reproduce the evolution of the continuum lump like initial condi-
tion (5.8), which is not exactly satisfied in the parameters a and b, to show the
readjustment to an exact lump by shedding backwards radiation, and confining it
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Fig. 5.1 Linear dispersed radiation in a continuum KP I for Δx = Δy = 0.2 and b semi discrete
KP I for Δx = 0.2, Δy = 1 both at t = 0.5 and wave parameters a = 0, b = 1, x0 = y0 = 0

inside a parabolic caustic continuum lump like initial conditions in [14]. It is to be
noted that the linear radiation is shed backwards since the group velocity is negative.

In Fig. 5.1b we display the discrete analogue of the continuum solution shown
in previous Fig. 5.1a. We consider a quite wide lump oriented in the continuous x
direction as an initial condition for the semi discrete system (5.6). We observe that
as time evolve the lump narrows down substantially to half the original width due
to the transverse discreteness. This thinning is accompanied by a very narrow tail of
radiation moving backwards and in the forward direction the radiation is confined
by a parabolic caustic similar to the continuum one (see [14]).

We explain the shrinking of the soliton as induced by the confinement of the
radiation and the PN potential induced by the lattice. We now explain using the
linear theory the mechanism for the confinement of the radiation which is quite
different in the two cases.

5.2.1.1 Caustic Formation and Radiation Confinement

The linear radiation emitted by the KP I (5.7) for non exact lump solutions traveling
along the x-axis, in the continuum limit, satisfies the linearised KP equation [14]:

∂2u

∂x∂t
+ ∂4u

∂x4
− 3

∂2u

∂y2
= g(x − ξ(t), y, t), (5.11)

where g = −(u0t + 6u0u0x + u0xxx )x + 3u0yy is the forcing due to the approximate
lump u0 = u0(x − ξ(t), y, t). For the caustic formation, the form of g is not needed
explicitly since the solution of the forced equation (5.11) is as a superposition of
linear modes in the form:

u(x, y, t) = 1

4π2

∞∫

−∞

∞∫

−∞
G(k, l)ei[k(x−ξ(t))+ly−ω(k,l)t]dkdl, (5.12)
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where the dispersion relation ω(k, l) for the linear equation (5.11) is ω(k, l) =
−k3 −3 l2

k . We now consider the phaseψ(k, l) = k(x − ξ(t))+ ly −ω(k, l)t and we
make use of the stationary phase approximation to find the main contribution of the
integral (5.12). The stationary values of the phaseψ(k, l) are attained atψk(k, l) = 0
and ψl(k, l) = 0. We thus find

0 = ψk(k, l) = x − ξ(t) − ωk t = x − ξ(t) +
(
3k2 − 3

l2

k2

)
t,

0 = ψl(k, l) = y − ωl t = y + 6
l

k
t.

We find from last equation l
k = − y

6t and substitute back into the first of the last
equations to obtain the family of planar curves:

F(x − ξ(t), y, k) = x − ξ(t) +
(
3k2 − y2

12t2

)
t = 0, (5.13)

as the equation which gives the family of real rays emanating from the source at
x = ξ(t). The radiation is then confined by the envelope of the rays given by Fk = 0.
This gives k = 0 and the parabolic caustic in the form:

x = ξ(t) + y2

12t
. (5.14)

This expression, since is singular at the initial time t = 0, shows that a parabolic
caustic is formed instantly at the front of the lump.

For the semi discrete KP I equation (5.6), the situation is quite different. The linear
radiation for the KP I equation continuum in the x-axis and discrete in the y = m
direction satisfies the linear equation

∂2um

∂x∂t
+ ∂4um

∂x4
− 3

h2 (um−1 − 2um + um+1) = g(x − ξ(t), m, t), (5.15)

for um = um(x, t) and lattice spacing h in the y-axis. A similar argument as before
shows that the solution to the linearized semi-discrete equation (5.15) is given by:

um(x, t) = 1

4π2

∞∑

m=−∞

∞∫

−∞
G(k, l)ei[k(x−ξ(t))+lmh−ω(k,l)t]dk, (5.16)

where the dispersion relation ω(k, l) = −k3 − 12
kh2

sin2
( lh
2

)
. The phase now is

ψ(k, l) = k(x − ξ(t)) + lm − ω(k, l)t and the stationary phase theorem gives:
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0 = ψk(k, l) = x − ξ(t) +
(
3k2 − 12

k2h2 sin
2
(

lh

2

))
t

= x − ξ(t) +
(
3k2 − 6

k2h2 (1 − cos (lh))

)
t,

0 = ψl(k, l) = m + 12

kh
sin

(
lh

2

)
cos

(
lh

2

)
t = m + 6

kh
sin (lh) t.

Last equation provides sin(lh) = −mkh
6t which in turn simplifies first of last

equations in the form:

0 = F(x − ξ(t), m, k) = ψk(k, l) = x − ξ(t) +
⎛

⎝3k2 − 6

k2h2

⎛

⎝1 −
√

1 − m2k2h2

36t2

⎞

⎠

⎞

⎠ t.

(5.17)

Again this gives a family of rays whose envelope is the caustic. Now the envelope
for the caustic is found solving simultaneously last equation and

0 = Fk(x − ξ(t), m, k) = k4 + 2 + −2 + m2k2h2

36t2√
1 − m2k2h2

36t2

. (5.18)

Now this equation has two branches of solutions one for k = 0 and the second
one for k = k(m, t). This when substituted into (5.17) gives the actual caustic. This
is plotted in Fig. 5.2. This shows that unlike the continuum problem the radiation
is confined to the region A defined by the caustics. This explains the narrow tail of
radiation observed in Fig. 5.1b (see level curves at the bottom of this figure).

Fig. 5.2 Caustics in the
continuum (5.14)
(dot-dashed curve) and in the
semi discrete (5.17)–(5.18)
(continuous curve) for h = 1
both at ξ = 0 and t = 1

−120 −100 −80 −60 −40 −20 0 20 40
−20

−15

−10

−5

0

5

10

15

20

x

y,
  m A

A

A



5 A Numerical Study of Weak Lateral Dispersion … 137

5.3 Lateral Motion and Interaction of Pulses with Obstacles

We begin by considering an oblique lump propagating upwards in the m direction.
Figure5.3 shows the numerical evolution of an initial wide lump. We may see how
the PNmakes a thin lump in the m direction and how the lump is being pinned by the
PN in the m direction allowing propagation in the x direction only. If one enlarges
one of Fig. 5.3b or Fig. 5.3c, one may see that the lump is centered between discrete
sites on m, say in Fig. 5.3b the lump is centered at m = 2.5 and in Fig. 5.3c the lump
is centered at m = 4.5. This is expected in lattice systems since at the middle of sites
the PN attains its minimum. So that, the general picture for propagation along the
discrete variable m is that the lump hops from site to site and eventually stops in one
of them because of the PN potential. The continuous direction x allows the lump to
move in that direction. Our last observation about this numerical evolution is on the
parabolic front. We may see how the parabolic front tries to preserve its form on the
direction of propagation, this is in concordance with the caustic’s formation as it was
discussed previously.
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Fig. 5.3 Oblique propagation: Full numerical solution of semi discrete KP I (5.6) for Δx = 0.1,
Δy = 1, Δt = 0.02 at a t = 0, b t = 2 and c t = 4. The lump profile (5.8) is used as initial
condition for a = −0.25, b = 0.7, x0 = y0 = 0
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Fig. 5.4 Direct collision: Full numerical solution of semi discrete KP I (5.6) forΔx = 0.1,Δy = 1,
Δt = 0.02 at a t = 0, b t = 2.5 and c t = 5. Lump profiles (5.8) are used as initial condition for
a = 0, b = 1, x0 = −5, y0 = 0 and a = 0, b = 0.75, x1 = 3, y1 = 0

We may also see the linear dispersed radiation moving with the appropriate group
velocity and confined by the narrow caustic at the back of the pulse. This is in
agreement with the linear result for a source moving obliquely.

To study the interaction of pulses we recall that the continuum KP I lump interac-
tion exhibits a very complicated evolution. For direct collision along the x-axis it is
known that the lumps, after the collision, form symmetric lumps on the y-axis that
later become together to reconstruct the two lumps on the x-axis [6, 13]. We now see
how this phenomenon takes places in our semi discrete KP I equation. We see from
Fig. 5.4 a similar phenomenon as the one just explained before in the continuous
case. The only difference is that the reconstruction of the lumps after the collision is
not so perfect due to the PN effect. The faster lump is reconstructed as a still much
faster lump which is thiner and higher in form. The opposite occurs to the slower
lump.

We finally consider the effect of an obstacle, which in the present context can be
considered as the compression/expansion caused by an external impurity, in both the
continuous (5.7) and semi discrete (5.6) KP I equations. The effect of the obstacle is
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Fig. 5.5 Lump with obstacle down ( f1 = −0.1 at R1: 0 ≤ x ≤ 1, −0.5 ≤ y ≤ 0.5 and f2 = 0 at
R2): Full numerical solution of KP I (5.7) for Δx = Δy = 0.2, Δt = 0.02 at a t = 0, b t = 0.74
and c t = 1.5. The lump profile (5.8) is used as initial condition for a = 0, b = 0.8 and x0 = y0 = 0

considered as a right hand side f (x, m) and f (x, y) in (5.6) and (5.7), respectively.
The obstacle f is zero almost every where except in the domains R1 and R2 where
it takes values f1 and f2, respectively.

In Fig. 5.5 we show a lump colliding with an obstacle centered in the x axis.
We observe that it splits symmetrically into two lumps which then overtake the
obstacle traveling along the parabolic continuum caustic.We can think of the splitting
as analogous to the splitting produced upon the collision of two pulses previously
studied. It is to be noted that the radiation of the two pulses, as expected, merge and
travels backwards with the appropriate group velocity.

InFig. 5.6we show the effect of discreteness in the current problem.The impurities
are located in a small region of the positive x axis at m = 0. Again the initial pulse
splits but now the first two symmetric pulses that are born apparently travel almost
perpendicularly to the direction of propagation. The motion along the continuous
x axis of the daughter lumps is now much slower than the vertical motion. The
backwards moving radiation, which give place to the birth of lumps, is now confined
to a narrow region, as it was described in the second section.
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Fig. 5.6 Lump with obstacle down ( f1 = −0.1 at R1: 0 ≤ x ≤ 0.5, m = 0 and f2 = 0 at R2):
Full numerical solution of discrete KP I (5.6) for Δx = 0.1, Δy = 1, Δt = 0.02 at a t = 0, b
t = 0.74 and c t = 1.5. The lump profile (5.8) is used as initial condition for a = 0, b = 0.8 and
x0 = y0 = 0

5.4 The Effect of Impurities in a Prestressed Lattice

We consider the analogue of the problem of resonant flow impinging on an obstacle
forming undular bores as studied in [17] for the KdV equation. It must be remarked
that in [7] the two dimensional analogue of [17] in theKP II equationwas numerically
studied in this context. It was found numerically in [12] that the modulated wave
train in the continuum KP I is now deformed into a modulated train of lump solitons
produced by the main flow impinging on the obstacle which evolve along the caustic.
We study the sameproblem for the lattice,which is discrete in the transverse direction,
and the continuous KP I. To this end, we replace u by u + U and t by δt into (5.6)
and (5.7) to obtain KP I analogues of the forced KP II studied in [7],
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Fig. 5.7 Lumpwith obstacle up/down ( f1 = 0.1 at R1: 0 ≤ x ≤ 1,−0.5 ≤ y ≤ 0.5 and f2 = −0.1
at R2: 1 ≤ x ≤ 2, −0.5 ≤ y ≤ 0.5) and constant flux U = −0.5 and δ = −1: Full numerical
solution of KP I (5.20) and Δx = Δy = 0.2, Δt = 0.02 at a t = 0, b t = 1 and c t = 2. The lump
profile (5.8) is used as initial condition for a = 0, b = 0.8 and x0 = y0 = 0

δ
∂2um

∂x∂t
+ 6U

∂2um

∂x2
+ 3

∂2u2
m

∂x2
+ ∂4um

∂x4
− 3 (um−1 − 2um + um+1) = f (x, m)

(5.19)
and

δuxt + 6Uuxx + 3
(

u2
)

xx
+ uxxxx − 3uyy = f (x, y) (5.20)

respectively. The constant U is the state of constant deformation while the forcing
compression f (x, m) or f (x, y) is the external localized compression (or topography
impurities) which is being imposed on the deformed lattice and it is assumed to be
placed instantaneously.

The first problem we consider is the one of evolution of a lump in a prestressed
lattice. In Fig. 5.7we consider the effect of the first obstacle in the continuumcase.We
observe the lump colliding with obstacle. As a result the lump splits. Two large lumps
are reflected with large velocity and a smaller lump is transmitted. This behavior can
be explained using the previous result of lump interaction. We have to the leading
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Fig. 5.8 Lump with obstacle up/down ( f1 = 0.1 at R1: 0 ≤ x ≤ 0.5, m = 0 and f2 = −0.1 at R2:
0.5 ≤ x ≤ 1, m = 0) and constant flux U = −0.5 and δ = −1: Full numerical solution of discrete
KP I (5.19) and Δx = 0.1, Δy = 1, Δt = 0.02 at a t = 0, b t = 1 and c t = 2. The lump profile
(5.8) is used as initial condition for a = 0, b = 0.8 and x0 = y0 = 0

edge of the lump interactions with the obstacle producing a backwards moving wave
since the obstacle acts as a source. This wave interacts with the main lump playing
the same role as a pulse which splits the pulse and each piece is swept backwards by
the flow induced by the obstacle.

In Fig. 5.8 we have the same situation for the discrete case. The behavior is dif-
ferent. Now the pulse is just bounced back leaving a narrow tail of radiation; no
splitting is observed. Now the PN potential prevents the splitting and the backward
flow produced by the object reflects the pulse which after hitting the obstacle travels
to the left. The small radiation shed of the pulse is confined in the narrow caustic
while the radiation at the back is confined by the parabolic caustic.
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Fig. 5.9 u = 0 at t = 0 with obstacle up/down ( f1 = 0.25 at R1: 0 ≤ x ≤ 1, −0.5 ≤ y ≤ 0.5
and f2 = −0.25 at R2: 1 ≤ x ≤ 2, −0.5 ≤ y ≤ 0.5) and constant flux U = 0.5 and δ = 1: Full
numerical solution of KP I (5.20) and Δx = Δy = 0.2, Δt = 0.02 at a t = 0.5, b t = 1 and c
t = 1.5

We finish this section by considering a positive flow U passing an obstacle from
zero initial conditions in u. We show in Fig. 5.9 the creation of a family of lump
solitons emerging from the obstacle, due to the constant flow U , and moving along
the caustic in the continuum. We may see that it takes some time after other pair
of symmetric lumps are generated after the previous ones. Due to our computer
limitations we are just able to see some of them, it takes longer times to see the
complete evolution. This figure reproduces the main result obtained in [12]. The
semi discrete counterpart is quite similar. Figure5.10 shows the lump generation due
to a positive flow through an obstacle in a semi discrete medium. The only difference
with respect to the continuum, as expected, is the effect of the second caustic in the
discrete KP I that influences the creation and the direction of motion in the family
of lumps.
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Fig. 5.10 u = 0 at t = 0 with obstacle up/down ( f1 = 0.25 at R1: 0 ≤ x ≤ 0.5, m = 0 and
f2 = −0.25 at R2: 0.5 ≤ x ≤ 1, m = 0) and constant flux U = 0.5 and δ = 1: Full numerical
solution of discrete KP I (5.19) and Δx = 0.1, Δy = 1, Δt = 0.02 at a t = 0.4, b t = 0.8 and c
t = 1.2

5.5 Conclusions

We have shown that the effects of weak lateral dispersion in a two dimensional lattice
can be described by a KP I type equation in the case of a bistable potential between
lattice sites in the direction transverse to the main propagation direction. We have
shown how the discreteness of the lattice narrows the width of the continuum lump.
Moreover we have explained the radiation pattern of the evolving semi discrete lump
in terms of a double caustic for the linear radiation.

Wehave also studied howdiscreteness changes the oblique propagation bypinning
the lump in the transverse direction allowing it to move parallel to the crystal axis.
The effect of obstacles was studied numerically and was shown to provide a guiding
mechanism for lumps along the caustic of the linear waves produced by the obstacle.
This shows how lumps could be guided in direction transverse to the crystallographic
axis by introducing impurities appropriately. It will be of interest to study the effect
of different impurities arranged as to guide lump solitons in different directions to
reach various lattice points and thus allow prescribed percolations.



5 A Numerical Study of Weak Lateral Dispersion … 145

It also remains to be studied the coupling of a semi discrete KP with an NLS type
equation to explore the existence of supersonic solectrons [18] in two dimensional
lattices.
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