
Chapter 3
A Supersonic Crowdion in Mica

Ultradiscrete Kinks with Energy
Between 40K Recoil and Transmission Sputtering
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Abstract In this chapter we analyze in detail the behaviour and properties of the
kinks found in an one dimensional model for the close packed rows of potassium
ions in mica muscovite. The model includes realistic potentials obtained from the
physics of the problem, ion bombardment experiments andmolecular dynamics fitted
to experiments. These kinks are supersonic and have an unique velocity and energy.
They are ultradiscrete involving the translation of an interstitial ion, which is the
reason they are called crowdions. Their energy is below the most probable source of
energy, the decay of the 40K isotope and above the energy needed to eject an atom
from the mineral, a phenomenon that has been observed experimentally.
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3.1 Introduction

Some materials are able to record the passage of charged particles and are used as
radiation detectors [7, 9] and there are minerals that show nuclear tracks that were
produced at some stage during their formation [22]. The mineral mica muscovite has
been shown to have recorded the tracks of muons, positrons and other swift particles
with positive chargewhile being deep underground [23–25]. Themost recent reviews
are the chapters Tracks in mica: 50 years later and I saw a crystal in this book
[26, 27]. The tracks are recorded within the cation layer of potassium ions which
form a two-dimensional hexagonal lattice. There are alsomany tracks along the close
packed directions of this lattice that cannot be produced by charged particles and are
attributed to some vibrational entities called quodons because of their quasi one-
dimensional structure [28, 29, 31, 33]. Their existence has also been shown directly
with an experiment in which the energy of alpha particles incident on one side of a
mica specimen was able to eject atoms at the opposite border along the cation lattice
directions [30].

Recently, a model with realistic potentials for the dynamics of potassium ions
within the cation layer of mica muscovite has been introduced [1–3]. The authors
have considered the available potentials for the interaction between atoms and ions.
For the interactionbetweenpotassium ionsK+ the electrical potentialwas not enough
because the passage of the kink brings about very short distances, for which the ions
can no longer be described as point charges. Therefore, theZiegler-Biersack-Littmark
(ZBL) potential was used [36]. This potential models the electrical repulsion by the
nuclei partially screened by the electron cloud. ZBL potentials have been widely
tested and compared to data obtained in ion bombardment experiments, being there-
fore the more realistic ones while using classical mechanics. Quantum calculations
could certainly provide more accuracy but at the cost of much more complex ana-
lytical and numerical calculations. The interaction of the potassium ions with the
lattice was described with empirical potentials used in molecular dynamics and fit-
ted with thermodynamic properties, neutron [5] and infrared spectroscopy [6] and
also validated for other silicates [11].

Arguably, the most important result in the full system with substrate was that a
supersonic kink was formed with specific energy and velocity [3]. As it involves the
movement of an interstitial atom through the lattice, it will be called a (supersonic)
crowdion in this chapter as described in [13]. The term will be reserved for this
specific supersonic kink with stable and unique velocity and not for other kinks. If
the lattice was given more energy, nonlinear waves and later phonons were emitted
until the specific velocity and energy was reached. This characteristic of supersonic
kinks associated with specific values of the velocity have also been described in
[32, 37], where they use the terms topological soliton and lattice soliton.

The supersonic crowdion found in the mica model is extremely discrete as basi-
cally only two ions are moving at the same time, which will be referred to as
the magic mode with sinusoidal waveform and corresponds to a phase delay very
close to q = 2π/3 [14, 15] as explained below. In the magic mode, which was



3 A Supersonic Crowdion in Mica … 71

20 40 60 80 100
0

20

40

60

80

100

Fig. 3.1 Energies of several kinks with respect to time. When more energy than the crowdion’s
one is delivered and therefore a faster kink is produced, a radiation process takes place until the
supersonic crowdion is formed. Thereafter, the crowdion is extremely stable. If the initial energy is
smaller than the crowdion’s one the kink dissipates into phonons. The scaled units are approximately
3eV for energy and 0.2ps for time. The final velocity and energy are approached asymptotically,
being Vc = 2.7387 (7.2km/s) and Ek = 9.5 (26.2eV) in scaled and physical units

introduced in the Fermi-Pasta-Ulam lattice to describe both steady-state or slowly-
moving breathers and supersonic kinks [14], only two particles are mostly involved
in the motion at the same time. The mode with mode q = π is the limit of discrete-
ness as only one particle is moving at the same time, and the kink is equivalent to
just one particle hitting the following one with a hard-sphere interaction. We have
also called these kinks ultradiscrete kinks (UDK). They are also known as kinks with
atomic scale localization and have been described theoretically [10] and observed
experimentally in a chain of repelling magnets [19]. The energy dissipated by the
crowdion and its subsequent stability can be seen in Fig. 3.1. Supersonic kinks with
a discrete set of velocities for which there is no radiation have been described in
previous publications [13, 18, 32, 37]. They appear in systems with substrate poten-
tial and nonlinear coupling and can be described as multiple solitons. In our system
due to the extreme discreteness of the kinks there is only a non-radiating velocity
corresponding to a double soliton as will be explained in Sect. 3.4. See also [3]. The
structure ofmicamuscovite can be seen in Figs. 3.2 and3.3 represents the coordinates
of the potassium ions obtained in a numerical simulation.

The energy of the crowdion is approximately Ek = 26.2 eV, which is an interest-
ing result because there are sources of energy in the lattice which can provide it as
it will be explained with more detail in Sect. 3.7. The most abundant of the unstable
potassium isotopes is 40K, which can decay by different beta processes providing
recoil energies up to 50eV. The crowdion energy is also smaller than the second
ionization energy of potassium, that is, 31.6eV[17], which thus prevents the pos-
sibility of inelastic collisions where the kinetic energy would be lost stopping the
propagation of the kink. It is also larger that the 4–8eV needed to eject an atom [16],
an effect that has been found in an experiment where the transmission of localized
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Fig. 3.2 The structure of
mica muscovite where the
potassium layer can be
observed. This point of view
has been chosen to
emphasize the K+ rows
represented by yellow balls

Fig. 3.3 Coordinates of the
supersonic crowdion or
ultradiscrete kink from
numerical simulations. It can
be observed that only two
particles are moving at the
same time. Lattice units
a = 5.19Å for coordinates
and scaled units (0.2ps) for
time. Also the double kink
structure can be seen as will
be explained later in the text
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energy along lattice directions with the subsequent ejection of an atom at the edge
of the boundary has been observed [30].

Another point of interest of the crowdion is that it is equivalent to a charged
interstitial K +, i.e. an excess of an unit of elemental charge, travelling at twice the
speed of sound. Therefore, it is very likely to be recorded, as positively charged
particles leave tracks in mica muscovite.

Are the quodons observed in mica muscovite the crowdions described in this
chapter? It is not clear, but there are several points in their favour: (a) They have
an energy that can be produced by the recoil of 40K; (b) They have enough energy
to expel an atom at the surface; (c) They have stability and seem to travel forever;
(d) They survive to room and higher temperatures; (e) They transport positive charge
that would leave a track in mica muscovite. Against them is that their existence and
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stability has not been verified in two or three dimensions. But even if their energy
spreads they are likely to leave some of the other dark marks in mica.

The sketch of this chapter is as following: Sect. 3.2 describes the system and
potentials. InSect. 3.3 themagicmode is describedwith detail and the quantities in the
fundamental ansatz are redefined in a new meaningful way. Section3.4 describes the
properties of the kinks when the substrate potential is introduced and the supersonic
crowdion appears,while Sect. 3.5 describes the properties of phonons in a systemwith
a substrate and applies them to analyze the crowdion’s phonon tail. Some interesting
results of the outcome of numerical simulations when excess energy is delivered
and when the system is previously thermalized are presented in Sect. 3.6. The recoil
energies in the different decaymodes of 40K and their consequences for the formation
of kinks or other lattice excitations are described in Sect. 3.7. The chapter ends with
a summary.

3.2 Description of the System

Mica muscovite is a layered silicate where a layer of potassium ions is sandwiched
between layers of a complex silicate structure of tetrahedra and octahedra. This cation
layer has a hexagonal structure where rows of potassium ions can be identified, as
seen in Fig. 3.2. As explained with more detail in [1–3] we consider an 1D model for
a row of K+ ions. The distance between ions is a = 5.19Å which in scaled units
will be taken as the unit of distance. The interaction between ions is described by
two terms, the first one is the electrostatic Coulomb repulsion

UC = Ke
e2

r
− Ke

e2

a
, (3.1)

where Ke is the Coulomb constant, e the elementary unit of charge and r =
dn = xn − xn−1 is the interatomic distance. The reference level of energy is
taken as the electrostatic energy at the equilibrium distance a. This value of energy
Kee2/a = 2.7746 eV is also taken as the unit of energy in scaled units, and it is
useful to remember that it is approximately uE ∼ 3 eV. The other natural units
are the potassium mass mK = 39.1amu and therefore the derived unit of time
τ = √

mK a3/Kee2 = 0.1984 ps � 0.2 ps.
This system supports propagating kinks of almost any velocity and energy [1–3]

but with very small inter-particle distances for which the ions cannot be described as
point particles. The second term for short-range repulsion is the Ziegler-Biersack-
Littmark or ZBLpotential, which corresponds to the electrostatic interaction between
nuclei partially shielded by the electron cloud which is described by an universal
function that has been tested with experiments of ion bombardment [36]. The ZBL
potential usually involves four terms which are effective at different ranges of ener-
gies. For the potassium atoms at energies up to 200keV it is enough to consider a
single term given by

UZBL(r) = α

r
exp(− r

ρ
), (3.2)
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with α = 2650.6eVÅ and ρ = 0.29529Å which correspond to α = 184.1 and
ρ = 0.0569 in scaled units, respectively. No attractive Van der Waals term is consid-
ered as it would be much weaker than the repulsive term. The system with Coulomb
and ZBL potential also support propagating kinks with many energies but with real-
istic distances between particles [3].

The interaction with the atoms in the lattice above and below the potassium layer
is obtained from an unrelaxed lattice using empirical potentials used in molecular
dynamics and fitted with thermodynamic and spectroscopic properties [5, 11] which
are also valid for other silicates. The resulting periodic potential can be written as a
Fourier series for which it is enough to retain the first five terms [3]

Us(x) =
4∑

n=0

Un cos
(
2π n

x

a

)
. (3.3)

The Fourier coefficients are given by

Un = [6.7902,−9.2920, 3.0512,−0.6387, 0.0891] eV
= [2.4473,−3.3490, 1.0997,−0.2302, 0.0321], (3.4)

with the latter values given in scaled units. As will be shown later, the linear spatial
frequency for the long wavelength limit becomes 119cm−1, that is quite close to the
experimental one of 110cm−1 obtainedwith infrared spectroscopy [6].A comparison
between the three potentials can be seen in Fig. 3.4.

Fig. 3.4 Interaction potentials U(r) in scaled units. Coulomb (—); ZBL (− −); Coulomb+ZBL
(thick – ); substrate potential (· · ·) and the sum of the Coulomb, ZBL and substrate potentials
(− · −). The scaled units are 2.77eV and the lattice unit a = 5.19Å for U and r , respectively
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3.3 The Magic Mode Revisited

In this section we describe the fundamental ansatz and the variables involved. We
will define the variables in a proper way, as they are not the same as in plane waves in
spite of their analytic similarity. We will use scaled units for which the equilibrium
interatomic distance is the unity as described above except where stated otherwise.

3.3.1 Basic Variables

Some variables used throughout the study are introduced here, together with their
definitions:

Position xn It describes the position of the particle labelled n. At
equilibrium xn = na, although the origin of n is arbitrary.

Displacement un It is the separation of the particle n from the equilibrium
position, that is un = xn − na.

Interatomic distance dn It is the distance between two particles or ions. At equi-
librium it is equal to the lattice unit a, which in lattice
units is the unity, but it will be written often explicitly for
clarity. It is related with the positions and displacements
as dn = xn − xn−1 = un − un−1 + a.

Strain vn The increase of dn with respect to the equilibrium dis-
tance, i.e. vn = dn −a. It is always negative for the kinks
described in this chapter. It is related with the displace-
ments as: vn = un − un−1.

Compression cn The decrease of dn with respect to the equilibrium dis-
tance, i.e. cn = a − dn = −vn . It is always positive
for the kinks described in this chapter. It is related to the
displacements as: cn = un−1 − un .

3.3.2 Fundamental Ansatz

As demonstrated in [14, 15] for a large set of kink solutions of Fermi-Pasta-Ulam sys-
tems, the strain vn = un − un−1 can be approximately described by the fundamental
ansatz with sinusoidal waveform:

vn = − A

2
(1 + cos(q(na − V t))) with − π ≤ q(na − V t) < π, (3.5)

where q = 2π/3a or q = 2π/3 in scaled units with a = 1 that we will usually
use. The value of vn is always negative representing a compression of the bond.
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This ansatz describes a moving profile with velocity V that it is better visualized
in the alternative form vn = −A cos2(q/2(n − V t)). At any given time its value is
zero except for a length λ = 2π/q representing the number of consecutive bonds
compressed. For a given bond n the value of vn is zero except for an interval of time
T = 2π/(qV) representing the time during which the bond is compressed. Note that
λ is not a wavelength as there is no periodic wave and T is not a period as there is
no periodicity in time.

For convenience we will often use the equivalent expression for the compressions
cn = −vn :

cn = A

2
(1 + cos(ωt − qn)) with − π ≤ ωt − qn < π, (3.6)

where ω = qV is the rate of variation of the phase φ(n, t) = ωt − qn, i.e., ω =
∂φ(n, t)/∂t but it is not the frequency as there is no periodicity. This equation will
be used in the next subsection as it is easier to interpret because cn is always positive,
the phase increases in time and the bonds compressed later have smaller phase.

From the fundamental ansatz the displacement can be constructed and it may
be instructive to compare them with other solutions. They can be seen in Fig. 3.5
for the magic mode q = 2π/3 compared with the first solutions for supersonic
crowdions [13]. The compressions cn = un−1 − un have a solitonic form and in the
same figure they are compared with the discretization of the solutions for the KdV
equation, which describes waves in a canal [12], one of the first examples of solitons.
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Fig. 3.5 Left Profiles of the displacements un for the sinusoidal magic mode (◦) and the ones
given in the original supersonic crowdions paper by Kosevich and Kovalev (1973) [13]. For a
quartic interatomic potential (Δ): un = (2/π) arctan[exp(−q(n − V t))] and for a cubic one (∇):
un = [1+ exp(2q(n − V t))]−1. Right Comparison of the compressions cn(t) = un−1 − un for the
magic mode (–) with the soliton for the continuous KdV equation [12]: cn = A sech2[q(n − V t)]
(- -). The functions have been rewritten so that the parameters have the same meaning. The magic
mode is between the two K&K solutions and it is wider than the KdV one
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As we have seen these equations are not as simple as they seem, due to the
compactness condition for being nonzero. They look like harmonic waves, but they
are not. The quantities in the equation have to be redefined but they keep the usual
relationships for harmonicwaves. In the followingwe propose operational definitions
that are convenient but are only approximately correct, which is also natural at the
fundamental ansatz is not exact either.

Velocity V The average velocity of the kink. This is the magni-
tude best defined in numerical simulations and exper-
iments.

Phase φ(n, t) Trivially, the phase of the bond n isφ(n, t) = ωt−qn.
It determines when a bond is compressed −π ≤
φ(n, t) < π and its state of compression. For exam-
ple, φ(n, t) = 0 is the phase of the state of maximum
compression of the bond cn = A, φ(n, t) = −π

means the beginning of the compression process and
φ(n, t) = π is the end. It is not periodic as a bond
is just compressed once, if for example, φn = 2π
cn = 0 and not A.

Active This term will change depending on the variable we
refer to. For the phase it corresponds to φ(n, t) ∈
[−π, π).

Phase rate ω It is the rate of variation of the phase with time orω =
∂φ(n, t)/∂t = qV . It is not the angular frequency as
the ansatz is not a periodic function.

Compression time T It is the interval of time for which a bond is com-
pressed or activated, T = 2π/ω. The interval of
activity starts with zero compression cn = 0 and fin-
ishes with the same value. In the meantime it achieves
cn = A, its maximum value. It also starts with
φ = −π and finishes with φ = π . As the numeri-
cal solutions become separate from the fundamental
ansatz the operational definition of T is the value that
brings about a better fit of vn with the fundamental
ansatz.

Phase delay q It is the phase difference between two active (com-
pressed) bonds n and n − 1, that is, q = φ(n, t) −
φ(n − 1, t). Alternatively, it can be defined as q =
2π(δt/T ) = ωδt , where δt is the time delay between
two consecutive active bonds.

Kink length λ It is the spatial extension of the kink, very much
related with the number of active bonds at a given
time λ/a or simply λ in scaled units. It is given by
λ = 2π/q and it is also the distance travelled by
the kink during a time interval T , i.e., λ = VT . The
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Fig. 3.6 Fourier spectrum of
the kinetic energy of the
supersonic crowdion
obtained from numerical
simulations. It is measured in
a frame that moves with the
crowdion in the lattice. We
use arbitrary units for the
intensity and scaled units
(5THz) for the frequency.
The value of the first
harmonic is exactly the
characteristic linear
frequency
ν̄ = Vc/a = 2.7387 and
circular frequency
ω̄ = 2πν̄ � 17.2, which
corresponds to ν̄ � 13.4THz
in physical units

0 2 4 6 8 10
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usual relationships also hold, that is, V = ω/q and
λ = 2π/q.

Amplitude A It is the maximum value of the compression cn .
Minimum distance R It is the minimum value of the interparticle distance

dn , that is, R = a − A or R = 1 − A in scaled units.
Characteristic frequency ν̄ This is the inverse of the time δt that the kink needs

to travel a distance of a lattice site, i.e. ν̄ = 1/δt =
V/a or simply ν̄ = V in scaled units. Note that ν̄ =
(λ/a)(1/T ) (and not 1/T ). As the kink is not periodic
it is the physical frequency at which the compression,
the kinetic or potential energy or other magnitudes
change while the kink travels in a lattice with period
a. An example can be seen in Fig. 3.6. Their values
for the crowdion are therefore ν̄ = 2.7387 and ω̄ =
2πν̄ � 17.2, corresponding to ν̄ � 13.4THz.

The equations for the displacements un and its derivatives will be seen in the
following subsection.

3.3.3 Phasors for the Magic Mode

The easiest way to visualize the relative phases and distances of the variables is to
consider the rotating complex vectors or phasors
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Fig. 3.7 Visualization of the evolution of the compressions cn = −vn = un−1 − un for the magic
mode q = 2π/3 (A = 2/3). Three phasors bn−1, bn, bn+1 centered at (0, A/2) and rotating anti-
clockwise are active (the bonds are compressed) at a given time t when −π ≤ φ(n, t) < π . Their
horizontal coordinates give the compression as can be seen with cn+1. The maximum compression
A is achieved for φ(n, t) = 0. At φ(n, t) = π , bn−1 will transform into bn+2 indicating that
the bond n − 1 is no longer compressed while the bond n + 1 starts its compression cycle. The
displacements are active while changing and only two are active at a given time un = cn+1 and
un−1 = cn + cn+1 = 3A/2 − cn−1. For m > n, um = 0 and for m < n − 1, um = 1. Also the
nonzero velocities are u̇n = −ω Im(bn+1) and u̇n−1 = ω Im(bn−1). Magnitudes are in lattice units
a = 5.19Å

bn = A

2
eiφ(n, t), with φ(n, t) = ωt − qn and cn = A

2
+ Re(bn), (3.7)

There is an important difference with the usual concept of phasors and it is that
the circle is not periodic. The only phase interval where the phasors exists is −π ≤
φ(n, t) < π . If φ(n, t) < −π the phasor bn has not yet come into existence and
when φ(n, t) > π , bn has disappeared. Therefore, for q = 2π/3 at a given time
there are three phasors in the unit circle as shown in Fig. 3.7. The three phasors have
their origin at (A/2, 0) and rotate anti-clockwise with angular speed ω while the
time t increases, let us denote them bn−1, bn , bn+1. In the following n has to be
understood as the index of the inner bond of the three compressed ones or the index
of the intermediate phasor, that is−π/3 ≤ φ(n, t) < π/3. If we denote as tn = n/V
the time for which φ(n, tn) = 0, then −T/6 ≤ t − tn < T/6. This is not a restriction
as there is always a bond central to the three compressed ones.

The phasor bn+1 is behind bn by an angle q and so on for a kink travelling to
increasing n number. Note that bn−1 + bn + bn+1 = 0.

Therefore, the particles first reached by the kink have larger phase φ. The angle
φ = π is the angle for change of number, that is, when bn−1 reaches that position
it disappears from the circle and ceases to be active, indicating that the bond n − 1
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is no longer compressed. At the same time, a new phasor bn+2 appears at φ = −π ,
indicating that a new bond has started to be compressed or becomes active, after a
time T it will in turn become inactive. As shown in Fig. 3.7, the horizontal distance
to the vertical straight line through the origin is the compression cn = A/2+Re(bn).

Let us now consider the displacements un , using cn = un−1 − un or un−1 =
un + cn . The particles not yet reached by the kink have zero displacement and the
first nonzero compression is cn+1. Therefore un = cn+1 and un−1 = un + cn =
cn + cn+1 = A +Re(bn + bn+1) = A +Re(−bn−1) = 3A/2− cn−1 as represented
in Fig. 3.7. To summarize

un+1 = 0 (3.8)

un = cn+1 = A

2
+ Re(bn+1) = A

2
+ A

2
cos(ωt − q)

un−1 = 3A

2
− cn−1 = A − Re(bn−1) = A − A

2
cos(ωt + q). (3.9)

These equations are valid for t = 0 chosen as the time for which the central bond n is
most compressed cn = A and remains central, −π/3 ≤ φ(n, t) < π/3 and −T/6 ≤
t < T/6. The following displacement un−2 = cn−1 + cn + cn+1 = 3A/2 = 1 and
equally um = 1 for m ≤ n − 1, that is, for the particles that have been left displaced
by a lattice unit after the passage of the kink.

The particle velocities u̇m = ∂um/∂t can also be calculated and visualized easily
using ḃm = iωbm and therefore Re(ḃm) = −ωIm(bm)

u̇n = ċn+1 = −ω Im(bn+1) = −ω
A

2
sin(ωt − q)

u̇n−1 = −ċn−1 = ω Im(bn−1) = ω
A

2
sin(ωt + q). (3.10)

For any other m, u̇m = 0.
For other integer values ofλ = 2π/q, there areλ active phasors and for non integer

values, the number of active phasors changes between the two integers below and
above λ. However, in this chapter we will concentrate on the magic mode q = 2π/3
as it is very close to the crowdion found in the simulations.

In this way it is easy to construct the evolution of the particles during the com-
pression time T as can be seen in Fig. 3.8 for six times between−T/2 to T/2. In this
time the crowdion advances a length λ = 3, that is, three lattice units, but a single
particle just travels a single lattice unit. Therefore the average velocity of a particle
〈Vp〉 is three times smaller than the crowdion velocity Vc. It is worth mentioning
that Fig. 3.8 also shows that only the two particles participating in the kink motion
are mostly involved in the motion at the same time, as the fundamental ansatz with
sinusoidal waveform, 3.5, with q = 2π/3 predicts [14, 15].



3 A Supersonic Crowdion in Mica … 81

Fig. 3.8 Magic mode q = 2π/3 for a kink. A sketch of the system is shown for a full time of
compression T at time intervals T/6. The white particle is labelled n, therefore its displacement is
un and the bond at its left is also bond n with compression cn = −vn = un−1 − un . The origin of
time has been taken as the time of maximum compression of bond n, i.e., cn = A and dn = a − A.
During the time interval in the graph the white particle n moves from site n to site n + 1. At
time t = −T/2 = −3T/6, the bond n is uncompressed (cn = 0, dn = 1) and again becomes
uncompressed at t = 3T/6 = T/2. Note that during the first two T/6 intervals, although the bond
dn is changing, there is no appreciable displacement un . Note also, that the compressed structure
at t = −3T/6 between sites n − 2, n − 1 has moved at t = 3T/6 to sites n + 1, n + 2, i.e., the
kink has moved three sites or the length of the kink λ = VcT , while the white particle n has moved
a single site. Therefore, the average velocity of a particle in a time T is 〈Vp〉 = 1/T = Vc/3. The
average velocity of a particle for the following four T/6 intervals, when it is actually moving, is
〈Vp〉′ = 1/(2T/3) = Vc/2

3.4 Kinks with Substrate Potential: The Crowdion

The introduction of a substrate potential also modifies substantially the behaviour of
the particles in the kink. The phase φ(n, t) is still very useful for the interpretation of
the movement of the particles. The crowdion, of ultradiscrete kink of fixed velocity
and energy that appears in the simulations corresponds basically to the magic mode
but with some differences. Considering the white ball in Fig. 3.8 and denoting it by
n, it basically does not move from t ∈ [−3T/6,−T/6] as the Coulomb repulsion
from particle n − 1 is weak. For times close to t = 0 when the strong ZBL potential
acts, it receives most of its momentum which it will transfer in due course to the
following particle n + 1. However, in between, it will have to overcome the barrier
of the potential, experiencing a deceleration and afterwards an acceleration while
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Fig. 3.9 Comparison of the ultradiscrete kink defined with the fundamental ansatz in 3.5 with
A = 2/3 and q = 2π/3 with the ultradiscrete kink with fixed velocity obtained in the simulations
dubbed crowdion in this chapter. Dashed lines Ansatz, continuous lines Crowdion. The displace-
ments un correspond to the upper curves while the strains vn = un − un−1 correspond to the lower
curve. The kink transforms into a double kink because the displacement between two equilibrium
sites is divided by the nonequilibrium position at the top of the potential well as can be seen in
Fig. 3.8. The magnitudes un and vn are given in lattice units a = 5.19Å. The compression time is
given by T = 1.095 or 0.22ps in physical units

going downhill. Eventually the acceleration becomes negative as it experiences the
ZBL repulsion from the particle n + 1 ahead. The ascending and descending of
the potential barrier by the particle produces a remarkable change in the particle
displacement un and strain vn = un − un+1 as shown in Fig. 3.9. The kink has been
converted into a double kink: the first kink corresponds to the translation of a particle
from the well bottom to the top of the nearest potential barrier and the second kink
to the subsequent displacement to the following well bottom.

We would also like to mention in connection with Fig. 3.9, that the fundamental
ansatz with sinusoidal waveform (3.5) for q = 2π/3, and corresponding dashed
lines in these figures gives much better agreement with the simulations of supersonic
kink motion in the Fermi-Pasta-Ulam lattice without substrate [15]. The deviation
from the ansatz prediction in Fig. 3.9 is caused only by the presence of the substrate
because the ansatz was originally proposed for the translationally-invariant Fermi-
Pasta-Ulam lattice [14, 15].

The separation from the ideal functions of the ansatz can also be seen in Fig. 3.10
where the displacements are shown at a given time. It can be observed that the devia-
tion from the magic mode are important qualitatively but not so much quantitatively.
A more significant difference appears in the velocities which are represented in [3]
but can also be seen easily in the slope of Fig. 3.9. According to (3.10) the maximum
particle velocity using the ansatz is ωA/2 = 1.91 or 5km/s, while for the observed
one for the crowdion it is 2.9 in scaled units or 7.6km/s attained when the particle
is going uphill or downhill. The minimum particle velocity is achieved at the top of
the barrier.
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(a) (b) (c)

Fig. 3.10 Three plots at different times a t � −T/6 b t � −0.5T/6 c t � 0. They show the profile
of the displacements un (upper curves) and strains vn = un − un−1 (lower curves) with respect to
the particle and bond index n. The continuous lines represent the theoretical ansatz (3.5) and the
circles represent the points corresponding to the numerical simulation of the crowdion. Time t = 0
corresponds to the maximum compression of bond n. The variables un and vn are given in lattice
units a = 5.19Å. Every T/6 the theoretical and numerical solutions becomes almost identical as
can also be seen in Fig. 3.9. Subfigure (b) represents the maximum separation from the theoretical
curves

3.5 Phonons and Crowdions

The introduction of the substrate potential brings about significant changes in the
system, not only for the kinks but also for the phonon spectrum. We first review
the properties of phonons in a system with substrate potential and then use them to
analyze the phonon tail of the crowdion.

3.5.1 Phonons in Presence of a Substrate Potential

The dynamical equations for small perturbations become

ün = −ω2
0un + c2s (un+1 + un−1 − 2 un), (3.11)

with cs = √
2. The linearization of the coupling terms comes only from the Coulomb

one. The ZBL potential does not appear because it is zero for small oscillations. The
substrate potential has been reduced to a harmonic one expanding the sinusoidal
functions. The value of ω0 is obtained using the values of the Fourier coefficients of
the substrate potential in (3.4)

ω2
0 = −

4∑

m=1

(2πm)2Um . (3.12)
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The resulting numerical value isω0 = 4.48 in scaled units, corresponding to 3.6THz
or 119cm−1. The coefficient cs = √

2 or 3.7km/s in physical units is the speed of
sound in the system without substrate.

Substitution of un = exp(i(qn − ωt)) leads to

− ω2 = −ω2
0 + c2s (e

iq + e−iq − 2). (3.13)

From this equation it is easy to obtain the phonon spectrum, the phonon velocities
and the group phonon velocities. They are given by

ω2 = ω2
0 + 4 c2s sin

2
(q

2

)
; Vphase = ω

q

Vg = dω

dq
= c2s sin q

√
ω2
0 + 4 c2s sin

2(
q
2 )

. (3.14)

The corresponding equations for the system without substrate are identical with
ω0 = 0. In this case cs is both the phase and group velocity in the long-wavelength
limit (q → 0).

For the system with substrate ω0 is the lowest phonon frequency, corresponding
to the long wavelength limit (q → 0). This can be seen in Fig. 3.11 where the disper-
sion relation, the phase and the group velocities are shown. Note the main changes
produced by the introduction of the substrate potential: (a) the phonon spectrum
becomes optical, i.e., bounded from below, (b) the phase velocity diverges when
q → 0, and (c) the group velocity becomes zero both at q = 0 and q = π and has a
maximum close to q = π/2 but with a much lower velocity.

(a) (b) (c)

Fig. 3.11 a Dispersion relation, b phase velocity and c group velocity. The three plots are for
longitudinal phonons in a potassium row for the system without substrate (dashed line) and with
substrate (continuous line). Scaled units are approximately 5THz for frequency and 2.6km/s for
velocities. White circles are measurements from different numerical simulations. The black circles
are the theoretical values for the phonon tail obtained by making the phonon phase velocity equal
to the crowdion velocity
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The value of the wavevector q corresponding to the maximum group velocity can
be calculated as it corresponds to dVg/dq = 0. Equivalently it corresponds to the
maximum of the function

f (q) = V 2
g

c4
= sin2(q)

ω2
0 + 2c2s (1 − cos(q))

, (3.15)

where we have used that 2 sin2(q/2) = 1 − cos(q). Then

d f (q)

dq
= 2 sin(q) cos(q)[ω2

0 + 2c2s − 2c2s cos(q)] − sin2(q)[2c2s sin(q)]
ω2
0 + 2c2s − 2c2s cos(q)

. (3.16)

Making the numerator equal to zero, we obtain:

(ω2
0 + 2c2s ) cos(q) − 2c2s cos

2(q) − c2s sin
2(q) = 0, (3.17)

which leads to a second order equation in cos(q)

c2s cos
2(q) − (ω2

0 + 2c2s ) cos(q) + c2s = 0, (3.18)

with solution

cos(q) =
ω2
0 + 2c2s ±

√
ω4
0 + 4ω2

0c2s

2c2s
. (3.19)

For the values in the present system, only the minus sign gives a real value of
q = 1.4870 rad corresponding to a wavelength λ = 4.2253, and maximum group
velocity Vg,M = 0.4091.

3.5.2 Crowdion Phonon Tail

When the kink is produced, its amplitude diminishes towards the crowdion’s one
in an asymptotic way. Therefore after some time, the nonlinear waves are no longer
produced but there is always a linear vibration left behind althoughwith decreasingly
smaller amplitude. This iswhy the crowdion continues propagating. The tail is a plane
wave and as such does not transport energy, but theoretically could be measured to
detect crowdion properties. We will call it the phonon tail. Note that the velocity to
describe these plane waves is the phase velocity and which in this case is unbounded.
The crowdion is moving at speed Vc and leaves at each site some small perturbation
exactly at the same estate at times separated by δt = 1/V c. In other words, the phase
velocity of the phonon tail V is the same as the velocity of the crowdion Vc.

Vphase = Vc = 2.7387 (7.2 km/s) (Phonon tail). (3.20)
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Fig. 3.12 Left Plot of cn + n where the double soliton structure, period and other crowdion para-
meters can be appreciated. Right Phonon tail amplified 50 times. It is a perfect plane wave with
parameters with the same velocity of the crowdion V = Vc and similar parameters although not
identical T � Tc, q � qc, λ � λc. Note that this parameters are not well defined for the crowdion
and only approximate

The wave number of the tail can be obtained from the equation Vphase = Vc =
w/q = [ω2

0 + 4 sin2(q/2)]1/2/q, which can be solved numerically or graphically
fromFig. 3.11b. The result isq = 1.8290 = 0.5822π and thereforeω = qVc = 5.00,
T = 2π/ω = 1.2544 and λ = 2π/q = 3.44. So the parameters are very close to the
ωc, Tc and λc of the crowdion. In some sense, they can be considered as the actual
parameters of the crowdion as they can be measured. Note that these parameters, as
λc are not well defined as they depend on the algorithm used to fit the numerical
solutions. Figure3.12 represents a picture of cn and a view of the phonon tail for un ,
similar to cn where the perfect plane wave and its parameters can be appreciated.

3.6 Some Numerical Simulations with Ultradiscrete
Kinks or Crowdions

In this section we present the results of different simulations to show the capacity
of the crowdions to survive a perturbed environment when larger energy is initially
delivered and, second, the behaviour of the crowdions with temperature.

3.6.1 Excess Energy

We present some examples of simulations when the lattice is given more energy than
the 26.2eV needed to produce the supersonic crowdion. The energies range from
130 to 520eV. They are represented in Fig. 3.13. In (a) a single crowdion is formed
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Fig. 3.13 Color Particle energy plots of several examples of crowdion formation in arbitrary units
of � 3eV. Initial energy increases form a to f. Many features can be observed, among them the
specific velocity of the crowdion Vc, the formation of nonlinear waves and phonons, the formation
of two crowdions and the survival of the crowdion in the severely perturbed media for hundreds of
sites. a E0 = 130.1eV, b E0 = 159.3eV, c E0 = 229eV, d E0 = 268.1eV, e E0 = 453.5eV, f
E0 = 515.7eV
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after nonlinear waves are emitted. In (b) two crowdions are formed leaving behind an
stationary linear wave. Note how the second crowdion survives to the tail of the first
and the common velocity Vc of both. In (c) the excessive energy destroys the second
crowdion which transforms into a highly localized nonlinear stationary wave. In (d)
the second crowdion survives again, while in (e) it is again destroyed. Extensive
phonon radiation and wandering kinks can be seen in the latter figure. In (f) a second
crowdion survives for 150 sites in a highly perturbed media but it is finally pinned
down.

3.6.2 Thermalized Medium

An interesting question is whether the crowdion can travel trough a previously ther-
malizedmedium. This is not only a question of general interest but particulary impor-
tant for mica muscovite. As it has been calculated in the chapter Tracks in mica:
50years later in this book [27], the recording process of tracks happens a few kilo-
meters underground under large pressure and temperatures of 700–1000K. Although
much more work is necessary, the answer is positive. For comparison Fig. 3.14a, b
shows two simulations at 300 and 1000K in the system without substrate potential
where the kink survives over hundreds of lattice sites. It is not really surprising as,
if we compare the energy of the crowdion 26.2eV with the mean thermal energy of
a particle kBT, the crowdion energy is 1000 and 300 times larger at 300 and 1000K,
respectively.

In the case of including the substrate potential, as shown in Fig. 3.14c, d for
300 and 1000K respectively, the crowdion can also travel for hundreds of sites of
the previously thermalized media. As it was studied in [3], the crowdion always
has finite kinetic energy, but the final total energy of the kink, Ek , is always of
the order of magnitude of the Peierls-Nabarro (PN) barrier. The equivalent kinetic
energy equivalent for the thermalized media is 0.005 (0.013eV) at 300K and 0.016
(0.043eV) at 1000K in normalized and physical units. These values are far below
the energy difference between the PN barrier and the kink energy. However, in some
simulations, for temperatures of 1000K the thermalization is not completely achieved
due to appearance of nonlinear waves instead of phonons. Therefore, localized peaks
of the background vibrations can interfere with the crowdion where, in some cases,
it can be trapped leading to a highly localized nonlinear stationary perturbation.
Figure3.14d shows and example of this situation, where the crowdion is eventually
trapped forming an interstitial defect.

Thermal effects discussed in this section lead to different survival path lengths
of the crowdions. If the hypothesis of crowdions propagating in mica muscovite is
correct, they might be related with some of the tracks observed in the mineral. Other
feature of the presented simulations worth remarking on is that the high equivalent
temperature of the nonlinear tail radiation of the crowdion is likely to favour a change
of structure and the formation of tracks.
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Fig. 3.14 Color Particle energy plots of two crowdions travelling in a previously thermalized
medium at a, c 300K and b, d 1000K, top without and bottom with substrate potential. Color bars
are in 10 log10(E) units



90 J.F.R. Archilla et al.

3.7 Recoil Energy of 40K

If the hypothesis of quodons being vibrational entities of ions of potassium is correct,
the most likely source of energy is the recoil from 40K because (a) the energy will
be given directly to the potassium ion K+, (b) the relative abundance and decay
frequency of 40K, and (c) because of the energies involved as explained below.

The twomost abundant isotopes of potassium are the stable 39K and 41K isotopes,
with 93.7 and 6.7% abundance respectively. The next most abundant isotope is 40K
with a very long half life of 1.248 × 109 years and abundance of 0.0117%. This
isotope is the most important source of radioactivity for humans.

As shown in Fig. 3.15 and Table3.2, the nucleus 40K experiences decay through
different branches with two daughter nuclei 40Ca and 40Ar [4, 20]. The main para-
meters of the decay are I , the intensity of a given branch in % and Q, which is the
difference between the rest masses of the parent and daughter atoms. The difference
of mass between atoms is better tabulated than between nuclei. As the atoms are
neutral the mass difference between nuclei has to take into account the difference in
the number of electrons in the neutral atoms. The available energy will depend on
the rest mass of the parent and daughter nuclei and other particles. It will be obtained
below for each type of decay.

The decay branches, β− and β+ involve the emission of an electron or a positron
and a neutrino. The electron or positron velocities are such that they have to be treated
relativistically, while the recoil velocity of the much heavier nuclei can be described
classically. We will suppose an electron to simplify the language, but a positron can

Fig. 3.15 Sketch showing the different decays and branching of 40K. Reproduced with permission
from [21]. Copyright Creative Commons BY 3.0
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Table 3.1 Table of ionization energies (eV) of daughter atoms from 40K decay [17]

Element I II III IV V

Ar 15.76 27.63 40.74 59.81 75.02

K 4.34 31.63 45.81 60.91 82.66

Ca 6.11 11.87 50.91 67.27 84.50

be equally described in what follows. The maximum recoil energy of the nucleus
is obtained when the neutrino gets no kinetic energy. The recoil energy is much
smaller than the electron energy, so it can be neglected in the energy calculations
while due to its large mass, it is essential for the momenta balance. The electron
maximum energy is Ee = me c2 + E , being E the available energy in the decay, and
E2

e = m2
e c4 + p2e c2, where pe is the momentum of the electron. Considering the

parent nucleus at rest, the momentum of the nucleus is identical to the momentum
of the electron pN = pe = (1/c)(E2

e − m2
ec4)1/2 and the maximum nucleus recoil

energy is given by EN = p2N /(2m N ). The decays always involve the emission of a
neutrino and may include the emission of a photon, either γ from the nucleus of X
from the electron shell, although the latter have much smaller energy and momentum
and will be of no importance for K+ recoil. The neutrino can be considered as
a massless particle as its rest mass it known to be below 2.2eV/c2. Therefore for
photons or neutrinos their energy is given by Eν,γ,X = pc. If only a photon or a
neutrino is emitted the recoil momentum pN is equal to the momentum of the photon
or neutrino and trivially EN = PN

2/(2m N ). If there are only two daughter particles
the recoil energy EN has a single value.

Other data of interest are the ionization energies of K and of the daughter nuclei.
If the recoil energy is larger than the ionization energy of the atoms that interact,
it can be used to ionize an atom or ion and the energy cannot be transferred to the
neighbours. The ionization energies of the daughter atoms from 40K decay can be
seen in Table3.1. A examination of the possible ionization processes is done in the
following subsection.

As the lattice is formed by K+, it is probable that the second ionization of K,
31.6eV, is an upper limit for crowdions or single row kink energies.

3.7.1 40K Decay Branches

Here, we analyze in detail the different decay branches. A summary if presented in
Table3.2 and a sketch in Fig. 3.15.

The 40K decay branch that leads to 40Ca is:

β−: Decay with emission of an electron.
With Iβ− = 89.25% andmass difference between atoms Q = 1311.07keV [20].
As the Ca atom has an extra electron, discarding the electron binding energy
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Table 3.2 Table of decays for 40K

Decay β− EC1 EC1+CEa EC2b β+

Intensity (%) 89.25 10.55 0.001 0.2 0.001

T (keV) 1311.07 1460 1460 1504.69 483.7

Emitted
charged
particle

e− e− e− e+

Recoil from ν+e− γ e− ν ν+e+

Max Recoil
(eV)

42 29.2M 49.7M 31.1M 10

Daugther ion
(A = 40)

Ca++ Ar+ Ar++ Ar++ Ar

Max V (Km/s) 14.4 12M 15.7M 12.2M 7

Ionization of
daughter (eV)

50.6 27.7 40.8 40.8 15.8

Δq (e) +1 0 +1 +1 −1
aSubset of EC1 when the gamma is delivered to a shell electron; M Monocromatic
bDirect decay to Ar ground state, recoil from neutrino emission; 3KeV Auger e−
EC Electron capture; CE Conversion electron; T Energy available excluding rest masses
Ionization energy of K+ 31.6 eV

of a few keV, the mass difference between nuclei is Q + mec2 and the energy
available when emitting an electron is E � Q + mec2 − mec2 � Q which
will be shared between the electron and the antineutrino emitted. Therefore, the
maximum kinetic energy of the electron or endpoint is almost equal to Q. The
daughter nuclei of 40Ca have a continuous distribution of energy with a maximum
of Ek = 42eV at the endpoint corresponding to a velocity V = 14.4km/s.

The proton number increases by one, but the number of electrons does not
change, therefore the daughter ion would be Ca++ with 50.6eV third ionization
energy. This is a likely origin of quodons for the decays with recoil energy smaller
than the 31.6eVK second ionization energy. The recoils with larger energy will
be able to deliver up to 10.4eV after the first collision that could produce breathers
but not crowdions.

The following processes have 40Ar as daughter nuclei being the difference
between the atomic masses Q = 1504.69keV. As the Ar atom has an electron
less than K, discarding the electron binding energies the mass difference between
nuclei is � Q − mec2 and the energy available depends on the specific decay.

EC1: Electron capture with decay to 40Ar excited state and γ radiation.
With Iε = 10.55%, an electron from the shell is captured, therefore the available
energy is E � Q − mec2 + mec2 � Q. In this decay a monoenergetic neutrino
of 44keV is emitted with negligible recoil (26meV) and the daughter nucleus is
in an excited state. Thereafter, the excited nucleus decays to the ground state with
the emission of a 1460keV γ ray [20]. The corresponding K+ recoil energy of
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40Ar is Ek � 29.2eV with velocity V = 12.0km/s. As this is a two body process
Ek has only slight variations due to interactions with the shell electrons.
As no charge is emitted from the ionK+, the daughter will also be amonovalent

ion of Ar+, with 27.7eV second ionization energy. So there is some probability
that the first Ar+ collision with K+ will further ionize Ar+. The remaining energy
1.3eV will not be enough to produce a kink but may produce a breather.

EC1+CE:Electron capture with decay to 40Ar excited state and conversion electron.
This is actually a subset of the previous decay, but with a probability I = 0.001 per
100 decays, the 1460keV γ ray emitted can interact with the shell and deliver the
energy to an electron, called a conversion electron. Save for a few keV of binding
energy the γ energy is converted into kinetic energy of the electron, with a recoil
for the ion of 49.7eV and 15.6km/s. This is the largest energy of all the recoils.
As an electron has been emitted from the shell, the daughter ion will be Ar++
with 40.8eV third ionization energy. This ionization and the 31.6eV second one
of K+ are likely to occur. The remaining energies of 8.8 or 18eV cannot produce
a crowdion but will be able to produce breathers.

EC2: Electron capture with direct decay to 40Ar ground state.
With probability I = 0.2%, the energy available as in the decay above is E �
Q = 1504.69. There is a direct decay to the ground state of 40Ar after the capture
of a shell electron and the emission of a monoenergetic neutrino that takes most of
the energy available E � 1504.69keV minus the electron binding energy which
is only a few keV[21, 34]. The recoil energy is 31.1eV. The shell emits a 3keV
Auger electron when another electron of the shell occupies the vacancy left by
the captured electron, however, this has a negligible recoil.
The daughter nucleus has lost a positive unit charge but also the shell has lost

two electrons, the captured one plus the Auger electron. Therefore the daughter
ion will be Ar++, which has too little energy for further ionization of Ar++ or K+
which need 40.8 and 31.6eV, respectively. Therefore, it would be a likely source
of crowdions but difficult to distinguish from the β− recoil.

β+: decay with positron emission.
With very low probability Iβ+ = 0.001%, the available energy is the mass
difference between nuclei minus the mass energy of the positron emitted, that is,
E � Q − mec2 − mec2 = Q − 2mec2 = 483.7 keV. The energy E is shared
between a neutrino, the emitted positron and the daughter nucleus. Therefore,
the positrons have a continuum of energies with a maximum one or endpoint
483.7keV [4, 8, 20], which leads to the maximum recoil energy Ek � 10eV and
velocity of 7km/s.
As the atomic number is decreased by one unit to Z − 1, the initial ion K+

has lost a positive unit charge, but there has been no change in the number of
electrons, thus the daughter ion will be a neutral Ar interacting with short range
forces with the neighbouring K+. The first ionization energy of Ar is 15.8eV,
so, actually, the Ar atom has less of the required energy for ionizing itself or for
further ionization of K+ and will be able to keep the 10eV energy. This seems too
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little to produce a kink but may produce a breather. Due to their positive charge,
positrons leave tracks in mica muscovite [25, 35].

A study with the correlation of positron tracks, thickness distribution of quodon
tracks and other characteristics could make it possible to confirm the nature and
characteristics of quodons. See chapter Tracks in mica, 50years later in this book
for more details [27].

3.7.2 Secondary Processes

Electron–positron pair production:
This is a secondary process after the γ ray emission of 1460.82keV considered
above [8]. It needs the interaction of the γ ray with a nucleus, and the produced
positron and electron can share the energy in any proportion. The maximum
recoil energy corresponds to a single particle taking almost all the energy except
for the small amount taken by the nucleus, which is necessary due to momentum
conservation. The available kinetic energy is E = Eγ − 2me c2 = 437.4keV
and the maximum recoil energy is Ek = 8.8eV. The probability of the combined
process of electron capture and pair production is of the same order of magnitude
as β+ emission and also the energies are similar [8]. The probability of interaction
of the γ ray with a nucleus is proportional to Z2 which favors the interaction with
potassium; however, potassium atoms are only 5% of the atoms in mica.
As the energy is smaller than the second ionization energy of K of 31.6eV it is

likely that the subsequent K+ –K+ collisions are elastic.

Other secondary processes may also occur via other radioactive nuclei and their
corresponding decay, but it will be beyond the objective of this work to continue the
subject further.

3.8 Summary

We have considered an 1D model for the close-packed lines of potassium ions inside
a cation layer of mica muscovite using realistic potentials. There exists only a single
kink with a specific velocity and energy dubbed the crowdion. It is relatively well
described by the magic mode but the kink is transformed into a double kink. A con-
struction in terms of phasors has been developed in order to obtain an intuition of
the relative phases and behaviour of the particles as the kink passes over them. The
crowdion leaves behind a phonon wave with exponentially diminishing amplitude
that travels at the same velocity as that of the kink. Simulations with different initial
energies bring about a variety of phenomena including the formation of two crow-
dions that leave behind nonlinear waves and phonons. The crowdions also survive
at temperatures of 300–1000K. Finally, an analysis of the possible decay modes of
40K has been performed including their possible consequences with respect to the
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formation of crowdions and other lattice excitations. A careful study of the tracks
in mica muscovite compared with the decay modes could shed light on the track
characteristics and origin.

The energy of the kinks or crowdions described in this chapter can be provided by
the 40K decay and is enough to expel an atom at the border. The crowdions survive
to high temperature and travel long distances. They transport positive charge and
therefore are very likely to be recorded in the form of dark tracks in mica muscovite.
If they are the cause of the quodons or other marks observed in this mineral is still
an open question.
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