
Chapter 10
Phonon Interference and Energy Transport
in Nonlinear Lattices with Resonance Defects
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Alexandre N. Darinskii and Sebastian Volz

Abstract We introduce and model a three-dimensional atomic-scale phononic
metamaterial producing two-path interference phonon antiresonances to control the
heat flux spectrum. We show that a crystal plane partially filled with defect-atom
arrays causes a total phonon reflection at the frequencies determined by masses and
interaction forces. Such patterned atomic planes can be considered as high-finesse
atomic-scale interference phonon metamirrors. We emphasize the predominant role
of the second phonon path and destructive interference in the origin of the total reflec-
tion in comparison with the Fano-resonance concept. The random defect distribution
in the plane and the anharmonicity of interatomic bonds do not deteriorate the inter-
ference antiresonances. The width of the interference antiresonance dip can provide
a measure of the coherence length of the phonon wave packet. All our conclusions
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are confirmed both by analytical studies of the equivalent quasi-one-dimensional
lattice models and by numerical molecular dynamics simulations of realistic lattices
in three dimensions.

10.1 Introduction

Weprovide a new approach to demonstrate that heat in solids can bemanipulated like
light. While heat convection by fluids and heat radiation by light can be reasonably
controlled, the conduction of heat through solids is less straightforward and has been
an important challenge both in physics and engineering. Heat at room temperature is
carried by lattice vibrations of ultra-high frequencies (1012 Hz), which are also called
phonons, the quasi-particles that are analogous to the photons that carry light. In this
work, we precisely control the heat flow by the atomic-scale phononic metamater-
ial, which contains deliberate flaws in the crystalline atomic lattice, channeling the
heat through different phonon paths. Destructive interference between heat waves
following different paths leads to the total reflection of the heat current and thus
to the remarkable reduction in the material ability to conduct heat. By exploiting
this destructive phonon interference, we model a very counter-intuitive possibility
of thermal transport: more heat flow is blocked by the opening of the additional
phonon channels. We provide an important further insight into the coherent control
of phonons which can be applied both to sound and heat propagation.

Destructive interference between waves propagating across laterally inhomoge-
neous interface layer can result in their total reflection. For instance, the strong
resonance electromagnetic reflection found in metafilms partially filled with asym-
metrical split-ring arrays [11], in flexible metasurfaces [45] and in stereometamateri-
als [31] has offered the prospect of a multitude of applications as quantum optics [1]
and negative refraction [13]. As another example of destructive interference in optics,
two-photon interference can result in a total cancellation of the photon output because
of the coalescence of the two single photons, which was first observed by Hong et
al. [18]. This interference effect occurs because two possible photon paths inter-
fere destructively, which produces the famous Hong-Ou-Mandel (HOM) dip in the
detection probability of the output photons. The HOM dip has since been demon-
strated both in optical [3, 40] and microwave [46] regimes. Recently the two-photon
destructive interference was demonstrated in a three-dimensional (3D) optical meta-
material [29].

Similar destructive interference effect which results in the total reflection can be
also realized in a phonon system. For sound waves, the enhanced phonon reflection
was first described in [22] and [12] independently. Reference [22] interpreted the
anomalous reflection of a long acoustic wave by a two-dimensional (2D) crystal
defect as the destructive interference between two phonon paths: through the nearest-
neighbor bonds and through the non-nearest-neighbor bonds which couple directly
atomic layers adjacent to the defect plane. Reference [12] drew an analogy between
electron scattering and phonon scattering and calculated numerically the phonon
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transmissionwith an asymmetric profile through a strip of oscillator chains connected
in parallel.

Constant endeavor has been devoted to the precise control of heat conduction.
Recent efforts have been concentrated on reducing the thermal conductivity κ via
nanostructured materials with superlattices [5, 7, 21] and with embedded nanoparti-
cles [6, 34, 37].Mostworks have attributed the reduction in κ to the increased phonon
scattering rate and the decreased phonon mean free path (MFP), which corresponds
to the particle description of thermal transport in a lattice. However, the role of the
destructive phonon interference is not well understood in the tailoring of thermal
transport in the wave picture. Thermal conductivity is a physical phenomenon that
requires phonon anharmonicity as a key ingredient. In a perfect insulating crystal, har-
monic phonons would never be scattered and such a crystal would have anomalous,
diverging with the crystal size, thermal conductivity at all temperatures. Scattering of
phonons by lattice imperfections, e.g., by isotopic impurities, in a one-dimensional
(1D) crystal also does not result in the normal, converging with the crystal length,
thermal conductivity [4, 39]. Only anharmonic phonon-phonon interactions and scat-
tering can result in the normal heat transport in low-dimensional crystals, and there
is a great variety of nonlinear interatomic potentials which lead either to the normal
or anomalous heat transport in one-dimensional chains [41]. Here we implement
large-scale molecular dynamics (MD) simulations of phonon wave packet propaga-
tion in 3D lattices that incorporate realistic lattice potentials, which properly account
for the nonlinearities in the interatomic interactions. Our MD simulations of anom-
alous phonon reflection (interference antiresonances) of short-wavelength phonons
from internal crystal plane with embedded defects in a 3D lattice confirm previous
analytical results for anomalous reflection of long-wavelength phonons in a 3D crys-
tal with planar distribution of resonance defects (with 2D planar resonance defect)
[22, 26] and of finite-wavelength phonons in 1D atomic chain with resonance defects
[23, 24]. In addition to the results on anomalous phonon scattering in harmonic lat-
tices with resonance defects, we also show that the two-path interference antires-
onances remain pronounced even when the interaction nonlinearity becomes fairly
strong in a real 3D lattice. Therefore the two-path phonon interference in the pro-
posed phononic metamaterial makes it possible to control thermal energy transport
even in the case of large-amplitude lattice vibrations, for instance at room and higher
temperature.

10.2 Model Structures and Simulation Methodology

Here we introduce and model a realistic 3D atomic-scale phononic metamaterial
which can be used for the storage and lasing of coherent terahertz phonons and for
manipulating the flow of thermal energy [15, 16]. Phonon reflection is generated by
exploiting the two-path phonon interference on internal crystal planes with embed-
ded defects. The 2D planar defects force phonons to propagate through the two paths:
through unperturbed (matrix) and perturbed (defect) interatomic bonds [22–24]. The
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resulting phonon interference gives antiresonances (zero-transmission resonances) in
the phonon transmission spectra that can be controlled by the masses, force constants
and 2D concentration of the defect atoms. Such patterned atomic planes can be con-
sidered as high-finesse atomic-scale interference phonon metamirrors. Our results
show that the patterning of the defect-atom arrays with the formation of phonon
metamirrors can lead to a new departure in thermal energy management [33], offer-
ing potential applications in thermal filters [48], thermal diodes [30] and thermal
cloaking [17, 36, 47].

10.2.1 Model Structure

Atomic distribution in the 3D phononic metamaterial with a face-centered cubic
(FCC) lattice with a 2D array of heavy defect atoms is depicted in Fig. 10.1a. Each
interference phonon metamirror consists of an atomic-scale metafilm: an internal
(001) crystal plane in a cubic silicon (Si) lattice partially filled with germanium
(Ge) impurity atoms, as shown in Fig. 10.1a. The defect atoms can be distributed
periodically or randomly in the defect crystal plane with different filling fractions
fd . When the defects do not fill completely the defect plane, phonons have two
paths to cross such an atom array as shown in Fig. 10.1a, whereas the phonon path
through the host atoms is blocked when the defect layer is constituted by a uniform
impurity-atom array, 100% packed with the impurity atoms. Two types of atomic-
scale metamaterials were studied using realistic interatomic potentials: a FCC lattice
of argon (Ar), in which the defects are heavy Ar isotopes, and a diamond lattice of
silicon with germanium atoms as the heavy-mass and atomic-bonds defects.

10.2.2 Methodology

The interactions betweenAr atoms are described by theLennard-Jones potential [19].
The covalent Si:Si/Ge:Ge/Si:Ge interactions are modeled by the Stillinger-Weber
potential [44]. To probe the phonon transmission, MD with the phonon wave packet
method [43] was used to provide the per-phonon-mode energy transmission coef-
ficient α(ω, l). We excited a realistic 3D Gaussian wave packet centered at the
frequency ω and wave vector k in the reciprocal space and at r0 in the real space,
with the spatial width (coherence length) l in the direction of k. The wave packet
generation was performed by assigning the displacement ui for the atom i as:

ui = Aei (k) exp (i [k · (ri − r0) − ωt]) exp

(
−

[
ri − r0 − vgt

]2
4l2

)
, (10.1)
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(a)

(b) (c) (d)

Fig. 10.1 (color online). a Interference Phonon Metamirror: 3D face-centered cubic lattice con-
taining an internal (001) crystal plane in which an impurity-atom array is embedded. The brown
atoms are the defect atoms and the green ones are the atoms of the host lattice. The red and blue
curves refer to the phonon paths through the impurity atom bonds and through the host atom bonds,
respectively. The presence of the two possible phonon paths can result in the two-path destructive-
interference transmission antiresonance. b Periodic distribution of defect atoms with filling fraction
fd = 50%. Randomly distributed defect atoms with c fd = 37.5% and d fd = 25%

where A is the wave packet amplitude, ei (k) is the phonon polarization vector, ω

is the eigenfrequency for the wave vector k within a single branch of the phonon
dispersion curve, vg is the phonon group velocity along the wave vector k at the wave
packet center frequency ω. Wave amplitude A of the generated phonon wave packets
was taken sufficiently small such that the anharmonic coupling to other lattice modes
is kept weak. Hence the wave packets propagate in an effectively harmonic crystal
without any perceptible spreading or scattering. Thewave packetwas set to propagate
normally to the defect layer, where an elastic scattering results in transmitted and
reflected waves. The wave packet energy transmission coefficient α(ω, l) is defined
as the ratio between the energy carried by the transmitted and initial wave packets,
centered at the given phonon mode (ω, k) with the spatial extent l. The plane-wave
limit is reproduced by the wave packets with the spatial width l much larger than the
wavelength λc of the wave packet central frequency. All the MD simulations were
performed with the LAMMPS code package [27, 38].
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10.3 Results and Discussions

In this sectionwe consider separately the interference resonance profile in the phonon
transmission coefficient, the isotopic shift of the resonance reflection versus the defect
masses, and the phonon screening effect in the thermal conductance. Then we report
the two-path phonon interference in a silicon crystal with germanium impurities.
We show that the random distribution of the defects in the crystal plane and the
nonlinearity of the potential do not deteriorate the interference resonances. Finally
we show that the width of the interference antiresonance dip can provide a measure
for the coherence length of the phonon wave packet.

10.3.1 Interference Resonance Profile

The transmission coefficient α(ω) of the wave packet with l = 20λc, retrieved
from MD simulations of an Ar metamaterial, is presented in Fig. 10.2. The inci-
dent phonons undergo a total reflection from the defect layer at the antiresonance
frequency ωR . Phonon transmission spectra displays an interference antiresonance
profile since the two phonon paths interfere destructively at ωR . A total transmission
at ωT follows the interference antiresonance, which is reminiscent of the Fano res-
onances [10]. For a uniform heavy-defect-atom array, the zero-transmission antires-
onance profile will be totally suppressed and replaced by a monotonous decay of
the transmission with frequency. In the latter case, only the phonon path through the
defect atoms is accessible.

We emphasize that the second phonon path is indispensable to the emergence of
the zero-transmission dip, which cannot be sufficiently described by the Fano res-
onance. We clarify this by studying the phonon transmission across two successive
internal crystal planes completely filled with resonance heavy impurity atoms, when
a local resonant transmission maximum is observed instead of a zero-transmission
dip, see Fig. 4a in [23] and Fig. 2 in [16]. This transmission maximum satisfies well
the Fano-resonance condition [10] of a discrete state resonating with its contin-
uum background, but no zero-transmission dip occurs because of the absence of the
second phonon path [22, 26]. This transmission maximum can be considered as a
phonon analogue of the Fabry-Pérot resonance in optics, which requires only a single
phonon (or photon) path. Therefore this observation clearly corroborates the two-path
destructive phonon interference nature of the zero-transmission dip (antiresonance)
in the phonon transmission coefficient α(ω).

To understand further the phonon antiresonances caused by the interference
between two phonon channels, we use an equivalent model of monatomic quasi-
1D lattice of coupled harmonic oscillators [23], depicted in the inset in Fig. 10.2. In
model (a), phonons propagate through the two paths: through the host atom bonds,
and through those of the impurity atoms, whereas in model (b) only the second chan-
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Fig. 10.2 (color online). Spectra of the energy transmission coefficient α(ω, l) predicted by equiv-
alent quasi-1D model (solid and dashed lines) and by MD simulations (symbols) for a 3D Ar
metamaterial with defect crystal plane containing heavy isotope impurities, with mass m = 3m0.
Dashed-dotted line is the convolution (10.3) of the plane-wave transmission coefficient α(ω) from
(10.2) with a Gaussian wave packet in frequency domain with l = 2λc. Red and blue symbols
present transmission of the wave packet with l = 20λc through the two paths and through one
path in the Ar metamaterial with planar defect, respectively; green symbols present transmission of
the wave packet with l = 2λc through the two paths. Inset: Two possible quasi-1D lattice models
describing phonon propagation through the lattice region containing the local defect: a phonons
can propagate through the defect and host atoms bonds; b phonons can propagate only through the
defect atom bonds. Black sticks between the atoms present atom bonds. In the case of Ar lattice,
the coefficients in (10.2) are ωR = 1.0, ωT = 1.4, ωmax = 2.0 and C = 0.25. The quasi-1D model
(a) is equivalent to a 2D crystal plane partially filled with periodically alternating isotopes with
different masses, with fd = 50%, in a 3D Ar lattice. The 1Dmodel (b) is equivalent to a 2D crystal
plane completely filled with heavy isotopes, with fd = 100%, in a 3D Ar lattice

nel remains open. The model (a) gives the energy transmission coefficient for the
plane wave:

α(ω) = (ω2 − ω2
R)2(ω2

max − ω2)

(ω2 − ω2
R)2(ω2

max − ω2) + Cω2(ω2 − ω2
T )2

, (10.2)

where ωR,T are the frequencies of the reflection and transmission resonances, ωmax

is the maximal phonon frequency for a given polarization, ωR < ωT < ωmax . C is a
real positive coefficient given by the atomic masses, force constants and fd , C = 0
for fd = 0. The ωR frequency exists only in the presence of the additional channel,
which is open for wave propagation through the bypath around the defect atom, see
inset (a) in Fig. 10.2. As follows from (10.2) and Fig. 10.2, α(ωR) = α(ωmax ) = 0
and α(0) = α(ωT ) = 1.

The energy transmission coefficient α(ω, l) of the wave packet with the given
central frequency ω and spatial width l is determined by the convolution of the
transmission coefficient for the plane wave α(ω) = α(ω,∞), given by (10.2), with
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a Gaussian wave packet in frequency domain with the width Δω = vg/(2l):

α(ω, l) =
ωmax∫

−ωmax

α(ω′) exp
(

− (ω − ω′)2

2Δω2

)
dω′

Δω
√
2π

. (10.3)

It is noteworthy that the Gaussian phonon wave packets minimize the product of
the frequency,Δω, and time,Δt = l/vg , uncertainties:Δω ·Δt = 1/2, as well as the
product of the wave number component, Δkx = Δω/vg = 1/(2l), and coordinate,
Δx = l, uncertainties: Δkx · Δx = 1/2, see also Sect. 10.3.7. This property of
the Gaussian phonon wave packets is similar to the property of the Gaussian wave
packets of coherent states in quantum mechanics, which minimize the product of the
momentum component, Δpx , and coordinate uncertainties: Δpx · Δx = �/2 [28],
see also [25] for a similar property of the Gaussian wave packets of magnon coherent
states in spin chains.

In the transmission of a narrow wave packet with l = 2λc, the interference effect
is weakened by a large number of frequency components, when the plane-wave
approximation (l � λc) is broken and the transmission at ωR is not zero any more,
i.e. α(ωR, l) > 0, which is the case also in [18]. As one can see in Fig. 10.2, an excel-
lent agreement in transmission coefficients is demonstrated between the equivalent
quasi-1D model provided by (10.2) and (10.3) and the MD simulations of the 3D
atomic-scale phononic metamaterial with the use of realistic interatomic potentials.

10.3.2 Isotopic Shift of Resonances

In a lattice with atomic impurities, the substituent atoms scatter phonons due to the
difference in mass and/or bond stiffness. Since no bond defect was introduced, the
loci of the resonances are determined only by the mass ratio (MR) of the isotope
defects and host atoms. As the isotope defects become heavier, the two-path phonon
interference antiresonance becomes more pronounced in terms of the depth and
width of the phonon-transmission dip and demonstrates a red-shift of the dip, thus
impeding the long-wavelength phonons, as shown in Fig. 10.3a, c for longitudinal
and transverse phonons, respectively. The equivalent quasi-1D lattice model gives
the following expression for the frequency of the transmission dip:

ωR = ωmax/
√

m/m0 + 1, (10.4)

where m and m0 refer to the atomic mass of the isotope defect and host atom, with
MR = m/m0 > 1. The transmission resonance at ω = ωT is much less sensitive
to the defect mass since it is largely determined by the mass of the host atom. As
depicted in Fig. 10.3b, d, the spectral positions of the interference resonances ωR
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(a) (b)

(c) (d)

Fig. 10.3 (color online). a and c: Spectra of phonon transmission coefficient α(ω) of longitudinal
(a) and transverse (c) acoustic waves through the phononic metamaterial, which consists of 2D
crystal plane filled with periodically alternating isotopes with different mass ratio (MR) m/m0,
with fd = 50% in a 3D Ar lattice. Dashed lines are the guides to the eye. b and d: Isotopic shift
of the two-path phonon interference antiresonance versus the inverse square root of the mass ratio
for longitudinal (b) and transverse (d) acoustic waves. Symbols present the resonances predicted
by MD simulations for a 3D lattice, solid line shows the analytical prediction of the equivalent
quasi-1D lattice model given by (10.4)

are again in an excellent agreement with the analytical prediction of the equivalent
quasi-1D lattice model given by (10.4) for both longitudinal and transverse phonons.

10.3.3 Phonon Screening Effect

In Fig. 10.2, the transmission spectra for longitudinal phonons across the uniform
defect-atom array is plotted to be compared with that of the 50%-filled defect-atom
array. At the frequency of the two-path interference antiresonance ωR , an array of
50% defect atoms has a transmittance two orders of magnitude smaller than that
of a uniform defect-atom array. The difference between the very strong phonon
reflection by a 50%-filled defect array and the high phonon transmission across a
uniform defect array can result in a counter-intuitive effect: an array of randomly
alternating host and impurity atoms can scatter more phonons than an array with a
uniform distribution of heavy isotopes. This anomalous phonon reflection phenom-
enon inmolecular systems can find its acoustic counterpart in macroscopic structures
[9, 23, 32]. In [9], perforated plateswere proved to shield ultrasonic acousticwaves in
water muchmore effectively than uniform plates. Liu et al. [32] managed to break the
mass-density law for sonic transmission by embedding high-density spheres coated
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with a soft material in a single layer of a stiff matrix. We calculate the interfacial
thermal conductance G by following the Landauer-like formalism [20]:

G =
∫ ∑

ν

�ω(k, ν)vg,z(k, ν)α
∂

∂T
nBE(ω, T )

dk
(2π)3

, (10.5)

where � is the reduced Planck constant, vg,z the phonon group velocity in the cross-
plane direction, nBE(ω, T ) is the Bose-Einstein distribution of phonons at temper-
ature T , nBE(ω, T ) = [exp(�ω/kB T ) − 1]−1, kB is the Boltzmann constant. The
integral is carried out over theBrillouin zone and the sum is over the phonon branches.
By embedding defect atoms in a crystal plane monolayer, we manage to reduce the
thermal conductance by 30% with respect to the case of pristine lattice, with no
defects, as shown in Fig. 10.4a. This destructive-interference-induced effect can be
used for the explanation of the remarkable decrease of κ of SiGe alloywith very small
amount of Ge atoms, with respect to the pristine Si lattice [14]. G is further reduced
by considering the (second) non-nearest-neighbor (NNN) bondsC2 between the host
atoms on the two sides of the uniform defect layer in addition to the nearest-neighbor
(NN) bond C1 linking the host and adjacent defect atoms, see also [22, 23]. This
reduction comes from the suppression of phonon transmission at high frequencies,
shown in Fig. 10.4b, which is due to the opening of the second phonon path through
the host atom bonds, destructively interfering with the first path through the defects.
The occurrence of the second phonon path substantially reduces G by 16% even
if it is weak: C2 = 0.08C1. This provides another evidence of the control of heat
transport by the two-path destructive phonon interference: more heat flux is blocked
despite the opening of the additional phonon paths, even in the absence of phonon
resonances.

10.3.4 Two-Path Phonon Interference in Si
Crystal with Ge Impurities

Figure 10.5 illustrates the two-path interference phonon antiresonances in the meta-
material fabricated as follows: 2D planar distribution of Ge atoms is embedded in
a Si crystal. Ge and Si atoms have mass ratio of 2.57 and thus the Ge-atom array
introduces both the heavy-mass and atomic-bond defects due to a weaker Si:Ge
coupling than the Si:Si interaction [44]. Phonons from transverse and longitudinal
acoustic branches experience strong resonant reflections at the defect crystal plane,
50%-filled with Ge atoms, while the short-wavelength phonons near the edge of the
Brillouin zone are strongly reflected by the defect crystal plane, completely filled
with Ge atoms.
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(a) (b)

Fig. 10.4 (color online). a Temperature dependence of interfacial thermal conductance across a
crystal plane, 50%-filled with periodic array of heavy isotope defects (rectangles), and across
a uniform defect crystal plane with (pentagons) and without (circles) the second phonon path
induced by the non-nearest-neighbor (NNN) bonds in addition to the nearest-neighbor (NN) bonds,
in comparison with that across an atomic crystal plane without defects (hexagons). b Transmission
coefficient α(ω) through a uniform defect crystal plane with (pentagons) and without (circles) the
second phonon path induced by the NNN bonds

Fig. 10.5 (color online). Two-path interference phonon antiresonances for transverse and longitu-
dinal phonons on a partially-Ge-filled defect crystal plane (green circles and yellow squares) plotted
along with the non-resonant transmission through a completely-Ge-filled defect crystal plane (open
squares and circles) in a Si crystal as phononic metamaterial

10.3.5 Random Distribution of Atoms

In contrast to light [8, 35], even a single defect atom in a crystal plane produces
interference reflection antiresonances for Gaussian beamswith finite beam diameters
of (longitudinal or transverse) phonons because of the presence of the two phonon
paths. Therefore, phonon reflection antiresonances should exist even in the absence
of the periodicity in the defect-atom distribution in the crystal plane because of
the localized nature of the resonances. This argument is supported by further study
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Fig. 10.6 (color online). Transmission coefficient α(ω) for longitudinal phonons across the planar
defect in a Si crystal, which contains randomly (r.) distributed embedded Ge atoms with fd = 37.5
and 25%, compared with α(ω) across the planar defect, which contains periodically (p.) distributed
embedded Ge atoms with fd = 50%. The computed α(ω) was averaged over different random
distributions

of phonon transmission through the arrays of Ge atoms in a crystal plane in Si-
crystal-based phononic metamaterial, distributed with different filling fractions fd

and randomness. Strong transmission dip, similar to that produced by periodic Ge
atoms arrays, remains pronounced in both cases, as shown in Fig. 10.6. This was
shownexperimentally to be equally valid inmacroscopic acousticmetamaterials [32].

Chen et al. reduced the thermal conductivity κ below the alloy limit by the partial
intermixing (segregation) of Ge atoms in Si superlattices [6]. Their ab initio cal-
culations showed that phonon mean free path was substantially reduced in the low
frequencies [6]. We note that the clusters of Ge atoms can be considered as randomly
dispersed heavy-mass oscillators, which scatter low-frequency phonons at the inter-
ference antiresonances whose frequencies are given by the isotopic-shift law (10.4).
With the destructive interference, we can also relate the extremely low κ found in
the In0.53Ga0.47As alloy, randomly filled with heavy ErAs nanoparticles [21].

10.3.6 Nonlinear Effects

The nonlinear effects in the two-path interference phonon antiresonances were stud-
ied by increasing the amplitude A of the incident phonon wave packet, as shown in
Fig. 10.7 for the phonon transmission coefficient through the partially-Ge-filled, with
fd = 50%, internal crystal plane in Si lattice. As A increases, the reflection becomes
less pronounced withmore heat flux passing through, which provides direct evidence
of inelastic phonon scattering at the defect plane. The antiresonances demonstrate
the red shifts in frequency due to the anharmonic (cubic first of all) terms in the
interatomic potential. We also note in this connection that our computation of a
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(a) (b)

Fig. 10.7 (color online). Evolution of the interference antiresonance in the phonon transmission
coefficient α(ω) through the partially-Ge-filled, with fd = 50%, internal crystal plane in Si lattice
versus the increasing wave amplitude for a transverse and b longitudinal phonons

quasi-1D atomic chain, containing an impurity atom characterized by non-parabolic
(nonlinear) interaction potential with the neighboring host atoms, agrees well with
our MD results for 3D lattice. The interference antiresonances remain pronounced
even when the interaction nonlinearity becomes fairly strong. Therefore the two-path
interference phonon antiresonances in the proposed phononic metamaterial make it
possible to control thermal energy transport even in the case of large-amplitude lattice
vibrations, for instance at room and higher temperature.

10.3.7 Wave Packet Coherence Length Determination

The decrease in 2D defect filling fraction fd narrows the width of the antiresonance
dip because of the weakening of the relative strength of the “defect-bond” phonon
paths through the crystal plane, see Fig. 10.1 and (10.2). In general, the width Δω

of the antiresonance dip for the two-path phonon interference is determined by both
the fd and finite coherence length l of the phonon wave packet. As follows from
Fig. 10.2, for the large fd = 50% Δω is not sensitive to l. In the limit of small fd

and for l � λc,Δω is narrow and proportional to fd , as shown in Figs. 10.6 and 10.8.
In this limit, for the wave packet with a short width l, l ∼ λc, Δω will be determined
mainly by l. From Fig. 10.8, the width Δω of the antiresonance dip for the wave
packet with l = 2λc is Δω/(2π) = 0.19THz. Then from the minimal value of the
product Δω · Δt = 1/2, which is realized for the Gaussian wave packets, we get the
wave packet width in time domain Δt = 0.42ps and the wave packet spatial width
(coherence length) l = vgΔt ≈ 3.1nm, where vg ≈ 7.5km/s is the longitudinal
phonon group velocity in Si at ω = ωR , see [42]. This length coincides with the
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Fig. 10.8 (color online).
Broadening of the
antiresonance dip in the
energy transmission
coefficient α(ω, l) in the
limit of small filling fraction
fd = 5% for the wave
packets with short coherence
lengths (l = λc and l = 2λc,
green and red circles), in
comparison with that for an
almost plane-wave wave
packet (l = 20λc, blue
circles)

wave packet coherence length l ≈ 3.2nm, which was used in the MD simulations
shown in Fig. 10.8. The width Δω of the antiresonance dip for the wave packet with
a shorter coherence length l = λc is larger than that of the wave packet with l = 2λc,
see Fig. 10.8. Therefore the width of the two-path phonon interference antiresonance
dip in the transmission spectrum can provide a measure of the coherence length of
the phonon wave packet.

10.4 Conclusions

In conclusion, we provide a comprehensive modeling of atomic-scale phononic
metamaterial for the control of heat transport by exploiting the two-path interfer-
ence phonon antiresonances. Thermal phonons crossing crystal plane partially filled
with resonance defect atoms can undergo complete reflection caused by destructive
phonon interference. Such patterned atomic planes can be considered as high-finesse
atomic-scale interference phonon metamirrors. Interference phonon antiresonances
are not deteriorated by the aperiodicity in the defect-atom distribution and the anhar-
monicity of interatomic bonds. Thewidth of the antiresonance dip provides ameasure
of the coherence length of the phonon wave packet. And, finally, we would like to
emphasize that strong resonance reflections of electromagnetic waves, which have
been observed in metafilms partially filled with asymmetrical split-ring arrays [11],
in stereometamaterials [31], in flexiblemetasurfaces [45] and inmicrowavemetamir-
rors [2], can also be interpreted as interference photon antiresonances in an optically
transparent plane, partially filled with subwavelength plasmonic or microwave res-
onating structures [16, 23].
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