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To F.M. Russell, inspirator of all the book
and author of a substantial part of it.



Preface

This books commemorates the lifelong dedication of physicist Francis Michael
Russell to science, for a large part of which he has been fascinated with the dark
tracks in mica muscovite. Some of these lines he was able to explain as the fossil
record of charged elementary particles in a series of amazing papers which starts
with Tracks in mica caused by electron showers published in Nature in 1967.
However, many of the tracks were produced by other causes and as they were along
the primary lattice directions he suggested that they were the record of some kind of
quasi one-dimensional excitations of the lattice, to which he gave the name quo-
dons. The theory was improved by his collaboration with nonlinear physicist Prof.
Chris Eilbeck, which after many years had a high point in 2007 with the experi-
mental verification of the transmission of localized energy and momentum in mica
along the lattice directions. Thereafter Russell, or Mike as we all know him, has
continued doing research in mainly two directions: What many other things are
recorded in mica? What is the exact nature of quodons among the many nonlinear
localized travelling excitations in crystals?

At present, Mike has just turned 83 and he is still extremely active. Evidence of
this is apparent in the chapters he has written for this book, his nomination in 2013
as honorary professor of the University of Pretoria, South Africa, his trek to the
Himalayas in 2014 and last but not least the recent theory of charged quodons. For a
long time he has been worried that his ideas, dispersed in publications in many
journals over many years may be forgotten. To prevent it he decided to write his
lifelong research in such a way that it would be accessible to a wider audience. The
result of his labour is in Chap. 20 of this book.

With the same objective, we conceived the idea of organizing a conference
where Mike could explain in detail his ideas to an interested audience of scientists
and they would contribute with the latest advances of science in this field. Finally,
the conference took place in Altea in 2013. At the end of the conference it was
proposed that a book be written in a year’s time so that work could be finalized and
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ideas clarified. The objective of the book was to describe the phenomena in mica,
the past and present research of Mike Russell and to show that phenomena similar
to quodons appear in theory and experiments in many different systems, hence, the
title Quodons in Mica and the subtitle Nonlinear Localized Travelling Excitations
in Crystals.

The conference had to be in a very special place, where the atmosphere would
inspire the participants and leave them with lasting memories of what they have
thought and felt. The region of Valencia was in prefence to Sevilla because of its
many seaside locations. Soon, the enchanting village of Altea, overlooking a
wonderful bay and surrounded by impressive mountains was selected. The con-
ference took place in September 2013 with participants from all over the world.

The book is the present volume. It is organized into several parts, although the
classification issomehow arbitrary and many chapters could also be included in
other parts:

Part I Mica and Mica-Related Systems

• Tracks in mica, 50 years later. Review of evidence for recording the tracks of
charged particles and mobile lattice excitations in muscovite mica by F.M.
Russell.

• Numerical simulations of nonlinear modes in mica: past, present and future by
J. Bajars, J.C. Eilbeck and B. Leimkuhler.

• A supersonic crowdion in mica: Ultradiscrete kinks with energy between 40K
recoil and transmission sputtering by J.F.R. Archilla, Yu.A. Kosevich, N.
Jiménez, V.J. Sánchez-Morcillo and L.M. Garca-Raffi.

Part II Two-dimensional Lattices

• Pattern formation by traveling localized modes in two-dimensional dissipative
media with lattice potentials by V. Besse, H. Leblond D. Mihalache and B.
Malomed .

• A numerical study of weak lateral dispersion in discrete and continuum models
by L.A. Cisneros-Ake and A.A. Minzoni

• Breather mobility and the Peierls-Nabarro potential by M. Johansson and
P. Jason.

• Asymptotic approximation of discrete breather modes in two-dimensional lat-
tices by J.A.D. Wattis.

Part III Molecular Dynamics in Three Dimensions

• Moving discrete breathers in 2D and 3D crystals by S.V. Dmitriev, A.A.
Kistanov and V.I. Dubinko.

• Standing and moving discrete breathers with frequencies above the phonon
spectrum by V. Hizhnyakov, M. Haas, A. Shelkan and M. Klopov.

• Phonon interference and energy transport in nonlinear lattices with resonance
defects by Yu.A. Kosevich, H. Han, L.G. Potyomina, A.N. Darinskii and S.
Volz.

viii Preface



Part IV Electrons and Lattice Vibrations

• Electron transfer and tunneling from donor to acceptor in anharmonic crystal
lattices by A.P. Chetverikov, L. Cruzeiro, W. Ebeling and M.G. Velarde.

• Bound states of electrons in harmonic and anharmonic crystal lattices by L.S.
Brizhik, A.P. Chetverikov, W. Ebeling, G. Röpke and M.G. Velarde.

• Solitons and charge transport in triangular and quadratic crystal lattices by A.
P. Chetverikov, W. Ebeling and M.G. Velarde.

Part V Semiconductors

• Experimental observation of intrinsic localized modes in germanium by J.F.R.
Archilla, S.M.M. Coelho, F.D. Auret, C. Nyamhere, V.I. Dubinko and V.
Hizhnyakov.

• The origin of defects induced in ultra-pure germanium by Electron Beam
Deposition by S.M.M. Coelho, J.F.R. Archilla, F.D. Auret and J.M. Nel.

• Rate theory of acceleration of defect annealing driven by discrete breathers by
V.I. Dubinko, J.F.R. Archilla, S.V. Dmitriev and V. Hizhnyakov.

Part VI Other Systems

• The amide I band of crystalline acetanilide: old data under new light by L.
Cruzeiro.

• Extreme waves and branching flows in optical media by M. Mattheakis and G.
P. Tsironis.

• Discrete bright solitons in Bose-Einstein condensates and dimensional reduction
in quantum field theory by L. Salasnich.

Part VII A Historical Perspective

• I saw a crystal: A historical account of the deciphering of the markings in mica
by F.M. Russell.

The last part is not only interesting in this particular field, but also for showing
how the mind of a scientist works, how science is mixed with life, sometimes
personal events being an obstacle, but often science and life fertilizing each other.

I think it will also be useful for young students to show them that science needs
not be boring and how determination and persistence can lead to success.

Success in science is not money or social approval but the satisfaction of dis-
covery. I think that will be the lasting legacy of Mike Russell.

Sevilla Juan F.R. Archilla
Valencia Noé Jiménez

Víctor J. Sánchez-Morcillo
Luis M. García-Raffi
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Mike Russell in his laboratory in 2011 when he celebrated his 80th birthday
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Part I
On Mica and Mica Related Systems



Chapter 1
Tracks in Mica, 50 Years Later: Review
of Evidence for Recording the Tracks
of Charged Particles and Mobile Lattice
Excitations in Muscovite Mica

F. Michael Russell

Abstract Large crystals of the layered mineral muscovite mica often contain fossil
tracks of charged positrons emitted from radioactive potassium atoms that make up
3 atomic % of mica. The tracks are made visible naturally by decoration with the
black mineral magnetite coming from an impurity of iron that is precipitated after
the crystals have formed deep underground. Positively charged high energy muon
tracks created by cosmic rays also are recorded. The layered structure of mica allows
thin transparent sheets to be peeled off to reveal a bewildering array of black lines, of
which only 1% are the tracks of charged particles. Lyingmostly in random directions
the charged particle tracks were identified in four years. The remaining 99% of lines
lying exactly parallel to chains of potassium atoms defied explanation for another
25 years until evidence was found for them being caused by recoil of potassium
nuclei following emission of positrons. It was proposed the recoils created mobile
highly-localised, self-focussing, non-linear lattice excitation of the lattice, called
quodons, involving only a few atoms with energies up to tens of eV. After 10 more
years the existence of quodons was shown in a laboratory experiment, confirming
their stability against thermal motions of atoms. 10 years later, it was shown that
atomic cascades, created by energetic nuclear scattering of swift particles, generate
atomic-size kink-pulses that can gain energy from the metastable mica lattice. These
cascades give rise to fan-shaped patterns containing multiple parallel tracks called
striae. The possibility that ’ultra-discrete kinks’ might explain the striae is examined.
These and similar energetic lattice excitations should assist in annealing radiation-
induced defects in crystals. The lines in muscovite mica remain the only way to
observe the flight and behaviour of these excitations and illustrate the remarkable
properties of quasi-2-dimensional atomic structures.

F.M. Russell (B)

Department of Physics, University of Pretoria,
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© Springer International Publishing Switzerland 2015
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1.1 Basic Facts

Muscovitemica is a commonmineral that can grow to large sizes in pegmatitemasses.
These occur as magma intrusions in the surrounding rock near volcanic shafts. Large
crystals of muscovite can only form under conditions of high temperature and pres-
sure, typically about 600 ◦Cand at least 5kmunderground. Its ideal chemical formula
is K2Al4[Si6Al2O20](OH,F)4 but it can accommodate various atomic substitutions
and interstitial impurities. It is relatively stable chemically and, as it is insoluble in
water, crystals can be found by natural erosion of uplifted rocks at the Earth’s surface.
Nearly perfect crystals are transparent and colourless but these are relatively rare.
Usually, large crystals have a brownish colour. The layered structure of the mus-
covite lattice gives the crystals unique properties. They grow as tabular plates with
a hexagonal outline. An outstanding property of muscovite mica is its easy cleavage
in to thin transparent sheets. The thin sheets are elastic, flexible and surprisingly
strong in tension in the plane of the sheet. The easy cleavage is in the (001)-plane of
monatomic sheets of potassium atoms and is due weak van derWaals’ bonding. Most
crystals of muscovite of size larger than about 100mm×100mm contain many dark
lines or ribbons lying exactly in the (001)-plane. This can be verified by observing
the interference of light between the top of a ribbon and the top of the covering layer
of clear mica. The lines are very thin ribbons of the mineral magnetite, Fe3O4. This
can be verified easily with a small magnet because magnetite is magnetic. Although
muscovite crystals have been known since prehistoric times the cause of these dark
lines remained a puzzle. Each sheet shows a different pattern of lines. However, there
is an underlying symmetry to these patterns, which was assumed to arise from the
crystal lattice structure. Even as late as mid-twentieth century it was suggested (by
people versed in solid-state physics) that theymight be caused by crystal dislocations
despite being many orders of magnitude bigger [8] than typical dislocations.

Most crystals of muscovite have defects, either created during their initial growth
or induced afterwards. At the micro-scale, these range from atomic point lattice
defects up to micron-size crystal dislocations. Leaching can occur at crystal edges
leading to intrusive dendritic growths. Structural defects such as twinning and non-
conformal grain boundaries at intergrowths are usually obvious. Major damage to
crystals, however, usually occurs by mechanical forces acting on the crystals during
their rise to the surface by uplift and erosion. The most annoying of these defects
are gross fractures as they degrade both the commercial and scientific value of the
crystals. However, even a study of such damaged regions was informative. It was
noted that the dark lines do not occur near fractures of a crystal unless the fracture
occurred after the lines had formed. This is shown if Fig. 1.1. Since fractures generate
many dislocations the absence of lines in their vicinity clearly eliminates them as the
cause of most of the lines.

Because the lines conduct electricity but clear mica is an excellent electrical insu-
lator of commercial importance almost all mined crystals are split in to ≈1mm thick
sheets at the mine, which are then segregated according to the amount of ‘staining’
that is present, as the lines are called. It is for this reason that most researchers in



1 Tracks in Mica, 50 Years Later: Review of Evidence for Recording … 5

Fig. 1.1 Specimen of mica showing that the lines do not occur near fractures of a crystal unless
the fracture occurred after the lines had formed

laboratories are unaware of the lines as only clear sheets are sold to or found in lab-
oratories. This sorting also destroys the spatial relationships of the lines in different
sheets. There is a great demand formuscovitemica as a filler inmany compounds and
mixtures, such as for cosmetics and paints. The chemical stability of muscovite and
its exposure at ground level has led to crude mining practices, sometimes involving
child labour. In the Jharkhand region of India, a major source of muscovite, despite
tens of thousands of tons being produced annually the mining industry is cloaked in
secrecy. As a result it is very difficult to purchase pristine crystals of muscovite, or
even slabs, with well-defined lines that are suitable for scientific study. However, any
quantity of random sheet mica can be purchased easily, characterized only by the
area of the sheets and the amount of staining, quantified as clear, slight, moderate or
heavy. The research described here is the result of studies of approximately 100kg
of randomly sorted sheets and slabs of muscovite showing more than a million lines
of various kinds.

The lines can vary in width from about 1 micron to more than a millimetre. The
thickness is variable in steps of the unit cell size of ∼0.9nm of magnetite, being
opaque after about 3 steps. Lines of narrow width tend to show only small variation
of width along their length and thus allow more precise measurements of width,
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orientation and length. The wider lines appear to have developed by lateral accretion
of material on initially narrow lines. The lines can have lengths ranging from a few
millimetres up to the limit set by the size of the crystal, the largest of almost 1000mm.

Visual examination of sheets with lines shows that the lines fall mainly in to
two groups. Most lines lie in directions parallel to the three main crystallographic
directions at 60◦ intervals, which is reflected in the hexagonal habit of the crystals.
Lines in the other group liemainly in random directions in the (001)-plane—with one
exception. This relatively rare exception consists ofmultiple pseudo-lines, composed
of linear arrays of small dots, which lie within a conical solid angle extending over
many (001)-planes. These conical arrays cluster around the main crystal directions.
In addition to the lines there are many dots of ∼1mm diameter.

Initial studies of the lines showed that those lying exactly in atomic chain direc-
tions are inconsistent with known crystal structure defects such as dislocations, grain
and twinning boundaries but were, nevertheless, clearly related to the crystal struc-
ture. The lines lying in random directions posed a serious problem as they had no
obvious cause and were not related to the crystal structure in the (001)-plane. A
critical step was the presumption that all the lines and dots were the result of some
kind of physical perturbation of the crystal and thus had a causal origin. Prior to
this point the lines were of unknown origin and sometimes were given metaphysical,
even religious, attributes. When the present study of the lines started in 1963 the
only known possible cause for producing the long lines lying in random directions
in a crystal deep underground was high energy charged particles created by cosmic
rays and neutrino interactions within the Earth. Prior to the discovery in 1936 of
charged particles called muons in cosmic rays the randomly orientated lines in mica
could not have been understood. This is an example of windows of opportunity for
making discoveries. Another important window in the study of these lines was the
discovery in 1960 [15, 16] that swift charged particles could penetrate further in
certain directions in a crystal. This process is called channelling and is the result of
the regular atomic structure of crystals. Surprisingly, the underlying principle of this
process was foreseen by a thought experiment of Stark in 1912 [26].

1.2 Origin and Properties of Charged Particles in Mica
Underground

There are only two sources of charged particles at the depth at which muscovite crys-
tals grow and are able to record events. Local natural radioactivity, in both the crystal
and the surrounding rock, and cosmic rays [9]. The relatively low energies involved
in radioactivity limit the number of types of particles involved. They are alpha par-
ticles, electrons and positrons, gamma rays and rarely neutrons. Although only a
few types of particles contribute to the primary cosmic radiation, mainly protons
(99%) and alpha particles (1%), their great energies enable very complex interac-
tions with the surrounding nuclei when penetrating through matter. In penetrating
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the atmosphere the most frequent nuclear interactions create kaons, pions, muons,
gamma rays and neutrinos. The kaons and pions decay quickly so that muons are the
dominant particles. The flux of muons decreases very rapidly with increasing depth
in the ground due to the numerous nuclear interactions and ionization losses. This
dependence on penetration depth effectively collimates the direct muons about the
vertical direction. However, at the depths needed for crystal growth and recording a
secondary source of muons then becomes important, namely from cosmic neutrino
interactions. Neutrinos rarely interact with matter, can have very high energies, and
cosmic neutrinos propagate in all directions. The paths of these secondary muons
are essentially isotropic in space. Since crystals grow in random orientations to the
vertical they discriminate against the direct vertical component in favour of the neu-
trino derived contribution [17]. At the ∼5km depth required for recording tracks the
flux of cosmic neutrino derived muons is comparable to that of the direct muons.
The muons are mostly of high energy of order 103–104MeV. As a result of the rela-
tivistic relation between energy and mass these behave as moderately heavy particles
comparable to energetic protons. These were the most probable, although unlikely,
deduced cause of the long random lines in muscovite crystals. In decreasing order
of numbers there are additional small fluxes of neutrons, pions and protons due to
nuclear local interactions of the muons near the crystals.

The other source of moderately energetic charged particles deep underground
arises partly from radioactive elements such as uranium and thorium in the sur-
rounding rock. Critical for the study of the lines, however, is the fortuitous fact that
muscovite crystals contain a radioactive element, namely, potassium. In muscovite
the isotope 40K is radioactive, which occurs with an atomic abundance of 0.012%
and has a half-life of 1.2× 109 years. In 1cm3 of muscovite there are ∼4 decays per
second. There are three decay channels: 89% give an ejected electron, 11% is by
electron capture by the nucleus with no ejected particle and 0.001% gives an ejected
positron. Thus in one year there are∼1300 positrons and∼1.3×108 electrons emit-
ted from 1cm3 of muscovite mica. Both the electron and positron decays involve
emission of a neutrino, the resulting energy spectra for positrons having a maximum
of ∼0.5MeV.

An unfortunate consequence of attempting cross-discipline studies, initially in
isolation, is that errors can creep in to those studies which might not be detected
for a long time. Such errors might arise from lack of knowledge or understanding
of known data and from mistaken assumptions. In the study of the lines three such
errors are known to have occurred. The first error occurred at the start of the studies
when attempting to gain evidence for the longest lines being caused by muons. In
analysing the data on the lack of straightness of the lines as evidence for random
scattering of muons it was not realised that some of the lines being studied were
caused by particles from an unknown source of lower energy.

The existence of an error was pointed out in 1967 but the authors did not find the
cause [5]. The source of the error was found by Russell [19] in a few minutes when
it was realised that an isotope of potassium in mica was radioactive. This finding
opened a whole new field for study, because the decay process was well understood.
Effectively, there was in each mica crystal an ongoing experiment that could serve
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for calibration purposes. The second error related to the recording process. Measure-
ments on the dimensions of the lines gave the mass of the magnetite, and thus of
iron precipitated, in any given sheet. In the absence of the iron impurity the record-
ing process could not work so no tracks would be recorded. It was found that the
length of the tracks of positrons from 40K decreased as the volume density of iron
increased. From this finding it was deduced that the positrons lost more energy to
the iron impurity as the amount of iron increased. The simplest assumption was that
the rate of loss of energy was proportional to the amount of iron present in the sheet.
The validity of this assumption started to look suspicious in 2009 when studying the
tracks left by supersonic lattice pulses created in atomic cascades. In 2013 Prof. G.
Fittonmeasured the concentration of iron in six samples ofmicawhich showed vastly
different amounts of magnetite. He found that iron was present in all the samples at
about the same high atomic concentration of ∼4%. It now seems that the ability of
mica to record tracks depends on the amount of iron present exceeding a minimum
high value. The implications of this are still being studied. The third error related
to the recoil kinetic energy of the potassium nucleus after emitting a positron. I did
not properly understand the published data on the decay process and neglected to
allow for the energy relating to the rest mass of a positron when emitted. This led to
overestimating the kinetic energy of the recoil nucleus. Correcting this error showed
that the recording process was even more sensitive than previously estimated. I am
grateful to Prof. JFR. Archilla for pointing out this error in 2014 [2, 3, 12].

As determined by underground experiments, muons of average energy can have
flight paths in rock of many metres. In an amorphous solid of the same compo-
sition as muscovite the maximum range of the electrons and positrons emitted in
mica is ∼2mm. However, the propagation of charged particles in crystals is greatly
influenced by the lattice structure. In particular, channelling can extend the range of
positively charged particles by a factor of∼10 but not for electrons or other particles
with negative charge. Hence, muons are the most probable cause of the long ran-
dom lines with lengths greatly exceeding ∼20mm. For lines in the range 2–20mm
the most probable causes are positrons or muons. All three decay channels cause a
change in the charge of the nucleus. Positron emission leaves a negative charge, the
other two channels leaving a net positive charge. As the recording process is charge
sensitive this difference is reflected in the absence of additional decoration at the
site of the decayed nucleus from which a positron track starts. The electron capture
decay channel also can generate quodons.

All charged particles suffer elastic scattering as they propagate through any mate-
rial causing their paths to deviate from a straight line. Fortunately, the form of the
deviation from straightness is different for the expectedmuons and positrons because
of their different masses and energies. Energetic muons penetrate much closer to a
nucleus and experience the short-range strong nuclear force but the lower energy
positrons experience only the long-range Coulomb force. It is the Coulomb force
that gives the unique Rutherford scattering law. The short-range nuclear force gives
point-like random scattering, known as a Gaussian distribution. Measurements on
the long random lines showed that the scattering followed a Gaussian distribution
as expected for high energy muons. For the shorter tracks, in the 2–20mm range,
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Fig. 1.2 Second difference of the deviations of paths of tracks <20mm. A critical test for the
lines to be the tracks of charged particles is how the lines deviate from straightness due to them
being scattered as they pass through a solid. In the graph above the experimental results for the
scattering of positrons in photographic film (�) clearly follows the Rutherford Law. Also shown are
the results obtained by the author (+) and by Wolfendale’s group (◦). These results also fit closely
to the Rutherford Law, thus strongly supporting the hypothesis that the lines are tracks of charged
particles. Data from [5, 19, 28] for VP, CMW and FMR, respectively. Reproduced with permission
from [19]. Copyright © 1988, Elsevier

measurements showed that some followed the Gaussian distribution as expected
of muons. However, many followed the distinctive and unique Rutherford sin4(θ)

scattering law characteristic of low energy positrons [28]. There is no known alter-
native cause for this unique scattering distribution. Because of the importance of this
test for charged particles independent measurements of the scattering of the shorter
lines were made that confirmed the result. The results of measurements on short
tracks [19] (labelled FMR and CMW) in mica are shown in Fig. 1.2, together with
those for positrons in photographic emulsions for comparison (labelled VP) [28].
This result provides unambiguous evidence that some of the lines are the tracks of
relatively low energy charged leptons, either electrons or positrons; the relatively
long range of �2mm eliminates electrons, as their negative charge prevents them
from channelling.

These scattering results did not identify in which layer of the lattice the tracks
are recorded. Although the positrons are emitted from potassium atoms in the
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Fig. 1.3 Angular density of
tracks showing the pattern of
symmetrical diffraction
peaks centered on a chain
direction together with a
strong peak of very narrow
width exactly in the chain
direction, see text.
Reproduced with permission
from [20]. Copyright ©
1988, Elsevier
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K-sheets they might scatter in to a different layer for recording. Fortunately, there
is an unambiguous test for determining in which part of the lattice the positrons
propagate and are recorded. Positrons are emitted isotropically from nuclei. In flight
they interact with the surrounding lattice and the probability of their direction of
propagation is determined by diffraction scattering by the lattice. If they propagated
in the same K-sheet in which they were emitted then their angular distribution in the
(001)-plane should show a unique pattern. This pattern consists of a strong peak of
very narrow width exactly in a chain direction with symmetrical side peaks centred
about the chain direction. The central narrow peak is evident in the results [20] shown
in Fig. 1.3. This unique pattern is well known in optics for Fresnel diffraction of light
by an opaque disc. For the positrons the positive charge of the nearby nucleus acts
as the opaque disc. The angular distribution of swift charged particles incident on a
crystal undergoing channelling shows only a broad peak in the channel direction.

The implications of this result are important. It shows that the recording process
operates in the (001)-plane where the positrons are created, that is, in the vicinity
of the sheets of potassium atoms. Since positron tracks can be recorded there is
no reason that the tracks of positively charged muons should not also be recorded.
The energy and momentum of the particles causing the long tracks can be found
by measuring the extent of multiple scattering. Positive muons can channel, which
influences the rate of scattering. Taking this in to account gave an energy spectrum of
the particles that is consistent with independent studies of muons deep underground.
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1.3 Measurement of the Sensitivity and Duration
of Recording

The sensitivity of the recording process can be found by examining positron tracks.
The observed longest length of a positron track lying exactly in a chain direction is
slightly over 120mm. If they were propagating by axial channelling then amaximum
range of about 20mm would be expected. The extended range is due to the open
structure of the potassium sheet and diffraction scattering. The longest tracks will be
caused by those approaching the maximum energy of 0.48MeV. On the basis that the
total amount of magnetite delineating a positron track from start to finish depends
on the initial energy of the positron then the minimum rate of energy deposition per
unit length of track can be found. This will be lowest at the start of the tracks when
the positrons have highest energy and are moving fastest. Measurements showed that
the threshold for recording a positron track was ∼4KeV/cm. That is, ∼400meV of
energy per micron of flight path, or ∼1eV per 30,000 unit cells along a track. This
is an astonishingly high apparent sensitivity. The energy needed to ionise an atom is
typically of order 10eV. If the recording process for positrons depended on creation
of ionisation sites then the track would be delineated by ionisation sites at intervals
averaging about 20 micron for the fastest part of the tracks. Measurements of the
track widths of positrons show no evidence for such localised nucleation sites. This
points to a recording process that depends on the transient presence of a positive
charge as it propagates through the crystal. Since the recording process results in
localised rearrangements of atomic structure of the lattice, giving rise to formation
of the magnetite ribbons, it is likely that the recording process depends on local
variations of crystal potentials, that is, chemical processes. This topic is examined
further below.

The observed frequency of positron tracks per cubic centimetre of muscovite
seldom exceeds 10 and often is below one. The rate of positron creation is about
1300 per cc of crystal per year. Clearly, the crystals cannot be continuously sensitive
in time. This suggests that as they cool slowly after growth they become progressively
more unstable internally and, at some time, start to record the tracks. If the recording
process, once started, responded to all emitted positrons then, based on a yearly
flux of ∼1300 per cc, the recording process would operate for less than about three
days to give the observed frequency of 10/cc. For lower frequencies the duration
would be measured in hours. Assuming the recording process is of a chemical nature
then the main variables would be the local pressure and temperature of the crystal.
The tracks occur within crystals that have already grown and not during the growth
stage. Evidence for this came from observation of the tracks left by electron-positron
showers [18], which extend through many adjacent layers, whereas crystal growth
occurs layer by layer. The geologically slow processes of rock uplift implies that the
pressure changes only very slowly. Since the pegmatite intrusion is surrounded by a
vast mass of rock the temperature of a given crystal also will change only very slowly.
The change in these two variables would be exceeding small over a period of a few
days. This leads to the conclusion only a very small fraction of the emitted positrons
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are recorded during the sensitive recording phase. This is not surprising since the
recorded tracks all lie exactly in the (001)-plane, implying a very small solid angle
of capture for recording. Estimation of the relative rate of capture is difficult because
of the complexity of the lattice and unknown details of the recording process. Firstly
there is the variation due to diffraction in the (001)-plane. Secondly, there is the
shape of the positron energy spectrum giving few of high energy with long flight
paths that are easy to recognise. Thirdly is the extremely small angle normal to the
(001)-plane arising from diffraction, similar to that seen in the (001)-plane, in which
they propagate. Based on reasonable estimates of these variables the probability for
being recorded is in the range 10−5–10−6. The deduced recording durations are
then of thousands of years. A period of a thousand years or so is compatible with
significant changes in temperature of a large mass of rock. This extreme selectivity is
most fortunate: if a much higher proportion were recorded it would be impossible to
resolve them for study. In principle, the observed frequency of muon tracks allows an
independent estimate to be made of the duration for recording. There is uncertainty
of the muon flux in remote geologic times and of the efficiency for recording. If the
flux was of similar order as now then the implied estimate for recording duration is
compatible with that for positrons. We now turn to the origin of the majority of lines
lying exactly in atomic chain directions that are inconsistent with tracks of known
charged particles.

1.4 Interaction Between Theory and Experiment

A reasonable aim of research is to simplify, understand and explain the vast com-
plexity of Nature. Theoretical concepts and techniques are vital tools in this quest,
especially in attempting to make predictions that might be tested by experiment.
But there are problems in attempting to cross disciplines and fuse concepts. The
study of the lines in mica led to the concept of a new kind of lattice disturbance that
could propagate through a crystal. It was given the name quodon. Attempts to fuse
this concept with theoretical and computational work on the nonlinear behaviour
of lattices pointed towards the concept of intrinsic localised modes, in particular,
breathers and kinks. The problem is that these theoretical entities or concepts are
well defined whereas their counterparts in Nature are not. A quodon seems to behave
rather like a breather but not exactly. The cause of such difficulties often arises from
the complexity of the actual experimental systems. For example, it is not possible to
do experiments on isolated one-dimensional chains of atoms: they fall under gravity,
fold, break and any attempt at measurements influences the chains. The concept of
propagating kinks was introduced but what is measured or observed differs from the
theoretical definition in various ways. So perhaps they should be called ‘kink-like
lattice excitations’? Surprisingly, science manages to move forward despite these
fuzzy and vague connections.
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1.5 The Role of Atomic Chains in Propagation of Energy

In 1992 it was found that in certain crystals of muscovite containing some Ca the
tracks of positrons delineated bymagnetite were sometimes associatedwith long nar-
row ribbons of the mineral epidote. This has the formula Ca2(Al,Fe)3(SiO4)3(OH).
Each epidote line was aligned exactly in a chain direction and lay in the opposite
direction to a positron track with which it was collinear and in the same layer [27].
TEM studies showed that the magnetite lines form as intrusions in the K-sheets that
push apart the silicate layers but the epidote lines are thin compositional alterations
of the lattice centred on the same K-sheet. Each ribbon of epidote had a constant
width of about a micron that varied slightly for different ribbons. These pairs of lines
occurred only for positrons of near maximum energy having long flight paths. The
probability that the close association between these pairs of lines was due to random
processes was negligible, especially as there was no explanation for what caused
the lines of epidote. Hence, the action of emitting a positron from a nucleus was
examined as a possible cause for the epidote lines.

The decay channel for positron emission involves a neutrino. The highest energy
positrons occur when the neutrino carries away least energy. This means that the
nucleus recoils in the opposite direction to the emitted positron. From the above
analysis of positron tracks this means the direction of motion of the recoiling nucleus
is close to a chain direction. This is reminiscent of energy transport as seen in New-
ton’s Cradle but in the Cradle the masses are in direct contact. The maximum energy
of the recoiling nucleus for positron emission is ∼10eV, which means the atom is
moving supersonically towards the next atom in the chain. It was logical to sup-
pose that the epidote lines were caused by motion through the lattice of an entity
or object carrying the recoil energy. For conciseness this object that moved along
a quasi-one-dimensional chain was called a quodon. Analogue models of chains of
atoms in a lattice resembling muscovite that interacted via nonlinear forces revealed
a remarkably stable, highly localised, mobile excitation that propagated easily along
chains. The duration of propagation was limited by only by frictional losses. This
compact entity was found to be the only kind of excitation that could be generated by
a swift impact. Numerical studies led by Prof. J.C. Eilbeck of a simplified model of
a sheet of potassium atoms sandwiched between nearly rigid slabs of silica showed
that quodons appeared to resemble a type of intrinsic localised mode of lattice exci-
tations called breathers. This gave a useful model for investigating the chain-related
lines [6, 11, 25, 29]. The main simplification involved in the numerical models
was the assumption of a rigid framework of atoms surrounding the sheet of potas-
sium atoms. This simplification introduced an on-site potential in the Hamiltonian
describing the system.

The numerical studies showed that most of the energy in a breather was contained
within a moving envelope of about ten atoms, with most of the energy held by atoms
in the central chain. The atoms in a breather moved in an oscillatory fashion in
the direction of the chain, adjacent pairs moving alternatively towards each other or
further apart than the equilibrium spacing. The associatedmotion of atoms in adjacent
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chains was small, being negligible in chains further out. The motion of atoms within
a breather show a phase velocity that exceeds the slightly subsonic speed of the group
motion. Based on the assumption that a quodon resembles a breather the energy in
a quodon apparently cannot exceed that of the originating recoil nucleus. Thus the
maximum energy of individual atoms in a quodon could be a few eV. Atoms in
a gas with this much energy would have a temperature of about 104 K. Hence, it
is was considered plausible that the propagation of quodons could initiate atomic
rearrangements of the lattice locally to catalyse the creation of epidote. Although the
tracks of quodons were first identified in calcium rich crystals it was soon shown that
the great majority of lines decorated with magnetite, which did not show charged
particle-like properties, were due to quodons.

The dominant decay channel for 40K is by emission of an electron. The maximum
recoil energy of the nucleus in this case is ∼42eV. As this is much greater than the
recoil energy for positron emission most of the tracks attributed to quodons should
arise from this source. This conclusion is compatiblewith the near absence of charged
particle tracks at the end of quodon tracks inmost crystals ofmuscovite, of high Fe but
low Ca content, since the negative charge on electrons does not trigger the recording
process. It is also consistent with themuch higher frequency of occurrence of quodon
tracks relative to that of positron created tracks. This fact remained a puzzle until
the lower recoil energy for positron emission was pointed out by Archilla et al. [2].
Nevertheless, numerous examples were found of positron tracks with associated
quodon tracks both decorated with magnetite. Figure1.4 shows some examples.

There are several aspects of quodons that are poorly understood. Such as what
fractions of the energy and momentum of a recoiling K nucleus are carried away by
a quodon, relative to that radiated away as phonons. What determines the maximum
energy a quodon might have? Is a quodon modified by the recording process? In
particular, can it gain energy from the exothermic recording process? Since quodons
can propagate further than 107 unit cells at room temperature in absence of possible
energy gain from the recording process they must be essentially decoupled from the
surrounding lattice. So how might they lose energy in flight in a perfect crystal?
Not by generating phonons. Adjacent atoms within a quodon oscillate in nearly
anti-phase longitudinal motion. If the internal motion was truly anti-phase then in
the centre-of-mass system there would be no transfer of energy from one atom to
the other, no matter how great the energy of both atoms. Departure from exactly
anti-phase motion, however, does cause transfer of energy. A limit on this is set by
ionization, that is, by raising the K atom of lowest energy to its next higher energy
level. The first and second ionisation energies of potassium are about 4 and 31eV,
respectively. Assuming the potassium ions inmica are in their lower energy state then
the difference in energies of the oscillating ions in a quodon cannot exceed 31eV
otherwise there will be loss of energy via ionization. This implies that the individual
atoms could have greater energies than the difference value. Of course, the problem
then is how might so much energy be coupled to a quodon to start with? In the case
of quodon creation by a single recoiling nucleus the second ionization value might
seem to limit the total energy coupled to the quodon. However, although ionization of
the first atom by the recoiling nucleus would reduce the efficiency of kinetic energy
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Fig. 1.4 Contact prints of positron tracks, showing the increase in width of a track as a positron
slows down to give the characteristic tapered or tadpole shape. The maximum range of a 0.5MeV
positron in an amorphous material of the same atomic composition as muscovite mica is less than
2mm. The large separation of atoms in the potassium layer and channelling both contribute to the
extended range
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Fig. 1.5 Plot of the output from the channel plate detector as the crystal was rotated in front of the
detector. A second source of alphas was attached to the crystal holder that could be brought to face
the detector to test the detection and counting system. This source gave the peak labelled T. The
crystal was then rotated to bring the bombarded edge to face the detector. Atoms sputtered from the
bombarded edge and back scattered alphas gave the peaks labelled S. Further rotation brought the
rear edge of the crystal to face the detector from which ejected atoms could reach the detector to
give the peak labelled E [23]. See Russell and Eilbeck [23]

transfer the fact that it was ionized would not limit the kinetic energy it could couple
to the quodon. The ionized atom would be left behind as the evolving quodon moved
away.

1.6 Ejection of Atoms by Elastic Scattering of Quodons

Claims that natural crystals can permanently record, with astonishing sensitivity,
transient motion of both high energy charged leptons and uncharged quodons calls
for strong independent supporting evidence. One way would be to replicate in a
laboratory the recording process in muscovite crystals. For a number of reasons
this is still considered impractical. Simply re-heating under appropriate pressure a
muscovite crystal showing lines to reverse the exothermic formation of magnetite
and so restart the recording stage would not work. The entire initial lattice structure
must be regenerated. However, the expected behaviour of breathers when they reach
the end of a chain suggested a possible way forward [23].

By analogy with the decay of 40K nuclei it was proposed that quodons would be
created in a crystal of muscovite if it was bombarded with energetic alpha particles.
Although the energy of the incident alphas from 241Am (∼5MeV) greatly exceeded
the recoil energy from 40K the struck atoms would quickly loose energy by creat-
ing atomic cascades, giving atoms with energies in the 10–100eV range. Some of
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these energetic atoms would collide with potassium atoms and create quodons. The
quodons should then propagate along chains and on reaching the end of the chains at
the opposite edge of the crystal might cause ejection of the last atom from the chain.
To minimise the possibility of channelling of the alpha particles to the ejection face
theywere collimated so as to impinge on the crystal edge at near grazing angle. It was
known that only about one in 104 of atoms ejected from a surface are ionised, so any
ejected atomswere ionized by passing through a low intensity plasma. This was done
so that the ejected atoms could be detected electronically by a channel plate detector.
Appropriate electrostatic grids were used to prevent secondary electron emission and
sputtering by field emission effects. It was found that atoms were ejected from the
rear face of the crystal when the front face was irradiated with alphas and from a posi-
tion on the rear face that was at the end of chains starting at the front irradiated spot.
The results are shown in Fig. 1.5. The distance between the irradiated and ejection
faces of the crystal was∼7mm or>107 unit cells. The experiment was done at room
temperature. The interpretation of this experiment was that quodons created near the
front face propagated along chains of ∼107 atoms and still had sufficient energy to
eject atoms from the crystal surface. Moreover, the experiment demonstrated that
quodons were not destabilised by phonons at room temperature [23].

This experiment did not define uniquely the internal structure of a quodon. How-
ever, extensive numerical studies of possible lattice excitations have revealed the
existence of only two types, namely, breathers and kinks. The structure of a breather
and of a kink is illustrated in Fig. 1.6 for the simple case of a single chain in an array.
A fundamental difference between breathers and kinks is that kinks are inherently
laterally unstable in 2 and 3 dimensional systems but breathers can be stable in 2-D
sheets, as shown in mica. Kinks in perfect lattices seldom propagate further than a
hundred or so atoms along chains in 2-D sheets before degrading to phonons. For
the above ejection experiment single crystals of high quality with little Fe content, as
judged by their colour, were chosen to eliminate any possibility that the excitations

Fig. 1.6 The position of atoms in a chain of atoms in a crystal as two different types of nonlinear
excitations pass along the chain. Top Breather. A breather can exist on a 1-dimensional chain and
also in a 2-dimensional sheet. It is not known if they can exist in a 3-dimensional array like a metal.
It is not known if multiple breathers can exist in close proximity. Bottom Kink. A kink is stable on
a 1-D chain but is laterally unstable in a 2-D chain, spreading out and fading. Multiple kinks can
be started in a sheet but spread sideways
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might be driven by energy released via the exothermic recording process. The conclu-
sion is that, in the particular case of muscovite, quodons created in the (001)-planes
of K sheets most probably resemble breathers.

1.7 Thermal Stability of Lattice Excitations

The stability against thermal motions of atoms of the non-linear lattice excitations
causing tracks in mica is remarkable. This is illustrated by quodon tracks of length
at least 400mm and kink-related tracks exceeding 120mm. As this is a critical test
of any proposed theoretical models for the excitations it is necessary to show that
the tracks were recorded at high temperature. At present there is no known way to
determine the actual temperature of a crystal when it recorded tracks. The tracks are
themselves stable and remain unchanged by reheating in air to at least 1200K. The
observed occurrence of electron-positron shower tracks in many adjacent recording
layers shows that the recording process starts after the crystal has grown. Another
indicator of high temperature is the migration of iron and calcium to delineate the
tracks. The Arrhenius’ equation for rate of migration shows it depends exponentially
on the reciprocal of absolute temperature. This points to high temperature. There
are, however, two ways to set limits on the temperature. The first is by measuring
the fraction of crystals showing fractures or gross deformations that occur before
the recording process starts. If crystal damage occurs first then the local distortion
of the lattice prevents propagation of quodons. In such crystals the damaged area is
surrounded by a region devoid of any tracks. As large mica crystals grow, typically
in molten granite, in a pegmatite intrusion there is competition for space with other
crystals of various kinds, which could cause crystal damage. Once the pegmatite
has frozen solid there will be little relative motion between adjacent crystals. So a
mixture of damaged areas with or without tracks would restrict the recording stage to
shortly after crystal growth. Measurements on the 100kg of mica examined showed
that more than 60% of the damage occurred after the recording stage. On this basis
the temperature during recording must be of order 900K [7].

The second way to set a limit is to estimate the depth when recording occurred
by determining the anisotropy of muon tracks. The muons created by neutrino inter-
actions within the Earth are distributed isotopically but those penetrating directly
from the atmosphere are strongly collimated about the zenith direction. The greater
distance muons, incident on the ground away from the zenith, have to travel to reach
a given depth leads to the collimation. The intensity in this collimated part varies
approximately as cosn(�) where � is the angular departure from the zenith and n
increases with depth but this relation fails at great depths. If a crystal is orientated
during the recording stage so that the (001)-plane is near the zenith then there could
be a grouping of tracks about one direction in the recording plane due to the direct
vertical component. Unless the recording plane is aligned with the zenith there will
be a reduction in the vertical component, which effectively narrows the half-width of
the angular distribution. In practice, due to random orientation of crystals, less than
10% of crystals might show evidence of collimation. Also, to establish an angular
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Fig. 1.7 Top Plot of the angular distribution of muon tracks in a 1cm thick slab of muscovite mica.
The plot shows both the random, isotopically distributed, muons created by neutrino interactions in
the rock and the collimated direct muons created in the air. To record the direct muon component
the slab must have been orientated with the (001)-plane lying near the zenith. Bottom Plot of the
relative muon flux as a function of depth underground. At about 6km the direct muon component
falls below the neutrino created muon background. Since the plot in the top figure shows both the
direct and isotropic components the recording must have occurred when the crystal was at a depth
of at least 5km. Data from [9] using that the density of granitic rock is 2.7g/cc or, equivalently, that
1km or rock is equivalent to 2.7km water

correlation with crystal orientation thick slabs of a crystal are needed as random sep-
arate sheets scramble the orientation data. The angular distribution of muon tracks
in one such crystal slab is shown in Fig. 1.7 (top). The grouping in the vicinity of
130◦ is statistically significant and suggests a depth in excess of 10km. Another way
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to estimate the depth when recording occurs is by comparing the number of direct
relative to isotropic muons that are recorded. For the data in the above figure this
ratio is about 1/4. The actual dependence of muon intensity on depth is shown in
Fig. 1.7 (bottom) from which it is seen that at depths greater than about 10km the
direct muons become negligible in number relative to the neutrino created ones. The
conclusion is that the mobile lattice excitations must be recorded at great depths
with temperatures approaching 1000K. It should be remembered that the tracks are
recorded at pressures in excess of 1000bar.

1.8 Creation of Quodons by High Energy Particles

Some tracks of quodons consist of two parallel quodon tracks separated by a short
section of track that is not in a chain direction [24]. Examples are shown in Fig. 1.8.
The short sections of track show evidence of scattering and have random orientation
in the (001)-plane, both characteristic of a charged particle. Since all three tracks are
coplanar and joined at the intersections it is reasonable to suppose that the short tracks
generate pairs of quodons. Positrons from K-decay have insufficient momentum to
create quodons, which require movement of particles or atoms of much greater mass.
The most probable candidates are pions or protons from high energy interactions of
muons and neutrinos. Both have sufficient mass to create quodons. Although high
energy neutrons also are present they are not able to trigger the recording process.
The pions or protons will usually be propagating in random directions in the bulk
mica and so not trigger the recording process. If they scatter off a potassium atom and
then move in the (001)-plane the recoiling potassium atom could create a quodon.
The second quodon would result by the inverse process when the pion or proton
scatters out of the K-sheet and leaves no further track.

1.9 Nuclear Scattering of Muons

There is another test for the long lines lying in random directions being the tracks
of muons in addition to the evidence for the expected multiple scattering. When an
energetic muon that is propagating through a crystal scatters off a nucleus in or near
a K-sheet it will transfer energy and momentum to that nucleus. If sufficient energy
is transferred then an atomic cascade can develop. The initial motions of atoms in
a cascade are hypo- then supersonic. This leads to the generation of multiple kinks
and quodons, both of which propagate along atomic chains. But kinks are laterally
unstable in 2 and 3 dimensional systems like the K-sheets. Instead of propagating
like a quodon a kink spreads sideways to form a fan-shaped disturbance of the lattice
in the K-sheet. As early as 1963 fan-shaped patterns were observed arising from the
tracks of muons but at that time the existence and behaviour of kinks and quodons
was not known. Recent numerical and analytical studies of kinks in 2-dimensional
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Fig. 1.8 Contact prints of pairs of quodon tracks joined by the track of a swift charged particle. One
quodon is created when a particle scatters in to the recording layer. The particle leaves a track as it
moves in a random non-atomic chain direction in the recording layer. The second quodon is created
when the particle scatters out from the recording layer, creating the characteristic dog-leg pattern of
two parallel quodon tracks joined by a section of track lying in a non-atomic chain direction. The
short average lengths of the particle tracks creating these quodon pairs, compared to the average
length of relativistic muon tracks, points to the swift particles being positively charged pions or
protons. Pions, protons and also neutrons are created by nuclear interactions of the muons but the
uncharged neutrons do not leave a track [24]

systems revealed a test for their existence, namely, the opening angle of the lateral
spreading. This test was applied to the measurements made in 1963 and confirmed
the existence of kinks in atomic cascades created by nuclear scattering of muons.
However, there was a fundamental problem. The range of the observed fan-shaped
patterns attributed to kinks were orders of magnitude to long. The energy of the
kinks forming the fans should have dissipated after propagating over only a hundred
or so atoms before degrading to phonons. The experimental evidence provided by the
recorded patterns in mica implied that somehow kinks were gaining energy as they
propagated. The only plausible possible source of energy that would be available to
individual kinks in flight is that stored in the crystal lattice. In muscovite the energy
is stored chemically and is released in the exothermic recording process.
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This raised again the question of whether or not quodons could pick up energy
in a similar way. The mica ejection experiment provided a partial answer because it
showed that quodons could propagate ∼107 atoms (∼7mm) in the absence of the
recordingprocess despite the crystals inevitably being contaminatedwith iron at a low
concentration. The obvious stability of quodons in the layered structure of muscovite
has not yet been demonstrated in any other non-layered crystal. Experiments on
the ’long range effect’ in irradiated copper can be interpreted using either quodons
or kink-based fans if the latter can pick up energy from the lattice. It would be
informative to study their possible creation and behaviour in simpler layered crystals
by using the last atom ejection procedure. Fans hold the promise of providing a
deeper understanding of transport phenomena in crystals because they can propagate
in layered and non-layered crystals. Of special interest is their internal structure
observed in muscovite. It looks like multiple kinks are forming, dying and reforming
as the energy wave front propagates. Of course, a fundamental problem in studying
the behaviour of these nonlinear lattice excitations is how to observe them in flight,
especially in opaque materials.

1.10 Recording Process

As described above, there is much evidence to support the claim that positively
charged particles can generate permanent tracks in iron-rich muscovite crystals.
Moreover, there is strong supporting evidence, backed by experiment, for the creation
of quodons that also can generate permanent tracks. However, quodons consist of
localised nonlinear motions of atoms with no unpaired electrons or positive holes. If,
following Ockham’s Razor, it is assumed that the tracks of both charged particles and
neutral quodons are recorded by the same process then that process cannot depend
only on nucleation sites created by ionization. Since the recording process results in
a chemical reordering of the lattice in the vicinity of the path taken by the mobile
disturbance, be it a point-like positron or muon or a locally distributed quodon,
then it must involve highly localised changes of crystal potentials. The absence of
continuous tracks due to swift electrons and the lack of decoration due to a negatively
charged atom following positron emission is indicative of a potential energy barrier
inhibiting spontaneous precipitation of iron to form magnetite, even at temperatures
exceeding 600 K. It is a logical extension that the recording process is initiated by
transiently lowering a potential energy barrier locally.

There can be little doubt that the easy cleavage in the potassium (001)-plane, due
to the weak van der Waals’ bonding, and the large minimum separation between the
potassium atoms in the same plane of ∼0.5nm are important factors in the recording
process. The formation of intrusivemagnetite ribbons distorts the layered structure of
a crystal. The bending of the layers in the vicinity of lines is visible to the unaided eye
by observing sheets in reflected light. At the high hydrostatic pressures associated
with a pegmatite this local distortion of the layers is accommodated in the bulk crystal
by averaging the distortions over many layers. The energy released by migration of
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iron to form magnetite must be greater than that needed to distort the layers. The
large separation between potassium atoms may well assist in the initial stage of the
recording process when it is probable that only one ion moves in response to the
transient disturbance caused by a moving particle or lattice excitation. The open
spacing should also assist in the necessary subsequent migration of Fe and O ions
in the (001)-plane needed to form the ribbons. It is probable that migration of ions
normal to the silicate layers is difficult.

The concept of a potential energy barrier led to the idea that as crystals cool slowly
after growth they enter a recording stage where the lattice tries to expel excess Fe
and this is facilitated by the transient presence of a positive charge. The duration of
this recording stage will depend on the concentration of Fe in the crystal at growth. It
will also depend on the rate of cooling and the rate of migration of the Fe within the
lattice. Further, it will depend on the rate at which Fe is removed from the lattice by
accretion on tracks. If the tracks were of electrons the observed frequency of tracks
would correspond to a recording duration time of minutes, which is unbelievable
and totally at odds with the deduced times for positrons and muons. The absence
of electron tracks implies that the recording process is inhibited by a local negative
charge.

In the early stages of studying the lines it was assumed that the initial amount of
iron held in a crystal was comparable with the amount precipitated in the magnetite
ribbons. On this basis the recording process appeared not to function if the iron
concentration was less than about one iron ion per 200 unit cells of muscovite. The
relative positions of atoms in the muscovite lattice are illustrated in Fig. 1.9 [21]. The

Fig. 1.9 Top Diagram
showing the structure of
muscovite. Iron can
substitute for silicon in the
sheets adjacent to the
potassium sheets, so they
will feel changes in crystal
potentials caused by large
amplitude motion of
potassium atoms and passage
of swift positively charged
particles in K-sheets. Bottom
Unit cell. Reproduced with
permission from [21].
Copyright © 2014, Springer
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maximum concentration was expected to occur when Fe+2 replaced the octahedrally
coordinated aluminium, up to about two iron ions per unit cell. This suggests a
maximum concentration of Fe of about 2 atomic%.Most samples of clear muscovite
lie in the range from almost none to up to this value. In addition, Fe+3 can also replace
silicon that, significantly, is closer to the potassium layer in which the positrons
propagate. However, recent measurements of the Fe content in crystals showing
good recording of tracks have shown that the concentration is almost constant at
about 4 atomic %. The big surprise was that the amount of Fe differed little in
regions of a sheet that showed many tracks from regions showing none. Estimates
were then made of the amount of Fe held in the magnetite ribbons. It was found that
the amount in the ribbonswasminute in comparisonwith the bulkmica. This suggests
that crystals that can record tracksmust start with a surprisingly high iron content that
will make the structure more strained than for crystals with low iron substitution.
It is then perhaps not surprising that as such crystals cool they try to revert to a
lower energy state by expelling excess iron in the form of staining. Since the staining
does not occur at random there must exist an inhibiting potential energy barrier.
The existence of the tracks shows that swift positively charged particles facilitate
the rearrangement of atoms by lowering this potential energy barrier. Positrons lose
energy as they propagate by scattering off interstitial impurities but this is not the
cause of the tracks. This is because the average rate of energy loss per unit length
of track for the fastest positrons is far too small to significantly influence the local
chemical bonds. The close proximity of the moving positrons to the iron and oxygen
in the silicate layers should be an advantage if the Fe+3 ions are involved. Probably
the only way that details can be revealed of the movement of charges and atoms that
occur in the recording process is by computer simulation. Although this model of
the recording process provides a possible recording mechanism it does not give a
complete description for the formation of the observed tracks.

1.11 Interactions of Mobile Lattice Excitations with Stored
Energy

The only way that laterally unstable kink-pulses could propagate the great distances
observed in muscovite crystals is by gaining energy from the exothermic recording
process. This raises the question of howan atomof ironmoves fromone site, probably
in a silicate layer, into the adjacent K-sheet where the recording process operates.
Owing to the motions of atoms in a kink-pulse either the Fe ion is attracted to the
space immediately in front of the pulse or to just behind it. In the compression
front the K-atoms are closer together, which seems unlikely to create a potential
well for a Fe ion to enter. In the immediate wake of the pulse, however, the K-
atoms are more widely separated than in equilibrium conditions. This would create a
transient potential well to receive the Fe ion. As soon as the Fe ion was in the well it
would impede the recoiling motion of the two adjacent K-atoms, thereby driving the
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Fig. 1.10 Plots of the ratio
of separation of potassium
atoms relative to their
equilibrium separation as a
kink-like pulse moves along
a chain of atoms. The
different plots are for equal
intervals of time for a single
pulse on one chain. The
shaded parts indicate where
atoms are more widely
spaced than normal. It is
energetically unfavorable for
an interstitial atom or a
nearby atom to insert in to
the chain when atoms are
closer together than normal.
See Russell [21]

kink-pulse forwards. The positions of atoms as a kink-pulse propagates has been
studied by molecular dynamics. Figure1.10 shows the variation of atomic spacing
between adjacent atoms on a chain, expressed as the ratio of their instantaneous
separation relative to their equilibrium separation. Each plot is a snapshot at equal
intervals of time in a sequence as the kink-pulse moves to the left. They were derived
for the much simpler case of a 2-D layer in a metal crystal, because of the complexity
of studying the muscovite lattice. The restrictions on motion of atoms in chains in
the K-layer are likely to be similar to those in a metal, so these results should give
the general picture. In these plots the shaded regions are where the separations are
greater than at equilibrium. An alternative to the chemical storage of energy in iron-
richmuscovite is by irradiation to create interstitial ions and vacancies. The existence
of fans of long range decorated with magnetite shows that some kinds of nonlinear
lattice disturbances can pick up energy from a lattice. In a non-layered crystal they
would propagate and expand within a conical envelope.

Examples of kink-pulses of long range that continuously gain energy are shown
in Fig. 1.11. These are created by nuclear scattering of a swift heavy particle moving
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Fig. 1.11 Photograph showing the track of a heavy charged particle, moving in an axial channelling
direction in the recording layer, undergoing multiple nuclear scattering events. Each scattering
event produces an atomic cascade that creates kink-pulses, which develop in the two-dimensional
recording layer as a fan-shaped pattern. The range of the fans shows that the kink-pulses must gain
energy from the metastable lattice. The length of the primary track is 270mm
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in the vertical direction. Each one resembles a partially open hand fan. The existence
of such fans raises the question as to whether the great range of quodons might also
be due to energy gain from the recording process. By analogy with the situation in
kink-pulses, the oscillatory internal motion of atoms in a quodon, giving repeated
greater-than-equilibriumseparations,wouldoffermultiple potentialwells. In contrast
to kink-pulses, it is not obvious that insertion of ions into suchwellswould result in an
overall increase in the energy of a quodon. This is due to there being several possible
positions for insertion and some positions might impede the internal motions. It can
be argued that insertion always adds energy to the excitation. Some of this energy
will be incorporated into the quodon with the remainder radiated away as phonons.
A possible outcome might be no net gain in energy. There is some evidence for this
outcome. By scattering at a crystal defect a daughter quodon of lower energy can be
created that propagates in a different chain direction. The probability for scattering
of the daughter is increased because of the lower energy, leading to further quodons
of progressively lower energy. After a few such scatterings this sequence stops. If
quodons could gain energy then all the daughters might continue indefinitely, which
is not observed.

1.12 Confined Lattice Excitations

It is logical to explore what might happen if a quodon or kink-pulse was created
in a micro or nano-sized crystal that contained available stored energy. Suppose the
binding energy of atoms in the crystal was high enough to prevent ejection of atoms
by inelastic scattering. Then the excitation would be reflected when approaching
any face. In effect it exists within a cavity. If the reflecting faces were perpendicular
to the excitation flight path and there were no crystal defects then an excitation
might approach an infinite life. In practice, the life would be shortened by imperfect
reflections due to the internal stresses distorting the lattice in a nano-sized crystal.
Some indication of the possible life of a quodon can be seen from the longest flight
paths observed in large crystals, typically,∼0.4m.Assuming aquodonhas the highest
internal optical-mode oscillations with atomic spacing of ∼0.5nm then an observed
flight path of 0.4m gives about 109 oscillations. An important question is how much
energy such a quodon might absorb by annealing defects or removing stored energy
in the lattice. Similar reasoning would apply to kink-pulse excitations. A current
topic of interest is the possibility of releasing energy stored in a crystal at the nuclear
level by fusing hydrogen with a heavy nucleus to change the isotopic ratios of the
element. This might be achieved by repeated attempts at tunnelling by means of a
confined or stationary ILM of some kind [10].
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1.13 Internal Structure of Fans

There are several distinctive features of fans such as those shown in Fig. 1.11. Firstly,
it is known that fans are generated by nuclear scattering of swift charged particles.
The occurrence of two matching sides to each fan is inconsistent with the sides being
the tracks of any known charged particle. In electron-positron pair production only
the positively charged particle leaves a recorded track. Moreover, due to their small
rest mass positrons do not create multiple lattice excitations. It follows that the fans
must be produced by some kind of mobile, highly localised, lattice excitation. The
tracks of the lattice excitation causing the sides bounding a fan do not lie in atomic
chain directions. Therefore, the excitations cannot be quodons. Measurements of the
full opening angle 2θ of fans show there is a minimum opening angle of about 2◦
consistent with the expected lateral expansion of supersonic kink-pulses in a 2-D
sheet [21].

Secondly, the rangeof fans exceeds by several orders ofmagnitude that expected of
kink-pulses created in atomic cascades. Their observed range is usually significantly
less than that of quodons. In particular, in contrast with the behaviour of quodons,
the range of fans depends on the amount of the iron impurity that is precipitated to
record the passage of the kink-pulse disturbance [21]. The only way kink-pulses can
propagate the great distances observed in mica is by gaining energy from the meta-
stable lattice. The meta-stability arises from the structural reorganisation required to
expel the iron from the lattice as a crystal cools.

Thirdly, a uniquely distinctive feature of fans is the occurrence of multiple parallel
tracks lying within the defining side boundaries, called striae. These are clearly seen
in the fans shown in Figs. 1.11 and 1.12. These striae are always parallel to the
single atomic chain direction that lies within the angular width of a given fan. It is
reasonable to assume that each track in the striae is the result of a localised excitation
of the lattice propagating along a chain. Could these excitations be quodons? The
available evidence does not support this possibility. The individual striae in a given
fan all terminate at about the same distance from the fan source. If they were quodons
then they would propagate at subsonic speed whereas the kink-pulse sides move at
supersonic speed. Moreover, quodons would propagate individually and so have no
correlation on their range. Again, in contrast with quodons, the striae never create
secondary striae moving in a different chain direction as a result of scattering by a
crystal defect. Tracks of individual striae can terminate and then seemingly reappear
later further along a fan. Again, this is inconsistent with quodon behaviour.

Fourthly, the excitations causing the striae must be stable against strong thermal
motion of atoms in the lattice at temperatures of order ∼ 500 ◦C that pertain during
the recording stage of mica. This is a critical requirement. Numerical modelling of
atomic cascades in metals shows that kink-pulses, usually produced by specifying
one atom has an instantaneous finite velocity, can propagate in absence of thermal
motion and spread laterally [13, 14]. In practice, atoms gain energy over a finite
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Fig. 1.12 Photographs of fans showing the internal structure of multiple parallel striae, which lie
in the [010] direction or at 60 ◦C intervals to that direction in muscovite. They are 12 and 10cm
long, respectively

period of time by interacting with swift particles and those particles continue to
interact as they recoil. Similar lateral spreading has been shown in hexagonal lattice
arrays [4]. The marked instability of kink-pulses in the presence of thermal motion is
well illustrated by the example of 100eV impulses to an atom in the [110] direction in
gold. At a temperature of 0K in absence of zero-point motions the pulses propagated
about 180 atoms before being extinguished but with zero-point motions included
they failed to propagate beyond about 20 atoms along the chain (K. Nordlund, private
communication, 2009).Hence, it is unlikely that the striae can be caused by individual
kink-pulses of the type in which an atom in a chain is kicked towards the next atom
in that chain. What is needed is a kink-like pulse that can propagate long distances
along a chain and is inherently stable against thermal motions and laterally stable.

It has been shown that large amplitude motions of atoms in the [100] chain direc-
tion, using more realistic potentials for the mica structure, lead to an excitation that
can propagate great distances in absence of any thermal motions [1]. This excitation
is called a crowdion or ultradiscrete kink (UDK) to highlight the compactness of
the excitation, since most of the energy involved is carried by only two atoms on a
chain. The possible stability of a UDK against lateral spreading makes it a promising
candidate for the excitation causing striae. It might be relevant to the existence of
UDKs in mica that a MD study of adiabatic motions of potassium atoms in the mica
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Fig. 1.13 Contour plot of
the displacement energy for
moving a potassium atom
away from its equilibrium
position, showing the
location of a small secondary
potential well. The
displacements are assumed
to be very fast or adiabatic so
that the surrounding atoms
have insufficient time to
adjust their positions. Only
one secondary well is shown
in the [010] lattice direction,
labelled b. Others occur in
directions at 60◦ intervals.
Reproduced with permission
from [22]. Copyright ©
1995, Elsevier
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lattice showed the existence of secondary potential wells lying on chains in the [010]
direction and at 60◦ intervals [22]. A contour plot of the energy of displacement is
shown in Fig. 1.13; only one of the secondary wells is shown. In these directions
the equilibrium separation of potassium atoms is 0.9nm. Recent measurements by
Russell on mica sheets have shown that the striae in fans lie parallel only to the [110]
directions. A similar potential well is reported in the [100] chain direction [1]. It is
possible that multiple UDKs moving in phase in line abreast provide some degree of
collective lateral stability to those in the centre.

It is important to remember that muscovite crystals capable of recording the
tracks of charged particles and mobile lattice excitations do not have the ideal lattice
structure. They are under stress due to the relatively high, about 4 atomic %, content
of iron that distorts the lattice. However, the amount of iron that is precipitated out
to decorate the tracks, about 0.01 atomic %, is negligible relative to the total iron
present. Hence, there is little change in the lattice associated with the recording
process. It is remarkable that the various types of recorded tracks seem to be almost
ubiquitous in mica despite the great variability of composition of natural crystals.
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1.14 The Position at the Beginning of 2015

The position at the beginning of 2015 is considered in this section but new funda-
mental developments happened about February 2015 that are briefly described in the
next section.

Iron-rich crystals of muscovite are still the only medium in which the paths of
individual, nonlinear and uncharged, lattice excitations are visible. The astonishing
sensitivity of the recording process invites the question as to what else might be
recorded. There are several kinds of patterns decorated with magnetite that have not
yet been satisfactorily explained.

The present state of the studies of lattice related transport phenomena is both
interesting and challenging. This is because the recorded tracks in mica show that
at least two kinds of nonlinear lattice excitations must exist. Recent improvements
in modelling the muscovite lattice are revealing finer details of the behaviour of
energetic atomic motions. However, the difficulty of modelling possible excitations
in the presence of large amplitude thermalmotion of the lattice atoms is still a limiting
factor.

The nature of the atomic motions that allow the existence and remarkable stabil-
ity of a quodon, especially at temperatures of up to 500 ◦C in real crystals, remains
uncertain. In particular, there has been no experimental determination of their speed,
which is expected to be subsonic. The best description in terms of known lattice exci-
tations, which explains most of the properties of quodons, is given by the properties
ofmobile breathers. However, breathers are inconsistent with the observed properties
of the excitations that delineate the fan-shaped patterns. The best description for the
excitation causing the striae in fans seems to be an ultra-discrete kink or crowdion.
These are expected to propagate at supersonic speed. It has recently been determined
that the excitations causing the striae propagate only along chains parallel to [010]
directions. This property and their decoupling from phonons needs to be confirmed
if they are to successfully describe the tracks seen in fan-shaped patterns.

It will be interesting to see if ultra-discrete kinks or any other type of lattice
excitation can exist and propagate useful distances in the diamond lattice structure
of silicon. The observed behaviour of lattice excitation in the 2D layer of potassium
atoms in mica is likely to be relevant to the growing interest in other 2D structures,
such as those involving C, P, Si, Ge.

Finally, a better understanding of the recording process would assist in under-
standing the nature of the types of lattice excitations that yield recorded tracks in
mica.

1.15 The Puzzle Solved: Quodons Have Charge

Thefinal sentence inmy reviewof tracks inmica said clearly that: a better understand-
ing of the recording process would assist in understanding the nature of the types of
lattice excitations that yield recorded tracks in mica. In February 2015 this comment
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proved to be prophetic. How that came to happen would make an interesting story for
the future. Suffice it to say now that there were aspects of the recording process that
were contradictory so were pushed to the back of one’s mind. One such problem was
why the amount of decoration on all the quodon tracks was the same but they were
created with very different energies [2]. Then I looked at measurements made fifty
years ago about the decoration on positron tracks. I saw that the extent of decoration
on the quodon tracks was the same as that on positron tracks when the positrons were
moving slowly at near sonic speed. A few moments later and I knew the answer to
the question: What is a quodon? It is a nonlinear lattice excitation—most probably
a breather—that has captured a positive or negative charge! The implications of this
were astonishing and very exciting. It showed that a nonlinear lattice excitation could
capture a hole or electron and carry it safely over millions of atoms at white hot heat
in a layered crystal that was similar to all the high temperature superconductors. So
I worked carefully through the consequences and how they might be tested. Despite
being on holiday in Australia, within a month I was ready to present my results to
experts at a Workshop held in Tartu.1
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Chapter 2
Numerical Simulations of Nonlinear
Modes in Mica: Past, Present and Future

Janis Bajars, J. Chris Eilbeck and Ben Leimkuhler

Abstract We review research on the role of nonlinear coherent phenomena
(e.g. breathers and kinks) in the formation of linear decorations in mica crystal.
The work is based on a new model for the motion of the mica hexagonal K layer,
which allows displacement of the atoms from the unit cell. With a simple piece-wise
polynomial inter-particle potential, we verify the existence of localized long-lived
breathers in an idealized lattice at 0 K. Moreover, our model allows us to observe
long-lived localized kinks. We study the interactions of such localized modes along
a lattice direction, and in addition demonstrate fully two dimensional scattering of
such pulses for the first time. For large interatomic forces we observe a spreading
horseshoe-shaped wave, a type of shock wave but with a breather profile.

2.1 Introduction

The role of nonlinear localized coherent phenomena for the formation of anomalous
structures in crystalline materials remains unclear, despite a number of efforts over
the last two decades. In this chapter, we begin with a short survey of the state of the
art in research on this topic. This serves to introduce a number of relevant issues in
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Fig. 2.1 Solitons, breathers and kinks, in 1D discrete lattices

relation to atomistic models, including the work of Marín et al. on breathers [16] in
the K layer in mica.

From a heavily simplified perspective, there are three types of localized excitations
in dispersive nonlinear systems. These are (in 1D) solitons, kinks, and breathers, as
illustrated in Fig. 2.1.

• Soliton. Strongly localized package (lump) of energy, can move large distances
with no distortion, very stable even under collisions or perturbations.

• Kink. Similar to a soliton, but with different boundary conditions as x → ±∞.
May be even more stable due to topological conservation laws.

• Breather. A more complicated form of nonlinear wave. It looks like a soliton
modulated by an internal carrier wave. Not common in continuous systems but
more frequently seen in discrete systems. Note that breathers are also known as
Intrinsic Localized Modes (ILMs). M. Russell’s quodon discussed in this book is
now believed to be a breather.

Breathers in discrete systems were first studied by Ovchinnikov [19], but this
pioneering paper was overlooked for many years. Ovchinnikov also considered the
mobility of such objects. Independently in the early ’80s, breathers were studied in
the Discrete Nonlinear Schrödinger (DNLS) equation.

i
dA j

dt
+ (A j−1 − 2A j + A j+1) + γ |A j |2 A j = 0,
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where A j (t) is the complex oscillator amplitude at the j th lattice site. An early
application of the DNLS equation was as a simple model for so-called Davydov
solitons on a protein molecule. Arguably the first paper on the single breather in the
system was due to Scott and MacNeil [23] (although such states were still called
solitons in the early papers).

Figure 2.2 shows a stationary breather on the DNLS lattice. The time depen-
dence in the DNLS model for stationary solutions is extremely simple: An(t) =
φn exp(iωt). The amplitude goes to zero exponentially as |n| → ∞. Eilbeck, Lom-
dahl and Scott took the first tentative step towards a 2D theory of breathers in the
DNLS model by considering two coupled chains in a study of a crystal called
Acetanilide (ACN) which modelled protein structure [7]. This work found exam-
ples of staggered breathers (i.e. breather energies spread over two or more sites) and
the use of path-following from what is now called the anti-continuum limit. They
also considered more complex non-chain geometries, finding many exact solutions
on small graphs [8]. In the course of work in this area, a relatively long-lived example
of a moving breathers in a 1D discrete systems was found [6], see Fig. 2.3.

Many workers found other examples of discrete breathers in various systems (see
[10, 11] for reviews). In 1994, MacKay and Aubry found a general mathematical
proof for the existence of stationary breathers in a quite general class of systems
[14]. For mobile breathers in the DNLS equation, Feddersen found a very accurate
numerical description of travelling wave solutions in 1991 [5, 9].

The study of kinks in continuum and discrete models is a large subject in its own
right. A good early paper by Peyrard and Kruskal [20], on kinks in a highly discrete
sine-Gordon model, is a nice introduction. Some results on the numerical studies of
solitons in discrete systems will be found in [5].

2.1.1 Solitons, Kinks and Breathers in Two Dimensions

It is not difficult to generalize soliton or kink equations to give models which have
plane wave solutions in 2D, see Fig. 2.4. However there is a problem—the wave front
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Fig. 2.3 Moving breather in a simple model system (DNLS). Here energy is plotted rather than
complex amplitude
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Fig. 2.4 Soliton on the left, kink on the right

has a finite energy density so the infinite wave front has infinite energy. What we
need is a localized pulse with finite energy.

Schematically we can envisage pulses such as that shown in Fig. 2.5. The soliton
looks reasonable, but for topological reasons the kink has an infinite “side wall”
dislocation which may lead to infinite energy. The tail can be truncated—but this
brings us back to a soliton-type wave. The challenge then is to develop a suitable
model for a kink or soliton solution in a 2D system, or failing that to find breather
solutions.
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2.1.1.1 Derrick’s Theorem

In a simple single component homogeneous scalar continuum field theory, we have
a non-existence proof for stationary solitons due to Derrick (see [15]). The simple
idea is to start by supposing that, for example, our n-dimensional Hamiltonian is

E(φ) =
∫

(W (φ)∇(φ) · ∇(φ) + U (φ)) dn x

≡ E2 + E0.

Consider scaling the spatial variable x → μx. It is easy to show that

E(φ(μx)) = μ2−n E2 + μ−n E0.

If the soliton solution φ(x) is a stable minima, then dE/dμ = 0. The solution for
n = 1 is μ = √

E0/E2, but there is no solution for n = 2, 3.
Note that the theorem does not apply when we have a discrete system which does

not have a continuum limit—here breathers/ILMs/quodons may play a part. The
theorem (and the arguments given following the figures above) give an indication
that problems may arise if we try to generalize in a naive way from 1D to higher
dimensions.

2.1.2 The Work of Marín, Eilbeck and Russell on Breathers
in the Potassium Layer of Mica

Russell’s work on mica led to Collins preparing a potential energy plot on the Potas-
sium layer—the energy of moving one K atom with all the others being fixed [21],
see Fig. 2.6.



40 J. Bajars et al.

Fig. 2.6 Energy levels in the
potassium layer in mica.
Reproduced with permission
from [21]. Copyright (1995)
by Elsevier
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In 1998, Marín et al. [16] used the quantitative features of this plot to make a careful
numerical study of a simple 2D model of the K layer in mica. His program hexlatt
simulates the motion of a classical 2D hexagonal lattice, with displacements in the
plane. It includes both a nonlinear nearest-neighbour coupling (W ) between the K
and some type of nonlinear “on-site” potential (V ) [16]. The Hamiltonian is

H =
∑
i, j

1

2
‖u̇i, j‖2 + V (ui, j ) + 1

2
λ

∑
i ′, j ′

W (ui, j , ui ′, j ′), (2.1)

where ui, j is the (i, j)th atom’s displacement from its equilibrium state, and u̇i, j is
the displacement’s time derivative. For the on-site potential (mimicking the effect of
the O atoms above and below the K plane, assumed fixed) he used 6 atoms interacting
in a Morse potential:

VMorse(s) = 1

2
(1 − exp(−s))2, (2.2)

where s is the distance between potassium and fixed oxygen atoms. For interatomic
potential (K-K) he used a scaled classical 6–12 Lennard-Jones

WLJ(r) = 1 +
(σ

r

)12 − 2
(σ

r

)6
,



2 Numerical Simulations of Nonlinear Modes in Mica: Past, Present and Future 41

0
5

10
15

0
5

10

0

5

10

nx

t=0

ny

E
ne

rg
y

0
5

10
15

0
5

10

0

5

10

nx

t=30

ny

E
ne

rg
y

0
5

10
15

0
5

10

0

5

10

nx

t=60

ny

E
ne

rg
y

0
5

10
15

0
5

10

0

5

10

nx

t=1000

ny

E
ne

rg
y

Fig. 2.7 Breather motion in a model hexagonal lattice. Reproduced with permission from [16].
Copyright (1998) by Elsevier

where r is the distance between neighbouring potassium atoms and σ is a lattice
constant. The best results were found when both the on-site and interatomic potentials
have similar strengths. Figure 2.7 shows one typical simulation on a 16 × 16 lattice.
Note that we plot local energy density at various times on the lattice. At t = 0 we
give three atoms in the center an asymmetric kick, to mimic the radioactive decay of
a K atom in the mica. At t = 30 the breather resulting from this kick has moved to
the edge of the small lattice and is beginning to reappear on the opposite side due to
the imposed periodic boundary conditions. At t = 60 it has continued in the same
direction and has almost reached the starting point. The final frame is at a much later
time, t = 1000, and shows the breather after it has traversed the lattice about ten
times.

Marín’s study showed stable breathers propagating up to around ≤104 lattice con-
stants before breaking up. This is encouraging, but to demonstrate tracks in mica of
centimeters, we need an extra factor of 105 in the lifetime. Marín’s 2D calculation
also included a brief study of inline breather-breather collisions [17]. Most simu-
lations were performed on a 16 × 16 lattice due to CPU speeds at the time, but a
few were done using 32 × 32 lattices. The K atoms were constrained to stay within
the unit cell–with no hopping to other sites (hence no kinks). All simulations were
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Fig. 2.8 Recreation of the soliton on the Union canal in 1995

carried out at zero temperature. Similar results were also observed for cubic lattices
[18].

A key feature in the model is that the forces have the so-called quasi-one-
dimensional property–that is, if an atom is moved along one of the crystallographic
directions, the restoring force is exactly in the same line, but with a negative sign.
Technically this is a C2 symmetry. Note that we also use “quasi-one-dimensional”
in a different sense, to describe the fact that a localized breather or kink is observed
travelling along a crystallographic direction with very little disturbance in a trans-
verse direction. The two concepts are conjectured to be closely related, although no
formal proof of this exists.

Historical Anecdote The second author’s involvement in this problem began in
1995, when he was contacted for the first time by Mike Russell. Mike was interested
in attending the soliton and nonlinear waves meeting, (photo shown in Fig. 2.8) that
Chris Eilbeck was organising in Edinburgh that summer. He was keen to discuss
nonlinear effects in mica crystal. Mike was studying the tracks in mica as seen in
Fig. 2.9 and believed that these could provide evidence for some sort of nonlinear
wave like a soliton in a 2D crystal—no linear theory seemed to fit the data.

JCE had long been interested in nonlinear waves, initially in continuous systems,
but more recently in discrete systems. JCE, at that time, was especially interested in
breathers in lattices. Subsequent collaboration of the two led to a series of papers
aimed at understanding the theoretical underpinnings of the mica tracks (among other
phenomena). Although the consequent papers of Marín, Eilbeck and Russell received
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Fig. 2.9 Tracks in mica, several cm long. Reproduced with permission from [17]. Copyright (2000)
by Springer

some attention, the calculations have never been replicated. The Altea meeting pro-
vided an excellent opportunity to revisit and extend these calculations. What follows
is a more extensive examination of results based on the simple model we presented
there.

2.2 Preliminary Results from Numerical Experiments

In the main part of this section, we describe a new 2D mathematical model used for
the present study of long-lived propagating breather and kink solutions in mica at
0 K. With this model we allow atoms in the lattice to be displaced out of the unit cells
compared to the nearest neighbour interactions considered in Marín’s model from
Sect. 2.1.2. Thus we can now allow the possibility of kink solutions in our 2D lattice
model. In addition, in the choice of potentials we take a more academic point of view
and explore alternative approaches besides Lennard-Jones. Current research raises
new and not yet fully understood questions, and motivates further, more intensive
study.

In the present work we are concerned with the Hamiltonian dynamics of N potas-
sium atoms K in a 2D K-K sheet of mica crystal lattice. Equivalently to (2.1) the
Hamiltonian of the system is

H = K + V + U =
N∑

n=1

⎛
⎝1

2
‖un‖2 +

N∑
n′=1, n′ 
=n

V (rn, rn′) + U (rn)

⎞
⎠ , (2.3)
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where rn ∈ R2 is the 2D position vector of nth K atom in (x, y) coordinates, un = ṙn

is momentum, K is kinetic energy, V is the interaction potential energy and U is the
on-site potential energy. All masses of atoms are normalized to one. The system of
equations is

ṙn = un, (2.4)

u̇n = −∂rn

⎛
⎝ N∑

n′=1, n′ 
=n

V (rn, rn′) + U (rn)

⎞
⎠ , (2.5)

for all n = 1, . . . , N .

2.2.1 On-Site Potential

In contrast to the on-site potential (2.2) considered by Marín et al. [16], but with the
same assumptions of the fixed upper and lower layers of oxygen atoms, we consider
a smooth periodic function with hexagonal symmetry [24], i.e. a function resembling
an egg-box carton

U (x, y) = 2

3
U0

(
1 − 1

3

(
cos

(
4πy√

3σ

)

+ cos

(
2π(

√
3x − y)√
3σ

)
+ cos

(
2π(

√
3x + y)√
3σ

)))
, (2.6)

where x = (rn)1, y = (rn)2, σ is the lattice constant and U0 > 0 is the maximal
value of the on-site potential, see Fig. 2.10. This model has the same quantitative
features as Fig. 2.6.

Note that a simple product of cosine functions would not provide the required
hexagonal symmetry. Also, in a 1D approximation, i.e. y = const., the on-site
potential (2.6) reduces to the cosine function which is an on-site potential of the
discrete sine-Gordon equation and the periodic potential of a 1D model considered
in [4]. The model in [4] can be thought as a 1D approximation of the 2D model
(2.3) in any of three crystallographic lattice directions which can be prescribed by
the direction cosines, that is, with vectors: (1, 0)T and (1/2,±√

3/2)T . Without
periodic boundary conditions, a smooth cut-off of potential (2.6) can be imposed.

2.2.2 Interaction Potential

There are very well known and much used empirical interaction potentials from
the molecular dynamics community such as Lennard-Jones 12–6, Morse and
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Fig. 2.10 Egg-box carton
on-site potential with σ = 1
and U0 = 1

Buckingham potentials, among others. Essentially all of these interaction poten-
tials model repulsive and attractive forces of particles. The detailed structure of these
potential energy functions may strongly influence the behaviour observed in simu-
lations, particularly dynamical properties.

All potentials mentioned above are built from completely monotone functions with
a possible singularity at vanishing interparticle distance. For example, the Lennard-
Jones 12–6 potential has been extensively used in molecular dynamics models, on
account of its good representation of van der Waals attraction forces and its effi-
cient implementation in numerical codes. In this chapter, we use a simple family
of interaction potentials, defined by piecewise polynomials, which allow for easy
adjustment of modelling features such as well depth and which do not have a singu-
larity at the origin. Importantly we have found that these simplified potentials lead
to interesting properties of the numerical solutions for our lattice model compared
to those obtained using more conventional interaction potentials (in particular, we
observe kinks in certain simulations, see below.) We refer the interested reader to [2]
where the authors have performed a numerical study of propagating localized modes
in a 2D hexagonal lattice, by considering conventional Lennard-Jones potential for
the interparticle interactions and the same on-site potential (2.6).

The numerical results observed in this chapter suggest the need for deeper analyti-
cal investigations, particularly where these may lead to the design of completely new
materials [12]. In addition, the use of piecewise polynomial potentials may provide
additional freedom to better match the material properties in consideration, while
excluding singularities and directly incorporating smooth cut-offs; such potentials
can be constructed to different orders of regularity.

In this chapter, for the interaction potential V , we consider a distance dependant
potential of two joint 4th order polynomials P1(r) and P2(r), that is

V (r) =
⎧⎨
⎩

P1(r), 0 ≤ r ≤ σ,

P2(r), σ < r ≤ rcut ,

0, otherwise,
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where r = ‖rn −rn′ ‖ for all n and n′, n 
= n′. The parameter σ is the lattice constant
and rcut is the cut-off radius of the potential. The coefficients of the polynomials
P1(r) and P2(r) are found from the following constraints:

P1(0) = M, ∂r P1(0) = 0, M > 0,

P1(σ ) = P2(σ ) = −ε, ε > 0,

∂r P1(σ ) = ∂r P2(σ ) = 0,

∂rr P1(σ ) = ∂rr P2(σ ),

P2(rcut ) = 0, ∂r P2(rcut ) = 0, ∂rr P2(rcut ) = 0,

such that V (0) = M , V (σ ) = −ε, V (rcut ) = 0, ∂r V (0) = 0, ∂r V (σ ) = 0,
∂r V (rcut ) = 0 and ∂rr V (rcut ) = 0.

For small atomic displacements from the mechanical equilibrium state, which
we will consider as our initial conditions, the particular choice of the cut-off radius
rcut = √

(3)σ leads to the closest representation of the nearest neighbour interaction
model, i.e. Hamiltonian dynamics of atoms with only nearest neighbour interactions,
such as the model by Marín et al. [16]. Importantly, there is no formal restrictions to
consider larger values of the cut-off radius rcut .

For our computations we choose σ = 1, M = 25 and ε = 0.1 to approximately
match the scaled Lennard-Jones potential

VL J (r) = ε

((σ

r

)12 − 2
(σ

r

)6
)

with σ = 1 and ε = 0.1, where σ is the same lattice constant and ε is the potential
well depth value, see Fig. 2.11. Additional motivation for the particular choice of
parameter values will be given in Sect. 2.2.4.

Fig. 2.11 Comparison
between the Lennard-Jones
potential and the polynomial
potential (P1 P2) with
M = 25, ε = 0.1, σ = 1 and
rcut = √
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2.2.3 Time Integration Method

In simulations of Hamiltonian systems, e.g. (2.4)–(2.5), it is essential to use a
symplectic time integration procedure. In our simulations, we employed the Verlet
method, a second order, explicit symplectic scheme [1, 13]. The method is known for
its good energy conservation properties in long time simulations where energy stays
bounded in time and is conserved up to second order with respect to a time step. For
a Hamiltonian of the form H = 1

2‖p‖2 + V (q), the Verlet timestep approximates
Newtonian dynamics by the steps:

qn+1/2 = qn + 1

2
τpn,

pn+1 = pn − τ∇qV (qn+1/2),

qn+1 = qn+1/2 + 1

2
τpn+1,

where τ is the time step, qn ≈ q(tn) and pn ≈ p(tn) at time level tn = nτ where
n = 0, 1, . . . . As mentioned above, the method preserves the symplectic property
of Hamiltonian dynamics, i.e. dqn+1 ∧ dpn+1 = dqn ∧ dpn , where ∧ is a wedge
product of two differential 1-forms in vector representation. Thus the model is also
volume preserving in phase space. A valuable feature of symplectic integrators is that
they may, under certain circumstances, be interpreted as being essentially equivalent
to the exact propagation of a modified Hamiltonian (H̃τ = H + O(τ k)) (for a kth
order scheme) meaning that we may reinterpret the trajectories generated by our
numerical method as dynamical paths for a perturbed system. Interested readers in
numerical methods for Hamiltonian dynamics are referred to [13].

2.2.4 Parameter Values

To proceed with the numerical study of propagating localized modes of system (2.4)–
(2.5) we must select system parameter values. Without loss of generality, we set the
lattice constant σ equal to one. Once the interaction potential parameter values are
fixed, we are left with one parameter value to consider, that is, the strength of the on-
site potential parameter U0. Thus with the parameter U0 we can control the relative
strengths of forces in the system. With very small values of U0, the system will be
dominated by the forces of the interaction potential, and vice versa.

As was noted by Marín et al. [16], the best conditions to observe propagating
discrete breathers seemed to be when both potentials are of roughly equal strength.
We find that for given interaction potential parameter values rcut = √

3σ , σ = 1,
M = 25 and ε = 0.1, and with value U0 = 2, both potentials agree well for the small
displacements of the potassium K atom from its mechanical equilibrium state while
the neighbouring K atoms have been fixed in their positions. For the comparison
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Fig. 2.12 Top Unrelaxed
potential computations.
Parameter values:
rcut = √

3σ , σ = 1,
M = 25, ε = 0.1 and
U0 = 2. Unrelaxed potential
functions as seen by a K
atom moving in the (1, 0)T

crystallographic direction in
a 2D K-K sheet of the mica
crystal lattice model. Bottom
Unrelaxed potential
computations. Parameter
values: rcut = √

3σ , σ = 1,
M = 25, ε = 0.1 and
U0 = 2. Energy contour
lines as seen by the K atom
at the origin moving in a 2D
K-K sheet of the mica crystal
lattice model
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of potentials we consider an atom with the six fixed neighbouring atoms in their
equilibrium states.

Results of unrelaxed potential computations are shown in Fig. 2.12 for the para-
meter values given above. In both plots we normalize the interaction potential values
such that V ≥ 0. In Fig. 2.12 (top), we compute unrelaxed potentials as seen by an
K atom moving in the (1, 0)T crystallographic direction in a 2D K-K sheet of mica
crystal lattice, while in Fig. 2.12 (bottom) we plot the total potential energy contour
lines as seen by the K atom at origin. The colour axis agrees with the location of the
K atom in space. When the atom is at the origin, the total potential energy is equal
to zero. However when the atom approaches any of the other potassium atoms, the
on-site potential approaches zero and thus there is mainly only one contribution from
the interaction potential at r = 0. For this reason the potential energy becomes close
to value M where M = 25 in our example.

For the purposes of illustration we have indicated in the bottom plot of Fig. 2.12,
the lines of hexagonal lattice, six neighbouring O atoms and seven K atoms in
their dynamical equilibrium states. Compare the energy levels of the bottom plot
of Fig. 2.12 to the energy levels of Fig. 2.6.
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2.2.5 Numerical Results

In this section we describe numerical results showing propagating discrete breather,
kink and horseshoe wave solutions in an open lattice. Periodic boundary conditions
can also be imposed. Open lattice simulation allows atoms to be ejected by the
propagating waves at the edge of the lattice, which has possibly relevance to the
experiment by Russell [22].

With zero initial velocities (momentum) and all K atoms being placed at the cell
centres of the hexagonal lattice, the system (2.4)–(2.5) is in mechanical equilibrium,
i.e. all forces of the system are equal to zero. The lattice is defined by Nx atoms in
the x axis direction and an even number Ny of atoms in the y axis direction. The
first atom is always placed at the origin (0, 0). The spacing between atoms in the
x direction is equal to the lattice constant σ = 1 and in the y direction, the lattice
spacing between atoms is h = √

3/2σ . The total number of atoms considered in the
simulations is N = Nx Ny − [Ny/2]. In all simulations we use the Verlet method, as
described above, with fixed time step τ = 0.01.

For the initial conditions, we consider imparting a non-zero velocity to one of the
atoms while the rest of the lattice is kept at rest. The initial velocities of this atom in
the x and y axis directions are indicated by u0

x and u0
y , respectively. With different

initial velocity kicks and with different parameter values U0, we are able to observe
different phenomena as discussed in the following sections. In addition, we will refer
to the horizontal chain of atoms as the main chain of atoms along which the breather
or kink solutions propagates, that is, the most of their energy has been localized on
this chain. The final computational time is indicated by Tend .

By assigning half of the interaction potential energy to each atom in an interacting
pair, while adding also the kinetic and potential energy values from the on-site poten-
tial, we can define an energy density function for each atom. Since the interaction
potential may take negative values, we can normalize it. To see small scales better,
we take the logarithm of the energy density function, that is

Hlog = log(H + | min{H}| + 1),

such that Hlog ≥ 0. In all energy plots we plot Hlog and interpolate its values on
uniform meshes for plotting purposes only.

2.2.5.1 Numerical Results: Propagating Breather Solutions

This subsection is devoted to the study of propagating discrete breather solutions. We
perform numerical tests by exciting one atom in the system, i.e. by giving a single
initial kick. We provide the impulse to the atom in the middle of the lattice with
respect to the y axis. Numerical results with Nx = 100, Ny = 40, U0 = 2, u0

x = 3
and u0

y = 0 are shown in Fig. 2.13. We integrate in time until Tend = 80. Figure 2.13
illustrates the propagation of the breather energy in time on a horizontal lattice chain
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Fig. 2.13 Evolution of the energy density function in time of the breather solution. Nx = 100,
Ny = 40, Tend = 80, U0 = 2, u0

x = 3 and u0
y = 0

in the (1, 0)T crystallographic direction. We have excluded atoms at the boundaries
from the plots due to high potential values at the boundaries. The breather in the x
axis direction is localized in space on about seven lattice sites and on about three
lattice sites in the y axis direction.

The initial kick has produced a highly localized quasi-one-dimensional breather
solution. The excess energy of the kick produces phonons which spread into the lattice
at higher velocities than the breather. In addition, the kick has produced a secondary
breather solution with a lower energy propagating in the opposite direction. After
some time, this breather solution elastically reflects from the boundary and follows
the main breather solution. To illustrate that, we plot (in time after each 20 time steps)
the energy density function of atoms on the main horizontal chain along which the
breather propagates, see the left plot of Fig. 2.14. We plot the atomic displacements
in the x axis direction of the same lattice chain in the right plot of Fig. 2.14. From
the displacement plot we can conclude that the localized mode is an optical breather.
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To test the lifespan of the breather solutions, we perform long time simulations
with the same initial conditions and parameter values on a longer lattice, that is, on a
long lattice strip: Nx = 6000 and Ny = 40. We integrate in time until Tend = 14000.
In the left plot of Fig. 2.15, we plot the energy density function of atoms after each
7000 time steps on the main lattice chain in time. The result shows the long lifespan
of propagating discrete breathers in crystal model at 0 K. The breather has propagated
more than 5000 lattice sites. The second curve in the left plot of Fig. 2.15 is due to the
presence of the second propagating breather, see the description above. To see that
these localized energies in the left plot of Fig. 2.15 are associated with the discrete
breathers, we take snapshots of the energy density function at two distinct times from
the simulation and show them in Fig. 2.16. To confirm the good energy conservation
properties of the Verlet method, we have included in the right plot of Fig. 2.15 a
graph of absolute relative error of the total energy in time. The graph shows that the
total energy stays bounded for long integration times.

We can excite propagating discrete breathers for wide range of initial kick values.
Taking smaller values for initial kicks leads to stationary breather solutions. For very
small initial kick there is no localization and only phonons are produced. If we keep
increasing the initial kick values, the kink solutions appear, which are the topic of
the next section.

Remark Numerical simulations showed that with the same initial conditions but with
larger values of U0, the breather gets pinned to the lattice, but with smaller values
of U0 very distinctive horseshoe wave solutions appear, which we will discuss in
Sect. 2.2.5.3. Recall that we control the relative strength of the potentials in dynamics
with the parameter value U0.
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Fig. 2.16 Snapshots of the energy density function of the propagating breather solution at two
distinct times. Long strip lattice simulation: Nx = 6000, Ny = 40, Tend = 14000, U0 = 2, u0
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y = 0

2.2.5.2 Numerical Results: Kink Solutions

In this section we report on long lived kink solutions. For fixed value U0 = 2 we
keep increasing the initial velocity value of the kick. In the first numerical simulation,
we consider a lattice with Nx = 100 and Ny = 40. The initial velocity kick values
are u0

x = 5.5 and u0
y = 0. Such kicks produces a kink solution propagating on a

horizontal chain of atoms. In Fig. 2.17 we show evolution of kink’s energy in time.
We integrate in time until Tend = 30. Shortly before 25 time units, the kink has
approached the boundary and ejects two atoms from the lattice. That can be seen in
the left plot of Fig. 2.18 where we plot the energy density function of atoms on the
main chain along which the kink propagates, after each 10 time steps in time. In the
right plot of Fig. 2.18 we plot atomic displacements in the x axis direction. Note the
fundamental difference between breather and kink solutions. The kink solution is
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Fig. 2.17 Evolution of the energy density function of the kink solution in time. Nx = 100, Ny = 40,
Tend = 30, U0 = 2, u0

x = 5.5 and u0
y = 0

carried by the atoms from one unit cell to other, while a propagating breather passes
through the lattice without atoms leaving their unit cells. Thus kink solutions may
form vacancies inside the lattice as evident from the right plot of Fig. 2.18.

In Sect. 2.2.5.1 we demonstrated the long lifespan of propagating discrete breather
solutions, see left plot of Fig. 2.15. We find that our model also supports long-
lived kink solutions. For long-lived kink simulations, we consider long strip lattice:
Nx = 2500 and Ny = 40. With the same parameter values and initial conditions we
integrate in time until Tend = 1500. In Fig. 2.19, we plot the kink’s energy in time
after each 750 time steps of the main lattice chain. The kink has propagated over
more than 2000 lattice sites and has not collapsed during the whole computational
time window.

What about the argument above that a kink should not be able to propagate in
2D? In these solutions the essential feature is that the “side wall” of the kink has
zero energy—the atoms on the main chain have moved exactly σ before and after
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the kink passes. So displacements across the wall is zero. If the wall was wider, then
it would have finite energy, and we would not observe this phenomena.

Remark If we keep the same initial condition but increase the value of U0, the kink
disappears. For a kink to appear again we have to increase the initial velocity kick
value u0

x . On the another hand if we keep the same initial condition but decrease the
value of U0, the kink disappears too. Instead horseshoe wave solutions appear, see
Sect. 2.2.5.3.

2.2.5.3 Numerical Results: Horseshoe Wave Solutions

So far we have considered constant value of U0 = 2. The parameter U0 controls the
relative strength between two potentials considered, i.e. the atom-atom interaction
and the on-site potential. In this section we perform numerical study with smaller
value of U0, which lead to the observation of horseshoe wave solutions.



2 Numerical Simulations of Nonlinear Modes in Mica: Past, Present and Future 55

For this numerical test we consider a lattice: Nx = 100 and Ny = 120, and the
same initial kicks which led to the observation of propagating breather solutions in
Sect. 2.2.5.1, that is, u0

x = 3.0 and u0
y = 0. We integrate in time until Tend = 52

with U0 = 0.1. In Fig. 2.20 we show the evolution of the energy density function in
time. From the energy plots, we observe circular propagating wave spreading in all
directions until it hits the boundaries.

At fixed time we make a contour plot of the energy density function, see the
left plot of Fig. 2.21. From this image it becomes evident that the wave adopts a
horseshoe shape. We are interested in understanding the properties of the front wave
of the horseshoe wave solutions. We find that the cross-section of the front wave is
a breather solution. We consider a chain of atoms (assuming perpendicular to the
front) shown by the dots in the left plot of Fig. 2.21 and show their energy density
in time after each 13 time steps in the right plot of Fig. 2.21. The particular chain
of atoms is perpendicular to the (1/2,

√
3/2)T crystallographic lattice direction and

makes −30 ◦ with the x axis. The right plot of Fig. 2.21 confirms the propagating
breather characteristics of the front wave of the horseshoe wave solution.

2.2.5.4 Numerical Results: In-Line Collisions

In this section we study in-line breather-breather, kink-kink and breather-kink colli-
sions. To initiate both types of wave propagations, we excite two atoms in the lattice,
that is, we give initial velocity kicks to two atoms on the same lattice chain of atoms.
The left atom initial velocity kick is u0

x and u0
y , and the right atom velocity kick is

u1
x and u1

y . We start with the rest of the lattice in its mechanical equilibrium state.
In all the following numerical experiments, Nx = 200 and Ny = 40, U0 = 2 and
u0

y = u1
y = 0.

For our first example we consider in-line breather-breather collision with initial
kicks: u0

x = 1 and u1
x = −3.5. Integration in time is performed until Tend = 120,

see Fig. 2.22. In the left plot of Fig. 2.22, we show energy density function in time
after each 20 time steps on the main chain of atoms. Both kicks have produced
two propagating breather solutions moving in opposite directions. All four breathers
have different energies as can be seen by the colours. After 60 time units, two middle
breathers collide and pass through each other, exchanging some energy in the process.
Evidently, the breather coming from the left has lost some of its initial velocity and
propagates slower. The displacement plot of atoms in the x axis direction during the
collision can be seen in the right plot of Fig. 2.22.

For our second example, we consider in-line kink-kink collisions with initial kicks
of u0

x = 5.25 and u1
x = −5.5. Integration in time is carried out until Tend = 60, see

Fig. 2.23. In the left plot of Fig. 2.23 we show the energy density function in time
after each 10 time steps on the main chain of atoms where kinks propagate. Both
kicks have produced a kink moving towards each other. Around 15 time units, two
kinks collide and re-appear after the collision, see the displacement plot of Fig. 2.23
on the right. Interestingly, when the kinks approach their initial locations, they fill
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the vacancies (stationary anti-kinks) left behind, and this scattering creates breather
solutions.

To illustrate this phenomenon more clearly, we perform additional tests on the
same lattice but with the second atom’s initial kick taken to have opposite sign,
i.e. u0

x = 5.5 and u1
x = 5.25, see Fig. 2.24. Now both kinks propagate in the same

direction. When the kink on the left approaches the vacancy (anti-kink) created by
the kink on the right, the kink fills the vacancy and creates a stationary as well as
propagating breather solutions moving in both directions. The vacancy filling can
be clearly seen in the right plot of Fig. 2.24, where we show the displacement of
atoms in the x axis direction of the atoms on the main horizontal lattice chain. This
numerical test shows that propagating breather solutions can not only be created by
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Fig. 2.24 In-line collision of two kinks. Nx = 200, Ny = 40, Tend = 60, U0 = 2, u0
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the kicks but also by kink solutions filling vacancies (colliding with anti-kinks) in
the crystal lattice.

For our final in-line collision experiment, we consider breather-kink collision with
initial velocity kicks u0

x = 3.5 and u1
x = −5.5. We integrate in time until Tend = 60

and illustrate the numerical results in Fig. 2.25. In the left plot of Fig. 2.25, we show
the energy density function in time after each 10 time steps on the main chain of
atoms where the breather and kink propagate. The kick on the left has produced two
breather solutions propagating in opposite directions, and the kick on the right has
produced a kink solution moving to the left towards the breather solutions. After
around 30 time units, the breather and kink solutions collide and pass through each
other. Later in time the kink passes through the second breather solution propagating
in the same direction. The first collision is also illustrated by the displacement plot
in Fig. 2.25 on the right. These results suggest that breather and kink solutions can
easily coexist in our model of a crystal lattice.

2.2.5.5 Numerical Results: Fully Two Dimensional Effects

So far, except for the horseshoe wave solutions, see Sect. 2.2.5.3, all numerical
examples have addressed the quasi-one-dimensional nature of propagating discrete
breather and kink solutions. In this section we demonstrate full 2D effects of the
numerical solutions by considering kink-kink and breather-kink collisions on adja-
cent chains of atoms, and breather-breather collision at 60◦ angle to each other.

If the kink solutions of our 2D model were truly one-dimensional, we would
expect no interactions between two kink solutions in kink-kink collisions, with the
kinks travelling in opposite directions along adjacent chains of atoms. This is not the
case, as can be seen in Fig. 2.26. The lattice, parameter values and initial kicks are
identical to the in-line kink-kink collision experiment in Sect. 2.2.5.4.
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In Fig. 2.26, we show the evolution of the energy density function in time. The
localized energy peaks are associated with the two kinks propagating towards each
other on adjacent lattice chains. At t ≈ 16, the two kinks collide and change their
propagation directions after collision. After a complicated collision region, the right
kink eventually propagates in the (1/2,−√

3/2)T crystallographic lattice direction,
while the left kink propagates in the (1/2,

√
3/2)T crystallographic lattice direction.

Once each kink has approached the upper or lower boundary they eject one atom
from the lattice. This example of collisions shows a new scattering phenomena in a
2D lattice model which has no counterpart in 1D lattice models. It shows that there
is at least weak coupling between kink solution and atoms on adjacent chains.

To understand better the events taking place during the kink-kink collision on
adjacent lines, we consider scatter plots of atoms in time during the collision, see
Fig. 2.27. We zoom into the lattice area where the collision takes place. Darker
colours indicate higher energy density function values. The first plot shows kinks
approaching each other while the final plot shows kink solutions, already fully devel-
oped, propagating in the different crystallographic lattice directions. From Fig. 2.27
it becomes evident that the two kinks, in fact, passed by each other. Due to the weak
coupling between kinks on adjacent lines, the collision has destabilized the kinks by
inducing large displacements in the y axis direction. This induced instability causes
the kinks to change their propagation directions. This may suggest that long-lived
kink solutions may only exist in completely idealized settings.

In general, results of collisions do not always follow the same pattern. The outcome
will depend on the energy, velocity and phase of propagating localized modes. We
illustrate that with a counter example of two kink collision on adjacent chains of
atoms, see Fig. 2.28. For this experiment we consider a twice larger lattice: Nx = 400
and Ny = 40, and initial kick values u0

x = 5.3 and u1
x = −5.4. In the left plot of

Fig. 2.28 we show energy density function in time of atoms on the main chain of
the kink moving from the left, and in the right plot of Fig. 2.28 we show energy
density function in time of atoms on the main chain of the kink moving from the
right. Integration in time is carried out until Tend = 100 and results are illustrated
after each 20 time steps. After around 50 time units, the two kinks collide, lose
some of their initial velocity and continue to propagate, but slower. This suggest that
both kinks have lost some energy during the collision to the lattice in the form of
phonons. In addition, plots of Fig. 2.28 confirm that there is some energy associated
to the kink solutions on adjacent chains of atoms. Notice the change of the slopes in
those energies after the collision.

The destabilizing effects due to lateral displacements of atoms on the main chain
where the mode propagates is not only present in kink-kink collisions, but also in
breather-kink and breather-breather collisions. Recall that there are almost zero lat-
eral displacements on the main chain of atoms where the breather or kink propagates
in an idealized setting. To support our claims we present numerical experiments of
breather-kink collision on adjacent lines and breather-breather collision at 60◦ angles
to each other.

We consider the same breather-kink collision example from Sect. 2.2.5.4, but on
adjacent chains and on the larger (x2) lattice: Nx = 400 and Ny = 40. We integrate
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Fig. 2.28 Two kink collision on adjacent chains of atoms. Nx = 400, Ny = 40, Tend = 100,
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U0 = 2, u0

y = u1
y = 0, u0

x = 3.5 and u1
x = −5.5. Left Contour plot of the energy density function

in time on the main chain of the breather solution. Right Contour plot of the energy density function
in time on the main chain of atoms of the kink solution

in time until Tend = 140 and plot the associated energy density of atoms in both
chains in time after each 20 time steps in Fig. 2.29. Compare Figs. 2.29 and 2.25.
We find that the kink has scattered the breather solution during the collision into the
remaining lattice, see the left plot of Fig. 2.29, but the collision itself has not affected
the kink solution, see the right plot of Fig. 2.29. This example once again illustrates
2D effects.

In the final example of this section we consider a breather-breather collision at a
60◦ angles to each other. In this example we give a kick to one atom in the left lower
area and a kick to one atom in the right upper area of the lattice: Nx = 200 and Ny =
100. The initial kick values are u0

x = 1 and u0
y = 0, and u1

x = −2.5 cos(π/3) and
u0

y = −2.5 sin(π/3). We carry out integration in time until Tend = 400. We illustrate
the collision area in time with snapshot scatter plots of atoms in Fig. 2.30. Darker
colours indicate higher energy density function values. The first breather propagates
from left to right on the horizontal lattice chain and the second breather propagates
downwards on the (1/2,

√
3/2)T crystallographic lattice chain. During the collision

both breathers merge into one stationary breather localized on the (1/2,−√
3/2)T

crystallographic lattice chain. Depending on the breather’s energies, velocity and
phase, we have observed breathers merging into one stationary or one propagating
breather, passing through each other or changing their propagation directions.

The results presented above can be summarized by one consideration. The addi-
tional degree of freedom introduces three crystallographic lattice directions, in con-
trast to 1D models on which localized modes can travel, thus introducing additional
richness into interaction properties. Due to the quasi-one-dimensional nature of trav-
elling modes, lateral displacements of atoms on the main chain induced through
interactions may destabilize propagating modes. At the same time, the additional
degree of freedom allows us to observe new wave phenomena such as horseshoe
wave solutions from Sect. 2.2.5.3 and the 2D multi-kink solutions of the following
section.
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t = 80.00 t = 84.00 t = 88.00

t = 92.00 t = 96.00 t = 100.00

t = 104.00 t = 300.00 t = 400.00

Fig. 2.30 Snapshots of scatter plots of atoms in time of two breather collision at 60◦ angle to each
other. Nx = 200, Ny = 100, Tend = 400, U0 = 2, u0

x = 1, u0
y = 0, u1

x = −2.5 cos(π/3) and

u0
y = −2.5 sin(π/3)

2.2.5.6 Numerical Results: Two Dimensional Multi-kink Solution

In this section we present a brief example of a 2D coupled-kink solution. This is a
multiple kink-like mode where two or more kinks travel together side-by-side with the
front perpendicular to the direction of travel. The initial formation of such a solution
was observed from a kink-kink collision experiment at 60◦ angle to each other which
we demonstrate here. Consider the experiment of breather-breather collision at 60◦
angle to each other from Sect. 2.2.5.5 but with initial kick values u0

x = 5.5, u0
y =

0, u1
x = −5.25 cos(π/3) and u0

y = −5.25 sin(π/3). These particular initial kick
values produce two kink solutions. The first kink propagates from left to right on a
horizontal lattice chain in (1, 0)T crystallographic lattice direction and the second
kink propagates downwards on the (1/2,

√
3/2)T crystallographic lattice chain, see

Fig. 2.31. During the collision both kinks merge together and form a stable double-
kink solution propagating to the right on two adjacent chains of atoms.

The observation of the stable formation of a double-kink solution, Fig. 2.31, led us
to consider coupled multi-kink simulations, that is, by considering multiple kicks of
neighbouring atoms in the y axis direction. For this experiment we consider a lattice:
Nx = 1200 and Ny = 40, and equal initial kick values u0

x,i = 5.5, u0
y,i = 0 on seven
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t = 20.00 t = 21.00

t = 22.00 t = 23.00

t = 24.00 t = 25.00

t = 30.00 t = 40.00

Fig. 2.31 Snapshots of scatter plots of atoms in time of two kink collision at 60◦ angle to each
other. Nx = 200, Ny = 100, Tend = 40, U0 = 2, u0

x = 5.5, u0
y = 0, u1

x = −5.25 cos(π/3) and

u0
y = −5.25 sin(π/3)

atoms, i.e. i = 1, . . . , 7, see the top left plot of Fig. 2.32 at t = 0. Importantly, non-
equal initial kick values may lead to scattering of kinks in all three crystallographic
lattice directions. We integrate in time until Tend = 400. In Fig. 2.32, we show
snapshots of scatter plots of atoms in time at locations of maximal energy density
function in space indicated by the x coordinate. Numerical results show that the
structure of multiple kink solutions has propagated more than 1000 lattice sites
and suggest that such type of structures may be long-lived in idealized settings.
Interestingly, the same type of initial kick values did not lead to the formation of
joint breather solutions.

2.3 Conclusions and Future Plans

We have confirmed and much extended the calculations of Marín et al. showing
the existence of long lived quasi-one-dimensional discrete breathers in hexagonal
lattices. A further paper using a more conventional particle-particle potential will
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t = 0.00, x = 21 t = 1.00, x = 25 t = 2.00, x = 32

t = 5.00, x = 47 t = 10.00, x = 71 t = 400.00, x = 1040

Fig. 2.32 Snapshots of scatter plots of atoms in time of a multi-kink solution. Nx = 1200, Ny = 40,
Tend = 400, U0 = 2, u0

x,i = 5.5 and u0
y,i = 0, where i = 1, . . . , 7

discuss such solutions in more detail [2]. The present model also displays long-
lived quasi-one-dimensional discrete kinks in our model mica lattice. However as
discussed in [2], this type of solution is more sensitive to the details of the inter-
atomic potentials considered, and other models give much shorter kink lifetimes. It
remains to be seen if existing or novel materials can exhibit such kinks in physical
situations.

We show that the kinks and breathers exhibit a typical rich variety of phenomena
on collision along a mutual line of quasi-one-dimensional travel. In addition we
demonstrate fully 2D collision phenomena for the first time, for kinks/breathers
travelling on adjacent lines or at 60◦ angles to each other. Moreover we observe a
new type of spreading shock wave, the horseshoe wave, with a breather profile. In
view of the many different possible outcomes of such collisions, a more systematic
and quantitative study is required for the future.

We have not discussed thermal or other random perturbations to the model in the
present chapter, some brief studies will be reported in [2]. In at attempt to understand
ejection and sputtering in such models, it would be important to model surface forces
properly. In general a more serious attempt to fit model parameters to real MD data
from mica is required. A further study should concentrate on the effects of longer-
range forces and how these effect breather and kink lifetimes.

A multi-core and HPC version of the code will be an important next step, as this
is necessary for long runs, to establish the maximum lifetimes of breathers and kinks
under ideal conditions. In the full 2D model it would be interesting to investigate
scattering of breathers and kinks with vacancies, dislocations and inclusions, etc.,
to generalise the 1D studies such as [3]. Adding temperature effects to this sort of
study would be important.

The present study shows a variety of new interesting phenomena, but the field
of 2D breathers and kinks is still in its infancy, with much still to be done, in both
theoretical and experimental areas.
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Chapter 3
A Supersonic Crowdion in Mica

Ultradiscrete Kinks with Energy
Between 40K Recoil and Transmission Sputtering

Juan F.R. Archilla, Yuriy A. Kosevich, Noé Jiménez,
Víctor J. Sánchez-Morcillo and Luis M. García-Raffi

Abstract In this chapter we analyze in detail the behaviour and properties of the
kinks found in an one dimensional model for the close packed rows of potassium
ions in mica muscovite. The model includes realistic potentials obtained from the
physics of the problem, ion bombardment experiments andmolecular dynamics fitted
to experiments. These kinks are supersonic and have an unique velocity and energy.
They are ultradiscrete involving the translation of an interstitial ion, which is the
reason they are called crowdions. Their energy is below the most probable source of
energy, the decay of the 40K isotope and above the energy needed to eject an atom
from the mineral, a phenomenon that has been observed experimentally.
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3.1 Introduction

Some materials are able to record the passage of charged particles and are used as
radiation detectors [7, 9] and there are minerals that show nuclear tracks that were
produced at some stage during their formation [22]. The mineral mica muscovite has
been shown to have recorded the tracks of muons, positrons and other swift particles
with positive chargewhile being deep underground [23–25]. Themost recent reviews
are the chapters Tracks in mica: 50 years later and I saw a crystal in this book
[26, 27]. The tracks are recorded within the cation layer of potassium ions which
form a two-dimensional hexagonal lattice. There are alsomany tracks along the close
packed directions of this lattice that cannot be produced by charged particles and are
attributed to some vibrational entities called quodons because of their quasi one-
dimensional structure [28, 29, 31, 33]. Their existence has also been shown directly
with an experiment in which the energy of alpha particles incident on one side of a
mica specimen was able to eject atoms at the opposite border along the cation lattice
directions [30].

Recently, a model with realistic potentials for the dynamics of potassium ions
within the cation layer of mica muscovite has been introduced [1–3]. The authors
have considered the available potentials for the interaction between atoms and ions.
For the interactionbetweenpotassium ionsK+ the electrical potentialwas not enough
because the passage of the kink brings about very short distances, for which the ions
can no longer be described as point charges. Therefore, theZiegler-Biersack-Littmark
(ZBL) potential was used [36]. This potential models the electrical repulsion by the
nuclei partially screened by the electron cloud. ZBL potentials have been widely
tested and compared to data obtained in ion bombardment experiments, being there-
fore the more realistic ones while using classical mechanics. Quantum calculations
could certainly provide more accuracy but at the cost of much more complex ana-
lytical and numerical calculations. The interaction of the potassium ions with the
lattice was described with empirical potentials used in molecular dynamics and fit-
ted with thermodynamic properties, neutron [5] and infrared spectroscopy [6] and
also validated for other silicates [11].

Arguably, the most important result in the full system with substrate was that a
supersonic kink was formed with specific energy and velocity [3]. As it involves the
movement of an interstitial atom through the lattice, it will be called a (supersonic)
crowdion in this chapter as described in [13]. The term will be reserved for this
specific supersonic kink with stable and unique velocity and not for other kinks. If
the lattice was given more energy, nonlinear waves and later phonons were emitted
until the specific velocity and energy was reached. This characteristic of supersonic
kinks associated with specific values of the velocity have also been described in
[32, 37], where they use the terms topological soliton and lattice soliton.

The supersonic crowdion found in the mica model is extremely discrete as basi-
cally only two ions are moving at the same time, which will be referred to as
the magic mode with sinusoidal waveform and corresponds to a phase delay very
close to q = 2π/3 [14, 15] as explained below. In the magic mode, which was
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Fig. 3.1 Energies of several kinks with respect to time. When more energy than the crowdion’s
one is delivered and therefore a faster kink is produced, a radiation process takes place until the
supersonic crowdion is formed. Thereafter, the crowdion is extremely stable. If the initial energy is
smaller than the crowdion’s one the kink dissipates into phonons. The scaled units are approximately
3eV for energy and 0.2ps for time. The final velocity and energy are approached asymptotically,
being Vc = 2.7387 (7.2km/s) and Ek = 9.5 (26.2eV) in scaled and physical units

introduced in the Fermi-Pasta-Ulam lattice to describe both steady-state or slowly-
moving breathers and supersonic kinks [14], only two particles are mostly involved
in the motion at the same time. The mode with mode q = π is the limit of discrete-
ness as only one particle is moving at the same time, and the kink is equivalent to
just one particle hitting the following one with a hard-sphere interaction. We have
also called these kinks ultradiscrete kinks (UDK). They are also known as kinks with
atomic scale localization and have been described theoretically [10] and observed
experimentally in a chain of repelling magnets [19]. The energy dissipated by the
crowdion and its subsequent stability can be seen in Fig. 3.1. Supersonic kinks with
a discrete set of velocities for which there is no radiation have been described in
previous publications [13, 18, 32, 37]. They appear in systems with substrate poten-
tial and nonlinear coupling and can be described as multiple solitons. In our system
due to the extreme discreteness of the kinks there is only a non-radiating velocity
corresponding to a double soliton as will be explained in Sect. 3.4. See also [3]. The
structure ofmicamuscovite can be seen in Figs. 3.2 and3.3 represents the coordinates
of the potassium ions obtained in a numerical simulation.

The energy of the crowdion is approximately Ek = 26.2 eV, which is an interest-
ing result because there are sources of energy in the lattice which can provide it as
it will be explained with more detail in Sect. 3.7. The most abundant of the unstable
potassium isotopes is 40K, which can decay by different beta processes providing
recoil energies up to 50eV. The crowdion energy is also smaller than the second
ionization energy of potassium, that is, 31.6eV[17], which thus prevents the pos-
sibility of inelastic collisions where the kinetic energy would be lost stopping the
propagation of the kink. It is also larger that the 4–8eV needed to eject an atom [16],
an effect that has been found in an experiment where the transmission of localized
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Fig. 3.2 The structure of
mica muscovite where the
potassium layer can be
observed. This point of view
has been chosen to
emphasize the K+ rows
represented by yellow balls

Fig. 3.3 Coordinates of the
supersonic crowdion or
ultradiscrete kink from
numerical simulations. It can
be observed that only two
particles are moving at the
same time. Lattice units
a = 5.19Å for coordinates
and scaled units (0.2ps) for
time. Also the double kink
structure can be seen as will
be explained later in the text
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energy along lattice directions with the subsequent ejection of an atom at the edge
of the boundary has been observed [30].

Another point of interest of the crowdion is that it is equivalent to a charged
interstitial K +, i.e. an excess of an unit of elemental charge, travelling at twice the
speed of sound. Therefore, it is very likely to be recorded, as positively charged
particles leave tracks in mica muscovite.

Are the quodons observed in mica muscovite the crowdions described in this
chapter? It is not clear, but there are several points in their favour: (a) They have
an energy that can be produced by the recoil of 40K; (b) They have enough energy
to expel an atom at the surface; (c) They have stability and seem to travel forever;
(d) They survive to room and higher temperatures; (e) They transport positive charge
that would leave a track in mica muscovite. Against them is that their existence and
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stability has not been verified in two or three dimensions. But even if their energy
spreads they are likely to leave some of the other dark marks in mica.

The sketch of this chapter is as following: Sect. 3.2 describes the system and
potentials. InSect. 3.3 themagicmode is describedwith detail and the quantities in the
fundamental ansatz are redefined in a new meaningful way. Section3.4 describes the
properties of the kinks when the substrate potential is introduced and the supersonic
crowdion appears,while Sect. 3.5 describes the properties of phonons in a systemwith
a substrate and applies them to analyze the crowdion’s phonon tail. Some interesting
results of the outcome of numerical simulations when excess energy is delivered
and when the system is previously thermalized are presented in Sect. 3.6. The recoil
energies in the different decaymodes of 40K and their consequences for the formation
of kinks or other lattice excitations are described in Sect. 3.7. The chapter ends with
a summary.

3.2 Description of the System

Mica muscovite is a layered silicate where a layer of potassium ions is sandwiched
between layers of a complex silicate structure of tetrahedra and octahedra. This cation
layer has a hexagonal structure where rows of potassium ions can be identified, as
seen in Fig. 3.2. As explained with more detail in [1–3] we consider an 1D model for
a row of K+ ions. The distance between ions is a = 5.19Å which in scaled units
will be taken as the unit of distance. The interaction between ions is described by
two terms, the first one is the electrostatic Coulomb repulsion

UC = Ke
e2

r
− Ke

e2

a
, (3.1)

where Ke is the Coulomb constant, e the elementary unit of charge and r =
dn = xn − xn−1 is the interatomic distance. The reference level of energy is
taken as the electrostatic energy at the equilibrium distance a. This value of energy
Kee2/a = 2.7746 eV is also taken as the unit of energy in scaled units, and it is
useful to remember that it is approximately uE ∼ 3 eV. The other natural units
are the potassium mass mK = 39.1amu and therefore the derived unit of time
τ = √

mK a3/Kee2 = 0.1984 ps � 0.2 ps.
This system supports propagating kinks of almost any velocity and energy [1–3]

but with very small inter-particle distances for which the ions cannot be described as
point particles. The second term for short-range repulsion is the Ziegler-Biersack-
Littmark or ZBLpotential, which corresponds to the electrostatic interaction between
nuclei partially shielded by the electron cloud which is described by an universal
function that has been tested with experiments of ion bombardment [36]. The ZBL
potential usually involves four terms which are effective at different ranges of ener-
gies. For the potassium atoms at energies up to 200keV it is enough to consider a
single term given by

UZBL(r) = α

r
exp(− r

ρ
), (3.2)
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with α = 2650.6eVÅ and ρ = 0.29529Å which correspond to α = 184.1 and
ρ = 0.0569 in scaled units, respectively. No attractive Van der Waals term is consid-
ered as it would be much weaker than the repulsive term. The system with Coulomb
and ZBL potential also support propagating kinks with many energies but with real-
istic distances between particles [3].

The interaction with the atoms in the lattice above and below the potassium layer
is obtained from an unrelaxed lattice using empirical potentials used in molecular
dynamics and fitted with thermodynamic and spectroscopic properties [5, 11] which
are also valid for other silicates. The resulting periodic potential can be written as a
Fourier series for which it is enough to retain the first five terms [3]

Us(x) =
4∑

n=0

Un cos
(
2π n

x

a

)
. (3.3)

The Fourier coefficients are given by

Un = [6.7902,−9.2920, 3.0512,−0.6387, 0.0891] eV
= [2.4473,−3.3490, 1.0997,−0.2302, 0.0321], (3.4)

with the latter values given in scaled units. As will be shown later, the linear spatial
frequency for the long wavelength limit becomes 119cm−1, that is quite close to the
experimental one of 110cm−1 obtainedwith infrared spectroscopy [6].A comparison
between the three potentials can be seen in Fig. 3.4.

Fig. 3.4 Interaction potentials U(r) in scaled units. Coulomb (—); ZBL (− −); Coulomb+ZBL
(thick – ); substrate potential (· · ·) and the sum of the Coulomb, ZBL and substrate potentials
(− · −). The scaled units are 2.77eV and the lattice unit a = 5.19Å for U and r , respectively
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3.3 The Magic Mode Revisited

In this section we describe the fundamental ansatz and the variables involved. We
will define the variables in a proper way, as they are not the same as in plane waves in
spite of their analytic similarity. We will use scaled units for which the equilibrium
interatomic distance is the unity as described above except where stated otherwise.

3.3.1 Basic Variables

Some variables used throughout the study are introduced here, together with their
definitions:

Position xn It describes the position of the particle labelled n. At
equilibrium xn = na, although the origin of n is arbitrary.

Displacement un It is the separation of the particle n from the equilibrium
position, that is un = xn − na.

Interatomic distance dn It is the distance between two particles or ions. At equi-
librium it is equal to the lattice unit a, which in lattice
units is the unity, but it will be written often explicitly for
clarity. It is related with the positions and displacements
as dn = xn − xn−1 = un − un−1 + a.

Strain vn The increase of dn with respect to the equilibrium dis-
tance, i.e. vn = dn −a. It is always negative for the kinks
described in this chapter. It is related with the displace-
ments as: vn = un − un−1.

Compression cn The decrease of dn with respect to the equilibrium dis-
tance, i.e. cn = a − dn = −vn . It is always positive
for the kinks described in this chapter. It is related to the
displacements as: cn = un−1 − un .

3.3.2 Fundamental Ansatz

As demonstrated in [14, 15] for a large set of kink solutions of Fermi-Pasta-Ulam sys-
tems, the strain vn = un − un−1 can be approximately described by the fundamental
ansatz with sinusoidal waveform:

vn = − A

2
(1 + cos(q(na − V t))) with − π ≤ q(na − V t) < π, (3.5)

where q = 2π/3a or q = 2π/3 in scaled units with a = 1 that we will usually
use. The value of vn is always negative representing a compression of the bond.



76 J.F.R. Archilla et al.

This ansatz describes a moving profile with velocity V that it is better visualized
in the alternative form vn = −A cos2(q/2(n − V t)). At any given time its value is
zero except for a length λ = 2π/q representing the number of consecutive bonds
compressed. For a given bond n the value of vn is zero except for an interval of time
T = 2π/(qV) representing the time during which the bond is compressed. Note that
λ is not a wavelength as there is no periodic wave and T is not a period as there is
no periodicity in time.

For convenience we will often use the equivalent expression for the compressions
cn = −vn :

cn = A

2
(1 + cos(ωt − qn)) with − π ≤ ωt − qn < π, (3.6)

where ω = qV is the rate of variation of the phase φ(n, t) = ωt − qn, i.e., ω =
∂φ(n, t)/∂t but it is not the frequency as there is no periodicity. This equation will
be used in the next subsection as it is easier to interpret because cn is always positive,
the phase increases in time and the bonds compressed later have smaller phase.

From the fundamental ansatz the displacement can be constructed and it may
be instructive to compare them with other solutions. They can be seen in Fig. 3.5
for the magic mode q = 2π/3 compared with the first solutions for supersonic
crowdions [13]. The compressions cn = un−1 − un have a solitonic form and in the
same figure they are compared with the discretization of the solutions for the KdV
equation, which describes waves in a canal [12], one of the first examples of solitons.
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Fig. 3.5 Left Profiles of the displacements un for the sinusoidal magic mode (◦) and the ones
given in the original supersonic crowdions paper by Kosevich and Kovalev (1973) [13]. For a
quartic interatomic potential (Δ): un = (2/π) arctan[exp(−q(n − V t))] and for a cubic one (∇):
un = [1+ exp(2q(n − V t))]−1. Right Comparison of the compressions cn(t) = un−1 − un for the
magic mode (–) with the soliton for the continuous KdV equation [12]: cn = A sech2[q(n − V t)]
(- -). The functions have been rewritten so that the parameters have the same meaning. The magic
mode is between the two K&K solutions and it is wider than the KdV one
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As we have seen these equations are not as simple as they seem, due to the
compactness condition for being nonzero. They look like harmonic waves, but they
are not. The quantities in the equation have to be redefined but they keep the usual
relationships for harmonicwaves. In the followingwe propose operational definitions
that are convenient but are only approximately correct, which is also natural at the
fundamental ansatz is not exact either.

Velocity V The average velocity of the kink. This is the magni-
tude best defined in numerical simulations and exper-
iments.

Phase φ(n, t) Trivially, the phase of the bond n isφ(n, t) = ωt−qn.
It determines when a bond is compressed −π ≤
φ(n, t) < π and its state of compression. For exam-
ple, φ(n, t) = 0 is the phase of the state of maximum
compression of the bond cn = A, φ(n, t) = −π

means the beginning of the compression process and
φ(n, t) = π is the end. It is not periodic as a bond
is just compressed once, if for example, φn = 2π
cn = 0 and not A.

Active This term will change depending on the variable we
refer to. For the phase it corresponds to φ(n, t) ∈
[−π, π).

Phase rate ω It is the rate of variation of the phase with time orω =
∂φ(n, t)/∂t = qV . It is not the angular frequency as
the ansatz is not a periodic function.

Compression time T It is the interval of time for which a bond is com-
pressed or activated, T = 2π/ω. The interval of
activity starts with zero compression cn = 0 and fin-
ishes with the same value. In the meantime it achieves
cn = A, its maximum value. It also starts with
φ = −π and finishes with φ = π . As the numeri-
cal solutions become separate from the fundamental
ansatz the operational definition of T is the value that
brings about a better fit of vn with the fundamental
ansatz.

Phase delay q It is the phase difference between two active (com-
pressed) bonds n and n − 1, that is, q = φ(n, t) −
φ(n − 1, t). Alternatively, it can be defined as q =
2π(δt/T ) = ωδt , where δt is the time delay between
two consecutive active bonds.

Kink length λ It is the spatial extension of the kink, very much
related with the number of active bonds at a given
time λ/a or simply λ in scaled units. It is given by
λ = 2π/q and it is also the distance travelled by
the kink during a time interval T , i.e., λ = VT . The
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Fig. 3.6 Fourier spectrum of
the kinetic energy of the
supersonic crowdion
obtained from numerical
simulations. It is measured in
a frame that moves with the
crowdion in the lattice. We
use arbitrary units for the
intensity and scaled units
(5THz) for the frequency.
The value of the first
harmonic is exactly the
characteristic linear
frequency
ν̄ = Vc/a = 2.7387 and
circular frequency
ω̄ = 2πν̄ � 17.2, which
corresponds to ν̄ � 13.4THz
in physical units

0 2 4 6 8 10
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usual relationships also hold, that is, V = ω/q and
λ = 2π/q.

Amplitude A It is the maximum value of the compression cn .
Minimum distance R It is the minimum value of the interparticle distance

dn , that is, R = a − A or R = 1 − A in scaled units.
Characteristic frequency ν̄ This is the inverse of the time δt that the kink needs

to travel a distance of a lattice site, i.e. ν̄ = 1/δt =
V/a or simply ν̄ = V in scaled units. Note that ν̄ =
(λ/a)(1/T ) (and not 1/T ). As the kink is not periodic
it is the physical frequency at which the compression,
the kinetic or potential energy or other magnitudes
change while the kink travels in a lattice with period
a. An example can be seen in Fig. 3.6. Their values
for the crowdion are therefore ν̄ = 2.7387 and ω̄ =
2πν̄ � 17.2, corresponding to ν̄ � 13.4THz.

The equations for the displacements un and its derivatives will be seen in the
following subsection.

3.3.3 Phasors for the Magic Mode

The easiest way to visualize the relative phases and distances of the variables is to
consider the rotating complex vectors or phasors
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Fig. 3.7 Visualization of the evolution of the compressions cn = −vn = un−1 − un for the magic
mode q = 2π/3 (A = 2/3). Three phasors bn−1, bn, bn+1 centered at (0, A/2) and rotating anti-
clockwise are active (the bonds are compressed) at a given time t when −π ≤ φ(n, t) < π . Their
horizontal coordinates give the compression as can be seen with cn+1. The maximum compression
A is achieved for φ(n, t) = 0. At φ(n, t) = π , bn−1 will transform into bn+2 indicating that
the bond n − 1 is no longer compressed while the bond n + 1 starts its compression cycle. The
displacements are active while changing and only two are active at a given time un = cn+1 and
un−1 = cn + cn+1 = 3A/2 − cn−1. For m > n, um = 0 and for m < n − 1, um = 1. Also the
nonzero velocities are u̇n = −ω Im(bn+1) and u̇n−1 = ω Im(bn−1). Magnitudes are in lattice units
a = 5.19Å

bn = A

2
eiφ(n, t), with φ(n, t) = ωt − qn and cn = A

2
+ Re(bn), (3.7)

There is an important difference with the usual concept of phasors and it is that
the circle is not periodic. The only phase interval where the phasors exists is −π ≤
φ(n, t) < π . If φ(n, t) < −π the phasor bn has not yet come into existence and
when φ(n, t) > π , bn has disappeared. Therefore, for q = 2π/3 at a given time
there are three phasors in the unit circle as shown in Fig. 3.7. The three phasors have
their origin at (A/2, 0) and rotate anti-clockwise with angular speed ω while the
time t increases, let us denote them bn−1, bn , bn+1. In the following n has to be
understood as the index of the inner bond of the three compressed ones or the index
of the intermediate phasor, that is−π/3 ≤ φ(n, t) < π/3. If we denote as tn = n/V
the time for which φ(n, tn) = 0, then −T/6 ≤ t − tn < T/6. This is not a restriction
as there is always a bond central to the three compressed ones.

The phasor bn+1 is behind bn by an angle q and so on for a kink travelling to
increasing n number. Note that bn−1 + bn + bn+1 = 0.

Therefore, the particles first reached by the kink have larger phase φ. The angle
φ = π is the angle for change of number, that is, when bn−1 reaches that position
it disappears from the circle and ceases to be active, indicating that the bond n − 1
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is no longer compressed. At the same time, a new phasor bn+2 appears at φ = −π ,
indicating that a new bond has started to be compressed or becomes active, after a
time T it will in turn become inactive. As shown in Fig. 3.7, the horizontal distance
to the vertical straight line through the origin is the compression cn = A/2+Re(bn).

Let us now consider the displacements un , using cn = un−1 − un or un−1 =
un + cn . The particles not yet reached by the kink have zero displacement and the
first nonzero compression is cn+1. Therefore un = cn+1 and un−1 = un + cn =
cn + cn+1 = A +Re(bn + bn+1) = A +Re(−bn−1) = 3A/2− cn−1 as represented
in Fig. 3.7. To summarize

un+1 = 0 (3.8)

un = cn+1 = A

2
+ Re(bn+1) = A

2
+ A

2
cos(ωt − q)

un−1 = 3A

2
− cn−1 = A − Re(bn−1) = A − A

2
cos(ωt + q). (3.9)

These equations are valid for t = 0 chosen as the time for which the central bond n is
most compressed cn = A and remains central, −π/3 ≤ φ(n, t) < π/3 and −T/6 ≤
t < T/6. The following displacement un−2 = cn−1 + cn + cn+1 = 3A/2 = 1 and
equally um = 1 for m ≤ n − 1, that is, for the particles that have been left displaced
by a lattice unit after the passage of the kink.

The particle velocities u̇m = ∂um/∂t can also be calculated and visualized easily
using ḃm = iωbm and therefore Re(ḃm) = −ωIm(bm)

u̇n = ċn+1 = −ω Im(bn+1) = −ω
A

2
sin(ωt − q)

u̇n−1 = −ċn−1 = ω Im(bn−1) = ω
A

2
sin(ωt + q). (3.10)

For any other m, u̇m = 0.
For other integer values ofλ = 2π/q, there areλ active phasors and for non integer

values, the number of active phasors changes between the two integers below and
above λ. However, in this chapter we will concentrate on the magic mode q = 2π/3
as it is very close to the crowdion found in the simulations.

In this way it is easy to construct the evolution of the particles during the com-
pression time T as can be seen in Fig. 3.8 for six times between−T/2 to T/2. In this
time the crowdion advances a length λ = 3, that is, three lattice units, but a single
particle just travels a single lattice unit. Therefore the average velocity of a particle
〈Vp〉 is three times smaller than the crowdion velocity Vc. It is worth mentioning
that Fig. 3.8 also shows that only the two particles participating in the kink motion
are mostly involved in the motion at the same time, as the fundamental ansatz with
sinusoidal waveform, 3.5, with q = 2π/3 predicts [14, 15].
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Fig. 3.8 Magic mode q = 2π/3 for a kink. A sketch of the system is shown for a full time of
compression T at time intervals T/6. The white particle is labelled n, therefore its displacement is
un and the bond at its left is also bond n with compression cn = −vn = un−1 − un . The origin of
time has been taken as the time of maximum compression of bond n, i.e., cn = A and dn = a − A.
During the time interval in the graph the white particle n moves from site n to site n + 1. At
time t = −T/2 = −3T/6, the bond n is uncompressed (cn = 0, dn = 1) and again becomes
uncompressed at t = 3T/6 = T/2. Note that during the first two T/6 intervals, although the bond
dn is changing, there is no appreciable displacement un . Note also, that the compressed structure
at t = −3T/6 between sites n − 2, n − 1 has moved at t = 3T/6 to sites n + 1, n + 2, i.e., the
kink has moved three sites or the length of the kink λ = VcT , while the white particle n has moved
a single site. Therefore, the average velocity of a particle in a time T is 〈Vp〉 = 1/T = Vc/3. The
average velocity of a particle for the following four T/6 intervals, when it is actually moving, is
〈Vp〉′ = 1/(2T/3) = Vc/2

3.4 Kinks with Substrate Potential: The Crowdion

The introduction of a substrate potential also modifies substantially the behaviour of
the particles in the kink. The phase φ(n, t) is still very useful for the interpretation of
the movement of the particles. The crowdion, of ultradiscrete kink of fixed velocity
and energy that appears in the simulations corresponds basically to the magic mode
but with some differences. Considering the white ball in Fig. 3.8 and denoting it by
n, it basically does not move from t ∈ [−3T/6,−T/6] as the Coulomb repulsion
from particle n − 1 is weak. For times close to t = 0 when the strong ZBL potential
acts, it receives most of its momentum which it will transfer in due course to the
following particle n + 1. However, in between, it will have to overcome the barrier
of the potential, experiencing a deceleration and afterwards an acceleration while
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Fig. 3.9 Comparison of the ultradiscrete kink defined with the fundamental ansatz in 3.5 with
A = 2/3 and q = 2π/3 with the ultradiscrete kink with fixed velocity obtained in the simulations
dubbed crowdion in this chapter. Dashed lines Ansatz, continuous lines Crowdion. The displace-
ments un correspond to the upper curves while the strains vn = un − un−1 correspond to the lower
curve. The kink transforms into a double kink because the displacement between two equilibrium
sites is divided by the nonequilibrium position at the top of the potential well as can be seen in
Fig. 3.8. The magnitudes un and vn are given in lattice units a = 5.19Å. The compression time is
given by T = 1.095 or 0.22ps in physical units

going downhill. Eventually the acceleration becomes negative as it experiences the
ZBL repulsion from the particle n + 1 ahead. The ascending and descending of
the potential barrier by the particle produces a remarkable change in the particle
displacement un and strain vn = un − un+1 as shown in Fig. 3.9. The kink has been
converted into a double kink: the first kink corresponds to the translation of a particle
from the well bottom to the top of the nearest potential barrier and the second kink
to the subsequent displacement to the following well bottom.

We would also like to mention in connection with Fig. 3.9, that the fundamental
ansatz with sinusoidal waveform (3.5) for q = 2π/3, and corresponding dashed
lines in these figures gives much better agreement with the simulations of supersonic
kink motion in the Fermi-Pasta-Ulam lattice without substrate [15]. The deviation
from the ansatz prediction in Fig. 3.9 is caused only by the presence of the substrate
because the ansatz was originally proposed for the translationally-invariant Fermi-
Pasta-Ulam lattice [14, 15].

The separation from the ideal functions of the ansatz can also be seen in Fig. 3.10
where the displacements are shown at a given time. It can be observed that the devia-
tion from the magic mode are important qualitatively but not so much quantitatively.
A more significant difference appears in the velocities which are represented in [3]
but can also be seen easily in the slope of Fig. 3.9. According to (3.10) the maximum
particle velocity using the ansatz is ωA/2 = 1.91 or 5km/s, while for the observed
one for the crowdion it is 2.9 in scaled units or 7.6km/s attained when the particle
is going uphill or downhill. The minimum particle velocity is achieved at the top of
the barrier.
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(a) (b) (c)

Fig. 3.10 Three plots at different times a t � −T/6 b t � −0.5T/6 c t � 0. They show the profile
of the displacements un (upper curves) and strains vn = un − un−1 (lower curves) with respect to
the particle and bond index n. The continuous lines represent the theoretical ansatz (3.5) and the
circles represent the points corresponding to the numerical simulation of the crowdion. Time t = 0
corresponds to the maximum compression of bond n. The variables un and vn are given in lattice
units a = 5.19Å. Every T/6 the theoretical and numerical solutions becomes almost identical as
can also be seen in Fig. 3.9. Subfigure (b) represents the maximum separation from the theoretical
curves

3.5 Phonons and Crowdions

The introduction of the substrate potential brings about significant changes in the
system, not only for the kinks but also for the phonon spectrum. We first review
the properties of phonons in a system with substrate potential and then use them to
analyze the phonon tail of the crowdion.

3.5.1 Phonons in Presence of a Substrate Potential

The dynamical equations for small perturbations become

ün = −ω2
0un + c2s (un+1 + un−1 − 2 un), (3.11)

with cs = √
2. The linearization of the coupling terms comes only from the Coulomb

one. The ZBL potential does not appear because it is zero for small oscillations. The
substrate potential has been reduced to a harmonic one expanding the sinusoidal
functions. The value of ω0 is obtained using the values of the Fourier coefficients of
the substrate potential in (3.4)

ω2
0 = −

4∑
m=1

(2πm)2Um . (3.12)
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The resulting numerical value isω0 = 4.48 in scaled units, corresponding to 3.6THz
or 119cm−1. The coefficient cs = √

2 or 3.7km/s in physical units is the speed of
sound in the system without substrate.

Substitution of un = exp(i(qn − ωt)) leads to

− ω2 = −ω2
0 + c2s (e

iq + e−iq − 2). (3.13)

From this equation it is easy to obtain the phonon spectrum, the phonon velocities
and the group phonon velocities. They are given by

ω2 = ω2
0 + 4 c2s sin

2
(q

2

)
; Vphase = ω

q

Vg = dω

dq
= c2s sin q√

ω2
0 + 4 c2s sin

2(
q
2 )

. (3.14)

The corresponding equations for the system without substrate are identical with
ω0 = 0. In this case cs is both the phase and group velocity in the long-wavelength
limit (q → 0).

For the system with substrate ω0 is the lowest phonon frequency, corresponding
to the long wavelength limit (q → 0). This can be seen in Fig. 3.11 where the disper-
sion relation, the phase and the group velocities are shown. Note the main changes
produced by the introduction of the substrate potential: (a) the phonon spectrum
becomes optical, i.e., bounded from below, (b) the phase velocity diverges when
q → 0, and (c) the group velocity becomes zero both at q = 0 and q = π and has a
maximum close to q = π/2 but with a much lower velocity.

(a) (b) (c)

Fig. 3.11 a Dispersion relation, b phase velocity and c group velocity. The three plots are for
longitudinal phonons in a potassium row for the system without substrate (dashed line) and with
substrate (continuous line). Scaled units are approximately 5THz for frequency and 2.6km/s for
velocities. White circles are measurements from different numerical simulations. The black circles
are the theoretical values for the phonon tail obtained by making the phonon phase velocity equal
to the crowdion velocity
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The value of the wavevector q corresponding to the maximum group velocity can
be calculated as it corresponds to dVg/dq = 0. Equivalently it corresponds to the
maximum of the function

f (q) = V 2
g

c4
= sin2(q)

ω2
0 + 2c2s (1 − cos(q))

, (3.15)

where we have used that 2 sin2(q/2) = 1 − cos(q). Then

d f (q)

dq
= 2 sin(q) cos(q)[ω2

0 + 2c2s − 2c2s cos(q)] − sin2(q)[2c2s sin(q)]
ω2
0 + 2c2s − 2c2s cos(q)

. (3.16)

Making the numerator equal to zero, we obtain:

(ω2
0 + 2c2s ) cos(q) − 2c2s cos

2(q) − c2s sin
2(q) = 0, (3.17)

which leads to a second order equation in cos(q)

c2s cos
2(q) − (ω2

0 + 2c2s ) cos(q) + c2s = 0, (3.18)

with solution

cos(q) =
ω2
0 + 2c2s ±

√
ω4
0 + 4ω2

0c2s

2c2s
. (3.19)

For the values in the present system, only the minus sign gives a real value of
q = 1.4870 rad corresponding to a wavelength λ = 4.2253, and maximum group
velocity Vg,M = 0.4091.

3.5.2 Crowdion Phonon Tail

When the kink is produced, its amplitude diminishes towards the crowdion’s one
in an asymptotic way. Therefore after some time, the nonlinear waves are no longer
produced but there is always a linear vibration left behind althoughwith decreasingly
smaller amplitude. This iswhy the crowdion continues propagating. The tail is a plane
wave and as such does not transport energy, but theoretically could be measured to
detect crowdion properties. We will call it the phonon tail. Note that the velocity to
describe these plane waves is the phase velocity and which in this case is unbounded.
The crowdion is moving at speed Vc and leaves at each site some small perturbation
exactly at the same estate at times separated by δt = 1/V c. In other words, the phase
velocity of the phonon tail V is the same as the velocity of the crowdion Vc.

Vphase = Vc = 2.7387 (7.2 km/s) (Phonon tail). (3.20)
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Fig. 3.12 Left Plot of cn + n where the double soliton structure, period and other crowdion para-
meters can be appreciated. Right Phonon tail amplified 50 times. It is a perfect plane wave with
parameters with the same velocity of the crowdion V = Vc and similar parameters although not
identical T � Tc, q � qc, λ � λc. Note that this parameters are not well defined for the crowdion
and only approximate

The wave number of the tail can be obtained from the equation Vphase = Vc =
w/q = [ω2

0 + 4 sin2(q/2)]1/2/q, which can be solved numerically or graphically
fromFig. 3.11b. The result isq = 1.8290 = 0.5822π and thereforeω = qVc = 5.00,
T = 2π/ω = 1.2544 and λ = 2π/q = 3.44. So the parameters are very close to the
ωc, Tc and λc of the crowdion. In some sense, they can be considered as the actual
parameters of the crowdion as they can be measured. Note that these parameters, as
λc are not well defined as they depend on the algorithm used to fit the numerical
solutions. Figure3.12 represents a picture of cn and a view of the phonon tail for un ,
similar to cn where the perfect plane wave and its parameters can be appreciated.

3.6 Some Numerical Simulations with Ultradiscrete
Kinks or Crowdions

In this section we present the results of different simulations to show the capacity
of the crowdions to survive a perturbed environment when larger energy is initially
delivered and, second, the behaviour of the crowdions with temperature.

3.6.1 Excess Energy

We present some examples of simulations when the lattice is given more energy than
the 26.2eV needed to produce the supersonic crowdion. The energies range from
130 to 520eV. They are represented in Fig. 3.13. In (a) a single crowdion is formed
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Fig. 3.13 Color Particle energy plots of several examples of crowdion formation in arbitrary units
of � 3eV. Initial energy increases form a to f. Many features can be observed, among them the
specific velocity of the crowdion Vc, the formation of nonlinear waves and phonons, the formation
of two crowdions and the survival of the crowdion in the severely perturbed media for hundreds of
sites. a E0 = 130.1eV, b E0 = 159.3eV, c E0 = 229eV, d E0 = 268.1eV, e E0 = 453.5eV, f
E0 = 515.7eV
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after nonlinear waves are emitted. In (b) two crowdions are formed leaving behind an
stationary linear wave. Note how the second crowdion survives to the tail of the first
and the common velocity Vc of both. In (c) the excessive energy destroys the second
crowdion which transforms into a highly localized nonlinear stationary wave. In (d)
the second crowdion survives again, while in (e) it is again destroyed. Extensive
phonon radiation and wandering kinks can be seen in the latter figure. In (f) a second
crowdion survives for 150 sites in a highly perturbed media but it is finally pinned
down.

3.6.2 Thermalized Medium

An interesting question is whether the crowdion can travel trough a previously ther-
malizedmedium. This is not only a question of general interest but particulary impor-
tant for mica muscovite. As it has been calculated in the chapter Tracks in mica:
50years later in this book [27], the recording process of tracks happens a few kilo-
meters underground under large pressure and temperatures of 700–1000K. Although
much more work is necessary, the answer is positive. For comparison Fig. 3.14a, b
shows two simulations at 300 and 1000K in the system without substrate potential
where the kink survives over hundreds of lattice sites. It is not really surprising as,
if we compare the energy of the crowdion 26.2eV with the mean thermal energy of
a particle kBT, the crowdion energy is 1000 and 300 times larger at 300 and 1000K,
respectively.

In the case of including the substrate potential, as shown in Fig. 3.14c, d for
300 and 1000K respectively, the crowdion can also travel for hundreds of sites of
the previously thermalized media. As it was studied in [3], the crowdion always
has finite kinetic energy, but the final total energy of the kink, Ek , is always of
the order of magnitude of the Peierls-Nabarro (PN) barrier. The equivalent kinetic
energy equivalent for the thermalized media is 0.005 (0.013eV) at 300K and 0.016
(0.043eV) at 1000K in normalized and physical units. These values are far below
the energy difference between the PN barrier and the kink energy. However, in some
simulations, for temperatures of 1000K the thermalization is not completely achieved
due to appearance of nonlinear waves instead of phonons. Therefore, localized peaks
of the background vibrations can interfere with the crowdion where, in some cases,
it can be trapped leading to a highly localized nonlinear stationary perturbation.
Figure3.14d shows and example of this situation, where the crowdion is eventually
trapped forming an interstitial defect.

Thermal effects discussed in this section lead to different survival path lengths
of the crowdions. If the hypothesis of crowdions propagating in mica muscovite is
correct, they might be related with some of the tracks observed in the mineral. Other
feature of the presented simulations worth remarking on is that the high equivalent
temperature of the nonlinear tail radiation of the crowdion is likely to favour a change
of structure and the formation of tracks.
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Fig. 3.14 Color Particle energy plots of two crowdions travelling in a previously thermalized
medium at a, c 300K and b, d 1000K, top without and bottom with substrate potential. Color bars
are in 10 log10(E) units
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3.7 Recoil Energy of 40K

If the hypothesis of quodons being vibrational entities of ions of potassium is correct,
the most likely source of energy is the recoil from 40K because (a) the energy will
be given directly to the potassium ion K+, (b) the relative abundance and decay
frequency of 40K, and (c) because of the energies involved as explained below.

The twomost abundant isotopes of potassium are the stable 39K and 41K isotopes,
with 93.7 and 6.7% abundance respectively. The next most abundant isotope is 40K
with a very long half life of 1.248 × 109 years and abundance of 0.0117%. This
isotope is the most important source of radioactivity for humans.

As shown in Fig. 3.15 and Table3.2, the nucleus 40K experiences decay through
different branches with two daughter nuclei 40Ca and 40Ar [4, 20]. The main para-
meters of the decay are I , the intensity of a given branch in % and Q, which is the
difference between the rest masses of the parent and daughter atoms. The difference
of mass between atoms is better tabulated than between nuclei. As the atoms are
neutral the mass difference between nuclei has to take into account the difference in
the number of electrons in the neutral atoms. The available energy will depend on
the rest mass of the parent and daughter nuclei and other particles. It will be obtained
below for each type of decay.

The decay branches, β− and β+ involve the emission of an electron or a positron
and a neutrino. The electron or positron velocities are such that they have to be treated
relativistically, while the recoil velocity of the much heavier nuclei can be described
classically. We will suppose an electron to simplify the language, but a positron can

Fig. 3.15 Sketch showing the different decays and branching of 40K. Reproduced with permission
from [21]. Copyright Creative Commons BY 3.0
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Table 3.1 Table of ionization energies (eV) of daughter atoms from 40K decay [17]

Element I II III IV V

Ar 15.76 27.63 40.74 59.81 75.02

K 4.34 31.63 45.81 60.91 82.66

Ca 6.11 11.87 50.91 67.27 84.50

be equally described in what follows. The maximum recoil energy of the nucleus
is obtained when the neutrino gets no kinetic energy. The recoil energy is much
smaller than the electron energy, so it can be neglected in the energy calculations
while due to its large mass, it is essential for the momenta balance. The electron
maximum energy is Ee = me c2 + E , being E the available energy in the decay, and
E2

e = m2
e c4 + p2e c2, where pe is the momentum of the electron. Considering the

parent nucleus at rest, the momentum of the nucleus is identical to the momentum
of the electron pN = pe = (1/c)(E2

e − m2
ec4)1/2 and the maximum nucleus recoil

energy is given by EN = p2N /(2m N ). The decays always involve the emission of a
neutrino and may include the emission of a photon, either γ from the nucleus of X
from the electron shell, although the latter have much smaller energy and momentum
and will be of no importance for K+ recoil. The neutrino can be considered as
a massless particle as its rest mass it known to be below 2.2eV/c2. Therefore for
photons or neutrinos their energy is given by Eν,γ,X = pc. If only a photon or a
neutrino is emitted the recoil momentum pN is equal to the momentum of the photon
or neutrino and trivially EN = PN

2/(2m N ). If there are only two daughter particles
the recoil energy EN has a single value.

Other data of interest are the ionization energies of K and of the daughter nuclei.
If the recoil energy is larger than the ionization energy of the atoms that interact,
it can be used to ionize an atom or ion and the energy cannot be transferred to the
neighbours. The ionization energies of the daughter atoms from 40K decay can be
seen in Table3.1. A examination of the possible ionization processes is done in the
following subsection.

As the lattice is formed by K+, it is probable that the second ionization of K,
31.6eV, is an upper limit for crowdions or single row kink energies.

3.7.1 40K Decay Branches

Here, we analyze in detail the different decay branches. A summary if presented in
Table3.2 and a sketch in Fig. 3.15.

The 40K decay branch that leads to 40Ca is:

β−: Decay with emission of an electron.
With Iβ− = 89.25% andmass difference between atoms Q = 1311.07keV [20].
As the Ca atom has an extra electron, discarding the electron binding energy
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Table 3.2 Table of decays for 40K

Decay β− EC1 EC1+CEa EC2b β+

Intensity (%) 89.25 10.55 0.001 0.2 0.001

T (keV) 1311.07 1460 1460 1504.69 483.7

Emitted
charged
particle

e− e− e− e+

Recoil from ν+e− γ e− ν ν+e+

Max Recoil
(eV)

42 29.2M 49.7M 31.1M 10

Daugther ion
(A = 40)

Ca++ Ar+ Ar++ Ar++ Ar

Max V (Km/s) 14.4 12M 15.7M 12.2M 7

Ionization of
daughter (eV)

50.6 27.7 40.8 40.8 15.8

Δq (e) +1 0 +1 +1 −1
aSubset of EC1 when the gamma is delivered to a shell electron; M Monocromatic
bDirect decay to Ar ground state, recoil from neutrino emission; 3KeV Auger e−
EC Electron capture; CE Conversion electron; T Energy available excluding rest masses
Ionization energy of K+ 31.6 eV

of a few keV, the mass difference between nuclei is Q + mec2 and the energy
available when emitting an electron is E � Q + mec2 − mec2 � Q which
will be shared between the electron and the antineutrino emitted. Therefore, the
maximum kinetic energy of the electron or endpoint is almost equal to Q. The
daughter nuclei of 40Ca have a continuous distribution of energy with a maximum
of Ek = 42eV at the endpoint corresponding to a velocity V = 14.4km/s.

The proton number increases by one, but the number of electrons does not
change, therefore the daughter ion would be Ca++ with 50.6eV third ionization
energy. This is a likely origin of quodons for the decays with recoil energy smaller
than the 31.6eVK second ionization energy. The recoils with larger energy will
be able to deliver up to 10.4eV after the first collision that could produce breathers
but not crowdions.

The following processes have 40Ar as daughter nuclei being the difference
between the atomic masses Q = 1504.69keV. As the Ar atom has an electron
less than K, discarding the electron binding energies the mass difference between
nuclei is � Q − mec2 and the energy available depends on the specific decay.

EC1: Electron capture with decay to 40Ar excited state and γ radiation.
With Iε = 10.55%, an electron from the shell is captured, therefore the available
energy is E � Q − mec2 + mec2 � Q. In this decay a monoenergetic neutrino
of 44keV is emitted with negligible recoil (26meV) and the daughter nucleus is
in an excited state. Thereafter, the excited nucleus decays to the ground state with
the emission of a 1460keV γ ray [20]. The corresponding K+ recoil energy of
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40Ar is Ek � 29.2eV with velocity V = 12.0km/s. As this is a two body process
Ek has only slight variations due to interactions with the shell electrons.
As no charge is emitted from the ionK+, the daughter will also be amonovalent

ion of Ar+, with 27.7eV second ionization energy. So there is some probability
that the first Ar+ collision with K+ will further ionize Ar+. The remaining energy
1.3eV will not be enough to produce a kink but may produce a breather.

EC1+CE:Electron capture with decay to 40Ar excited state and conversion electron.
This is actually a subset of the previous decay, but with a probability I = 0.001 per
100 decays, the 1460keV γ ray emitted can interact with the shell and deliver the
energy to an electron, called a conversion electron. Save for a few keV of binding
energy the γ energy is converted into kinetic energy of the electron, with a recoil
for the ion of 49.7eV and 15.6km/s. This is the largest energy of all the recoils.
As an electron has been emitted from the shell, the daughter ion will be Ar++
with 40.8eV third ionization energy. This ionization and the 31.6eV second one
of K+ are likely to occur. The remaining energies of 8.8 or 18eV cannot produce
a crowdion but will be able to produce breathers.

EC2: Electron capture with direct decay to 40Ar ground state.
With probability I = 0.2%, the energy available as in the decay above is E �
Q = 1504.69. There is a direct decay to the ground state of 40Ar after the capture
of a shell electron and the emission of a monoenergetic neutrino that takes most of
the energy available E � 1504.69keV minus the electron binding energy which
is only a few keV[21, 34]. The recoil energy is 31.1eV. The shell emits a 3keV
Auger electron when another electron of the shell occupies the vacancy left by
the captured electron, however, this has a negligible recoil.
The daughter nucleus has lost a positive unit charge but also the shell has lost

two electrons, the captured one plus the Auger electron. Therefore the daughter
ion will be Ar++, which has too little energy for further ionization of Ar++ or K+
which need 40.8 and 31.6eV, respectively. Therefore, it would be a likely source
of crowdions but difficult to distinguish from the β− recoil.

β+: decay with positron emission.
With very low probability Iβ+ = 0.001%, the available energy is the mass
difference between nuclei minus the mass energy of the positron emitted, that is,
E � Q − mec2 − mec2 = Q − 2mec2 = 483.7 keV. The energy E is shared
between a neutrino, the emitted positron and the daughter nucleus. Therefore,
the positrons have a continuum of energies with a maximum one or endpoint
483.7keV [4, 8, 20], which leads to the maximum recoil energy Ek � 10eV and
velocity of 7km/s.
As the atomic number is decreased by one unit to Z − 1, the initial ion K+

has lost a positive unit charge, but there has been no change in the number of
electrons, thus the daughter ion will be a neutral Ar interacting with short range
forces with the neighbouring K+. The first ionization energy of Ar is 15.8eV,
so, actually, the Ar atom has less of the required energy for ionizing itself or for
further ionization of K+ and will be able to keep the 10eV energy. This seems too
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little to produce a kink but may produce a breather. Due to their positive charge,
positrons leave tracks in mica muscovite [25, 35].

A study with the correlation of positron tracks, thickness distribution of quodon
tracks and other characteristics could make it possible to confirm the nature and
characteristics of quodons. See chapter Tracks in mica, 50years later in this book
for more details [27].

3.7.2 Secondary Processes

Electron–positron pair production:
This is a secondary process after the γ ray emission of 1460.82keV considered
above [8]. It needs the interaction of the γ ray with a nucleus, and the produced
positron and electron can share the energy in any proportion. The maximum
recoil energy corresponds to a single particle taking almost all the energy except
for the small amount taken by the nucleus, which is necessary due to momentum
conservation. The available kinetic energy is E = Eγ − 2me c2 = 437.4keV
and the maximum recoil energy is Ek = 8.8eV. The probability of the combined
process of electron capture and pair production is of the same order of magnitude
as β+ emission and also the energies are similar [8]. The probability of interaction
of the γ ray with a nucleus is proportional to Z2 which favors the interaction with
potassium; however, potassium atoms are only 5% of the atoms in mica.
As the energy is smaller than the second ionization energy of K of 31.6eV it is

likely that the subsequent K+ –K+ collisions are elastic.

Other secondary processes may also occur via other radioactive nuclei and their
corresponding decay, but it will be beyond the objective of this work to continue the
subject further.

3.8 Summary

We have considered an 1D model for the close-packed lines of potassium ions inside
a cation layer of mica muscovite using realistic potentials. There exists only a single
kink with a specific velocity and energy dubbed the crowdion. It is relatively well
described by the magic mode but the kink is transformed into a double kink. A con-
struction in terms of phasors has been developed in order to obtain an intuition of
the relative phases and behaviour of the particles as the kink passes over them. The
crowdion leaves behind a phonon wave with exponentially diminishing amplitude
that travels at the same velocity as that of the kink. Simulations with different initial
energies bring about a variety of phenomena including the formation of two crow-
dions that leave behind nonlinear waves and phonons. The crowdions also survive
at temperatures of 300–1000K. Finally, an analysis of the possible decay modes of
40K has been performed including their possible consequences with respect to the
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formation of crowdions and other lattice excitations. A careful study of the tracks
in mica muscovite compared with the decay modes could shed light on the track
characteristics and origin.

The energy of the kinks or crowdions described in this chapter can be provided by
the 40K decay and is enough to expel an atom at the border. The crowdions survive
to high temperature and travel long distances. They transport positive charge and
therefore are very likely to be recorded in the form of dark tracks in mica muscovite.
If they are the cause of the quodons or other marks observed in this mineral is still
an open question.
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Chapter 4
Pattern Formation by Traveling Localized
Modes in Two-Dimensional Dissipative
Media with Lattice Potentials

Valentin Besse, Hervé Leblond, Dumitru Mihalache
and Boris A. Malomed

Abstract We analyze pattern-formation scenarios in the two-dimensional (2D)
complex Ginzburg-Landau (GL) equation with the cubic-quintic nonlinearity and
a cellular potential. The equation models laser cavities with built-in gratings, which
stabilize 2Dpatterns. The pattern-building process is initiated by kicking a compound
mode, in the form of a dipole, quadrupole, or vortex which is composed of four local
peaks. The hopping motion of the kicked mode through the cellular structure leads
to the generation of various extended patterns pinned by the structure. In the ring-
shaped system, the persisting freely moving dipole hits the stationary pattern from
the opposite side, giving rise to several dynamical regimes, including periodic elastic
collisions, i.e., persistent cycles of elastic collisions between the moving and qui-
escent dissipative solitons, and transient regimes featuring several collisions which
end up by absorption of one soliton by the other. Another noteworthy result is trans-
formation of a strongly kicked unstable vortex into a stably moving four-peaked
cluster.
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4.1 Introduction

4.1.1 Dissipative Solitons: A Brief Overview

Spatial dissipative solitons are self-trapped beams of light [4, 5] or plasmonic
waves [17, 28, 31, 35, 46, 49, 52, 53, 66, 67] propagating in planar or bulk
waveguides. They result from the balance between diffraction and self-focusing non-
linearity, which is maintained simultaneously with the balance between the material
loss and compensating gain. Due to their basic nature, the spatial dissipative solitons
are modes of profound significance to nonlinear photonics (optics and plasmonics),
as concerns the fundamental studies and potential applications alike. In particular,
a straightforward possibility is to use sufficiently narrow spatial-soliton beams as
signal carriers in all-optical data-processing schemes. This application, as well as
other settings in which the solitons occur, stresses the importance of the stabilization
of the dissipative-soliton modes, and of development of enabling techniques for the
generation and steering of such planar and bulk beams.

In terms of the theoretical description, basic models producing spatial dissipa-
tive solitons dynamics are based on complex Ginzburg-Landau (GL) equations. The
prototypical one is the complex GL equation with the cubic nonlinearity, which
includes the conservative paraxial-diffraction and Kerr terms, cubic loss with coeffi-
cient ε > 0, which represents two-photon absorption in themedium, and the spatially
uniform linear gain, with strength γ > 0, which aims to compensate the loss [79]:

∂u

∂z
= i

2
∇2⊥u − (ε − iβ) |u|2u + δu. (4.1)

Here u is the complex amplitude of the electromagnetic wave in the spatial domain,
z is the propagation distance, the paraxial-diffraction operator ∇2⊥ acts on trans-
verse coordinates (x, y) in the case of the propagation in the bulk, or on the single
coordinate, x , in the planar waveguide. Accordingly, (4.1) is considered as two- or
one-dimensional (2D or 1D) equation in those two cases. The equation is normal-
ized so that the diffraction coefficient is 1, while β is the Kerr coefficient, β > 0 and
β < 0 corresponding to the self-focusing and self-defocusing signs of the nonlin-
earity, respectively.

A more general version of the complex GL equation may include an imaginary
part of the diffraction coefficient, which is essential, in particular, for the use of the
equation as a model of the traveling-wave convection [27, 48]. However, in optical
models that coefficient, which would represent diffusivity of photons, is usually
absent, as light is not, normally, subject to diffusion.

A well-known fact is that the 1D version of (4.1) gives rise to an exact solution in
the formof an exact chirped dissipative soliton,which is often called aPereira-Stenflo
soliton [79]:
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u (x, z) = Aeikz [sech (κx)]1+iμ ,

A2 = 3δ/ (2ε) , κ2 = δ/μ, k = (δ/2)
(
μ−1 − μ

)
,

where the chirp coefficient is

μ =
√

(3β/2ε)2 + 2 − 3β/ (2ε) . (4.2)

This exact solution is subject to an obvious instability, due to the action of the uniform
linear gain on the zero background far from the soliton’s core. Therefore, an important
problem is the design of physically relevant models whichmay produce stable spatial
dissipative solitons.

One possibility to achieve stabilization of dissipative solitons is provided by sys-
tems of linearly coupled complex GL equations, which model dual-core waveguides,
with the linear gain and loss acting in different cores [10, 11, 59, 63]. The simplest
example of the action of this stabilization mechanism is offered by the following
system [11]:

∂u

∂z
= i

2
∇2⊥u − (ε − iβ) |u|2u + δu + iλv, (4.3)

∂v

∂z
= (iq − Γ ) v + iλu, (4.4)

where λ is the linear-coupling coefficient, v (x, z) and Γ > 0 are the field amplitude
and the linear loss strength in the stabilizing dissipative core, and q is a wavenumber
mismatch between the cores, if any. In the case of q = 0, the zero background is
stable in the framework of (4.3) and (4.4) under condition

δ < Γ < λ2/δ. (4.5)

The same ansatz (4.2) which produces the Pereira-Stenflo soliton for the single
complex GL equation yields an exact solution of system (4.3), (4.4):

{u (x, z) , v (x, z)} = {A, B} eikz [sech (κx)]1+iμ , (4.6)

where chirp μ given by the same expression (4.2) as above, and

B = iλ [Γ + i (k − q)]−1 A. (4.7)

A stable soliton is obtained if a pair of distinct solutions are found, compatible
with the condition of the stability for the zero background, i.e., (4.5) in the case of
q = 0. Then, the soliton with the larger amplitude is stable, while the other one, with
a smaller amplitude, plays the role of an unstable separatrix which delineates the
boundary between attraction basins of the stable soliton coexisting the stable zero
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solution [11]. In the case of q = 0, the condition of the coexistence of two soliton
solutions reduces to

δΓ
(
1 − μ2

)
> 4μ2

[(
λ2 − δΓ

)
+ 2Γ (Γ − δ)

]
. (4.8)

In particular, it follows from (4.8) and (4.2) that a related necessary condition,μ < 1,
implies ε < 3β, i.e., the Kerr coefficient, β, must feature the self-focusing sign, and
the cubic-loss coefficient, ε, must be sufficiently small in comparison with β.

Getting back to models based on the single complex GL equation, stable solitons
can also be generated by the equation with cubic gain “sandwiched” between linear
and quintic loss terms, which corresponds to the following generalization of (4.1):

∂u

∂z
= i

2
∇2⊥u + (ε + iβ) |u|2u − (μ + iν) |u|2u − δu, (4.9)

with ε > 0, μ > 0, δ > 0, and ν ≥ 0. The linear loss, represented by coefficient
δ, provides for the stability of the zero solution to (4.9). Originally, the complex GL
equation of the cubic-quintic type was introduced [80] as a model for the creation
of stable2D localized modes. Following that work, similar models were derived or
proposed as phenomenological ones in various settings. Many 1D and 2D solutions
for dissipative solitons have been found in the framework of such equations [2, 3, 6,
21, 23–25, 29, 38, 42, 50, 57, 62, 65, 69–76, 81, 84, 86–90, 92–95, 98].

Another method for creating stable localized modes makes use of linear gain
applied at a “hot spot”, i.e. a localized amplifying region embedded into a bulk lossy
waveguide (recent reviews of this topic can be found in [44, 60]). The experimental
technique which allows one to create localized gain by means of strongly inhomo-
geneous distributions of dopants implanted into the lossy waveguide, which produce
the gain if pumped by an external source of light, is well known [41]. Another possi-
bility is even more feasible and versatile: the dopant density may be uniform, while
the external pump beam is focused on the location where the hot spot should be
created.

Supporting dissipative solitons by the localized gain was first proposed in the
framework for a gap soliton pinned to a hot spot in a lossy Bragg grating [56].
The corresponding model is based on the system of coupled-mode equations for
counter-propagating waves, u (x, z) and u (x, z), coupled by the Bragg reflection:

iuz + iux + v +
(
|u|2 + 2|v|2

)
u

= −iδu + i (Γ1 + iΓ2) δ(x)u,

ivz − ivx + u +
(
|v|2 + 2|u|2

)
v

= −iδv + i (Γ1 + iΓ2) δ(x)v,

where the tilt of the light beam and the reflection coefficients are normalized to be
1, the nonlinear terms account for the self- and cross-phase modulation induced by
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the Kerr effect, δ > 0 is the linear-loss parameter, Γ1 > 0 represents the local gain
applied at the hot spot, which is approximated by theDirac’s delta-function, δ(x), and
the imaginary part of the gain coefficient, Γ2 ≥ 0, accounts for a possible attractive
potential induced by the hot spot.

The hot spot embedded into the usual planar waveguide is described by the fol-
lowing modification of (4.1):

∂u

∂z
= i

2
∇2⊥u − (ε − iβ) |u|2u − δu + (Γ1 + iΓ2) δ(x)u, (4.10)

where, as well as in (4.10) and (4.11), Γ1 > 0 is assumed, and the δ > 0 represents
the linear loss in the bulk waveguide. Another hot-spot model, based on the complex
GL equation with the combination of cubic-quintic terms, was introduced in [22]:

∂u

∂z
= i

2

∂2u

∂x2
+ i |u|2u − iν|u|2u − δu + Γ e−x2/w2 |u|2u, (4.11)

where ν > 0 represents the quintic self-defocusing term, δ > 0 and Γ > 0 are, as
above, strengths of the bulk losses and localized cubic gain, and w is the width of the
hot spot (an approximation corresponding to w → 0, with the hot spot in the form
of the delta-function, may be applied here too). While solitons in uniform media,
supported by the cubic gain, are always unstable against the blowup in the absence of
the quintic loss [85], the analysis reported in [22] demonstrates that stable dissipative
localized modes in the uniform lossy medium may be supported by the unsaturated
localized cubic gain in the model based on (4.11).

Models combining the localized gain, the uniform Kerr nonlinearity, and the
linear loss have been developed in various settings, see recent reviews [44, 60]. In
particular, periodic amplifying structures [45, 104], as well as extended patterns
[1, 103], have been studied. The numerical analysis has made it also possible to
study 2D settings, in which, most notably, stable localized vortices can be supported
by the gain confined to an annular-shaped area [19, 20, 40, 54, 86].

In addition to the hot spot, one can naturally define a “warm spot”, in the 2D
complex GL with the cubic-quintic nonlinearity, where the coefficient of the linear
loss is spatially profiled with a minimum at the warm spot (r = 0) [86]. The equation
may be taken as the 2D version of (4.9) with

Γ (r) = Γ0 + Γ2r2, (4.12)

where r is the radial coordinate, coefficientsΓ0 andΓ2 being positive. This 2Dmodel
gives rise to a great variety of stable modes pinned to the warm spot. Depending on
values of parameters in (4.9) and (4.12), they are simple vortices, rotating elliptic,
eccentric, and slanted vortices, spinning crescents, etc. [86].

The use of the spatial modulation of loss coefficients opens another way for the
stabilization of spatial dissipative solitons: as shown in [18], the solitons may be
readily made stable if the spatially uniform linear gain is combined with the local
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strength of the cubic loss, ε(r), growing from the center to periphery at any rate faster
than r D , where r is the distance from the center and D the spatial dimension. This
setting is described by the following modification of (4.1):

∂u

∂z
= i

2
∇2⊥u − [ε(r) − iβ] |u|2u + δu, (4.13)

with δ > 0 and, as said above, limr→∞
[
r D/ε(r)

] = 0, for D = 1 or 2.

4.1.2 The Subject of the Consideration in the Present Chapter

The theme of the this chapter are 2D dissipative solitons in models of optical laser
cavities [13, 14, 32, 36, 37, 43, 64, 82, 83, 96, 97, 99, 100] and plasmonic micro-
cavities [17, 28, 31, 35, 46, 49, 52, 53, 66, 67], based on complex cubic-quintic
GL equations. Conservative terms in these equations represent the diffraction and
self-focusing nonlinearity, while dissipative terms account for linear and nonlinear
loss and gain terms. Beyond the limits of optics and plasmonic, these complex GL
equations belong to the generic class of dissipative pattern-formation models [8, 58],
which apply to the description of condensates of bosonic quasi-particles in solid-state
media [7, 9, 47, 61], reaction-diffusion systems [26], and superconductivity [39].

An essential ingredient of many laser cavities is a transverse periodic grating,
which can be fabricated by means of available technologies [91]. In addition to the
permanent gratings, virtual photonic lattices may be induced in photorefractive crys-
tals as interference patterns by pairs of pump beams with the ordinary polarization,
which illuminate the crystal along axes x and y, while the probe beamwith the extra-
ordinary polarization is launched along z [34]. A 2D cavity model with the grating
was introduced in [51]. It is based on the complex GL equation with the cubic-quintic
nonlinearity and the cellular (lattice) potential, which represents the grating. In fact,
the laser cavity equipped with the grating may be considered as a photonic crystal
built in the active medium. Periodic potentials also occur in models of passive optical
systems, which are driven by external beams and operate in the temporal domain,
unlike the active systems which act in the spatial domain [33, 55].

Localized vortices, alias vortex solitons, constitute an important species of self-
trapped modes in 2D settings. In uniform media, dissipative vortex solitons cannot
be stable without the presence of a diffusion term [24, 25, 73–76]. However, such
a term is absent in models of waveguiding systems (this term may sometimes be
relevant in temporal-domain optical models [30]). Nevertheless, compound vortices,
built as complexes of four peaks pinned to the lattice potential, may be made stable
in models including the grating in the absence of the diffusion [51]. Using this
possibility, stable2D [78] and 3D [77] vortical dissipative solitons have been found
in the framework of complex GL equations including trapping potentials.
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In a majority of previous works, the studies of various 2D localized patterns have
been focused on their stabilization bymeans of the lattice potentials. Another relevant
issue is mobility of 2D dissipative solitons in the presence of the underlying lattice,
which is closely related to the general topic of the present volume as a whole, i.e.,
mobility of localized modes across lattice potentials. Note that dissipative solitons
may move without friction only if the diffusion term is absent, therefore the mobility
is a relevant issue for the diffusion-free models of laser cavities (as stressed above,
the absence of diffusion is an inherent feature of the cavity models). Localizedmodes
can be set in motion by the application of a kick to them, which, in the context of
the laser-cavity models, implies launching a tilted beam into the system. Recently,
the mobility of kicked 2D fundamental solitons in the complex GL equation with
the cubic-quintic nonlinearity and a cellular potential was studied in [15]. It has
been demonstrated that the kicked soliton, hopping through the periodic structure,
leaves in its wake various patterns in the form of single- or multi-peak states trapped
by the periodic potential. In the case of periodic boundary conditions (b.c.), which
correspond to an annular system, the free soliton completes the round trip and hits
the pattern that it has originally created. Depending on parameters, the free soliton
may be absorbed by the pinned mode (immediately, or after several – up to five –
cycles of quasi-elastic collisions), or the result may be a regime of periodic elastic
collisions, which features periodic cycles of passage of the moving soliton through
the quiescent one.

A natural extension of the analysis performed in [15] and other recent works is to
study of the mobility of kicked soliton complexes, such as dipoles, quadrupoles, and
compound vortices, and various scenarios of the dynamical pattern formation initi-
ated by such moving complex modes, in the framework of the 2D cubic-quintic com-
plex GL equation with the lattice potential. This is the subject of the present Chapter.
In fact, such configurations are truly two-dimensional ones, while the dynamical
regimes for kicked fundamental solitons, which were earlier studied in [15], actually
represent quasi-1D settings.

The chapter is structured as follows. Themodel is formulated in Sect. 4.2, which is
followed by the presentation of systematic numerical results for the pattern formation
carried out by moving dipoles, quadrupoles, and vortices of two types (“rhombuses”
and “squares”, alias onsite and intersite-centered ones) in Sects. 4.3, 4.4, and 4.5,
respectively. The chapter is concluded by Sect. 4.6.

One of essential findings is that the interaction of a freely moving dipole with
pinned patterns, originally created by the same kicked dipole, gives rise to new out-
comes under the periodic b.c. In particular, the quiescent dipole can be absorbed
(“cleared”) by the moving one, which may have obvious applications to the design
of all-optical data-processing schemes, where one may need to install or remove a
blocking soliton. Also noteworthy is the transformation of an unstable vortex by a
strong kick into a stable moving four-soliton cluster. Some additional details con-
cerning these issues can be found in recent publication [16].



106 V. Besse et al.

4.2 The Cubic-Quintic Complex Ginzburg-Landau
Model with the Cellular Potential

The cubic-quintic complex GL equation with a periodic potential is written as

∂u

∂ Z
=

[
−δ + i

2
∇2⊥ + (i + ε)|u|2 − (iν + μ)|u|4 + iV (X, Y )

]
u. (4.14)

It describes the evolution of the amplitude of electromagnetic field u(X, Y, Z) along
propagation direction Z , with transverse Laplacian ∇2⊥ = ∂2

∂ X2 + ∂
∂Y 2 . Parameter

δ is the linear-loss coefficient, ε is the cubic gain, μ the quintic loss, and ν the
quintic self-defocusing coefficient (it accounts for the saturation of the Kerr effect
if ν > 0). The 2D periodic potential with amplitude V0 is taken in the usual form,
V (X, Y ) = V0 [cos(2X) + cos(2Y )], with the period normalized to be π . The total
power of the field is also defined as usual,

P =
∫ ∫

|u (X, Y )|2 d XdY. (4.15)

We solved complex GL equation (4.14) by means of the fourth-order Runge-Kutta
algorithm in the Z -direction, and five-point finite-difference scheme for the com-
putation of the transverse Laplacian ∇2⊥. Periodic boundary conditions (b.c.) were
used for the study of kicked dipoles and quadrupoles, and absorbing b.c. for kicked
vortices.

Values of coefficients chosen for numerical simulations are δ = 0.4, ε = 1.85,
μ = 1, ν = 0.1, and V0 = −1. This choice corresponds to a set of parameters for
which the initial static configurations for the dipoles, quadrupoles, and vortices are
stable. The kick is applied to then in the usual way, by adding the linear phase profile
to the initial field:

u0 (X, Y ) → u0 (X, Y ) exp (ik0 · r) , (4.16)

where r ≡ {X, Y }. The key parameters are length k0 of kick vector k0, and angle θ

which it makes with the X -axis, i.e.,

k0 = (k0 cos θ, k0 sin θ) . (4.17)

In the laser setup the kick corresponds to a small deviation of the propagation
direction of the beam from the Z axis. If K0 is the full wave number and ϕ is
the deviation angle, the length of the transverse wave vector in physical units is
K0 sin ϕ, which corresponds to k0 in the normalized form. Below, we investigate the
influence of kick parameters k0 and θ , defined as per (4.17), on a variety of multi-
soliton complexes, which are created by moving dipoles, quadrupoles, or vortices
(of both rhombus- and square-types) in the 2D complex GLmediumwith the cellular
potential.
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4.3 The Pattern Formation by Kicked Dipoles

In this sectionwe consider the simplest soliton complex in the formof a stable vertical
dipole, which consists of a pair of solitons aligned along the Y -axis and mutually
locked with phase difference π , which is shown in Fig. 4.1. The issue is mobility of
such modes, and formation of new patterns in the wake of moving ones. The results
are obtained by means of systematic direct simulations.

4.3.1 Generation of Multi-dipole Patterns by a Dipole
Moving in the Transverse Direction

First, the dipole is set in motion by the application of the kick in the horizontal (X )
direction (i.e., transversely to the dipole’s axis), as per (4.16) and (4.17) with θ = 0.

As shown in Fig. 4.2, the moving dipole multiplies into a set of secondary ones,
similar to the outcome of the evolution of the kicked fundamental soliton [15]. Each
newly created dipole features the fixed phase shift π between two constituent soli-
tons, and the entire pattern, established as the result of the evolution, is robust. The
particular configuration displayed in Fig. 4.2 is a chain of five trapped dipoles, and a
free one, which has wrapped up the motion and reappears from the left edge, mov-
ing to the right, due to the periodic b.c. Then, the free dipole will hit the pinned
chain, and will be absorbed by it, yielding a pattern built of five quiescent dipoles.
Immediately after the collision, the pattern features intrinsic oscillations, which are
gradually damped.

The snapshot shown in Fig. 4.2 corroborates an inference made from the analysis
of numerical results: The largest number of the dipoles generated by the initially
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Fig. 4.1 The distribution of the amplitude (a) and phase (in units of π ) (b) in the stable quiescent
dipole mode
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Fig. 4.2 a Field |u(X, Y )| produced by the horizontally kicked (with θ = 0) vertical dipole at
Z = 22.410, for k0 = 1.665. In this panel, the leftmost dipole is moving to the right. b The
evolution of the pattern produced by the horizontally kicked dipole, shown in terms of the total
power of the field as a function of propagation distance Z . The set of horizontal red lines show
power levels corresponding to different numbers (n) of quiescent dipoles

Fig. 4.3 The number of dipoles in the final configuration versus the kick strength, k0, applied to
the vertical dipole in the horizontal direction

kicked one is six, including one moving dipole and five identical quiescent ones. It
is worthy to note that, as seen in Fig. 4.2b, in this case the total power (4.15) of the
finally established set of six dipoles is close to the net power corresponding to seven
quiescent ones, which is explained by the observation that the power of the stably
moving dipole is, approximately, twice that of its quiescent counterpart.

To study the outcome of this dynamical pattern-formation scenario in a systematic
form, wemonitored the number of output solitons as a function of the kick’s strength,
k0. These results are summarized in Fig. 4.3, which provides an adequate overall
characterization of the interactions, including a potential possibility to use these
interactions for the design of data-processing setups.
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Below the threshold value of the kick’s strength, whose numerically found value
is

k(thr)
0 (θ = 0) ≈ 1.651, (4.18)

the kicked dipole exhibits damped oscillations, remaining trapped near a local min-
imum of the cellular potential. Then, as seen in Fig. 4.3, the number of dipoles
initially increases steeply with k0 , reaching (as mentioned above) a maximum of six
at k0 = 1.665. It is worthy to mention that this value is different from those, ranging
in interval k0 ∈ [1.6927, 1.6942], in which the maximum number of secondary soli-
tons is reached in the case when the kick is applied to a fundamental soliton [15].
This observation suggests that building the structures by the kicked dipole does not
merely reduce to the earlier studied regime of the pattern formation by the individual
solitons forming the dipole. With the further increase of k0, the number of solitons
in the output decreases by increasingly broad steps.

4.3.2 Dynamical Regimes Initiated by the Longitudinal
Kick Applied to the Dipole

For the sake of the completeness of the description of the 2D system, we have also
simulated essentially quasi-2D dynamical regimes initiated by the motion of the
dipole kicked at angle of θ = π/2, i.e., in the longitudinal direction, see (4.17).
This setting implies the possibility to generate not only new dipoles but fundamental
solitons as well. It was found that the minimum value of the kick which is necessary
to set the dipole in motion is smaller in this case than the one given by (4.18):

k(thr)
0 (θ = π/2) ≈ 1.303. (4.19)

The results obtained for this configuration are summarized in Table4.1. Above
the threshold value (4.19), additional moving solitons are created: one at k0 ∈
[1.304, 1.875] and two in a narrow interval k0 ∈ [1.880, 1.885]. Then, for k0 ∈
[1.89, 2.015], a new moving dipole appears, which, as well as the original one, is
oriented along the direction of the motion, and accompanied by twomoving solitons.
For k0 ∈ [2.02, 2.17], we have one moving soliton less, and at k0 ∈ [2.175, 2.255]
the original dipole disappears in the course of the propagation, thus leaving onemov-
ing dipole and two moving solitons in the system. At k0 ∈ [2.26, 2.36], we observe
the same pattern as for k0 ∈ [2.02, 2.17] (two dipoles and onemoving soliton). Then,
for k0 ∈ [2.365, 2.46], the dipole splits into two traveling solitons, with the upper
one leaving a pinned soliton at the site which it originally occupied. At higher values
of the kick’s strength, the same pattern appears, except that the solitons do not leave
anything behind them, just traveling through the lattice.
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Table 4.1 The number of dipoles and fundamental solitons in the established pattern versus the
kick’s strength k0 directed along the dipole’s axis (θ = π/2)

Behavior pattern Range of k0 Number of new solitons along
the Y -direction

1 dipole k0 ∈ [0, 1.303] 0

1 dipole and 1 moving soliton k0 ∈ [1.304, 1.875] 1

1 dipole and 2 moving solitons k0 ∈ [1.88, 1.885] 2

2 dipoles and 2 moving
solitons

k0 ∈ [1.89, 2.015] 4

2 dipoles and 1 moving soliton k0 ∈ [2.02, 2.17] 3

1 dipole and 2 moving solitons k0 ∈ [2.175, 2.255] 2

2 dipoles and 1 moving soliton k0 ∈ [2.26, 2.36] 3

1pinned and 2 moving solitons k0 ∈ [2.365, 2.46] 1

2 moving solitons k0 ∈ [2.465, ∞) 0

In the right column, a newly emerging dipole (if any) is counted as two solitons

4.3.3 Collision Scenarios for Moving Dipoles in the System
with Periodic Boundary Conditions

The above consideration was performed for a long system, before the collision of the
freely moving dipole with the static pattern left in its wake, which should take place
in the case of periodic b.c. In the application to laser-cavity settings, the periodic
b.c. in the direction of X are relevant, corresponding to the cavity with the annular
shape of its cross section. The study of dynamical pattern-formation scenarios with
the periodic b.c. is also interesting in terms of the general analysis of models based
on the complex GL equations [15].

Thus, under the periodic b.c., the freely moving dipole observed in Fig. 4.2 will
complete the round trip and will hit the trapped chain of quiescent dipoles. Results
of extensive simulations of this setting are summarized in the list of three different
outcomes of the collisions, which feature persistent or transient dynamics (all the
regimes were observed for θ = 0, i.e., the transversely kicked dipole):

• The regime of periodic elastic collisions, corresponding to the periodically recur-
ring passage of the moving dipole through the quiescent one, see Fig. 4.4. This
outcome takes place for k0 ∈ [1.865, 1.868]. Note that, according to Fig. 4.3, in
this region the pattern left in the wake of the kicked dipole indeed amounts to
another single quiescent dipole.

• The transient regime, which features several quasi-elastic collisions, before the
moving dipole is eventually absorbed by the pinned pattern, which is a bound
complex of two dipoles, see Fig. 4.5. This transient regime occurs around k0 =
1.816, in which case Fig. 4.4 confirms that the moving dipole leaves a set of two
additional dipoles in its wake.
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Fig. 4.4 a The cross section of field |u (X, Y, Z)| at Y = 0, in the plane of (X, Z), for k0 = 1.865.
This is an example of the scenario of periodic elastic collisions, when the moving dipole repeats
elastic collisions with the quiescent one. b The close-up of the elastic collision
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Fig. 4.5 a The cross section of field |u (X, Y, Z)| at Y = 0, in the plane of (X, Z), for k0 = 1.816.
This is an example of the transient regime, when the moving dipole is absorbed by the pair of
trapped ones after several quasi-elastic collisions. b The close-up of the absorptive collision

• The regime of “clearing the obstacle”, opposite to the previous one: It features
several elastic collisions, before the pinned dipole is absorbed by the moving
one, see Fig. 4.6. This happens for k0 ∈ [1.884, 1.9] and around k0 = 2.083 (in
this region, Fig. 4.3 confirms that the moving dipole creates, originally, a single
quiescent one).

In other cases, the freely moving dipole is absorbed by the quiescent pattern as a
result of the first collision.

It is relevant to stress that, while the first two above-mentioned regimes have
been reported in [15] for the motion of kicked fundamental solitons, the third regime
(“clearing the obstacle”) is a new one, which was not found for the fundamental
solitons. Another characteristic feature of the latter regime is that it eventually leads
to the splitting of the surviving single dipole into unbound fundamental solitons, as



112 V. Besse et al.

X

Z

-20

-15

-10

-5

0

5

10

15

20

0 25 50 75 100 125 150 175 200

X

Z

-8

-6

-4

-2

0

2

4

6

8

58 58.5 59 59.5 60 60.5 61 61.5

(a) (b)

Fig. 4.6 a The cross section of field |u (X, Y, Z)| at Y = 0, in the plane of (X, Z), for k0 = 1.884.
This is an example of “clearing the obstacle”, when the moving dipole absorbs the stationary one,
after several collisions with it. b The close-up of the absorptive collision

shown in Fig. 4.7a. To analyze the splitting, we have identified position {Xc, Yc} of
the field maximum in each soliton (its center), and values of phases at these points
(mod 2π ), as functions of evolution variable Z . As a result, it has been found that the
splitting of the dipole and the loss of the phase correlation between the splinters starts
in a “latent form” at Z ≈ 102.8, and becomes explicit at Z 
 112.5, see Fig. 4.7c,
d. The two splinter solitons get completely separated at Z 
 115. The splitting also
leads to the appearance of the velocity difference between the solitons (the velocity
is defined as d Xc/d Z ), as seen in Fig. 4.7b.

4.4 The Pattern Formation by Kicked Quadrupoles

A quadrupole is composed of four soliton-like power peaks, which are mutually
locked with phase difference π between adjacent ones, see an example of the square-
shaped (alias offsite-centered) quadrupole in Fig. 4.8. Although this mode carries
no vorticity, simulations demonstrate that it is a very robust one. We here aim to
investigate dynamical regimes initiated by the application of the horizontal kick
(4.16) to the quadrupole.

The quadrupole is set in motion by the kick whose strength exceeds the respective
threshold,

k(thr)
0 (quadr) = 1.28, (4.20)

cf. (4.18) and (4.19). The horizontal motion of the kicked quadrupole splits it into
two vertical dipoles, and generates a set of additional vertically arranged quiescent
soliton pairs, with a phase shift of π/2 between them. The dependence of the total
number of solitons in the eventually established pattern on the kick’s strength, k0,
is shown in Fig. 4.9. Because these simulations were subject to the periodic b.c.,
the free dipole completes the round trip to collide with the quiescent pattern. The
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Fig. 4.7 Illustration of the splitting of the single surviving dipole into uncorrelated fundamental
solitons, which follows “clearing the obstacle”, after the absorption of the quiescent dipole by the
moving one, at k0 = 1.884. a Field |u (X, Y )| at Z = 199.965. b, c Velocities and positions of
both solitons as functions of Z . d The phase difference between the solitons versus Z , in units
of π , the red horizontal line corresponding to the phase difference equal to π . The arrows in (c)
and (d) indicate onset of the process which eventually leads to the loss of the phase coherence and
separation of the two solitons
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Fig. 4.9 The total number of fundamental solitons in the pattern produced by kick k0 applied to
the stable square-shaped quadrupole. Each dipole counts as two solitons

number of solitons was counted just before this collision. In the case where there is
no motion in the system (no free dipole emerges), the count of the number of solitons
is straightforward.

The result is quite different from that reported in the previous section for the pat-
tern formation by the kicked dipole, cf. Fig. 4.3. Above the threshold value (4.20), the
number of fundamental solitons in the emergent pattern increases and remains con-
stant in awide interval of values of k0, viz., six solitons for k0 ∈ [1.28, 1.87]. Then, the
number of the solitons increases to its maximum, which is 14 at k0 ∈ [1.89, 1.893],
k0 = 1.91 and k0 ∈ [1.935, 1.96]. Note that the increase is not monotonous. For
example, 12 solitons are generated at k0 = [1.885, 1.887] and k0 = [1.895, 1.9].
Subsequently, in the interval of k0 ∈ [1.9125, 2.338], the soliton number varies
between 8 and 16. The largest number of solitons, 18, is reached at k0 = 2.339.
Then, the soliton number drops to 6, and this value remains constant over a relatively
broad interval, k0 ∈ [2.373, 2.475]. At still larger values of k0 , no additional solitons
are generated by the initially moving quadrupole, which in this case again splits into
two dipoles.

At k0 = 2.339, the simulations generate a set of 18 solitons (the largest number,
as said above). At first, two moving dipoles are actually produced by the splitting
of the original quadrupole, see Fig. 4.10a. The faster dipole [whose trajectory is
characterized by a larger slope (velocity), d Xc/d Z ] moves without creating new
solitons,while the slower one creates several of them, namely, the thirdmoving dipole
and six quiescent ones, which brings the total number of solitons to 18, as said above.
The total energy increases up to about 24 times the energy of a quiescent soliton,
which corresponds to the 12 such solitons, plus the 3moving dipoles, with the energy
of a moving soliton being about twice that of a quiescent one (see Fig. 4.10b). Due
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Fig. 4.10 The evolution of the horizontally kicked quadrupole, for k0 = 2.339. a Field |u (X, Y, Z)|
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on the right vertical axis. c Field |u (X, Y )| at Z = 399.34. d Field |u (X, Y, Z)| in the cross section
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to the periodic b.c., the three moving dipoles hit the previously generated quiescent
chain, one after the other (see Fig. 4.10a). As a result, two first dipoles are captured
by the chain increasing the number of the bound solitons in it, while the third moving
dipole is absorbedwithout adding new solitons to the chain. This complex interaction
results in a chain of 8 quiescent dipoles (equivalent to 16 solitons). The so generated
dipole train originally features intrinsic oscillations, which are eventually damped,
see Fig. 4.10d. Note that Fig. 4.10a shows only the constituent fundamental solitons
on line Y = 0, in terms of Fig. 4.10c, their counterparts on the line of Y = 3 showing
the same picture.

As mentioned above and shown in Fig. 4.11, at k0 > 2.48 the initial quadrupole
splits into two dipoles, which move at different velocities, without the formation of
additional soliton pairs. Each dipole keeps the phase difference of π between the
constituent solitons (the jumps are due to a numerical uncertainty).
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Fig. 4.11 Velocities of two dipoles into which the kicked quadrupole splits at k0 = 3

4.5 The Pattern Formation by Kicked Vortices

It is well known that the lattice potential supports localized vortical modes of two
types, rhombuses and squares, alias the onsite- and offsite-centered ones [12, 68, 101,
102]. Continuing the analysis presented in the previous sections, here we address the
mobility of vortices, and formation of structures in the wake of moving ones.

4.5.1 Chaotic Patterns Generated by Kicked Rhombic
(Onsite-Centered) Vortices

First, we consider the pattern-formation dynamics for horizontally kicked rhombic
vortices built of four fundamental solitons with an empty site in the center, which
carry the total phase circulation of 2π , corresponding to the topological charge S = 1,
see Fig. 4.12a.

A weak horizontal kick, with k0 � 0.1, excites oscillations of the constituent
fundamental solitons which built the vortex, while vorticity S = 1 is kept (i.e., phase
differences between the adjacent solitons remain very close to π/2), see Fig. 4.13b.
A stronger kick (for instance, k0 = 0.5) destroys the vortical phase structure, and
transforms the vortex into a quadrupole, as shown in Fig. 4.13c.

At k0 = 1.0 and k0 = 1.5, see Fig. 4.14a, b, respectively, the kick completely
destroys the vortices, which are replaced by apparently random clusters of quiescent
fundamental solitons. Note that, although the results shown in Fig. 4.14a,b have been
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Fig. 4.13 The phase difference between adjacent constituent solitons (in units of π ), versus Z , in
a weakly kicked rhombic vortex, for different values of the kick’s strength: a k0 = 0, b k0 = 0.1, c
k0 = 0.2
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Fig. 4.14 a Field |u (X, Y )| at Z = 299.725, generated by the kicked rhombic vortex for k0 = 1.0.
b The same as in Fig. 4.14a , but for k0 = 1.5

obtained with absorbing b.c., rather than periodic ones, this circumstance does not
affect the results. The same type of b.c. is used below.

4.5.2 Kicked Square-Shaped (Offsite-Centered) Vortices

Unlike their rhombic counterparts, quiescent square-shaped vortices, such as the one
shown in Fig. 4.15, are unstable in the entire parameter space of (4.14) which we
have explored, in agreement with the general trend of the offsite-centered vortices
to be more fragile than their onsite-centered counterparts [68]. As a result of the
instability development, they are transformed into stable quadrupoles. Nevertheless,
results displayed below confirm that it is relevant to consider dynamical pattern
formation by unstable kicked vortices as this type.

First, we consider the application of the horizontal kick (4.16) corresponding to
θ = 0 and varying strength k0. The fundamental solitons building the vortex oscillate
without setting in progressive motion below the threshold, k0 ≤ k(thr)

0 = 1.2125, cf.
(4.18), (4.19), and (4.20). Actually, it may happen, in this case, that a new soliton is
created and starts moving in the horizontal direction, but the energy is not sufficient
to stabilize it, and the new soliton decays eventually, while the initial solitons which
compose the square-shaped vortex are recovered at the original positions. The inner
phase structure of the unstable square-shaped vortices is destroyed in the course of
the oscillations, and it transforms into a quadrupole, in accordance with the above-
mentioned fact that this is the outcome of its instability in the absence of the kick.

The increase of k0 leads to formation of new 2D patterns. At k0 = 1.5, the
right vertical pair (column) of the fundamental solitons, which are a part of the
original vortical square, start to duplicate themselves, while moving to the right
(in the direction of the kick), see Fig. 4.16. A noteworthy effect is breaking of the
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centered) vortex
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izontal direction (θ = 0) with k0 = 1.5. a Z = 2.6593, b Z = 12.008, c Z = 239.91, d
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Fig. 4.17 The evolution of
the total power for the pattern
produced by horizontally
kicking the square-shaped
vortex, for k0 = 1.5. The red
horizontal lines show power
levels corresponding to n
quiescent solitons

symmetry between the top and bottom solitons in the column by the kick, only the
bottom soliton succeeding to create a horizontal array of additional solitons (three
ones, in total). In this case, Fig. 4.17 shows that the eventual value of the total power
(4.15) oscillates between values corresponding to the cumulative power of 7 or 8
quiescent fundamental solitons. The resulting pattern develops a disordered form,
which keeps to oscillate randomly, as Fig. 4.17 clearly demonstrate.

At somewhat higher values of k0 (for example, k0 = 2.0), the original four-soliton
set is transformed into a quiescent three-soliton complex, while an extra dipole and
separate free solitons are created and travel through the lattice, see Fig. 4.18.

Finally, a still stronger kick applied to the square vortex transforms it into a square-
shaped cluster of four solitons moving as a whole, see Fig. 4.19a, b, which display
the result in the 3D form. In the former case, at k0 = 2.5, the cluster leaves behind a
copy of one of the original solitons, while at k0 = 3.0 the moving cluster is the single
emerging mode. Although the clusters are dynamically stable, they do not carry the
vortical phase structure.

We have also studied the application of the kick to the square-shaped vortex in
other directions, i.e., varying angle θ in (4.17). First, as seen in Fig. 4.20a, in the case
of θ = π/8 and k0 = 1.5, the kick again breaks the symmetry between the top and
bottom rows of the solitons, generating an array of additional solitons in the bottom
horizontal row. Further, to check that the numerical code is compatiblewith the global
symmetry of the setting, we also considered equivalent angles, θ = 5π/8, 9π/8 and
13π/8. The results, shown in Fig. 4.20, evidence the possibility of controlling the
direction of the emission of the soliton array by the direction of the initial kick.

Further, running the computations for varying θ and moderate values of k0, we
have concluded that there is a threshold angle ε , so that the emission towards any of
the four equivalent directions, corresponding to directions φ = 0, π/2, π or 3π/2,
occurs provided that the orientation of the kick belongs to a certain range around
this direction, viz., (φ − π/4 + ε) < θ < (φ + π/4 − ε), with ε = 0.059. If the
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Fig. 4.18 The evolution pattern produced by horizontally kicking the square-shaped vortex, for
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Fig. 4.19 a The three-dimensional rendition of the evolution of the horizontally kicked square-
shaped vortex for k0 = 2.5, which is transformed into a stably moving four-soliton cluster. The
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Fig. 4.21 The explanation of the direction in which the soliton array is emitted from the kicked
square-shaped vortex

kick’s orientation falls into interstices between these ranges, namely,[φ + π/4 −
ε;φ+π/4+ε], solitons arrays are not generated. In the latter case, the square vortex
transforms into a quadrupole.

These results can be explained by noting that the intrinsic phase circulation in the
vortex is directed counterclockwise (from X to Y ). Then, as schematically shown
(for example) for θ = π/8 in Fig. 4.21, the superposition of the externally applied
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kick (the phase gradient) and the intrinsic phase flow gives rise to the largest local
phase gradient at the position of the bottom right soliton, in the positive horizontal
direction, therefore the array is emitted accordingly.

4.6 Conclusions

The objective of this chapter is to extend the analysis of the dynamical pattern-
formation scenarios in the cubic-quintic complex GL (Ginzburg-Landau) equation
with the cubic-quintic nonlinearity and 2D cellular potential. This problem is related
to the general theme of the present volume, viz., mobility of localizedmodes in lattice
potentials.

The cubic-quintic complex GL equation is the model for laser cavities with built-
in gratings, represented by the spatially periodic potential. Recently, the quasi-1D
pattern-formation scenarios, initiated by themoving fundamental solitons,were stud-
ied in this model. Here, we have systematically analyzed the fully 2D scenarios, pro-
duced by kicking compound modes, viz., dipoles, offsite-centered quadrupoles, and
vortices of two different types (onsite- and offsite-centered rhombuses and squares).
The motion of the kicked compound through the cellular potential leads to the gen-
eration of diverse multi-peak patterns pinned to the lattice, which the moving object
leaves in its wake. In the annular system with periodic boundary conditions, the per-
sistently traveling dipole hits the pinned pattern from the opposite direction. In this
way, several dynamical regimes are initiated, including the periodically recurring
elastic passage of the free dipole through the quiescent one, and transient regimes,
which lead, after a few quasi-elastic collisions, to absorption of one dipole by the
other. In the case of vortices, the dependence of the outcome on the magnitude and
direction of the kick was investigated too. In particular, a noteworthy result is that
a strong kick transforms the original squared-shaped vortex (which is unstable by
itself) into a clean stably moving four-soliton cluster.
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Chapter 5
A Numerical Study of Weak Lateral
Dispersion in Discrete and Continuum
Models

Luis A. Cisneros-Ake and Antonmaria A. Minzoni

Abstract We consider two dimensional discrete lattices with anharmonic
interactions and weak transversal dispersion. We study the propagation of a con-
tinuum Kadomtsev-Petviashvili I lump and its semi discrete analogue and show the
formation of caustics, due to the emission of linear waves, in both cases. We perform
numerical experiments in different settings. We show how impurities and prestress
can produce new lumps in analogy with one dimensional soliton formation in near
critical flows.

5.1 Introduction

Effects of nonlinear interactions in the dynamics of discrete lattices in one and
two space dimensions have been considered since the striking pioneering numer-
ical experiments by Fermi, Pasta and Ulam (FPU) [5] in the middle of the last
century. From the equipartition of energy and ergodicity to the existence and propa-
gation of strongly localized structures (kinks, solitons, breathers or more generically
Intrinsic Localized Modes) in anharmonic lattices has been the interest due to its
relevance in a wide range of applications ranging from material science, nonlinear
optics, physiology and biology to name a few [1, 3, 8, 9, 15, 16].

Discrete lattice systems are relevant in applications when the microscopic struc-
ture becomes relevant, nevertheless, their appropriate long wave limit reproduces
the macroscopic phenomenology of the continuum medium of the models. There
are however some aspects, like non Galilean invariance and the birth of the Peierls-
Nabarro (PN) potential, that are inherent to the discrete systems that can only be
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studied in this limit. These kind of issues adds difficulties in the study of the dynam-
ics of discrete lattices. The increasing of the space dimensions is another difficulty.
For instance, it is well known in the literature that the one dimensional nonlinear
Schrödinger (NLS) soliton ceases to exist when the space dimensions is increased
[10], there are actually some time estimates, in terms of the space dimensions, for
the blow up of localized structures.

We are interested in this chapter in the propagation of coherent structures(localized
in space) in two dimensional lattices. This problem has been considered numerically
in [2] on the electron transport and one of the questions is to examine the possibility
of propagation of mechanical compressions, due to the presence of an electron for
instance, in directions different to the crystallographic axes. Since localized exci-
tations may percolate, depending on the mechanical excitation, in two dimensional
crystal lattices in finite times leaving finite-length traces, the key point is then to
find the mechanisms that could explain the define paths left by a moving localized
structure and its persistence along the crystal. These issues are also related to the
energy transport in solids and the tracks in mica, which is the main subject of this
book. Our findings in this work show that a possible mechanism is to consider two
dimensional semi discrete lattices which weakly laterally disperse.

Another set of problems is related to the effect of two dimensional impurities
on the propagation of coherent structures. Finally the problem of the formation of
coherent structures due to impurities in a prestressed lattice, which arises as the
two dimensional analogue of soliton formation in supercritical flows past obstacles
considered by Smyth [17], is also of interest. We study these type of questions in this
work.

To begin the study of these questions we will introduce a Kadomtsev-Petviashvili
(KP) type equationwhichwill describeweak lateral dispersion in a lattice. This equa-
tion will be continuous in the direction of propagation and discrete in the orthogonal
direction. We will assume an anisotropic lattice which in the linear regime oscillates
around a minimum of the potential energy when the displacements of the particles
are along the direction of propagation. On the other hand we will assume a bistable
potential in the perpendicular direction. This gives two possible equilibria for the
motion and an unstable equilibrium is between them.

Denote by un,m(t) = u(n, m, t) the compressional displacement around the equi-
librium in the n direction. We will have two contributions for the potential energy.
The first one is U (un+1,m − un,m) where U (r) has a minimum at r = 0. Along
the discrete vertical direction the strain is given by u(n, m + 1, t) − u(n, m, t) and
we assume the energy in that direction, V (r), to be a bistable potential with a max-
imum at r = 0. This gives for the total energy U (u(n + 1, m, t) − u(n, m, t)) +
V (u(n, m + 1, t) − u(n, m, t)) which upon linearization takes the form: α2

2 (u(n +
1, m, t) − u(n, m, t))2 − β2

2 (u(n, m + 1, t) − u(n, m, t))2. Thus the corresponding
equation of motion takes the form
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ün,m(t) = α2 (
un+1,m − 2un,m + un−1,m

) − β2 (
un,m+1 − 2un,m + un,m−1

)
.

(5.1)

The linear dispersion relation for the mode un,m(t) = ei(kn+lm−ωt) provides

ω2 = 4α2 sin2
k

2
− 4β2 sin2

l

2
, (5.2)

where the sin l term takes into account the discrete nature of the lattice in the vertical
direction. Clearly this dispersion relation is unstable for k << l. However, it is a
standard approach to look for one directional waves with l << k which have weak
lateral dispersion. This expansion is valid for time scales shorter than the scale of the
instability for a given choice of initial values. It provides a preliminary assessment
of the weak lateral dispersion. This gives the KP I type equation as follows

ω = ±2

√
α2 sin2

k

2
− β2 sin2

l

2
. (5.3)

Assume k << 1, but keep l << k, to take into account the discrete effect in the
m direction. Expanding to fourth order in k and assuming sin2 l

2 = O(k4), we obtain

ω = αk − α

24
k3 − 2β2

αk
sin2

l

2
(5.4)

which is the linear dispersion relation for the linear KP I equation in the form, often
moving with linear phase velocity α,

uxt +αuxx + α

24
uxxxx −β2

2α
(u(x, m + 1) − 2u(x, m) + u(x, m − 1)) = 0. (5.5)

When nonlinearities in U (ux ) are considered, it is well established that the con-
sistent nonlinear correction is of the KdV type. This gives a generic term γ (ux )u
which often differentiation gives the semi discrete KP I equation in the form:

uxt + uxxxx + 6(ux u)x − 3 (u(x, m + 1) − 2u(x, m) + u(x, m − 1)) = 0, (5.6)

where we transformed this equation into standard form by considering an appropriate

coordinate system and by taking β2

2α = 3, α
24 = 1 and γ = 6. Equation (5.6) describes

the effect of weak discrete lateral dispersion in a localized disturbance in a lattice.
The lattice is unstable to lateral disturbances but in the KP limit, for the continuum
case, the instability is satisfied by the nonlinear effect forming a stable lump solution.
Wewould like to study the effect of discrete dispersion in this context. The long wave
limit in the y = m direction of (5.6) gives the KP I equation:

uxt + uxxxx + 6(ux u)x − 3uyy = 0. (5.7)
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We recall [17] that the lump solution for the KP I equation (5.7) is given in the
form:

u(x, y, t) = 2
∂2

∂x2
log

[
(x ′ + ay′)2 + b2y′2 + 1

b2

]
= 4

−(x ′ + ay′)2 + b2y′2 + 1
b2[

(x ′ + ay′)2 + b2y′2 + 1
b2

]2
(5.8)

where x ′ = x −3(a2 +b2)t and y′ = y +6at for free real parameters a and b. Thus,

the velocity of the lump is v =
√

v2x + v2y where vx = 3(a2 + b2) and vy = −6a.

We end presenting the organization of this chapter. In the next section we describe
the numerical method used in the numerical experiments. We then consider wave
propagation in the semi discrete and continuum KP I to show, using ray’s theory,
the caustic’s formation due to the emission of linear radiation of a traveling lump
profile. The third section is devoted to the numerical study of discrete structures
moving along the transverse direction and the dynamics of lump interaction. We also
consider in this section the lump interaction with impurities or obstacles in both the
semi discrete and continuum KP I. In the fourth section we study the elastic lattice
analogue of the problem of critical flow past obstacles.We provide a very preliminary
interpretation based on the fundamental work of [17]. We present our conclusions in
the last section.

5.2 Numerical Approximation to the
Kadomtsev-Petviashvili I Equation

Wefollow reference [4] to propose a second order central finite difference approxima-
tion in space and an implicit Crank-Nicolson to also get a second order approximation
in time. To this end, we define the finite difference operators [11]:

D+,x f j = 1

Δx
( f j+1 − f j ) = f ′(x j ) + O(Δx),

D0,x f j = 1

2Δx
( f j+1 − f j−1) = f ′(x j ) + O(Δx2),

D2
x f j = 1

Δx2
( f j−1 − 2 f j + f j+1) = f ′′(x j ) + O(Δx2),

D4
x f j = 1

Δx4
( f j+2 − 4 f j+1 + 6 f j − 4 f j−1 + f j−2) = f ′′′′(x j ) + O(Δx2),

where f j = f (x j ) and x j = jΔx . We thus get the finite difference scheme for (5.7)
in the form:

D0,x D+,t ul
n,m + D2

x ((3u2)l
n,m + (3u2)l+1

n,m)+ D4
x (ul

n,m + ul+1
n,m)−3D2

y(ul
n,m + ul+1

n,m) = 0,
(5.9)
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where ul
n,m = u(xn, ym, tl) = v(nΔx, mΔy, lΔt). Equation (5.9) provides an

implicit non linear algebraic system of equations for the unknowns ul+1
n,m provided

the previous values ul
n,m are known for l = 0, 1, ... where u0

n,m corresponds
to the initial condition at t = 0. One should solve the non linear system (5.9)
using, for example, a Newton method every time step. One can, however, linearize
(5.9) using Taylor’s expansions in Δt by keeping the second order approxima-
tion of the overall scheme. Doing this, we may approximate the nonlinear part
(3u2)l

n,m + (3u2)l+1
n,m = 6ul+1

n,mul
n,m + O(Δt2). We now rearrange (5.9) as a linear

system for the unknowns ul+1
n,m :

Alul+1 = dl (5.10)

where the mth entries of the previous vector identity are given by:

al
n,mul+1

n,m−1 + bl
n,mul+1

n−2,m + cl
n,mul+1

n−1,m + gl
n,mul+1

n,m

+el
n,mul+1

n+1,m + bl
l,mul+1

n+2,m + al
l,mul+1

n,m+1 = dl
n,m

with coefficients given by:

al
n,m = −3q, bl

n,m = r, cl
n,m = 6pul

n−1,m − 4r − 1,

gl
n,m = 6r − 12pul

n,m + 6q, el
n,m = 6pul

n+1,m − 4r + 1,

dl
n,m = ul

n+1,m − ul
n−1,m − r(ul

n+2,m − 4ul
n+1,m + 6ul

n,m − 4ul
n−1,m + ul

n−2,m)

+ 3q(ul
n,m+1 − 2ul

n,m + ul
n,m−1),

and p = Δt/Δx , q = ΔtΔx/Δy2, r = Δt/Δx3. The authors of [4] have checked
that the linearized implicit finite difference scheme for the KP I equation is uncon-
ditionally linearly stable. In practice, however, we must take sufficiently small steps
Δx , Δy and Δt to handle nonlinear stability. In [4] it is also shown that the numer-
ical dispersion, induced by central finite differences in the spatial derivatives, is
second order in space and time therefore the numerical dispersion does not exceed
the physical dispersion. Finally, for the numerical implementation of the finite dif-
ference method we consider numerical boundary conditions of the Neumann type:
ul

−N−2,m = ul
−N−1,m = ul

−N ,m , ul
N ,m = ul

N+1,m = ul
N+2,m for m = −M, ..., M

and ul
n,−M−1 = un,−M , ul

n,M+1 = ul
n,M for n = −N , ..., N .

5.2.1 Continuous and Discrete Lump Propagation

In Fig. 5.1a we reproduce the evolution of the continuum lump like initial condi-
tion (5.8), which is not exactly satisfied in the parameters a and b, to show the
readjustment to an exact lump by shedding backwards radiation, and confining it
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Fig. 5.1 Linear dispersed radiation in a continuum KP I for Δx = Δy = 0.2 and b semi discrete
KP I for Δx = 0.2, Δy = 1 both at t = 0.5 and wave parameters a = 0, b = 1, x0 = y0 = 0

inside a parabolic caustic continuum lump like initial conditions in [14]. It is to be
noted that the linear radiation is shed backwards since the group velocity is negative.

In Fig. 5.1b we display the discrete analogue of the continuum solution shown
in previous Fig. 5.1a. We consider a quite wide lump oriented in the continuous x
direction as an initial condition for the semi discrete system (5.6). We observe that
as time evolve the lump narrows down substantially to half the original width due
to the transverse discreteness. This thinning is accompanied by a very narrow tail of
radiation moving backwards and in the forward direction the radiation is confined
by a parabolic caustic similar to the continuum one (see [14]).

We explain the shrinking of the soliton as induced by the confinement of the
radiation and the PN potential induced by the lattice. We now explain using the
linear theory the mechanism for the confinement of the radiation which is quite
different in the two cases.

5.2.1.1 Caustic Formation and Radiation Confinement

The linear radiation emitted by the KP I (5.7) for non exact lump solutions traveling
along the x-axis, in the continuum limit, satisfies the linearised KP equation [14]:

∂2u

∂x∂t
+ ∂4u

∂x4
− 3

∂2u

∂y2
= g(x − ξ(t), y, t), (5.11)

where g = −(u0t + 6u0u0x + u0xxx )x + 3u0yy is the forcing due to the approximate
lump u0 = u0(x − ξ(t), y, t). For the caustic formation, the form of g is not needed
explicitly since the solution of the forced equation (5.11) is as a superposition of
linear modes in the form:

u(x, y, t) = 1

4π2

∞∫

−∞

∞∫

−∞
G(k, l)ei[k(x−ξ(t))+ly−ω(k,l)t]dkdl, (5.12)
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where the dispersion relation ω(k, l) for the linear equation (5.11) is ω(k, l) =
−k3 −3 l2

k . We now consider the phaseψ(k, l) = k(x − ξ(t))+ ly −ω(k, l)t and we
make use of the stationary phase approximation to find the main contribution of the
integral (5.12). The stationary values of the phaseψ(k, l) are attained atψk(k, l) = 0
and ψl(k, l) = 0. We thus find

0 = ψk(k, l) = x − ξ(t) − ωk t = x − ξ(t) +
(
3k2 − 3

l2

k2

)
t,

0 = ψl(k, l) = y − ωl t = y + 6
l

k
t.

We find from last equation l
k = − y

6t and substitute back into the first of the last
equations to obtain the family of planar curves:

F(x − ξ(t), y, k) = x − ξ(t) +
(
3k2 − y2

12t2

)
t = 0, (5.13)

as the equation which gives the family of real rays emanating from the source at
x = ξ(t). The radiation is then confined by the envelope of the rays given by Fk = 0.
This gives k = 0 and the parabolic caustic in the form:

x = ξ(t) + y2

12t
. (5.14)

This expression, since is singular at the initial time t = 0, shows that a parabolic
caustic is formed instantly at the front of the lump.

For the semi discrete KP I equation (5.6), the situation is quite different. The linear
radiation for the KP I equation continuum in the x-axis and discrete in the y = m
direction satisfies the linear equation

∂2um

∂x∂t
+ ∂4um

∂x4
− 3

h2 (um−1 − 2um + um+1) = g(x − ξ(t), m, t), (5.15)

for um = um(x, t) and lattice spacing h in the y-axis. A similar argument as before
shows that the solution to the linearized semi-discrete equation (5.15) is given by:

um(x, t) = 1

4π2

∞∑
m=−∞

∞∫

−∞
G(k, l)ei[k(x−ξ(t))+lmh−ω(k,l)t]dk, (5.16)

where the dispersion relation ω(k, l) = −k3 − 12
kh2

sin2
( lh
2

)
. The phase now is

ψ(k, l) = k(x − ξ(t)) + lm − ω(k, l)t and the stationary phase theorem gives:
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0 = ψk(k, l) = x − ξ(t) +
(
3k2 − 12

k2h2 sin
2
(

lh

2

))
t

= x − ξ(t) +
(
3k2 − 6

k2h2 (1 − cos (lh))

)
t,

0 = ψl(k, l) = m + 12

kh
sin

(
lh

2

)
cos

(
lh

2

)
t = m + 6

kh
sin (lh) t.

Last equation provides sin(lh) = −mkh
6t which in turn simplifies first of last

equations in the form:

0 = F(x − ξ(t), m, k) = ψk(k, l) = x − ξ(t) +
⎛
⎝3k2 − 6

k2h2

⎛
⎝1 −

√
1 − m2k2h2

36t2

⎞
⎠

⎞
⎠ t.

(5.17)

Again this gives a family of rays whose envelope is the caustic. Now the envelope
for the caustic is found solving simultaneously last equation and

0 = Fk(x − ξ(t), m, k) = k4 + 2 + −2 + m2k2h2

36t2√
1 − m2k2h2

36t2

. (5.18)

Now this equation has two branches of solutions one for k = 0 and the second
one for k = k(m, t). This when substituted into (5.17) gives the actual caustic. This
is plotted in Fig. 5.2. This shows that unlike the continuum problem the radiation
is confined to the region A defined by the caustics. This explains the narrow tail of
radiation observed in Fig. 5.1b (see level curves at the bottom of this figure).

Fig. 5.2 Caustics in the
continuum (5.14)
(dot-dashed curve) and in the
semi discrete (5.17)–(5.18)
(continuous curve) for h = 1
both at ξ = 0 and t = 1
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5.3 Lateral Motion and Interaction of Pulses with Obstacles

We begin by considering an oblique lump propagating upwards in the m direction.
Figure5.3 shows the numerical evolution of an initial wide lump. We may see how
the PNmakes a thin lump in the m direction and how the lump is being pinned by the
PN in the m direction allowing propagation in the x direction only. If one enlarges
one of Fig. 5.3b or Fig. 5.3c, one may see that the lump is centered between discrete
sites on m, say in Fig. 5.3b the lump is centered at m = 2.5 and in Fig. 5.3c the lump
is centered at m = 4.5. This is expected in lattice systems since at the middle of sites
the PN attains its minimum. So that, the general picture for propagation along the
discrete variable m is that the lump hops from site to site and eventually stops in one
of them because of the PN potential. The continuous direction x allows the lump to
move in that direction. Our last observation about this numerical evolution is on the
parabolic front. We may see how the parabolic front tries to preserve its form on the
direction of propagation, this is in concordance with the caustic’s formation as it was
discussed previously.
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Fig. 5.3 Oblique propagation: Full numerical solution of semi discrete KP I (5.6) for Δx = 0.1,
Δy = 1, Δt = 0.02 at a t = 0, b t = 2 and c t = 4. The lump profile (5.8) is used as initial
condition for a = −0.25, b = 0.7, x0 = y0 = 0
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Fig. 5.4 Direct collision: Full numerical solution of semi discrete KP I (5.6) forΔx = 0.1,Δy = 1,
Δt = 0.02 at a t = 0, b t = 2.5 and c t = 5. Lump profiles (5.8) are used as initial condition for
a = 0, b = 1, x0 = −5, y0 = 0 and a = 0, b = 0.75, x1 = 3, y1 = 0

We may also see the linear dispersed radiation moving with the appropriate group
velocity and confined by the narrow caustic at the back of the pulse. This is in
agreement with the linear result for a source moving obliquely.

To study the interaction of pulses we recall that the continuum KP I lump interac-
tion exhibits a very complicated evolution. For direct collision along the x-axis it is
known that the lumps, after the collision, form symmetric lumps on the y-axis that
later become together to reconstruct the two lumps on the x-axis [6, 13]. We now see
how this phenomenon takes places in our semi discrete KP I equation. We see from
Fig. 5.4 a similar phenomenon as the one just explained before in the continuous
case. The only difference is that the reconstruction of the lumps after the collision is
not so perfect due to the PN effect. The faster lump is reconstructed as a still much
faster lump which is thiner and higher in form. The opposite occurs to the slower
lump.

We finally consider the effect of an obstacle, which in the present context can be
considered as the compression/expansion caused by an external impurity, in both the
continuous (5.7) and semi discrete (5.6) KP I equations. The effect of the obstacle is
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Fig. 5.5 Lump with obstacle down ( f1 = −0.1 at R1: 0 ≤ x ≤ 1, −0.5 ≤ y ≤ 0.5 and f2 = 0 at
R2): Full numerical solution of KP I (5.7) for Δx = Δy = 0.2, Δt = 0.02 at a t = 0, b t = 0.74
and c t = 1.5. The lump profile (5.8) is used as initial condition for a = 0, b = 0.8 and x0 = y0 = 0

considered as a right hand side f (x, m) and f (x, y) in (5.6) and (5.7), respectively.
The obstacle f is zero almost every where except in the domains R1 and R2 where
it takes values f1 and f2, respectively.

In Fig. 5.5 we show a lump colliding with an obstacle centered in the x axis.
We observe that it splits symmetrically into two lumps which then overtake the
obstacle traveling along the parabolic continuum caustic.We can think of the splitting
as analogous to the splitting produced upon the collision of two pulses previously
studied. It is to be noted that the radiation of the two pulses, as expected, merge and
travels backwards with the appropriate group velocity.

InFig. 5.6we show the effect of discreteness in the current problem.The impurities
are located in a small region of the positive x axis at m = 0. Again the initial pulse
splits but now the first two symmetric pulses that are born apparently travel almost
perpendicularly to the direction of propagation. The motion along the continuous
x axis of the daughter lumps is now much slower than the vertical motion. The
backwards moving radiation, which give place to the birth of lumps, is now confined
to a narrow region, as it was described in the second section.
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Fig. 5.6 Lump with obstacle down ( f1 = −0.1 at R1: 0 ≤ x ≤ 0.5, m = 0 and f2 = 0 at R2):
Full numerical solution of discrete KP I (5.6) for Δx = 0.1, Δy = 1, Δt = 0.02 at a t = 0, b
t = 0.74 and c t = 1.5. The lump profile (5.8) is used as initial condition for a = 0, b = 0.8 and
x0 = y0 = 0

5.4 The Effect of Impurities in a Prestressed Lattice

We consider the analogue of the problem of resonant flow impinging on an obstacle
forming undular bores as studied in [17] for the KdV equation. It must be remarked
that in [7] the two dimensional analogue of [17] in theKP II equationwas numerically
studied in this context. It was found numerically in [12] that the modulated wave
train in the continuum KP I is now deformed into a modulated train of lump solitons
produced by the main flow impinging on the obstacle which evolve along the caustic.
We study the sameproblem for the lattice,which is discrete in the transverse direction,
and the continuous KP I. To this end, we replace u by u + U and t by δt into (5.6)
and (5.7) to obtain KP I analogues of the forced KP II studied in [7],
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Fig. 5.7 Lumpwith obstacle up/down ( f1 = 0.1 at R1: 0 ≤ x ≤ 1,−0.5 ≤ y ≤ 0.5 and f2 = −0.1
at R2: 1 ≤ x ≤ 2, −0.5 ≤ y ≤ 0.5) and constant flux U = −0.5 and δ = −1: Full numerical
solution of KP I (5.20) and Δx = Δy = 0.2, Δt = 0.02 at a t = 0, b t = 1 and c t = 2. The lump
profile (5.8) is used as initial condition for a = 0, b = 0.8 and x0 = y0 = 0

δ
∂2um

∂x∂t
+ 6U

∂2um

∂x2
+ 3

∂2u2
m

∂x2
+ ∂4um

∂x4
− 3 (um−1 − 2um + um+1) = f (x, m)

(5.19)
and

δuxt + 6Uuxx + 3
(

u2
)

xx
+ uxxxx − 3uyy = f (x, y) (5.20)

respectively. The constant U is the state of constant deformation while the forcing
compression f (x, m) or f (x, y) is the external localized compression (or topography
impurities) which is being imposed on the deformed lattice and it is assumed to be
placed instantaneously.

The first problem we consider is the one of evolution of a lump in a prestressed
lattice. In Fig. 5.7we consider the effect of the first obstacle in the continuumcase.We
observe the lump colliding with obstacle. As a result the lump splits. Two large lumps
are reflected with large velocity and a smaller lump is transmitted. This behavior can
be explained using the previous result of lump interaction. We have to the leading
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Fig. 5.8 Lump with obstacle up/down ( f1 = 0.1 at R1: 0 ≤ x ≤ 0.5, m = 0 and f2 = −0.1 at R2:
0.5 ≤ x ≤ 1, m = 0) and constant flux U = −0.5 and δ = −1: Full numerical solution of discrete
KP I (5.19) and Δx = 0.1, Δy = 1, Δt = 0.02 at a t = 0, b t = 1 and c t = 2. The lump profile
(5.8) is used as initial condition for a = 0, b = 0.8 and x0 = y0 = 0

edge of the lump interactions with the obstacle producing a backwards moving wave
since the obstacle acts as a source. This wave interacts with the main lump playing
the same role as a pulse which splits the pulse and each piece is swept backwards by
the flow induced by the obstacle.

In Fig. 5.8 we have the same situation for the discrete case. The behavior is dif-
ferent. Now the pulse is just bounced back leaving a narrow tail of radiation; no
splitting is observed. Now the PN potential prevents the splitting and the backward
flow produced by the object reflects the pulse which after hitting the obstacle travels
to the left. The small radiation shed of the pulse is confined in the narrow caustic
while the radiation at the back is confined by the parabolic caustic.
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Fig. 5.9 u = 0 at t = 0 with obstacle up/down ( f1 = 0.25 at R1: 0 ≤ x ≤ 1, −0.5 ≤ y ≤ 0.5
and f2 = −0.25 at R2: 1 ≤ x ≤ 2, −0.5 ≤ y ≤ 0.5) and constant flux U = 0.5 and δ = 1: Full
numerical solution of KP I (5.20) and Δx = Δy = 0.2, Δt = 0.02 at a t = 0.5, b t = 1 and c
t = 1.5

We finish this section by considering a positive flow U passing an obstacle from
zero initial conditions in u. We show in Fig. 5.9 the creation of a family of lump
solitons emerging from the obstacle, due to the constant flow U , and moving along
the caustic in the continuum. We may see that it takes some time after other pair
of symmetric lumps are generated after the previous ones. Due to our computer
limitations we are just able to see some of them, it takes longer times to see the
complete evolution. This figure reproduces the main result obtained in [12]. The
semi discrete counterpart is quite similar. Figure5.10 shows the lump generation due
to a positive flow through an obstacle in a semi discrete medium. The only difference
with respect to the continuum, as expected, is the effect of the second caustic in the
discrete KP I that influences the creation and the direction of motion in the family
of lumps.
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Fig. 5.10 u = 0 at t = 0 with obstacle up/down ( f1 = 0.25 at R1: 0 ≤ x ≤ 0.5, m = 0 and
f2 = −0.25 at R2: 0.5 ≤ x ≤ 1, m = 0) and constant flux U = 0.5 and δ = 1: Full numerical
solution of discrete KP I (5.19) and Δx = 0.1, Δy = 1, Δt = 0.02 at a t = 0.4, b t = 0.8 and c
t = 1.2

5.5 Conclusions

We have shown that the effects of weak lateral dispersion in a two dimensional lattice
can be described by a KP I type equation in the case of a bistable potential between
lattice sites in the direction transverse to the main propagation direction. We have
shown how the discreteness of the lattice narrows the width of the continuum lump.
Moreover we have explained the radiation pattern of the evolving semi discrete lump
in terms of a double caustic for the linear radiation.

Wehave also studied howdiscreteness changes the oblique propagation bypinning
the lump in the transverse direction allowing it to move parallel to the crystal axis.
The effect of obstacles was studied numerically and was shown to provide a guiding
mechanism for lumps along the caustic of the linear waves produced by the obstacle.
This shows how lumps could be guided in direction transverse to the crystallographic
axis by introducing impurities appropriately. It will be of interest to study the effect
of different impurities arranged as to guide lump solitons in different directions to
reach various lattice points and thus allow prescribed percolations.
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It also remains to be studied the coupling of a semi discrete KP with an NLS type
equation to explore the existence of supersonic solectrons [18] in two dimensional
lattices.
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Chapter 6
Breather Mobility and the Peierls-Nabarro
Potential: Brief Review and Recent Progress

Magnus Johansson and Peter Jason

Abstract The question whether a nonlinear localized mode (discrete soliton/brea-
ther) can be mobile in a lattice has a standard interpretation in terms of the
Peierls-Nabarro (PN) potential barrier. For the most commonly studied cases, the
PN barrier for strongly localized solutions becomes large, rendering these essen-
tially immobile. Several ways to improve the mobility by reducing the PN-barrier
have been proposed during the last decade, and the first part gives a brief review of
such scenarios in 1D and 2D. We then proceed to discuss two recently discovered
novel mobility scenarios. The first example is the 2D Kagome lattice, where the
existence of a highly degenerate, flat linear band allows for a very small PN-barrier
and mobility of highly localized modes in a small-power regime. The second exam-
ple is a 1D waveguide array in an active medium with intrinsic (saturable) gain and
damping, where exponentially localized, travelling discrete dissipative solitons may
exist as stable attractors. Finally, using the framework of an extended Bose-Hubbard
model, we show that while quantum fluctuations destroy the mobility of slowly mov-
ing, strongly localized classical modes, coherent mobility of rapidly moving states
survives even in a strongly quantum regime.

6.1 Introduction

The concept of a Peierls-Nabarro (PN) potential, and a corresponding PN barrier,
to describe the motion of a localized excitation in a periodic lattice has ancient
roots. It originates in the work of Peierls from 1940 [61], later expanded and cor-
rected by Nabarro [55], calculating the minimum stress necessary for moving a
dislocation in a simple cubic lattice. A classical model for describing dislocation
motion is the Frenkel-Kontorova (FK), or discrete sine-Gordon, model [4], where
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dislocations appear as discretizations of the topological kink solitons of the
continuum sine-Gordon equation. In the continuum limit, the system is Lorentz
invariant so the kink can be boosted to an arbitrary velocity without energy threshold.
The lattice discreteness breaks the translational invariance and singles out two pos-
sible configurations for a stationary kink: a stable configuration centered in-between
two lattice sites (“bond-centered”, “inter-site”) and an unstable configuration cen-
tered at a lattice site (“site-centered”, “on-site”). Defining the PN barrier as the
minimum energy that must be added to a stable kink in order to translate it one
lattice site, it becomes equal to the energy difference between the site-centered and
bond-centered kinks, since the kink must pass through a site-centered configuration
in order to reach its next stable lattice position. If in addition one assumes that the kink
travels very slowly and adiabatically through the lattice, one may employ a collective
coordinate approach using the kink center as a collective coordinate. Calculating the
kink energy as a function of its center then defines a PN potential as a continuous
and periodic function of the lattice position, where stable positions appear as minima
and unstable positions as maxima or saddles. See [4] for more detailed discussions,
and further references, concerning the PN potential for FK kinks.

It is then highly tempting to carry over a similar reasoning for describing the
mobility also of nontopological lattice solitons, e.g., discrete breathers and discrete
envelope and pulse solitons (cf, e.g., [8, 14]). Indeed, as we will illustrate with many
examples in the remainder of this chapter, such an approach is often very useful and
has lead to much progress in understanding the conditions for breather mobility in
various models. However, some cautionary remarks may be in order before proceed-
ing, in particular for the reader more inclined towards rigorous approaches. First, as
was pointed out early by Flach and Willis [30, 31], a problem arises with the defini-
tion of a PN barrier/potential for discrete breathers in generic Hamiltonian lattices,
since breathers come in continuous families and typically also have internal oscil-
lation modes which may increase or decrease their energy. Thus, strictly speaking,
there is no unique minimum energy needed for translating a breather one site since it
depends on the internal breather degrees of freedom, and therefore no well-defined
PN barrier unless some additional constraint is imposed on the dynamics. This prob-
lem does not occur for kinks, since they carry topological charge and the stable kink
is a global energy minimizer under the given boundary conditions. Second, the PN
potential is defined assuming adiabatic (ideally infinitely slow)motion, and therefore
the fact that a localized mode can be supplied with sufficient energy to overcome the
PN barrier does not imply the existence of exact moving discrete solitons at finite
(possibly large) velocities. On the contrary: a localized mode travelling through the
periodic potential with a nonzero velocity will generate oscillations, which in the
generic case will resonate with oscillation frequencies for linear waves. Thus, the
motion causes radiation to be emitted, and the mode eventually slows down and/or
decays. See [28] for further discussion and references on this issue, and [62] for a
more mathematical approach.

As mentioned, the first problem above may be overcome by imposing some addi-
tional constraint on the dynamics. As discussed by Cretegny and Aubry [2, 12], a
natural assumption would be that a breather moves at a constant total action, since
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(a) (b)

Fig. 6.1 Illustrations of stationary DNLS breathers: a on-site; b inter-site

for a time-periodic trajectory the action can be identified with the area inside a loop
in phase space, which is conserved for any Hamiltonian system. Thus, assuming
adiabatic motion with a velocity much smaller than the oscillation frequency of
the breather, the action should be at least approximately conserved also for a mov-
ing breather (see also [46] for a related approach, and [67] for a tutorial review).
In fact, for the very important class of Discrete Nonlinear Schrödinger (DNLS)
lattices [22, 41], which will be the main focus of this chapter, this statement is even
rigorously true! The action then corresponds to the total norm (which, depending on
the particular physical application of the model, may correspond e.g. to power, or
particle number), which is a second conserved quantity of all DNLS-type lattices. In
the particular case of a “standard” 1D DNLS chain with cubic, on-site nonlinearity
((6.1) below with K4 = K5 = 0), it was realized by Eilbeck already in 1986 [20]
(later rediscovered in [44]) that the proper definition of a PN barrier then corresponds
to comparing the energy of the on-site discrete soliton (which here is stable, Fig. 6.1a)
with the (unstable, Fig. 6.1b) inter-site soliton at fixed norm. He also concluded that
for strong nonlinearity, corresponding to highly localized solitons, the PN barrier
grows proportionally to the nonlinearity strength, and therefore such solitons cannot
be moved but are pinned to the lattice. In fact, it has later also been rigorously proven
that stable DNLS solitons are global energy minimizers at fixed norm [72], which
justifies the definition of the PN barrier as the minimum additional energy needed
for translating the ground-state soliton one lattice site in slow, adiabatic motion. A
very recent work [37] has also rigorously shown that for weak nonlinearity, when
the DNLS soliton approaches the continuous NLS soliton, the PN-barrier becomes
exponentially small in the discreteness parameter (lattice constant).

It should also be noted that although DNLS-type models have the non-generic
property of exact norm conservation, such models generically arise in approxi-
mate, rotating-wave type, descriptions of the slow modulational, small-amplitude
dynamics of more general nonlinear lattice models with anharmonic on-site (Klein-
Gordon, KG) and/or intersite (Fermi-Pasta-Ulam, FPU) interactions. A separation of
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time-scales between fast, small-amplitude oscillations (e.g. breather frequency) and
slow modulations (e.g. breather movement) is a crucial ingredience in all such
approaches, see, e.g., [38, 53] for discussion and further references. Thus, under
these conditions, we should expect the Peierls-Nabarro potentials and barriers ana-
lyzed for DNLS models to also give good approximate descriptions of breather
mobility in the corresponding KG/FPU lattices.

After this very brief general review of the basic concepts of PN potential and
barrier and their relation to breather mobility, the remainder of this chapter will focus
on describing various ways to improve the mobility of strongly localized modes by
reducing the PN-barrier, that have been proposed during the last decade. Section6.2
discusses briefly the one-dimensional (1D) scenario, mainly within the framework
of a DNLS model extended with inter-site nonlinearities. In Sect. 6.3, we first give
a general, short overview of different two-dimensional (2D) mobility scenarios that
have been discussed in the literature, and then focusmore particularly on the saturable
DNLS model and the corresponding PN potential (Sect. 6.3.1), and the Kagome
lattice with mobile “flat-band” discrete solitons (Sect. 6.3.2). Section6.4 describes
how an intrinsic gain may support exact localized travelling discrete dissipative
solitons, and in Sect. 6.5we analyze the quantummechanical counterparts to strongly
localized moving modes, and discuss the conditions under which the classical PN
potential concept has a meaningful quantum counterpart.

6.2 PN-Barriers and Discrete Soliton Mobility in 1D

As discussed above, for the “standard” DNLS equation, with a pure on-site, cubic
nonlinearity, the energy difference between the stable, site-centered mode and the
unstable, bond-centered mode is always nonzero and grows with increasing nonlin-
earity, and therefore strongly localized modes are highly immobile. Thus, in generic
cases, we should expect PNpotentials and barriers to be always nonvanishing. Excep-
tions occur for integrable models, such as the Ablowitz-Ladik discretization of the
NLS equation, where the PN barrier strictly vanishes since the model has continuous
families of exact propagating soliton solutions [44].

However, as was probably first noted for a cubic model with inter-site nonlinear-
ities [60], also for some non-integrable models this energy difference may vanish
in particular points when parameters are varied. The considered model was derived
using a coupled-mode approach to describe stationary light propagation in an optical
waveguide array embedded in a nonlinear Kerr material, and after rescalings it takes
the form of an extended DNLS equation,

iΨ̇n = K2(Ψn−1 + Ψn+1) − Ψn |Ψn |2
+ 2K4

(
2Ψn(|Ψn−1|2 + |Ψn+1|2) + Ψ ∗

n (Ψ 2
n−1 + Ψ 2

n+1)
)

+ 2K5
(
2|Ψn |2(Ψn−1 + Ψn+1) + Ψ 2

n (Ψ ∗
n−1 + Ψ ∗

n+1) + Ψn−1|Ψn−1|2 + Ψn+1|Ψn+1|2
)
,

(6.1)
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where the time-derivative in this context should be interpreted as a spatial derivative
with respect to the longitudinal coordinate. For K4 = K5 = 0, this is just the ordi-
nary cubicDNLSmodelwith nearest-neighbour coupling K2 and on-site nonlinearity
normalized to 1. The additional terms, whose strengths are determined by parame-
ters K4 and K5, describe two different types of nonlinear nearest-neighbour mode
couplings, both resulting from the nonlinearity of the embedding medium. Like the
ordinary DNLS equation, (6.1) has a standard Hamiltonian structure with conserved
Hamiltonian (energy),

H =
∑

n

[
K2ΨnΨ ∗

n+1 − 1

4
|Ψn|4 + K4

(
2|Ψn|2|Ψn+1|2 + Ψ 2

n Ψ ∗ 2
n+1

)

+2K5ΨnΨn+1

(
Ψ ∗ 2

n + Ψ ∗ 2
n+1

)]
+ c.c. (6.2)

(c.c. denotes complex conjugate), as well as conserved norm (power, excitation num-
ber),

P =
∑

n

|Ψn|2. (6.3)

The fundamental discrete solitons (breathers) are, just as in the standardDNLSmodel,
spatially localized stationary solutions with a purely harmonic time-dependence,

Ψn(t) = une
−iΛt , (6.4)

where the mode profiles un generically can be chosen real and time-independent.
The vanishing, at specific values of K4, of the energy difference between on-site

and inter-site solutions having the same norm is illustrated in Fig. 6.2, for two differ-
ent values of K5. As has been confirmed by studies of many other models (several
of those to be described later in this chapter), this vanishing is generically associ-
ated with a stability exchange between the on-site and inter-site modes, appearing
through bifurcations with a family of intermediate, asymmetric stationary solutions,
connecting the two types of symmetric solutions and “carrying” the (in)stability
between them. In fact, such a scenario for enhanced mobility had been originally
described by Cretegny and Aubry [2, 12] for breathers in a KG model with a Morse
potential.

One very important point to note here is, that close to such points, the true PN
barrier (defined, as discussed in Sect. 6.1, as the minimum energy needed for a lattice
translation of a stable soliton) is not equal to the energy difference between the on-site
and inter-site modes, but generally larger since energy is needed to pass also through
the intermediate stationary solution. An analogous scenario has been known for a
long time to appear for kinks in a modified FK model with a deformable substrate
potential [63].

Another important point is to note the qualitative difference between the two sce-
narios in Fig. 6.2a, b: in (a), the intermediate solution is unstable (energy max) and
the on-site and inter-site solutions are simultaneously stable in the stability exchange
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(a) (b)

Fig. 6.2 Bifurcation diagrams for stationary discrete solitons in the extended DNLS equation
(6.1) with K2 = 0.2, having a constant norm (6.3) P = 2. The Hamiltonian (6.2) is plotted as a
function of the parameter K4 for two different values of the other inter-site nonlinearity parameter,
a K5 = −0.18, and b K5 = −0.1. The symbols denote the three different types of solitons: on-site
(+), symmetric inter-site (+,+), and asymmetric intermediate (i), with profiles (at K4 = −0.1416)
indicated in (b). Solid (dashed) lines denote linearly stable (unstable) solutions, and bifurcation
points are indicated with dots. See [60]

region, while in (b) both symmetric solutions are unstable and the intermediate solu-
tion is stable (energymin). Thus, by varying also the second parameter (here K5), it is
possible to tune the existence regime for the intermediate solution, and even to make
it vanish at certain points! At such points, termed “transparent points” in [49] (for a
differentmodel with saturable on-site potential to be discussed below), the PN barrier
is indeed truly zero and a single family of translationally invariant stationary states
having the same energy and norm must exist, with a free parameter corresponding
to the position of the center of energy. As elaborated for the model in [49] (see also
[9] for further discussion and references), travelling waves do indeed bifurcate from
stationary solutions at such exceptional points, but radiationless mobility is possible
only at “special”, nonzero, velocities. For generic small velocities, resonances with
linear oscillations causing radiation cannot be avoided and so the mobility may be
extremely good, but not perfect. An illustration of the almost perfect mobility for
the model (6.1) very close to a transparent point was given by Öster [58] and is
reproduced in Fig. 6.3.

To our knowledge, it has not yet been investigated whether exceptional velocities
with radiationless mobility exist also for (6.1). It was also noted in [58] that even
though the Hamiltonian and norm are independent of the location of the center of
energy for the family of stationary solutions at the transparent point of (6.1), the
oscillation frequency Λ is not. It was also found earlier, for slowly moving breathers
in the stability exchange regime of the KG chain with Morse potential, that the local
oscillation frequency is not constant but varies with the location in the unit cell
[2, 12].

As mentioned above, a similar scenario appears also for a DNLS model with a
saturable nonlinearity, which can be obtained from (6.1) by removing the intersite
nonlinear terms (K4 = K5 = 0) and replacing the cubic on-site nonlinearity with the
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(a) (b)

Fig. 6.3 Propagating excitation very close to a transparent point in the extended DNLS equation
(6.1) with K2 = 0.2, K4 = −0.1316, K5 = −0.1470, P = 2.01464, and H = −2.61566. a
shows the motion of the center of energy in a 51-site lattice with periodic boundary conditions. The
(unstable) on-site stationary solution is perturbed by a phase gradient eikm with k = 10−4 (solid)
and k = 10−3 (dashed) (m here denotes site index). The non-constancy of the velocity for the very
slowly moving solution (solid) is a result of the finite numerical precision when determining the
transparent point; the remaining PN barrier is of the order of 10−7. b shows a snap-shot of the
slowest excitation at t = 1000. Note the very small but non-vanishing tail, which is larger than the
numerical accuracy and thus a result of the emitted radiation during the motion. See [58]

termβΨn/(1+|Ψn |2). TheHamiltonian can then (after a trivial gauge transformation)
be written as H = ∑

n[β ln(1 + |Ψn|2) + K2|Ψn−1 − Ψn|2]. This model is often
used for describing spatial solitons in photorefractive waveguide arrays, and as was
originally discussed byHadžievski et al. in 2004 [33], there aremultiple points where
the energy difference between on-site and inter-site discrete solitons vanish, and a
very good mobility was observed. Many works have followed discussing various
properties of these modes, of which we here just mention a few. Khare et al. [42]
obtained analytical solutions for a complete family of intermediate solutions, Cuevas
and Eilbeck [13] studied discrete soliton interactions, Melvin et al. [49] found, as
mentioned above, radiationless travelling waves at “special” velocities, and Naether
et al. [57] analyzed the PN potential landscape in the stability exchange regimes
using a constraint method to be described in the next section. We will also return to
discuss the 2D version of the saturable DNLS and its mobility properties in the next
section.

6.3 Discrete Soliton (Breather) Mobility in 2D

As is commonly known,mobility in 2D is “normally”muchworse than in 1D, at least
when the effective nonlinearity is cubic as in the standard DNLS-type models. As
discussed e.g. in [11], the reason for this can be traced to the fact that in the continuum
limit, 2DNLS solitons are unstable andmay undergo collapse into a singularity spike
in a finite time. In a lattice, the strict mathematical collapse is impossible due to norm
conservation, but instead a “quasicollapse” scenario appears where broad discrete
(stationary or moving) solitons are transformed into highly localized and strongly
pinned modes [11]. Moreover, it is important to note that, in contrast to the 1D



154 M. Johansson and P. Jason

case with cubic nonlinearity where the norm goes to zero in the small-amplitude
(continuum) limit, the norm of 2D small-amplitude discrete solitons goes to a finite,
nonzero value. The consequence is the existence of an excitation threshold, i.e., a
minimum value of the norm below which no localized excitation exists, which has
been rigorously established in [72] (see also the recent discussion in [37]).

However, some notable exceptions to the general folklore “mobility is bad in 2D
lattices” has been known for some time, and we here try to briefly exemplify different
physical situations where good 2D mobility of localized modes has been observed,
and explain why the scenarios differ from the generic one described above.

(i) Moving breathers in vibrational lattices with several degrees of freedom, (e.g.
longitudinal and transversal), such as the two-component hexagonal lattice used by
Marín et al. [47] to simulate the motion of quasi-one-dimensional “quodons” along
certain directions in amica-like structure. In this case, the vibrational direction singles
out a preferred direction for the breather which breaks the 2D lattice symmetry. As
a consequence, along “suitable” lattice directions the breather may strongly deform
and become elongated along one direction and compressed along the other. Thus it
should behave essentially as a 1D small-amplitude breather in this direction.

(ii) Moving 2D polarons have been observed in electron-phonon coupled lattices
with anharmonic vibrational degrees of freedom, such as the Holstein model with
saturable anharmonicity in [75]. In this case, the effective nonlinearity in the semi-
classical dynamics is no longer purely cubic but saturable, and as will be discussed
in detail below (Sect. 6.3.1), such nonlinearity allows for stable, mobile localized
modes also in 2D. Recently, another example of a system which may support mobile
2D polarons was given in [54], where a molecular lattice having both intra- and inter-
molecular harmonic degrees of freedomwas considered, and the electron-lattice cou-
pling was assumed to have as well an on-site (Holstein) as an inter-site (Peierls) part.
By tuning the relation between these two couplings suitably, mobile polarons were
observed in a rather narrow parameter window. Thus, this mechanism of enhanced
mobility by competing effective on-site and inter-site nonlinearities is reminiscent
of the scenario for the 1D extended DNLS model (6.1).

(iii) Strongly anisotropic lattices, with essentially 1D mobility in the strong-
coupling direction only. Typically these states are elongated, and strongly localized
in the weak-coupling direction only, where they are not mobile. For anisotropic
DNLS models, this scenario was described in detail in [32]. A related example is the
“reduced-symmetry” gap solitons [27], where, although the lattice itself is isotropic,
there is an effective anisotropy induced by anisotropic dispersion at a band edge of
a higher band (e.g. p-band). This scenario was analyzed in detail within a discrete
coupled-mode approach in [40], where each lattice site is assumed to support two
orthogonal, degenerate modes of dipolar character. With this approach, the mecha-
nism of symmetry breaking thus becomes analogous to that of the two-component
vibrational lattice discussed in (i) above, with the orientation of the local dipole
corresponding to the direction of local lattice vibration in (i).

(iv) Moving, stable, small-amplitude “quasi-continuous” breathers (wide rela-
tive to the lattice spacing) were found in (scalar) 2D FPU-type lattices, square [6]
as well as hexagonal [7]. Although a standard continuum approximation to lowest
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order yields a cubic NLS equation, where stable localized solutions do not exist as
discussed above, their existence in the 2D FPU-lattice was explained by incorporat-
ing higher-order dispersive and nonlinear terms as perturbations, which under certain
conditions could lead to stabilization. A similar effect was seen for moving solutions
of very small amplitude in the cubic on-site DNLS equation [1]. Essentially, the
velocity makes the effective dispersion of the corresponding continuum NLS model
anisotropic, resulting in a deformation of broad solitons which may move for rather
long distances without collapsing or trapping. However, it was noted in [1] that also
these moving quasi-continuous solutions are weakly unstable and slowly decaying
through dispersion in the DNLS lattice.

(v) Systems with non-cubic effective nonlinearities in the equations of motion.
For a quadratic nonlinearity, there are no collapse instabilities in the continuum limit
in 2D, and no excitation threshold for discrete solitons. Thus, as shown in [68] for a
2D lattice with second-harmonic generating nonlinearity, the PN barrier for small-
amplitude, weakly localized solutions may be small enough for good mobility in
arbitrary lattice directions. The case with saturable nonlinearity [56, 69] has already
been mentioned above in (ii) and will be discussed in detail in Sect. 6.3.1 below. A
similar mobility scenario appears also for a 2DDNLSmodel with competing (i.e., of
different sign) cubic and quintic on-site nonlinearities [10] (resulting e.g. from taking
into account only the lowest-order terms in a Taylor expansion of a full saturable
potential).

(vi) Systems with flat, i.e. dispersionless, linear bands, such as the DNLS model
for a Kagome lattice [70] to be described in more details in Sect. 6.3.2. In this case,
the absence of linear dispersion implies that discrete solitons bifurcating from the
flat band cannot be described by a continuous NLS equation, and therefore they
are not prone to collapse instabilities. Instead, they bifurcate from localized linear
modes with zero norm threshold also for cubic nonlinearities, and small-amplitude
solutions can be movable while being still strongly localized due to the smallness of
the PN-barrier in some regime.

6.3.1 Discrete Soliton Mobility in the 2D Saturable DNLS
Model

The mobility properties of discrete solitons in the 2D DNLS model with a saturable
on-site nonlinearity were first described in [69] and further analyzed in [56].With the
notation from [69], describing spatial solitons in a photorefractive waveguide array,
the dynamical equation takes the form

i
∂un,m

∂ξ
+ Δun,m − γ

un,m

1 + |un,m |2 = 0, (6.5)
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where ξ is the normalized propagation distance along the waveguides (playing the
role of the time coordinate in the standard Hamiltonian framework), un,m describes
the (complex) electric-field amplitude at site {n, m}, and Δ represents the 2D dis-
crete Laplacian, Δun,m ≡ un+1,m + un−1,m + un,m+1 + un,m−1, defining the linear
interaction between nearest-neighbour waveguides. The two conserved quantities for
(6.5) are the Hamiltonian (energy)

H = −
∑
n,m

[
(un+1,m + un,m+1) u∗

n,m − γ

2
ln(1 + |un,m |2) + c.c.

]
, (6.6)

and the power (norm)
P =

∑
n,m

|un,m |2. (6.7)

As illustrated in Fig. 6.4, there are three different types of fundamental symmetric
stationary solutions, un,m(ξ) = Un,meiλξ , which will here be termed 1-site, 2-site,
and 4-site modes, respectively, referring to the number of sites sharing the main peak
of the modes. (These modes go under various other names in the literature, e.g., in
[37] they are termed vertex-, bond- and cell-centered bound states, respectively.)Note
that there are two, degenerate, 2-site modes, horizontal and vertical. In bifurcation
scenarios similar to that discussed for the 1D cases above, 1-site, 2-site and 4-site
modes may exchange their stability properties under variation of the parameters γ

and P , and as described in [69],mobility then appears along axial directions in certain
parameter regimes. An example of the stability exchange between a 1-site and a 2-site
mode, with the appearance of an unstable asymmetric intermediate solution (IS), is
illustrated in the lower part of Fig. 6.4.

In order to better understand the conditions for mobility in the various regimes,
a numerical method was implemented in [56] for calculating the full PN potential
landscapes, showing the variation of the energy with the center of mass for localized
solutions. The basic idea builds on the standard Newton-Raphson (NR) scheme for
calculating stationary soliton solutions to the equations of motion (6.5) (see, e.g.,
[28]), but imposes two additional constraints in order to fix the center of mass of the
soliton horizontally and vertically:

X ≡
∑

nm n|un,m |2
P

and Y ≡
∑

nm m|un,m |2
P

. (6.8)

Technically, this is implemented by eliminating the equations for two specific sites,
chosen close to, but away from, the soliton center site, from the NR iteration, and
instead determining the amplitudes for these sites (which can be chosen real and
positive for the fundamental solitons) from the constraint conditions (6.8). (See [56]
for further details and discussions about optimal choices of constraint sites.) Starting
then from a stationary solution, e.g., a 1-site solution with center of mass at some
lattice site (X, Y ) = (nc, mc), we may proceed with a numerical continuation (at
fixed power P) by increasing adiabatically e.g. X in the constraint (6.8), until we
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(a)

(e)

(b) (c) (d)

Fig. 6.4 Upper figures Examples of spatial profiles for the fundamental symmetric stationary
solutions of the 2D saturable DNLS model (6.5): a 1-site, b 2-site horizontal, c 2-site vertical, and
d 4-site. From [56]. Lower figure e Bifurcation diagram showing the exchange of stability when
γ = 10 for increasing power from stable1-site (red diamonds) to stable 2-site (green stars) via
an unstable intermediate solution (IS, black triangles) with profile indicated as inset. The 4-site
solution (blue squares) is unstable in this regime. See [69]

end up at the horizontal 2-site solution centered at (X, Y ) = (nc + 1/2, mc). From
there, we may continue by increasing Y adiabatically towards the 4-site solution at
(X, Y ) = (nc + 1/2, mc + 1/2). Assuming that all NR iterations converge, it should
be clear that the continuation could be done in any direction, and that we can also
continue, e.g., with increasing Y for any X between nc and nc + 1/2.

By calculating the energy (6.6) for each converged, constrained solution obtained
from a sweep over the full area nc ≤ X ≤ nc + 1/2, mc ≤ Y ≤ mc + 1/2, we
obtain a smooth PN potential surface if the continuation is smooth everywhere. A
goodmobility should then be expected if there are directions where these surfaces are
smooth and flat. Note that only the local extrema of these surfaces may correspond
to true stationary solutions of the unconstrained system (6.5): stable solutions corre-
spond to minima and unstable solutions to maxima or saddles.1 This type of method

1A cautionary remark may be in order: if the constraint sites are not properly chosen, the method
may reach different stationary solutions, or no stationary solutions at all [56], and therefore yield
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for calculating PN potentials was originally proposed for 1D breathers by Cretegny
and Aubry [2, 12], and similar methods were implemented e.g. for 1D kinks in KG
chains [66], and applied to surface modes in the 1D DNLS model [52].

An extensive discussion about the nature of the obtained PN surfaces in different
parameter regimes, and the associated mobility properties, was given in [56]; here
we just give a brief summary and show sample results for two particularly interesting
regimes when γ = 4, where smooth, complete surfaces were found for all values of
the power P . In the low-power regime, the surfaces have singleminimacorresponding
to the stable1-site modes, saddle points corresponding to the unstable2-site modes,
and maxima corresponding to the likewise unstable4-site modes. This ordering of
energies for the stationary solutions is the same as for the ordinary (cubic) DNLS
model (see, e.g., [37]), which could be expected since a small-power expansion of
the saturable nonlinearity yields a cubic term to lowest order. However, as discussed
above, for the cubic 2D DNLS model, stable stationary solutions are not mobile due
to the large power excitation thresholds and narrowness of the stable solutions. The
effect of the saturability is to lower the excitation thresholds for all three stationary
solutions [69], allowing for the existence of a regime of relatively low power with
broader stable modes having improved mobility [56, 69]. In terms of PN potentials,
this results in smooth, complete 2D surfaces generated from the constrained NR
method, which could not be obtained for the cubic DNLS model [56].

For increasing power, the scenario changes as the first stability exchange regime
(illustrated in Fig. 6.4 for a different value of γ ) is reached. In Fig. 6.5, two new
saddle points corresponding to the unstable, asymmetric, stationary intermediate
solutions (IS) have appeared, while the extrema corresponding to the (now stable)
2-site modes have changed to local minima. Note that the energy landscape is almost
flat between the simultaneously stable1-site and 2-site solutions, resulting in a very
good axial mobility (lower plot in Fig. 6.5). Note also how the very slowly moving
mode in Fig. 6.5 clearly traces out the local features of the PN potential in the axial
directions, where the velocity is minimal at each location for the center of mass
corresponding to IS saddles in the potential surface.

A further increase in P turns the 1-site mode unstable, and the PN surface for
the regime when only the 2-site modes are stable is shown in Fig. 6.6. Note that
the topology of the surface, with two equivalent minima corresponding to the stable
horizontal and vertical modes and two local maxima corresponding to the unstable1-
site and 4-site modes, necessitates a saddle point along the diagonal between the
maxima, and therefore another asymmetric unstable stationary intermediate solution
(here termed IS2) must exist. The flatness of the energy landscape (note the scale on
the H -axis) between the stable horizontal and vertical 2-site modes implies a new
type of mobility in the diagonal direction, illustrated in the lower part of Fig. 6.6:
the soliton moves its center along the diagonal by repeatedly transforming between

(Footnote 1 continued)
different energy landscapes not related to the PN potential between the fundamental 1-site, 2-site
and 4-site modes.
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Fig. 6.5 Upper figure PN potential surface of (6.5) for γ = 4 and P ≈ 9.4. The different stationary
solutions are marked with arrows [56]. Lower figure The resulting mobility in an axial direction,
after applying a small phase gradient (k ≈ 6 · 10−3) to a stable1-site mode, which adds an energy
just enough to overcome the very small PN barrier (ΔH ≈ 2 · 10−4) to the stationary intermediate
solution (IS). Main figure shows motion of center of mass, inset shows profiles at different ξ . See
[69]

horizontal and vertical shapes, passing over the small PN barrier created by the
intermediate solution (see [56] for further illustrations).

Continuing the increase of power, a fourth regime is reached where also the 4-site
solution has stabilized (this occurs when the IS2 saddle in Fig. 6.6 reaches the 4-site
max), yielding a PN surfacewith localminima at the stable2-site and 4-site positions,
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Fig. 6.6 Upper figure PN potential surface of (6.5) for γ = 4 and P = 10.0, with stationary
solutions marked with arrows. Lower figure The resulting mobility in a diagonal direction, after
applying a small phase gradient (|kx | = |ky | = 0.018) to a stable horizontal 2-site mode (here, z is
used instead of ξ to denote the time-like variable in (6.5)) [56]

amaximum at the unstable1-site position, and saddles corresponding to new unstable
intermediate solutions between 2-site and 4-site modes [56]. The energy landscape is
now almost flat between the 2-site and 4-site positions, resulting again in a very good
mobility along axial directions but now between the 2-site and 4-site modes [56].

Finally, a fifth qualitatively different regime is reached when increasing P , where
the 2-site solutions have turned unstable and only the 4-site mode is
stable [56, 69]. Thus, the PN surface has only one minimum at the 4-site posi-
tion, saddles at the 2-site positions and maximum at the 1-site position. There are
no intermediate solutions but, as illustrated in [56], the PN potential may still be
sufficiently smooth and flat to allow for mobility in, e.g., diagonal directions with an
appropriate initial perturbation.

A further increase in power yields repeated stability exchanges [56, 69], and so the
above described five different regimes of qualitatively different PN potentials, and
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their corresponding characteristic mobility properties, will reappear repeatedly [56].
Among other issues discussed in [56], it was also shown that including weak lattice
anisotropy breaks the symmetry between the horizontal and vertical 2-site modes,
thereby allowing for two additional PN surface topologies (see [56] for details). In
particular, it was seen that for a non-negligible anisotropy, all intermediate solutions
appear on the edges of the surfaces (i.e., scenarios with IS2-type solutions as in
Fig. 6.6 disappear), implying that the best mobility for anisotropic lattices should
generally appear along lattice directions. Thus, in conclusion, calculating the full 2D
PN potentials appears as a very powerful tool for predicting the directional mobility
properties in 2D lattices.

6.3.2 The Kagome Lattice

In this subsection, we summarize and discuss results obtained in [70] (to which the
reader is referred for further details and references) regarding the mobility properties
of the so called “discrete flat-band solitons” in the 2DKagome lattice. The structure
of the Kagome lattice is illustrated in Fig. 6.7, and as indicated in the figure, it can be
viewed as a hexagonal lattice with a three-site, triangular unit cell. We will consider
the ordinary, cubic, on-site DNLSmodel defined with nearest-neighbour interactions
according to the Kagome lattice structure as indicated in Fig. 6.7, which with the
notation of [70] takes the form

i
∂un

∂z
+

∑
m

Vn,mum + γ |un|2un = 0, (6.9)

where z corresponds to the time-like variable, un represents the field amplitude at site
n, and the sum over m is restricted to nearest neighbours to n in the Kagome lattice.
Here, it is crucial to note thatwe consider exclusively the casewith defocusing nonlin-
earity, which implies that with a proper normalization we can put γ = −Vn,m ≡ −1.

The linear spectrum (γ = 0) of (6.9) is well known (see, e.g., [3]): of its three
(connected) bands, the lowest one is exactly flat (dispersionless). As shown in [3],
the flat band contains as many states as the number of closed rings in the lattice, and
thus can be considered to be built up from “six-peaks” (or “ring”) solutions, where
six sites in a closed hexagonal loop have equal amplitude but alternating phases, with
exactly zero background. (The zero background results from the frustration property
of the Kagome lattice: each site immediately outside a ring mode couples identically
to two sites in the ring, but since these sites have opposite phases, their contributions
cancel out due to destructive interference.) The amplitude profile of a six-peaksmode
is show in the lower, rightmost part of Fig. 6.7.

For a defocusing nonlinearity (γ < 0), nonlinear stationary solutions to (6.9)
will bifurcate from the lowest-energy linear band, i.e., the flat band [70]. It is easily
seen, that the single six-peak ring mode is an exact (and strictly compact!) stationary
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(a)

(b)

Fig. 6.7 Upper figure Structure of the Kagome lattice showing a unit cell with three sites (triangle)
and the directions of their respective nearest-neighbour interactions. Lower figure Hamiltonian
(relative to the six-peaks solution) versus power for the fundamental stationary nonlinear localized
modes of (6.9) with amplitude profiles (for P = 0.43) as indicated. See [70]

solution also in the nonlinear case, and that it exists for all possible values of power,
0 ≤ P < ∞. Consequently, in sharp contrast to the case for ordinary 2D DNLS
lattices (having dispersive bands) with cubic nonlinearity discussed in the beginning
of this section, there is no power (norm) threshold for creation of localized stationary
solutions in the flat-band Kagome lattice.

Moreover, also other nonlinear stationary solutions bifurcate from linear combina-
tions of the degenerate fundamental linear flat-band ring modes, and the nonlinearity
will generally break the degeneracy of such solutions. In contrast to the single-ring,
six-peak, solution, these nonlinear solutions will generally not remain compact but
develop an exponential tail [70], as for “ordinary” lattice solitons/breathers. Of spe-
cial interest is the mode obtained by adding together two neigbouring ring modes
having one site in common, which thus in the linear limit gets an amplitude twice
as large as the other ten sites in the rings. Also this solution belongs to a family of
nonlinear localized stationary solutions existing for all values of power [70], and in
the limit P → ∞ (“anticontinuous limit”), it becomes a single-site localized exci-
tation. The profile of this solution, here termed “one-peak”, is illustrated for a small
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but nonzero power in the lower left part of Fig. 6.7 (note that the two contributing
rings are vertically aligned in this figure).

Comparing the Hamiltonian (energy) at fixed power (norm) for these two families
of solutions, it can be checked [70] that the single-ring (six-peaks) mode has the
lowest energy and constitutes the ground state of the system close to the linear limit,
while the double-ring (one-peak) mode is the ground state for strong nonlinearity.
Thus, as illustrated in the lower part of Fig. 6.7, there is an exchange of stability
between these twomodes,with a scenario similar towhat has been described for other
models above, with appearance of an asymmetric, intermediate stationary solution in
the exchange regime. In fact, the scenario is here analogous to that of Fig. 6.2b, with
simultaneous instability of the on-site (one-peak) and inter-site (six-peaks) modes
and a stable, symmetry-broken intermediate solution constituting the ground state of
the system.

Thus, having all previously discussed examples of connections between stability
exchange and enhancedmobility inmind, itmight not be unexpected that goodmobil-
ity between these strongly localized, fundamental modes may appear also here,2 and
at a relatively small power as can be seen from Fig. 6.7. The results from applying a
small vertical kick (phase gradient) on an unstable one-peak mode in the stability-
exchange regime is show in Fig. 6.8. As can be seen, the initial movement is quite
analogous to previously discussed cases (cf., e.g., Fig. 6.5) and nicely traces out the
features of the PN potential in the corresponding direction, with smallest velocities
in the unstable one-peak (a), (e) and six-peaks (c) positions, and largest velocities in
the stable intermediate positions (b), (d). For the very tiny kick in Fig. 6.8, the mode
quickly loses its surplus energy due to radiation effects, and finally gets trapped
with small oscillations around an intermediate stationary solution (f), constituting its
symmetry-broken ground state in this regime. As discussed further in [70], the dis-
tance travelled in the lattice may be controlled to some extent by the kick strength,
thus yielding a mechanism for controlled transfer, in particular directions of the
Kagome lattice, of small-power strongly localized modes in a 2D DNLS-lattice with
standard (cubic) nonlinearity.

We end this subsection with a brief mentioning of some earlier works discussing
nonlinear localized modes in Kagome lattices. Law et al. [45] also considered the
defocusing case, but concentrated on vortices and complex structures mainly in the
strong-nonlinearity regime, without making connections to flat-band linear modes
or mobility. Zhu et al. [74] studied defect solitons with saturable nonlinearity, and
Molina [51] localizedmodes in nonlinear photonic nanoribbons; however, both these
works considered the case of focusing nonlinearity, which follows the standard 2D
NLS phenomenology with threshold etc., since the upper band is non-degenerate
[3, 70].

2The reader should however be cautioned that there are counter-examples where mere stability
exchange does not imply good mobility, as for the 2D version of (6.1) [59], since it does not
automatically imply that a smooth and flat PN surface exists in the full domain.
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(a) (b) (c) (d) (e) (f)

Fig. 6.8 Main figure Evolution of the vertical center of mass when applying a very small vertical
kick (ky = 0.009) to an unstable one-peak solution in the stability-exchange regime of Fig. 6.7
(P = 0.4655). Horizontal lines mark out the locations of stationary one-peak (solid) and six-peaks
(dashed) modes. Insets show intensity profiles |un(z)|2 of the travelling mode at the indicated
locations (a)–(f). See [70]

6.4 Travelling Discrete Dissipative Solitons
with Intrinsic Gain

The discussion in the previous sections has dealt exclusively with conservative lat-
tices (i.e., conserved energy), and in addition we have seen that the analysis of
breather mobility in terms of PN potentials needs a second quantity to be (at least
approximately) conserved (typically action, or norm/power for DNLS-type models).
As we also discussed, unless we succeed to tune our model parameters into an exact
“transparent point”, and succeed to give our breather a “special” velocity (or succeed
to find some other exceptional system like an integrable model), moving breathers
in Hamiltonian lattices are not exponentially localized outside their main core, but
develop an extended tail due to radiation evenwhen the PNpotentials are very smooth
and flat. The tails may be very weak (as e.g. the example shown in Fig. 6.3b), but
due to the radiation continuously emitted, a breather travelling in a large lattice will
typically in the end get trapped around some minimum of the PN potential.

In a dissipative environment, the situation will naturally be quite different. Pure
losses will evidently damp out the radiative tails, but also the energy of the breather
core. However, if there is some additional intrinsic gain mechanism (such as for
a lasing system in optics), one could hope to, under certain conditions, establish



6 Breather Mobility and the Peierls-Nabarro Potential … 165

a balance (at least when averaged over time) where the gain is strong enough to
support a (possibly strongly localized)moving breather indefinitely, butweak enough
not to destroy the exponentially decaying tail. That this indeed is possible, under
certain conditions, was demonstrated recently in [39] for a model of a 1D waveguide
array in an active Kerr medium with intrinsic, saturable gain and damping. Here we
will briefly summarize and discuss some of the main results from [39], to which we
refer for details and further references.

Under the assumption of a pure on-site Kerr nonlinearity, the model studied in
[39] (originally suggested by Rozanov’s group, see [43] and references therein) is a
generalized Discrete Ginzburg-Landau (DGL) type model which can be written in
the form

iψ̇n + C(ψn−1 + ψn+1) +
(

Vn + |ψn|2 − i fd(|ψn|2)
)

ψn = 0. (6.10)

Thus, (6.10) is equivalent to the pure on-site version of (6.1) (we will comment
briefly below also on the extension to intersite nonlinearities, K4 = K5 �= 0, which
was discussed in some detail in [39]), with the addition of a possible linear (real)
on-site potential Vn (Vn ≡ 0 for periodic lattice), and, most importantly, a (real)
function fd(|ψn|2) describing the amplification and absorption characteristics of
each waveguide.3 As in [43] (and references therein), the function fd(x) is chosen
to include linear and saturable absorption, as well as saturable gain, and can after
proper normalizations be taken on the four-parameter form

fd(x) = −δ + g

1 + x
− a

1 + bx
, δ, g, a, b > 0. (6.11)

The parameters describe, respectively, linear losses (δ), saturable gain strength (g),
saturable absorption strength (a), and ratio between gain and absorption saturation
intensities (b). As detailed in [39, 43], the conditions to have localized modes which
simultaneously should have a stable zero-amplitude tail, and a core with a non-zero,
non-decaying amplitude, put several restrictions on the possible parameter intervals
(it also follows that b > 1, i.e., the gain must saturate at a higher intensity than the
damping). The observant reader will notice that expanding (6.11) to second order in
x yields a cubic-quintic DGLmodel, which may be a more familiar system (see, e.g.,
[17]). However, as was found empirically by extensive numerical searches in [39],
the relevant solutions describing moving localized modes essentially result from the
strong saturabilities of the gain and damping parts on different intensity scales, and
therefore in regimes not well described by a cubic-quintic approximation.

In Fig. 6.9 we illustrate a typical scenario with moving, strongly localized solu-
tions for a “suitable” regime of parameter values (see [39] for further discussions
on the influence of parameter variations). As can be seen, gain-driven, travel-
ling discrete solitons exist as exact exponentially localized solutions at specific

3For simplicity, C is chosen real, i.e., absorption or gain in the medium between the waveguides is
neglected.
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Fig. 6.9 Top Velocity v
versus gain parameter g for
moving localized solutions
of (6.10) with Vn ≡ 0,
C = 1, and parameters in
(6.11) chosen as δ = 1,
a = 2, b = 10. Horizontal
lines indicate a gap of
“forbidden” velocities, and
inset shows norm oscillations
for two bistable solutions at
g = 2.095: a fast solution
with small oscillations and a
slow solution with large
oscillations. Bottom
Snapshots of intensity
An = |ψn |2 for two
right-moving solutions with
g = 2.07 (right peak, fast
mode) and g = 2.18 (left
peak, slow mode). See [39]

velocities, although in a rather narrow interval for the gain parameter. It is important
to note that, in contrast to conservative systems where there are continuous families
of breathers/solitons as discussed above (which can be parametrized e.g. using the
norm/action, or frequency, as parameter), breathers/solitons in dissipative systems
generically appear as isolated attractorswhere an appropriate balance between energy
input and dissipation can be established (see, e.g., [28, 29] and references therein).
Here, for most values of g where moving solitons are found as attractors, they have a
well-defined, single velocity v, which typically increases for smaller gain (although
the dependence generally is not strictly monotonous as seen in Fig. 6.9 top). Note
also the division in a “fast” and a “slow” branch, with a forbidden velocity gap and
a small regime of bistability.

The exponential localization of the moving solitons is illustrated in the bottom
part of Fig. 6.9. Two features are noteworthy: (i) a crossover between one decay rate
around the soliton core, and another (generally weaker) in the tails; (ii) the stronger
decay rate in the forward than in the backward direction (particularly visible for the
fast soliton). As discussed in [48], the latter is an effect of the radiation emitted from
the breather core during its motion being Doppler shifted.
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As can be seen from the inset in the top figure in Fig. 6.9, the norm (power) of the
moving solutions is not constant but oscillates time-periodically during the motion;
similar oscillations (with the same period) occur for the Hamiltonian (energy) [39]).
The necessity for such oscillations in order to sustain an exact moving, strongly
localized discrete soliton has a simple, intuitive interpretation in terms of the PN
potential of the corresponding conservative system: in order to overcome the PN
barrier and travel with a constant average velocity, the soliton may adjust its internal
degrees of freedom to its lattice position by locally absorbing and emitting “suitable”
amounts of norm and Hamiltonian via the gain and damping terms, respectively.
As seen in Fig. 6.9, the largest oscillations typically appear for the “slow” solitons
appearing for the larger gain values; essentially these solitons also have a higher peak
power and are more strongly localized, and therefore the corresponding effective PN
potential should be stronger.

In the main part of the regime where moving solitons exist, the oscillations in P
and H are 1:1-locked with the soliton translation, i.e., the soliton returns to its initial
shape after translation with one site. However, as discussed in more detail in [39],
when approaching the rightmost part of the existence regime for g in Fig. 6.9, the
soliton undergoes a sequence of period-doublings (i.e., the soliton does not return
to its initial shape until after a translation with 2k sites), until it loses its regular
movement and enters a regime of apparently random motion. For other parameter
values, also small windows of period-3 translational motion were found in [39].

As mentioned above, the existence regime for moving discrete solitons in the
model (6.10) is quite narrow, which can be related to the non-negligible PN bar-
rier for strongly localized modes of the ordinary (conservative) cubic DNLS model.
However, as was discussed in Sect. 6.2, inter-site nonlinearities as in (6.1) may drasti-
cally decrease the PN potential and improve the mobility. One may therefore suspect
that, similarly, inclusion of inter-site nonlinearities also may increase the existence
regime for moving solitons in the gain-damped DGL model. Without going into
details (see [39]), the answer is strongly in the affirmative. For example, for the
same parameter values as in Fig. 6.9, the existence regime in g is about five times
larger when K4 = K5 = −0.2. Another effect of the weakened PN barrier is, that
the internal oscillation of the soliton may become decoupled from its translational
motion, resulting in a quasiperiodically moving soliton which, although it moves
with constant velocity, never exactly returns to its initial shape in the lattice [39].
Also tiny regimes of non-trivial phase locking (e.g., makes two internal oscillations
while moving five sites) were observed in [39].

As a final illustration of the ability of the moving discrete dissipative solitons
to keep moving with constant velocity by adjusting to their local environment in
the lattice, we show in Fig. 6.10 an example from [39] of a moving soliton in a
weakly disordered lattice (again with pure on-site nonlinearity, K4 = K5 = 0).
Although the on-site potential Vn is chosen randomly from a uniform distribution,
the soliton moves indefinitely (here in a lattice with 2405 sites and periodic bound-
ary conditions [39]) with constant velocity! It does so by, at each point, adjust-
ing its internal parameters according to its local environment. As illustrated in the
top part of Fig. 6.10, this results in irregular oscillations of norm and Hamiltonian,
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Fig. 6.10 Bottom Intensity
distribution for soliton
moving with constant
velocity v ≈ 0.977 in a
lattice with a uniformly
distributed, disordered
on-site potential
Vn ∈ [−0.1, 0.1]. g = 2.06,
other parameters same as in
Fig. 6.9. Top The
corresponding oscillations
for the Hamiltonian (upper)
and norm (lower). See [39]

compensating for the irregularities in the lattice. A careful look at these curves con-
firms this scenario: although they may look random, in fact they are not. After an
initial transient, they periodically repeat themselves exactly with a period of 2462
time units, corresponding to one round trip in the lattice!

Let us end this section with some brief discussion about other related works (a
more extensive discussion was given in [39]). Surely this is not the first observa-
tion of moving discrete dissipative solitons/breathers; see, e.g., the reviews [28, 29].
Indeed, many aspects of the mobility scenarios described here are analogous to what
has been reported earlier for other systems: The existence of two types of “fast”
and “slow” breathers with exponentially decaying phonon tails were described for
the damped-driven FK model in [48], similar modes have been discussed in the
context of “discrete cavity solitons” in optics (see, e.g., [18, 19, 73]), and also exper-
imentally moving localized modes with similar properties have been observed in
damped-driven electrical lattices [23–25]. However, conceptually, all these systems
are different from the model discussed here and in [39], in the sense that they require
an explicit, uniform external driving to supply the necessary energy to compen-
sate for the damping. As a consequence, the moving breathers in these systems are
not strictly localized but decay (exponentially) towards a tail of constant, non-zero
amplitude, implying that their energy would increase towards infinity for increasing
system size. By contrast, in (6.10) the gain results from purely intrinsic properties of
the medium where the soliton propagates (such as, e.g., a lasing system), allowing
for propagating finite-energy solitons with tails decaying towards zero.
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We considered here only one particular model of a gain/damped system
(admittedly, rather special with many different ingredients). It would of course be
highly interesting to investigate whether travelling localized modes, driven by some
intrinsic gain mechanism, can exist also in more general physical lattice systems.
One particularly interesting issue, pointed out to us by Mike Russell, is the sugges-
tion that the quodons in mica-like systems could travel for macroscopic distances
thanks to an intrinsic gainmechanism, resulting from the lattice being in ametastable
configuration [65].

6.5 Mobility of Quantum Lattice Compactons

So far, we only discussed mobility of nonlinear lattice excitations using the language
of classical physics. However, in many applications of the discrete breather/soliton
concept, quantum mechanical effects may be important, and therefore it is highly
relevant to investigate to what extent the above described scenarios for mobility
survive under quantum fluctuations. The literature on “quantum discrete breathers”
is huge and we do not make any attempt to give a complete review of this topic here,
but refer the reader to [28, 64] for discussions and further references. Let us just
recapitulate some basic facts. Quantum mechanics, in the language of a many-body
Schrödinger equation, is linear, and for a periodic lattice the Hamiltonian is invariant
under lattice translations. Thus, all eigenstatesmust obey theBloch theorem,meaning
that they are necessarily delocalized and the probability of finding a particular number
of excitation quanta (“particles”) at a certain site must be the same at any site.
However, it is possible to define localization in another sense, looking instead at
correlations. Following Eilbeck [21], a quantum analogue of a classical localized
breather may then be defined as an eigenstate with a high probability of having many
quanta localized on the same site (or, more generally, identified as many-particle
bound states with correlation functions exponentially decaying in space [71]).

Alternatively, if we insist on creating a quantum state which, like a classical soli-
ton/breather, is localized at some specific site(s), we need to take an appropriate
superposition of eigenstates. As discussed in [21, 28, 64] (and references therein), it
is expected that when a classical nonlinear Hamiltonian lattice possesses exact dis-
crete breathers/solitons, its quantum counterpart contains nearly degenerate bands of
eigenstates, corresponding to specificmany-particle bound states with different crys-
tal momenta (“breather bands”). The bandwidth of such a band is then proportional
to the inverse of a “tunneling time”, describing the time it takes for a semiclassical
breather to perform a quantum tunneling from one site to the next. The tunneling
time should become infinite in the classical limit. Note that this quantum breather
tunneling is a purely quantum effect of a very different nature than the coherent
mobility of a classical breather. Even though, if the breather band is well isolated
fromother bands, a localized excitation created from a superposition of its eigenstates
will remain localized in terms of correlations (probability to find many particles at
the same site remains large), it will spread symmetrically in the lattice in terms of the
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expectation value of the local excitation number operator. See e.g. [26] for explicit
illustrations of this scenario.

Although quite much effort has been spent on understanding various properties of
quantum discrete breathers [28, 64], to the best of our knowledge very little has been
known about the quantum counterparts to the classically moving breathers, and in
particular whether the concepts of PN potential and barrier have any relevance when
quantum effects become strong. Clearly, a necessary condition for these concepts to
make sense must be that the breather band is sufficiently narrow for the quantum
tunneling time to be much larger than the inverse classical velocity (i.e., the time it
takes for the classical breather to move one lattice site); otherwise, the probability
distribution for the quantum breather will spread through tunneling before its center
has had the time to perform a translation in a given direction. Thus, the approach of
tracing out a PN potential by imagining an infinitely slow breather movement makes
sense only in the classical limit.

In [36] we addressed some of these issues in the context of a 1D extended Bose-
Hubbard (eBH) model, which is a quantum version of the classical extended DNLS
model (6.1), for which the quantum Hamiltonian can be written in the form [35, 36]

ĤeB H =
f∑

i=1

{
1

2
Q1 N̂i + Q2â†

i+1âi + 1

2
Q3 N̂ 2

i + Q4

[
2N̂i N̂i+1 + (â†

i+1)
2(âi )

2
]

+2Q5

[
(â†

i )2 + (â†
i+1)

2
]

âi âi+1

}
+ H.c.. (6.12)

Here f is the number of sites, â†
i (âi ) is the bosonic creation (annihilation) operator,

and N̂i = â†
i âi the corresponding number operator for particles at site i (H.c. is

Hermitian conjugate). The total number of particles N is conserved since the total
number operator N̂ = ∑

i N̂i commutes with ĤeB H . This model appears e.g. in the
study of ultracold bosonic atoms in optical lattices; see the very recent review [16]
for extensive discussions and further references (a shorter introduction with some
additional references was also given recently in [34]). When Q4 = Q5 = 0, this
is just the ordinary (on-site) Bose-Hubbard model, which is a standard model for
cold atoms in optical lattices [16] and also widely studied in the field of quantum
breathers since it is the quantum counterpart of the ordinary DNLS model [21, 28,
64]. Physically, Q2 represents single-particle tunneling between neighboring sites
and Q3 a local (on-site) two-body interaction (Q1 defines the single-particle energy
scale). Also the additional nearest-neighbour interaction terms have simple physical
interpretations: the first Q4-term describes a density-density interaction between
neighboring sites, the second a coherent tunneling of a particle pair, while the Q5-
terms describe density-dependent tunnelings since they depend on the number of
particles at the site the particle is tunneling to and from, respectively [16]. Taking
the classical limit, N → ∞, in an appropriate way [36] results in the Hamiltonian
(6.2) for a normalized classical field Ψi with P = 1 and |Ψi |2 =<N̂i>/N , after a
gauge transformation removing Q1, a rescaling putting Q3 = −1/2N , and parameter
identifications K2 = Q2, K4 = Q4/N and K5 = Q5/N .
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As is well known [21, 28, 64], computational limitations are generally putting
severe restrictions on the abilities to study quantum properties of classical discrete
breathers with exact diagonalization, and this is most certainly so also concerning
mobility issues. Ideally, we would like to study systems with many particles to get
in contact with the classical world, and large lattices to observe localization and
translation over some distances. However, the dimension of the matrices obtained
from (6.12) for a given N grows as (N + f − 1)!/N !( f − 1)!, so if we wish to study
large lattices we are restricted to very few particles, and if we wish to study many
particles we are restricted to very few sites! Here, we may use the latter approach
due to a special property for discrete soliton solutions of the classical model (6.1): as
was found in [60], at specific parameter values the solitons become strictly compact,
i.e., completely localized at a small (in fact, arbitrary) number of sites with exact
zero amplitude outside. Of particular interest here is the symmetric inter-site breather
denoted (+,+) in Fig. 6.2, which compactifies into a two-site compacton when K5 =
−K2/P , where the effective tunneling to outside neighboring sites vanishes. In fact,
this is precisely the case illustrated in Fig. 6.2b as also indicated by the (+,+) profile
in the inset. Thus, for some interval in K4 close to the bifurcation points, extremely
narrow mobile classical solutions exist as was also confirmed by direct numerical
integrations in [36, 60] (if K5 = −K2/P exactly, the core of the moving classical
state will have a rapidly decreasing exponential tail which compactifies each time
it passes an intersite configuration; if the condition is not exactly fulfilled its core
always decays exponentially but very rapidly as illustrated in Fig. 6.3b).

Thus, by focusing on quantum counterparts to the compact classical modes, we
may restrict our studies to very small lattices in order to investigate their mobility;
here we discuss results obtained in [36] for f = 4 and periodic boundary conditions.
For the quantummodel (6.12), it can be shown that only one-site classical compactons
have counterparts which are exactly compact also as quantum eigenstates [35, 36].
However, the one-site compactons are less interesting in the present context since they
are not classically mobile. The two-site compactons correspond instead to quantum
stateswith a small, and in the classical limit vanishing, probability of finding particles
spread out over more than two sites [35]. In the neighbourhood of a classical stability
exchange region as in Fig. 6.2b, the mobile two-site compacton also becomes the
ground state when K4 is decreased. Thus, well localized quantum states may be
constructed by taking properly chosen [36] linear combinations of eigenstates in
the lowest-energy band. If left untouched, these states will spread through tunneling
with a tunneling time increasing with N as discussed above. Far from the classical
stability exchange regime, where the ground-state band is narrow and well isolated
from other bands, the tunneling times are large and grow rapidly (exponentially) with
N ; however, approaching the classical stability exchange several bands will interact
and/or cross, resulting in tunneling times becoming much shorter and only slowly
increasing with N [36]. An analogous rapid spreading resulting from hybridization
of bands having their main particle occupation on a single site and on two sites,
respectively, was also briefly mentioned in [15] for a few-particle Bose-Hubbard
system extended with three-particle on-site repulsion (corresponding in the classical
limit to a cubic-quintic on-site DNLS equation with competing nonlinearities), and



172 M. Johansson and P. Jason

(a) (b)

(c) (d)

Fig. 6.11 Time evolution of the expectation values of the local relative particle number operators,
<n̂i>≡<N̂i> /N , for localized initial quantum states obtained from superpositions of eigenstates
in the lowest-energy band of the f = 4-site lattice (periodic boundary conditions), after imprinting a
phase gradient θ = 0.1 (upper figures) and θ = 1 (lower figures). The number of particles is N = 20.
Parameter values in the eBH Hamiltonian (6.12) are Q2 = −Q5N = 0.3, and Q4N = −0.16 (left
figures) and Q4N = −0.12 (right figures), respectively. See [36]

was described in more detail in [26] for another extended Bose-Hubbard model,
with on-site and pure density-density interactions between neighbouring sites (i.e.,
keeping only the first of the Q4-terms in (6.12)).

In Fig. 6.11 we illustrate, for a system of N = 20 particles, the quantum dynamics
of (6.12) resulting from using such linear combinations of lowest-energy eigenstates
as initial states, after applying an initial “kick” in order to induce a directed mobility
of these states. Analogously to kicking a classical soliton/breather, a phase gradient
is imprinted by acting on the state with the phase operator exp(iθ

∑
j j N̂ j ), which

corresponds to imposing a classical phase gradient θ as discussed, e.g., in [50]. Figure
6.11a–d illustrate a typical scenario in a regime where the classical ground state is
a two-site compacton. Away from the immediate neighbourhood of the stability
exchange regime (a) and (c), we can clearly identify signs of the classical PN barrier
in the quantum dynamics: in (a), when the kick is too small to overcome the PN
barrier, the site population expectation values exhibit small oscillations around their
initial equal distribution, slowly decaying due to the quantum tunneling, while in
(c), when the kick of the same initial state is strong enough for overcoming the
barrier, the main population starts to move around the lattice. On the other hand, for
parameter values close to the classical stability exchange region (b) and (d) where
the classical compacton becomes mobile already for very small kicks, the quantum
tunneling times decrease as discussed above, and therefore, for small kicks as in (b),
the quantum spreading takes over before the soliton has had the time to translate
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Fig. 6.12 Number of sites a
state with θ = 1 can travel
before the maximum local
population expectation
values have decayed to 0.4 at
times when they are equal,
<n̂i>=<n̂i+1> (i.e.,
intersection points in
Fig. 6.11 (d)), plotted as
functions of Q2 and Q4N
while keeping Q5N = −Q2
corresponding to the
classical 2-site compacton
condition. f = 4, N = 20.
See [36]

even one site. However, for larger kicks (d), the time scale of the classical movement
becomes short enough to separate from the quantum time scale, and therefore the
soliton population may move in a classical-like way for rather long distances.

Thus, the existence of a classical stability exchange regime can be said to play a
“double game” for the quantum mobility of localized initial states. On one hand, it
lowers the PN barrier making the movement of highly localized states at all possible.
On the other hand, it decreases drastically the quantum tunneling times, so that only
solitons with sufficiently high velocities to separate from the quantum time-scale
can move coherently for longer distances. Results showing the dependence of the
“fast” mobility when varying the model parameters are summarized in Fig. 6.12.
The whitest part corresponds to the optimal mobility regime, where the initially
2-site compacton-like soliton may travel for 10 sites before its maximum population
expectation values at inter-site positions have decreased to 80%of their initial values.
The sharp transition to a dark region when increasing Q4 is a direct counterpart of
the classical stability exchange: for larger Q4, the ground-state is on-site rather than
inter-site centered, and thus the initial state in this regime bears no resemblance to a
2-site compacton.

There are also alternative ways to construct localized quantum states which cor-
respond to certain well-defined stationary states in the classical limit, such as the use
of SU( f ) coherent states (see, e.g., [5] for definition and discussion). As discussed
in [36], we may describe a 2-site compacton as an SU(2) coherent state, then kick it
by applying the phase operator, and use it as initial conditions for the quantum sim-
ulations analogously to above. The results are similar (the reader is referred to [36]
for details), which shows that the conclusions above are not critically dependent on
the specific choice of a quantum “compacton-like” initial state. One advantage with
using the SU( f ) construction is, that it works equally well in the regimes where the
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2-site compacton is not the ground state. Thus, we could kick also an unstable2-site
SU( f ) compacton and observe good large-velocity mobility close to the stability-
exchange regime (essentially, we obtain a picture similar to Fig. 6.12 but without the
sharp transition to the dark area in the upper part).

6.6 Conclusion

We hope the reader has enjoyed this brief review about the role of the concepts
of PN potential and barrier for describing breather mobility, focusing mainly on
the progress from the last 10–15 years on mobility of strongly localized modes,
mobility in two-dimensional lattices, moving breathers in dissipative lattices with
intrinsic gain, and mobility of strongly localized quantum breathers. We certainly
did not make any attempt to give a complete review on the topic of moving breathers
(that would in itself require a whole volume!), and we are aware of many important
references that have been omitted. Instead, our main aim was to collect a number
of different results which have previously appeared scattered in the literature into
a common framework; although they address seemingly quite different physical
systems such as the classical DNLS model with various modifications in 1D and
2D, flat-band modes, discrete Ginzburg-Landau models, and the quantum extended
Bose-Hubbard model, they all share a central core of analyzing mobility of strongly
localized modes in terms of the PN potential concept. Obviously, the description
in terms of PN potentials is certainly not the only method needed in order to get
a complete understanding of the very complex problem of moving breathers (in
particular, the more mathematically oriented reader can be directed to Chap.5 of [62]
for a nice survey of various approaches used in more rigorous contexts). However,
we might dare to say that without using these concepts, not much physical insight
into the mechanisms by which localized excitations can be translated in any lattice
(or, more generally, periodic potential) would have been reached. We are also certain
that many more future applications will appear!
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T., Zakrzewski, J.: Non-standard Hubbard models in optical lattices: a review. Rep. Prog. Phys.
78(6), 066001 (2014)

17. Efremidis, N.K., Christodoulides, D.N.: Discrete Ginzburg-Landau solitons. Phys. Rev. E
67(2), 026606 (2003)

18. Egorov, O.A., Lederer, F.: Spontaneously walking discrete cavity solitons. Opt. Lett. 38(7),
1010–1012 (2013)

19. Egorov, O.A., Lederer, F., Kivshar, Y.S.: How does an inclined holding beam affect discrete
modulational instability and solitons in nonlinear cavities? Opt. Express 15(7), 4149–4158
(2007)

20. Eilbeck, J.C.: Numerical simulations of the dynamics of polypeptide chains and proteins. In:
Kawabata, C., Bishop, A.R. (eds.) Computer Analysis for Life Science: Progress and Chal-
lenges in Biological and Synthetic Polymer Research, p. 12. Ohmsha, Tokyo (1986)

21. Eilbeck, J.C.: Some exact results for quantum lattice problems. In: Vázquez, L., MacKay, R.S.,
Zorzano, M.P. (eds.) Localization and Energy Transfer in Nonlinear Systems, pp. 177–186.
World Scientific, Singapore (2003)



176 M. Johansson and P. Jason

22. Eilbeck, J.C., Johansson, M.: The discrete nonlinear Schrödinger equation-20 years on. In:
Vázquez, L.,MacKay,R.S., Zorzano,M.P. (eds.) Localization andEnergyTransfer inNonlinear
Systems, pp. 44–67. World Scientific, Singapore (2003)

23. English, L.Q., Palmero, F., Sievers, A.J., Kevrekidis, P.G., Barnak, D.H.: Traveling and sta-
tionary intrinsic localized modes and their spatial control in electrical lattices. Phys. Rev. E
81(4), 046605 (2010)

24. English, L.Q., Palmero, F., Stormes, J.F., Cuevas, J., Carretero-González, R., Kevrekidis, P.G.:
Nonlinear localized modes in two-dimensional electrical lattices. Phys. Rev. E 88(2), 022912
(2013)

25. English, L.Q., Thakur, R.B., Stearrett, R.: Patterns of traveling intrinsic localized modes in a
driven electrical lattice. Phys. Rev. E 77(6), 066601 (2008)

26. Falvo, C., Pouthier, V., Eilbeck, J.C.: Fast energy transfer mediated by multi-quanta bound
states in a nonlinear quantum lattice. Physica D 221(1), 58–71 (2006)

27. Fischer, R., Träger, D., Neshev, D.N., Sukhorukov, A.A., Krolikowski, W., Denz, C., Kivshar,
Y.S.: Reduced-symmetry two-dimensional solitons in photonic lattices. Phys. Rev. Lett. 96(2),
023905 (2006)

28. Flach, S., Gorbach, A.V.: Discrete breathers—advances in theory and applications. Phys. Rep.
467(1), 1–116 (2008)

29. Flach, S., Gorbach, A.V.: Discrete breathers with dissipation. In: Akhmediev, N., Ankiewicz,
A. (eds.) Dissipative Solitons: From Optics to Biology and Medicine, pp. 289–320. Springer,
Berlin (2008)

30. Flach, S., Willis, C.R.: Movability of localized excitations in nonlinear discrete systems: a
separatrix problem. Phys. Rev. Lett. 72(12), 1777 (1994)

31. Flach, S., Willis, C.R.: Discrete breathers. Phys. Rep. 295(5), 181–264 (1998)
32. Gómez-Gardeñes, J., Floría, L.M., Bishop, A.R.: Discrete breathers in two-dimensional

anisotropic nonlinear Schrödinger lattices. Physica D 216(1), 31–43 (2006)
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Chapter 7
Asymptotic Approximation of Discrete
Breather Modes in Two-Dimensional Lattices

Jonathan A.D. Wattis

Abstract We outline the small amplitude asymptotic approximation for breathers
for one-dimensional chains, and two-dimensional lattices with square, triangu-
lar/hexagonal, and honeycomb geometries. Two-dimensional lattices are compli-
cated due to the resulting NLS-type equation being either elliptic or hyperbolic in
nature. This gives rise to an additional constraint in addition to the usual condition on
the relative strengths of quadratic and cubic nonlinearities. The honeycomb lattice
requires a more advanced approach since it has a diatomic nature. Results from the
three geometries are compared.

7.1 Introduction

The motivation for this work is the numerical results of Marin, Eilbeck and Russell
[30, 31], and their desire to understand the long straight tracks in mica observed
by Mike Russell [33]. In the simulations of Marin et al., the modes observed have
the form of breathers moving through two-dimensional lattices with square, and
triangular symmetry (Fig. 7.1). Marin et al. were only able to create breathers which
travelled along lines of symmetry of the lattice, that is, along the generators of the
lattice and along bisectors of the lattice. Thus in a square lattice, breathers could
travel along the lattice directions, and at 45◦ to the lattice directions, but not at 30 or
15◦, etc. In addition, they observed that moving breathers were spatially extended in
their direction of travel.

In the remainder of this section we review relevant background literature
(Sect. 7.1.1), introduce the FPU lattice (Sect. 7.1.2), starting with a brief overview
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Fig. 7.1 Left Illustration of the triangular/hexagonal lattice, together with the unused nodes which
allow a rectangular lattice to be used to simplify the analysis; right illustration of the square lattice

Fig. 7.2 The two-dimensional honeycomb lattice. Solid circles denote the nodes in the lattice, open
circles show the unused nodes in the underlying rectangular grid. The dotted lines indicate the unit
cells, each of which contains one left- and one right-facing node. A previous version of this figure
has been published in [37]

of the formulation of the equations of motion in a single dimension, and introduce
the generalisations to two-dimensional lattices. Section7.2 summarises the asymp-
totic derivation of small amplitude breather modes for the one-dimensional FPU
chain. This is generalised to the square lattice in Sect. 7.3, where the additional
complications of the higher dimensional geometry are explained. For illustrations of
the lattice geometries we discuss in this paper, please see Figs. 7.1 and 7.2. Further
complications inherent in the honeycomb lattice are detailed in Sect. 7.4. Finally, in
Sect. 7.5 we compare the properties breathers in the square, triangular and honey-
comb lattices, draw conclusions and make suggestions for future work.
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7.1.1 Background

The existence of breather modes was first noted in one-dimensional systems, such
as the sine-Gordon equation and nonlinear Schrödinger equation. The pioneering
results in the mathematical analysis of breathers on lattices are the existence results
of MacKay and Aubrey [28] and the energy threshold results of Flach et al. [16].

Proofs of existence of discrete breathers rely on the anti-continuum limit. In this
limit, the particles are decoupled, and we consider a single particle oscillating due
to a nonlinear restoring force. Since there is no interaction with other particles, all
other particles are assumed to be stationary. Such a solution can then be analytically
continued when weak coupling is introduced. Such techniques can be generalised
to prove the existence of multi-breathers, where several sites are initially excited.
Other techniques have been developed by James [19, 20] to prove the existence of
breathers in FPU lattices, where there is no on-site potential, only a nonlinear nearest
neighbour interaction term. However, these techniques have not been able to prove
the existence of moving breathers, and it is widely believed that moving breather
modes would shed radiation due to resonances either of the breather’s internal mode
or the envelope itself with the linear modes of the lattice. Such interactions may be
extremely small [36], and so still allow breather mode to propagate for extremely
long distances. In addition to these factors, which hinder breather motion, there is the
problem of thermalisation of a lattices, which has been studied by various authors,
for example [8, 25, 26], which we do not have space to discuss in detail here. Despite
all these factors, moving breathers remains one of the more likely explanations for
the tracks in mica [33].

In one dimension, breathers can have arbitrary energy. In the case of small ampli-
tude breathers ε � 1, the width scales with the inverse of the amplitude, thus
the number of lattice sites from the centre where thus the energy is significant is
N ∼ 1/ε. Since the energy is the sum over lattice sites of the amplitude squared,
in one dimension, the energy scales with Nε2 ∼ ε � 1. Small amplitude breathers
thus have small energy, and as ε → 0, the energy also becomes vanishingly small.
However, in three dimensions, there are N 3 lattice sites involved, so the total energy
is N 3ε2 ∼ 1/ε, and we see that small amplitude breathers have large energies. In
two dimensions, the energy scales with N 2ε2 ∼ O(1) as ε → 0, so as the amplitude
decreases, the energy tends to some finite limit. There is thus a lower bound on the
energy of breathers, and breathers of very small energy do not exist.

The possibility of discrete breathers being mobile was noted by MacKay and
Sepulchre [29]. It is interesting to note that even at this early stage in the devel-
opment of the theory of breathers on lattices, the properties of such modes in
higher-dimensional systems was being considered, for example Flach et al. [17],
and the numerical simulations of breathers in two-dimensional lattices performed by
Burlakov et al. [5]. It is important to note that the honeycomb lattice is a diatomic
lattice, (see Fig. 7.2) and so differs in nature from the triangular and cubic lattices,
which are monatomic. Thus, whilst analysis of the latter two lattices are similar to
the normal one-dimensional reductions, the analysis of the honeycomb lattice will
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have more in common with diatomic lattices, as studied, for example, the work of
Livi et al. [27]. Ablowitz and Zhu have used theoretical techniques to analyse the
behaviour of nonlinear waves in a honeycomb lattice [1], and focus in more detail
on the behaviour near the Dirac point. The effect of longer range interactions can be
to stabilise or destabilise soliton solutions, as shown by Kevrekidis et al. [22] who
analyse a system involving longer range interactions as well as nearest-neighbours
and reduce the governing equation to a discrete NLS equation. Leonard et al. [24]
consider the motion of particles interacting through Hertzian contact following a
localised impulse. Whilst interest in honeycomb lattices has increased significantly
since the discovery of graphene, (see for example, Chechin et al. [9] for numerical
simulations of graphene), the analysis of honeycomb systems is of interest in many
other fields. Chetverikov et al. [10] find results looking like bubble chamber experi-
ments in their numerical simulations of a honeycomb lattice of particles interacting
via Lennard-Jones interactions. Bahat-Treidel et al. [2] studied a photonic lattice
with Kerr nonlinearity and found waves with triangular symmetry.

Our work uses small amplitude asymptotic expansions to construct approximate
functional forms for breathers in one- and two-dimensional lattices. We have per-
formed calculations for square [7], triangular [6] and honeycomb [37] lattices. The
results of all three of these works will be compared at the end of this paper.

7.1.2 The One-Dimensional FPU System

For the one-dimensional chain with nonlinear nearest-neighbour interactions, where
the displacement from equilibrium of the nth particle is qn(t) and the compression
of the nth spring is φn = qn+1 − qn , the equations of motion are

d2qn

dt2
= V ′(qn+1 − qn) − V ′(qn − qn−1), (7.1)

where the stored energy function is V (φn). Using the variables φn(t), this can be
written more conveniently as

d2φn

dt2
= V ′(φn+1) − 2V ′(φ) + V ′(φn−1). (7.2)

There are various special functions V (·)which have been studied in greater detail.
The example we shall focus on is

V (φ) = 1

2
φ2 + 1

3
aφ3 + 1

4
bφ4. (7.3)
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This includes two special cases, namely the α−FPU system in which b = 0, and the
β−FPU system in which a = 0. These cases were studied by Fermi, Pasta and Ulam
in their original numerical investigation of nonlinear effects in [13].

The reason for studying these potential energy functions is that they are the sim-
plest expansions of a smooth energywell. In the case of larger amplitude disturbances
of atoms in interatomic potentials, it is of course preferable to use a Lennard-Jones
potential, which has the form

V (φ) = E

(
σ 6

φ6 − 1

)2

. (7.4)

This has a minimum at φ = σ , where V (σ ) = 0, and V rises sharply and without
bound for φ < σ , whilst for φ > σ the increase in V is only slow, and bounded by
E .

Other potential energy functions having a finite depth potential well have been
used, for example, the exponential form V (φ) = (1 − e−bφ)2. The Toda potential
[35] corresponds to V (φ) = aφ + (a/b)(e−bφ − 1), which has a single minimum,
with a strong nonlinearity on one side (φ < 0, if a, b > 0) and only grows linearly the
other side (φ > 0, if a, b > 0). The Toda lattice is an integrable dynamical system.
The integrability of this system means that nonlinear travelling waves (whose speed
varies with amplitude) can pass through each other without scattering energy and
only suffer a phase shift. It has also been the focus of much theoretical work, using
advanced algebraic and other techniques to form generalised Toda systems [18, 38].

7.1.3 Generalisation to Two Dimensions

Somewhat unusually, the governing equations (7.1) can be generated from two dis-
tinct Hamiltonians, namely

H1 =
∑

n

1

2
p2n + V (qn+1 − qn), H2 =

∑
n

1

2
(ψn+1 − ψn)2 + V (φn). (7.5)

The former, H1, corresponds to the energy stored in the mechanical lattice (7.1), and
the latter, H2, corresponds the energy in an electrical transmission line composed of
inductors and nonlinear capacitors, as illustrated in Fig. 7.3. Whilst both Hamiltoni-
ans can be generalised to two dimensions, by introducing a subscript m in addition to
n, they lead to different two-dimensional systems. The generalisation of H1 produces
themechanical lattice, similar to that analysed byMarin et al., inwhich the dependent
variable is also generalised from a scalar to a vector quantity, qm,n = (um,n, vm,n)T .
Here, um,n, vm,n represent the displacements from equilibrium in the horizontal and
vertical directions. We then have
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Fig. 7.3 Illustration of one-dimensional FPU lattices: left the electrical transmission line; right the
mechanical system

H1,2D =
∑
m,n

1

2
pm,n .pm,n + V (|qm+1,n − qm,n|) + V (|qm,n+1 − qm,n|). (7.6)

The generalisation of H2 is simpler, since the dependent variable can remain a
scalar, leading to

H2,2D =
∑
m,n

= 1

2
(ψm+1,n − ψm,n)2 + 1

2
(ψm,n+1 − ψm,n)2 + V (φm,n). (7.7)

It is this latter, simpler case which we consider in the latter parts of this paper.

7.2 The Asymptotic Reduction for the FPU Chain

In this sectionwe introduce themultiple scales asymptotic techniqueswhich allow the
construction of analytic approximations to breathers. These asymptotic techniques
are covered in many advanced mathematical texts, for example Bender and Orszag
[4]; however, the application to discrete breathers is complicated by the presence of
multiple scales in both space and time variables with three scales being required for
the time variable and, in addition, the space variable includes discrete differences, not
just infinitesimal derivatives. The application of these methods to soliton equations
is covered by Remoissenet [32].

Asymptotic techniques rely on the presence of a small parameter in the problem,
and since there is not one naturally occurring in the problem (7.1), (7.3), we introduce
the amplitude of the breather as the small amplitude. We adopt the standard notation
of calling the small parameter ε and assume ε > 0 and ε � 1. The magnitude
of all other quantities in the problem are then specified in relation to ε. Quantities
which are neither small or large are described as O(1), thus we assume that in (7.3),
a, b = O(1).

However, in general, small amplitude waves are governed, at leading order, by
the linear equation

d2φn

dt2
= φn+1 − 2φn + φn−1, (7.8)
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we postulate a solution of the form

φn(t) = Feikn−iωt + c.c., (7.9)

where F is an arbitrary constant, ‘+c.c.’ means adding the complex conjugate of the
previous terms. We determine ω by

ω = eik − 2 + e−ik = 4 sin2
(
1

2
k

)
. (7.10)

This is known as the dispersion relation for the linear waves.
Since our aim is to find nonlinear wave solutions which account for the finite

amplitude of the disturbance, we introduce the method of multiple scales. In this
method, we generalise the time- and space scales to include long range effects in
time and space. Hence we introduce additional time and space variables given by

x = εn, τ = εt, T = ε2t, (7.11)

and consider how the solution φn(t) varies on the longer timescales when τ = O(1),
and T = O(1) corresponding to t = O(ε−1) and t = O(ε−2; and over the larger
space range given by x = O(1), which corresponds to n = O(ε−1).

We consider the solution φn(t) to now depend on the variables x, τ, T in addition
to n, t , we allow the ‘constant’ F in (7.9) to depend on τ, T and x . Thus in place of
the solution (7.9) we have

φn(t) = εF(x, τ, T )eikn−iωt + c.c., (7.12)

where the arbitrary ‘constant’ has now become dependent on x, τ, T . Using the
relations (7.11), for f (n, t) = g(n, t, x, τ, T ) we write

d f

dt
= ∂g

∂t
+ ε

∂g

∂τ
+ ε2

∂g

∂T
, (7.13)

f (n + 1, t) = g(n + 1, t, x + ε, τ, T ) (7.14)

= g(n + 1, t, x, τ, T ) + ε
∂g

∂x
(n + 1, t, x, τ, T ) + 1

2
ε2

∂2g

∂x2
(n + 1, t, x, τ, T ).

We now implement the method of multiple scales to derive equations for F(x, τ, T ).
We generalise the solution (7.12) to take account of the fact that the nonlinearities in
the governing equation (7.8) may generate other harmonics, so we postulate a more
general ansatz

φn(t) = εF(x, τ, T )eikn−iωt + ε2G2(x, τ, T )e2ik−2iωt + ε2G1(x, τ, T )eik−iωt

+ ε2G0(x, τ, T ) + ε3H3(x, τ, T )e3ik−3iωt + ε3H2(x, τ, T )e2ik−2iωt

+ ε3H1(x, τ, T )eik−iωt + ε3H0(x, τ, T ) + . . . . (7.15)
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Since we are assuming the waves are of small-amplitude, φn(t) = O(ε), the creation
of second harmonics is due to quadratic nonlinearities, any second harmonic intro-
duced will occur at O(ε2), similarly cubic nonlinearities arise at O(ε3) either from
the cubic nonlinearity, or from the quadratic interaction of F with G0 and F∗ with
G2.

We substitute the general ansatz (7.15) into the governing equation (7.8) and use
the multiple scales derivatives (7.13)–(7.14) which expands the original equation to
O(εeiψ):

ω2F = 4 sin2
(
1

2
k

)
F, (7.16)

O(ε2eiψ):
ωFτ = Fx sin k, (7.17)

O(ε2e2iψ):
ω2G2 = G2 sin

2 k + aF2 sin2 k, (7.18)

O(ε3e3iψ):

9ω2H3 = 4 sin2
(
3

2
k

)
(H3 + bF3 + 2aG2F), (7.19)

O(ε3eiψ):

2iωFT + Fττ = Fxx cos k − 12b|F |2F sin2
(
1

2
k

)

− 8a sin2
(
1

2
k

)
[F(G0 + G∗

0) + F∗G2], (7.20)

O(ε4e0):
G0ττ = G0xx + a(|F |2)xx . (7.21)

From these equations we obtain the dispersion relation (7.10); the speed of the
breather, v = sin(k)/ω = cos

( 1
2k

)
, hence F(x, τ, T ) = F(Z , T )where Z = x−vτ ;

the magnitude of the second and third harmonics, G2, H3; and, from the final two
equations, a system of equations for G0 and F . The pair of (7.20)–(7.21) can be
reduced to a single nonlinear Schrödinger equation in two special cases:
Case I. If a = 0, then (7.21) is solved by G2 = G0 = 0 and (7.20) reduces to

0 = 2iωFT + FZ Z sin2
(
1

2
k

)
− 12b|F |2F sin2

(
1

2
k

)
. (7.22)

Case II. If k = π then v = 0 and we can assume that the system is independent of
τ , so (7.21) can be solved by G0 = −a|F |2. Then, since G2 = 0,
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0 = 4iωFT + Fxx + 4(3b − 4a2)|F |2F. (7.23)

In one dimension, the equation 0 = i FT + DFZ Z + B|F |2F can be solved by

F = Aei B A2T/2sech
(

Ax
√

B/2D
)

. (7.24)

Hence, in order to find such bright breather solutions, we need B D > 0. The NLS
equation with B D > 0 is known as the focusing case; if B D < 0 we have the
defocusing NLS, which has dark soliton solutions instead.

For Case II to have breather solutions, we require the inequality 3b > 4a2 to be
satisfied. This is a relationship between the coefficients of the nonlinear terms in the
interaction potential. If one were to expand the Toda potential V ′(φ) = 1− e−φ , we
find a = − 1

2 and b = 1
6 , so 3b − 4a2 = − 1

2 < 0 so the Toda lattice does not support
small amplitude breathers.

7.3 Two-Dimensional Square Lattice

The strategy used above generalises straightforwardly to two-dimensions, in most
aspects. There are a few complications which arise at the end of the calculation. In
this section, we summarise some of the results from [7].

7.3.1 Asymptotic Calculations

In this case the equation of motion is generalised from (7.2) to

d2φm,n

dt2
= V ′(φm+1,n) + V ′(φm,n+1) + V ′(φm,n−1) + V ′(φm−1,n) − 4V ′(φm,n).

(7.25)

We modify the scalings (7.11) by defining x = εm y = εn, and the solution ansatz
(7.15) by including y in the argument of every function. Hence, at O(εeiψ), we
obtain

ω2 = 4 sin2
(
1

2
k

)
+ 4 sin2

(
1

2
l

)
, (7.26)

which is the dispersion relation ω = ω(k, l) for the square lattice and is illustrated
in the left panel of Fig. 7.4. At O(ε2eiψ), we find

ωFτ = Fx sin k + Fy sin l, (7.27)
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Fig. 7.4 Left Dispersion relation for the square lattice (7.16); right similar plot for the triangular
lattice

which determines the horizontal and vertical components of the velocity of the enve-
lope F , namely u and v, so enabling us to rewrite the shape of the envelope as
F(x, y, τ, T ) = F(Z , W, T ) where

Z = x − uτ, W = y − vτ, u = ∂ω
∂k = cos

( 1
2k

)
, v = ∂ω

∂l = cos
( 1
2 l

)
.

(7.28)

AtO(ε2e2iψ) the equation ω2G2 = [sin2 k + sin2 l]G2 +a[sin2 k + sin2 l]F2 deter-
mines the second harmonic G2. The equations which determine the shape of the
breather occur at O(ε3eiψ) and O(ε4e0), where, we respectively obtain

2iωFT + Fττ = Fxx cos k + Fyy cos l − 12b

[
sin2

(
1

2
k

)
+ sin2

(
1

2
l

)]
|F |2F

− 8a

[
sin2

(
1

2
k

)
+ sin2

(
1

2
l

)]
[F(G0 + G0) + FG2], (7.29)

G0ττ = ∇2
(x,y)(G0 + a|F |2). (7.30)

In general, the coupled system of the last two equations cannot be solved explicitly;
however, we consider two special cases in which G0 can be found explicitly.

In Case I we assume a = 0, whereupon G0 = G2 = 0, and we obtain the single
NLS equation

2iωFT + Fττ = Fxx cos k + Fyy cos l

− 12b

[
sin2

(
1

2
k

)
+ sin2

(
1

2
l

)]
|F |2F, (7.31)

We return to this case in Sect. 7.3.2.
In Case II, we take k = l = π so that u = v = 0 and Z ≡ x , W ≡ y. Note

that there is now no τ -dependence in the problem. Equation (7.30) is solved by
G0 = −a|F |2, so (7.29) reduces to
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i FT +
√
2

8
∇2

(x,y)F + √
2(3b − 4a2)|F |2F = 0. (7.32)

Provided 3b > 4a2 this equation is the focusing NLS equation in two dimensions.
This equation has a one-parameter family of circularly symmetric solutions of the
form F(x, y, T ) = Aei A2T S(r A) where r2 = x2 + y2 and S(·) describes the shape
of the envelope.

7.3.2 Case I: The Symmetric Potential (a = 0)

We return to (7.31), and convert to the travelling wave coordinates (7.28) to eliminate
Fττ in favour of terms involving FZ Z , FZ W and FW W , obtaining

2iωFT + [u2−cos k]FZ Z + [v2−cos l]FW W + 2uvFZ W + 3bω2|F |2F = 0.

(7.33)

To simplify this NLSwe equation, we remove the mixed derivative term by changing
from Z , W to the new variables ξ, η which are defined by

ξ sin

(
1

2
k

)
= Z , (7.34)

η sin

(
1

2
k

)√
cos

(
1

2
(k + l)

)
cos

(
1

2
(k − l) + π

)
= W sin2

(
1

2
k

)
− Z cos

(
1

2
k

)
cos

(
1

2
l

)
.

Hence we obtain
2ωi FT + ∇2

(ξ,η)F + 3bω2|F |2F = 0, (7.35)

which is of the same form as (7.32), and so has solutions of a similar form. However,
the change of variables (7.34) is not defined for all values of k, l. For real solutions,we
require that the term inside the square root in (7.34) is positive, which yields another
inequality that has to be satisfied for breathers to exist. If this inequality fails, then
the reduction to an NLS equation would yield an equation of the form i FT +|F |2F +
Fξξ −Fηη = 0, inwhich the spatial derivative operator has a hyperbolic rather than an
elliptic form.Hencewe refer to the inequality cos

( 1
2 (k + l)

)
cos

( 1
2 (k − l) + π

)
> 0

as the ellipticity criterion.
In Fig. 7.5 we plot the energy of the breather given by (7.7) against wavenumber,

the stationary breather, corresponding to k = l = π has the highest energy, since
it corresponds to the completely out-of-phase mode where adjacent nodes have dis-
placements in opposite directions. Other wavenumbers give rise to moving modes,
whose envelope encloses oscillations with longer spatial wavelengths, hence have
lower energies. The speed is shown in Fig. 7.6, showing that the fastest waves are
close to region where breathers cease to exist due to the ellipticity criterion failing,
which occurs due to the breather mode becoming extremely elongated in one direc-
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Fig. 7.5 Left Plot of the energy against wavenumber for the square lattice; right similar plot for
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Fig. 7.6 Left Plot of the speed of propagation against wavenumber for the square lattice; right
similar plot for the triangular lattice

tion. Similar calculations have been performed for the triangular (hexagonal) lattice
[6], which exhibits similar behaviour, the results being shown in Figs. 7.4, 7.5 and
7.6.

7.3.3 Form and Stability of Soliton Solutions

The nonlinear Schrodinger equation in two dimensions does not have an explicit
solution in terms of elementary functions. This is unfortunate, but the solution exists,
can be found numerically, and its properties have been characterised by Chaio et al.
[11].

The focusing elliptic two-dimensional cubic NLS

i FT + D∇2F + B|F |2F = 0. (7.36)
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does not support stable soliton solutions due to the phenomenon of blow-up or self-
focusing of solutions. For an detailed description of self-focusing in the 2D NLS
equation, the reader is referred to Sulem and Sulem [34].

If B D < 0 then (7.36) is dispersive or non-focusing and, whilst solutions exist
for all time, they spread out, and there are no localised or soliton-like solutions.
Hence we will concentrate on the case B D > 0, in which case solutions can become
singular in a finite time, by ‘blowing-up’, that is, the amplitude becomes infinite at
a single point, along with the profile undergoing radial contraction.

The Hamiltonian and norm are given respectively by

H =
∫∫ {

D|∇F |2 − 1

2
B|F |4

}
d2x and N =

∫∫
|F|2 d2x, (7.37)

and are invariants of the system. There is a threshold norm,Nc such that ifN < Nc

and H > 0 then blow-up cannot occur and dispersion dominates. If H < 0 and
N (0) > Nc, then blow up occurs. Between these two cases there is a one-parameter
family of soliton solutions of the form F(x, T) = eiλTS(r), where r = |x|, known
as Townes solitons [11]. Townes solitons are unstable since they have H = 0 and
N = Nc, and a perturbation could either lead to blow up, or decay by dispersion.

In the context of our spatially-discrete lattice, blow-up is impossible, since even
concentrating all the energy at a single node would still lead to a finite amplitude
of displacement. Furthermore, numerical simulations of the system, using initial
conditions generated from the Townes soliton, show long lived breather modes [7].
Therefore the instability argument presented above does not fully describe the actual
dynamics of the two-dimensional FPU lattice.

This is due to the approximations introduced by using Taylor expansions in the
derivation of the NLS equation. The equation for F is only a leading order approxi-
mation, and if we were to proceed to higher powers of ε, we would find higher order
derivative terms which prevent blow-up.

The unstable Townes soliton solutions can be stabilised by higher order terms. For
example, including higher order nonlinearity (with coefficient K ) and higher order
spatial derivatives (with coefficient P) leads to

i FT + D∇2F + B|F |2F + P∇4F + K |F |4F = 0. (7.38)

Karpman [21] has shown that in the case K = 0, P D < 0, there are stable solution
solutions no matter how small P is. Furthermore, Davydova et al. [12], show that if
P K > 0, the higher order terms provide an effective force preventing collapse, no
matter how small P and K are. Hence stable soliton solutions can be found in the
parameter regime P K > 0 for both anomalous (B D > 0) and normal (B D < 0)
cases.
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7.3.4 Higher Order Asymptotic Analysis
for Stationary Breathers

We now extend the asymptotic analysis of Sect. 7.3.1 to fifth-order in ε, with the aim
of showing that the next order terms produce higher order derivatives and higher
order nonlinearities of the form present in (7.38) which stabilise the Townes soliton.

In order to simplify the calculations as far as possible, we consider the intersection
of the two special cases, that is, we take symmetric potential of the form V ′(φ) =
φ + bφ3 + dφ5; and we consider the case k = l = π so that u = v = 0 and the
problem loses all dependence on τ . It is then sufficient to consider the ansatz

Qm,n(t) = εeiψ F(x, y, T ) + ε3e3iψ H3(x, y, T ) + · · · + c.c., (7.39)

whereψ = π(m +n)+ωt . Substituting the ansatz (7.39) into (7.25) gives ω = 2
√
2

from the O(εeiψ) terms, as in (7.26). The O(ε3e3iψ) terms yield 9ω2H3 = 8H3 +
8bF3 hence H3 = 1

8bF3, in a similar fashion to (7.19). At O(ε3eiψ) we obtain the
NLS equation

4i
√
2FT + ∇2F + 24b|F |2F = 0; (7.40)

whilst at O(ε5eiψ) we find

FT T = − 1

12
Fxxxx − 1

12
Fyyyy − 80d F3F

2 − 24bF
2

H3

− 3b
[

F2F xx + 2F F Fxx + 4F Fx F x + 2F F2
x

]

− 3b
[

F2F yy + 2F F Fyy + 4F Fy F y + 2F F2
y

]
. (7.41)

To combine the higher order terms in (7.41) with the basic NLS equation (7.40),
we first eliminate the FT T term and rewrite this in terms of spatial derivatives. This
is achieved by taking derivatives of (7.40) with respect to T , and multiple derivatives
with respect to x and y. Ultimately, (7.40) and (7.41) can be combined to give

0 = 4
√
2 i FT + ∇2F + 24b|F |2F + 5

96
ε2∇4F − (51b2 − 80d)ε2|F |4F

− 1

6
ε2Fxxyy + 9

4
bε2∇2(|F |2F) − 3

4
bε2(2|F |2∇2F + F2∇2F) = 0. (7.42)

In this equation, the first three terms are the basic NLS equation, the fourth and fifth
terms are of the form considered by Davydova et al. [12], and all the terms on the
second line are additional terms, whose influence on the NLS equation has to our
knowledge not been previously considered. The first term on the second line accounts
for the anisotropic nature of the lattice. The remaining terms are isotropic second
derivatives of cubic terms.
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The focusingNLScase corresponds tob > 0 and the condition P K > 0 reduces to
80d > 51b2. Whilst this inequality does not take account of the terms on the second
line of (7.42), it is entirely reasonable to expect that for certain values of d, the
lattice supports small amplitude breathers. We have performed similar higher order
expansions for the triangular and honeycomb lattices, obtaining similar expressions
in both cases (except that these lattices do not have the anisotropic term). It would
be useful if the work of Karpman [21] and Davydova et al. [12] could be extended
to include the additional terms in (7.42).

7.4 Honeycomb Lattice

We have already noted that the honeycomb lattice is a diatomic system in that in each
repeating unit cell, indicated by the dotted lines in Fig. 7.2, there are two nodes with
connections in differing directions. We describe these as left-facing and right-facing,
and the charge, or displacement from equilibrium of each is given by a different
coordinate. We use Q̂m,n for the left-facing nodes, and Q̃m,n for the right. The subtle
differences in the connectedness of the two types of node are illustrated in Fig. 7.7.
The equation of motion for left-facing nodes is thus

d2 Q̂m,n

dt2
= V ′(Q̄m−2,n) + V ′(Q̄m+1,n−1) + V ′(Q̄m+1,n+1) − 3V ′(Q̂m,n). (7.43)

where m, n ∈ ZZ, Q̂m,n represents the charge at left-facing nodes and Q̄m,n represents
the charge at right-facing nodes. As above, the interaction is given by V ′(Q) =
Q + aQ2 + bQ3. The right-facing nodes in arrangement 2 are governed by

d2 Q̄m,n

dt2
= V ′(Q̂m+2,n) + V ′(Q̂m−1,n+1) + V ′(Q̂m−1,n−1) − 3V ′(Q̄m,n). (7.44)

(m,n)(m− 2, n)

(m+ 1, n− 1)

(m+ 1, n+ 1)

(m,n) (m+ 2, n)

(m− 1, n− 1)

(m− 1, n+ 1)

Fig. 7.7 Labelling of the nodes in the honeycomb lattice (compare with Fig. 7.2). Left Arrangement
1, Q̂m,n in centre, neighbouring nodes are Qm−2,n , Qm+1,n+1, and Qm+1,n−1. Right Arrangement
2, Qm,n in centre, neighbouring nodes are Q̂m+2,n , Q̂m−1,n+1, and Q̂m−1,n−1
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Our aim is to find small amplitude solution of the equations. Such solutions
typically involve many lattice sites, so we introduce new variables to describe the
wide spread of sites and long times involved via

x = εm, y = εhn, τ = εt, and T = ε2t, (7.45)

with ε � 1 being the amplitude of the breather, the variables x, y will be treated as
continuous real variables.

Different ansatzs are required for the right- (Q̄m,n) and left-facing (Q̂m,n) nodes;
respectively, we seek solutions of the form

Q̄m,n(t) = εeiψ F(x, y, τ, T ) + ε2
[
G0 + eiψ G1 + e2iψ G2

]
+ ε3

3∑
j=0

ei jψ Hj + · · · + c.c.,

Q̂m,n(t) = εeiψ P(x, y, τ, T ) + ε2
[

Q0 + eiψ Q1 + e2iψ Q2

]
+ ε3

3∑
q=0

eiqψ Rq + · · · + c.c.,

(7.46)

where the phase of the carrier wave ψ is given by ψ = km + lhn + ωt , where k =
[k, l]T is the wavevector andω(k) is the frequency and where F, G j , Hj , P, Q j , R j

are all functions of (x, y, τ, T ). Note that only the real part of G0, Q0 are relevant to
us, since any imaginary component will cancel when we add the complex conjugate.
Hence we will assume G0, Q0 ∈ IR.

We substitute these ansatzs into the governing equations (7.43)–(7.44) and expand
in powers of ε and equate terms of the same power of eiψ , using the notation
O(ε jeiqψ) for j = 1, 2, 3, . . . and 0 ≤ q ≤ j .

7.4.1 O(ε)—Dispersion Relation for the Honeycomb Lattice

We start by considering the equations generated at O(εeψ), which can be written as

M
(

F
P

)
=

(
3 − ω2 −β

−β∗ 3 − ω2

)(
F
P

)
= 0, (7.47)

where β = e2ik + e−ik−ilh + e−ik+ilh , and β∗ is its complex conjugate; we define θ

by β = |β|e−iθ . Our aim is to find nonzero solutions for F, P , thus we require the
matrix M to have zero determinant, this condition is an equation for ω, namely the
dispersion relation which relates the frequency to the wavenumbers. Due to the two-
component (diatomic) nature of the system, the dispersion relation has two branches,
given by
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Fig. 7.8 Plot of ω(k) from (7.48). Reproduced with permission from [37]. IOP Publishing.
© Reproduced by permission of IOP Publishing. All rights reserved

ω2 = 3 ± √
3 + 2 cos(2lh) + 2 cos(3k + lh) + 2 cos(3k − lh). (7.48)

We refer to the upper root as the optical branch as it has higher frequencies than the
lower branch, whose modes wewill term acoustic. The two branches meet in isolated
points which are known as Dirac points. Both branches are plotted in Fig. 7.8.

Although we have determined those values of ω for which nonzero solutions of
(7.47) are available, we also need to specify what the solutions for (F, P)T are.
They have the form (F, P)T = F(x, y, τ, T )(1, C)T where C = Cac = eiθ in the
acoustic case and C = Copt = −eiθ in the optical case.

7.4.2 General Approach for the Higher Order Terms

The analysis of the honeycomb lattice at O(ε2) and O(ε3) proceeds as for the one-
dimensional chain, the square and triangular lattices. At each order of ε we collect
terms in similar powers of eiψ . AtO(ε2), we find Q0 = G0, atO(ε2e2iψ) we obtain
equations for the second harmonics, G2, Q2 and from the terms of order O(ε2eiψ)

we find the speed of the waves, that is, u, v where Z = x − uτ , W = y − vτ and we
can rewrite F, P as functions of Z , W, T in place of x, y, τ, T . The expressions for
u, v are the derivatives of the frequency with respect to the wavenumber, u = ∂ω/∂k,
v = ∂ω/∂l, as expected from standard wave theory [39].

However, this procedure is complicated by the fact that we are solving for two
variables F and P ,G j and R j , so have a linear system, and atO(ε2eiψ) andO(ε3eiψ)

the equations have the form My = d, where y = (G1, Q1)
T or (H1, R1)

T , and M is
as given in (7.47) with det(M) = 0 and d = 0. Such singular equations either have
no solution at all, or a one-parameter family of solutions of the form y = ĉe + g
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where c is an arbitrary constant, e is the zero-eigenvector (that is, in the kernel of
M, so that Mê = 0), and g is a different direction. Whilst g is then determined by
Mg = d, c is arbitrary, and the existence of such a solution depends on d being in
the range of the matrix M, which is only a one-dimensional subspace of IR2. The
Fredholm alternative determines the conditions on d for solutions to exist. Since M
maps IR2 onto a line through the origin given by k̂r, the condition that d lies on this
line is equivalent to d.̂n = 0 where n̂ is the unit normal to r̂ so that r̂.̂n = 0.

Since, in the acoustic and optical cases, the ranges are given by Rangeac =
K (−β, |β|)T = K (−e−iθ , 1), Rangeopt = K (β, |β|)T = K (e−iθ , 1), then the
normals to these directions are

nac =
(
eiθ

1

)
, nopt =

(−eiθ

1

)
, (7.49)

and the condition that d ∈Range implies n.d = 0.

The equations generated atO(ε2eiψ) andO(ε3eiψ) have the form M
(

G1
Q1

)
= d1

and M
(

H1
R1

)
= d1, where d1, d2 are functions of (F, P). In order to determine

the conditions on F, P , on the for which the system may have a nontrivial solu-
tion, we have to use the Fredholm alternative. Whilst this does not uniquely specify
G1, Q1, H1, R1, it provides the necessary extra equations which determine P, F .

We proceed to O(ε4e0iψ) to find an equation for the correction terms G0, Q0
which are required to form a leading-order approximation for the breather. Noting
that G0 = Q0 and G∗

0 = G0, |F |2 = |P|2, and |G2|2 = |Q2|2, etc., allows us to
simplify the governing equation. Again, the resulting equation can only be solved in
two special cases, namely, I: in the case of a symmetric interaction potential, a = 0,
in which case we obtain G0 = 0, and an ellipticity criterion, which is plotted in
Fig. 7.9; or II: there is no τ -dependence in the problem, so that G0 = −a|F |2. This
occurs if u = v = 0, which occurs when k = l = 0. For these parameter values,
there is no acoustic breather, but the optical breather exists.

In Case I, we have an ellipticity calculation for both the acoustic and optical
branches, on almost all of the acoustic branch the criterion fails, the only area of
ellipticity being near the Dirac points; whereas for the optical branch, there are a
small regions around the Dirac points as well as a large region around the completely
out-of-phase mode (k, l) = (0, 0) as shown in Fig. 7.9.

Since the temporal dependence of the solution is dominated by the short timescale
t and hence ω, the small corrections due to Ω on the long timescale can be ignored.
In passing, we note that the combined frequency of the breather mode is given by
Ω = ω + 3bε2A2(3+ |β|)/4ω, and so, in the optical case, the breather’s frequency
lies above the highest frequency of linear waves.

The total energy in the honeycomb lattice, which has a form similar to (7.7) is
conserved. It is possible to find an expression for the energy at leading order in ε

given the solution for Q̂m,n , Qm,n in terms of F , by inverting the transformations
from Z , W, T , through x, y, τ, T back to m, n, t . Hence we obtain
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Fig. 7.9 Left Plots of the region where the function Eac(k, l) > 0 shown in white; the ellipticity
is negative almost everywhere; only in small areas near the Dirac points is the ellipticity positive;
right plot of the region where Eopt (k, l) is positive (in white), showing large areas, around maxima
of the frequency ωopt , (e.g. (k, l) = (0, 0)) and small areas near the Dirac points. Reproduced with
permission from [37]. IOP Publishing. ©Reproduced by permission of IOP Publishing. All rights
reserved

Fig. 7.10 Plot of the scaled
energy (7.50) against (k, l),
for the honeycomb lattice.
Reproduced with permission
from [37]. IOP Publishing.
© Reproduced by permission
of IOP Publishing. All rights
reserved
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where I := ∫ ∞
0 rφ2(r) dr is an integral which depends on the shape of the Townes

soliton, and E (k, l) is the ellipticity function. We note that this energy does not
depend on the amplitude of the breather. This energy thus represents a minimum
threshold energy required to create a breather. As the breather amplitude reduces, its
width increases and overall, there is no effect on the energy. This property was first
noted by Flach et al. [16]. The threshold energy (7.50), however, is dependent on the
wavenumbers k and l, so choosing (k, l) = (0, 0), which yields a moving breather
will also produce a different threshold energy. Figure7.10 shows how this energy
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threshold depends on (k, l). We note that E has a local maximum at k = l = 0
corresponding to static breathers, whilst moving breathers require less energy to
form.

7.5 Conclusions

In earlier papers [6, 7, 37] we have carried out detailed calculations on the square, tri-
angular/hexagonal and honeycomb lattices. In all cases we have two solvable cases,
namely moving breathers if potential energy is symmetric (a = 0) and stationary
breathers if the potential energy is asymmetric (a = 0). Here we compare the prop-
erties of these stationary breathers when the interaction term is asymmetric. For
all lattice geometries we have G0 = −a|F |2; however, other characteristics differ,
according to the geometry concerned. In Table 7.1 we compare the results of the
three geometries.

One might expect the triangular and honeycomb lattice to be similar, since they
share several common symmetries, and the square lattice to be distinct. However,
this is not the case. The absence of second harmonic generation is shared by the
square and the honeycomb lattices. Whilst the hexagonal lattice generates no third
harmonic, it does generate a second harmonic. Furthermore, the inequality relating
the coefficients of nonlinear terms is identical for the honeycomb lattice and the
square lattice, whilst different for the hexagonal. The possibly surprising result from
this table is that, at least as far as stationary breathers are concerned, the honeycomb
lattice has more in common with the square lattice than the hexagonal lattice. Once
the diatomic nature of the honeycomb lattice is accounted for, the unit cell repeats
with square symmetry, see the diamond shapes in Fig. 7.2, so the similarity with the
square lattice appears at this deeper level.

7.5.1 Future Directions

In the above we have generalised the FPU lattice to two dimensions, with a single
unknown at each node. The natural extension would be to the mechanical lattice

Table 7.1 Table summarising various properties of the different lattice geometries

Property\Geometry Square [7] Hexagonal [6] Honeycomb [37]

Second harmonic G2 = 0 G2 = 1
3aF2 G2 = Q2 = 0

Third harmonic H3 = 1
8bF3 H3 = 0 H3 = −R3 = 1

8bF3

Inequality relating
nonlin coeffs

b > 4
3a2 b > 10

9 a2 b > 4
3a2
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where there are two components to the displacement from equilibrium, namely the
horizontal and vertical displacements. However, such systems are significantly more
complicated to analyse theoretically due to these two unknowns being inextricably
coupled together.

Moving modes in the simulations of Marin et al. [30, 31] show that the moving
breathers are elongated in the direction of travel, so that significant disturbances to
the lattice are concentrated in three chains. Using this observation Yi et al. [40] con-
structed and simulated a model of oscillations in three chains with nearest neighbour
interactions in which particles could move in both directions of the lattice. Results
showed some evidence of moving breathers, but there were significant loss terms.
This elongation in the mechanical lattice is orthogonal to that observed in the scalar
lattice, where breathingmodes are observed to elongate in the direction perpendicular
to their motion.

Building further on the experiences of Eilbeck and Russell who, in numerical sim-
ulations only found breathers when therewas both nearest neighbour interactions and
an onsite potential, the next models to consider would be two-dimensional lattices in
which there was an onsite potential in addition to the nearest-neighbour interactions.
When considering the asymptotic limit of small amplitude breathers, in such systems
it may be sufficient to consider only linear nearest neighbour interactions and so form
generalised two-dimensional Klein-Gordon lattices.

In future work, we propose to use numerical simulations to investigate the form,
stability and interaction properties of breathers in the honeycomb lattice [3]. Numeri-
cal simulations of breathers in the square and hexagonal lattices suggested that whilst
they were not perfect mathematical solitons, their rate of loss of energy was small,
and they were robust in that collisions of two solitons led to the reemergence of
moving breathers with speed and direction similar to their initial values [6, 7].

The theoretical calculations of stability of breathers is another topic ripe for fur-
ther work. Whilst the results of Davydova et al. [12], Kuznetsov [23] are useful,
their results are incomplete, as our stability calculations include terms which their
results have yet to consider. We note that the approaches of Fibich and Papanicolaou
[14, 15] are a potential source of novel results.
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Chapter 8
Moving Discrete Breathers in 2D
and 3D Crystals

Sergey V. Dmitriev, Andrei A. Kistanov and Vladimir I. Dubinko

Abstract Discrete breathers (DB), also known as intrinsic localized modes, are
spatially localized large-amplitude vibrational modes in defect-free anharmonic lat-
tices. Crystals can be regarded as anharmonic lattices and it is natural to expect that
they support DB. The role of DB in the solid state physics is not yet well under-
stood because their experimental detection is difficult. Nevertheless there exist a
large number of theoretical works where the existence conditions and properties of
DB in crystals have been analyzed. The key issue actively discussed in the literature
is the mobility of DB. Moving DB can be a carrier of energy, momentum, electric
charge, etc. A DB can localize energy of the order of 1eV, while collision of prop-
agating DB can result in even higher energy localization. The high energy density
regions in crystals can act as the sources of crystal lattice defects, they can initiate
fracture or phase transitions. In this chapter the anzats for generating moving dis-
crete breathers in monatomic crystals is offered and successfully tested in molecular
dynamics simulations for the 2D Morse crystal and hcp cobalt and magnesium. It is
then demonstrated that two colliding DB can produce a DB with greater amplitude.
Gap DB wandering in an ionic crystal with NaCl structure are described.
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8.1 Introduction

Discrete breathers (DB), as exact solutions to a number of model nonlinear sys-
tems possessing translational symmetry, were a hot topic in the nonlinear science
in the last decade of the past century [13, 20, 21, 44, 50, 57]. An overwhelming
majority of those theoretical studies on DB dealt with the idealized one- or two-
dimensional nonlinear lattices of coupled oscillators interacting via oversimplified
pairwise potentials. In the last years, DB-mediated effects in solid state physics and
materials science have been the focus of a rapidly growing number of studies based
on more realistic atomistic models of crystals.

Let us recall some basic properties of DB important for the following discus-
sion. DB frequency lies outside the small amplitude vibration spectrum of the lattice
and thus, DB does not excite the small amplitude waves and remains localized for-
ever radiating no energy. The DB frequency can leave the linear vibration spectrum
because of the anharmonicity of the lattice. Indeed, it is well-known that the fre-
quency of a nonlinear oscillator is amplitude-dependent. In the case of the so-called
hard (soft) anharmonicity, DB frequency increases (decreases) with increase in its
amplitude and can cross the upper edge of the spectrum (can enter the spectrum
gap, if it exists). Most of the studies on DB have been done in frame of the strongly
idealized models of low dimensions and with simple types of anharmonicity. In real
physical systems DB are not single-frequency modes and they are not exactly time-
periodic. The concept of quasi-breathers, developed by Chechin with co-authors [8],
legitimizes the long-lived, spatially localized objects in defect-free crystal lattices,
even though they are not exact solutions to the dynamical equations.

During the last few years, the concept of DB (more precisely, quasi-breathers) has
been actively penetrating the solid state physics and materials science. Velarde with
co-authors have offered the concept of solectron [9–12, 60] which is the bound state
of DB and electron, the reaction rate theory in solids has been recently modified to
take into account the contribution from DB [2, 16, 18], the DBmediated mechanism
of defect annealing deep inside Ge single crystal has been proposed [1], the possi-
ble role of DB in thermally activated dehydrogenation of graphane [43] has been
discussed in the works [7, 42], molecular dynamics simulation of the DB-induced
defect formation in strained carbon nanotube has been reported [55]. Xiong et al.
have demonstrated that DB can contribute to thermal conductivity of 1D lattices
[65–67].

There exist several reports on experimental observation of DB in crystals. DB
have been detected by the resonant Raman scattering measurements in a complex
compound termed as PtCl [27, 58, 62], from inelastic x-ray and neutron scattering
data in α-uranium [46, 49], and from inelastic neutron scattering spectra in NaI
[29, 47, 48]. The existence of DB in NaI in thermal equilibrium has been debated
[28, 56] because the contribution from DB to the vibrational density of states is
masked by the contribution from thermal lattice vibrations. This discussion suggests
the importance of numerical studies on DB. Molecular dynamics based on empirical
interatomic potentials was used to identify DBs in NaI [30, 34], in Si and Ge [61],
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in Ni and Nb [24], in C60 fullerite nanocrystals [54], in carbon nanotubes [55], in
graphene [3, 32, 39, 40], and in graphane [42]. In the work [7] the existence of DB in
graphane was demonstrated for the first time with the use of the ab initio simulations
based on DFT theory.

The question of whether DB can move through crystal lattice is important for
understanding their role in the formation of physical properties of crystals. Often
DB are pinned to lattice sites, but in some cases they can be mobile [24]. Moving
DB, also known as quodons, are quasi-particles propagating along close-packed crys-
tallographic directions [53]. Their collisions with crystal defects can result in various
effects such as the anomalously accelerated diffusion and related phenomena [16].
Moving DB can collide with each other resulting in significant energy localization at
the collision point. This energy can be spent on the creation of crystal lattice defects
or on the triggering of phase transitions or fracture.

In this contributionwe discussmovingDB in 2DMorse crystal (Sect. 8.2),moving
DB in 3D metallic crystals (Sect. 8.3) and wandering DB in the ionic crystals with
NaCl structure (Sect. 8.4). A brief summary with the outline of some open problems
is given in Sect. 8.5.

8.2 Moving DB in 2D Hexagonal Lattice
with Long-Range Morse Potentials

In the theoretical work by Kiselev et al. [33] it has been shown that the 1D chains
with atoms interacting via classical pairwise potentials (Toda, Born-Mayer, Lennard-
Jones and Morse) cannot support DB with frequency above the phonon spectrum.
Let us demonstrate that introduction of the on-site potential in that model makes the
existence of DB with frequency above the phonon spectrum possible by suppressing
the dc displacements of the atoms and increasing the contribution of the hard core
of the potential into atomic dynamics.

We consider the 1D chain of identical atoms of unit mass whose dynamics is
described by the following equations of motion

ün = U ′(un+1 − un) − U ′(un − un−1) − V ′(un) , (8.1)

U (r) is the potential energy of the two particles at the distance r and V (un) is
the on-site potential. Interatomic interactions are described by the empirical Morse
potential

U (r) = D(e−2α(r−rm ) − 2e−α(r−rm )) , (8.2)

where r is the distance between two atoms, D, α, rm are the potential parameters.
The function U (r) has a minimum at r = rm , the depth of the potential (the binding
energy) is equal to D and α defines the stiffness of the bond. We take D = 1,
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Fig. 8.1 Displacements of the central atom of the DB, u0, and its three neighbors as the functions
of time. The DB is excited in the chain (8.1) with the parameters D = 1, rm = 1 and α = 5 in (8.2)
and A = 4 in (8.3). Results for the 1D chain of particles (8.1) interacting via Morse potential (8.2)
in the sinusoidal on-site potential (8.3)

rm = 1 and α = 5. For the considered case of the nearest-neighbor interactions
the equilibrium interatomic distance is unity. The on-site potential is taken in the
sinusoidal form,

V (un) = −A cos(2πun) , (8.3)

with the amplitude A = 4.
A DB excited by the try and error method is presented in Fig. 8.1. Shown are

the displacements of the central atom of the DB, u0, and its three neighbors as the
functions of time. DB frequency is ωDB = 21.33 which is above the upper edge of
the phonon spectrum ωmax = 18.92.

8.2.1 Simulation Setup and Moving DB Ansatz

In 2D crystal with Morse interatomic interactions, and without any on-site potential,
DB with frequency above the phonon spectrum are possible [36–38] because the
close-packed atomic row, in which the DB is excited, experiences the action of the
effective on-site potential induced by the rest of the crystal.
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Fig. 8.2 a Stroboscopic
picture of atomic motion
showing the moving DB
excited in a close-packed
atomic row with the help of
(8.4) for the parameters
A = 0.128, B = 0.015,
β = γ = 0.25, x0 = 0,
ω = 19.5, ϕ0 = 0.1π ,
δ = 0.04π . b DB frequency
as the function of amplitude.
The upper edge of the
phonon band is shown by the
horizontal line. Results for
the 2D hexagonal lattice with
long range Morse potential

(a)

(b)

A two-dimensional (2D) close packed lattice with the interatomic distance (lattice
constant) equal to a is considered. Interatomic interactions are described by the
empirical Morse potential (8.2). In the following, we choose scales of time, energy
and distance such that D = 1, rm = 1 and the atom mass is unity. We take α = 5,
for which the equilibrium interatomic distance is a = 0.98813. The cut-off radius is
chosen to be rc = 5. Due to the long-range interaction a < rm .

The computational cell, generated by the translation vectors a1 = a(1, 0),
a2 = (a/2)(1,

√
3) consists of 160 × 160 atoms. The cell is subjected to the peri-

odic boundary conditions. Discrete breathers are excited in the middle part of the
computational cell. In order to absorb the small-amplitude waves emitted by the DB,
an ad hoc viscosity term is introduced into the equations of motion for the atoms
close to the borders of the computational cell. The atoms in a close-packed row are
numbered by the index n as shown in Fig. 8.2a.

To excite a moving DB in a close-packed row of atoms the following moving DB
ansatz [38] is used

xn(t) = S0
n + (−1)nT 0

n cos(ωt + ϕ0 + δ),

yn(0) = 0, ẏn(0) = 0, (8.4)

where ω is the DB frequency, ϕ0 is the initial phase, δ is the parameter indicating the
phase difference for neighboring atoms, the atom vibration amplitudes, T 0

n , and the
displacements of the atom vibration centers, S0

n , are defined as follows

T 0
n = A

cosh[β(n − x0)] , S0
n = −B(n − x0)

cosh[γ (n − x0)] , (8.5)
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where A is the DB amplitude, B defines the amplitude of displacements of the
vibration centers of the atoms, β and γ define the degree of spatial localization of
DB, x0 is the DB initial position. For x0 = 0 the DB is centered on a lattice site,
while for x0 = 1/2 midway between two neighboring lattice sites. The DB velocity
depends on δ, and for δ = 0 it is equal to zero. Thus the functions T 0

n and S0
n in

(8.5) describe the amplitudes and the displacements of the vibration centers of the
atoms at t = 0, respectively. These quantities will be calculated for each period of
DB oscillation as

Tn = xn,max − xn,min

2
, Sn = xn,max + xn,min

2
, (8.6)

where xn,max and xn,min are the maximal and minimal values of the quasiperiodic
function xn(t) that describes the motion of nth atom of a close-packed atomic row.
For atoms in the atomic rows where DB is not excited we set xn(0) = yn(0) = 0
and ẋn(0) = ẏn(0) = 0.

The proposed ansatz is based on the data from [24] and takes into account the
fact that the DB is exponentially localized in space owing to hyperbolic functions in
(8.5). In addition, the frequency of the DB should lie above the phonon spectrum of
the crystal, which can be implemented only for the shortest wavelength vibrational
modes, when the neighboring atoms move in antiphase. This requirement is fulfilled
owing to the introduction of the factor (−1)n in (8.4) in front of the amplitudes of
atoms Tn . The term Sn in (8.4) takes into account the effect of dilation in the vicinity
of the DB caused by the asymmetric anharmonicity of the interatomic forces, when
the centers of vibrations of atoms of the close-packed row are displaced away from
the center of the DB. Finally, the motion of the discrete breather over the crystal is
provided by the introduction of a small phase difference δ in the vibrations of the
neighboring atoms in (8.4).

It should be noted that the ansatz (8.4, 8.5) is not an exact solution to the equations
of motion for the considered 2D crystal. That is why a part of the energy given to the
system at t = 0 is radiated in the form of small-amplitude extended waves and then
a stable and robust moving DB emerges, if the parameters in (8.4, 8.5) are properly
chosen.

In Fig. 8.2a the moving DB excited in a close-packed atomic row is depicted by
the stroboscopic picture of atomicmotion. TheDB is shown at t = 10. The following
parameter values were used for setting the initial conditions A = 0.128, B = 0.015,
β = γ = 0.25, x0 = 0, ω = 19.5, ϕ0 = 0.1π , δ = 0.04π . The frequency used
to excite the DB is above the phonon spectrum of the crystal. As it can be seen in
Fig. 8.2b, the DB frequency, ωDB, increases with the increase in the DB amplitude
A revealing the hard-type anharmonicity of this vibrational mode. The upper edge
of the phonon band, ωmax = 18.9, is shown in (b) by the horizontal line.
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Fig. 8.3 Head-on collision
of DB moving in a
close-packed atomic row.
Panels from the top to the
bottom are presented with
the time step of 10 time
units. Tn is the oscillation
amplitude of nth atom. As a
result of the collision the two
DB merge into one having
the amplitude larger than the
initial DB. Results for the 2D
hexagonal lattice with long
range Morse potential

8.2.2 Head-On Collision of Moving DB

Here we present an illustrative example of head-on collision of two identical DB
moving toward each other with equal velocities along the x axis in the same atomic
row of the 2DMorse crystal [36]. The initial velocity of DB for the chosen parameter
values is 0.35a in one time unit. Fig. 8.3 shows the outcome of the head-on collision
where two DB merge forming a single DB with amplitude greater than the initial
DB.

Head-off collisions of DB moving toward each other in parallel close-packed
atomic rows were also studied [36] and it was demonstrated that in some cases DB
were destroyed as a result of the collision, while in other cases one of them took a
part of energy from another.

Clearly a mechanism of energy gain by DB becomes available since two colliding
DB can produce a DB with the amplitude greater than the initial amplitudes of the
colliding DB. This is important because the concept of DB is used to explain various
effects observed in crystalline solids [1, 4, 18, 22, 45].
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Fig. 8.4 Computational cell in the form of a cuboid used to simulate DBs in hcp metals. To excite
a moving DB, initial positions and initial velocities of atoms belonging to a close-packed atomic
row (shown in light color) are calculated from (8.4, 8.5). All other atoms have zero initial positions
and initial velocities

8.3 DB in Pure Metals

Very recently the hard-type anharmonicity DB were identified in pure metals with
fcc lattice (Ni) and bcc lattice (Nb, Fe) [24, 25]. The latter studies have inspired
the development of the ansatz for the initial conditions to excite DBs with hard-type
nonlinearity [38]. The ansatz has been used to simulate the interaction of DBs with a
vacancy [37]. Note that the moving DB studied here are qualitatively different from
the soliton-like waves called crowdions (kinks), analyzed recently in [9–12, 26].

Here, with the use of the molecular dynamics simulations, we demonstrate that
moving DB can also be excited in hcp metals Co and Mg.

The simulations are performed using the large-scale atomic/molecular massively
parallel simulator (LAMMPS) package [51]with the embedded atommethod (EAM)
interatomic potentials [52].

Hard-type nonlinearity DB in Co and Mg is excited in a close-packed atomic row
(see Fig. 8.4) with the help of the ansatz (8.4, 8.5) [38].

8.3.1 Collision of Moving DB

In Figs. 8.5 and 8.6 collision of two DB moving in the same close-packed atomic
row in Co are presented by the time evolution of the functions Tn representing the
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Fig. 8.5 Merger of two
symmetric DB moving
toward each other in Co in
the same close-packed
atomic row with equal
velocities. Tn is the
oscillation amplitude of nth
atom. The resulting standing
DB has the amplitude higher
than the initial ones.
Parameters of the ansatz
used for excitation of the DB
see in the text

Fig. 8.6 Same as in Fig. 8.5
but for the DB having
different initial phases. As a
result of collision DB are
reflected

amplitudes of atomic vibrations. In Fig. 8.5 two symmetric DB moving toward each
other with equal velocities collide to create a standing DB with the amplitude larger
than the initial DB amplitudes. The following parameters of the ansatz were used to
excite the DB: A = 0.3Å, B = 0.08Å, β = 0.5, γ = 0.6, ω = 14.8 THz, x0 = 1/2,
δ = ±0.1π , φ0 = π/2. In Fig. 8.6 both DB have the same parameters except for the
initial phase, which is equal to φ0 = π/2 and φ0 = π/4 for the DB moving from the
left and from the right, respectively. In this case DB are reflected after the collision.

Similar results are presented in Figs. 8.7 and 8.8 for DB collisions in Mg. In
Fig. 8.7 symmetric DB collide. Parameters of the ansatz (8.4, 8.5) are A = 0.5Å,
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Fig. 8.7 Merger of two symmetric DB moving toward each other in Mg in the same close-packed
atomic row with equal velocities. Tn is the oscillation amplitude of nth atom. Parameters of the
ansatz used for excitation of the DB see in the text

Fig. 8.8 Same as in Fig. 8.7 but for the DB having different initial phases. As a result of collision
one DB emerges and moves from the left to the right with the velocity greater than the initial DB
velocity

B = 0.08Å, β = 0.5, γ = 0.6, ω = 125 THz, x0 = 1/2, δ = ±0.03π , φ0 = π/2.
In Fig. 8.8 both DB have the same parameters except for the initial phase, which is
equal to φ0 = π/2 and φ0 = π/4 for the DB moving from the left and from the
right, respectively. Collision of DB with different initial phases in this case produces
one DBmoving from the left to the right with the velocity greater than the initial DB
velocity.

It can be concluded that at 0K the moving DB in pure hcp metals such as Co
and Mg are very robust, they can travel very long distances and can survive head-on
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collisions with each other. Energy exchange between colliding DB is possible and it
strongly depends on the mutual phase of colliding DB.

8.3.2 Application to Radiation Effects

Crystal lattice defects play a very important role in solid state physics and materials
science. It is interesting to study the effect ofDB scattering on the natural defects (e.g.
vacancies, voids, dislocations, and grain boundaries) [14–17, 30, 56]. In this respect,
the ability of DB to move in pure metals, demonstrated in the present chapter, is very
important since it greatly enhances the range of their interaction with the lattice
defects. This interaction may be responsible for the long-range interaction between
the defects resulting in their spatial ordering. A prominent example is the ordering
of vacancy voids into three-dimensional super-lattices under neutron and heavy-ion
irradiation of a number of bcc metals (Mo, W, Nb, Ta) and fcc Ni and Al [41],
where they copy the host lattice of the metal, and in hcp metals Zr and Mg [5]. The
void super-lattice copies the host lattice of the metal in bcc and fcc metals, while
voids are aligned in bands parallel to the basal planes in hcp metals. Irradiation may
cause continuous generation of DBs inside material due to external lattice excitation,
thus pumping the material with a gas of DBs propagating along close-packed lattice
directions. A scattering of DB on the void surfaces excites the surface atoms [59],
which enhances the rate of the vacancy emission from voids. As a result, the vacancy
solubility, Cirr

V , also known as the dynamic equilibrium concentration of vacancies
in the vicinity of the void surface, start to depend on the irradiation flux Firr of fast
particles that generate DB [14, 16]:

Cirr
V (Firr , T ) = Cth

V (T ) exp

(
Δφq(Firr , T )

kB T

)
,

Δφq(Firr , T ) ≡ 〈Est (Firr , T )〉2
kB T

, (8.7)

whereCth
V (T ) is the thermal vacancy solubility, kB is theBoltzmann constant, T is the

temperature, and 〈Est (Firr , T )〉 is the standard deviation of the vacancy formation
energy from the ground value caused by the DB-induced excitation, which is given
by the product of the frequency of DB-void collisions, the excitation amplitude and
lifetime. It is positive by definition, which means that Cirr

V > Cth
V . The void growth

rate is proportional to the difference between the net flux of vacancies from the bulk
to the void, J in

V , and the flux of vacancies from the void to the bulk, J out
V . The former

flux J in
V is determined by the difference between the fluxes of vacancy and self-

interstitial atoms (SIAs) produced by irradiation in the bulk, while the latter flux J out
V

is proportional to the vacancy solubility at the void surface, Cirr
V /J out

V ∼ DV Cirr
V ,

where DV is the vacancy diffusivity.
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Fig. 8.9 Illustration of the
dissolution of a void in the
interstitial position due to the
absorption of DB coming
from larger distances as
compared to locally ordered
voids that shield each other
from the breather fluxes
along the close packed
directions [15]

Radiation-induced DB can move along the close-packed directions until they
decay or collide with a void. If the DB propagating range is larger than the void
spacing, the voids can shield each other from DB fluxes along the close packed
directions, and so, the vacancy emission rate for voids, which have more immediate
neighbors along the close packed direction, becomes smaller than that for other voids,
and so they have some advantage in growth (Fig. 8.9). Quantitatively, it means that
Cirr

V for the locally ordered voids is lower that for the locally interstitial voids. If the
void number density is sufficiently high, the competition between them can be shown
to make the interstitial voids shrink away resulting in the void lattice formation, in
which the nearest neighbors are arranged along the close-packed directions of the
host lattice [15]. For cubic metals this means the void lattice copes the host lattice,
while in hcp metals, the alignment of voids in bands parallel to the basal planes (in
which DB propagate) is expected, in agreement with experimental data [5, 41]. This
driving force for the void ordering was proposed by Dubinko [15] well before the
existence of DB in metals was demonstrated. Subsequent results on the DB mobility
in bcc metals [59] and the present results on the DB mobility in hcp metals strongly
support this model, although further work is needed to demonstrate that DBs can be
robust at the elevated temperatures.

Another prominent phenomenon that can be expected from the anisotropy of DB
propagation in hcp metals is the irradiation growth (IG). IG is the name given to the
volume-conserved shape deformation that occurs in non-cubic crystalline materials
under irradiation in the absence of an applied stress [6, 19, 23, 63, 64]. The best
known examples of irradiation growth are found in graphite, uranium, zirconium and
its alloys (see [6, 19] for the review). In most cases, IG corresponds to an expansion
along the a-direction and a contraction along the c-direction in its constituent grains
[19]. Availablemodels of IG are based on the anisotropy ofmigration of point defects
(usually, self-interstitial atoms—SIAs) produced by irradiation [63, 64] or mobile
SIA-clusters produced by cascade damage [23]. However, diffusion anisotropy in
hcp is yet a subject of debates, while the IG related effects are observed also under
electron irradiation, which does not produce cascades, and hence, in-cascade SIA-
clusters cannot explain these effects. So, it becomes evident that the mechanisms
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Fig. 8.10 DB propagate within the basal planes in hcp metals. Accordingly, the DB-induced
vacancy emission from prismatic grains is enhanced as compared to that from the basal grains,
which should result in an expansion along the a-direction and a contraction along the c-direction

involved in the irradiation growth of hcp metals may be more complicated than those
that can be understood within the conventional rate theory models.

Here we note that IG can be based on a principally new mechanism related to the
anisotropy of DB propagation in hcp metals, where all the close-packed directions
lie within the basal plane (Fig. 8.10). Accordingly, the DB-induced vacancy emission
from prismatic grains, J out

V ∼ DV Cirr
V , is enhanced as compared to that from the

basal grains, J out
V ∼ DV Cth

V at which only thermally activated vacancy emission
takes place. This should result in a relative expansion along the a-direction and a
contraction along the c-direction at a rate IGR given by

I G R ≈ DV

l2G
(Cirr

V − Cth
V ), (8.8)

where lG is the grain size. This mechanism is similar to the Nabarro-Herring creep
mechanism, in which the vacancy concentration difference at different grains is
induced by the applied external stress. In the IG case, the concentration gradient is
induced by irradiation and by the anisotropy of DB propagation. This mechanism
predicts that IGR decreases with increasing grain size, which agrees with experi-
mental data [6, 19]. With increasing grain size, dislocations become the dominant
sinks and sources of vacancies, and the model should take into account interaction of
DBs with dislocations of different orientations, which could result in a more efficient
emission of vacancies from a-component dislocations as compared to c-component
dislocations. That would explain a break-away growth of Zr at high neutron fluences
caused by the generation of vacancy at the c-component dislocations loops, that
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would lead to shrinkage along the c-axis much in the same way as the vacancy loops
on basal planes that were originally proposed by Buckley to explain the observed
growth in uranium [19]. However, consideration of the DB-dislocation interaction
in hcp metals is beyond the scope of the present chapter and will be done elsewhere.

8.4 Wandering DB in an Ionic Crystal

In this section we give an example of a special type of DB motion when it moves not
along a straight line but wanders over the crystal changing the direction of motion.

8.4.1 Simulation Details

NaCl structure consists of two face-centered cubic lattices with lattice parameter a,
one occupied by anions and another one by cations, displaced one with respect to
another by the vector (a/2, 0, 0) so that one falls in the body centered position of the
other. Each atom has six neighbors of the opposite type which are at the vertices of
a regular octahedron. Thus, each cubic translational cell consists of four anions and
four cations as shown in Fig. 8.11a.

Interactions between atoms are described by the pairwise potentials that include
Coulomb interaction, Born-Mayer-type repulsion, and dispersive interaction. The
potentials and their parameters are given in [30]. For chosen parameters of potentials
the equilibrium lattice parameter of the NaCl structure was found to be a = 6.25Å.
The atomic weight of the heavy atom was fixed to M = 100 g/mol and for the light
atomwe took m = 10 g/mol. Large difference in the atomic weight of the anions and
cations ensures the existence of a wide gap in the phonon spectrum of the crystal [30,
35]. Computational cell used in our simulations included 8×8×8 cubic translational
cells, and it was subjected to periodic boundary conditions.

DB in the considered crystal model is highly localized on a light atom. The light
atom can vibrate with a large amplitude along one of the high-symmetry directions,
〈100〉, 〈110〉, or 〈111〉 [30, 34, 35]. Excitation of DBwith 〈111〉 polarization requires
a special procedure [35], while DB with the other two polarizations can be easily
excited by displacing one light atom away from its equilibrium position in the desired
direction by about 0.3–0.5Å. After a short transient period, a stable DB emerges,
while a part of the energy initially given to the exited atom spreads over the com-
putational cell in the form of small-amplitude vibrations. Magnitude of the initial
displacement defines the DB amplitude.

In Fig. 8.12 a the density of phonon states (DOS) for the considered crystal with
the NaCl structure is presented. The spectrum features a wide gap that is the nec-
essary condition for the existence of gap DB, i.e., DB having frequency within the
phonon gap.
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Fig. 8.11 a The NaCl crystal structure. Light (heavy) atoms are shown by filled (open) circles. b
Stroboscopic picture of atomic motion showing a pair of DBs in the crystal with the NaCl structure.
The atoms A and C oscillate out-of-phase along [110] direction with equal, large amplitudes

8.4.2 Pairs of Discrete Breathers

Three types of DB pairs were considered, namely, the atoms A and B oscillating
along [100] direction, the atoms A and C oscillating along [110] direction, and the
atoms A and D oscillating along [111] direction (see Fig. 8.11a).

The AB and AD pairs are easy to excite. However, for these two pairs, a heavy
atom is in between the two nearest light atoms oscillating with large amplitudes.
The heavy atom precludes from the energy exchange between the light atoms and
this makes the AB and AD pairs not interesting for the present study which focuses
on the energy exchange between DBs. On the other hand, in the AC pair the two
nearest light atoms are not separated by a heavy atom and it was found that they can
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(a) (b)

Fig. 8.12 a Density of phonon states (DOS) for the considered crystal with the NaCl structure. The
gap in the phonon spectrum ranges from 4.4 to 11.8 THz. b Frequency of DB pair of AC-type (see
Fig. 8.11b) as the function of DB amplitude (dots connected with the line). Horizontal lines show
the edges of the phonon spectrum gap

exchange by their energies. In the following the results will be presented only for the
AC pairs of DB.

In Fig. 8.12b, frequency of the DB pair of AC-type (see Fig. 8.11b) is plotted as
the function of DB amplitude (dots connected with the line). The DB in the pair
oscillate out of phase without energy exchange between them. Horizontal lines show
the edges of the phonon spectrum gap. Reduction of the DB frequency with the
increase in DB amplitude suggests that this vibrational modes demonstrate soft type
anharmonicity.

An example of AC-type DB pair is presented in Fig. 8.11b as a stroboscopic
picture of atomic motion. It can be seen that only two neighboring light atoms, A
and C, oscillate out-of-phase with large amplitudes, while the other atoms oscillate
with much smaller amplitudes.

In Figs. 8.13 and 8.14 two examples of AC-type DB pairs are given by plotting
the displacements ux = uy as the functions of dimensionless time t/� of the atoms
(a) A and (c) C. Here � is the oscillation period of DB. In (b) the phase difference is
shown for the atoms A and C. In Fig. 8.13 the atoms A and C oscillate out of phase,
while in Fig. 8.14 they oscillate with a phase shift. In the former case the amplitudes
of both atoms do not change in time, while in the latter case, the energy exchange
between twoDBs can be observed. The energy exchange is not exactly time periodic.
The possibility of energy exchange between neighboring light atoms suggests the
possibility of DB motion.
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(a)

(b)

(c)

Fig. 8.13 Displacements ux = uy for atom a A and c C in the NaCl structure crystal. b Phase
difference for atoms A and C. Initially only A and C atoms were excited with the amplitudes
Ax = Ay = 0.45Åwith the phase difference Δφ = π . Here θ is the DB oscillation period

The next example shows the possibility of complex energy transmission from
one atom to neighboring atoms so that even vibration polarization of atoms can be
changed. The light atoms a and c were initially excited to oscillate along 〈110〉
crystallographic direction with the initial amplitudes Ax = Ay = 0.455Åand phase
difference Δφ = 0.9π (see Fig. 8.15 for the schematic presentation of the energy
transmission and the changes in vibration polarization of atoms). More detailed
information is presented in Fig. 8.16a–e where the displacements of atoms a to e are
presented, respectively. Note that for the atoms b and c the x and y components of
the displacements are shown on separate panels because they are not equal and thus,
the vibration polarization differs from 〈110〉.

This example shows that the energy initially given only to the atoms a and c
wanders over the neighboring light atoms, the vibration polarization of atoms changes
and nevertheless the energy remains in the spatially localized form for a very long
time. Panel (c) of Fig. 8.16 reveals a large-amplitude vibration of the atom c along
〈100〉 crystallographic direction for t > 500θ . Partial energy exchange between atom
c and atom b can be observed. The simulation till t = 750θ did not reach the energy
dissipation of the excited DB over the computational cell.
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(a)

(b)

(c)

Fig. 8.14 Same as in Fig. 8.13 but for the case of small initial difference in the amplitudes of the
atoms A and C. Initially only A and C atoms were excited with the amplitudes Ax = 0.45Å,
Ay = 0.47Å, with the phase difference Δφ = π

Fig. 8.15 Schematic picture
of atomic motion for the case
when two atoms, a and c,
were initially excited in the
NaCl structure crystal with
the amplitudes
Ax = Ay = 0.455Åand
phase difference Δφ = 0.9π .
Vibration amplitudes of the
atoms (a–e) as the functions
of dimensionless time are
shown in Fig. 8.16
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(a)

(b)

(c)

(b )

(c )

(d)

(e)

Fig. 8.16 a–e Vibration amplitudes for the atoms labeled (a–e) in Fig. 8.15, respectively, as the
functions of dimensionless time. Here θ is the DB oscillation period

8.5 Summary

Molecular dynamics simulations based on the empirical interatomic potentials have
demonstrated that movable DB can be excited in 2D and 3D crystal models. In
monatomic crystals with one atom in a primitive translational cell, such as 2DMorse
crystal and pure fcc and bcc metals, phonon spectra cannot have gaps. hcp metals
typically do not feature a gap in the phonon spectrum even though they have two
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atoms in a primitive cell. In such crystals only hard-type anharmonicity DB with
frequencies above the phonon gap can exist. In complex crystals possessing gaps in
the phonon spectrum in addition to the hard-type anharmonicity DB, also soft-type
anharmonicity DB with frequencies within the gaps can exist.

Hard-type anharmonicity breathers studied here for 2D Morse crystal and for 3D
models of hcp metals can move along a close-packed atomic row with the velocities
of the order of 0.1 of the sound velocity [24]. Soft-type anharmonicity breathers
in the alkali-halide crystals with NaCl structure demonstrate the ability of random
wandering over the neighboring light atoms. Polarization of atomic vibrations can
change but the energy stays in the spatially localized form for hundreds and thousands
of vibration periods.

As an open problem let us mention the analysis of the DB concentration and
lifetime in different crystals at thermal equilibrium. Preliminary study for the 2D
crystal of the A3B composition was carried out in [31].
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Chapter 9
Standing and Moving Discrete Breathers
with Frequencies Above the Phonon
Spectrum

Vladimir Hizhnyakov, Mati Haas, Alexander Shelkan and Mihhail Klopov

Abstract It is found that discrete breathers with frequencies above the top of the
phonon spectrum may exist in some metals (Ni, Fe, Cu) and semiconductors (Ge,
diamond). It is shown that these excitations in metals may propagate in crystals along
crystallographic directions transferring energy of �1eV over large distances.

9.1 Introduction

It is well known already for few decades that anharmonicity of crystal lattices may
result in long living small size vibrational excitations of rather high energy. These
excitations are usually called as discrete breathers (DBs), intrinsic localized modes,
vibrational solitons, or quodons [1–3, 7–9, 11, 12, 22, 24, 25, 27, 31–35, 37, 38]. In
numerical studies ofDBs different two-body potentialmodels (Lennard-Jones, Born-
Mayer-Coulomb,Toda, andMorse potentials and their combinations) have beenused.
All these potentials show strong softening at increasing vibrational amplitudes. The
DBs, found in such simulations, always drop down from the optical band(s) into the
phonon gap, if such a gap exists in the spectrum (see [20, 21, 23], where DBs have
been studied in the alkali halide crystals). Consequently, it has been assumed that the
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softening of atomic bonds at increasing vibrational amplitudes is a general property
of crystals and therefore DBs with frequencies above the top phonon frequency
cannot occur.

However recently it has been found that in some crystals (e.g. in a semiconductor
Si [41], and in metals as Ni, Nb [10] and Fe [14]) DBs with the frequencies above
the top of the phonon spectrum may exist. In these materials such phenomenon
takes place due to very different dependence of the interatomic pair potentials on the
interatomic distances in comparisonwith the aforementioned two-body potentials. In
metals the reason consists in the conducting electrons, which strongly affect (screen)
the interactions of ions at intermediate distances causing hardening of the interatomic
forces [10]. The embedded atommodel (EAM) [5, 6], applied in [10, 14] allows one
to take into account these screening effects. In Si the hardening of the potential is a
result of the chemical bonding (i.e. covalence). The covalent forces strongly depend
on the orientation of the bonds causing an additional resistance of the system against
the local distortion of the lattice which is neglected by customary pair potentials but
in e.g. Tersoff potential [39, 40] used in [41] are taken into account.

In this chapter we consider the properties of DBs with the frequencies above the
top of phonon spectrum.We will discuss the conditions for existence of such DBs at
different excitation energies. We will show that DBs with the frequency above the
phonon spectrum may exist in a number of metals such as Ni, Fe and Cu, in the last
twomaterials at rather high energies (large amplitudes) only.Wehave found that these
DBs can move along the crystallographic directions corresponding to chains formed
by the nearest neighboring atoms.Thereat they can transfer a large (as compared with
a phonon quantum) amount of vibrational energy over long distances. We will also
show that DBs with the frequencies above the top of phonon spectrum may exist in
Ge and in diamond crystals.

9.2 Mean Field Theory of Discrete Breathers

The main tools to study this class of vibrational excitations are molecular dynamics
(MD) simulations, which are based on the numerical integration of the classical
equations of motion in clusters with limited number (usually ≤ 103) of the degrees
of freedom. In real 3D crystal lattices a satisfactory account of all important forces
is possible only for large clusters with 105 or more number of atoms. Calculations of
nonlinear dynamics of such clusters require rather long time. Therefore it is of interest
to develop other methods which would allow to reduce the amount of numerical
computations. This possibility is given by proposed in [16, 36] mean field theory
which allows one to calculate DBs in macroscopically large lattices of arbitrary
dimension.

Following [16, 36] we present the equation of motion of an atom of number n
with mass Mn in an anharmonic lattice in the form
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Mnün = −
∑

k

∑
n1...nk−1

V (k)
nn1...nk−1

un1 ...unk−1 (9.1)

Here un—displacement of atom n from it’s equilibrium position, V (2), V (3), ... are
the harmonic and anharmonic force constants; the subscripts n include both the site
number and the number of the Cartesian component. A localized solution of the (9.1)
describing a DB reads

un(t) = ξn + An cosωl t + O(ωl) (9.2)

Here ωl is the frequency of the DB which lies outside the phonon spectrum, |An| is
the amplitude of the DB at the site n, ξn is the static shift of the equilibrium position
of the atom n (i.e. the dc-component of the DB; this component differs from zero
due to odd anharmonicities), O(ωl) denotes the higher harmonics which contribution
is usually rather small and will be neglected below. The amplitudes and shifts are
remarkably different from zero for n close to the localization centrum at n = 0.

The idea of the mean-field theory [16, 36] is to consider the infinitesimal change
of a DB in time qn(t) = u̇n(t)dt . This change satisfies the linear equation of motion

Mnq̈n = −
∑

n′
(V (2)

nn′ + ∂2Vanh

/
∂un∂un′)qn′ (9.3)

Here V (2)
nn′ is the force constant describing vibrations in the harmonic approximation,

Vanh is the anharmonic part of the potential energy. In our case of u(t) ∝ cosωl t the
time dependence of q(t) equals qn(t) = −ωl An sin(ωl t)dt . Consequently this time
dependence is given by sinωl t . Therefore one should consider only the ∝ sinωl t
terms of (9.3). Taking into account that∝ sinωl t term of the product cos2n ωl t sinωl t
coincides with the time-independent term of the product 2 cos2n ωl t sin2 ωl t we get
for the infinitesimal part of the DB the following equation

Mnq̈n = −
∑

n′
(V (2)

nn′ + vnn′)qn′ (9.4)

where
vnn′ = 2〈sin2 ωl t ∂

2Vanh

/
∂un∂un′ 〉 (9.5)

Here the partial derivative is taken for un = ξn + An cosωl t , 〈...〉 denotes the averag-
ing over the vibrational period (this averaging removes all oscillating in time terms
and leaves only the time-independent term). The dc-shifts of the DB equal to

ξn =
∑

n′
gnn′ 〈∂Vanh

/
∂un′ 〉 (9.6)

where gnn′ = Gnn′(ω = 0) is the static limit of the Green’s function
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Gnn′ (ω) =
∑

j

enj en′ j

(ω − iε)2 − ω2
j

, ε → +0

(here ω j are the frequencies and enj—eigenvectors of the dynamical matrix corre-

sponding to the harmonic force constants V (2)
nn′ ). Equation (9.4) corresponds to the

following harmonic potential energy:

VMF = 1

2

∑
nn′

(V (2)
nn′ + vnn′)qnqn′ (9.7)

If the amplitude parameters An are chosen correctly, this potential energy should
lead to a local mode of the frequency ωl being an infinitesimal part of the DB.
The potential energy VMF constitutes a mean field harmonic potential for the local
mode and, therefore for the DB. The matrix vnn′ gives the change of the dynamical
matrix of the unperturbed lattice by the DB. The infinitesimal part of the DB under
consideration has the same relative amplitudes as the DB itself: qn/qn′ = An/An′ .
Therefore not only the frequency but also the shape of the mode described by (9.4)
coincides with that of the DB. We emphasize that VMF does not describe the effect
of the DB on phonons which time-dependence is essentially different [17, 18].

Equation (9.4) is analogous to the equation which describes local dynamics of a
lattice with static defect: the matrix vnn′ determining the perturbation of the lattice is
an analog of the matrix describing the perturbation induced by the defect. Therefore
to solve them one can apply the method developed by I. Lifshitz for local dynamics
of perturbed harmonic lattices [28, 29]. According to this method, the local mode
with the frequencyωl exists if the perturbed Green’s function G(ω) = G(0)(ω)/(I −
G(0)(ω)v) has a pole at this frequency. This means that for this frequency

G(0)(ωl)v = I (9.8)

(here G(0)
nn′ is the Green’s function of the perfect lattice). The amplitudes of the local

mode satisfy the relation

An
/

A0 = qn
/

q0 =Gn0(ωl)
/

G00(ωl) (9.9)

[28, 29]. However there is an essential difference: unlikely to a static defect, the
matrix vnn′ in (9.4) is initially not known due to unknown amplitudes An . The latter
quantities should be determined self-consistently (e.g. using iteration procedure)
according to the frequency of the local modeωl and the proper relative amplitudes of
the atoms contributing to the local mode. Thereby (9.8) and condition (9.9) (together
with (9.5) for vnn′ and (9.6) for ξn) present a self-consistent system to find An and
ωl . It is essential to emphasize that in (9.8), (9.9) the Green’s functions of the perfect
lattice take into account all harmonic interactions, including the long-range forces.
Therefore the method can be applied for macroscopic lattices.
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The solution of the problem can be simplified taking into account the well-
localized character of the anharmonic interactions (in difference with the harmonic
forces). For vnn′ this circumstance allows to confine oneself with the pair interactions
between the nearest neighbor atoms only. In this approximation Vanh depends only
on the vibrational amplitudes Ānn′ and the changes of the static lengths ξ̄nn′ of the
bonds of the atom n with its nearest neighbors n′. The number of the actual bond
amplitudes may be still reduced taking into account the symmetry of the considered
DB, thus only a few amplitudes must be found self-consistently in the real calcula-
tions. Using the presented theory, DBs have been calculated for some model systems
[16–18, 36] and have been predicted for Ni and Nb [10]. Belowwe apply it to discuss
DBs with the frequencies above the top of the phonon band.

9.3 Splitting of Discrete Breathers
from the Top of the Phonon Spectrum

At first let us consider the case of a monatomic chain with the nearest neighbor
interactions, described via the pair potential in the form V = K2ū2 + K3ū3/3 +
K4ū4/4, where ū = un − un−1 is the deviation of the length of the bond of the
nearest atoms from its initial value, K2, K3 and K4 are the harmonic, cubic and
quartic anharmonic force constants. As it was shown by Kosevich and Kovalev [24]
in this model DBs can have frequencies above the top of the phonon spectrum if the
criterion

κ = 3K2K4

/
4K 2

3 > 1 (9.10)

is fulfilled. The renormalization of an elastic spring in the model equals to δK2 =
2K3ξ̄ + 3K4 Ā2/4, where Ā is the vibrational amplitude and ξ̄ = −(K3/2K2) Ā2 is
the change of the static length of the bond. Usually K3 < 0 and ξ̄ > 0 and cubic
anharmonicity results in the local expansion of the lattice due to aDB. This expansion
gives a negative contribution to the renormalization of the elastic springs by the DB.
To split a DB upward from the top of the phonon spectrum, the renormalization δK2
must be positive, i.e. the DB has to harden the bonds. It takes place if the quartic
anharmonicity prevails over the effects of the cubic anharmonicity according to the
condition (9.10) [10].

Now let us consider 3D lattices. In comparison with the monoatomic chains the
situation is changed due to the increase of the number of the actual bonds of an
atom, the bonds with the more numerous distant neighbors inclusive. Moreover these
neighbors do not constitute a chain along the direction of the vibrations. The result
is the increasing stiffness of the lattice which in its turn leads to the reduced changes
of the static lengths ξ̄ and the stemming from these changes negative term in δK2.
This circumstance may favor the generation of DBs with the frequencies above the
phonon spectrum in 3D case.
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The aforementioned arguments are essential for metals where DBs indeed can
exist. Two types of these excitationsmay be distinguished: (1) DBs appearing already
at small amplitudes and low energy E < 0.5eV, and (2) DBs existing at rather large
amplitudes and high energy only. DBs with large amplitudes have noticeable non-
harmonic character.

1. The first type of DBs, existing in monatomic fcc and bcc lattices characterized
by the vibrations along the chains of the nearest neighbor atoms renormalize the
elastic force constants of the main vibrating bonds as follows:

δK2 = 2K3ξ̄ + 3K4 Ā2
/
4 (9.11)

Here
ξ̄ = −

(
K3

/
2K̃2

)
Ā2 (9.12)

is the expansion of themain vibrating bonds, K̃2 = Mv2/r20 > K2 is themean elastic
force constant in the bulk, v is the longitudinal velocity of sound, r0 is the equilibrium
nearest-neighbour distance [10] (note that in the periphery of a DB the bonds are
contracted). Consequently, analogously to a 1D atomic chain, cubic anharmonicity
results in the local expansion of the lattice. This expansion also gives a negative
contribution to the elastic springs, although somewhat smaller than in the chain.
To split a DB frequency from the top of the phonon spectrum upward, the effect
of cubic anharmonicity should be less than that of quartic anharmonicity. Such a
situation takes place if

κ̃ = 3K̃2K4

/
4K 2

3 > 1 (9.13)

Let us notice that in a more rigid 3D lattice the effective renormalized elastic spring
K̃2 is stronger than K2 in the corresponding linear chain and condition (9.13) may
be easier fulfilled in comparison with the condition (9.10). However, as a rule K̃2
exceeds K2 only a little (roughly 10–20 %) and in ionic lattices, the increase of the
ordinary value of k � 0.5 is not sufficient. The required increasemay be possible only
if the interaction between atoms is essentially different from the situation in ionic
crystals. Indeed it takes place in some metals due to the presence of free electrons:
Friedel oscillations of the pair potentials caused by the screening of the interatomic
interactions by these electrons may essentially reduce cubic anharmonicity near the
equilibrium positions of the atoms.

2. Our MD simulations in Fe and Cu crystals have shown that in 3D lattices DBs
with large vibrational amplitudes and energy may exist even if the criterion (9.13)
is unfulfilled (k̃ is remarkably less than unity) and DBs with small amplitude and
energy cannot exist. As we havementioned above, the factor preventing the existence
of DBs with frequencies above the phonon spectrum is the local expansion of the
main vibrating bonds. In 3D lattices this expansion has finite size, which means
that it is stopped at the very nearest periphery of the DB. The required additional
compressing forces are caused by the interactions with the atoms, positioned outside
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the main vibrating chain, and have superlinear dependence on the expansion. Thus
a possibility can arise to appear well-localized DBs with rather large vibrational
amplitudes. The static changes of the lengths of the interatomic bonds in the actual
central region of such a DB are not proportional to Ā2, the basic assumption of
the criterion (9.13). The contribution of the higher harmonics may also become
significant in such DBs.

In covalent crystals with diamond structure (diamond, Si, Ge) may also exist
DBs with frequency above the phonon spectrum although the cubic anharmonicity
of every bond in these compounds is remarkable (|K3| >

√
K2K4). Every atom in

these structures is connected by strong covalent bonds with four atoms positioned
at the vertexes of a tetrahedron. An essential property of these bonds is their strong
orientation dependence resulting in strong resistance of the tetrahedrons against the
distortion of their shape. Therefore the interactions with the atoms positioned out
of the main vibrating bond direction reduce the local expansion which in its turn
hinders the softening of the main bond. This makes possible the existence of DBs
with frequencies above the phonon spectrum in these structures. Note that the same
structural peculiarity is the cause of the extremely small thermal expansion of these
systems.

9.4 Standing Discrete Breathers Above the Phonon
Spectrum

In our calculations of DBs in metals we use the embedded atommodel (EAM) [5, 6],
which takes the electron density into account. According to this model the potential
energy of a crystal can be presented in the form

E = 1

2

∑
nn′

V (rnn′) +
∑

n

F(ρn) (9.14)

Here V (rnn′) is a pair potential as a function of the distance rnn′ between atoms n
and n′, the volume dependent functions F represent the “embedding energies” via
the “host density” functions ρn = ∑

n 	=n′ ρ(rnn′) induced at site n by all other atoms
in the system. The “host density” is assumed to be composed of contributions of
single host atoms (“atomic density” functions ρ(rnn′)). The division of E into two
terms can be done in such a way that the contribution of the second term will be
small for configurations close to the equilibrium. Such division is appropriate for
consideration of anharmonic forces in DBs: due to the short-range origin of these
forces, their corrections induced by the second term in (9.14) are small. In contrast,
the harmonic forces, as a rule more remarkably affected by extended interactions,
may be influenced by the embedding energy more significantly. According to (9.14)
one can reasonably calculate the force constants K̃2, K3 and K4 and use criterion
(9.13) to estimate the possibility of the first type DBs in the system.
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An example showing the feasibility of the criterion (9.10) and (9.13) is metallic
nickel. The EAM potential of this metal is well known with rather high accuracy.
The values of the anharmonic springs are K2 = 2.32eV/Å2, K3 = −11eV/Å3

and K4 = 73eV/Å4 [10]. This gives k = 1.05. This is much larger than one gets
for common pair potentials in ionic crystals. The reason for that is small value of
odd anharmonicity parameter K3 which is a consequence of presence of conducting
electrons in Ni. The longitudinal sound velocity in Ni at room temperature equals
v = 5266m/s. This gives K̃2 = 2.75eV/Å2 and k̃ = 1.24.Hence, inNi the condition
k̃ > 1 is fulfilled. Taking into account that the approximation of the EAM potential
by forth power polynomial works reasonably well for vibrations with amplitudes
<0.25Å one can expect that low energy DB can exist in this metal. MD simulations
confirm this conclusion [10].

In many other metals the criterion (9.13) is not fulfilled. However, as it has been
mentioned above our MD simulations show that at least in some of such metals
DBs may still exist; their properties well fit to the second type DBs described in
the previous section. Good examples of such DBs have been found in copper (Cu,
fcc lattice). In this metal, the forth degree polynomial approximation of the first
term of EAM potential proposed in [19, 30] gives for the force constants the values:
K2 = 2.1eV/Å2, K3 = −5.8eV/Å3, K4 = 6.9eV/Å4. The corrected mean elastic
force constant equals to K̃2 = 2.32 and the corresponding parameters k = 0.3 and
k̃ = 0.32 are much less than unity. Nevertheless, according to our simulations even
DBs with the energy between 4.05 and 6eV can exist in 3D Cu lattice. Examples
of such DBs are given on Figs. 9.1 and 9.2. The data about the aforementioned DBs
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Fig. 9.1 DB in Cu: time dependence of the vibration of the central atom (n = 0) and the third side
atom (n = 3) along (110) axis with the frequency 8THz
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Fig. 9.2 Spectra of vibrations of Cu atoms in metallic Cu for two DBs with different frequencies
and amplitudes in (1,1,0) direction. The vibrational amplitudes of central atoms of DBs indicated
by arrows

Table 9.1 Even DBs in Cu

E (eV) v (THz) A0 A1 A2 A3 A4 A5

ξ0 ξ1 ξ2 ξ3 ξ4 ξ5

4.05 8.0 0.271 −0.229 0.161 −0.093 0.045 −0.019

0.032 0.078 0.087 0.066 0.040 0.022

6.0 8.4 0.373 −0.314 0.218 −0.120 0.049 −0.016

0.061 0.154 0.175 0.135 0.080 0.043

Energy, frequency and shape (vibrational amplitudes and static shifts of atoms in (110) central chain
of DB, both in Å)

are collected in Table9.1. Here the DB energies, frequencies, vibrational amplitudes
(with initial phases) and the corresponding static shifts of a central atom and its
five neighbors in the main atomic chain of DBs positioned along (110) axis (atoms
(n,n,0), n=0,1,2,3,4,5) are presented. The displacements un in the central chain of
even DBs satisfy the symmetry conditions u−n−1 = −un . The atoms are vibrating
in (110) direction. Note that in the case of the DB with the energy E = 4.05eV,
the frequency vl = 8THz exceeds the top phonon frequency vM = 7.9THz very
slightly.

From these data one can clearly see the existence of the compression effect in
the main atomic chain. Such compression reduces the expansion of the chain and
compensates the effect of the elongation of the central interatomic bonds caused by
the odd anharmonicity of the atomic forces. As it has been mentioned in the previous
section, the result is the higher local stiffness of the lattice and the possibility to appear
DBswith frequencies above the phonon spectrum. Consequently the properties of the
DB in Cu indeed agree with the described above properties of the second type DBs.
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Fig. 9.3 DB in Fe: time dependence of the vibration of the central atom (n = 0) and the third side
atom (n = 3) along (111) axis with the frequency 10THz

Another example of the second type DB appears in the bcc lattice of iron. In EAM
proposed for the bcc iron [4, 19], the pair potential V (r) near the equilibrium may
be approximated by a polynomial of the forth degree determined via the harmonic
and anharmonic force constants K2 = 2.81eV/Å2, K3 = −12.0eV/Å3, K4 =
45.2eV/Å4. The corrected effective harmonic force constant in this metal equals to
K̃2 = 3.33eV/Å2. The corresponding parameters k = 0.66 and k̃ = 0.78 are less
than unity although much closer to this value than in Cu. By analogy the existence
of DBs above the phonon spectrum may be also expected in this metal although with
moremodest energies than inCu.Our numerical simulations confirm this expectation
as even DBs with energy between 0.5 and 3.5eV were indeed generated in our
computations (see Fig. 9.3). The frequencies of the small energy DBs are close to
the maximum phonon frequency (see Fig. 9.4 and Table9.2).

To verify the 3D origin of the DBs in Cu and Fe we performed also simulations of
nonlinear dynamics in 1D Cu and Fe lattices with the same pair atomic interactions
as in the 3D case. Indeed the calculations prove that in these 1D lattices DBs with
neither small nor large amplitudes can be generated.

9.4.1 Standing DBs in Ge and Diamond

DBs with the frequencies located above the phonon spectrummay also exist in semi-
conductors with diamond structure. Such DBs appeared in the numerical simulations
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Fig. 9.4 Spectra of vibrations of Fe atoms in metallic Fe for two DBs with different frequencies
and amplitudes in (1,1,1) direction. The vibrational amplitudes of central atoms of DBs indicated
by arrows

Table 9.2 Even DBs in Fe

E (eV) v (THz) A0 A1 A2 A3 A4 A5

ξ0 ξ1 ξ2 ξ3 ξ4 ξ5

0.5 9.3 0.099 −0.075 0.045 −0.022 0.010 −0.004

0.011 0.025 0.024 0.016 0.009 0.005

3.5 12.4 0.249 −0.202 0.125 −0.056 0.016 −0.003

0.070 0.179 0.208 0.165 0.103 0.059

Energy, frequency and shape (vibrational amplitudes and static shifts of atoms in (111) central chain
of DB, both in Å)

of Voulgarakis et al. [41] in Si whereby the atomic potential, proposed by Tersoff
[39, 40], was applied. We have performed similar calculations for Ge which results
are presented in Fig. 9.5. The lattice structure of these crystals is presented by two
fcc lattices, shifted with respect to each other by the vector a0(1/4, 1/4, 1/4) (a0
is fcc lattice constant) whereby the nearest neighbors of every atom are positioned
in the vertexes of a tetrahedron and no atomic chain formed by nearest neighbor
atoms can exist. In these systems the atomic forces are essentially determined by the
covalent chemical bonds characterized by strong dependence on direction and fast
switching-off with atomic distances. Due to the contribution of many-body forces,
the interactions with the next to nearest and even next to next to nearest atoms may
be significant. In these crystals the simple condition (9.10) is always violated. As
the basic assumptions of this condition (a quasi-chain character of the DB and the
atomic interaction described by a simple pair potential determined via some force
constants) are not justified here, it can be supposed that the resistance of vibrat-
ing bonds against their expansion can exceed the softening of the bonds caused by
the odd anharmonicity of the bonds. Indeed, in our molecular dynamic simulations,
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Fig. 9.5 DB in Ge: time dependence of vibrations of central atom (solid line) and the first non-
central neighbors: a along (111) axis (dashed line), b perpendicular to (111) axis (dotted line) with
the frequency 10.07THz

a well-located DB with the central bond between two nearest neighbor atoms along
a (111) axis, arises in a Ge crystal. The frequency of DB ≈ 10.07THz exceeds sig-
nificantly the upper limit of the phonon spectrum ∼9.2THz. Thereby the interval
of the large vibrational amplitudes of the central bond (∼0.42 Å), inducing DBs, is
very limited even in comparison with the situation in Si [41] and the band of the DB
frequencies is extremely narrow producing a large gap (∼0.8THz) with the phonon
spectrum. The main reason of such DB is the strong stiffening of the central bond in
its extreme, most elongated position due to the fast switching-off of the interatomic
forces. The simulations have been carried out in a cluster in the form of a hexagonal
prism elongated along (111) axis and containing 93,500 atoms.

As in the simulations of [41], our attempts to simulate DB in diamond using the
Tersoff potential, failed. Even the positive results in Ge are connected with large
amplitudes of DBs, i.e. with interatomic distances where the aforementioned po-
tential may not describe the interatomic forces adequately. Therefore we repeated
the MD simulation in diamond using a more advanced LCBOP potential proposed
recently in [26], which takes into account the bond orientation and the switching-off
effects more accurately. Using this potential we have found rather good DBs. The
MD simulations of DBs were performed in a rather big cluster 30×30×30 (216,000
carbon atoms). The total phonon density of states (DOS) was calculated for 100K
as a result of 6,500,000 MD steps (time step = 0.002 psec) using periodical bound-
ary conditions. To excite DB in diamond lattice the two nearest carbon atoms were
shifted in the opposite phase along (111) direction. The DBs with frequencies above
the phonon spectrum were generated at relatively small shifts already (see Fig. 9.6).



9 Standing and Moving Discrete Breathers with Frequencies … 241

Fig. 9.6 Spectra of vibrations of carbon atoms in diamond with LCBOP interatomic potential for
three DBs with different frequencies and amplitudes in (1,1,1) direction. The vibrational amplitudes
of central atoms of DBs indicated by arrows

9.5 Moving Discrete Breathers with Frequencies
Above the Phonon Spectrum

Up to now, immobile DBs have been discussed in this chapter. However, at least in
fcc and in bcc lattices, the upward splitted DBs can move along the chains of nearest
neighbor atoms. It has been demonstrated via our MD simulations in Cu and Fe (see
Figs. 9.7 and 9.8). In these simulations clusters with 60× 60× 41 copper atom cells
and 60× 60× 60 iron atom cells were used; for an extended motion in iron, cluster
12× 12× 12, prolonged in the (111) direction to have 200 atoms in the (111) chain,
was used. To generate a moving DB we fix the initial atomic positions according to
a standing DB and assign small initial velocities to two central atoms in the main
atomic chain. The velocities of the generated mobile DBmay be different but remain
always small in comparison with the sound velocity. We have found that moving
(along (110) axis) DBs appear in Ni also (see Fig. 9.9). Here the MD simulations
have been performed in a rectangular parallelepiped orientated and elongated along
a (110) axis and containing 40,856 atoms. In this cluster the DB moves along the
chain of 70 atoms; the center of the DB initially was at the position of the 20th atom
of the chain.
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Fig. 9.7 Moving DB in Cu: time dependence of the vibrations of the atoms number 40, 45 and
50 in the (110) lattice chain (initially DB was localized close to the atom number 0 (n=0) in the
centre of the chain)

Fig. 9.8 Moving DB in Fe: time dependence of the vibrations of the atoms number 70, 80 and 90 in
the (111) lattice chain (initially DB was localized close to the atom number 0 (n = 0) in the centre
of the chain)



9 Standing and Moving Discrete Breathers with Frequencies … 243

Fig. 9.9 Moving DB in Ni: the time dependence of the vibrations of the atoms number 6 and 23 in
the (110) lattice chain (initially DB was localized close to atom number 0 (n=0)—20th atom of
the chain)

9.6 Concluding Remarks

It was shown that in metals may exist discrete breathers with frequencies above the
top of the phonon spectrum. Two types of these excitation are recognized: (1) DBs
appearing already at small energy, and (2) DBs existing only with large energy.

The first type ofDBswas found inmetallicNi andNb [10]. The reason of existence
of these excitations is the screening of the interaction between atoms by free electrons
resulting in strong reduction of cubic anharmonicity near the equilibrium position of
atoms. The second type of DBs was found in iron (Fe) [14] and copper (Cu). In these
metals the superlinear reaction of the surrounding atoms on the local expansion
of the lattice caused by the DB of large amplitude is sufficiently strong allowing
to essentially reduce this expansion and the effect of odd anharmonicities of the
interatomic potentials.

In semiconductors Ge and Si and in diamond DBs with the frequencies above the
phonon spectrum also may exist. The atomic forces in these crystals are essentially
determined by the covalent chemical bonds resulting in strong orientation depen-
dence and in fast switching-off of them at atomic distance. Besides, the orientational
dependence of the covalent bonds results in strong resistance of these systems with
respect to main structural elements, p-tetrahedrons. Therefore the local expansion
and softening caused by a DB in these crystals are essentially reduced already for
DBs with small amplitudes.

We also have found that DBs in metals Fe [14], Cu and Ni can move along the
crystallographic directions corresponding to the chains of the nearest neighboring
atoms. Especially impressive are moving DBs in Cu: they can transfer more than
5eV energy on large distances. The actual distance of propagation can be estimated
as follows. According to [13, 15] the DBs can decay due to emission of pairs of
phonons. At low temperatures the rate of emission should be three-four orders of
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magnitude less than the frequency of the DB [15]. Taking into account that energy
of DB in Cu may many hundred times exceed the energy of a phonon one can expect
that the life time of the decay may exceed 10−8 s and the distance of propagation
may exceed 1µ. This means that DBs can efficiently transfer large (as compared to
typical phonon) energy on large distance.

Acknowledgments The research was supported by Estonian research projects SF0180013s07,
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Chapter 10
Phonon Interference and Energy Transport
in Nonlinear Lattices with Resonance Defects

Yuriy A. Kosevich, Haoxue Han, Lyudmila G. Potyomina,
Alexandre N. Darinskii and Sebastian Volz

Abstract We introduce and model a three-dimensional atomic-scale phononic
metamaterial producing two-path interference phonon antiresonances to control the
heat flux spectrum. We show that a crystal plane partially filled with defect-atom
arrays causes a total phonon reflection at the frequencies determined by masses and
interaction forces. Such patterned atomic planes can be considered as high-finesse
atomic-scale interference phonon metamirrors. We emphasize the predominant role
of the second phonon path and destructive interference in the origin of the total reflec-
tion in comparison with the Fano-resonance concept. The random defect distribution
in the plane and the anharmonicity of interatomic bonds do not deteriorate the inter-
ference antiresonances. The width of the interference antiresonance dip can provide
a measure of the coherence length of the phonon wave packet. All our conclusions
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are confirmed both by analytical studies of the equivalent quasi-one-dimensional
lattice models and by numerical molecular dynamics simulations of realistic lattices
in three dimensions.

10.1 Introduction

Weprovide a new approach to demonstrate that heat in solids can bemanipulated like
light. While heat convection by fluids and heat radiation by light can be reasonably
controlled, the conduction of heat through solids is less straightforward and has been
an important challenge both in physics and engineering. Heat at room temperature is
carried by lattice vibrations of ultra-high frequencies (1012 Hz), which are also called
phonons, the quasi-particles that are analogous to the photons that carry light. In this
work, we precisely control the heat flow by the atomic-scale phononic metamater-
ial, which contains deliberate flaws in the crystalline atomic lattice, channeling the
heat through different phonon paths. Destructive interference between heat waves
following different paths leads to the total reflection of the heat current and thus
to the remarkable reduction in the material ability to conduct heat. By exploiting
this destructive phonon interference, we model a very counter-intuitive possibility
of thermal transport: more heat flow is blocked by the opening of the additional
phonon channels. We provide an important further insight into the coherent control
of phonons which can be applied both to sound and heat propagation.

Destructive interference between waves propagating across laterally inhomoge-
neous interface layer can result in their total reflection. For instance, the strong
resonance electromagnetic reflection found in metafilms partially filled with asym-
metrical split-ring arrays [11], in flexible metasurfaces [45] and in stereometamateri-
als [31] has offered the prospect of a multitude of applications as quantum optics [1]
and negative refraction [13]. As another example of destructive interference in optics,
two-photon interference can result in a total cancellation of the photon output because
of the coalescence of the two single photons, which was first observed by Hong et
al. [18]. This interference effect occurs because two possible photon paths inter-
fere destructively, which produces the famous Hong-Ou-Mandel (HOM) dip in the
detection probability of the output photons. The HOM dip has since been demon-
strated both in optical [3, 40] and microwave [46] regimes. Recently the two-photon
destructive interference was demonstrated in a three-dimensional (3D) optical meta-
material [29].

Similar destructive interference effect which results in the total reflection can be
also realized in a phonon system. For sound waves, the enhanced phonon reflection
was first described in [22] and [12] independently. Reference [22] interpreted the
anomalous reflection of a long acoustic wave by a two-dimensional (2D) crystal
defect as the destructive interference between two phonon paths: through the nearest-
neighbor bonds and through the non-nearest-neighbor bonds which couple directly
atomic layers adjacent to the defect plane. Reference [12] drew an analogy between
electron scattering and phonon scattering and calculated numerically the phonon
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transmissionwith an asymmetric profile through a strip of oscillator chains connected
in parallel.

Constant endeavor has been devoted to the precise control of heat conduction.
Recent efforts have been concentrated on reducing the thermal conductivity κ via
nanostructured materials with superlattices [5, 7, 21] and with embedded nanoparti-
cles [6, 34, 37].Mostworks have attributed the reduction in κ to the increased phonon
scattering rate and the decreased phonon mean free path (MFP), which corresponds
to the particle description of thermal transport in a lattice. However, the role of the
destructive phonon interference is not well understood in the tailoring of thermal
transport in the wave picture. Thermal conductivity is a physical phenomenon that
requires phonon anharmonicity as a key ingredient. In a perfect insulating crystal, har-
monic phonons would never be scattered and such a crystal would have anomalous,
diverging with the crystal size, thermal conductivity at all temperatures. Scattering of
phonons by lattice imperfections, e.g., by isotopic impurities, in a one-dimensional
(1D) crystal also does not result in the normal, converging with the crystal length,
thermal conductivity [4, 39]. Only anharmonic phonon-phonon interactions and scat-
tering can result in the normal heat transport in low-dimensional crystals, and there
is a great variety of nonlinear interatomic potentials which lead either to the normal
or anomalous heat transport in one-dimensional chains [41]. Here we implement
large-scale molecular dynamics (MD) simulations of phonon wave packet propaga-
tion in 3D lattices that incorporate realistic lattice potentials, which properly account
for the nonlinearities in the interatomic interactions. Our MD simulations of anom-
alous phonon reflection (interference antiresonances) of short-wavelength phonons
from internal crystal plane with embedded defects in a 3D lattice confirm previous
analytical results for anomalous reflection of long-wavelength phonons in a 3D crys-
tal with planar distribution of resonance defects (with 2D planar resonance defect)
[22, 26] and of finite-wavelength phonons in 1D atomic chain with resonance defects
[23, 24]. In addition to the results on anomalous phonon scattering in harmonic lat-
tices with resonance defects, we also show that the two-path interference antires-
onances remain pronounced even when the interaction nonlinearity becomes fairly
strong in a real 3D lattice. Therefore the two-path phonon interference in the pro-
posed phononic metamaterial makes it possible to control thermal energy transport
even in the case of large-amplitude lattice vibrations, for instance at room and higher
temperature.

10.2 Model Structures and Simulation Methodology

Here we introduce and model a realistic 3D atomic-scale phononic metamaterial
which can be used for the storage and lasing of coherent terahertz phonons and for
manipulating the flow of thermal energy [15, 16]. Phonon reflection is generated by
exploiting the two-path phonon interference on internal crystal planes with embed-
ded defects. The 2D planar defects force phonons to propagate through the two paths:
through unperturbed (matrix) and perturbed (defect) interatomic bonds [22–24]. The
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resulting phonon interference gives antiresonances (zero-transmission resonances) in
the phonon transmission spectra that can be controlled by the masses, force constants
and 2D concentration of the defect atoms. Such patterned atomic planes can be con-
sidered as high-finesse atomic-scale interference phonon metamirrors. Our results
show that the patterning of the defect-atom arrays with the formation of phonon
metamirrors can lead to a new departure in thermal energy management [33], offer-
ing potential applications in thermal filters [48], thermal diodes [30] and thermal
cloaking [17, 36, 47].

10.2.1 Model Structure

Atomic distribution in the 3D phononic metamaterial with a face-centered cubic
(FCC) lattice with a 2D array of heavy defect atoms is depicted in Fig. 10.1a. Each
interference phonon metamirror consists of an atomic-scale metafilm: an internal
(001) crystal plane in a cubic silicon (Si) lattice partially filled with germanium
(Ge) impurity atoms, as shown in Fig. 10.1a. The defect atoms can be distributed
periodically or randomly in the defect crystal plane with different filling fractions
fd . When the defects do not fill completely the defect plane, phonons have two
paths to cross such an atom array as shown in Fig. 10.1a, whereas the phonon path
through the host atoms is blocked when the defect layer is constituted by a uniform
impurity-atom array, 100% packed with the impurity atoms. Two types of atomic-
scale metamaterials were studied using realistic interatomic potentials: a FCC lattice
of argon (Ar), in which the defects are heavy Ar isotopes, and a diamond lattice of
silicon with germanium atoms as the heavy-mass and atomic-bonds defects.

10.2.2 Methodology

The interactions betweenAr atoms are described by theLennard-Jones potential [19].
The covalent Si:Si/Ge:Ge/Si:Ge interactions are modeled by the Stillinger-Weber
potential [44]. To probe the phonon transmission, MD with the phonon wave packet
method [43] was used to provide the per-phonon-mode energy transmission coef-
ficient α(ω, l). We excited a realistic 3D Gaussian wave packet centered at the
frequency ω and wave vector k in the reciprocal space and at r0 in the real space,
with the spatial width (coherence length) l in the direction of k. The wave packet
generation was performed by assigning the displacement ui for the atom i as:

ui = Aei (k) exp (i [k · (ri − r0) − ωt]) exp

(
−

[
ri − r0 − vgt

]2
4l2

)
, (10.1)
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(a)

(b) (c) (d)

Fig. 10.1 (color online). a Interference Phonon Metamirror: 3D face-centered cubic lattice con-
taining an internal (001) crystal plane in which an impurity-atom array is embedded. The brown
atoms are the defect atoms and the green ones are the atoms of the host lattice. The red and blue
curves refer to the phonon paths through the impurity atom bonds and through the host atom bonds,
respectively. The presence of the two possible phonon paths can result in the two-path destructive-
interference transmission antiresonance. b Periodic distribution of defect atoms with filling fraction
fd = 50%. Randomly distributed defect atoms with c fd = 37.5% and d fd = 25%

where A is the wave packet amplitude, ei (k) is the phonon polarization vector, ω

is the eigenfrequency for the wave vector k within a single branch of the phonon
dispersion curve, vg is the phonon group velocity along the wave vector k at the wave
packet center frequency ω. Wave amplitude A of the generated phonon wave packets
was taken sufficiently small such that the anharmonic coupling to other lattice modes
is kept weak. Hence the wave packets propagate in an effectively harmonic crystal
without any perceptible spreading or scattering. Thewave packetwas set to propagate
normally to the defect layer, where an elastic scattering results in transmitted and
reflected waves. The wave packet energy transmission coefficient α(ω, l) is defined
as the ratio between the energy carried by the transmitted and initial wave packets,
centered at the given phonon mode (ω, k) with the spatial extent l. The plane-wave
limit is reproduced by the wave packets with the spatial width l much larger than the
wavelength λc of the wave packet central frequency. All the MD simulations were
performed with the LAMMPS code package [27, 38].
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10.3 Results and Discussions

In this sectionwe consider separately the interference resonance profile in the phonon
transmission coefficient, the isotopic shift of the resonance reflection versus the defect
masses, and the phonon screening effect in the thermal conductance. Then we report
the two-path phonon interference in a silicon crystal with germanium impurities.
We show that the random distribution of the defects in the crystal plane and the
nonlinearity of the potential do not deteriorate the interference resonances. Finally
we show that the width of the interference antiresonance dip can provide a measure
for the coherence length of the phonon wave packet.

10.3.1 Interference Resonance Profile

The transmission coefficient α(ω) of the wave packet with l = 20λc, retrieved
from MD simulations of an Ar metamaterial, is presented in Fig. 10.2. The inci-
dent phonons undergo a total reflection from the defect layer at the antiresonance
frequency ωR . Phonon transmission spectra displays an interference antiresonance
profile since the two phonon paths interfere destructively at ωR . A total transmission
at ωT follows the interference antiresonance, which is reminiscent of the Fano res-
onances [10]. For a uniform heavy-defect-atom array, the zero-transmission antires-
onance profile will be totally suppressed and replaced by a monotonous decay of
the transmission with frequency. In the latter case, only the phonon path through the
defect atoms is accessible.

We emphasize that the second phonon path is indispensable to the emergence of
the zero-transmission dip, which cannot be sufficiently described by the Fano res-
onance. We clarify this by studying the phonon transmission across two successive
internal crystal planes completely filled with resonance heavy impurity atoms, when
a local resonant transmission maximum is observed instead of a zero-transmission
dip, see Fig. 4a in [23] and Fig. 2 in [16]. This transmission maximum satisfies well
the Fano-resonance condition [10] of a discrete state resonating with its contin-
uum background, but no zero-transmission dip occurs because of the absence of the
second phonon path [22, 26]. This transmission maximum can be considered as a
phonon analogue of the Fabry-Pérot resonance in optics, which requires only a single
phonon (or photon) path. Therefore this observation clearly corroborates the two-path
destructive phonon interference nature of the zero-transmission dip (antiresonance)
in the phonon transmission coefficient α(ω).

To understand further the phonon antiresonances caused by the interference
between two phonon channels, we use an equivalent model of monatomic quasi-
1D lattice of coupled harmonic oscillators [23], depicted in the inset in Fig. 10.2. In
model (a), phonons propagate through the two paths: through the host atom bonds,
and through those of the impurity atoms, whereas in model (b) only the second chan-
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Fig. 10.2 (color online). Spectra of the energy transmission coefficient α(ω, l) predicted by equiv-
alent quasi-1D model (solid and dashed lines) and by MD simulations (symbols) for a 3D Ar
metamaterial with defect crystal plane containing heavy isotope impurities, with mass m = 3m0.
Dashed-dotted line is the convolution (10.3) of the plane-wave transmission coefficient α(ω) from
(10.2) with a Gaussian wave packet in frequency domain with l = 2λc. Red and blue symbols
present transmission of the wave packet with l = 20λc through the two paths and through one
path in the Ar metamaterial with planar defect, respectively; green symbols present transmission of
the wave packet with l = 2λc through the two paths. Inset: Two possible quasi-1D lattice models
describing phonon propagation through the lattice region containing the local defect: a phonons
can propagate through the defect and host atoms bonds; b phonons can propagate only through the
defect atom bonds. Black sticks between the atoms present atom bonds. In the case of Ar lattice,
the coefficients in (10.2) are ωR = 1.0, ωT = 1.4, ωmax = 2.0 and C = 0.25. The quasi-1D model
(a) is equivalent to a 2D crystal plane partially filled with periodically alternating isotopes with
different masses, with fd = 50%, in a 3D Ar lattice. The 1Dmodel (b) is equivalent to a 2D crystal
plane completely filled with heavy isotopes, with fd = 100%, in a 3D Ar lattice

nel remains open. The model (a) gives the energy transmission coefficient for the
plane wave:

α(ω) = (ω2 − ω2
R)2(ω2

max − ω2)

(ω2 − ω2
R)2(ω2

max − ω2) + Cω2(ω2 − ω2
T )2

, (10.2)

where ωR,T are the frequencies of the reflection and transmission resonances, ωmax

is the maximal phonon frequency for a given polarization, ωR < ωT < ωmax . C is a
real positive coefficient given by the atomic masses, force constants and fd , C = 0
for fd = 0. The ωR frequency exists only in the presence of the additional channel,
which is open for wave propagation through the bypath around the defect atom, see
inset (a) in Fig. 10.2. As follows from (10.2) and Fig. 10.2, α(ωR) = α(ωmax ) = 0
and α(0) = α(ωT ) = 1.

The energy transmission coefficient α(ω, l) of the wave packet with the given
central frequency ω and spatial width l is determined by the convolution of the
transmission coefficient for the plane wave α(ω) = α(ω,∞), given by (10.2), with
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a Gaussian wave packet in frequency domain with the width Δω = vg/(2l):

α(ω, l) =
ωmax∫

−ωmax

α(ω′) exp
(

− (ω − ω′)2

2Δω2

)
dω′

Δω
√
2π

. (10.3)

It is noteworthy that the Gaussian phonon wave packets minimize the product of
the frequency,Δω, and time,Δt = l/vg , uncertainties:Δω ·Δt = 1/2, as well as the
product of the wave number component, Δkx = Δω/vg = 1/(2l), and coordinate,
Δx = l, uncertainties: Δkx · Δx = 1/2, see also Sect. 10.3.7. This property of
the Gaussian phonon wave packets is similar to the property of the Gaussian wave
packets of coherent states in quantum mechanics, which minimize the product of the
momentum component, Δpx , and coordinate uncertainties: Δpx · Δx = �/2 [28],
see also [25] for a similar property of the Gaussian wave packets of magnon coherent
states in spin chains.

In the transmission of a narrow wave packet with l = 2λc, the interference effect
is weakened by a large number of frequency components, when the plane-wave
approximation (l � λc) is broken and the transmission at ωR is not zero any more,
i.e. α(ωR, l) > 0, which is the case also in [18]. As one can see in Fig. 10.2, an excel-
lent agreement in transmission coefficients is demonstrated between the equivalent
quasi-1D model provided by (10.2) and (10.3) and the MD simulations of the 3D
atomic-scale phononic metamaterial with the use of realistic interatomic potentials.

10.3.2 Isotopic Shift of Resonances

In a lattice with atomic impurities, the substituent atoms scatter phonons due to the
difference in mass and/or bond stiffness. Since no bond defect was introduced, the
loci of the resonances are determined only by the mass ratio (MR) of the isotope
defects and host atoms. As the isotope defects become heavier, the two-path phonon
interference antiresonance becomes more pronounced in terms of the depth and
width of the phonon-transmission dip and demonstrates a red-shift of the dip, thus
impeding the long-wavelength phonons, as shown in Fig. 10.3a, c for longitudinal
and transverse phonons, respectively. The equivalent quasi-1D lattice model gives
the following expression for the frequency of the transmission dip:

ωR = ωmax/
√

m/m0 + 1, (10.4)

where m and m0 refer to the atomic mass of the isotope defect and host atom, with
MR = m/m0 > 1. The transmission resonance at ω = ωT is much less sensitive
to the defect mass since it is largely determined by the mass of the host atom. As
depicted in Fig. 10.3b, d, the spectral positions of the interference resonances ωR
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(a) (b)

(c) (d)

Fig. 10.3 (color online). a and c: Spectra of phonon transmission coefficient α(ω) of longitudinal
(a) and transverse (c) acoustic waves through the phononic metamaterial, which consists of 2D
crystal plane filled with periodically alternating isotopes with different mass ratio (MR) m/m0,
with fd = 50% in a 3D Ar lattice. Dashed lines are the guides to the eye. b and d: Isotopic shift
of the two-path phonon interference antiresonance versus the inverse square root of the mass ratio
for longitudinal (b) and transverse (d) acoustic waves. Symbols present the resonances predicted
by MD simulations for a 3D lattice, solid line shows the analytical prediction of the equivalent
quasi-1D lattice model given by (10.4)

are again in an excellent agreement with the analytical prediction of the equivalent
quasi-1D lattice model given by (10.4) for both longitudinal and transverse phonons.

10.3.3 Phonon Screening Effect

In Fig. 10.2, the transmission spectra for longitudinal phonons across the uniform
defect-atom array is plotted to be compared with that of the 50%-filled defect-atom
array. At the frequency of the two-path interference antiresonance ωR , an array of
50% defect atoms has a transmittance two orders of magnitude smaller than that
of a uniform defect-atom array. The difference between the very strong phonon
reflection by a 50%-filled defect array and the high phonon transmission across a
uniform defect array can result in a counter-intuitive effect: an array of randomly
alternating host and impurity atoms can scatter more phonons than an array with a
uniform distribution of heavy isotopes. This anomalous phonon reflection phenom-
enon inmolecular systems can find its acoustic counterpart in macroscopic structures
[9, 23, 32]. In [9], perforated plateswere proved to shield ultrasonic acousticwaves in
water muchmore effectively than uniform plates. Liu et al. [32] managed to break the
mass-density law for sonic transmission by embedding high-density spheres coated
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with a soft material in a single layer of a stiff matrix. We calculate the interfacial
thermal conductance G by following the Landauer-like formalism [20]:

G =
∫ ∑

ν

�ω(k, ν)vg,z(k, ν)α
∂

∂T
nBE(ω, T )

dk
(2π)3

, (10.5)

where � is the reduced Planck constant, vg,z the phonon group velocity in the cross-
plane direction, nBE(ω, T ) is the Bose-Einstein distribution of phonons at temper-
ature T , nBE(ω, T ) = [exp(�ω/kB T ) − 1]−1, kB is the Boltzmann constant. The
integral is carried out over theBrillouin zone and the sum is over the phonon branches.
By embedding defect atoms in a crystal plane monolayer, we manage to reduce the
thermal conductance by 30% with respect to the case of pristine lattice, with no
defects, as shown in Fig. 10.4a. This destructive-interference-induced effect can be
used for the explanation of the remarkable decrease of κ of SiGe alloywith very small
amount of Ge atoms, with respect to the pristine Si lattice [14]. G is further reduced
by considering the (second) non-nearest-neighbor (NNN) bondsC2 between the host
atoms on the two sides of the uniform defect layer in addition to the nearest-neighbor
(NN) bond C1 linking the host and adjacent defect atoms, see also [22, 23]. This
reduction comes from the suppression of phonon transmission at high frequencies,
shown in Fig. 10.4b, which is due to the opening of the second phonon path through
the host atom bonds, destructively interfering with the first path through the defects.
The occurrence of the second phonon path substantially reduces G by 16% even
if it is weak: C2 = 0.08C1. This provides another evidence of the control of heat
transport by the two-path destructive phonon interference: more heat flux is blocked
despite the opening of the additional phonon paths, even in the absence of phonon
resonances.

10.3.4 Two-Path Phonon Interference in Si
Crystal with Ge Impurities

Figure 10.5 illustrates the two-path interference phonon antiresonances in the meta-
material fabricated as follows: 2D planar distribution of Ge atoms is embedded in
a Si crystal. Ge and Si atoms have mass ratio of 2.57 and thus the Ge-atom array
introduces both the heavy-mass and atomic-bond defects due to a weaker Si:Ge
coupling than the Si:Si interaction [44]. Phonons from transverse and longitudinal
acoustic branches experience strong resonant reflections at the defect crystal plane,
50%-filled with Ge atoms, while the short-wavelength phonons near the edge of the
Brillouin zone are strongly reflected by the defect crystal plane, completely filled
with Ge atoms.
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(a) (b)

Fig. 10.4 (color online). a Temperature dependence of interfacial thermal conductance across a
crystal plane, 50%-filled with periodic array of heavy isotope defects (rectangles), and across
a uniform defect crystal plane with (pentagons) and without (circles) the second phonon path
induced by the non-nearest-neighbor (NNN) bonds in addition to the nearest-neighbor (NN) bonds,
in comparison with that across an atomic crystal plane without defects (hexagons). b Transmission
coefficient α(ω) through a uniform defect crystal plane with (pentagons) and without (circles) the
second phonon path induced by the NNN bonds

Fig. 10.5 (color online). Two-path interference phonon antiresonances for transverse and longitu-
dinal phonons on a partially-Ge-filled defect crystal plane (green circles and yellow squares) plotted
along with the non-resonant transmission through a completely-Ge-filled defect crystal plane (open
squares and circles) in a Si crystal as phononic metamaterial

10.3.5 Random Distribution of Atoms

In contrast to light [8, 35], even a single defect atom in a crystal plane produces
interference reflection antiresonances for Gaussian beamswith finite beam diameters
of (longitudinal or transverse) phonons because of the presence of the two phonon
paths. Therefore, phonon reflection antiresonances should exist even in the absence
of the periodicity in the defect-atom distribution in the crystal plane because of
the localized nature of the resonances. This argument is supported by further study
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Fig. 10.6 (color online). Transmission coefficient α(ω) for longitudinal phonons across the planar
defect in a Si crystal, which contains randomly (r.) distributed embedded Ge atoms with fd = 37.5
and 25%, compared with α(ω) across the planar defect, which contains periodically (p.) distributed
embedded Ge atoms with fd = 50%. The computed α(ω) was averaged over different random
distributions

of phonon transmission through the arrays of Ge atoms in a crystal plane in Si-
crystal-based phononic metamaterial, distributed with different filling fractions fd

and randomness. Strong transmission dip, similar to that produced by periodic Ge
atoms arrays, remains pronounced in both cases, as shown in Fig. 10.6. This was
shownexperimentally to be equally valid inmacroscopic acousticmetamaterials [32].

Chen et al. reduced the thermal conductivity κ below the alloy limit by the partial
intermixing (segregation) of Ge atoms in Si superlattices [6]. Their ab initio cal-
culations showed that phonon mean free path was substantially reduced in the low
frequencies [6]. We note that the clusters of Ge atoms can be considered as randomly
dispersed heavy-mass oscillators, which scatter low-frequency phonons at the inter-
ference antiresonances whose frequencies are given by the isotopic-shift law (10.4).
With the destructive interference, we can also relate the extremely low κ found in
the In0.53Ga0.47As alloy, randomly filled with heavy ErAs nanoparticles [21].

10.3.6 Nonlinear Effects

The nonlinear effects in the two-path interference phonon antiresonances were stud-
ied by increasing the amplitude A of the incident phonon wave packet, as shown in
Fig. 10.7 for the phonon transmission coefficient through the partially-Ge-filled, with
fd = 50%, internal crystal plane in Si lattice. As A increases, the reflection becomes
less pronounced withmore heat flux passing through, which provides direct evidence
of inelastic phonon scattering at the defect plane. The antiresonances demonstrate
the red shifts in frequency due to the anharmonic (cubic first of all) terms in the
interatomic potential. We also note in this connection that our computation of a
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(a) (b)

Fig. 10.7 (color online). Evolution of the interference antiresonance in the phonon transmission
coefficient α(ω) through the partially-Ge-filled, with fd = 50%, internal crystal plane in Si lattice
versus the increasing wave amplitude for a transverse and b longitudinal phonons

quasi-1D atomic chain, containing an impurity atom characterized by non-parabolic
(nonlinear) interaction potential with the neighboring host atoms, agrees well with
our MD results for 3D lattice. The interference antiresonances remain pronounced
even when the interaction nonlinearity becomes fairly strong. Therefore the two-path
interference phonon antiresonances in the proposed phononic metamaterial make it
possible to control thermal energy transport even in the case of large-amplitude lattice
vibrations, for instance at room and higher temperature.

10.3.7 Wave Packet Coherence Length Determination

The decrease in 2D defect filling fraction fd narrows the width of the antiresonance
dip because of the weakening of the relative strength of the “defect-bond” phonon
paths through the crystal plane, see Fig. 10.1 and (10.2). In general, the width Δω

of the antiresonance dip for the two-path phonon interference is determined by both
the fd and finite coherence length l of the phonon wave packet. As follows from
Fig. 10.2, for the large fd = 50% Δω is not sensitive to l. In the limit of small fd

and for l � λc,Δω is narrow and proportional to fd , as shown in Figs. 10.6 and 10.8.
In this limit, for the wave packet with a short width l, l ∼ λc, Δω will be determined
mainly by l. From Fig. 10.8, the width Δω of the antiresonance dip for the wave
packet with l = 2λc is Δω/(2π) = 0.19THz. Then from the minimal value of the
product Δω · Δt = 1/2, which is realized for the Gaussian wave packets, we get the
wave packet width in time domain Δt = 0.42ps and the wave packet spatial width
(coherence length) l = vgΔt ≈ 3.1nm, where vg ≈ 7.5km/s is the longitudinal
phonon group velocity in Si at ω = ωR , see [42]. This length coincides with the
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Fig. 10.8 (color online).
Broadening of the
antiresonance dip in the
energy transmission
coefficient α(ω, l) in the
limit of small filling fraction
fd = 5% for the wave
packets with short coherence
lengths (l = λc and l = 2λc,
green and red circles), in
comparison with that for an
almost plane-wave wave
packet (l = 20λc, blue
circles)

wave packet coherence length l ≈ 3.2nm, which was used in the MD simulations
shown in Fig. 10.8. The width Δω of the antiresonance dip for the wave packet with
a shorter coherence length l = λc is larger than that of the wave packet with l = 2λc,
see Fig. 10.8. Therefore the width of the two-path phonon interference antiresonance
dip in the transmission spectrum can provide a measure of the coherence length of
the phonon wave packet.

10.4 Conclusions

In conclusion, we provide a comprehensive modeling of atomic-scale phononic
metamaterial for the control of heat transport by exploiting the two-path interfer-
ence phonon antiresonances. Thermal phonons crossing crystal plane partially filled
with resonance defect atoms can undergo complete reflection caused by destructive
phonon interference. Such patterned atomic planes can be considered as high-finesse
atomic-scale interference phonon metamirrors. Interference phonon antiresonances
are not deteriorated by the aperiodicity in the defect-atom distribution and the anhar-
monicity of interatomic bonds. Thewidth of the antiresonance dip provides ameasure
of the coherence length of the phonon wave packet. And, finally, we would like to
emphasize that strong resonance reflections of electromagnetic waves, which have
been observed in metafilms partially filled with asymmetrical split-ring arrays [11],
in stereometamaterials [31], in flexiblemetasurfaces [45] and inmicrowavemetamir-
rors [2], can also be interpreted as interference photon antiresonances in an optically
transparent plane, partially filled with subwavelength plasmonic or microwave res-
onating structures [16, 23].
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Electrons and Lattice Vibrations



Chapter 11
Electron Transfer and Tunneling
from Donor to Acceptor in Anharmonic
Crystal Lattices

Alexander P. Chetverikov, Leonor Cruzeiro, Werner Ebeling
and Manuel G. Velarde

Abstract We model electron transfer from donor to acceptor with a lattice with
non-uniform electron on-site energies. The electron motion is described in a tight
binding approximation and the lattice site dynamics follows the Morse potential.
We focus on the transition time from donor to acceptor which is first determined
analytically for a rigid lattice and then numerically from computer simulations of
the full system at low temperature. For the parameter ranges explored here a very
good agreement is found between the analytical and the numerical transition times.
Furthermore, this nonlinear model can account both for the order of magnitude and
for the variation with distance of the transition times from donor to acceptor that are
measured experimentally, even in the case of long range transitions, i.e., when the
distances are well beyond 20 Å. While for short distances and weakly bound electrons
the transfer is of the non-tunneling type, for larger distances and/or strongly bound
electrons the transfer is tunneling-like, with the transition time varying exponentially.
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11.1 Introduction

We are interested in the effect of anharmonic lattice dynamics on long range electron
transfer (ET), that is, ET over distances that are typically larger than 20 Å. What we
have in mind are applications to ET in biomolecules like azurin [27, 28] and other
proteins and to ET in natural or synthetic DNA [25, 26].

We also aim to describe electron transport in quasi 1d crystals [3–6, 13, 16–
18, 24, 27–30, 33, 34, 36, 37, 40–43, 45, 49, 50, 53–56, 59–61, 67, 68, 70, 71]
with a particular emphasis to the interference of electron states with anharmonic
excitations in high Tc superconducting materials [23, 44, 48, 52]. While many stud-
ies of ET in biomolecules are based on the Landau-Zener treatment (see e.g. [28]),
we resort to a microscopic formalism, based on the Schrödinger equation. However,
in order to find a fruitful approach to such highly complicated problems we need to
make drastic approximations. In previous publications [8, 9, 21, 22, 31, 32, 62–
66] we investigated some consequences of anharmonic lattice excitations on ET. In
particular, it was shown that electron trapping by solitons and a new form of ET and
electric conduction mediated by solitons, which we designate by solectron can take
place in anharmonic 1d lattices [1, 10–12, 47, 51, 58, 69]. The solectron state is
a modification of the polaron concept since, in this case, a pre-existing nonlinear
lattice distortion (the soliton) captures a free electron, which then travels along the
lattice, carried by the soliton. Thus, the speed of the bound electron state, i.e. the
speed of the solectron, is strongly dependent on the speed of the soliton, which is
determined by the lattice characteristics only. The previous studies showed that soli-
tons, in homogeneous lattices, lead to electron transfer times that are too large when
compared with experimental data. In this chapter, we extend the previous studies
and report results for the inhomogeneous system obtained by including an electron
donor and an electron acceptor explicitly in the lattice. The donor and acceptor are
represented by the different electron on-site energies of the corresponding sites, as
shown in Fig. 11.1.

Thus, contrary to other studies in which the on-site electronic energies were uni-
form along the lattice electronic energies are different at the sites where the electron

Fig. 11.1 Illustration of the donor-acceptor model investigated here. X is a site in a lattice with N
sites and D and A mark the sites of the electron donor and acceptor. The on-site electron energies
are equal for all sites (and set to zero), except for the donor and electron sites, where their values
are εD and εA, respectively
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Fig. 11.2 Transition times, in seconds, (in log10 scale) versus distance (in Å), measured in the
protein azurin. The parameters for the line in this figure are taken from [28]

donor and acceptor are located. Also, the variable we are mostly interested in is
the transition time from donor to acceptor (or, inversely, the electron transfer rate)
and our ultimate aim is to reproduce the order of magnitude, as well as the depen-
dence on distance, of the electron transition times that are measured experimentally
[27, 28]. Furthermore, we wish to develop a formalism that can treat short distances
between donor and acceptor, i.e. distances ≤20 Å, but also distances well beyond
20 Å, which are referred to as long range electronic transfer between donor and
acceptor. Figure 11.2 summarizes the experimental values of the transfer times that
we aim to explain.

In order to deal with phenomena such as electron tunneling (in and out of the donor
and acceptor) it is important to treat the electron as a quantum particle. To that end,
and as was done in the previous work, the electron motion in the lattice is considered
within the tight binding approximation (TBA) [2, 38, 60, 61]. On the other hand,
the motion of the lattice sites is treated classically, with the nonlinearity of the lattice
interactions being modelled by the Morse potential [46]. The Morse potential (akin to
the Lennard-Jones potential), allows for phonon -and soliton- longitudinal vibrations,
with the compressions being governed by the repulsive part of the potential. Finally,
the interactions between the electron and lattice are modelled by a Su-Schrieffer-
Heeger (SSH)-type Hamiltonian [29], in which the electron transfer term from site
to site is dependent on the distance between the lattice sites. The Morse potential
together with the quantum electron Hamiltonian just described, constitute a mixed
classical-quantum evolution problem [15]. We apply this Hamiltonian to transitions
between local electronic states, such as tunneling processes, under the influence of a
nonlinear coupling to a cold anharmonic lattice. The main aim is to determine how
the transition time for the electron to go from the donor to the acceptor is influenced
by the dynamics of the anharmonic lattice.
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In the next section the general Hamiltonian for the system, the particular scaling we
use to obtain a-dimensionless variables and the derivation of the equations of motion
are explained in details. For a more clear presentation of this subject, in Sects. 11.3
and 11.4 we deal with simplified versions of the original Hamiltonian, namely, with
the cases of an electron donor and acceptor in a rigid lattice, with periodic boundary
conditions (Sect. 11.3), and with fixed boundary conditions (Sect. 11.4), which allow
for the derivation of analytical expressions for the transition times between donors
and acceptors. In Sect. 11.5 we compare the analytical results for the rigid lattice with
the numerical results obtained in computer simulations for the full system, i.e., when
the lattice can also move, and in Sect. 11.6 we make a preliminary investigation of the
influence of a stronger electron-lattice interaction on the electron transition times. We
find that this microscopic model of ET can explain the exponential variation of the
transition times with distance that is portrayed in Fig. 11.2 and that, for certain values
of the parameters, the rigid lattice provides a sufficiently accurate approximation to
the full system. In Sect. 11.7 we discuss the results obtained within the context of
long distance ET.

11.2 Hamiltonian and Equations of Motion
of the Electron-Lattice Dynamics

The model Hamiltonian for charge transport that we consider here consists of the
following two terms

H = Hel + Hlattice, (11.1)

where Hel provides a quantum mechanical description of ET along the 1d lattice and
Hlattice represents the classical dynamics of longitudinal vibrations of the units, viz.
the deformations of the corresponding bonds between them. In the TBA we have

Hel = −
∑

n

[
εn c∗

ncn + Vnn−1
(

c∗
ncn−1 + cnc∗

n−1

)]
. (11.2)

The index n denotes the site of the nth unit on the lattice and |cn|2 determines
the probability to find the electron (charge) residing at such site. εn is the electron
on-site energy at site n. In absence of donor and acceptor εn is equal for all sites
(and set to zero). On the other hand, donor and acceptor sites are identified by
finite values of the on-site energies which represent their electronic energies with
respect to energy of the bridge sites. The quantities Vn n−1 are the transfer matrix
elements whose values are determined by an overlap integral. They account for the
nearest-neighbor hopping of the electron along the chain. The interaction between
the quantum electron dynamics and the classical vibrational degrees of freedom
yields modifications of the electron parameters Vn n−1 due to the displacements of
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the units from their equilibrium positions. To be specific, following Slater [57] and
other authors who have shown that this distance dependence should be exponential
[35] we set

Vn n−1 = V0 exp
[−α (qn − qn−1)

]
. (11.3)

The quantity α regulates how strongly Vn n−1 is influenced by the relative distance,
rn = qn − qn−1, between neighbouring lattice sites. The coordinates qn quantify
the displacements of the sites from their equilibrium positions along the lattice axis.
On the other hand, the actual charge occupation has its (local) impact on the lon-
gitudinal distortion of the chain (polaron-like effect) [7, 60, 61]. Note that here the
exponential form of the electron-lattice interaction accounts for both small and large
displacements of the lattice sites thus going beyond the range of linear interaction
considered in most earlier studies.

For the lattice part of the Hamiltonian (11.1) we set

Hlattice =
∑

n

{
p 2

n

2M
+ D ( 1 − exp[−B (qn − qn−1)] )2

}
. (11.4)

D is the break-up energy of a bond, B is the stiffness of the Morse potential, and
M denotes the mass of a lattice unit (all units are taken with equal mass). The
Morse potential exhibits an exponential-repulsive part preventing the cross-over of
neighboring lattice particles (molecules) for large displacements. Needless to say,
with a Taylor expansion of the exponential function one recovers in lowest order
the harmonic limit, and taking into account higher-order terms one recovers the
anharmonic potentials, like the cubic power or go to the quartic power, of standard
use in condensed matter physics [2, 10, 38].

For universality in our arguments it is convenient to suitably re-scale quantities.
Thus, time is scaled as: t̃ = �Morse t , with �Morse = √

2D B2/M being the fre-
quency of the harmonic oscillations that take place around the minimum of the Morse
potential, and the energy of the system is measured in units of two times the depth
of the Morse potential, i.e. H → H/(2D). Note that D ≈ 0.1 eV for physically
interesting cases. The dimensionless representation of the remaining variables and
parameters of the system follows from the relations:

q̃n = B qn, p̃n = pn√
2M D

, Ṽ = V0

2D
(11.5)

α̃ = α

B
ε̃n = ε

��Morse
. (11.6)

In what follows we drop the tildes. The equations of motion derived from the Hamil-
tonian (11.1), with (11.2) and (11.4), read as
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i
dcn

dt
= εn cn − τ

{
exp

[−α(qn+1 − qn)
]

cn+1 (11.7)

+ exp
[−α(qn − qn−1)

]
cn−1

}

d2qn

dt2 = [
1 − exp {−(qn+1 − qn) }] exp[−(qn+1 − qn) ]

− [
1 − exp {−(qn − qn−1) }] exp[−(qn − qn−1) ]

+αV
{
(c∗

n+1cn + cn+1c∗
n) exp[−α (qn+1 − qn) ]

− (c∗
ncn−1 + cnc∗

n−1) exp[−α (qn − qn−1) ] }
. (11.8)

The adiabaticity parameter τ = V/(� �Morse), appearing in the r.h.s. of (11.8) is
the ratio of the two time scales involved, i.e., between the (fast) electronic and the
(slow) acoustic phonon processes. For illustration in our computer simulations we
use (unless stated otherwise) the following values: τ = 10, V = 0.1, and α =
1.75 which are relevant for ET in biomolecules [18, 27, 28, 32, 55, 63]. We also
consider the behaviour at low temperature and to mimic thermal agitation (11.8)
are augmented with Langevin terms (delta correlated Gaussian noise forces and
damping, obeying Einstein’s relation between the noise strength and temperature),
representing an appropriate heat bath [19, 20, 39].

11.3 Free Electron Dynamics with One Bound State
in a Lattice with Periodic Boundary Conditions

Let us first consider the electron dynamics in the case of no coupling to the lattice
dynamics (α = 0) and equal on-site energies (no donors or acceptors , εD = εA = 0).
In this regime, which is valid when the oscillations of lattice sites are negligibly
small (rigid lattice), the electrons hop from site to site, according to the quantum-
mechanical TBA dynamics. Then the Schrödinger equation corresponding to (11.2)
reduces to:

i
dcn

dt
= τ (cn+1 + cn−1) . (11.9)

The eigen energies E j and the eigenfunctions with periodic boundary conditions
read [14]:

E j = 2 τ cos

[
2π( j − 1)

N

]
(11.10)

c jn =
√

1

N
exp

[
2π i jn

N

]
(11.11)
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where N is the number of sites, j = 1, . . . , N and c jn is for the probability amplitude
for an electron to be in the nth-site in the jth eigenstate. Using the eigenstates above
as a basis set, the general wavefunction for an electron in a uniform lattice can be
written as follows:

|ψ(t)〉 =
∑

j=1,N

d j exp
(
− ı

�
E j t

)
|ψ j 〉 (11.12)

where |ψ j 〉 = ∑
n=1,N c jn|n〉 is the eigenfunction for the state with energy E j , |n〉

is the state in which there is an electron in site n and d j is the probability amplitude
for the occupation of eigenstate j . Substituting expression (11.11) in (11.12) and
setting t = 0 we get:

|ψ(t = 0)〉 = 1√
N

∑
n, j=1,N

d j exp

(
2π i jn

N

)
|n〉 (11.13)

For an electron to be initially in site r , we must have:

〈r |ψ(t = 0)〉 = 1√
N

∑
j=1,N

d j exp

(
2π i jr

N

)
= δnr (11.14)

which is valid if the complex coefficients d j obey the following equality:

d j = 1√
N

exp

(
−2π i jr

N

)
(11.15)

Thus, the wavefunction for an electron that starts at site r , taken to be the donor site,
is:

|ψ(t)〉 = 1

N

∑
j,n=1,N

exp
(
− ı

�
E j t

)
exp

[
2π i j (n − r)

N

]
|n〉 (11.16)

and the probability amplitude that the electron, after a time interval t , is at site m,
taken to be the acceptor site, is:

<m|ψ(t)〉 = 1

N

∑
j=1,N

exp
(
− ı

�
E j t

)
exp

[
2π i j (m − r)

N

]
(11.17)

where E j is given by (11.10). We note that the wavefunction (11.16) is a peri-
odic function and so all electronic processes in a homogeneous lattice with periodic
boundary conditions are periodic.

In order to study ET from a donor to an acceptor we need an inhomogeneous
lattice, i.e. the on-site energies of the electron cannot be equal for all sites. Let us
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start by the smallest inhomogeneous lattice possible, i.e. when N = 2, with a donor
with energy εD = ε1 = ε in site 1 and an acceptor with energy εA = ε2 = 0 in site
2. This leads to a simple system which, in the site representation, |n〉, used above, is
characterized by the energy matrix:

[
ε −1

−1 0

]

where we have considered the energies in units of τ . We are interested in describing
the transfer of one electron from the donor in site 1 to the acceptor in site 2.

As before, we calculate the eigen energies of the system:

E1 = ε − √
ε2 + 4

2
(11.18)

E2 = ε + √
ε2 + 4

2
(11.19)

and the corresponding normalized eigenvectors:

|ϕ1〉 =
[

ϕ11
ϕ12

]
=

⎡
⎢⎣

1√
E2

2+1
E2√

E2
2+1

⎤
⎥⎦ (11.20)

|ϕ2〉 =
[

ϕ21
ϕ22

]
=

⎡
⎢⎣

− 1√
E2

1+1
|E1|√
E2

1+1

⎤
⎥⎦ (11.21)

from which we can determine a general expression for the wave function as a super-
position of the two eigenstates (see (11.12)); then we calculate the coefficients d1 and
d2 so that the probability for the electron to be at the donor in site 1 initially is unity
(i.e., pD(t = 0) = p1(t = 0) = 1); once we have these new coefficients d1 and d2,
we can determine the probability, pA = p2, that the electron is at the acceptor in site
2 at time t , given that it started at the donor. The result is:

p2(ε, t) = 2

ε2 + 4

[
1 − cos

(√
ε2 + 4 t

)]
. (11.22)

As expected, this probability is periodic, but notice that it does not necessarily oscil-
late between 0 and 1! Indeed, the probability, p2, for the electron to be at the acceptor
when it starts at the donor only reaches its maximum value of unity when ε = 0, i.e.
when the electronic energies of the donor and acceptor are equal (something that in
solid state physics is known as the resonance condition). When the electron energies
of the donor and acceptor are different, p2 < 1 at all times and its maximum value,

4
ε2+4

, decreases as the energy difference between donor and acceptor, ε, increases
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(in absolute value). Unless otherwise is stated we define the transition time for an
electron to go from donor to acceptor as the smallest time in which this maximum
probability is reached. Equation (11.22) shows that for arbitrary ε the transition time
for an electron to go from the donor to the acceptor is given by:

ttr = π√
ε2 + 4

= π

E2 − E1
. (11.23)

Thus, we conclude that, for a two-site system, the first passage time is inversely
proportional to the difference between the two lowest eigenvalues, or, in other words,
that the difference between the two lowest eigenvalues is proportional to the rate of
the first transition from the donor to the acceptor. In the next section, we will see
that although this expression, well known from the quantum theory of atoms and
molecules, is exactly valid for a two-site system, it is also approximately true for
larger lattices.

11.4 Free Electron Dynamics in a Lattice with Fixed
Boundary Conditions

In this section we consider a 1d lattice of N sites with fixed b.c. In the absence of
donor and acceptor, i.e., when the on-site energies are equal for all N sites, we find
the following eigenvalues and eigenstates [14]:

E j = 2 τ cos

(
π j

N + 1

)
, (11.24)

c jn =
√

2

N + 1
sin

(
π jn

N + 1

)
, (11.25)

where j = 1, . . . , N . Following the same reasoning as in Sect. 11.3 we find that the
probability amplitude for an electron to be in site m after a time t when it starts from
site r is:

<m|ψ(t)〉 = 2

N + 1

∑
j=1,N

exp
(
− ı

�
E j t

)
(11.26)

sin

(
π jr

N + 1

)
sin

(
π jm

N + 1

)
.

Also in this case the eigenfunctions are periodic functions and, consequently, in the
absence of thermal baths, the probability for an electron to be in site m when it was
initially in site r is periodic.
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Let us now consider the second smallest lattice with a donor and acceptor, namely,
when N = 3 and in which the energy of the donor is equal to that of the acceptor
(εD = εA = ε), with both of them being different from the electron energies in the
bridging site, which is set to zero. With fixed b.c. and also in the site basis |n〉, the
corresponding energy matrix is the following:

⎡
⎣ ε −1 0

−1 0 −1
0 −1 ε

⎤
⎦ (11.27)

where again the energies are given in units of τ . The eigenvalues for this matrix are:

E1 = ε − √
ε2 + 8

2
(11.28)

E2 = ε (11.29)

E3 = ε + √
ε2 + 8

2
(11.30)

and the corresponding normalized eigenvectors are:

|ϕ1〉 =
⎡
⎣ϕ11

ϕ12
ϕ13

⎤
⎦ =

⎡
⎢⎢⎢⎣

−
√

1
E3

√
ε2+8

−
√

E3√
ε2+8

−
√

1
E3

√
ε2+8

⎤
⎥⎥⎥⎦ (11.31)

|ϕ2〉 =
⎡
⎣ϕ21

ϕ22
ϕ23

⎤
⎦ =

⎡
⎢⎣

−
√

2
2

0√
2

2

⎤
⎥⎦ (11.32)

|ϕ3〉 =
⎡
⎣ϕ31

ϕ32
ϕ33

⎤
⎦ =

⎡
⎢⎢⎢⎣

−
√

1
E1

√
ε2+8√

E1√
ε2+8

−
√

1
E1

√
ε2+8

⎤
⎥⎥⎥⎦ (11.33)

Using the same reasoning as before we can find the probability, pA = p3, as a
function of ε and time, for an electron to be at the acceptor (in site 3), given that it
started at the donor (in site 1). The result is:

p3(ε, t) = ε2 + 6

2
(
ε2 + 8

) − E3

2
√

ε2 + 8
cos (E1 t) (11.34)

+ 1

ε2 + 8
cos

(√
ε2 + 8 t

)
+ E1

2
√

ε2 + 8
cos (E3 t)
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Fig. 11.3 Analytical results
for transition processes
between a donor and an
acceptor separated by one
lattice site in a
1d-TBA-lattice with fixed
boundary conditions (T = 0,
α = 0). We show the time
evolution for the probability
of an electron to be at the
acceptor (site 3), given that it
is at the donor (site 1) to start
with, calculated with (11.35)
for ε = 0 (red curve) and
with the simplified equation

1/2
[
1 − cos(

√
2 t)

]
(green

curve)
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This probability oscillates, as expected, but the oscillations now involve the interfer-
ence of three different frequencies, which makes it less straightforward to define a
transition time. But, as we will see, it is still possible to define this value on average,
with the same expression as before (11.23). To show that, let us consider different
values of ε. For ε = 0, (11.34) becomes:

p3(ε = 0, t) = 3/8 − 1/2 cos
(√

2t
)

+ 1/8 cos
(

2
√

2t
)

(11.35)

Figure 11.3 shows that, for ε = 0, the oscillations have a period that is related
essentially with the lowest frequency, that is, that is related to the energy difference
between the two lowest states, ttr ≈ π

E2−E1
= π√

2
.

If we now consider ε = −1, the probability for the electron to be in site 3 becomes:

p3(ε = −1, t) = 7

18
− 1/3 cos (t) + 1/9 cos (3 t) − 1/6 cos (2 t) . (11.36)

Figure 11.4 shows that the interference between the three frequencies results in
that, for ε = −1, the probability for the electron to be in the second well never
reaches a value of unity as happened for the two-site system. On the other hand, the
residence time for the electron in the second well is effectively increased because of
the interference. Also in this case, the lowest frequency provides an average estimate
for the transition time which is related to the energy difference between the two lowest
energy states.
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Fig. 11.4 Analytical results
for transition processes
between a donor and an
acceptor separated by one
lattice site in a
1d-TBA-lattice with fixed
boundary conditions (T = 0,
α = 0). We show the time
evolution for the probability
of an electron to be at the
acceptor (site 3), given that it
is at the donor (site 1) to start
with, calculated with (11.36)
for ε = −1 (red curve) and
with the simplified equation
1/2 [1 − cos(t)] (green
curve)
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For ε = −2, the probability for the electron to be in site 3 becomes:

p3(ε = −2, t) = 5

12
+ 1

12
cos

(
2

√
3t

)
+

√
3 − 3

12
cos

[(√
3 + 1

)
t
]

(11.37)

−
√

3 + 3

12
cos

[(√
3 − 1

)
t
]

and the time evolution is displayed in Fig. 11.5. It appears that, for ε = −2, although
the interference between the three frequencies leads to a variety of oscillatory pat-
terns, the overall transition time is still related to the energy difference between the
two lowest energy states, as given by (11.23). Thus we conclude that, although the
expression (11.23) widely used for the first passage time is only strictly valid for a
lattice with two sites, it does provide a good approximation in a lattice with three sites
in which the donor is at site 1 and the acceptor is at site 3. Notice that also in this case
the interference between the three frequencies results in that, for certain values of ε,
the probability for the electron to be at the donor may never reach unity, as happened
for the two-site system. However, the time to reach a maximum probability can still
be related to the energy difference between the two lowest energy states.

Since the analytical expressions for lattices with more than three sites are not
illuminating, we will use (11.23) to determine numerically the dependence of the
transition time for an electron to go from the donor to the acceptor, as a function
of the electronic energy of the donor (assumed equal to that of the acceptor) and
of the distance between the donor and acceptor. In Fig. 11.6 a donor and acceptor
with electronic energies ε = −5,−2,−1 (blue, green and red, respectively) and
separated by N − 2 sites have been considered and the two lowest eigenvalues have
been determined numerically. Given the average separation between sites in azurin
[63] N = 5 in the figure is close to 20 Å. This figure shows that for the larger elec-
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Fig. 11.5 Analytical results for transition processes between a donor and an acceptor separated by
one lattice site in a 1d-TBA-lattice with fixed boundary conditions (T = 0, α = 0). We show the
time evolution for the probability of an electron to be at the acceptor (site 3), given that it is at the
donor (site 1) to start with, calculated with (11.38) for ε = −2 (red curve) and with the simplified

equation 1/2
[
1 − cos((

√
3 − 1) t)

]
(green curve)
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Fig. 11.6 Transition time (in log10 scale and in units of �−1
Morse) versus the number of lattice sites

N for an electron to go from a donor to an acceptor in 1d-TBA-lattice (3 ≤ N ≤ 7), with the donor
and acceptor at the ends (T = 0, α = 0). The electronic energies of the donor and acceptor are
ε = −5 (upper dotted line, blue), ε = −2 (center dashed line, green) and ε = −1 (lower solid line,
red), in units of τ
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Fig. 11.7 Transition time (in log10 scale and in units of �−1
Morse) versus ε (in units of τ ) for an

electron to go from a donor and to an acceptor separated by a 3 site bridge. (N = 5, T = 0, α = 0).
ε is the energy of the electron at the donor and at the acceptor

tronic energies (in absolute terms), the transition time from donor to acceptor varies
exponentially with the distance which is usually identified with the tunneling regime.
On the other hand, when the electronic energies of donor and acceptor are compa-
rable to the hopping term τ , the transition time does not vary exponentially with the
distance, that is, non-tunneling quantum interference processes become important.
This is particularly visible the shorter the bridge between donor and acceptor is, as
shown in Fig. 11.7. Indeed, this figure shows the transition time as function of donor
and acceptor energies, for a lattice with seven sites (a 5 site bridge between the donor
and acceptor). While in the tunneling regime the dependence of the transition time
is exponential in the electronic energy ε, for this small number of bridge sites this
is not the case for the smaller values of the on-site electronic energies (in absolute
terms). On the other hand, for the larger values of ε the transition times do scale
exponentially with the on-site energies of donor and acceptor which suggests that,
for these values, the electronic transfer is in the tunneling regime.

11.5 Computer Simulations of ET from Donor
to Acceptor in a Lattice at Low Temperature

In this section we consider a long lattice ring with N = 100 sites on which the donor
and the acceptor are separated by a distance of 
n sites. Furthermore, we include
explicitly the interaction of the electron with the motions of the lattice sites, by solving
numerically equations (11.7) and (11.8), augmented with the appropriate Langevin
terms to account for heating, as explained at the end of Sect. 11.2. Figures 11.8 and
11.9 show the electron transitions as a function of the distance 
n between donor and
acceptor (Fig. 11.8) and as a function of the electronic energy of the donor (assumed
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Fig. 11.8 Computer
simulations of electronic
transition processes in a
1d-TBA-lattice with periodic
boundary conditions, for
different distances 
n
between donor and acceptor.

n = 1, 2, 3 and 5, from top
to bottom, respectively. For
all trajectories: ε = −5 (in
units of τ ), (N = 100),
T = 0.002D, α = 0.1,
V = 0.1 and τ = 10
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Fig. 11.9 Computer
simulations of electronic
transition processes in a
1d-TBA-lattice with periodic
boundary conditions, for
different donor and acceptor
energies ε. ε = −1,−2,−3
and −4 (in units of τ ), from
top to bottom, respectively.
For all trajectories: 
n = 5,
(N = 100), T = 0.002D,
α = 0.1, V = 0.1, and
τ = 10
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Fig. 11.10 Transition time between two wells as a function of the distance between donor and
acceptor, 
n (N = 100). Comparison between analytical calculations for a lattice with fixed ends
(red solid line above) and computer simulations (green dotted line below). The depth of the wells
is ε = −5 (in units of τ ). Temperature, T = 0.002D. Parameter values: α = 0.1, V = 0.1 and
τ = 10

to be equal to that of the acceptor) (Fig. 11.9). In all cases displayed the electron
moves between donor and acceptor in an oscillatory manner, as predicted by the
analytical results obtained in previous sections (cf. 11.22 and 11.34). Moreover, this
agreement between the numerical results for the full system and the analytical results
for a rigid lattice (cf. 11.23) is not merely qualitative, as demonstrated in Fig. 11.10.
Indeed, in Fig. 11.10, a comparison of the transition time as a function of the distance
between acceptor and donor, 
n, is made between the analytical and the numerical
results, namely, the solid line (red, above) corresponds to the analytical transition
times, while the dashed line (green, below) corresponds to the numerical transition
times obtained from trajectories such as those displayed in Fig. 11.8. Figure 11.10
shows that, for very low temperatures, and weak electron-lattice interactions, the
transition times are approximately the same as for a rigid lattice and, for the values
of the parameters used, both lead to the exponential dependence on distance that
characterizes tunneling.

Finally, we should note that Figs. 11.8 and 11.9 also provide an insight into the
localization of the electron states. From inspection of the scales for |cn|2, at the top
right end corner of each plot in Fig. 11.9, we find that the electron states at the donor
and acceptor become more localized as the binding energy of the electron to the donor
(and acceptor) increases. A careful inspection of the top three plots of Fig. 11.8 and
of the top two plots of Fig. 11.9 reveals that, on top of the oscillatory motion from
donor to acceptor, some radiation leaks into the lattice and is observed to go around
the ring a few times, before it disperses, when either the distance between donor and
acceptor is very short or their on-site energies are approximately equal to the electron
coupling term τ .
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11.6 Dependence of Transition Time on α

α represents the strength of electron lattice interaction (see (11.3)). The higher the
α the stronger this interaction is. Until now we have reported results for α ≤ 0.1.
However, the values of this parameter relevant for ET in biomolecules are likely to
be higher [18, 27, 28, 32, 55, 63]. Thus, in this section, we investigate the effect on
the transition time of increasing values of α.

Figure 11.11 shows that, initially, the change with α of the transition time for the
electron to go from the donor to acceptor is slow. Indeed, judging from the number
of cycles after 180 time units, the transition time only decreases from 4 to 3 when
α increases from 0.1 to 0.9. However, above this value, the effect of increasing α

becomes very marked indeed, first leading to an effective decrease in the probability
of finding the electron at the acceptor site (as has been found before for specific values
of the on-site energies in small lattices) and finally resulting in an inhibition of the
transition altogether when α ≥ 1.5. These results are more clearly seen in Fig. 11.12
in which the dependence of the transition time on the electron-lattice interaction is
displayed.

11.7 Discussion and Conclusions

Our ultimate aim is to model the influence of the environment on long range ET,
such as that observed in proteins [27, 28] and in synthetic DNA [25, 26]. While
Marcus theory [27, 28, 43] can explain ET up to 20 Å, our ultimate aim is to develop
a theoretical explanation capable of including ET for larger distances as well, by
exploring the hypothesis that solitons in the media between donors and acceptors can
constitute carriers for the electron. In this study we have considered a one dimensional
lattice in which the electron on-site energies were all equal except at the donor and
acceptor sites (see Fig. 11.1). The variable we are interested in is the transition time
for the electron to move from the donor to the acceptor. We should note, however,
that, our results were obtained in a finite lattice and in a finite size system all the
trajectories are necessarily periodic so that the electron keeps moving from donor
to acceptor and vice-versa. Therefore, in Sects. 11.3 and 11.4 we have defined the
transition time as the first time passage, i.e. the instant in which the probability for the
electron to be at the acceptor is maximum for the first time (given that the probability
for the electron to be at the donor was 1 initially). We have verified that, to a good
approximation, this defined rate of transfer from donor to acceptor in a rigid lattice
can be predicted from the energy difference between the two lower energy states
of the electron. Furthermore, in Sect. 11.5 we showed that, at low temperature, this
rigid lattice rate is very similar to that obtained from the numerical simulations of
an electron coupled to a flexible lattice, for an electron-lattice coupling constant
α = 0.1. Indeed, comparison of Figs. 11.2 and 11.10 shows that the nonlinear model
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Fig. 11.11 Computer simulations of electronic transition processes in a 1d-TBA-lattice with peri-
odic boundary conditions, for different values of α. For all trajectories: ε = −5 (in units of τ ),
(N = 100), T = 0.002D, V = 0.1, 
n = 5 and τ = 10. From top to bottom, respectively,
α = 0, 0.5, 0.8, 0.9 (left column) and α = 0.97, 1, 1.5, 1.75 (right column)

used here (cf. 11.1–11.4) can not only reproduce the exponential distance dependence
of the experimentally measured transition times for electron transfer from donors to
acceptors but also leads to the right order of magnitude of these transition times. For
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Fig. 11.12 Transition time
from donor to acceptor as a
function of the
electron-lattice interaction,
α, using the data in
Fig. 11.11. The depth of the
wells is ε = −5 (in units of
τ ). Temperature,
T = 0.002D. Parameter
values: α = 0.1, V = 0.1,

n = 5 and τ = 10.
(N = 100)
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example, it is approximately 3800 time units for 
n = 7 when εdonor = εacceptor =
−5 (in units of τ ) (see Fig. 11.10). In Sect. 11.6 we show that the transition times
depends weakly on α between 0 and 0.9. On the other hand, above 0.9, the probability
for an electron to go from the donor to the acceptor decreases markedly and for
α ≥ 1.5 the transition time becomes virtually infinite.

Regarding the mechanism that underlies the electronic transfer from donor to
acceptor, our simulations also demonstrate that, at low temperatures, there is a whole
spectrum of possibilities from non-tunneling to tunneling-like donor to acceptor tran-
sitions. E.g., in a lattice chain with weakly bound donor and acceptor electrons the
electronic transition time is not exponential with distance (see solid bottom curve
in Fig. 11.6 and Fig. 11.7). On the other hand, for strongly bound donor (and accep-
tor) electrons, the electronic transitions from donor to acceptor are of tunneling-type,
even when 
n = 1, with the transition time growing very fast, i.e. following an expo-
nential law with 
n. Future work will explore in greater detail the effect of stronger
couplings between the electron and the lattice and also of higher temperatures on the
electron transfer from donor to acceptor and on the corresponding transition times.
It is worth mentioning that other studies with homogeneous lattices [8, 9, 21, 22,
31, 32, 62–66] have already pointed at the potential of this theory to explain faster
electron transport as well.
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Abstract The pairing of electrons in harmonic and anharmonic one-dimensional
lattices is studied with account of the electron-lattice interaction. It is shown that
in harmonic lattices binding of electrons in a bound localized state called bisoliton,
takes place. It is also shown that bisolitons in harmonic lattices can propagate with
velocity below the velocity of the sound. Similarly, binding of electrons in singlet
spin state, called bisolectron, takes place in anharmonic lattices. It is shown that
the account of the lattice anharmonicity leads to the stabilization of bisolectron
dynamics: bisolectrons are dynamically stable up to the sound velocity in lattices
with cubic or quartic anharmonicities and can also be supersonic. They have finite
values of energy and momentum in the whole interval of bisolectron velocities. The
bisolectron binding energy and critical value of the Coulomb repulsion at which
the bisolectron becomes unstable and decays into two independent solectrons, are
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12.1 Introduction

In this chapter we will study the possibility of binding of two extra electrons or holes
in a singlet localized bound state in a one-dimensional lattice with account of the
electron-lattice interaction. For simplicity we will consider a chain with one ‘atom’
per unit cell, and, respectively, one phonon mode, which describes longitudinal dis-
placements of atoms from their equilibrium states and is called ‘acousticmode’: there
is electron-lattice interaction with acoustical phonons, only. For more realistic low-
dimensional molecular systems such a model corresponds to the case of very strong
anisotropy when the parameters of the system in one direction are much bigger than
in two other directions, so that one can identify in the system one-dimensional chains
in which the acoustical mode is the most active. The interaction between the chains
can be considered as weak and taken into account using perturbation method. In the
general case the electron-lattice systems can be described by the Fröhlich Hamil-
tonian, which includes three terms, the first two of which describe, respectively, a
quasiparticle (electron, hole, exciton, etc.) and undisturbed lattice, and the third term
describes the interaction between the quasiparticle and lattice displacements from
their equilibrium positions.

It is well established that the electron-lattice interaction plays a significant role
in low-dimensional molecular systems and can result in their essentially genuine
properties. Thus, electron-lattice interaction (it is called also electron-phonon inter-
action) leads to the lowering of the energy of quasiparticles [1, 2, 19, 31, 34, 35].
Such phenomenon is known as polaron effect. Unfortunately, even in the simplest
case of a one-dimensional system with one phonon mode (one atom in a unit cell)
and one extra quasiparticle in the chain the corresponding Hamiltonian can not be
diagonalized exactly and there is no exact solution of such a problem. One possi-
bility is a numerical solution of the problem, which depends on the choice of the
parameter values of the considered chain and can not give a complete description of
the problem. Variational methods can be also useful, but it is well known, that the
results of such methods depend essentially on the choice of the variational function.
Another possibility is to study the problem within the perturbation method. Respec-
tively, different perturbation schemes can be used depending which parameter of the
system can be considered as a small parameter.

Thus, it has been shown that depending on the strength of the coupling and the
lattice nonadiabaticity parameter, the lowest energy state of a quasiparticle is one
of the three possible states: (i) an almost free band state, (ii) a large polaron, (iii) a
small polaron [10]. In an almost free band state a quasiparticle is delocalized over the
whole length of the system, while the latter two states correspond to a quasiparticle
localized state of large radius as comparing with the lattice spacing, or trapped
within one lattice site, respectively. We remind here, that the lattice nonadiabaticity
parameter is determined as the ratio between the Debye energy of phonons and the
resonant (exchange) energy in the lattice. In particular, at moderate values of the
electron-lattice interaction constant and not too strong lattice nonadiabaticity the
adiabatic approximation is valid.
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In such a case a large polaron corresponds to the lowest energy of the system [10].
In particular, within this approximation, Davydov has shown that the Hamiltonian of
a one-dimensional molecular lattice can be diagonalized in such away that the lowest
order of the electron-lattice interaction is taken into account in the zero-order term of
the Hamiltonian [19, 39]. In other words, in the zero order adiabatic approximation
the lowest order of the electron-lattice interaction is taken into account exactly. In
this case the ‘zero order’ term of the Hamiltonian leads to the system of coupled non-
linear discrete equations for the wave-function of a quasiparticle and displacements
of atoms from their equilibrium positions [19, 38, 39].

In the continuum approximation this system of equations can be reduced to the
Davydov system of equations [19]. This system coincides formally with Zakharov
systemof equationswhich describes the propagation ofLangmuirwaves in an ionized
plasma. Davydov system of equations, for the case of functions of a quasiparticle
and phonons that depend on the running wave coordinate x − V t , can be reduced to
the nonlinear Schrödinger equation. This equation admits the soliton solution [19]
of a finite radius of a localization. Here x = na is a lattice coordinate, a is the
constant of lattice spacing, t is time, V is the velocity of the running wave. Then
the lattice deformation, which is proportional to the probability of a quasiparticle
presence in the given place of the lattice, is also a localized function. In this respect
Davydov’s soliton describes a particular type of a large polaron, inwhich the electron-
lattice interaction is taken into account exactly, without linearization of the system.
Davydov’s soliton, therefore, describes a bound state of a quasiparticle with the self-
induced localized lattice distortion. Such a soliton can propagate along the molecular
chain with constant velocity V , neglecting effects of the lattice discreteness, and
describes a coherent propagation of a quasiparticle, so that the quasiparticle will
reach a certain position in the chain, as an example, the opposite end of the chain, with
the probability, equal to 1, at some time instant. Thus, Davydov’s soliton describes
a large polaron with the lowest energy as compared with other solutions of a large
polaron type. The width of the Davydov’s soliton, ls , is inversely proportional to the
non-linear parameter of the nonlinear Schrödinger equation, which is proportional
to the dimensionless electron-lattice coupling, g, namely, ls = πa/g. For the values
of the chain parameters, that satisfy the condition of adiabatic approximation, this
radius of soliton localization is equal to several lattice sites.

Worth mentioning here also is that Davydov’s solitons are essentially nonlinear
two-component (sometimes called ‘two-field’) entities, one component of which is
a quasiparticle, and another component is a lattice distortion, determined by the dis-
placements of atoms from their equilibrium positions, induced by the presence of
the quasiparticle. In the case of self-trapping of a charged particle (electron or hole)
Davydov’s soliton is called ‘electrosoliton’ [19, 38, 39]. From the point of view of
conducting properties, namely systems which support formation of large polarons in
general, and of solitons in particular, are the most important for their technical appli-
cations in modern devices. Indeed, there is a wide class of quasi-one-dimensional
crystals in which large polarons exist. This include DNA and α-helical polypeptides
[18, 19, 30, 38], polydiacetylene [24, 27, 48], conducting platinum chains and con-
ducting polymers [11], salts of transition metals [3, 16, 40, 49], superconducting
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cuprates [4, 13, 23, 26, 32], etc. These compounds find numerous applications in
microelectronics and nanotechnologies, or play important role in living systems. This
explains our interest in studying nonlinear effects in such systems.

In this respect the question arises if the electron-lattice interaction in low-
dimensional systems can result in binding two extra electrons in a localized state. This
can be compared with the formation of Cooper pairs due to the exchange with virtual
phonons. Indeed, it has been shown that in harmonic lattices pairing of two charged
quasiparticles (below we call them ‘electrons’) with opposite spins in a bisoliton
state takes place [8, 9]. The difference between bisolitons and Cooper pairs is the
space where the localization of electrons takes place, and the size of the localization:
while Cooper pairing takes place in the momentum space and the size of Cooper
pairs in a real space is very large, bisolitons are localized in the coordinate space and
are extended over a few lattice units.

Generally, in the studies of the properties of Davydov solitons and bisolitons the
lattices are usuallymodeledwithin the harmonic approximation.Goingbeyond this, it
is nowfirmly established that solitons are formed in rather generic anharmonic lattices
[12, 18, 19, 29, 33, 36, 41, 42]. In this case solitons are one-component entities,
sometimes called also ‘lattice solitons’, to be distinguished from two-component
Davydov’s solitons. In view of the above here we explicitly analyze how the lattice
anharmonicity added to the electron-phonon interaction facilitates electron pairing
in a one-dimensional lattice and also helps overcoming Coulomb repulsion. It has
been shown that anharmonic lattices also favor pairing of electrons (holes) in a
singlet localized state [5, 44, 45]. While in harmonic lattices the nonlinearity in the
system is due to the electron-lattice interaction, in anharmonic lattices there are two
nonlinearities: the nonlinearity of the lattice itself, and the electron-lattice interaction.
It is well known that in nonlinear systems the standard principle of superposition does
not take place. As a result, the spectrum of the localized solutions in such systems is
bigger than in harmonic lattices. We call these localized solutions “bisolectrons” to
indicate the difference with bisolitons in harmonic lattices.

The properties of bisolectrons depend on which nonlinearity is dominating in
their formation. It appears that the presence of the lattice anharmonicity results in
the stabilization of the dynamics of bisolectrons. Theyhavefinite values of energy and
momentum in the whole interval of bisolectron velocities which can be subsonic and
supersonic. Here we consider first the general case of anharmonic lattices, and then
to obtain explicit expressions for the parameters of bisolectrons, we consider lattices
with cubic anharmonicity and quartic anharmonicity. We also take into account the
Coulomb repulsion between the electrons and show that it can modify the envelope
of bisolitons and bisolectrons: their envelope can have two maxima at strong enough
Coulomb repulsion. We calculate the bisolectron binding energy and critical value
of the Coulomb repulsion at which the bisolectron becomes unstable and decays into
two independent solectrons. The bisolectron binding energy is estimated for values
of chain parameters that are typical for biological macromolecules and some quasi-
one-dimensional conducting systems. We show that the Coulomb repulsion in such
systems is relatively weak relative to the binding energy and, therefore, binding of
two electrons in a singlet localized bisolectron state takes place in such systems.
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Finally, we find another type of localized solutions of the corresponding system
of nonlinear equations, which can be only supersonic. We show that our analytical
results are in a good agreement with the results of numerical simulations in a broad
interval of the parameter values of the system and of the strength of the Coulomb
repulsion between the electrons.

12.2 Hamiltonian of the System and Dynamic Equations

Let us consider two added excess electrons (holes) in an infinitely long one-
dimensional lattice formed by unit cells of mass M placed at equilibrium lattice
spacing a. Such a system can be described by the Fröhlich Hamiltonian in the form:

Ĥ = Ĥel + Ĥlat + Ĥint + ĤCoul. (12.1)

Here the electron Hamiltonian is written as

Ĥel =
∑
n,s

[
E0 B̂†

n,s B̂n,s − J B̂†
n,s

(
B̂n+1,s + B̂n−1,s

)]
, (12.2)

where E0 is the on-site electron energy, J is the electron exchange interaction energy,
B̂†

n,s, B̂n,s are creation and annihilation operators of an electron with spin index
s = 1, 2 at the lattice site n.

We assume that in the lattice only one phonon mode, namely acoustical, is the
most active. The Hamiltonian of such a lattice has the form

Ĥph =
∑

n

[
p̂2n
2M

+ Û
(
β̂n

)]
, (12.3)

where β̂n is the operator of the displacement of the nth unit cell from its equilibrium
position and p̂n is the operator of the canonically conjugated momentum, and Û is
the operator of the potential energy of the lattice, whose properties will be defined
below.

The Hamiltonian of electron-lattice interaction for the case, when the on-site elec-
tron energy dependence on the longitudinal displacements of unit cells (acoustical
mode) dominates the inter-site dependence, is given by the expression

Ĥint = χ
∑

n,s=1,2

(
β̂n+1 − β̂n−1

)
B̂†

n,s B̂n,s, (12.4)

where χ is the electron-lattice coupling constant.



296 L.S. Brizhik et al.

The Coulomb repulsion between the electrons is given by the Hubbard-type
Hamiltonian

ĤCoul =
∑

n,m,s=1,2

Vnm B̂†
n,s B̂n,s B̂†

m,s B̂m,s, (12.5)

where Vnm is the corresponding matrix element of the Coulomb interaction.
In the adiabatic approximation we can set

|Ψ (t)〉 = |Ψel(t)〉|Ψph(t)〉. (12.6)

Here the vector state of the lattice has the form of the product of the operator of
coherent displacements of unit cells and vacuum state of the lattice, |0〉ph,

|Ψph(t)〉 = exp

{
− i

�

∑
n

[
βn(t) p̂n − pn(t)β̂n

]}
|0〉ph, (12.7)

where βn(t), pn(t) are, respectively, the mean values of the displacements of unit
cells from their equilibrium positions and their canonically conjugated momenta in
the state (12.6).

The electron state vector for two excess electrons has the form

|Ψel(t)〉 =
∑

n1,n2,s1,s2

Ψ (n1, n2, s1, s2; t)B̂†
n1,s1 B̂†

n2,s2 |0〉el. (12.8)

In the absence of the magnetic field, we can represent the two-electron function
of two electrons with anti-parallel spins as the product of the symmetric coordinate
function and antisymmetric spin function

Ψ (n1, n2, s1, s2; t) = Ψ (n1, n2, t)χ(s1, s2),

Ψ (n1, n2, t) = 1√
2
[Ψ1(n1, t)Ψ2(n2, t) + Ψ2(n1, t)Ψ1(n2, t)] ,

χ(s1, s2) = 1√
2
[χ1(s1, t)χ2(s2, t) − χ2(s1, t)χ1(s2, t)] . (12.9)

Here one-electron wave-functions satisfy the normalization condition

∑
n

|Ψ j (n, t)|2 = 1, j = 1, 2. (12.10)

Using such a state vector, we can calculate the Hamiltonian function H =
〈Ψ (t)|Ĥ |Ψ (t)〉, corresponding to the Hamiltonian operator (12.1). In the absence
of magnetic field we can omit spin functions and spin indexes of the corresponding
operators.
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First we neglect the Coulomb repulsion and will take it into account at later
stage. Electron wave functions and lattice displacements are slowly varying in space
functions at intermediate values of the electron-lattice coupling and not too strong
anharmonicity of the lattice. Therefore, we can use the continuum approximation
n → x ≡ na. From the Hamilton function H we derive a system of coupled equa-
tions for the two-electron wave function Ψ (x1, x2, t) and lattice site displacements
β(x, t):

i�
∂Ψ

∂t
= − �

2

2m

(
∂2Ψ

∂x21
+ ∂2Ψ

∂x22

)
+ χa

(
∂β(x, t)

∂x
|x=x1 + ∂β(x, t)

∂x
|x=x2

)
Ψ,

(12.11)

∂2β

∂t2
− V 2

ac
∂2U

∂ρ2
∂2β

∂x2
− α

∂4β

∂x2∂t2
= a

M
χ

(∫
dx2

∂|Ψ |2
∂x1

|x1=x +
∫

dx1
∂|Ψ |2
∂x2

|x2=x

)
.

(12.12)

Here ρ(x, t) = −∂β(x, t)/∂x is the local deformation of the lattice and Vac is the
linear sound velocity in the chain. In the left hand side of the second equationwe have
included an extra term proportional to the fourth derivative of the lattice displacement
to take into account a nonlinear dispersion of the lattice if any (see, e.g., comments
in [20]). We will ignore this term when considering harmonic lattices and subsonic
solutions.

The potential energy of the latticeU (ρ) has a minimum in the equilibrium lattice.
We assume that it is increasing function of the lattice compression, (ρ > 0), induced
by electrons (see [20–22]):

∂U (ρ)

∂ρ
|ρ=0 = 0,

∂2U (ρ)

∂ρ2 > 0. (12.13)

Below we will consider separately cases of harmonic and anharmonic lattices.

12.3 Bisolitons in Harmonic Lattices

Let us consider first the electron pairing in a harmonic lattice:

U (ρ) = 1

2
wρ2. (12.14)

Substituting this potential into (12.11) and (12.12), we obtain the system of coupled
equations in the form

[
i�

∂

∂t
+ �

2

2m

∂2

∂x2
+ χaρ(x, t)

]
Ψ j (x, t) = E0Ψ j (x, t), j = 1, 2, (12.15)
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(
∂2

∂t2
− V 2

ac
∂2

∂x2

)
ρ(x, t) + χa

M

∂2

∂x2

2∑
j=1

|Ψ j (x, t)|2 = 0. (12.16)

We are interested in the localized solutions of the equations and introduce the
running wave coordinate

ξ = (x − x0 − V t)/a, (12.17)

so that ρ(x, t) = ρ(ξ), Ψ j (x, t) = Φ j (ξ) exp (imV x/� − iφ(t)). For the localized
one-electron functions in the approximation we can setΦ2(ξ) = Φ1(ξ + l), and omit
below index j . From (12.15) we get the expression for the lattice deformation

ρ(ξ) = χ

w(1 − s2)

[
|Φ(ξ)|2 + |Φ(ξ + l)|2

]
, s2 = V 2

V 2
ac

. (12.18)

Substituting this result into (12.16), we obtain the nonlinear Schödinger equation
for the electron wave function

[
d2

dξ2
+ εl + 2g[Φ2(ξ) + Φ2(ξ + l)]

]
Φ(ξ) = 0, (12.19)

where

g = χ2

2Jaw(1 − s2)
, εl = E − E0

J
, (12.20)

and

εl =
∫ [(

dΦ

dξ

)2

− 2gΦ2(ξ)
(
Φ2(ξ) + Φ2(ξ + l)

)]
dξ. (12.21)

At large distances between the center ofmass coordinates, la >> a, two electrons
move independently, so that Φ(ξ + l) = 0 in the region, where Φ(ξ) �= 0. In this
case we have from (12.19)

[
d2

dξ2
+ ε∞ + 2gΦ2∞(ξ)

]
Φ∞(ξ) = 0, (12.22)

from where we find a soliton solution

Φ∞ = Φs = 1

2
√

gsech

(
gξ

2

)
, (12.23)
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which has the eigen-energy

ε∞ = −g2

4
. (12.24)

At l = 0 we get from (12.19) that one-electron functions are the solutions of the
equation:

[
d2

dξ2
+ ε0 + 4gΦ2

0 (ξ)

]
Φ0(ξ) = 0. (12.25)

From above equation we get [8, 9, 19]

Φ0 = Φbs =
√

g

2
sech(gξ). (12.26)

Thus, at l = 0 the electrons form a bound state, according to (12.26), called bisoliton,
with the eigen-energy

ε0 = −g2. (12.27)

Comparing the solutions (12.23) and (12.26), we see, that the amplitude of a
bisoliton is higher, than the amplitude of a soliton, and width of the localization,
lbs = π/g, is twice the width of the soliton localization, ls = π/(2g). The envelopes
of the wave functions of an isolated soliton and of a bisoliton are shown in Fig. 12.1.

The binding energy of a bisoliton, Ebind = E∞(V ) − E0(V ) is [8]

Ebind = Jg2
0

2

1 − 5s2

(1 − s2)3
, g0 = χ2

2Jaw
. (12.28)

Here E∞(V ) and E0(V ) are the total energies of the system with account of the
deformation energy of the lattice with two solitons on a large distance from one

Fig. 12.1 Soliton (thin blue
line) and bisoliton (thick red
line) envelope functions
(12.23) and (12.26)
respectively with the center
of mass position at ξ = 20 at
nonlinearity parameter g = 1
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another (two independent electro-solitons) and with two electrons bound in a bisoli-
ton state, respectively. From (12.28) we conclude, that the bisoliton in harmonic
lattices is stable at small velocities, when the inequality takes place s2 < 1/5. This
restriction is the result of the excess of the effective mass of a bisoliton as comparing
with the sum of the effective masses of two independent solitons.

12.4 Bisolectrons in Anharmonic Lattices

In this section we will consider binding of electrons in a singlet state in anharmonic
lattices. In this case it is convenient to re-write (12.11)–(12.12) in the following form:

d2Φ j

dξ2
+ σρΦ j = λ jΦ j , j = 1, 2, (12.29)

d F

dρ
= D(Φ2

1 + Φ2
2 ), (12.30)

where F is the effective anharmonic part of the lattice potential

F = U (ρ) − 1

2
s2ρ2, s2 = V 2

V 2
ac

, (12.31)

and the dimensionless parameters are introduced:

λ j = − E j

J
, σ = χa

J
, D = χa

MV 2
ac

, (12.32)

with E j being the electron eigen-energy, and Φ j being the envelope function of the
corresponding ‘one-electron’ wave functions Ψ j in the two-electron state.

We can rewrite (12.29) in the following form

(
dΦ j

dξ

)2

= λ jΦ
2
j − σ Q j , (12.33)

where

Q j (ξ) =
∫ ξ

−∞
ρ(x)dΦ2

j (x), j = 1, 2. (12.34)

For localized solutions the corresponding functions attain some maximum values,
which we denote asΦ j,0 and ρ0, respectively. In one-dimensional systems the defor-
mational potential has at least one bound state, which can be occupied by two elec-
trons with opposite spins. When the Coulomb repulsion is very weak, the minimum
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energy state corresponds to the case when the maxima of ‘one-electron’ functions
coincide, as we have seen above for the case of harmonic lattices (see also [8, 9]),
so that

λ1 = λ2, Φ1(ξ) = Φ2(ξ), (12.35)

and we can omit index j .
In the general case the maximum values of the ‘one-electron’ wave functions are

shifted along the lattice at some value l0 due to the Coulomb repulsion, which will
be considered below.

From (12.33) we obtain the expression for the electron eigen-energies:

λ = σ
Q(0)

Φ2
0

. (12.36)

From (12.30) we get the equation which determines the lattice deformation

dρ

dξ
= ±2

√
λ − σ G(ρ)

d F/dρ

d2F/dρ2 , (12.37)

where

G(ρ) = ρ − F(ρ)

d F/dρ
, (12.38)

and

λ = σ G(ρ0). (12.39)

Integrating (12.37), we get the implicit expression for the dependence of the lattice
deformation on the running wave coordinate:

ξ(ρ) = ± 1

2
√

σ

∫ ρ0

ρ(ξ)

d2F/dρ2

d F/dρ

1√
G(ρ0) − G(ρ)

dρ. (12.40)

Using the normalization condition for “one-electron” wave function, we find the
expression for the maximum value

Φ0 =
√

1

2D

(
d F

dρ

) ∣∣∣
ρ=ρ0

G(ρ0). (12.41)

To get the explicit solutions we have to specify the lattice potential. Below we
will consider cubic and quartic anharmonic potentials, and we will assign subscript
c or q to the functions:
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Uc(ρ) = 1

2
ρ2 + α

3
ρ3, Uq(ρ) = 1

2
ρ2 + β

4
ρ4, (12.42)

respectively.
Substituting these expressions into (12.31), we get

Fc(ρ) = α

2
ρ2

(
2

3
ρ + δc

)
, Fq(ρ) = β

4
ρ2

(
ρ2 + 2δq

)
, (12.43)

and from (12.38) we find

Gc = ρ

6

4ρ + 3δc

ρ + δc
, Gq = ρ

4

3ρ2 + 2δq

ρ2 + δq
, (12.44)

where the dynamicallymodulated inverse anharmonic stiffness coefficients are intro-
duced:

δc = 1 − s2

α
, δq = 1 − s2

β
. (12.45)

Substituting the explicit form of function Gv into (12.40), we can rewrite the
expression in the following form

ξv(ρ) = ± 1

2
√

σ

∫ ρ0(v)

ρ(ξ)

Kv(ρ, ρ0(v))

ρ
√

ρ0(v) − ρ
dρ, v = c, q (12.46)

where the kernel of the integral for both types of anharmonic potentials Kv in view
of the explicit form of Gv is very close to unity (see numerical solution in [44, 45]).
From (12.46) after integration we find that the deformation of the lattice is given by
the soliton solutions of the B-KdV equation [12, 18, 19, 29, 33, 36, 41, 42] which
coincides with the solution of the Davydov system of nonlinear equations [19, 38]:

ρv(ξ) = ρ0(v)sech
2(κvξ), (12.47)

the width of which, κ , is determined by the maximum value of the deformation

κc =
√

σρ0(c)

2

√
4ρ0(c)

(
ρ0(c) + 2δc

)
/3 + δ2c

2ρ0(c) + δc
, (12.48)
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for the lattice with cubic anharmonic potential, and

κq = 1

2

√√√√√σρ0(q)

(
3ρ2

0(q) + 2δq

)

ρ2
0(q) + 2δq

(12.49)

for the lattice with quartic anharmonic potential.
These expressions can be approximated by the following one:

κv ≈
√

σρ0(v)

2
. (12.50)

In its turn, ρ0(v) is determined by the corresponding equation:

ρ0(c)

(
4

3
ρ0(c) + δc

)2

= g2
c θc(ρ0(c)) (12.51)

for the lattice with cubic anharmonic potential, and

ρ0(q)

(
8

5
ρ2
0(q) + δq

)2

= g2
qθq(ρ0(q)) (12.52)

for the lattice with quartic anharmonic potential.
Here gv is a constant, determined below:

g2
c = D2σ

α2 , g2
q = D2σ

β2 , (12.53)

with

θc(ρ0(c)) = 4ρ0(c)(ρ0(c) + 2δc) + 3δ2c
6(ρ0(c) + δc)2

, (12.54)

θq(ρ0(q)) = 3ρ4
0(q) + 7δqρ2

0(q) + 2δ2q

4
(
ρ2
0(q) + δq

)2 , (12.55)

for the latticeswith cubic and quartic anharmonic potentials, respectively. The numer-
ical solutions of (12.51) and (12.52) are shown in Fig. 12.2 for two different values
of the coupling constant gv = 0.05 and gv = 0.2, respectively.

It follows from Fig. 12.2, that (i) the maximum lattice deformation depends on
the soliton velocity; (ii) the soliton amplitude increases and its width decreases with
the velocity increasing, attaining some finite values at the sound velocity, V = Vac

(i.e., δ = 0); (iii) the soliton amplitude increases with the electron-lattice coupling
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(a) (b)

Fig. 12.2 Maximum value of the lattice deformation as a function of the dynamically modulated
inverse anharmonic stiffness coefficient δ, in lattices with cubic (thin line) and quartic (thick line)
anharmonicity for the value gv = 0.05 a and b gv = 0.2

increasing; (iv) the quartic anharmonicity is dominant at small values of δ (large
velocities), while cubic anharmonicity is dominant at larger values of δ (small veloc-
ities).

From (12.30) we obtain

Φ2(ξ) = 1

2D

d F(ρ)

dρ
. (12.56)

Using explicit expression for F from (12.43), we find the bisolectron wave function

Φc(ξ) =
√

ρ0(c)

2D
sech(κcξ)

√
1 − s2 + αρ0(c)sech2(κcξ), (12.57)

for the lattice with cubic anharmonic potential, and

Φq(ξ) =
√

ρ0(q)

2D
sech(κcξ)

√
1 − s2 + βρ2

0(q)sech
4(κqξ), (12.58)

for the lattice with quartic anharmonic potential, respectively.
Finally, we write down the energy and the momentum of the system, described

by the Hamiltonian in (12.1)–(12.4), in the bisolectron state (12.6)-(12.8):

E (bs)
tot (V ) = mV 2 + E (bs)(V ) + W (V ), (12.59)

P(bs)(V ) =
[
2m + M

√
2

σ

∫ ρ0

0
K (ρ, ρo)

ρ√
ρ0 − ρ

dρ

]
V ≈ (12.60)

≈
[
2m + 4

3
M

√
2

σ
ρ
3/2
0

]
V .
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Here we count the energy from the electron energy E0, m = �
2/2Ja2 is the effective

band mass of an electron, E (bs)(V ) = −2λJ is the bisoliton energy, and W is the
energy of the lattice deformation:

W (V ) = 2MV 2
ac

∫ 0

−∞

(
F(ρ) + s2ρ2

)
dξ, (12.61)

or, in terms of the F and G functions given by expressions (12.31), (12.38), respec-
tively:

E (bs)(V ) = −2DG(ρ0)MV 2
ac, (12.62)

W (V ) = MV 2
ac√
σ

∫ ρ0

0

d2F/dρ2

d F/dρ

F(ρ) + s2ρ2

√
G(ρ0) − G(ρ)

dρ. (12.63)

Using now the bisolectron solutions (12.47), (12.57) for the cubic anharmonicity,
we obtain

E (bs)
c (V ) = −DMV 2

acρ0(c)
4ρ0(c) + 3δc

3(ρ0(c) + δc)
, (12.64)

Wc(V ) ≈ MV 2
ac

3
√
2σ

ρ
3/2
0(c)

(
8

15
αρ0(c) + 1 + s2

)
. (12.65)

For the solutions (12.47), (12.58) in the quartic anharmonic lattice we have

E (bs)
q (V ) = −1

2
DMV 2

acρ0(q)

3ρ3
0(q) + 2δq

ρ2
0(q) + δq

, (12.66)

Wq(V ) ≈ 8
MV 2

ac√
2σ

ρ
3/2
0(q)

[
1

3

(
s2 + 1

2
δβ

)
+ 2

35
βρ2

0(q)

]
. (12.67)

Two important conclusions follow from the above expressions. First of all, com-
paring the bisolectron energies with the energies of solectrons (see [20–22]), we
conclude, that there is positive binding energy of the bisolectron in the whole inter-
val of velocities V 2 ≤ V 2

ac

E (bs)
bind(v)(V ) = 2E (s)

tot(v)(V ) − E (bs)
tot(v)(V ), v = c, q, (12.68)

which means that an anharmonic lattice soliton can capture two electrons with oppo-
site spins and that such a bisolectron state is energetically favorable relative to two
independent solectrons (lattice soliton bound with one electron). Here E (bs)

tot(v)(V ) is
the total energy of the system in the bisolectron state with account of the energy of
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the lattice deformation, and E (s)
tot(v)(V ) is the energy of the system with one electron

in a soliton state with account of the energy of the lattice deformation.
Secondly, we see, that the bisolectron energy and the energy of the lattice defor-

mation take finite values at the velocity of the bisolectron equal to the velocity of the
sound in the chain, namely:

E (bs)
tot(c)(Vac) = mV 2

ac − 2

3
χaρ0(c) + 16

45
χaαρ2

0(c), (12.69)

E (bs)
tot(q)(Vac) = mV 2

ac − 3

2
χaρ2

0(q) + 8

35
χaβρ3

0(q), (12.70)

where the values ρ0(v) are calculated at V = Vac.
At small velocities the bisolectron energy increases with the velocity increasing,

according to the law:

E (bs)
tot(c)(V ) = mV 2 − 1

3
χaρ0(c)

(
1 − 2s2 − 1

15
αρ0(c) + 7αρ0(c)s

2
)

, (12.71)

for the lattice with cubic anharmonic potential, and

E (bs)
tot(q)(Vac) = mV 2 − 1

3
χaρ0(q)

(
1 − 2s2 + 3βρ2

0(q)s
2 − 129

35
βρ2

0(q)

)
(12.72)

for the latticewith quartic anharmonic potential. Recall, in these expressions the value
of the maximum lattice deformation is function of the velocity, ρ0(v) = ρ0(v) (V),
according to (12.51) and (12.52), respectively

From the above two equations we can calculate the bisolectron band bottom
energy level and bisolectron effective mass in the effective mass approximation for
the lattice with cubic anharmonic potential

E (bs)
0(c) = −2

3
Jg2

(
1 − 1

15
α
2Jg2

χa

)
, (12.73)

M (bs)
c = 2m + 4

3

Jg2

V 2
ac

(
1 − 7α

Jg2

χa

)
, (12.74)

and for the lattice with quartic anharmonic potential

E (bs)
0(q) = −2

3
Jg2

(
1 − 129

35
β4g2 J 2

χ2a2

)
, (12.75)

M (bs)
q = 2m + 4

3

Jg2

V 2
ac

(
1 − 6β

J 2g4

χ2a2

)
. (12.76)
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Here g is the dimensionless electron-lattice coupling constant

g ≡ χ2

2Jw
. (12.77)

12.5 Bisolectrons with Account of the Coulomb Repulsion

Let us now take into account the Coulomb repulsion between the electrons. The total
energy of the system (12.59) in the bisolectron state with account of the Coulomb
repulsion is

E (bs)
tot(v)(V ) = E (bs)

tot(v)(V ) + ECoul. (12.78)

In the systems, whose parameters satisfy the condition of the adiabatic approxi-
mation (intermediate value of the electron-lattice coupling and relatively small non-
adiabaticity parameter) the bisolectron is extended over a few lattice sites. Therefore,
the energy of the Coulomb repulsion can be written as

ECoul ≈ e2

4πεla
, (12.79)

where e is the effective electron charge with account of its screening in the lattice due
to the surrounding and complex structure of a unit site, and ε = εmε0 is the dielectric
constant of the lattice, which contains the dielectric constant εm of the medium.

Above we have obtained the soliton solutions for two electrons with anti-parallel
spins, bound with the lattice soliton, in the approximation of a very weak Coulomb
repulsion. In such a case both “one-electron” wave-functions have maximum values
at the same position in the lattice. In the general case the corresponding maximum
values are shifted along the lattice at some value l0, which is determined by the
balance between the Coulomb repulsion between the electrons and their attraction
due to the interaction with the lattice:

Φ j (ξ) = Φ j (ξ ± l0/2) f j (l0), (12.80)

where f j (l0) takes into account the change of “one-electron” wave functions due
to the Coulomb repulsion. For localized states extended over few lattice sites the
repulsion is expected to be weak: f j (l0) ≈ 1 + ε(l0), where here ε � 1 is a
smallness parameter. Therefore, in the lowest order approximation with respect to ε

the maxima of ‘one-electron’ functions coincide at ξ = 0, as was considered in the
previous section.

According to (12.80), in the presence of the Coulomb repulsion we have the fol-
lowing expressions for the wave-functions for the cubic anharmonicity (see (12.57))
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Φ j (c)(ξ) =
√

ρ0(c)

2D
sech

(
κc(ξ ± l

2
)

)
(12.81)

×
√
1 − s2 + αρ0(c)sech2

(
κc(ξ ± l

2
)

)
,

and for a lattice with quartic anharmonicity (see (12.58))

Φ j (q)(ξ) =
√

ρ0(q)

2D
sech

(
κq(ξ ± l

2
)

)
(12.82)

×
√
1 − s2 + βρ2

0(q)sech
4
(

κq(ξ ± l

2
)

)
.

The distance between the maxima of the ‘one-electron’ wave-functions, l, can be
determined from the condition of the minimum of the total energy of the system with
account of the Coulomb repulsion. To calculate it, let us consider for simplicity the
case of a bisolectron at rest, V = 0. Substituting function (12.81) (or (12.82)) and
corresponding lattice deformation (12.47) into the Hamiltonian H and expanding
the result with respect to l in the assumption l < μ = 2π/κv, we obtain after the
integration the total energy of the system including the Coulomb repulsion (12.79):

E (bs)
tot(v)(0) = 2

3
J

κv

D
ρ0(v) − 4

3

χa

κv D
ρ2
0(v)

(
1 − l2κ2

v

)
(12.83)

+wa2ρ2
0(v)

[
2

3
+ 1

2
ςvρ

2
0(v) − l2κ2

v

(
1

3
+ 1

2
ςvρ

2
0(v)

)]
+ e2

4πεla
,

where ςc ≡ α, and ςq ≡ β, and the energies are counted from the energy of the
electron band bottom E0. Expression (12.62) can be represented in the general form

E (bs)
tot(v)(0) = E (bs)

tot(v)(0) + 1

2
ζvl2 + e2

4πεla
, (12.84)

where the first term is the bisolectron energy in the absence of theCoulomb repulsion,
the second term is due to modification of the wave functions, and the last term is the
Coulomb repulsion.

Minimizing this expression with respect to l, we get the equilibrium distance
between the maxima of one-electron functions:

l0 =
(

e2

4πεaζv

)1/3

, (12.85)
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where we used the notation

ζq =
[
4

3

χaρ2
0(q)κq

D
− wa2ρ2

0(q)κ
2
q

(
1

3
+ 1

2
βρ2

0(q)

)]
. (12.86)

Expression (12.85) can be approximated as

l0(v) =
(

3De2

4πεχa2ρ2
0(v)κv

)1/3

. (12.87)

Substituting these results into (12.78), we obtain the final expression for the total
energy of the system at V = 0

E (bs)
tot(v)(0) = E (bs)

tot(v)(0) + 3

2

(
e2

4πεa

)2/3

ζ 1/3
v + e2

4πεl0a
. (12.88)

Here l0 is given by (12.87).
Such a state is stable with respect to the decay of the bisolectron into two solec-

trons, if the bisolectron binding energy E (bs)
bind(v)(0) is positive

E (bs)
bind(v)(0) ≡ 2E (s)

tot(v)(0) − E (bs)
tot(ν)(0) > 0, (12.89)

therefore, when the inequality is valid

2E (s)
tot(v)(0) − E (bs)

tot(ν)(0) + 3

2

(
e2

4πεa

)2/3

ζ 1/3
v > 0. (12.90)

12.6 Comparison with Numerical Simulations

In this section we compare the above obtained analytical results with the results
obtained numerically in [25, 46] for a discrete lattice with Morse interaction with
two added excess electrons, described by the Hubbard Hamiltonian. The Morse
potential

UMorse(r) = D

[(
1 − e−B(r−a)

)2 − 1

]
, (12.91)

can be approximated near the minimum with high degree of precision by the anhar-
monic potential Uc (see (12.42)) (for more details see [5]).

The parameter values used in the simulations were: η = 2.5a, J0 = 0.02 (2D),
τ = J0/(� ΩMorse) = 20, for different values of the Hubbard parameter Ū =
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(a) (b)

Fig. 12.3 a Bisolectron density q(x = na) according to the analytical result (12.81) at l = l0 = 4.
b Results of the numerical simulations for the electron density Pn at Ū = 20

(a)
(b)

Fig. 12.4 a Bisolectron density q(x = na) according to the analytical result (12.81) at l = l0 = 8.
b Results of the numerical simulations for the electron density Pn at Ū = 60

U/�ΩMorse, namely Ū = 20, 60, 70, 100, the lowest of which, Ū = 20, for the
parameters of alpha-proteins corresponds to U = 0.004 − 0.02eV, and the upper
value Ū = 100, respectively, correspond to U = 0.02 − 0.1eV.

In left panels of Figs. 12.3 and 12.6a we show the charge density function within
our analytical model for various values of the Coulomb repulsion, which determines
the distance between the maxima of one-electron functions. We define the charge
density function in elementary charge units in the usual way as q(ξ) = Φ2

1 (ξ) +
Φ2

1 (ξ), where Φi (ξ) are functions determined by expressions (12.81) and l = l0 as
given by the relation (12.87). The results of the numerical simulations for the electron
density and the velocity distribution of solectron pairs with Hubbard repulsion on
the Morse lattice are shown in right panels (b) of Figs. 12.3, 12.4, 12.5 and 12.6
(a previous version of these figures was published in [5]).

Although the numerical and analytical results are obtained in slightly differ-
ent models of the anharmonic lattice and the Coulomb repulsion, there is a good
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(a)
(b)

Fig. 12.5 a Bisolectron density q(x = na) according to the analytical result (12.81) at l = l0 = 14.
b Results of the numerical simulations for the electron density pn at Ū = 70

(a) (b)

Fig. 12.6 a Bisolectron density profile q(x = na) according to the analytical results (12.81) at
l = l0 = 20. b Results of the numerical simulations for the electron density pn at Ū = 100

qualitative agreement in both approaches. In particular, we see that electrons are
localized in the bisolectron state, the profile of which depends on the strength of the
Coulomb repulsion with the tendency of splitting one maximum into two maxima
with increasing the Coulomb repulsion.

Notice that the parameter values used in the numerical simulations, correspond
to relatively high non-adiabaticity of the system and strong anharmonicity. Nev-
ertheless, comparison of the figures corresponding to four different values of the
Hubbard term in numerical simulations and, respectively, Coulomb term in the ana-
lytical model shows that our analytical model gives rather good results even for quite
a strong electron repulsion. In the lowest order of the continuum approximation used
in our model, the functions are smooth with one or two maxima depending on the
strength of the Coulomb repulsion. The dynamics of the bisolectron and account of
the lattice discretness manifested in the presence of the Peierls-Nabarro potential [6,



312 L.S. Brizhik et al.

7] will modify the functions profile, and will lead to some radiation of sound waves,
which we can see in the results of the numerical modeling in Figs. 12.4, 12.5 and
12.6.

12.7 Supersonic Bisolectrons

In this section we look for supersonic bisolectrons. First of all, we notice that accord-
ing to theHamiltonian (12.2), the dispersion lawof the electron bandwith the electron
states Ψ (n, t) = A exp (ikn − iε(k)τ ) is given by the equation

ε(k) = 4 j sin2
k

2
, j = J

MV 2
ac

, (12.92)

where k is the dimensionless wave-vector (quasi-momentum), k ∈ [−π, π ] . Here
and below we will use the dimensionless time τ = Vact/a and measure energies in
units of MV 2

ac.
The dimensionless electron group velocity is

v ≡ Vg

Vac
= dε(k)

dk
= 2 j sin k, (12.93)

from where we see that it attains the maximum value vmax = 2 j at k = π/2.
Therefore, the supersonic regime of the electron motion can take place in systems
with large enough electron band width j > 1/2.

Let us represent the electron wave function in the form of the modulated envelope
Ψ (x, τ ) = Φ(x, τ ) exp [ikx − i (ε(k) + εb(k)) τ ] where εb(k) is the corresponding
eigen-energy of the state. Now the equations of motion become

∂Φ(x, τ )

∂τ
+ 2 j sin k

∂Φ(x, τ )

∂x
= 0, (12.94)

j cos(k)
∂2Φ(x, τ )

∂x2
+ 2χ0ρ(x, τ )Φ(x, τ ) + εb(k)Φ(x, τ ) = 0, (12.95)

∂2ρ(x, τ )

∂τ 2
− ∂2u′(ρ)

∂x2
− 1

12

∂4ρ(x, τ )

∂x2∂τ 2
+ 2χ0

∂2Φ2(x, τ )

∂x2
= 0, (12.96)

where

u = U

MV 2
ac

, χ0 = χa

�Vac
, (12.97)

and the prime denotes a derivative of the function with respect to the argument.
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We have included into (12.96) the additional term with the fourth order derivative
in order to take into account the lattice discreteness within the same approxima-
tion as the lattice anharmonicity at supersonic velocities (comp. (12.12) and see the
discussion there). This equation is known as the improved Boussinesq equation.

It is easy to see that, for the stationary wave functions, (12.94) defines the electron
band energy dispersion law,while the potential of the stationarySchrödinger equation
(12.95) is the self-consistent deformational potential to be found from (12.96). We
are interested in the bound electron states, therefore, the electron eigen energy εb(k)

has to be negative, which is possible only if cos(k) is positive, according to (12.95).
Therefore, such states are possible for the corresponding quasi-momentum values in
the interval 0 ≤ k < π/2. The quasi-momentum is determined by the dimensionless
soliton velocity according to the relation

k = Arc cos

√
1 − v2

4 j2
, (12.98)

which follows from (12.92).
Another way to take into account the lattice discreteness is to generalize the

equation (12.96) to the ill-posed Boussinesq equation (see comments in [12]):

∂2ρ(x, τ )

∂τ 2
− ∂2u′(ρ)

∂x2
− 1

12

∂4ρ(x, τ )

∂x4
+ 2χ0

∂2Φ2(x, τ )

∂x2
= 0. (12.99)

Improved and ill-posed Boussinesq equations (12.96) and (12.99) correspond to
lattices with nonlinear dispersions

ω2
1(k) = k2

1 + k2/12
, ω2

2(k) = k2(1 − k2/12), (12.100)

respectively. The two dispersions in the admissible interval of quasi-momentum
[0, π/2] are very close, as we can see from Fig. 12.7.

Fig. 12.7 Phonon energy
dispersions for the improved
(thick line) and ill-posed
(thin line) Boussinesq
equations in the interval
[0, π/2]. Red line (the top
curve) shows linear
dispersion
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For the class of functions, depending on the running wave coordinate ζ = x −
x0 − vτ , (12.94)–(12.99) take the form

λ
d2Φ(ζ)

dζ 2 + 2χ0ρ(ζ )Φ(ζ ) + εb(k)Φ(ζ ) = 0, (12.101)

μ
d2ρ(ζ )

dζ 2 + (1 − v2)ρ(ζ ) + duanh

dρ
= 2χ0Φ

2(ζ ), (12.102)

where uanh is the anharmonic part of the lattice potential, u = uh +uanh , uh ≡ ρ2/2.
Here

λ = j cos(k), μ = μ1,2, μ1 = v2

12
, μ2 = 1

12
. (12.103)

Indexes 1 and 2 refer to the improved and ill-posed Boussinesq equations, respec-
tively.

From the system of (12.101) and (12.102) we find, as in Sect. 12.4,

ζ = ±
√

μ

2

∫ ρ0

ρ

dr

r
√

Q(r)
, (12.104)

where the function Q is defined in the interval 0 ≤ ρ ≤ ρ0 by the relation:

Q(r) = 2
χ0

ρ2

∫ ρ

0
Φ2(r)dr + v2 − 1

2
− 1

ρ2 uanh(ρ). (12.105)

It follows from (12.104) that the kernel function Q has to bepositive and convex for
all values of ζ . This requirement determines several types of solutions, as described
below.

1. Supersonic lattice solitons v2 > 1 in an un-doped chain (i.e., in the absence of an
extra electron), which corresponds to Φ = 0, χ0 = 0.

2. Subsonic and weakly supersonic self-trapped electrons in the bisolectron state in
the chain. In this case the first term in the r.h.s. of the function (12.105) is the
leading one, and the type of the solution is determined by the asymptotics of the
electron wave function depending on ρ. Let us consider the parameter L which
is determined as the limit

L ≡ lim
ρ→0

1

ρ2

∫ ρ

0
Φ2(r)dr. (12.106)

If Φ2(ρ) ∝ ρ at ρ → 0, then the value L is finite, and, therefore, the first term
in (12.105) is important. In this case the solution can be subsonic if uanh = 0.
The value Q can be positive also at v2 = 1 if uanh �= 0. In this case the solution
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has finite values of energy and momentum for the positive lattice anharmonicity
(see [44, 45]). This solution can be supersonic for strong lattice anharmonicity
uanh .

3. Supersonic bisolectron state. It is valid at a sufficiently fast decay of the electron
wave functions in the limit (faster, than the linear decay, considered above), such
that the following inequality is fulfilled:

2χ0

∫ ρ

0
Φ2(r)dr < uanh(ρ). (12.107)

In this case the lattice anharmonicity uanh is responsible for the soliton formation.
The envelope of such a soliton is modified by the presence of two electrons due to the
integral term in expression (12.105). The presence of this integral term increases the
maximum value of the chain deformation. Such a lattice soliton creates the potential
well for the excess electrons and results in their binding and trapping. Namely this
case corresponds to the capture of electrons by the anharmonic lattice soliton and
formation of a bisolectron (lattice-polaron l-p mode in [50]).

The wave functions in the class of localized functions with a bell-shaped profile,
can be chosen in the form

Φ2(ζ ) ∼= C pρ
p(ζ ) (12.108)

with positive constants C p > 0 to be determined from the normalization condition
of the wave-function Φ.

1. At p = 1 we reconstruct analytically the solutions, found in Sect. 12.4 for the
lattices with cubic and quartic anharmonicities at some fixed relation between
the parameter values. Namely, for the case of the cubic lattice anharmonicity this
relation reads as λα = 6μχ0, where α is a anharmonicity coefficient in (12.42).

2. At p > 1 we find

εb(k) = − j p2v2 cos(k), v2 = v2 − 1

4μ
, (12.109)

which takes place only at v2 > 1. Here parameter p has to be found from the
normalization condition of the wave-function.

We can find explicitly analytical solution of the system of equations for the ansatz
(12.108) at p = 2:

Φ
(ss)
bis = 3

χ0
κ2

√
λ

(
α

χ0
− μ

)
sech2(κζ ), (12.110)

ρ
(ss)
bis = 3λ

χ0
κ2sech2(κζ ). (12.111)
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From the normalization condition we obtain the relation between the width of the
bisolectron and its velocity

κ2 = v2 − 1

4μ
[
1 − 3(γ − 1)

] , (12.112)

or, equivalently,

v2 = 1 + 4μκ2 [
1 − 3(γ − 1)

]
, (12.113)

where

γ = αλ

2μχ0
. (12.114)

In the case of the arbitrary bisolectron velocity it is difficult to find analytical
solutions explicitly. They can be found numerically by solving (12.101) and (12.102)
or their equivalent discrete equations. Although the system of equations does not
belong to the class of complete integrable equations, it is still very close to a such
one, and the corresponding soliton ansatz is a good approximation for its solution.
Therefore, we expect, that numerically found solutions are close to the solutions
found above for the particular velocity (12.113). To a large extent this conclusion
is supported by the numerical simulations of the dynamics of two electrons in the
anharmonicMorse lattice [14, 15, 25, 28, 46, 47],where the trapping of two electrons
by the supersonic lattice soliton has been observed (see also [14, 15].

12.8 Conclusion

We have shown that in one-dimensional crystal lattices the anharmonicity of the
inter-site interactions favors not only self-trapping of an extra electron, but also
pairing of two electrons with opposite spins in a single lattice soliton deformation
well, resulting in the formation of a stable bisolectron state. Such a bisolectron
is the bound state of the lattice soliton and two self-trapped electrons in a singlet
bisoliton state. This conclusion generalizes the concepts of polarons and bipolarons
[1, 2, 31, 34, 35], and illustrates the existence of bisolitons not only in harmonic one-
dimensional systems [8, 9, 17], but in anharmonic lattices too. Our analytical model
explains the results of the numerical simulations for lattices with anharmonic Morse
potential describing the inter-site interactions, with two extra electrons in it [28, 43,
46, 47]. We have found explicitly the expressions for the lattice deformation and
two-electron wave-functions for lattices with cubic and quartic anharmonicities. We
also calculated the energies of the bisolectrons for these two types of anharmonicities
and shown that bisolectrons can move with the velocities up to the velocity of the
sound in the lattice, and the corresponding energy and momentum are finite in the
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whole interval of bisolectron velocities. We have also found the conditions for the
existence of supersonic bisolectrons for particular values of their velocity.

We have studied the role of the Coulomb repulsion in the formation of bisolectrons
in anharmonic lattices. We have shown that with account of the Coulomb repulsion
between the electrons their envelope function in a bisolectron state can have one
or two maxima, the distance between which is determined by the balance of the
gain of energy due to binding to the lattice deformation and loss of energy due
to the Coulomb repulsion. The results of the analytical study of two electrons in
a lattice with cubic anharmonicity with account of their Coulomb repulsion are in
good agreement with the numerical simulations of two electrons in an anharmonic
Morse lattice with account of Hubbard electron-electron repulsion in a broad range
of parameter values.

The results obtained here are valid for systems, whose parameter values sat-
isfy adiabaticity conditions, i.e., for systems with moderate values of the electron-
lattice coupling and not too large nonadiabaticity parameter (the ratio between char-
acteristic phonon energy and electron band width). This is a large class of low-
dimensional compounds, including biological macromolecules (DNA and α-helical
polypeptides)[18, 19, 30, 38], conducting polymers [11], and low-dimensional crys-
tals, such as polydiacetylene [24, 27, 48], conducting platinum chains [11], salts of
transition metals (PbSe,PbTe,PbS) [3, 16, 40, 49], high-temperature superconduct-
ing cuprates [4, 13, 23, 26, 32], etc. These compounds find numerous applications
in microelectronics and nanotechnologies, or play important role in living systems.
This explains our interest in studying nonlinear effects in such systems. We also
think that our results apply to muscovite mica, and cover some of the properties of
‘quodons’ [37], which are widely discussed in the present book.
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Chapter 13
Solitons and Charge Transport in Triangular
and Quadratic Crystal Lattices

A.P. Chetverikov, W. Ebeling and M.G. Velarde

Abstract We study solitons and solectrons and their time and space evolution in
triangular and quadratic anharmonic lattices with Morse interactions. First we offer
computational evidence of the possibility of long lasting, supersonic lattice solitons
moving along crystallographic axes. On the basis of the dispersion equations we
postulate appropriate evolution equations of Boussinesq and Kadomtsev-Petviashvili
(KP) type. Adding electrons to the lattice we find solectron bound states in computer
simulations corresponding continuous KP and nonlinear Schrödinger equations. As
a follow-up of the above, we also offer computational evidence of the possibility of
supersonic, almost losses-free transfer or transport of electrons along crystallographic
axes. Finally we show how electrons can be controlled and transported by such
acoustic solitonic waves and how electron-surfing occurs at the nanoscale.

13.1 Introduction

Applications of nonlinear dynamics appear, more and more, in a variety of fields
of science and, in particular, in several branches of Physics from hydrodynamics
to optics, Bose-Einstein condensates, etc. [2]. The possibility of controlling and
transporting, e.g., charges or holes at relatively very high velocities (km/s, Å/ps) and
over long distances (from, say, nm to mm) has recently being explored both in theory,
with computer simulations, and in experiments. The latter have shown how electrons
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can surf on appropriate acoustic waves, excited in adequate substrates. Such electron
surfing occurs at the nano- and at the macro-level [7, 9, 12, 17, 23, 32, 35, 42, 52, 56].
At the macro-level suffices to use a piezoelectric material like a GaAs layer, where a
strong enough acoustic, linear or much better soliton, wave generates the appropriate
corresponding polarization field wave able to carry the charge. At the nano-level a
strong enough mechanical or electrical local perturbation, e.g., generated at the tip
contact of an AFM, can excite acoustic solitons in anharmonic lattice crystals like
PDA and other related crystals. Let us also mention the observation of localized
excitations (discrete breathers, quodons) in layered structures like muscovite mica
[30, 31, 43] and stripes in cuprate layers [20, 26, 27, 34, 41, 45, 49, 50, 54].
Of particular interest are collective phenomena in two-dimensional (2d) lattices,
which are so far little explored. In the present work we study soliton-like collective
excitations in 2d systems. Significant works on the theory are due to Kadomtsev,
Petviashvili, Zakharov and others [1, 10, 11, 14, 15, 24, 25, 28, 29, 33, 36, 37, 40,
44, 55].

In our simulations we consider systems of a few hundred atoms on a plane inter-
acting with one or a few added, excess electrons. Earlier we have discussed vari-
ous consequences of the interaction between electrons and strongly localized lattice
excitations of soliton-type in one-dimensional (1d) and 2d lattices [7, 9, 12]. For
the electron dynamics we used the tight-binding approximation (TBA) and for the
lattice particles a classical Hamiltonian with Morse interactions. As a result of this
mixed classical-quantum dynamics we could show that the electrons “like” to fol-
low the trajectories of the soliton-like lattice excitations. In the 1d case we have
predicted several interesting phenomena, in particular the “vacuum-cleaner” effect,
i.e., the electron probability density is gathered by solitons which along their trajec-
tory act as long range attractors [16, 22, 51]. Noteworthy is that these excitations
move in general with supersonic velocity or velocities a bit below the sound velocity
depending on parameter values, on the initial conditions and on the electron-lattice
interaction. This means that electrons bound to lattice solitons (in short called solec-
trons) can move with supersonic or slightly subsonic velocities of the order of km/s
(Å/ps).

13.2 Excitations in Square Lattices

Square lattices in 2d are closely related to 1d lattices since they may be considered
as just two perpendicular crossed 1d-lattices (Fig. 13.1, left panel). Each atom has
four nearest neighbors and we have two crystallographic axes. We expect therefore
two quasi 1d excitations along the crystallographic axes. Depending on the forces,
there might be problems with he stability of square lattices, and this we will discuss
in the next section. Assuming the atoms have the coordinates ri and the velocities vi
the Hamiltonian of our 2d system is
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Fig. 13.1 Square lattice The core densities of the lattice units/atoms. Left panel Small part of an
ideal square lattice. Right panel Lattice exhibiting distortions due to noise/temperature. For details
about the core densities ρac(x, y) see main text

H = m

2

∑
i

v2
i + 1

2

∑
i, j

V (ri , r j ). (13.1)

The subscripts locate the atoms all with equal mass, m, at lattice sites and the sum-
mations run from 1 to N . We assume that the lattice units repel each other with
exponentially repulsive forces and attract each other with weak dispersion forces.
The characteristic length determining the repulsion between the particles in the lat-
tice is σ . We limit ourselves to nearest-neighbors only using the relative distance
r = |rn − rk |. The above conditions are met by the Toda, VT , and the Morse, VM ,
potentials respectively:

VT (r) = −D + mω2
0

b2
T

[
exp(−bT r ′) − 1 + bT r ′] ,

VM (r) = −2D exp(−br ′) + D exp(−2br ′), r ′ = (r − σ), mω2
0 = 2Db2.

(13.2)

To have dimensionless variables we consider in the following the spatial coordinates
rescaled with σ as unit length. Time is normalized to the inverse frequency of lin-
ear oscillations near the minimum of the potential well, ω−1

0 , whereas energy and
temperature are scaled with twice the depth of the potential well 2D. Further the
stiffness parameters b and bT (made dimensionless) define the strength of the repul-
sion between atoms. Note that with the choice bT = 3b the two potentials coincide
up to the third derivatives around the potential minimum. In the computer simulations
we use a smooth cutoff of the potential at 1.5σ, thus excluding unphysical cumu-
lative interaction effects arising from the influence of lattice units outside the first
neighborhood of each atom [9, 12]. To study, at varying temperature, the nonlinear
excitations of the lattice and the possible electron transport in a lattice in the simplest
approximation it is sufficient to know the coordinates of the lattice (point) particles
at each time and the interaction of lattice deformations with electrons. Coordinates
and velocities of particles are obtained by solving the equations of motion of each
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particle under the influence of all possible forces. Our simulation algorithm corre-
sponds to a molecular dynamics code, i.e. the particles are not fixed to any lattice
node but may move freely through the system, exchanging places with neighbors
etc. Rather than using Cartesian coordinates x and y, we use dimensionless com-
plex coordinates Z = (x + iy)/σ . Then the initial classical Newton deterministic
equations corresponding to the lattice Hamiltonian (13.1) including also friction and
random forces yield to a Langevin dynamics for the lattice units

d2 Zi

dt2 =
∑

k

Fik(|Zik |)zik +
[
−γ

d Zi

dt
+ √

2Dv
(
ξi x + iξiy

)]
, (13.3)

where the index i identifies a particle among all N particles of the ensemble, γ is
a friction coefficient, Dv defines the intensity of stochastic forces, ξi x,y denote sta-
tistically independent generators of the Gaussian noise. T = m Dv/γ (Einstein’s
relation). Zik = Zi − Zk and zik = (Zi − Zk)/|Zi − Zk | is the unit vector defin-
ing the direction of the interaction force Fik , corresponding to the Toda or Morse
potential, between the i th and the kth atoms in the lattice. Let us first study analyt-
ical representations for the noise-free case. In the case of Toda interactions exists a
special exact analytical solution for the square lattice by using the functions found
by Toda analytically solving the 1d-equations [1, 28, 40, 44]. The Toda solutions
remain valid for the special case that the initial conditions and the corresponding
excitations are strictly parallel to one axis, say the x-axis. Let n, m be the numbers
denoting the nodes in x- and y-direction and let us define the lattice compressions in
x-direction by

ρn,m(t) = xn(t) − xn+1(t) − σ. (13.4)

Note that there are no compressions in y-direction due to the assumed parallel dynam-
ics inside the rows. Then with appropriate initial conditions an exact solution is given
by the Toda profile running along the x-axis

ρn,m(t) = 1

bT
ln

[
1 + sinh2(κ)

cosh2(κn − βt)

]
; β = sinh(κ). (13.5)

For small amplitudes this gives

ρn,m(t) � 1

bT

sinh2(κ)

cosh2(κn − βt)
. (13.6)

As earlier noted, for Morse systems we find empirically a good description of the
observed profile for b � bT /3. The constant κ is defined by the energy of the soliton.
In the continuum limit this gives the well known soliton profile [17, 44, 56]
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ρ(x, y, t) = ρ0sech2(κξ), ξ = (x ± vst)/σ, (13.7)

where vs is the soliton velocity. The soliton represented by (13.7) is a special solu-
tion, representing a “line-soliton”, of the so-called KP-equation. The Kadomtsev-
Petviashvili equation is an extension of the 1d Boussinesq-Korteweg-de Vries
(BKdV) equation and reads in a standard form [1, 24, 25, 28, 33]:

∂

∂x

[
∂

∂t
+ ∂3

∂x3

]
ρ(x, y, t) = ∂2

∂y2 ρ(x, y, t) + 3
∂2

∂x2 ρ2(x, y, t). (13.8)

Line solitons are extended rectilinear wave fronts localized perpendicular to the
propagation direction, as also shown by the computer simulations [10, 11].

Let us discuss the method of computer simulations in more detail. We solve
numerically the equations of motion for the complex coordinates Zi (t) taking into
account only those atomic units satisfying the condition |Zi − Zk | < 1.5. The
dynamics of the atoms is considered to take place inside a rectangular cell Lx · L y

with periodic boundary conditions and depending on the symmetry of an initial
distribution of units and their number N � 400. As initial condition we assume a
lattice compression and velocity profiles corresponding to the analytical form of a
1d Toda soliton [1, 28, 40, 44] in a given lattice row. The other lattice units remain at
their equilibrium positions on the given lattice [10, 11]. As shown by Remoissenet
[40], a broad spectrum of initial excitations, as e.g. excitations of rectangular profiles
are able to create solitons or cnoidal waves. For this reason we have experimented
with a broad range of initial conditions. For example we gave initially a suitable high
momentum to one lattice atom in the direction of one of the crystallographic axes in
such a way that a successful start of a soliton was observed. This way we found that
not only Toda profiles but also simpler initial conditions as pushing initially just one
lattice particle may be sufficient to create a soliton due to the suitable stiffness of the
exponential repulsion.

For visualization and tracking the atomic densities we modeled the atoms as little
spheres with “cores” represented by Gaussian distributions centered at each lattice
site:

ρ(Z , t) = C
∑

|Z−Zi (t)|<1.5

exp

[
−|Z − Zi (t)|2

2λ2

]
, (13.9)

where C is an ad hoc scaling factor thus permitting depicting ρ(Z , t) in units of C .
Using data about trajectories of particles Zn(t) and their velocities we can calcu-
late the lattice atom distribution ρ(Z , t). The value of the parameter λ is chosen in
such a way that the heights of each Gaussian peak corresponding to all lattice atoms
take the value unity. The local excess above unity indicates a corresponding local
lattice “compression” or overlapping of Gaussians, when the lattice is perturbed.
To make the picture much clear we introduce an “extra density” ρex = ρ − ρc
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with ρc = 1 − δ(δ � 1). Varying δ allows observation of regions with different
compression levels/Gaussian overlappings. Furthermore, to clearly distinguish
moving “local compressions” we use ρac = ∑

k ρex (ktac), where tac is the time
interval for producing ρex (x, y, ktac), with k = 1, 2, . . . , K , K = tsim/tac. The
parameter tsim is our running computer simulation time interval. Accordingly, fol-
lowing the space-time evolution of ρac(x, y, t) solitons appear as tracks of moving
lattice particles/atoms as a kind of bubble chamber traces. The “localized compres-
sions” appear as bright areas of increasing brightness if the localized compression
is pinned. In Fig. 13.2 we show a track of the running excitation (in such “bubble
chamber representation”, left panel) which was created by pushing just one atom in
the direction of the crystallographic axis x . We show the space and time evolution
of the initial soliton density peak for the time interval Δt = 4 (measured in units of
1/ω0, as earlier said). The parameter values of the potential are bσ = 7, λ = 0.3.
The Langevin source corresponds to a rather low temperature, T = 0.001 (in dimen-
sionless units). This corresponds to the mean kinetic energy of a particle < Tkin >

reaching the value T . The soliton is moving along a crystallographic axis and was
excited by a strong pulse of velocity 1.5v0 imposed at t = 0 to the 4th atom n = 4 in
the 10th row with rather high energy 1.125 mv2

0(bσ)2. Here v0 is the sound velocity in
a corresponding 1d-lattice. The high-energetic soliton excited this way is quite long
lasting in its motion along the chosen crystallographic axis. Transverse excitations
and thermal collisions due to the source term in the Langevin equation do not play
a significant role in the interval of observation (4 time units ω−1

0 ). The phenomena
studied in our simulations remind very much the discrete moving breathers observed
by Marin et al. [30, 31, 43] for a wide range of nonlinear 2d lattices. These authors
have shown that breather excitations propagate along lattice directions at subsonic
speeds and are rather robust. The results suggested broader applications including
the track formation in some mica minerals and stripes in cuprates [20, 26, 27, 30,
31, 34, 41, 43, 45, 54]. From the length of the cumulative path and the time interval
we may estimate the velocity of the excitations shown in Fig. 13.2. It appears that
this strong local compression moves with velocity about 3vsound with a lifetime of
at least several time units ω−1

0 . In the 2d triangular Morse lattice vsound is slightly
above 1 in our units, which here is the 1d sound velocity. Solitonic excitations move
a few picoseconds with nearly unaltered profile and just this robustness is the reason
that we can identify them with the proposed visualization method. Losses due to
scattering and radiation of linear waves are quite low, due to the nearly integrable
character of the problem. Note that the 2d solitons observed here, are not line soli-
tons but localized solitons similar to the so-called lump solutions of the KP equations
[29, 33]. Looking at the transverse direction we find that the oscillations of the atoms
in the rows adjacent to the row of maximal activity of the soliton oscillate in antiphase
reminiscent of 1d discrete breathers (Fig. 13.3) [3, 13, 21, 30, 31, 43]. We will show
in the next section that the similarity to KP-solitons is so striking that we decide to
qualify them as 2d-solitons [10, 11].
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Fig. 13.2 Square lattice The core density of the lattice atoms, left panel, and positions of point
particles at the latest time instant of simulation t = 4, right panel, are shown in the course of time.
A lattice soliton is excited by a strong pulse in x − direction with velocity 1.5v0 imposed to one
lattice particle located not far from the left border along to the 4th atom in the row 10. A track of
the excitation (in “bubble chamber representation”) of the running soliton density is represented
for the time interval Δt = 4 (measured in units of 1/ω0) in “bubble chamber sequence” as time
proceeds. Parameter values N = 400, bσ = 7, λ = 0.3, and T = 0.001 (in units of 2D)

Fig. 13.3 Square lattice
Time evolution in the atomic
rows adjacent to the (central)
one in which a high energy
soliton-like excitation is
running (red soliton row;
dark blue and green nearest
row; light blue and pink:
next-nearest row, etc). The
period of oscillations is
below 3ω0

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0  1  2  3  4  5 t

yn

A specific property of our solitonic excitations in square lattices is that potential
energy may be released during propagation. Therefore the solitonic propagation may
leave irreversible traces (see Fig. 13.2). The trajectories may be self-sustained and
sometimes might be extremely long. As mentioned already, similar trajectories were
observed for example as long black stripes in natural crystals of muscovite mica
[13]. In theoretical work of Marin et al. [30, 31, 43] such stripes were interpreted as
moving breathers. Our numerical experiments suggest that the tracks in muscovite
mica could be interpreted also as high-energetic solitons which are very robust when
running along crystallographic axes.
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13.3 Dispersion Relation for Two-Dimensional Excitations
and KP Equation

For a linear 1d-lattice the dispersion equation for excitations in x-direction reads

ω2 = 4 sin2
(

1

2
k

)
. (13.10)

Recall that here the frequency of the linear oscillations ω0 is the unit of frequency
and the reciprocal lattice length 1/σ is the wave number unit.

Let us search now for appropriate wave equations. Denoting the continuum limit
of the strain zn = xn − xn−1 − σ as the compression density ρ(x, t) we arrive at a
partial d.e. which was obtained already in 1877 by Boussinesq for the description of
hydrodynamic waves (we purposedly take the equation for waves travelling in both
directions) [1, 28]:

[
∂2

∂t2 − v2
0

(
∂2

∂x2 + 1

12

∂4

∂x4

)]
ρ(x, t) = γ

κ

∂2

∂x2 ρ2(x, t), (13.11)

with the dispersion relation

ω2 = k2v2
0

[
1 − (k2σ 2)/12 + . . .

]
. (13.12)

In the lowest approximation the Boussinesq equation reduces to the standard linear
wave equation, which is solved by two plane waves ρ(ξ) depending on the dimen-
sionless running coordinate ξ = (x ± v0t)/σ where, as said before, v0 is the sound
velocity. For the nonlinear Boussinesq equation there are two solutions for the con-
tinuous density

ρ(x, t) = ρ0sech2(κξ), ξ = (x ± vst)/σ, (13.13)

in agreement with the approximation (13.7) written above. The 1d solitons described
by (13.13) correspond to long wave length and hence to small wave vectors k. In the
2d-case we expect in agreement with the previous section, waves which have a similar
profile in x-direction but are extended also in y-direction. Indeed there are excitations
in 2d which are either line solitons or lump solitons. Both are in x-direction like the
BKdV solitons. Line solitons are extended in y-direction and lump solitons have in
y-direction an envelope which is like a Gaussian.

We will show now that the KP-equation describes both phenomena. Let us con-
sider again the case of the simplest 2d quadratic lattice. A straightforward additive
combination of two linear lattices would correspond to the dispersion relation

ω2 = 4 sin2
(

1

2
kx

)
+ 4 sin2

(
1

2
ky

)
. (13.14)
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The problem with the KP-solutions, which describe observed 2d-phenomena, is that
they are not symmetric along x and y. Hence (13.14) needs some further treatment.
The soliton-like waves we have found in our computer simulations run along the x-
axis like a soliton but, as earlier noted, in the direction of the y-axis the neighboring
lattice units oscillate in anti-phase like discrete breathers with amplitudes slowly
decreasing along y. Because in the transverse direction the 2d-solitons behave like
discrete breathers, we should use for the dispersion relation a “soliton-like” expansion
along the axis x and a “breather-like” expansion into a series along the axis y. We
assume that in kx − ky− space the essential parts of the 2d-soliton dynamics appear
in the region

|kx | � 1, ky = π + Δky, |Δky | � 1, ω � 2. (13.15)

The significant region is the left upper corner in the first Brillouin zone. Accordingly
we may use the expansion

ω2 = 4

[
1

4
k2

x − 1

48
k4

x

]
+ 4

[
1 − 1

8
(Δky)

2
]2

. (13.16)

We introduce now a new frequency

Ω2 = ω2 − 4, (13.17)

and get

Ω2 − k2
x + 1

12
k4

x + (Δky)
2 = 0. (13.18)

By using

Ω2 − k2
x = (Ω − kx )(Ω + kx ) � 2kx (Ω − kx ) ,

we arrive finally at the dispersion relation

2kx (Ω − kx ) + 1

12
k4

x + (Δky)
2 = 0, (13.19)

corresponding to the linear weakly dispersive 2d wave equation for the compression
density

∂

∂x

[ ∂

∂t
+ v0

∂

∂x
+ v0σ

2

24

∂3

∂x3

]
ρ(x, y, t) = v0

2

∂2

∂y2 ρ(x, y, t). (13.20)

This is nothing else than a linear version of the KP equation. By comparing our
weakly dispersive 2d wave equation (13.20) with the KP equation (13.8) we see that
a nonlinear term on the r.h.s is missing. By adding this term which is known to us
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Fig. 13.4 Travelling line
soliton solution of the KP
equation at two successive
time instants (t = 2, red,
t = 10, green)
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already from the Boussinesq equation we find the KP equation in physical variables
as used e.g. for the description of shallow water waves [25] (Fig. 13.4):

∂

∂x

[
∂

∂t
+ v0

∂

∂x
+ v0σ

2

24

∂3

∂x3

]
ρ(x, y, t) = v0

2

∂2

∂y2 ρ(x, y, t) − v0γ
∂2

∂x2 ρ2(x, y, t).

(13.21)

This equation is also exactly solvable as found by Zakharov and Shabat [55] and
others [25, 33]. However the structure of the manifold of solutions is much richer
than that of the BKdV equation [25]. There exist line solutions which are localized
along certain lines in two-dimensional planes. These solutions are plane waves which
in simplest case are generalizations of the BKdV-solitons (Fig. [33]). There exist
many other line solutions [25]. A second class of solutions represent the so-called
lump solitons which are like moving hills. A special solution for the envelope of a
lump-type soliton reads [1, 29, 33]:

ρ(x, y, t) = ρ0

[
vs y2 + 3/vs − (x − vst)2

]
[
vs y2 + 3/vs + (x − vst)2

]2 . (13.22)

Note that this special solution depends only on one parameter vs which is the soliton
velocity and has positive and negative parts. This is related to the property that the
integral is zero

∫
dxdyρ(x, y, t) = 0; ρ0 = vs

3
. (13.23)
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Fig. 13.5 Lump soliton
solution of the KP equation
at two successive time
instants (t = 0, red, t = 5,
green)
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In Fig. 13.5 we display the envelope of a lump soliton at two subsequent time instants.
Such lump solutions we have found numerically for Morse lattices in Sect. 13.2 and
in [10, 11].

We come to the conclusion that the solitons found in our computer simulations
for Morse lattices correspond well to the envelope of lump solitons. Recalling that
we here have considered only inter-site, acoustic vibrations, it seems of interest to
note that adding on-site vibrations play a stabilizing role of (longitudinal) lattice
excitations (in our case solitons). In studies of high-Tc superconducting cuprates
(typical 2d lattices) a bistable fourth-order on-site potential has been used for a
similar purpose [4–6, 38, 39].

13.4 Tight-Binding Dynamics of Charges Interacting
with the Lattice Atoms

In the triangular lattice, which is the simplest stable lattice, it is not difficult to gener-
ate solitons by appropriate initial conditions [10, 11]. We were able to generate line
solitons of finite length and studied their behavior at collisions. Further by exciting
atoms in one row along a crystallographic axis we could generate lump solitons run-
ning along that crystallographic axis. The Hamiltonian we used for the simulations is
just the same as in Sect. 13.2 with the difference that the initial conditions correspond
to an equilibrium triangular lattice now. We had initially N = 400 particles with peri-
odic boundary conditions, with bσ = 4. The computer simulation illustrates the case
of a line soliton, which is excited by an appropriate initial condition; it is quite about
a plane wave (Fig. 13.6). In Fig. 13.7 we show an example of a lump soliton which
was excited by a strong kick. Starting with a lattice at rest we attributed an initial
velocity 2v0 to just one atom located at x = 4, y = 9 in direction of the x-axis. The
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Fig. 13.6 Triangular lattice Line soliton excited at t = 0 (left panel) and then travelling along the
x-axis. The state at t = 5 is at the right panel. Deformations of the soliton are due to the unavoidable
influence of boundaries as the wave front and the direction of the velocity are not orthogonal in
a triangular lattice. Focusing on the displacement of the plane wave soliton central part allows an
estimate of its velocity as 1.5v0. Parameter values N = 400, bσ = 2, κ = 0.465. The excitation
moves with supersonic velocity

Fig. 13.7 Triangular lattice
Moving supersonic
soliton-like compression
density along a
crystalographic axis.
Parameter values N = 400,
bσ = 4. The excitation
moves with supersonic
velocity

corresponding momentum is transmitted to the next neighbor at right and so on and
this way a solitonic excitation is created.

Following earlier work [7, 9, 12] we will show now that lump solitons are able
to carry electrons (or holes) surfing on the compression wave. We consider a system
consisting of atoms arranged initially on a triangular lattice and additional electrons
moving from site to site and interacting with the atoms. In order to study the evolution
of the quantum states of the additional electrons interacting with the atoms in the
2d-lattice, we assume the TBA description. Let n, m denote the internal quantum
numbers of the states of electrons bound to the corresponding atoms at sites rn and
rm . In the following we will assume for simplicity, that there is only one quantum
state per atom which can be occupied by the added, excess electrons. If necessary,
the internal state that characterizes the orbit as well as spin, can be included in the
quantum number n. We set the electronic Hamiltonian as

He =
∑

n

Enc+
n cn +

∑
n,n′

tn,n′c+
n′cn . (13.24)
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The energy levels En will be approximated by constant values En = E0. The
transition matrix elements tn,n′ depend in our model on the atomic distances,
tn,n′ = t (rn′ − rn). Following Slater and others we take an exponential dependence

tn,n′ = V0 exp[−αh |rn − rn′ |]. (13.25)

The range parameter αh can be related to the tunneling probability that decreases
exponentially with distance.

For the lattice part, the Hamiltonian with Morse interactions reads as in previous
sections. As before the characteristic length determining the repulsion between the
particles in the lattice is σ . We limit ourselves to nearest-neighbors only using
the relative distance with rk j = |rk − r j |. Also as before by imposing the cutoff
of the potential at 1.5σ , we exclude unphysical cumulative interaction effects arising
from the influence of lattice units outside the first neighborhood of each atom [9, 12].
Introducing complex coordinates Zn = xn + iyn we write the discrete Schrödinger
equation for the electrons and the Newton equations for the atoms in the form

dcn

dt
= iτ exp(αbσ)

∑
m �=n,|Zn−Zm |<1.5

cm exp(−α|Zn − Zm |), (13.26)

d2 Zn

dt2 =
∑

m �=n,|Zn−Zm |<1.5

[exp(bσ − |Zn − Zm |) (1 − exp(bσ − |Zn − Zm |))

+ 2αV0 exp(α(bσ − |Zn − Zm |))Re(cnc∗
m)] Zn − Zm

|Zn − Zm | , (13.27)

with (τ = V0/�ω0).
For the simulations we use again dimensionless units, i.e., lengths are measured

in units σ , time in units of the reciprocal frequency around the minimum of the
atomic interaction potential 1/ω0. As before, for a better visualization we replace all
points resulting from the simulations by little Gaussian balls representing the wave
functions at the corresponding site. First we focus on the electron placed at the initial
time instant at a site far from its possible disturbance of the velocity of a lattice
particle, hence evolving as in a boundless unperturbed lattice (Fig. 13.8, left panel,
t = 0.2). The system of eigen-modes of the lattice, with the soliton in a reduced
simulation domain, is formed in accordance with the boundary conditions (Fig. 13.8,
right panel, t = 0.4). It (the soliton) evolves in time with a slow motion relative to
the fast dynamics of the electron wave function. Surprinsingly enough the electron
density is all gathered by the soliton and both move together as further illustrated in
Fig. 13.9.

The computer simulations are carried out by solving numerically the set of equa-
tions given above for 400 atoms and 1 electron. We are well aware that simulations
for a matrix of 20 to 20 sites demands a careful check for finite size effects. Prelim-
inary tests with 1600 particles (in part presented in the next section) have however
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Fig. 13.8 Triangular lattice. Left panel Spreading of the smoothed density distribution of an electron
at t = 0.2 which was inserted at t = 0 at just one lattice point. Besides the typical spreading of the
wave function, we see some structuring which is due to the lattice symmetry with 3 crystallographic
axes and to the periodic b.c. (N = 400, bσ = 4, τ = 10). Right panel The electron feels the
compression created by the running soliton and starts to concentrate around the latter (t = 0.4)
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Fig. 13.9 Triangular lattice (follow-up of Fig. 13.8). Left panel Some time after, the electron is
attracted by the compression created by the soliton and concentrates around the latter (left panel).
With increasing time (t = 5.0) the electron density is fully concentrated around the compression
density and moves with the soliton with supersonic velocity along the crystallographic axis (right
panel)

shown that the basic effect demonstrated here, the formation of moving bound states
between lattice excitations and electrons is only weakly size dependent. We note that
similar phenomena of collecting electron density by solitons in nonlinear 1d- and in
2d-lattices were recently observed also by Cisneros-Ake et al. [16].

13.5 Control of Electrons and Losses-Free Transport
on Longer Distances

The numerical experiments described here offer similarity with recent experiments
about controlling electrons by strong surface acoustic waves [23, 32]. However
a direct comparison of our simulations for small lattices with the experiments
on the millimeter—scale [23, 32] is not possible. However the basic mechanism
(polarization field wave) of coupling electron-lattice excitations remain the same
[8, 46, 48].
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Accordingly, we have a new way of charge transfer from a point A in a 2d-
layer to a point B provided both points are located along a common crystallographic
axis. As shown in Fig. 13.9, the soliton is able through the formation of a solectron
bound state to carry an electron nearly free of losses at least on a distance of 20
crystallographic units, i.e. possibly around 10 nm in a time interval of t � 6 in units
of the oscillation time ω−1

0 . Over this relatively short time and short distance no
damping is seen, i.e. the transfer is nearly losses-free. We see, that the 2d-solectron
propagating along a crystallographic axis which is the carrier of the observed effect
is a nearly conservative process. This is connected with several circumstances:

(i) In the longitudinal direction i.e. along the axis of propagation, the soliton is a
1d- ballistic excitation for which energy is conserved.

(ii) In perpendicular direction, i.e. across the crystallographic axis of propagation,
the excitations are breather-like, i.e. they are in a window of non-transparency
and cannot propagate. This is related to the dispersion relations discussed in
Sect. 13.4.

Of course, some losses cannot be avoided, however the losses are for this kind
of charge transfer very weak in comparison with standard ways of charge transfer
which are connected with the emission of phonons preferentially in perpendicular
direction. In our case, the phonon emission is weak due to fact that in the operating
regime, phonons are in the window of non-transparency.

In order to study the actual losses and the life time of solectronic excitations in
more detail, we studied a sample with a rather long channel-like two-dimensional
crystal containing N = 20 · 80 = 1600 particles. Looking at Fig. 13.10 we see
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Fig. 13.10 Triangular lattice Soliton compression density (left panel) and corresponding electron
probability density (right panel) in a channel-like lattice of N = 20 · 80 = 1600 particles after a
relatively long time of propagation t = 50 (bσ = 4). The soliton was created by attributing to one
atom at x = 10, y = 9 in a lattice at rest the velocity 2v0 in x− direction. The compression density
(left) and the charge probability density (right) coincide very well even after a relatively long time
of propagation t = 50
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(i) the transverse extension similar as predicted by the lump solution of the KP
equation (13.22),

(ii) the absence of significant losses leading to a nearly ballistic propagation. Note
that the directed motion of an electron guided by a soliton along crystallographic
axis may carry a current [22, 51]. In order to study the effect of an electric field
we may add a corresponding term to the TBA equations as in [22, 51]. We shall
deal with these problem elsewhere. The value of the electron drift velocity is
determined mainly by the velocity of the carrier, the soliton.

13.6 Discussion

We have studied the dynamics of soliton-like excitations in several two-dimensional
lattices: square and triangular lattice including interaction with charges. First, we have
discussed dispersion laws of 2d solitons and basic solutions of the KP theory and
compared them to computer simulations. Further we have developed theoretical tools
for the study of slaved or controlled individual electron evolution by means of lattice
soliton-like excitations. The latter act as carriers along the crystallographic axes of,
e.g., a triangular lattice. The velocity of solectrons may be higher than a km/s (Å/ps) in
a crystal hence, faster than the drift velocities of “free” electrons, which usually do not
exceed 1 − 100 cm/s. Such high electron velocities were observed experimentally in
crystals of PDA and PDTA by Donovan and Wilson [18, 19, 47, 53]. Therefore there
is experimental evidence that solitonic excitations may create bound states which are
able to carry electrons at near-to-sound velocity (above and below) over a distance of a
few hundred sites. This appears as a clear case of electron surfing and mathematically
speaking connects similar phenomena at the macro-level in piezoelectric substrates,
where a carrier polarization field wave comes as consequence of the acoustic (linear
and better soliton) wave. Finally, a most interesting result is, that due to the practically
conservative character of the lattice soliton motion and the low radiation of lump
solitons in transverse directions, the electron transfer or transport (with eventual
current) is nearly losses-free.
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Chapter 14
Experimental Observation of Intrinsic
Localized Modes in Germanium
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Cloud Nyamhere, Vladimir I. Dubinko and Vladimir Hizhnyakov

Abstract Deep level transient spectroscopy shows that defects created by alpha
irradiation of germanium are annealed by low energy plasma ions up to a depth of
several thousand lattice units. The plasma ions have energies of 2–8eV and therefore
can deliver energies of the order of a few eV to the germanium atoms. The most
abundant defect is identified as the E-center, a complex of the dopant antimony and a
vacancy with an annealing energy of 1.3eV as determined by our measurements. The
inductively coupled plasma has a very low density and a very low flux of ions. This
implies that the ion impacts are almost isolated both in time and at the surface of the
semiconductor. We conclude that energy of the order of an eV is able to travel a large
distance in germanium in a localized way and is delivered to the defects effectively.
The most likely candidates are vibrational nonlinear wave packets known as intrinsic

J.F.R. Archilla (B)

Group of Nonlinear Physics, Departamento de Física Aplicada I, Universidad de Sevilla,
Avda. Reina Mercedes s/n 41011, Sevilla, Spain
e-mail: archilla@us.es

S.M.M. Coelho · F.D. Auret
Department of Physics, University of Pretoria, Lynnwood Road,
Pretoria 0002, South Africa
e-mail: sergio.coelho@up.ac.za

F.D. Auret
e-mail: danie.auret@up.ac.za

C. Nyamhere
Physics Department, Midlands State University, P. Bag 9055,
Gweru, Zimbabwe
e-mail: cnyamhere@yahoo.com

V.I. Dubinko
NSC Kharkov Institute of Physics and Technology, Akademicheskya Str. 1,
61108 Kharkov, Ukraine
e-mail: vdubinko@hotmail.com

V. Hizhnyakov
Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu, Estonia
e-mail: hizh@fi.tartu.ee

© Springer International Publishing Switzerland 2015
J.F.R. Archilla et al. (eds.), Quodons in Mica, Springer Series
in Materials Science 221, DOI 10.1007/978-3-319-21045-2_14

343



344 J.F.R. Archilla et al.

localizedmodes, which exist for a limited range of energies. This property is coherent
with the fact that more energetic ions are less efficient at producing the annealing
effect.

14.1 Introduction

In science like in many other aspects of human activity, there are often fortunate
coincidences that orientate research in unexpected directions. In 2012 there was
an international workshop in Pretoria, South Africa, called NEMI 2012.1 Several
theoreticians and nonlinear physicists attended, among them there were two of the
authors. Several talks were intended for non specialists in order that physics students
could be able to understand them. One of the subjects was nonlinear localized exci-
tations that travel along a periodic media without losing energy and keeping their
shape. They are called intrinsic localized modes (ILMS) or discrete breathers (DBs).
The first name emphasizes the internal character of the phenomenon and reminds us
of the linear vibration modes or phonons. The latter name comes from the observa-
tion of the internal vibration they experience that can be compared with the breathing
of a living being. They were first obtained as an exact solution for the continuous
sine-gordon equation [26]. Simulations using molecular dynamics are able to repro-
duce them in several solids with energies of the order of a few tenths or a few units
of an eV.

Among the attendantswas a PhD student, part of a research group of theUniversity
of Pretoria working on defects in semiconductors, particularly in germanium. They
have obtained unexpected results while treating Ge with low energy (2–8eV) plasma
ions. Those energies are known as subthreshold because the threshold energy to
produce displacements of atoms in germanium is between 11.5 for the 〈111〉 direction
and 19.5eV for the 〈100〉 direction [12]. However, they had observed that something
was penetrating at least 2µm inside the germanium wafer and was able to anneal
several defects, in particular, the most abundant one, the E-center. The energy for
annealing an E-center is about 1.3eV, according to our measurements and theoretical
calculations [23]. On the other hand the maximum energy that an Ar ion of 4eV can
transmit to a Ge atom is 3.6eV, therefore the energies were precisely what was
expected for ILMs. A line of collaboration was started that joined nonlinear theory,
computer simulations, plasma physics and semiconductor physics that eventually
confirmed ILMs as the most likely cause of the annealing [1] and also suggested
them as the explanation for other long-distance effects such as the modification
of defects by electron beam deposition, where the energy transmitted was below
1.3eV [5]. In this chapter we will try to give an explanation of the different branches
of the physics involved and to analyze the reasoning that leads to the ILM explanation
and the consequences both for semiconductor physics and nonlinear physics.

1NEMI 2012: 1st International Workshop: Nonlinear effects in materials under irradiation, March
12–17, 2012, Pretoria, South Africa. P. Selyshev, chairman.
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14.2 Germanium

The diamond structure of germanium is well known where each atom has covalent
bonds with the four nearest neighbours at the vertices of a tetrahedron as shown if
Fig. 14.1. Normally a conventional cubic unit cell comprised of 8 atoms is used. The
diamond structure can be seen as an fcc lattice with two atoms at points (0, 0, 0)
and at 1/4 of the diagonal [2]. The lattice unit is a = 5.66Å for Ge, slightly larger
than 5.43Å for Si and even larger than 3.57Å for C diamond. The diamond structure
is not the best for moving ILMs because there is no chain of nearest neighbours
forming a straight line. This is a reason for which, although stationary ILMs have
been constructed with molecular dynamics [24], the attempts to construct moving
ILMs have failed so far. Several lines of research seem promising, one option is
to construct ILMs in the next neighbour directions such as 〈100〉 where there is a
straight line of atoms. Another option is to study polarizations as in the ones observed
for ballistic phonons in germanium or silicon [13, 19] which can travel distances of
160nm. It seems also possible that ILMs can be nonlinear perturbations of linear
optical modes with high energy, high velocity, short wavelength and low dispersion,
such as at the middle of the Brillouin zone for optical branches (Figs. 14.2 and 14.3).

The number of Ge atoms per unit volume can be obtained as nGe = 8/a3 =
4.42 × 1022 cm3. Other properties of interest are atomic number 32, atomic mass
M = 72.61amu, density ρ = 5.323g/cm3, sound velocity cs = 5400m/s, Debye
temperature TD = 360K, Einstein temperature TE = 288K, covalent radius 1.22Å,
atomic radius 1.52Å, melting point 1210.55K, 1st ionization energy 7.899eV and
specific heat 0.32 J/gK at 300K.

Fig. 14.1 Diamond structure of germanium. Each atom is bonded with four nearest neighbours at
the vertices of a tetrahedron. The conventional cubic unit cell usually used is also shown. It includes
8 atoms and can be seen as an fcc lattice with two atoms at 0 and at 1/4 of the diagonal. The primitive
cell has these two atoms as a basis and the primitive vectors have their origin at 0 and end at the
center of each adjacent face
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14.3 Phonons in Ge

The objective of this subsection is to review the well known concepts of lattice
dynamics, to see how they apply toGe and to justify subsequent calculations. Phonons
are the usual means for energy transport in a crystal and the responsible party for
thermal annealing of defects. With this review we want to demonstrate that they
cannot be responsible for the annealing of the E-center defect during Ar plasma
bombardment. We will frequently use general concepts of lattice dynamics and the
reader can consult any textbook, for example [2, 7].

In classical mechanics for a crystal with nat per unit volume, there are 3nat degrees
of freedom. In the harmonic approximation the substitution of uk,ω = A exp(ik · r −
ωt) in the equation of movement leads to 3nat different linear modes of frequency
ω, wave number k, phase velocity c = ω/k and polarization A. They are organized
in branches ω = ω(k), three of them are acoustic, that is ω vanishes linearly with
k in the long wavelength limit. If the crystal has a basis of p atoms or ions in
each primitive cell, there are also 3(p − 1) optical branches, that are bounded from
below. In Ge with two Ge atoms in the unit cell, there are three optical branches.
Each branch has nGe/2 modes. In the classical description, each mode can have
any energy E with a probability at temperature T given by Maxwell-Boltzmann
equation P(E) = exp(−E/kB T )/kB T , which leads to an average energy kB T that
is identical for each mode. Therefore, it is trivial to obtain the energy per unit volume
u = 3kB T nGe and the specific heat at constant volume cV = ∂u/∂T = 3kBnat, a
result known as theDulong-Petit law. This result is approximate at room temperatures
and above but fails spectacularly at lower temperatures, which led to the quantum
description of the harmonic crystal. The classical description of the linear modes of
the crystal remains valid but the statistics are quite different.

In quantummechanics a linear oscillator with frequency ω can only have energies
given by En = 1

2�ω + n�ω, where n is the excitation or occupation number. As the
ground state energy 1

2�ω cannot be lost we will usually suppress it and use

En = nE, with E = �ω, (14.1)

where E = �ω is the quantum of energy, also called the energy level.
At a given temperature T , the average values 〈n〉 and 〈En〉 can be obtained with

Bose-Einstein statistics. They are

〈n〉 = 1

eE/kbT − 1
, 〈En〉 = 〈n〉E = E

eE/kbT − 1
, (14.2)

where kB = 8.617 × 10−5 eV/K is the Boltzmann constant.
In a solid with 3nat degrees of freedom and therefore the same number of linear

modes, each one is equivalent to a linear oscillatorwith a given frequencyω. It is usual
to describe them as phonons or quasi-particles and to use the expression n phonons
of a particular type with energy E = �ω instead of a linear mode or state with
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frequency ω and excitation number n. We will also follow this convention although
in some instances it may be more convenient to revert to the original terminology.

As the number of frequencies is very large and they are very close, ω and E = �ω

are considered as quasi-continuous variables. Most energy levels are degenerate, i.e.,
there is more than onemodewith that energy, and in the quasi-continuous description
there are very many in an interval [E, E + dE].

A variable density of states (DOS) g(E) is introduced, also some times called
the density of levels. It is defined such as g(E)dE is the number of linear modes or
quantum phonon states per unit volume with energies between E and E + dE . For
a discrete system the phonon spectrum is always bounded from above, that is, there
is a maximum frequency and energy ωM and EM = �ωM , therefore

EM∫

0

g(E)dE = 3nat. (14.3)

A rough estimate of the maximum value of energy level for the acoustic modes can
be obtained using the fact that the minimum value of the wavelength is twice the
lattice unit of the primitive cell da , then EM,ac � �ωM,ac = �c2π/2da , with c
the speed for the mode. For Ge, da = a/

√
2 = 4.00Å and using cs = 5400m/s,

we obtain EM,ac = 28meV and fM,ac = 6.7THz similar at the observed values in
Figs. 14.2 and 14.4. However, such a simple estimate for the optical modes is not
possible because the phase velocity tends to infinity when k → 0.

Fig. 14.2 Phonon dispersion and density of states for Ge. Experimental values are shown as circles
and theoretical calculation are shown as solid lines. Modes about the center of some optical bands
with high frequency, large group velocity, short wavelength and low dispersion may convert into
ILMs when the amplitude enters the nonlinear range. Reproduced with permission from [25].
Copyright (1994) by American Physical Society
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Fig. 14.3 PrimitiveWigner-Seitz reciprocal cell for an fcc lattice such asGe, showing the directions
in k-space and points that appear in the spectrum shown in Fig. 14.2. The point Γ corresponds to
wave number k = 0, where the three acoustical bands originate. TheWigner-Seitz cell is the region
of k-space that is closer to (0,0,0) than to any other point of the lattice. Modes with wave vectors
about the middle of Γ -L, Γ -K and Γ -X may convert into ILMs when their amplitude increases.
Axes are the same as in Fig. 14.1

Generally speaking there is no minimum frequency or energy as explained above,
however, when considering only a part of the system, it can be described as subjected
to an external potential representing the interaction with the rest of the crystal. In
this case the phonon spectrum becomes optical, i.e., bounded from below.

The energy of the solid per unit volume is given by

uE =
ET∫

0

〈n(E)〉Eg(E)dE =
ET∫

0

E

eE/kbT − 1
g(E)dE . (14.4)

We will also use the number density or normalized density of states f (E) =
g(E)/3nGe, with the property that as f (E)dE is the fraction of modes with energies
between E and E+dE and therefore the normalization condition and average phonon
energy Eph are given by

ET∫

0

f (E)dE = 1, Eph =
ET∫

0

E f (E)dE . (14.5)

There are two approximations frequently used for the density of states: the Debye
and the Einstein models. In the Debye model, all phonon modes are substituted by
three acoustic branches with dispersion relation ω = ck, with the same c, which is
an average velocity. These acoustic branches lead to a density of modes or states
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per unit volume gD(E) = 3/(2π2
�
3)c3E2 [2]. Then, fD(E) = g(E)/nat = αD E2,

with the constant αD depending on the particular solid through c and nat. The energy
has a cutoff value ED such that the condition of normalization

∫ ED
0 fD(E)dE =

1 is fulfilled. Therefore, αD E3
D/3 = 1. The values ED and TD = ED/kB are

known as the Debye energy and temperature, respectively. Therefore there is only
one unknown, either c or TD , either of which cannot be measured as they do not
correspond to real magnitudes. What is done is to choose TD such that the specific
heat cv(T ) fits the measurements. For Ge, a value of TD = 360 K or ED = kB TD =
31.1meV is usually given, which corresponds to c = 3420m/s. This velocity is not a
real quantity but coherently it is approximately the mean of the velocities of the two
transversal modes, � 2500m/s, and the longitudinal one, 5400m/s [15]. The Debye
dispersion relation works, of course, better for the acoustic branches and small wave
vectors.

The Einstein model supposes that there are 3nGe modes with the same frequency
ωE , being EE = �ωE and TE = EE/kB , the Einstein energy and temperature,
respectively. The value of TE is chosen so as to fit the specific heat of the solid,
being EE an average energy of the phonons in the crystal. For germanium its value
is TE = 288K and will be used in this chapter. In this model the mean energy per
unit volume at temperature T in germanium is simply

uE = 3nGe

eEE /kB T − 1
(14.6)

The actual phonon dispersion relation and the density of states have been obtained
and checked with experimental ones in [25]. Bothmagnitudes are shown in Fig. 14.2.
The normalized density of states f (E) can be obtained from it but as the resolution
is poor for low energies we have substituted that part by the Debye one. The Ge
density of states is shown in Fig. 14.4 together with the corresponding one for the
Debye and Einstein model for comparison. For g(E) two concentrations of states
appear near the top and near the bottom of the spectrum, with a drastic simplification
we can describe them as an optical band around Eop = 35meV and an acoustic one

around Eac = 10meV. The mean phonon energy
∫ ET
0 f (E)EdE is approximately

equal to the Einstein energy.
Figure 14.5 represents the number of phonons and the average energies as a

function of temperature for acoustic phonons, optical phonons, Einstein phonons,
and average values obtained with the density of states g(E). It can be seen that the
classical statistics is not valid at the temperatures of interest in this work and that
there are significant differences between optical and acoustic phonons. The energy
in the acoustic modes is larger than in the optical ones in spite of having less energy
but with more phonons. It can also be seen that the average number of phonons 〈n〉
is smaller or closer to one which indicates that the classical description is not good
at room temperatures and above.

Figure 14.6 represents the specific heat at constant volume obtained from these
models. There is no significant difference at the temperatures of interest in this
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Fig. 14.5 Left Average number of phonons with respect to temperature between room temperature
TR = 300K and E-center annealing temperature TA = 423K. From bottom to top optical phonons
with Eop = 35meV; Einstein phonons with EE = 24.9meV; average number of phonons with
Ge DOS; acoustic phonons with Eac = 10meV. Right Average energy for different phonons, from
bottom to top optical phonons with Eop = 35meV; Einstein phonons with EE = 24.9meV (TE =
288K) indistinguishable from the one obtainedwithGeDOS; acoustic phononswith Eac = 10meV
and average classical energy kB T . It can be seen that the acoustic modes have more phonons and
more energy than the optical ones and that at room temperature and above a quantum description
is necessary
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Fig. 14.6 Comparison of the experimental specific heat per degree of freedom: (–) using germanium
density of states [25]; (- -) the Einstein model with TE = 288; (− · −) the Debye model with TD =
360; (◦) and (Δ) experimental values from [3, 17], respectively. The horizontal line corresponds to
the classical Dulong-Petit law. The Einstein and the Debye model are slightly better at intermediate
temperatures, because they have been fitted for that. At high temperatures the experimental cv
becomes larger because actual frequencies also increase with temperature. The two separated dotted
curves correspond to two Einstein models with energies Eac = 10meV and Eop = 35meV, the
upper and lower curves, respectively. These values are representative of the acoustic and optical
branches

chapter between room temperature TR = 300K and the annealing temperature of
the E-center TA = 423K. This justifies the use of the Einstein density of states as
a good approximation for calculations. The specific heats for two Einstein models
with Eac and Eop are also represented for comparison.

14.4 Defects and Their Detection with DLTS

Point defects in the structure or the type of atoms of the semiconductor can appear
with some probability due to the temperature but they can also be created by radiation.
In the experiments described in this chapter most of the defects are created by 5MeV
alpha radiation [14, 21] produced in the decay of the americium isotope 241Am. A
Ge sample with dimensions 3× 5× 0.6mm is brought into contact with americium
foil for 30min.

Defects can be of many types, some simple examples are shown in Fig. 14.7, such
as a vacancy, a substitutional atom, a self-interstitial, a foreign interstitial, a Frenkel
pair, that is, a combination of a vacancy and a self-interstitial and an E-center, which
is a combination of a dopant substitutional atom and a vacancy. The germanium
sample used in this work is doped with antimony (Sb), with a dopant concentration
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Fig. 14.7 Examples of some point defects in a crystal. The E-center studied in this work is a
complex of a vacancy and a substitutional dopant Sb

nSb = 1.3 × 1015 cm−3. Dopant atoms as Sb atoms occupy substitutional positions
but are not considered defects as they are an essential part of the semiconductor
electrical properties. The main defect appearing after α irradiation is the E-center
already described. There are many others types such as vacancy complexes like the
di-vacancy (V-V), the tri-vacancy (V3), the tetra-vacancy (V4) and combinations of
interstitials as di or tri-interstitials (I2, I3). Also, hydrogen (H), due to its small size
is able to penetrate almost everywhere and can combine with other defects forming
complexes such as VHn , where n is an integer with values from 1 to 4. A variant of
the E-center is the A-center, a complex of an oxygen interstitial and a vacancy.

Defects can experience many processes like diffusion, interaction between them,
modification, annealing and others. Generally speaking all these processes are
enhanced by temperature and the rate at which the process takes place depends in an
Arrhenius form on a quantity known as the enthalpy for the process or sometimes
referred to as the activation energy or barrier energy for the process. That is

κ ∝ e−ΔH/kB T . (14.7)

The semiconductor Ge has a band gap of Eg = 0.67eV. Some defects introduce
electrical levels inside the band of a semiconductor, as for example in Sb-doped
Ge, Sb introduces levels very close to the conduction band. When they are within
the band gap and more than 0.1eV from the conduction or the valence bands they
are considered deep. Usually they are called electron traps when they introduce an
electron level and hole traps when they introduce a hole level, respectively. We will
write only about electron traps for simplicity, because the treatment of holes is very
similar, and because the main defect we are interested in, the E-center, is an electron
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trap. The E-center is located at ET = 0.38eV below the conduction band. The same
defect has also been reported as ET = 0.37.

When an electron is in a trap level it has a mean time of permanence τn and its
inverse en = 1/τn is the probability of emission per unit time. This magnitude and its
dependence on temperature are key to defect detection as it is the actual magnitude
measured in DLTS [16, 22]. This dependence can be easily deduced.

Suppose that there are NT traps per unit volume, the probability for an electron
occupying the trap level of energy Et (not ET which is ET = Ec − Et ) is given by
the Fermi-Dirac distribution

ft = 1

e(Et −EF )/K B T + 1
, (14.8)

where EF , the Fermi energy is located near the middle of the phonon band.
The probability that a moving electron is captured by a trap is given by cn =

σappvthNT (1 − ft )n, where σapp is the capture cross section of an electron for the
trap, vth is the thermal velocity of the electrons, NT the trap concentration, (1 − ft )

the probability of the trap being empty and n the number of electrons per unit volume.
The latter quantity can be obtained as n = Nc exp(−(Ec − EF )/kB T ), where Ec is
the bottom energy of the conduction band, m∗

e being the effective mass of an electron

and Nc = 2
(
2πm∗

ekB T/h2
)3/2

is the effective density of states in the conduction
band [2]. The thermal velocity can also be obtained as vth = (2Eth/m∗

e)
1/2, with

Eth = 3/2kB T .
The trap emission rate rn is given by rn = NT ft en , that is, the concentration of

traps multiplied by the probability of being occupied and the probability of emission
per unit time for a trap. At thermal equilibrium cn = rn and en can be isolated as

en = σappNcvth exp(−ET /kB T ), (14.9)

with ET = Ec − Et , that is, the distance of the trap level to the conduction band.
It is easy to check that the pre-exponential factor is proportional to T 2 as the

effective mass is approximately constant at the bottom of the conduction band where
most of the occupied states are.

Some authors discuss the interpretation of this expression of the emission rate
[6] as a function of the capture parameters, however σapp and ET are considered
the defect signature and used worldwide. Independently of the meaning σapp has the
right dependence on the temperature and should simply be considered as a parameter
of the defect.

The technique known as DLTS, deep level transient spectroscopy, uses a pn junc-
tion or a metal-semiconductor junction known as a Schottky diode to perform mea-
surements. A voltage pulse is sent through the junction in reverse bias, so as to flood
all the traps with electrons, which after the pulse start to emit electrons towards the
conduction band at a rate given by (14.9). The capacitance of the junction depends
on the charge accumulated in the traps and therefore changes with time as the traps
become depleted. It is measured at two different times t1 and t2. If C0 is the capac-
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itance at t1 and ΔC the change in the capacitance between t1 and t2, it can be
demonstrated that the relative change in the capacitance ΔC/C0 has a maximum
when the so called rate window equals the emission probability:

RW ≡ ln(t1/t2)

t1 − t2
= en . (14.10)

Typical rate windows are 80 and 200s−1. Measurements of the DLTS signalΔC/C0
are performedwhile the temperature T is changed.When the RWequals the emission
rate of some defect a peak appears in the plot of ΔC/C0 with respect to T. In this
way the different defects appear. At the peak

NT = 2

(
ΔC

C0

)
peak

ND, (14.11)

where ND is the number of dopants in an n-type semiconductor and NT is the
number of traps corresponding to the peak. Using several RWs, several values of en

can be obtained for different temperatures, being ET the slope of the representation
ln(T 2/en)with respect to 1/T . From the same representation the value of σapp can be
obtained and therefore the defect is fully characterized. From the height of the peak
the concentration of the defect NT can also be obtained. The value of the reverse bias
determines the depth of the measurements and allows for the plotting of the profile
of NT as a function of the depth of the sample. This procedure to characterize the
E-center in Ge was performed in [5] and the Arrhenius plots for several defects can
be seen in Fig. 14.8.

Fig. 14.8 DLTS Arrhenius
plots of some electron trap
defects observed in Ge. The
E-center, here marked as
E0.38 figures among them.
Reproduced with permission
from [5]. Copyright (2013)
by AIP Publishing LLC
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14.5 Experiment of Plasma Induced Annealing

The main experiment is done as follows: (a) The Ge wafer is bombarded with 5MeV
alpha particles for 30min and it is left for 24h at room temperature for the defects to
stabilize as initially there is a fast kinetic [11]; (b) The surface of Ge is divided into
two parts A and B, then a diode is made using resistive evaporation of Au on part A
and DTLS is performed to measure the defect concentrations, (c) The Ge sample is
introduced into an inductively coupled plasma (ICP) with 4eV Ar ions and pressure
of 0.1 mb for half an hour in intervals of 10min to allow for cooling; (d) DTLS is
performed on part A, where ICP has been done through Au, (e) A diode is evaporated
on part B, where ICP has been applied directly on the Ge surface, and then, DTLS
is performed there.

The short time of alpha irradiation is done to allow for better DLTSmeasurements.
A concentration of about 10% of ND , as was obtained, or less, is ideal

The results of the three measurements are presented in Fig. 14.9. We will con-
centrate on the most abundant defect, the E-center. (1) The concentration after alpha
damage and 24h rest is NT = 1.07×1014 cm−3; (2) After direct ICP on germanium

Fig. 14.9 DTLS spectra showing the experimental results. The defect concentrations on the right
axis are only valid for the peaks. The main peaks correspond to the E-center defect. A 30% diminu-
tion of the concentration of this defect can be observed after 30min under the action of an inductively
coupled plasma (ICP) with 4eVAr ions. If the ICP is applied through the Au contact the diminution
exists although it is substantially smaller. Reproduced with permission from [1]. Copyright (2015)
by Elsevier
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it is reduced by 30%; (3) If the ICP is applied through the Au contact, the reduction
is about 7%, smaller but still significant.

Other details of interest are: (4) The sample heats up to about 40 ◦C in spite of
the cooling intervals; (5) If there is no cooling the sample heats up to about 65 ◦C
and the decrease in the rate of annealing is dramatic; (6) The defects are annealed
up to a depth of 2600nm inside the Ge sample [1]; (7) If other metals are used for
the contact the annealing also takes place as with Au but the effect depends on the
metal used; (8) If a plasma of larger energy 8eV is used the annealing rate increases,
but given that a plasma of larger energy also has a larger flux, the effect per Ar ion is
much smaller (see below); (9) The temperature to achieve a similar rate of annealing
is 150 ◦C as deduced in Sect. 14.7 and by other authors [18].

There was no measurable concentration of Ar after ICP which discards Ar chan-
nelling. Other explanations were considered and discarded in [1] such as multiva-
cancy production, production of minority charge carriers, production of defects that
could diffuse and interact with the E-center and diffusion of H that could passivate
the vacancies in the E-center.

14.6 ILM Hypothesis

In this section we analyze the experiment and examine the possibility that Ar ions
produce intrinsic localized modes that travel in a localized way with little dispersion
through the semiconductor and are able to anneal the defects. The exact nature of
these ILMs is not yet known but here it is assumed that they have a vibrational part
due to their origin from anAr ion hit. If they have also some charge or other properties
is unknown and not necessary for this hypothesis.

The rate of ion-induced annealing is given by the following equation:

dNT

dt
= −σiΦi NT , (14.12)

where σi is an effective cross-section for defect annealing by plasma ions. It is as if
imaginary Ar ions would penetrate Ge and anneal a defect but at this stage there is
no need of an hypothesis, σi is just the probability per unit time and unit flux of Ar
ions that a defect is annealed. Integrating the equation above we obtain:

NT (t) = NT (0)e−σiΦi t or σi = − 1

Φi t
ln

NT (t)

NT (0)
(14.13)

For the experiment described with pressure p = 0.1mb, that corresponds
to 4eV ions, the flux is Φi = 5.58 × 1010 cm−2s−1 [1], t = 30 × 60 s and
NT (t)/NT (0) = 0.7, and σi � 35.6Å2 is obtained. This value should be com-
pared with σ0 = (nGe)

−2/3 � 8Å2, that is, the average area corresponding to an
atom of Ge at the surface of the semiconductor, then σi � 4.4σ0. This result indicates
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that the process has an enormous efficiency. It has to be considered with caution as
also neutrals may be arriving at the semiconductor surface, but it should not change
the result by more than one order of magnitude, probably by around a factor of two
in the flux.

It is interesting to see what the change in efficiency is when an 8eV plasma is
used. The flux in this case is Φi (8 eV) = 1.35 × 1013 cm−2s−1 [1] and using only
600s time the concentration is reduced to 80% of the original. The cross section
becomes σi (8 eV) � 0.26Å2 � 0.033σ0. Therefore a larger energy per Ar ion does
not increase the efficiency of the ion-annealing process but reduces it by a factor of
� 140. This is coherent with our hypothesis that the Ar+ impacts produce ILMs,
because ILMs have a definite range of energies. More energy than what is required
will be dispersed into phonons which would interfere with the propagation of the
ILMs. It is also interesting to be aware of a few magnitudes to appreciate what could
be happening in the semiconductor. Suppose that ILMs travel at a speed of the order
of magnitude of the speed of sound in Ge, cs = 5400m/s, the time needed for an
ILM to travel the measured depth d = 2600nm is δt = 0.5ns. This means that the
area for an Ar+ hit in δt is a circle with a radius of about 106 lattice units, or in other
words each impact and travel is completely isolated.

Note also that the traps are almost isolated as (NT )−1/3 � 2200Å or 370 lattice
units. Therefore there is no influence between them.

Let us introduce a couple of parameters, γ the efficiency of ILM creation by Ar
ions, that is

ΦILM = γΦi (14.14)

and α the cross section for ILM defect annealing measured in σ0 units, that is

σILM = ασ0. (14.15)

Therefore
σi = αγσ0 (14.16)

and αγ � 3.6. The cross section should be larger than σ0 because the size of an E-
center is at least two atoms and due to the complex nature of Ge, ILMs probably also
have a complex structure with a few atoms involved perpendicular to the movement
of the ILMs. If the interaction takes place at a distance of four atoms then α � 82σ0
and γ = 0.06. The latter result implies that about 20 Ar+ hits are necessary to
produce an ILM. The number of Ar+ to anneal a defect can also be calculated easily
as Φi t/(0.3 NT d) � 1.2 × 104.

In the following section it will be made clear that this rate of annealing cannot be
produced only by the increase in temperature. Therefore, although the numbers are
approximate and many objections can be made there are a few clear consequences of
this analysis: (1) Some entity which we call an ILM, andmost likely it is a vibrational
entity, is able to travel distances of a few micrometers inside Ge in a localized way
and without losing much energy; (2) There is a high efficiency in the conversion of
Ar+ hits to ILMs; (3) There is a high efficiency for ILMs to anneal or modify defects.
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Note that if the annealing barrier is E A it is neither necessary for an ILM to have
nor to deliver ET to anneal the defect. The change of the barrier due to the passing of
an ILM nearby brings about a change in the annealing rate which can be very high.
See [9, 10] and the other chapters about semiconductors in this book [4, 8].

14.7 Thermal Annealing

In this section we review thermal annealing and apply it to Ge in order to compare
the temperature and energy needed to obtain the same rate of thermal annealing as
with Ar ions.

Thermal annealing of defects in semiconductors is given by a first order kinetic

dNT

dt
= −K NT , (14.17)

where K , known as the reaction rate constant is given by an Arrhenius type law

K = Ae−Ea/kB T , (14.18)

where Ea is known as the annealing energy and A as the pre-exponential factor. Ea

can be interpreted as the potential barrier which is necessary to surmount in order that
the transformation or diffusion process for annealing takes place. The exponential
term can be seen as the probability for an accumulation of energy of magnitude
Ea . The pre-exponential term A has units of frequency and it is also known as the
frequency factor. It is related to the number of attempts per unit time that the system
tries to pass the barrier and with the curvature of the energy with respect to the
reaction coordinate. A may also depend on the temperature but in a much weaker
way than the exponential term. It also depends on the entropy change.

The integrationof (14.17) leads to the exponential decay NT (t) = N (0) exp(−K t)
and comparing the experimental data with ln(N (t)) = ln(N (0)) − K t it is possi-
ble to obtain K . Several data sets for E-center annealing have been published [11,
18]. Here we will use the results obtained by some of the authors according to the
procedure described in [20] using the same dopant and defect concentration as in
this work. Figure 14.10a shows the exponential decay at 165 ◦C and Fig. 14.10b rep-
resents ln(NT ) with respect to time for three temperatures. The approximate linear
dependence can be seen. From the slopes, three values of the reaction rate constant
are obtained and in Fig. 14.10c ln(K ) is represented with respect to 1000/T and the
linear dependence can be observed. Comparing with ln(K ) = ln(A) − Ea/kB T the
values A = 5.5 × 1011 s−1 and Ea = 1.3eV are obtained. These numbers should
be treated with caution as the experimental procedure is very sensitive to the details
of the experimental technique. The sample has to be cooled and reheated to measure
the defect concentration.
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Fig. 14.10 a Defect concentration versus annealing time at T = 165 ◦C. b Semi-log plot of defect
concentration versus annealing time at temperatures 155, 160 and 165 ◦C from which the annealing
rate constant, K , is calculated. c The Arrhenius plot from which E A = 1.3eV, A = 0.55THz and
TA = 423K are obtained. Lines are fitted curves, circles and triangles are experimental values, the
square in (c) corresponds to a thermal annealing rate equal to ion-induced annealing. Details of the
experimental procedure used can be read in [20]

14.8 Comparison of Thermal and Plasma-Induced
Annealing

Comparing the equations for thermal annealing (14.17) and ion-induced annealing
(14.12) we can observe that if both process have the same rate of annealing

K = σiΦi or Ae−Ea/kbT = σiΦi . (14.19)

From this equation, the value of TA = 423K is obtained.
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The thermal energy at TA per unit volume using Ge density of states g(E) from
Sect. 14.3 is given by

uph =
Em∫

0

〈n〉Eg(E)dE . (14.20)

Note that the use of the Einstein model with TE = 288K leads to very similar results.
The increment in energy from room temperature TR = 300K to TA = 423K is given
by

Δuph = uph(TA) − uph(TR) � 2.9KJ/mol � 30.1meV/atom. (14.21)

The energy per unit volume of energy in ILMs is given by

uILM = ρILMEILM, (14.22)

where ρILM is the density per unit volume of ILMs and EILM is themean ILM energy.
Both quantities are unknown but we can estimate both. The maximum flux of ILMs
is the flux of ions Φi and the maximum energy is the energy that a 4eV Ar ion can
deliver to a Ge atom, that is, 3.6 eV. Let us suppose EILM � 3eV and ΦILM � Φi .
The velocity of ILMs should be of the order of magnitude of the d velocity of sound,
vILM � cs = 5400m/s. Then ρILM � ΦILM/vILM � 105 cm−3 and the ILM energy
per Ge atom is

uILM

nGe
= ΦILMILMEILM

vILM nGe
� 7 × 10−15 meV/atom. (14.23)

This value is so small because there is only an ILM for every 4 × 1017 Ge atoms.
Therefore the ratio uILM/Δuph � 10−16, which proves that an enormously larger
amount of energy in phonons is needed in order to produce the same annealing effect
that the Ar ions produced. Changes in the ILM energy, their speed, the number of
them created by neutrals in the plasma and other factors cannot change their energy
density by a factor of 1016.

14.9 Summary

In this chapter we have described an experiment in which a low energy, low flux Ar
plasma anneals defects in Sb-doped Ge up to a significant depth below the surface.
The hypothesis advanced in [1] and continued here is that Ar ions produce some kind
of travelling localized excitation with great efficiency. We call these entities intrinsic
localized modes or ILMs because their energy and other properties indicates that
their energy is vibrational, although this is by no means demonstrated. Some space
has been dedicated to phonons in germanium in order to have a clear picture of
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them and their energies and so doing clarify that they cannot be responsible for the
annealing effect, because the ILM energy density is much smaller than the phonon
density which produces the same annealing rate. Also we think that the study of
the dispersion relation can bring home ideas about how to construct ILMs in Ge,
which will be the confirmation of the present hypothesis but seems to be a daunting
challenge.

The numbers are approximate, many hypotheses and estimations that have been
advanced may be incorrect, however none of these problems can change the fact of
the observation of long-range annealing in germanium produced by Ar plasma and
that ILMs are the most promising cause.
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Chapter 15
The Origin of Defects Induced in Ultra-Pure
Germanium by Electron Beam Deposition

Sergio M.M. Coelho, Juan F.R. Archilla,
F. Danie Auret and Jackie M. Nel

Abstract The creation of point defects in the crystal lattices of various semicon-
ductors by subthreshold events has been reported on by a number of groups. These
observations have been made in great detail using sensitive electrical techniques but
there is still much that needs to be clarified. Experiments using Ge and Si were
performed that demonstrate that energetic particles, the products of collisions in the
electron beam, were responsible for the majority of electron-beam deposition (EBD)
induced defects in a two-step energy transfer process. Lowering the number of colli-
sions of these energetic particles with the semiconductor duringmetal depositionwas
accomplished using a combination of static shields and superior vacuum resulting
in devices with defect concentrations lower than 1011 cm−3, the measurement limit
of our deep level transient spectroscopy (DLTS) system. High energy electrons and
photons that samples are typically exposed to were not influenced by the shields as
most of these particles originate at the metal target thus eliminating these particles
as possible damage causing agents. It remains unclear how packets of energy that
can sometimes be as small of 2eV travel up to a µm into the material while still
retaining enough energy, that is, in the order of 1eV, to cause changes in the crystal.
Themanipulation of this defect causing phenomenonmay hold the key to developing
defect free material for future applications.
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15.1 Introduction

Process induced defect creation in semiconductors is of paramount importance as
device performance is influenced, adversely or beneficially, by these defects [26].
Semiconducting materials offer the ideal platform for studies into point defects with
energy levels in the bandgap as ultra-purematerial is readily available and can then be
investigated using techniques like deep level transient spectroscopy (DLTS) [30] to
measure the energy level of the defect, also known as the defect enthalpy, defect con-
centration and apparent capture cross-section. Additionally, Laplace DLTS resolves
two ormore defect levels that present as a single broad peak in the conventionalDLTS
spectrum [16] further clarifying complex observations. While these techniques are
unable to provide a physical description of a defect, they are sensitive to defect con-
centrations as low as 1011 cm−3, in our experiment. Semiconductors are technical
materials that now enable us to directly measure the effects of radiation on structured
systems.

A sample is typically exposed to 10keVelectrons during electron-beamdeposition
(EBD) although sources with higher acceleration do exist, none of them exceed
60keV. All electron beam (EB) heated sources rely on energy transfer from incident
electrons to thermally evaporate anyone of a large variety of solid targets. Themodern
electron gun (EGorE-gun) thatwas introduced in the early 1960s, remaining virtually
unchanged since then, has found application in metallization on semiconductors,
optics [22] and in industrial processes like the deposition of corrosion protective
coatings on strip metal [35]. A detailed description of the EBD source and the power
supplies that control it [22] will not be repeated herein, however a brief description
will follow to describe the source used for this investigation.

The EBD source consists of three components: the electron emitter, magnetic
lens and water-cooled cavity or hearth. The emitter is strategically located out of
line-of-sight of the evaporant and the electron beam follows a circular path curved
by the magnetic lens through 270◦ so as to impinge on the centre of the hearth. This
protects the emitter from becoming coated by the evaporant, thus lowering the risk
of short circuits and also conveniently shields the substrate from energetic particles
that may be accelerated by the high potential of the emitter. Three power supplies are
required, first to heat the filament (tungsten coil) thus providing a source of electrons,
secondly to accelerate these electrons and finally to power the electro-magnets of the
lens to control the electron beam. 10kV is the most common accelerating voltage
at a current of up to 1.5A and was the source used for this investigation. In modern
systems most tetrode based high voltage power supplies have been replaced with
solid state equivalents that are well protected from short circuits due to arcing. For
safety in operation, today’s electron guns have a magnetic lens that consists of a
permanent magnet to direct the electron beam towards the hearth centre, as well
as electro-magnets to focus and raster the beam. Modern magnet supplies no longer
defocus the beam to cover a larger area of the evaporant but rather maintain a focused
beam that is scanned over the target surface in a complex pattern at a frequency not
exceeding 200Hz. This arrangement ensures that the target material is evenly heated
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thus better utilised and should the magnet supply fail then the electron beam remains
focused on the centre of the hearth. During operation efficient water cooling is of
paramount importance if the hearth is to remain inert so as to ensure the purity of
the deposited film.

The disadvantage of EBD is that it introduces defects in sensitive semiconduc-
tors [9, 27, 28]. This damage has previously been attributed to an emission of soft
x-rays or energetic electrons that are most probably reflected from the target [22].
The magnetic field of the E-gun will cause the majority of reflected electrons to be
captured by the shield placed over the permanent magnet and is a significant part of
the design as approximately 30% of the beam energy is reflected. A small portion
of the evaporant flux is ionised as it passes through the incident electron beam fur-
ther complicating matters. Another source of energetic particles that has previously
been neglected is those ions that are created in the electron beam path by collisions
between electrons and residual gas atoms or molecules. Even for fast moving atoms
like hydrogen the probability of collision while traversing a typical 10kV, 0.1 A
electron beam is above one. Furthermore, as an evaporation proceeds the vacuum
pressure tends to increase with increasing outgassing due to heating of the vacuum
chamber and the components in the chamber, resulting in the number of available
particles that may undergo collisions increasing proportionately with an increase in
pressure.

To account for subthreshold electron damage a two-step process was suggested
[6, 15, 31, 33] where an intermediate light impurity atom, such as hydrogen, could
produce a displacement of a germanium atom. This process requires the electron to
first strike the light atom that then strikes the germanium atom transferring almost
three times more energy than a direct collision. The electron threshold energy for
such a displacement was found to be 90keV, assuming that 15eV is required to
displace a germanium atom from the lattice [12].While this threshold is much higher
than the typical available electron energy, defects observed in gold and copper were
postulated to be due to ever present impurity atoms [10]. Similarly, in germanium,
light-atom impurities are the most probable subthreshold mechanism agent. Naber
and James [33] only considered atoms present in the crystal lattice, but using light
atoms that are present in the vacuum to transfer energy to lattice atoms theoretically
yields the same result. From conservation of momentum and energy, if we consider
two particles denoted by the subscripts 1 and 2 then let m1 and m2 be the masses,
u1 and u2 be the velocities before collision and v1 and v2 be the velocities after an
elastic collision then.

m1u1 + m2u2 = m1v1 + m2v2 (15.1)

and
1

2
m1u2

1 + 1

2
m2u2

2 = 1

2
m1v21 + 1

2
m2v22 (15.2)
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Fig. 15.1 Theoretical maximum energy transfer in an elastic collision of a 10keV electron (black
plot with filled circles) or between a 24eVhydrogen atom (blue dash plot) and particles of increasing
mass.Bars denote the energy variation dependent on the velocity of the second particle in a vacuum,
parallel to the direction of the impinging particle. Relativistic considerations were included but only
accounted for a 0.9% increase in energy transferred

For the simplest case of u2 = 0 the maximum energy transferred to particle 2 is
given by:

Kmax = 1

2
m2v22 = 1

2
m1u2

1
4m1m2

(m1 + m2)2
= Ei

4m1m2

(m1 + m2)2
(15.3)

assuming a one dimensional case of an elastic collision where Ei is the initial energy
of particle 1. This energy transfer between a 10 keV electron and particles of atomic
mass from 1 to 75 is illustrated in Fig. 15.1 (black solid plot with filled circles). The
red bars denote the energy variation if the velocity of the second particle in vacuum
is taken into account and including this consideration then the maximum energy
transferred to a H atom is approximately 24eV. Plotting the example of collisions
between a 24eV H atom and particles of atomic mass 1 to 75 illustrates that this
knock-on process is capable of transferring the same (only for AMU = 1) or more
energy than a direct collisionwith an electron. To evaluate this process for the specific
case of Ge, Fig. 15.2 plots the knock-on energy transfer between particles of various
masses that were initially accelerated in a 10keV electron collision and then collide
with a stationary Ge atom. Collisions of the lightest particles with Ge result in the
highest energy transfer, that is, at most, 1.3eV. This is not sufficient to displace a
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Fig. 15.2 Maximum energy transfer in an elastic collision between a particle (particle 1) and a
stationary Ge lattice atom (green plot) where particle 1 was initially accelerated by a collision
with a 10keV electron (black solid plot). The dashed line represents the maximum energy that is
transferred irrespective of particle 1 mass. Amaximum energy of 1.3eVwas transferred to Ge using
H as the intermediate atom whereas directly, only 0.34eV was transferred

Fig. 15.3 Relative kinetic
energy with respect to the
maximum possible kinetic
energy of a particle that has
experienced a collision while
at rest, as a function of the
exit angle with respect to the
incident particle direction.
This curve neither depends
on the masses nor on the
initial energy. It can be seen
that the there is a large
interval of angles for which
the final energy is close to
the maximum
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Ge atom from the lattice but Chen et al. [12] noted that defects were only produced
in Ge grown in a H atmosphere thus it is likely that H in the crystal lattice played a
role. The direct electron-Ge elastic collision process only resulted in 0.34eV being
transferred to a stationary Ge atom.

It is also of interest to know how the transfer of energy in collisions depends on
the angle. Supposing that a particle of mass m1 and kinetic energy K1 experiences a
collision with a particle of mass m2 and this one exits the collision with energy K2
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with angle φ2 with respect to direction of the incident particle. Then, it is easy to
demonstrate that the curve K2/max(K2) with respect to φ2 does not depends on the
masses or on the energy of the incident particle as can be seen in Fig. 15.3. There is
a significant interval of exit angles for which K2 is close to the maximum.

15.2 Experimental

AGe (111)wafer, bulk grown and dopedwith Sb to a concentration of 1 × 1015 cm−3

was degreased in successive 5min ultrasonic baths of trichloroethylene, isopropanol
and methanol before being etched for 1min in a solution of 5:1 H2O:H2O2 (30%).
To create an ohmic contact, AuSbwas deposited resistively on the wafer back surface
and then annealed in anAr ambient at 350 ◦C to lower the contact resistance. Samples
cut from this wafer were then degreased and etched again before EBD of Pt through
a metal contact mask was carried out to yield eight Schottky barrier diodes (SBDs)
with a diameter of 0.6mm and 50nm thick on each sample’s front surface. All SBD
depositions were carried out using an electron beam with an accelerating voltage of
10keV and beam current of approximately 100mA. Current-voltage measurements
were carried out on all diodes to verify their suitability for DLTS analysis.

Fig. 15.4 EBD chamber
layout detailing the
positioning of static shields
(B1 and B2) used to shield
samples from energetic
particles created in collisions
with the high energy
electrons of the electronic
beam (C)
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Conditions in the EBD chamber were varied during diode manufacture by (a)
not applying any counter measures, (b) back-filling the chamber with forming gas
(H2:N2, 15%:85%) to 10−4 mbar, (c) back-filling with forming gas and placing one
shield (B1 in Fig. 15.4) to shield from direct particles, (d) back-filling with forming
gas and applying 2 shields (B1 and B2) so that particles reflected off the chamber
wall are also shielded for and (e) superior vacuum with low H2 concentration as well
as both shields in place. The measures taken to ensure that the H2 concentration was
maintained below 10−8 mbar and the DLTS spectra obtained have been published
previously [13].

To investigate the role of energetic particles arriving at the semiconductor surface
during EBD, clean samples were exposed to the conditions of EBD without any
evaporation taking place, termed electron beam exposure (EBE) herein, and there-
after Schottky barrier diodes (SBDs) were evaporated resistively onto the irradiated
Ge. These samples were exposed for 50min at 100mA beam current as this was
approximately the same amount of exposure that the Pt EBD diodes received. The
same measurement procedure was followed as applied previously.

15.3 Results and Discussion

The defects introduced during EBD have been reported on before [8] of which the
E-center is the most prominent. This defect consists of a vacancy-dopant complex,
the dopant in this case being Sb. A control sample manufactured using resistive
evaporation RE), a technique known not to introduce defects in Ge, had no mea-
surable defects in it. The peak heights of the DLTS spectra are indicative of defect
concentration as

NT

ND
≈ 2ΔC

C
(15.4)

where NT is the deep level concentration, ND is the concentration of shallow impuri-
ties, ΔC is the DLTS peak height and C is the junction capacitance. The capacitance
of all the devices manufactured was found to be approximately the same and thus
spectra can be compared directly.

The DLTS spectra in Figs. 15.5 and 15.6 were all obtained from diodes prepared
in the same EBD system. For spectrum (a) a standard oil-filled rotary vane pump
was used but for all the other spectra an oil-free pump was used as the fore-pump
during deposition. To further improve the vacuum all crucibles were baked out in
situ using the electron gun. It is important that the pressure not increase drastically
during evaporation although a change in vacuum pressure is inevitable as fixtures
heat up during EBD and then outgas. Comparing spectrum (a) with spectrum (b) it
is evident that the peak heights of all the defects that are present in both spectra are
reduced by approximately 90% in spectrum (b). A further reduction in peak heights
can be observed in spectra (c), (d) and (e) once shieldswere applied. Spectrum (e) that
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Fig. 15.5 DLTS spectra recorded after electron beam deposition of Pt Schottky barrier diodes
under various vacuum conditions. For plot (a) standard vacuum conditions apply and there were
no shields. For samples (b), (c) and (d) the chamber was back-filled with forming gas at a partial
pressure of 10−4 mbar where (b) no shields, (c) one shield (direct particles) and (d) two shields (also
the reflected particles) were applied. Plot (e) represents a diode evaporated in a superior vacuum
with two shields in place. Reproduced with permission from [13]. Copyright 2013, AIP Publishing
LLC

represents a diode prepared in a superior vacuumwith two shields in place presents as
a wavy plot, indicative of surface states, but sharp peaks that are evidence of defects
with deep levels are conspicuously absent. Shields B1 and B2 were only capable
of blocking off energetic particles that were created when 10keV beam electrons
collide with residual gas atoms or molecules and not for electrons reflected off the
evaporant surface. Also, it is expected that light ions will follow a curved trajectory
around shield B1 while acted on by the magnetic field of the electron beam thus
rendering the shield ineffective to some degree.

The large difference in defect concentration between spectra (a) and (b) was
surprising when one considers that the only difference in the conditions was that less
hydrocarbon contamination was present during the manufacture of sample (b) and
that the vacuum pressure was kept constant at 10−4 mbar by introducing forming gas
into the chamber. Sample (a) was initially at a vacuum pressure of 10−6 mbar when
the deposition started but this pressure quickly increased to 10−4 mbar or more as the
chamber heated up. The composition of the residual gas present during EBD appears
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Fig. 15.6 DLTS spectra of a RE Pd diode—the control, b Pd EBD diode, c–e EBE diodes prepared
byRE.Diode c received 50min of EBE followed byREPd. Diode dwas exposed to 5× 10min EBE
followed byREPd and diode e received 5× 10min of EBE followed byREAu. DLTSmeasurement
conditions were as stated on the figure. Reproduced with permission from [13]. Copyright 2013,
AIP Publishing LLC

to be the largest contributor to the high defect concentration in sample (a) as well as
a higher partial pressure near the electron gun where most of the outgassing occurs.
Crucibles used during these evaporations may also have played a role as the standard
carbon crucible that was used when preparing sample (a) had a greater impact on the
vacuum pressure than the Fabmate® crucible that was used for other samples. The
complex nature of conditions present during EBD is evident in Figs. 15.5 and 15.6
if one considers that the defect concentration increased slightly with the addition of
a second shield, a measure designed to lower the defect concentration. This small
differencewas however not enough to draw conclusions from butmost important was
that all the counter-measures together lowered the defect density to a level that could
no longer be measured. For a diode evaporated onto Si the same measures lowered
the defect density so that, although the DLTS peaks were small, some defects could
still be identified [7].

The maximum energy that can be transferred by impinging atoms to the Ge lattice
per collision can be read off Fig. 15.2 (thick green plot). Treating all collisions elas-
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tically is a reasonable simplification to obtain the maximum possible energy that can
be transferred whereas treating the electrons relativistically only served to increase
the energy transferred by 0.9% and need not be taken into account. The maximum
energy that can be transferred to Ge was found to be approximately 1.3eV via a light
atom like H, with maximum energy transferred decreasing as the intermediate atom
or particle increases in mass. This energy is not sufficient to dislodge a Ge atom
from its position in the crystal lattice but may dislodge a light atom that has taken
up a substitutional position in the lattice or modify an existing defect with an energy
level too close to the band edges to be detected using DLTS. Vacancy-hydrogen com-
plexes have been reported on previously in Ge [14] and were observed using infrared
spectroscopy [11]. There is at present no certainty which of these complexes plays a
role in defect formation during EBD as their concentration in bulk grown Ge is too
low to be detected with infrared spectroscopy.

The defects that were observed after electron beam exposure of Ge that numbered
ten different defects, in total, have not been observed before with the exception of
E0.37 and E0.38 (E-center). The defect concentration of EBE induced defects was
much lower than that measured after EBD for similar exposure times and this is
evident if one compares plots (b) and (c) of Fig. 15.6. During EBD the semicon-
ductor receives a measure of protection from impinging particles as it is exposed
to radiation through an ever increasing metal film. No such layer is present during
EBE thus it was expected that similar or more damage would be observed after the
EBE process. One possibility for the great variety of different defects observed is
that these defects are mostly due to atoms being implanted into the EBE treated Ge
but this cannot explain the absence of the EBD induced defects. That the metal layer
acts as a channel for energy to be transferred to the semiconductor is a possibility
that will require further investigation. Samples exposed for 50min in 10min incre-
ments interrupted with 50min periods to allow for cooling exhibited significantly
higher defect concentrations for all defects observed. The sample that was subjected
to a continuous 50min EBE heated up 35 ◦C more than the sample that was allowed
to cool. Differences in defect concentrations may be due to annealing, in part, but
cannot explain why all the EBE induced defects were equally affected. The other
possibility is that sample heating interrupts the energy transfer process leading to
less defects being introduced. Detailed annealing studies will be required to shed
more light on this result.

15.4 Intrinsic Localized Modes or Breathers

Formany years the paradigmof considering phonons as the entity transporting energy
in a solid has been overwhelming. Phonons as it is well known are obtained under the
hypothesis of small lattice vibration that allows the linearization of the dynamical
equations of the system or equivalently allows the use of the harmonic approximation
for potentials. Perhaps one of the clearest examples of success was Einstein solid
theory where phonons were quantized in [21] at the beginning of twentieth century.
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Linear systems and phonons have been extremely successful not only in the frame-
work of quantum mechanics but also in classical mechanics, linear lattice theory has
been very productive. Most of the theory of spectroscopy is based on the harmonic
approximations and phonons.

15.4.1 Limitations of Harmonicity

It is however based on several assumptions that are known to be convenient mathe-
matical tools but not accurate representations of reality. First, it is well known that
interatomic potentials are not harmonic, starting from the electrostatic interaction
and continuing fromVan derWaals forces described, for example, with Buckingham
potentials V = A exp(−E/kB T ) − B/r6. However, the harmonic approximation
is quite convenient at temperatures of the order of room temperature and above,
for which the average atomic displacement is not too large. The key word is aver-
age, for average displacements or properties. At any temperature there is a small
but finite probability that some displacements are large enough for the harmonic
approximation to become invalid, but they will have a small effect on the average
properties. However, even if considering only bulk properties, it is well known that
the harmonic approximation is not sufficiently accurate as such a solid would not
experience thermal expansion and would have an infinite thermal conductivity [5].

There is a huge change, when interaction with radiation or swift particles is con-
sidered. In this chapter, for example, we considered the possible interaction of very
low energy particles such as 10keV electrons or 24eV H atoms with germanium lat-
tice atoms. Germanium atoms may acquire energies of 1eV, forty times larger than
the average thermal energy at room temperature. For the displacements involved
we can be sure that nonlinear effects will take place. If the interatomic distances
become small enough, potentials with a strong repulsive core such as Lennard-Jones
or Ziegler-Biersack-Littmark (ZBL) [41, 42] need to be introduced to provide a real-
istic description of the forces. If the energies are large enough they will produce
defects in the solid by displacing atoms from their lattice positions, bringing about
the formation of point defects like interstitials or vacancies. In this chapter and in
this section we will focus our attention on energies that are not large enough to dis-
rupt the lattice geometry, the so called subthreshold radiation regime . The threshold
energy in Ge depends on the lattice direction, being 11.5 and 19.5eV for the 〈111〉
and 〈100〉 directions, respectively [25]. Conventional knowledge supposes that the
energy just disperses into phonons elevating locally the temperature of the sample
creating a thermal spike but which soon would relax to thermal equilibrium with the
rest of the crystal.

Another shortcoming of the phonon description is that phonons are harmonic
waves that extend over thewhole space. This is a very usefulmathematical hypothesis
and it is justified because the extension of the phonons is much larger than the lattice
unit. However, the impact of a 10keV electron or a 24eV H atom on Ge is clearly
a localized phenomenon, because the de Broglie wavelength is ∼ 10−2 nm, smaller
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Fig. 15.7 Left Harmonic potential (continuous line), soft potential (dots) and hard potential
(dashed). Right Dependence of the frequency with respect of energy for an oscillator with dif-
ferent potentials (same code)

than the size of an atom. In the harmonic approximation the consequence of such an
impact is awavepacket but because basically allmedia are dispersive it soondisperses
into phonons with different wavelengths and velocities and the localization is lost.

However, if the nonharmonicity of the potentials is taken into account such an
impact may produce what is called an intrinsic localized mode (ILM), also known
as a breather, depending on the context [29, 32, 38, 39]. This is a localized wave
packet that does not spread, that is, it behaves like a quasiparticle. As ILMs are not
exact solutions they will eventually lose energy and disperse into phonons. How
long they can live, how many of them are there and how important are they, are still
open questions that are very much related and that we address here briefly. The key
concept to understand breather existence is the fact that the frequency of vibration
of nonlinear oscillators depends on the amplitude or energy of them, which does
not happen in a linear oscillator. If the frequency of the oscillator increases with the
amplitude, it is called a hard potential. This corresponds to a potential that grows
faster with the distance to the equilibrium point than what the harmonic one does,
while being equal at small distances. If the frequency of the oscillator decreases with
energy, it is called a soft potential and it grows more slowly than the harmonic one
does, as is illustrated in Fig. 15.7. The phonon spectrum of a solid is always bounded
from above, may have gaps, and in some cases may also be bounded from below, in
which case it is called optical. If it is not bounded from below it is called acoustic.
Vibrations with frequencies that are outside the phonon spectrum cannot propagate
in the solid, bringing about localization of energy that does not spread. Figure15.8
shows an example for amodel of cations in a silicate layer which produces the optical
spectrum [4].
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Breathers are well described mathematical objects and are easy to produce in
macro and meso systems. For example, a chain of magnetic pendulums is easy to
construct and to experiment with [37]. Their existence in a solid is a more difficult
question for several reasons, for example: (a) in the real world these systems are
quantum and not classical; (b) the potentials are simplifications of complex interac-
tions; (c) the lattice is not perfect, and (d) the lattice is disordered due to temperature.
These subjects have been studied, theories of quantum breathers exist and molec-
ular dynamics using increasingly realistic and complex potentials have been useful
in creating ILMs of energies of the order of magnitude of a few eV [23, 24, 40]
that propagate at finite temperatures. But more importantly, there is growing experi-
mental evidence of long range localized transmission of energy. For example, it was
observed [36] that subsequent to the impact of an alpha particle on the surface of an
insulator, there was transmission of energy in a localized way along close packed
lines that was able to eject an atom at the surface of the crystal. For the material
of interest in this chapter, germanium, it was shown that the impact of Ar atoms of
2–8eV were able to anneal defects 2µm below the surface [1, 2]. Annealing and
ordering of voids in several crystals, that has been attributed to ILMs [19], is another
example.
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15.4.2 Effect of Intrinsic Localized Modes

One question is that if ILM do exist in a solid, what will be their effect and on which
properties of the solid. If there are many of them then there will probably be interac-
tions between them and they will be dispersed. The main effect will be an increase in
the temperature of the system, as observed for a harmonic lattice. It seems that one of
the most important effects of breathers could manifest in connection with changes of
structure, annealing, chemical reactions and similar processes. Generally speaking,
we are considering all processes for which a potential barrier with some activation
energy Ea has to be overcome and with a probability of happening proportional to
exp(−Ea/kB T ), that is, the constant rate of the process is given by an Arrhenius
type equation:

κ = A exp(−Ea/kB T ) . (15.5)

This equation is extremely sensitive to changes in Ea and it is also asymmetric, i.e.,
the increase in the rateκ corresponding to a decrease of energyΔE ismuch larger than
the decrease in the rate corresponding to an increase of the same amount of energy.
An easy calculation demonstrates this. Suppose that there is some perturbation of
the barrier ΔE during some time Δt and a perturbation ΔE during the same time,
then, the mean rate κ ′ during the time interval 2Δt would be:

κ ′ = 1

2Δt

(
A e−(Ea − ΔE)/kB T Δt + A e−(Ea + ΔE)/kB T Δt

)

= 1

2

(
eΔE/kB T + e−ΔE/kB T

)
A e−Ea/kB T = Iκ. (15.6)

The amplification factor is I = cosh(ΔE/kbT ) and can usually be approximated by
I � 1

2 exp(ΔE/kB T ). It does not depend on the height of the barrier Ea but only
on the ratio of the barrier variation ΔE and the thermal energy of the lattice. It can
be seen in Fig. 15.9. An elaborate and rigorous theory is developed in [17, 18, 20],
but the conclusions are the same. Therefore, ILMs of small energy, both mobile or
stationary can produce a huge effect. Even more if we consider that their energy is
localized and not spread out as for phonons.

An example of this phenomenon in a silicate is described in [3]. In an experiment,
reconstructive transformation of the mica muscovite into lutetium disilicate was
observed to occur several orders of magnitude faster than expected due to the nature
of the bonds that have to be broken. The explanation is based on a fact observed
in numerical simulations: that breathers with larger energy live longer, therefore
a temporary fluctuation that produces an accumulation of vibrational energy and
creates an ILM is not immediately destroyed [34]. The more energetic the ILM
the more unlikely it is to exist, but also the longer will be its lifetime. Eventually an
equilibriumbetween ILMcreation and destruction is achieved for each energy. This is
a very small populationwith no thermodynamical effects but with largermean energy
than phonons. This energy is also localized and can be delivered more effectively to
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the bonds that are to be broken. Another example for germanium consists of a series
of experiments where it was found that Ar plasma ions with energies of 2–8eV were
able to anneal defects like the E-center at least two µm below the surface [1]. On the
other hand EBD was found to create defects up to a depth of one µm [13].

15.5 Conclusions

Itwas established that duringEBDenergetic particles, the product of elastic collisions
between 10 keV electrons and residual gas atoms in the vacuum, were the primary
cause of defects introduced in Ge and Si. High energy electrons interacting with the
semiconductor directly were found to transfer far less energy, per collision, than if the
energy transfer occurred through an intermediary atom or molecule. The maximum
energy transferred via this two-step process was calculated to be approximately
1.3eV for particles with an atomic mass from 1 to 4 and then diminished for heavier
particles. This amount of energy,when transferred to aGe lattice atom, is incapable of
creating a Frenkel pair butmay be sufficient tomodify an existing defect structure that
was previously invisible to DLTS. This conclusion can also be drawn if n-Si is used
[7]. The energies transferred to the germanium lattice by EDB is typically of the order
of magnitude of intrinsic localized modes. These nonlinear localized wave packets
have the property of significantly increasing the probability of structure changes
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by temporally lowering the potential barrier for the process. Therefore, intrinsic
localized modes are very likely to be the cause of the observed phenomenon.

Samples exposed to the conditions of EBD, without deposition (termed EB expo-
sure) did not contain the same defects as the EBD samples except for E0.37 and
the vacancy-antimony center (V-Sb), E0.38. This implies that a necessary condition
for the introduction of EBD defects was a thin metal layer through which energy
was transferred to the germanium crystal lattice. The EB exposure defects have not
yet been identified and may be related to impurities that were accelerated into the
germanium near-surface region before diffusing deeper into the material, although
this cannot explain the low defect concentrations observed, especially if the sample
temperature was allowed to increase during treatment.
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Chapter 16
Rate Theory of Acceleration of Defect
Annealing Driven by Discrete Breathers

Vladimir I. Dubinko, Juan F.R. Archilla, Sergey V. Dmitriev
and Vladimir Hizhnyakov

Abstract Novel mechanisms of defect annealing in solids are discussed, which are
based on the large amplitude anharmonic lattice vibrations, a.k.a. intrinsic localized
modes or discrete breathers (DBs). Amodel for amplification of defect annealing rate
in Ge by low energy plasma-generated DBs is proposed, in which, based on recent
atomistic modelling, it is assumed that DBs can excite atoms around defects rather
strongly, giving them energy � kBT for ∼100 oscillation periods. This is shown to
result in the amplification of the annealing rates proportional to the DB flux, i.e. to
the flux of ions (or energetic atoms) impinging at the Ge surface from inductively
coupled plasma (ICP).

16.1 Introduction

A defect lying in the band gap with energy >0.1eV from either band edge is termed
deep. As known from the studies of properties of defects inGe [1, 2, 4, 5, 30], Ar ions
arriving at a semiconductor surface with very low energy (2–8eV) are annihilating
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defects deep inside the semiconductor. Several different defects were removed or
modified in Sb-doped germanium, of which the E-center has the highest concentra-
tion, as described in details in [1, 2] and the preceding chapter. Novel mechanisms of
defect annealing in solids are discussed in this chapter, which are based on the large
amplitude anharmonic lattice vibrations, a.k.a. intrinsic localized modes (ILMs) or
discrete breathers (DBs). The chapter is organized as follows. In Sect. 16.2, a short
review on DB properties in metals and semiconductors is presented based on the
results of molecular dynamics (MD) simulations using realistic many-body inter
atomic potentials. In Sect. 16.3, a rate theory of DB excitation under thermal heat-
ing and under non-equilibrium gas loading conditions is developed. In Sect. 16.4,
a model for amplification of defect annealing rate in Ge by plasma-generated DBs
is proposed and compared with experimental data. The results are summarized in
Sect. 16.5.

16.2 Discrete Breathers in Metals and Semiconductors

DBs are spatially localized large-amplitude vibrational modes in lattices that exhibit
strong anharmonicity [14, 20, 33, 35]. They have been identified as exact solutions
to a number of model nonlinear systems possessing translational symmetry [14] and
successfully observed experimentally in various physical systems [14, 29]. Presently
the interest of researchers has shifted to the study of the role of DBs in solid state
physics and their impact on the physical properties of materials [9, 10, 12, 13, 29,
36]. Until recently the evidence for the DB existence provided by direct atomistic
simulations, e.g. MD, was restricted mainly to one and two-dimensional networks
of coupled nonlinear oscillators employing oversimplified pairwise inter-particle
potentials [14, 20, 33]. Studies of the DBs in three-dimensional systems by means
of MD simulations using realistic inter atomic potentials include ionic crystals with
NaCl structure [21, 25], graphene [6, 23, 27], graphane [28], semiconductors [37],
pure metals [15, 18, 32, 36], and ordered alloys [31]. For the first time the density
functional theory (DFT) was applied to the study of DBs, using graphane as an
example [7].

DBs have very long lifetime because their frequencies lie outside the phonon
band. Monatomic crystals like pure metals and semiconductors such as Si and Ge do
not possess gaps in the phonon spectrum, while crystals with complex structure often
have such gaps, for example, diatomic alkali halide crystals and ordered alloys with
a large difference in the atomic mass of the components. For the crystals possessing
a gap in the phonon spectrum the so-called gap DBs with frequencies within the gap
can be excited. This case will not be discussed here and in the following we focus
on the DBs having frequencies above the phonon band.
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16.2.1 Metals

In the work by Kiselev et al. [24] it has been demonstrated that 1D chain of particles
interacting with the nearest neighbors via classical pairwise potentials such as Toda,
Lennadrd-Jones or Morse cannot support DBs with frequencies above the phonon
band. They were able to excite only gap DBs with frequencies lying within the gap
of the phonon spectrum by considering diatomic chains. In line with the results of
this work, it was accepted for a long time that the softening of atomic bonds with
increasing vibrational amplitude is a general property of crystals, which means that
the oscillation frequency decreases with increasing amplitude. Therefore DBs with
frequencies above the top phonon frequency were unexpected.

However, in 2011, Haas et al. [15] have demonstrated by MD simulations using
realistic many-body interatomic potentials that DBs with frequencies above the
phonon spectrum can be excited in fcc Ni as well as in bcc Nb and Fe [15, 18].
Similar results were obtained for bcc Fe, V, and W [32].

The point is that the realistic interatomic potentials, including Lennard-Jones and
Morse, have an inflection point meaning that they are composed of the hard core
and the soft tail. This is typical for interatomic bonds of any complexity, including
many-body potentials. Physically the soft tail is due to the interaction of the outer
electron shells of the atoms, while the hard core originates from the strong repulsive
forces between nuclei and also from the Pauli exclusion principle for inner electrons
(fermions) that cannot occupy the same quantum state simultaneously. It is thus
important which part of the interatomic potential (hard or soft) contributes more to
the dynamics of the system.As it was shown in [24], the asymmetry of the interatomic
potentials results in the thermal expansion effect when larger vibrational amplitudes,
at zero pressure, cause the larger equilibrium interatomic distance and hence, a larger
contribution from the soft tail. If thermal expansion is suppressed somehow, then the
hard core manifests itself. To demonstrate this let us consider theMorse chain of unit
mass particles whose dynamics is described by the following equations of motion

ün = U ′(h + un+1 − un) − U ′(h + un − un−1), (16.1)

where un(t) is the displacement of the nth particle from the lattice position, h is the
lattice spacing,

U(r) = D(e−2α(r−rm) − 2e−α(r−rm)), (16.2)

is the Morse potential, where r is the distance between two atoms, D, α, rm are the
potential parameters. The function U(r) has a minimum at r = rm, the depth of the
potential (the binding energy) is equal to D and α defines the stiffness of the bond.
We take D = 1, rm = 1 and α = 5. For the considered case of the nearest-neighbor
interactions the equilibrium interatomic distance is h = rm = 1.

In frame of the model given in (16.1), (16.2) we study the dynamics of the stag-
gered mode excited with the use of the following initial conditions
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un(0) = A cos(πn) = (−1)nA, u̇n(0) = 0, (16.3)

in the chain of N particles (N is an even number) subjected to the periodic boundary
conditions, un(t) = un+N (t). Our aim is to find the frequency of the mode as the
function of the mode amplitude A for the two cases. Firstly the chain is allowed to
expand, and for given A > 0 the interatomic distance h > 1 is such that the pressure
p = 0. In the second case the thermal expansion is suppressed by fixing h = 1 for
any A. In this case, of course, for A > 0 one has p > 0. The results for the two cases
are shown in Fig. 16.1a, b, respectively. In (a) the frequency of the mode decreases
with A, while in (b) the opposite takes place.

In the numerical experiments by Haas et al. [15] is was found that the DBs in
pure metals are extended along a close-packed atomic row. The atoms surrounding
the atomic row where DB is excited create the effective periodic on-site potential
that suppresses the thermal expansion of the row and that is why the DB frequency
increases with increasing amplitude. The on-site potential was not introduced in the
1D model by Kiselev et al. [24] and, naturally, thermal expansion did not allow for
the existence of DBs with frequencies above the phonon band.

Notably, the excitation energy of DBs in metals can be relatively small (fractions
of eV) as compared to the formation energy of a stable Frenkel pair (several eV).

Fig. 16.1 Solid lines show frequency of the staggered mode (left ordinate) as the function of
amplitude for the case of a p = 0 and b h = 1. Dashed lines show a h and b p (right ordinate)
as the functions of A. The results for the 1D Morse lattice (16.1), (16.2) with the initial conditions
(16.3)



16 Rate Theory of Acceleration of Defect Annealing Driven by Discrete Breathers 385

Moreover, it has been shown that DBs in pure metals are highly mobile and hence
they can efficiently transfer energy and momentum over large distances along close-
packed crystallographic directions [18, 32, 36]. Recently, a theoretical background
has been proposed to ascribe the interaction ofmovingDBs (a.k.a ‘quodons’—quasi-
particles propagating along close-packed crystallographic directions) with defects in
metals to explain the anomalously accelerated chemical reactions inmetals subjected
to irradiation. Russell and Eilbeck [34] have presented experimental evidence for
the existence of quodons that propagate great distances in atomic-chain directions in
crystals ofmuscovite, an insulating solidwith a layered crystal structure. Specifically,
when a crystal of muscovite was bombarded with alpha-particles at a given point at
300 K, atoms were ejected from remote points on another face of the crystal, lying
in atomic chain directions at more than 107 unit cells distance from the site of
bombardment. Irradiation may cause continuous generation of DBs inside materials
due to external lattice excitation, thus ‘pumping’ a material with DB gas [10, 12].

In order to understand better the structure and properties of standing and moving
DBs, consider the ways of their external excitation in Fe by MD simulations [36].
A standing DB can be excited by applying the initial displacements to the two adja-
cent atoms along the close-packed [111] direction with the opposite signs to initiate
their anti-phase oscillations, as shown in Fig. 16.2a. The initial displacements ±d0
determine the DB amplitude, frequency and, ultimately, its lifetime. DBs can be
excited in a frequency band (1.0–1.4)× 1013 Hz just above the Debye frequency of
bcc Fe, and DB frequency grows with increasing amplitude as expected for the hard
type anharmonicity due to the major contribution from the hard core of the inter-
atomic potential. Initial displacements larger than |d0| = 0.45Ågenerate a chain
of focusons, while displacements smaller than |d0| = 0.27Ådo not provide enough
potential energy for the system to initiate a stable DB and the atomic oscillations
decay quickly by losing its energy to phonons. Themost stable DBs can survive up to
400 oscillations, as shown in Fig. 16.2b, and ultimately decay in a stepwise quantum
nature by generating bursts of phonons, as has been predicted by Hizhnyakov as
early as in 1996 [17].

A moving DB can be excited by introducing certain asymmetry into the initial
conditions. Particularly, the translational kinetic energy Etr can be given to the two
central atoms of DB in the same direction along [111] atomic row. DB velocity
ranges from 0.1 to 0.5 of the velocity of sound, while travel distances range from
several dozens to several hundreds of the atomic spaces, depending on d0 and Etr

[32, 36]. Figure16.3a shows a DB passing the two neighboring atoms with indices
3415 and 3416. In the moving DB the two central atoms pulsate not exactly in anti-
phase but with a phase shift. In about 1ps (∼10 oscillations) the oscillations of these
two atoms cease but they are resumed at the subsequent atoms along [111] atomic
row. In this way, the DB moves at a speed of 2.14 km/s, i.e. about the half speed of
sound in bcc Fe. The translational kinetic energy of the DB is about 0.54eV, which
is shared mainly among two core atoms, giving 0.27eV per atom, which is close
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Fig. 16.2 Oscillation of x coordinate of two neighbouring atoms, 2480 and 2479, in a [111] row in
Fe in a standing DB excited with d0 = 0.325Å[36]. a Initial stage of DB evolution; b total lifespan
of DB showing a stepwise quantum nature of its decay

to the initial kinetic energy of Etr = 0.3eV given to the atoms to initiate the DB
translational motion. The deviation of the potential energy of the atoms from the
ground state during the passage of the DB is presented in Fig. 16.3b. The maximal
deviation of energy is of the order of 1eV. Thus, a moving DB can be viewed as
an atom-size localised excitation with local temperature above 1000K propagating
along the crystal at a subsonic speed.
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Fig. 16.3 a Oscillation of x coordinate of two neighbouring atoms, 3415 and 3416 in a [111] row
in Fe during the passage of a moving DB (d0 = 0.4 Å, Etr = 0.3eV); b deviation of the potential
energy of the atoms from the ground state during the passage of DB

16.2.2 Semiconductors

Similar to metals, semiconductors possess no gap in phonon spectrum and thus
DBs may exist only if their frequency is positioned above the phonon spectrum
[15, 37]. Such high-frequency DBs may be realized in semiconductors due to
the screening of the short-range covalent interaction by the conducting electrons.
Voulgarakis et al. [37] investigated numerically existence and dynamical properties
of DBs in crystalline silicon through the use of the Tersoff interatomic potential.
They found a band of DBs with lifetime of at least 60ps in the spectral region
(1.643–1.733)× 1013 Hz, located just above the upper edge of the phonon band
calculated at 1.607× 1013 Hz. The localized modes extend to more than second
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Fig. 16.4 a DB generation
in silicon modeled by Tersoff
potentials. The DB frequency
is 1.733× 1013 Hz, while
vectors (magnified for
visualization purposes)
denote atomic displacements
from equilibrium; only first
(gray, red online) and second
(white) neighbors to the
central (black, blue online)
two breather atoms are
included. The displacement
of the two central breather
atoms is 0.18 Å. b Time
evolution of the silicon DB
after 998 breather periods.
The absolute value of the
displacements from
equilibrium along the
direction of motion of each
atom is plotted. The
coordinated oscillations of
central (solid), first (dotted),
and second (dashed)
neighbor atoms are indicated.
Reproduced with permission
from [37]. Copyright (2004)
American Physical Society

neighbors and involve pair central-atom compressions in the range from 6.1 to 8.6%
of the covalent bond length per atom. Finite temperature simulations showed that
they remain robust to room temperatures or higher with a typical lifetime equal to
6ps. Figure16.4 shows DB generated in silicon modeled by the Tersoff potential
[37]. It can be seen that the DB is very persistent and localized: its vibrational energy
is mainly concentrated in the bond between two neighboring atoms oscillating in
anti-phase mode.

Similar to silicon, germanium has a diamond crystal structure and readily pro-
duces DBs [19], as demonstrated in Fig. 16.5. As in Si, the DB’s energy in Ge is
concentrated in the central bond between two atoms oscillating in anti-phase mode.
This means that potential barriers for chemical reactions in the vicinity of an DB
may be subjected to persistent periodic oscillations, which has been shown to result
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Fig. 16.5 DB generated in germanium modeled by the Tersoff potential. Displacement of one of
the two central atoms is shown with a solid line and of the first neighbor by dashed (along [111]
axis) and dotted (perpendicular to [111] axis) lines. See [19]

in a strong amplification of the reaction rates [13]. In the next section we consider
the ways of DB excitation in thermal equilibrium and under external driving.

16.3 DB Excitation Under Thermal Equilibrium
and External Driving

In this section, for the convenience of the reader, we repeat the main points of the
chemical reaction rate theory that takes into account the effect of DBs, following the
earlier works [3, 11, 13].

The rate equation for the concentration of DBs with energy E, CDB(E, t) can be
written as follows [13]

∂CDB(E, t)

∂t
= KDB(E) − CDB(E, t)

τDB(E)
, (16.4)

where KDB(E) is the rate of creation of DBs with energy E > Emin and τDB(E) is
the DB lifetime. It has an obvious steady-state solution (∂CDB(E, t)/∂t = 0):

CDB(E) = KDB(E)τDB(E). (16.5)

In the following sections we will consider the breather formation by thermal activa-
tion and then extend the model to non-equilibrium systems with external driving.
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16.3.1 Thermal Activation

The exponential dependence of the concentration of high-energy light atoms on
temperature in the MD simulations [22] gives evidence in favor of their thermal
activation at a rate given by a typical Arrhenius law [33]

KDB(E, T) = ωDB exp

(
− E

kBT

)
, (16.6)

where ωDB is the attempt frequency that should be close to the DB frequency. The
breather lifetime has been proposed in [33] to be determined by a phenomenological
law based on fairly general principles: (i) DBs in two and three dimensions have
a minimum energy Emin, (ii) The lifetime of a breather grows with its energy as
τDB = τ 0DB(E/Emin − 1)z, with z and τ 0DB being constants, whence it follows that
under thermal equilibrium, the DB energy distribution function CDB(E, T) and the
mean number of breathers per site nDB(T) are given by

CDB(E, T) = ωDBτDB exp

(
− E

kBT

)
, (16.7)

nDB(T) =
Emax∫

Emin

CDB(E, T)dE = ωDBτ0DB
exp (−Emin/kBT )

(Emin/kBT )z+1

ymax∫

0

yz exp(−y)dy , (16.8)

with ymax = (Emax − Emin)/kBT . Noting that Γ (z + 1, x) = ∫ x
0 yz exp(−y)dy is the

second incomplete gamma function, (16.8) can be written as [13]:

nDB(T) = ωDBτ 0DB
exp (−Emin/kBT )

(Emin/kBT )z+1 Γ

(
z + 1,

Emax − Emin

kBT

)
. (16.9)

It can be seen that the mean DB energy is higher than the averaged energy density
(or temperature):

〈EDB〉 =
∫ Emax

Emin
CDB(E, T)EdE∫ Emax

Emin
CDB(E, T)dE

−−−−−−→
Emax�Emin

(
Emin

kBT
+ z + 1

)
× kBT . (16.10)

Assuming, according to [22] that Emin/kBT ≈ 3 and 〈EDB〉 ≈ 5kBT , one obtains
an estimate for z ≈ 1, which corresponds to linear increase of the DB lifetime with
energy.
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(a) (b)

Fig. 16.6 a Sketch of the double-well potential landscape with minima located at ±xm. These are
stable states before and after reaction, separated by a potential “barrier” with the height changing
periodically or stochastically within the V band. b Amplification factor, I0(V/kBT), for the average
escape rate of a thermalized Brownian particle from a periodically modulated potential barrier
at different temperatures and modulation amplitudes V . Reproduced with permission from [13].
Copyright (2011) American Physical Society

16.3.2 External Driving

Fluctuation activated nature of DB creation can be described in the framework of
classical Kramers model, which is archetypal for investigations in reaction-rate the-
ory [16]. The model considers a Brownian particle moving in a symmetric double-
well potential U(x) (Fig. 16.6a). The particle is subject to fluctuational forces that
are, for example, induced by coupling to a heat bath. The fluctuational forces cause
transitions between the neighboring potential wells with a rate given by the famous
Kramers rate:

ṘK (E0, T) = ω0 exp(−E0/kBT ), (16.11)

whereω0 is the attempt frequency andE0 is the height of the potential barrier separat-
ing the two stable states, which, in the case of fluctuational DB creation, corresponds
to the minimum energy that should be transferred to particular atoms in order to
initiate a stable DB. Thus, the DB creation rate (3) is given by the Kramers rate:
KDB(E, T) = ṘK (E, T).

In the presence of periodic modulation (driving) of the well depth (or the reaction
barrier height) such as U(x, t) = U(x) − V (x/xm) cos(Ωt), the reaction ṘK rate
averaged over times exceeding the modulation period has been shown to increase
according to the following equation [13]:

〈Ṙ〉m = ṘK I0

(
V

kBT

)
, (16.12)
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where the amplification factor I0(x) is the zero order modified Bessel function of
the first kind. Note that the amplification factor is determined by the ratio of the
modulation amplitude V to temperature, and it does not depend on the modulation
frequency or the mean barrier height. Thus, although the periodic forcing may be too
weak to induce a thermal reaction (if V < E0), it can amplify the average reaction
rate drastically if the ratio V/kBT is high enough, as it is demonstrated in Fig. 16.6b.
Another mechanism of enhancing the DB creation rate is based on small stochastic
modulations of the DB activation barriers caused by external driving. Stochastic
driving has been shown to enhance the reaction rates via effective reduction of the
underlying reaction barriers [10, 12] as:

〈Ṙ〉 = ω0 exp(−EDB
a /kBT ), EDB

a = E0 − 〈V 〉2SD
2kBT

, if 〈V 〉SD 	 kBT , (16.13)

where 〈V 〉SD is the standard deviation of the potential energy of atoms surrounding
the activation site.

In the present view, the DB creation is seen as a chemical reaction activated by
thermally or externally induced fluctuations. In the following section we consider the
reaction of annealing of defects in crystals, such as the deep traps for electrons/holes,
within the similar framework. I simplified model can be seen in [8]

16.4 Amplification of Sb-Vacancy Annealing Rate
in Germanium by DBs

Sb-vacancy defect inGe is a typical deep trap,which has been shown to arise under
displacement damage (producing vacancies) and anneal either thermally (above
400K) or under ICP treatment at ambient temperatures of about 300K [1]. This
plasma-induced acceleration of annealing at depth extending up to several microns
must be driven by some mechanism capable of transferring the excitation energy of
surface atoms (interacting with plasma) deep into the crystal. Quodons are thought
to be good candidates for providing such a mechanism, and bellow we present a
model of quodon-enhanced defect annealing based on quasi-periodic modulation of
the annealing activation barrier caused by the interaction of defects with a ‘quodon
gas’. This mechanism is illustrated in Fig. 16.7, which shows a moving DB (quodon)
before ‘collision’ with a vacancy in 2D close-packed crystal with pairwise Morse
interatomic potentials [26]. The DB velocity can be varied by changing the phase
difference, δ. The distance between the atoms II and III is 2Y and ΔY = Y − Y0
is the difference between the excited and ground state due to the interaction with
a quodon, which is shown in Fig. 16.8 as a function of time for ‘slow’ and ‘fast’
DBs. The mean difference 〈ΔY〉 and standard deviation 〈ΔY〉2 over the excitation
time of ∼80 oscillation periods have been calculated. It can be seen that “slow” DBs
disturb the vacancy more strongly than the “fast” ones, and besides, they practically
do not lose their energy in the course of ‘collision’. So these DBs behave similar to
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Fig. 16.7 Illustration of moving DB (quodon) before “collision” with a vacancy in 2D crystal
(4 times zoom of atomic displacements) [26]. 2Y is the distance between the atoms II and III.
Reproduced with permission from [26]. Copyright (2014) Springer

Fig. 16.8 a Dependence of ΔY = Y −Y0 on time for “slow” DBs b “fast” DBs; c Mean difference
〈ΔY〉 and standard deviation over 80 oscillation periods versus phase difference 〈ΔY〉2, which is
proportional to the DB velocity. It can be seen that “slow” DBs disturb the vacancy more strongly
than the “fast” ones [26]. Reproduced with permission from [26]. Copyright (2014) Springer
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molecules of some gas, which can be ‘pumped’ from the surface into material up
to some depth equal to the propagation range of quodons before the decay. Then,
the average rate of quodon generation (per atom), will be proportional to the ratio of
their flux Φq though the surface (where they are created by energetic plasma atoms)
to the propagation range of quodons, lq:

Kq = Φq

lq
ωGe, Φq = ΦAr

4EArMArMGe

Eq(MAr + MGe)2
, (16.14)

where ωGe is the Ge atomic volume, MAr, MGe are the Ar and Ge atomic masses,
ΦAr is the flux of Ar ions or atoms with a mean energy EAr, a part of which
4MArMGe/(MAr + MGe)

2, is transferred to germanium atoms and could be spent
on the generation of quodons with a mean energy Eq. Then the steady-state concen-
tration of quodon gas (see Fig. 16.9) will be given simply by the product of their
generation rate and the life-time, τq:

Cq = Kqτq, τq = lq
vq

, then Cq = ΦqωGe

vq
, (16.15)

where vq is the quodon propagation speed, which actually determines their concen-
tration within the layer of a thickness lq (Fig. 16.9).

Consider the periodicmodulation of the defect annealing activation energy inmore
details. It is driven by quodons that scatter on the defects and excite the surrounding
atoms (Fig. 16.8). The amplitude of the quasi-periodic energy deviation Vex can
be in the eV range with the excitation time, τex, of about 100 oscillation periods.
In the modified Kramers model (16.12), this energy deviation corresponds to the
modulation of the annealing activation barrier. Then, a macroscopic annealing rate

Fig. 16.9 The density of
quodon gas, Cq/ωGe, versus
Ar flux at the irradiation
temperature of 300K within
the layer of thickness
Lq = 5.3µ, at the quodon
velocity of vq = 300m/s.
Density of the phonons at
300K is shown for
comparison with a dotted
line. The vertical dotted line
corresponds to Ar flux in the
experiment [1]
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(per defect per second) may be written as follows:

〈Ṙ〉macro = ω0 exp

(
− Ea

kBT

)(
1 +

〈
I0

Vex

kBT

〉
ωexτex

)
, (16.16)

where Ea is the annealing activation energy, ωex is the mean number of excitations
per defect per second caused by the flux of quodons, which is proportional to the
quodon flux and the cross-section of quodon-defect interaction and is given by

ωex = Φqπb2, (16.17)

where b is the atomic spacing, the quodon formation energy Vq ≈ Vex. For material
parameters presented in Fig. 16.10, one has ωex ≈ 10−4s−1.

Sb-vacancy annealing kinetics is described by the following equation for the defect
concentration:

dcd

dt
= −cd

τa
, cd(t) = cd(0) exp

(
− t

τa

)
, (16.18)

Fig. 16.10 a Characteristic annealing time, (16.19) under thermal treatment and ICP. b Annealed
defect fractionwith time during thermal annealing at 373K in comparisonwith ICP-induced anneal-
ing at 300K according to the (16.18) and experimental data X. Irradiation and material parameters:
FAr = 5.6 × 1010 cm−2s−1; τex = 10−11s; ω0 = 5.313 × 1013s−1; Ea = 1.35 eV; Vex = 1.28 eV
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Fig. 16.11 a Annealed defect fraction at after 30min of ICP versus excitation energy, Vex , at 300K;
b after 30min of ICP or heating versus temperature at Vex=1.28eV

where τa is the characteristic annealing time, which inversely proportional to the
annealing reaction rate given by (16.16)

τa =
exp

(
Ea
kBT

)

ω0

(
1 + I0

(
Eex
kBT

)
ωexτex

) . (16.19)

In the absence of driving (ΦAr = 0 => ωex = 0), (16.19) describes the thermal
annealing, while at ΦAr > 0, the annealing proceeds at room temperatures at a rate
which is 5 orders of magnitude higher than that at ΦAr = 0, and it is comparable to
the thermal annealing at the boiling point (373K), as demonstrated in Fig. 16.10. In
agreement with experimental data [1], the defect concentration decreases by 30%
after ICP treatment for 30min at room temperature.

The ICP-annealing rate is very sensitive to the excitation energy (Fig. 16.11a), and
it increases monotonously with temperature (Fig. 16.11b), provided that the quodon
production rate and propagation range are temperature independent.

16.5 Summary

Anewmechanism of the long-range annealing of defects in Ge under low energy ICP
treatment is proposed, which is based on the catalyzing effect of DBs on annealing
reactions. The moving DB (quodon) creation is triggered by Ar flux which provides
the input energy transformed into the lattice vibrations.
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Simple analytical expressions for the annealing rate under ICP treatment are
derived as functions of temperature, ion current and material parameters, which
show a good agreement with experimental data.

Acknowledgments S.V.D. thanks the Tomsk State University Academic D.I. Mendeleev Fund
Program.
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Chapter 17
The Amide I Band of Crystalline Acetanilide:
Old Data Under New Light

Leonor Cruzeiro

Abstract The temperature dependent double peak of the amide I band of crystalline
acetanilide has interested researchers for more than four decades. The higher energy
peak, known as the conventional peak, is usually assigned to delocalized, exciton,
states and the lower energy peak, known as the anomalous peak, is attributed to
localized, self-trapped states. Here a mixed quantum/classical model that includes the
same physical ingredients as previous models, but within a fully atomistic description
of the acetanilide crystal, is used. The influence of the parameters of the model on
the absorption spectrum of crystalline acetanilide is reviewed. The conclusion is
that it is possible to reproduce the experimentally measured amide I band, as well
as its temperature dependence, in the absence of self-trapped states, provided that
the amide I energy has a strong dependence on the orientation of the hydrogen
that links the carbonyl group of one ACN molecule with the NH group of another
ACN molecule. In this picture, the anomalous band is due to strongly hydrogen-
bonded ACN molecules while the conventional band is due to weakly or un-bonded
molecules.

17.1 Setting the Problem

The possibility that vibrational excited states (VES) have a role in protein function,
something that has been designated as the VES hypothesis [11, 12], was first proposed
in 1973, by McClare, in the context of a “crisis in bioenergetics” [39, 47]. The VES
hypothesis was taken up by the Ukrainian physicist Davydov [19] who was interested
in the conformational changes responsible for muscle contraction, where the trigger,
and the energy donating reaction, is the chemical reaction of hydrolysis of adenosine
triphosphate (ATP). Davydov’s assumption was that the first event after the hydrolysis
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Fig. 17.1 Acetanilide
molecule. Carbon atoms are
cyan, hydrogen atoms are
white, the nitrogen atom is
blue and the oxygen atom is
red. The atoms that
constitute the amide group
are represented as spheres.
The other atoms are
represented as sticks

of ATP is the storing of the energy released in a vibrational mode of the peptide group,
known as Amide I, which consists essentially of the stretching of the C=O bond and
whose energy varies with the secondary structure of the protein [36]. Although many
other processes in living cells are powered by the energy released in the hydrolysis
of ATP, the fact is that the mechanism by which this energy is transferred and used to
produce work is not well understood. Energy is generated at the active sites, where
the hydrolysis of ATP takes place, and must then be transferred to the other site(s)
in the protein where essential work for the cell is carried out. According to Davydov
the energy is stored in the amide I vibrational mode of the peptide group and then
transferred across chains of hydrogen bonded amide groups [19]. In parts of the
protein where the backbone chain has a simple alpha-helical structure, such theories,
at low temperature, lead to a self-trapped, soliton-like excitation.

In this chapter, amide I vibrational energy transfer in the crystal of acetanilide
(ACN) will be considered. ACN (CH3CONHC6H5, see Fig. 17.1) is an organic
molecule whose crystal is stabilized by hydrogen-bonded networks very similar to
those found in proteins. Furthermore, as Fig. 17.1 shows, ACN possesses an amide
group and is thus capable of sustaining quantum amide I vibrations, just as happens
with the peptide groups of proteins. For these reasons, crystalline ACN has long
been considered a model for vibrational energy transfer processes in proteins
[6–9, 43, 45].

Early experiments by Careri and co-workers, in the 1970s and 1980s [6–9, 45],
showed that when crystalline ACN is cooled, a new, anomalous, peak arises in its
amide I absorption band, which is red-shifted by approximately 15 cm−1 with respect
to the conventional main peak, located at 1665 cm−1. Furthermore, the intensity of
the anomalous peak decreases as temperature increases. This intriguing temperature-
dependent double peak structure of the amide I band of crystalline ACN has been
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and continues to be the object of many studies [1–3, 6–8, 13, 21–25, 29–31, 34,
35, 43–46]. The current theories, which were first put forward in the early 1980s
[1, 2, 8, 24, 43, 44], propose that the conventional, higher energy, peak corresponds
to delocalized, free exciton amide I states and that the anomalous, lower energy,
peak is due to self-trapped states of the amide I excitation. Experiments by Edler
and Hamm [21, 22] which seem to indicate that the lower energy peak is strongly
anharmonic while the higher energy peak is harmonic, are deemed to confirm those
assignments. Thus, it is currently thought that the anomalous peak is in fact the first
experimental evidence for the self-trapped, soliton-like state proposed by Davydov
[19].

However, there are problems with the current theories for the amide I band of
crystalline ACN. First, let us consider how a self-trapped state is generated. The
prototype of a self-trapped state is the polaron concept first introduced by Landau
[37]: an electron in a polarizable crystal distorts the lattice in its vicinity and, in
turn, the distorted lattice provides a potential well which localizes the electron. If
the attractive interaction between the electron and the distorted lattice is larger, in
absolute terms, than the stress energy of the distorted lattice, the localized electron
state (the polaron) is stable. In this case, instead of being in a delocalized, Bloch
state, the electron becomes trapped in the potential it, itself, created. In the theo-
ries for the amide I band, the amide I excitation plays the role of the electron and
the ACN crystal is the lattice. Unlike the electron, which is always present in the
lattice, an amide I excitation must be created by electromagnetic irradiation in the
amide I energy range. A self-trapped state arises when the ACN crystal distorts in
response to the creation of that amide I excitation. The absorption spectrum of a
medium is the part of the electromagnetic radiation that is retained by the medium.
A self-trapped state can only contribute to the absorption spectrum if the ACN crys-
tal distorts during the time it takes the ACN molecule to absorb a photon. As was
pointed out by Davydov [20], if the Franck-Condon factor for the transition from an
undistorted lattice ground state to a distorted lattice excited state (the self-trapped
state) is too small, the formation of a self-trapped state by direct photon absorption
is effectively forbidden. In the latter case, first an amide I excitation is created in the
quantum states that are available when the ACN conformations are those populated
before electromagnetic irradiation; afterwards, those amide I states may evolve into
self-trapped states. In this process, although self-trapped states do arise, they do not
contribute to the absorption spectrum. While Alexander and Krumhansl considered
the interaction of the amide I vibration with acoustic phonons [1, 2] which involve
the motion of the whole ACN molecule and thus are slow, Scott and co-workers [7, 8,
45] considered the interaction of the amide I vibration with optical phonons, which
involve only the internal motion of the hydrogen atom in the NH group (see Fig. 17.1)
and are much faster. However, the only phonons that have been experimentally asso-
ciated with vibrational excitations in ACN are low frequency phonons (of energy
66 and 50 cm−1 for the amide I mode at low temperature [21] and 48 and 76 cm−1

for the NH stretching [23]). A second problem is that even if the self-trapped state
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could be created by photon absorption directly, for the two peaks to appear in the
absorption line shape, we would have to assume that in some cases photon absorp-
tion is associated with a lattice distortion, and a contribution to the anomalous peak
occurs, while, in other cases, photon absorption does not cause a lattice distortion,
and a contribution to the conventional band is made.

In this chapter, a model with the same ingredients as the early theories [1, 2,
8, 24, 43, 44], but that combines the quantum amide I vibration with a full three-
dimensional atomistic description of the ACN crystal, is applied to the calculation
of the complete absorption spectrum, in the amide I range, at different temperatures.
The aim is to determine the influence of the values of the different parameters of the
model on the absorption line shape of the amide I band. The results show that it is
possible to reproduce qualitatively the double peak structure of the amide I band,
as well as its temperature dependence, without resorting to self-trapped states if the
amide I energy is strongly dependent on the orientation of the hydrogen bond that
connects the C=O (carbonyl) group of one ACN molecule to the NH of another ACN
molecule. Moreover, according to this model, the lower energy, anomalous peak
is due to all strongly hydrogen-bonded ACN molecules, while the higher energy,
conventional, peak is due to weakly bonded or to un-bonded ACN molecules.

17.2 Theory

The early theories for the amide I band of crystalline ACN, put forward in the
beginning of the 1980s, concentrated on explaining the temperature dependence of
the anomalous peak [1, 2, 8, 24, 43, 44]. While Scott and collaborators used a
Hamiltonian in which the amide I excitation is coupled to optical phonons [8, 24,
43, 44], formally very similar to Holstein’s Hamiltonian for electrons in polarizable
crystals [32], Alexander [1] considered Davydov’s Hamiltonian for energy transfer
in proteins [19] in which the amide I excitation is coupled to acoustic phonons,
a model that was later extended to a mixture of acoustic and optical phonons [2].
Using the fully quantum version of these Hamiltonians, in the limit J = 0, where
J is the dipole-dipole interaction between amide I excitations at neighbouring sites
(corresponding to the matrix Vnm below), those authors showed that the Franck-
Condon factor provided a good quantitative fit of the temperature dependence of the
amplitude [1, 2, 8] and of the integrated intensity [43, 44] of the anomalous peak.
That is, the variation with temperature of the superposition of the phonon ground
states (phonon states in the absence of amide I excitation) with the displaced oscillator
states (the phonon states in the presence of amide I excitation) could reproduce the
experimental data, in an accurate manner.
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The Hamiltonian Ĥ used here to model the amide I vibration in the ACN crystal
has three terms which represent the same physical ingredients as in the early theories
[1, 2, 8, 24, 43, 44], i.e.:

Ĥ = Ĥqu + Hcr + Ĥint. (17.1)

where Ĥqu is the quantum excitation Hamiltonian which describes the storage and
transfer of amide I excitations among the C=O (carbonyl) groups, Hcr, the crystal
Hamiltonian, describes the motions of all the atoms in the ACN crystal, in the absence
of amide I excitations, and Ĥint, the interaction Hamiltonian, describes the influence
of the hydrogen bond on the amide I states and vice-versa. The mathematical expres-
sions of the three terms, however, are different from those found in the early theories,
as explained in detail below. Indeed, the quantum excitation Hamiltonian, Ĥqu, is
given by:

Ĥqu =
N∑

n=1

εn â†
nân +

N∑
n<m=1

[
Vnm

(
â†

nâm + â†
mân

)]
(17.2)

where εn , the site dependent amide I energy of an unhydrogen-bonded ACN mol-
ecule, is taken from a Gaussian distribution with a width of δε, â†

n (ân) are the
creation (annihilation) operators for an amide I vibration at molecule n, N is the
total number of ACN molecules and Vnm is the dipole-dipole interaction between
the amide vibration in ACN molecule n and the amide vibration in ACN molecule
m, given by the usual classical expression [11, 12, 14, 15, 24, 28]:

Vnm = 1

4 π ε0 k

|μn| |µm |
R3

nm
[en · em − 3 (u · en) (u · em)] (17.3)

where ε0 = 8.8542 × 10−12 F/m is the electric permittivity of the vacuum, k is the
dielectric constant of the medium, µn is the transition dipole moment of the amide
I excitation in ACN molecule n, u is the unit vector directed from the center of the
dipole in ACN molecule n to the center of the dipole in ACN molecule m, en is the unit
vector that defines the direction of the transition dipole moment in ACN molecule n
and Rnm is the distance between the centers of dipoles in ACN molecules n and m.
Vnm depends on the positions and orientations of the transition dipole moments for
the amide I excitations which, in turn, are calculated from the positions of the carbon
and oxygen in the carbonyl groups and of the nitrogen in the same amide group, as
in [36, 40].

As in other recent studies [11, 12, 14–16, 28] the crystal potential, Hcr, includes
the interactions between all atoms of ACN and is given by the classical potential
AMBER [10]:
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Hcr =
∑

bonds

Kd(d − deq)2 +
∑

angles

Kθ (θ − θeq)2 (17.4)

+
∑

dihedrals

Vn

2
[1 + cos(nφ − γ )] +

∑
i< j

[
Ai j

R12
i j

− Bi j

R6
i j

+ qi q j

εRi j

]

where Ri j = |Ri−R j |, R j being the three-dimensional position of atom j in the ACN
crystal. The only new parameters with respect to the AMBER potential are the partial
charges q j attributed to the atoms of each ACN molecule which were the same as
in [16]. They were determined by performing a Gaussian03 [27] electronic structure
calculation at the Hartree Fock level, with the 6–31 G(d,p) basis set, followed by an
electrostatic potential fitting with the Merz-Singh-Kollman method in Gaussian03.

While in the early theories the site motions are described by a harmonic poten-
tial [1, 2, 8, 24, 43, 44], the atomic Hamiltonian (17.4) includes also nonlinear
terms. Indeed, although covalent bonds between two atoms (first term) and angle
bending between two consecutive covalent bonds (second term) are represented by
harmonic potentials, torsions (third term) are represented by a truncated Fourier
series and hydrogen bonds and other nonbonded interactions (fourth term) are repre-
sented by a Lennard-Jones potential , with the electrostatic interactions represented
by a Coulomb potential. The nonlinear atomic Hamiltonian (17.4) depends on many
empirical parameters (Kd , deq , Kθ , θeq , Vn , n, γ , Ai j , Bi j , q j ) which have been
determined by fittings to experimental data and by comparisons with fully quantum
calculations [10, 41]. In fact, the development of these atomic molecular dynamics
potentials is still being pursued but they have already been successfully applied by
the pharmaceutical and biotechnology industries to the rational design of drugs.

Finally, the third term in (17.1), Ĥint, is:

Ĥint =
N∑

n=1

f (un, θ) â†
nân (17.5)

where f (un, θ) is a function that describes the change in amide I excitation energy
with the length of the hydrogen bond between the C=O group of molecule n and the
H-N group of molecule m, and with θ , the C=O· · · H angle. In most previous studies
of the amide I band of crystalline ACN [1, 2, 6–8, 21–24, 29–31, 43–45] the crystal
Hamiltonian has been represented by a collection of coupled harmonic oscillators,
implicitly assuming that the hydrogen bonds between the ACN molecules are per-
manent and that the only dynamics they have is that of stretching or compressing
with respect to a well defined equilibrium length. However, as protein structures
show [4], at biological temperatures, at any given time, there is a fraction of C=O
groups that is not hydrogen bonded and we can expect a similar behaviour for the
hydrogen-bonded chains in the ACN crystal. Broken hydrogen bonds cannot affect
the amide I excitation energy, and thus f (un, θ) cannot grow continuously with the
hydrogen bond length. A realistic f (un, θ) function must saturate to zero for suf-
ficiently large hydrogen bond distortions. But our suggestion is also that f (un, θ)
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can saturate to zero at hydrogen bond lengths for which the hydrogen bond itself still
exits in a structural sense. i.e., weak hydrogen bonds may no longer influence the
amide I energy. This possibility will be explored in Sects. 17.4–17.6.

Our calculations of the absorption spectrum of crystalline ACN follow the method
of [26] which is ideally suited for a mixed quantum/classical Hamiltonian such as
(17.1–17.5). i.e., for each conformation of the ACN system, that is, for each set of
atom positions {Rn}, we determine the Vnm matrix (17.3) and find the N quantum
states available for the amide I excitation by solving the eigenvalue equation:

Ĥ |� j >= E j | � j > (17.6)

where j = 1, . . . , N and E j is the energy of the amide I eigenstate |� j >. Con-
sidering only one quantum Amide I states the exact general expression for |� j >

is:

|� j >=
N∑

r=1

ϕ jr ({Rn}) â†
r |0 > (17.7)

where ϕ jr is the probability amplitude that, in the eigenstate of energy E j , there is an
amide I excitation in ACN molecule r , something that depends on the conformation
of the ACN molecules specified by the set of atomic positions {Rn}.

The absorption line-shape can then be calculated as in Fidder et al. [26]:

A(E) =�
N∑

j=1



(
E − E j

)
μ2

j (E) � (17.8)

where � · · · � indicates thermal average, that is, average over the equilibrium
ensemble of conformations of the ACN crystal, and



(
E − E j

) =
{

1/R for
∣∣E − E j

∣∣ ≤ R/2
0 otherwise

(17.9)

is the distribution of amide I states as a function of the energy E , the thermal average of
which will be designated as spectral distribution. R is the resolution of the absorption
spectra which, in the figures presented in Sects. 17.3–17.6 is R ≈ 0.6 cm−1. Finally,
μ j = μ

∑N
r=1 ϕ jr , where μ is the absolute value of the transition dipole moment

of Amide I, i.e. μ = |µn|. μ2
j (E) is a measure of the intensity of interaction of

eigenstate |� j > with the electromagnetic field. The larger μ2
j (E) is, the greater the

absorption by the amide I state with energy E . Its thermal average, � μ2
j (E) �,

will be designated as the oscillator strength.
Equation (17.8) implicity assumes that the atomic positions do not change during

the time of a photon absorption. Thus, the amide I states that can be populated are
those available when the crystal configuration is that which exists in the absence of
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amide I excitations. This means that self-trapped states are not included in any of the
absorption spectra presented in Sects. 17.4–17.6.

Our purpose is to investigate the influence of the parameters of the model on the
absorption line shape of crystalline ACN. We will consider three cases, corresponding
to three different f (un, θ) functions: (a) when the amide I energy depends only on
the length of the hydrogen bond, as in most previous studies [1, 2, 7, 8, 13, 21–24,
29–31, 43–45] (i.e. it does not depend on θ , see Sect. 17.4), (b) when the orientational
dependence is in terms of a cosine function as in [11, 14, 15, 28] (see Sect. 17.5),
and (c) when the orientational dependence is abrupt [16] (see Sect. 17.6).

17.3 The Acetanilide Crystal Structure and Dynamics

The structure of the crystal of acetanilide is known since the early fifties [5, 34].
It is an orthorhombic crystal that belongs to the space group Pbca (D15

2h), with Z =
8 (8 ACN molecules per unit cell). The sample of ACN crystal used in the results
reported below was built in the following manner. First, a file with the crystallographic
information of ACN at 113 K was obtained from the website of A.L. Spek, at the
Bijvoet Center for Biomolecular Research, and converted to pdb format, using the
Mercury 2.2 program [38]. This resulted in a system with 8 ACN molecules (the
unit cell). Using the unit cell dimensions of 19.509 Å by 9.364 Å by 7.778 Å, a
crystal was created by making 3 by 6 by 6 repeats of the unit, in the x, y and z
directions, respectively, using visual molecular dynamics (VMD) [33] scripting. The
final crystal, with 864 ACN molecules, was placed in a periodic box with dimensions
58.527 Å by 56.184 Å by 46.668 Å using the leap module of AMBER9 [10].

In the crystal, the amide groups are organized in y,z planes which are repeated in
the x direction. All inner planes have the structure displayed in Fig. 17.2. It shows
that, in the crystal, the ACN molecules orient themselves in a way that makes their
amide groups form hydrogen-bonded chains. In previous investigations only two of
such chains were considered [16, 24], but here we will consider the full plane which,
in our crystal sample, has N = 144 ACN molecules. On the other hand, dipole-
dipole interactions between molecules in two different planes will be neglected. Also,
periodic boundary conditions are considered along the y direction, to minimize the
number of C=O groups left hanging.

As explained in the previous section, in order to calculate the amide I absorption
spectrum at a given temperature we must collect crystal conformations that are rep-
resentative of the equilibrium distribution at that temperature. Therefore, molecular
dynamics simulations of the crystal were performed, using the AMBER force field
(see (17.4) and [10]), as follows. First, the crystal obtained with the leap module
of AMBER9 [10] was energy minimized over a total of 6000 steps, the first 600
of which by a steepest descent method, and the remaining 5400 steps by conjugate
gradient minimization. Next, the crystal was heated to the final temperatures of 10,
80, and 240 K, respectively, over a period of 10 ps, using a Langevin thermostat with
a collision frequency of 2 ps−1. After an equilibration period of 2 ns, production runs
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Fig. 17.2 Organization of amide I groups of ACN in the inner planes of the crystal. Carbon atoms
are cyan, hydrogen atoms are white, the nitrogen atom is blue and the oxygen atom is red. Yellow
dots represent the hydrogen bonds between the NH group of one ACN molecule with the C=O
(carbonyl) group of another ACN molecule. This figure was made with VMD [33]

were performed over another 2 ns, with periodic boundary conditions and at constant
atmospheric pressure. An integration time step of 1 fs, PME to calculate long-range
electrostatics, a non-bonded cut-off of 20 Å and the SHAKE algorithm [42] to con-
strain bonds involving hydrogens were employed in all MD simulations. Crystal
configurations were collected every 0.5 ps, leading to a total of 4000 snapshots at
each temperature. The data collected is the same as in [16].

As (17.5) indicates, an important information for the determination of the amide
I states is the length, un , and orientation, θ , of the hydrogen bonds between the
C=O groups of one ACN molecule and the NH group of another ACN molecule.
Using the 4000 crystal snapshots collected at the three different temperatures, the
number of hydrogen bonds as a function of those two variables was computed and is
displayed in Fig. 17.3. We notice that the most probable angle θ is not zero, even at
low temperatures. As temperature increases, the distribution broadens, as expected,
and the maxima shift. Indeed, the maximum at T = 10 K is at 1.815 Å, 31.5◦, at T =
80 K, it is at 1.815 Å, 28.8◦ and at T = 240 K it is at 1.845 Å, 26.1◦ (in the crystal
the corresponding values are 1.913 Å, 43.3◦).

Also important for the determination of the amide I states are the values of the
dipole-dipole interactions Vnm given by (17.3). In a previous full quantum study it
has been assumed that they are centred at two values, one positive (+10 cm−1) and
another negative (−10 cm−1) [30]. The distributions obtained from the equilibrium
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Fig. 17.3 Number of
hydrogen bonds between
ACN molecules as a function
of bond length and
orientation (angle θ defined
in Sect. 17.2). Top plot is for
T = 10 K, middle plot is for
T = 80 K and bottom plot is
for T = 240 K. All plots are
normalized by the largest
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crystal conformations at three different temperatures and as a function of the tran-
sition dipole moment μ, are displayed in Fig. 17.4. In this figure, the dipole-dipole
interaction between all ACN molecules in a plane are considered and the peak at
zero is due to the fact that they decrease with 1/R3 (cf. (17.3)). There are indeed
positive values of dipole-dipole interaction (more visible for the larger value of the
effective transition dipole strength, μ/

√
k) which arise between dipoles located in

neighbouring chains, as was assumed before [30]. However, they are not very fre-
quent and both plots lead to the conclusion that the dominant values of dipole-dipole
interaction in crystalline ACN are negative.
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Fig. 17.4 Distribution of the
dipole-dipole interaction,
Vnm , as a function of μ/

√
k

(see (17.3) in Sect. 17.2).
The top plots are for
μ/

√
k = 0.14 D and the

bottom plots are for
μ/

√
k = 0.30 D. The black

curves are for T = 10 K, the
green curves are for T =
80 K and the red curves are
for T = 240 K. The energy is
in cm−1
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17.4 No Orientational Influence on the Amide I Energy

Most previous studies take the amide I energy to be a linear function of the hydrogen
bond length [7, 8, 13, 18, 21, 22, 29–31, 43], implicitly assuming that the hydrogen
bonds between the ACN molecules are permanent and that all they do is fluctuate
around an equilibrium value. However, as already discussed above, ACN molecules
fluctuate (neutron diffraction experiments actually show that the main motion is a
libration along the large axis of ACN [34], something that is also seen the animations
of the crytal trajectories used here), and hydrogen bonds are constantly being broken
and re-made. Thus, as in other recent publications [11, 12, 14, 15, 28], the function
f (un, θ) used in this section allows for the existence of broken hydrogen bonds and
is given by the following expression:

f (un, θ) =
{

χ (un − Rmax) for un < Rmax
0 otherwise

(17.10)

where χ is the change of the amide I energy with un in the linear regime, un =
|RO

n − RH
m |, is the distance between the O atom of ACN molecule n and the H atom
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Fig. 17.5 Top left Dependence of the amide I energy (given by (17.10)) on the hydrogen bond
length and on the angle θ (see text), for χ = 31 pN and Rmax = 1.914 Å. Top right Absorpion line
shape for δε = 3 cm−1 (black curve), δε = 2 cm−1 (red curve) and δε = 5 cm−1 (green curve);
remaining parameters are T = 10 K, χ = 31 pN, Rmax = 1.914 Å and μ/

√
k = 0.14 D. Bottom left

Absorpion line shape for χ = 31 pN (black curve), χ = 15 pN (red curve) and χ = 60 pN (green
curve); remaining parameters are T = 10 K, δε = 3 cm−1, Rmax = 1.914 Å and μ/

√
k = 0.14 D.

Bottom right Absorpion line shape for Rmax = 1.914 Å (black curve), Rmax = 1.814 Å (red curve)
and Rmax = 2.014 Å (green curve); remaining parameters are T = 10 K, δε = 3 cm−1, χ = 31 pN
and μ/

√
k = 0.14 D. The energy is in cm−1

of the NH group of ACN molecule m, θ is the angle C=O· · · H, where the C=O group
belongs to ACN molecule n and the atom H belongs to NH group of ACN molecule
m and Rmax is the saturation value, i.e. it is the length beyond which the hydrogen
bond between O and N no longer affects the amide I energy. Beyond Rmax the amide
I energy is that of un-hydrogen-bonded ACN molecule, even if, structurally, that
ACN molecule still has a weak hydrogen-bond. Figure 17.5 (top left) shows how the
amide I energy is assumed to depend on the hydrogen bond length and θ in this case.

Considering that the crystal conformations are obtained from the classical mole-
cular dynamics simulations using (17.4), with the amide I energy being defined by
(17.10), the Hamiltonian (17.1–17.5) depends on four parameters only, namely, the
standard deviation of the Gaussian disorder, δε, the effective dipole-dipole interac-
tion between C=O groups, μ/

√
k, the nonlinearity parameter, χ , and threshold, Rmax,

beyond which the amide I energy no longer depends on the hydrogen bond length.
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We will now investigate the influence that these parameters have on the absorption
line shape at different temperatures.

The parameters δε, χ and Rmax are all related to the influence of the crystal
environment on the amide I energy, but Fig. 17.5 shows that they have different effects
on the absorption line shape. As expected, the width of the absorption spectrum
increases as δε or χ increase. However, while an increase of the Gaussian diagonal
disorder by a factor greater than two causes only a slight shift of the peak position
towards lower energies, a doubling of the nonlinearity parameter χ can produce a
downward shift greater than 10 cm−1. Moreover, the shift induced by a variation of χ

increases with χ . Changes in the threshold parameter Rmax also lead to very sizeable
shifts of the peak position; on the other hand, those changes in Rmax lead to rather
weaker changes in the peak’s width, whose value saturates beyond Rmax ≈ 1.914 Å
(apart from a shift of 15 cm−1, the green curve in the bottom right plot is very similar
to the black curve). Finally, Fig. 17.6 shows the influence of the effective transition
dipole strength on the absorption spectrum.

It shows that the influence of μ/
√

k is threefold. On the one hand, as the effective
transition dipole strength increases the width of the absorption line shape decreases.
On the other hand, and as was found for the nonlinearity parameter χ and for the
threshold parameter Rmax, when μ/

√
k increases the absorption peak is shifted by

Fig. 17.6 Top Absorpion
line shape for
μ/

√
k = 0.14 D (black

curve) and for
μ/

√
k = 0.30 D (red curve);

χ = 31 pN. Bottom
Absorpion line shape for
μ/

√
k = 0.14 D (black

curve) and for
μ/

√
k = 0.30 D (red curve);

χ = 15 pN. For all curves,
T = 10 K, δε = 3 cm−1,
Rmax = 1.914 Å and the
energy is in cm−1
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Fig. 17.7 Absorpion line
shape for T = 10 K (black
curve), T = 80 K (red curve)
and T = 240 K (green
curve). For all curves,
χ = 31 pN, δε = 3 cm−1,
Rmax = 1.914 Å and
μ/

√
k = 0.14 D. The energy

is in cm−1
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an amount that is weakly dependent on the value of χ . A third effect of changing
μ/

√
k is that, for larger values of μ/

√
k, the peaks acquire a fine structure (that is

particularly visible for χ = 15 pN (bottom plot in Fig. 17.6). At low temperatures,
the higher energy peak of the experimentally measured amide I band does have a fine
structure towards the low energy side that has been attributed to a Davydov splitting
[20]. On the other hand, it is pointed out in [8, 43] that since the space group is Pbca(

D15
2h

)
there should three IR active modes, but there is still some uncertainty in their

assignment. Our simulations include all ACN molecules in the unit cell, and thus
include the effect of the Davydov splitting, but the fine structure that is observed in
Fig. 17.6 is on the high energy side of the peak.

Figure 17.7 shows the results we are mostly interested in, namely, the influence
of temperature on the amide I absorption band.

It shows that Hamiltonian (17.1–17.5), together with function (17.10), which
assumes that the amide I energy follows a linear regime with respect to small devia-
tions from the equilibrium length of the hydrogen bond, as assumed in most previous
studies [1, 2, 7, 8, 13, 18, 21, 22, 24, 29–31, 43, 44], does not lead to the double
peak at low temperatures that is found experimentally. For the largest temperature,
however, a structure resembling a double peak structure is obtained (green curve
in Fig. 17.7). To understand how it arises, let us first remember that the absorption
spectrum (cf. (17.8)) is dependent on two quantities, the oscillator strength and the
spectral distribution, presented in Fig. 17.8. The oscillator strength, which represents
the intensity with which the states of energy E interact with the electric field, is
defined for all energies, even if there are few states with that energy. Thus, it allows
us to estimate the full extent of the width of the amide I band. We see that while in
full quantum treatments in which the phonon influence on the quantum particle is
averaged out (see e.g. [31]) the band width decreases as the temperature increases,
for this exact mixed quantum/classical treatment, the band width increases as the
temperature increases. The same result was also obtained in [17] for a one dimen-
sional chain. Figure 17.8 also shows that the oscillator strength has a non-monotonic
behaviour with energy and that, at low temperature, the acetanilide crystal can be
superradiant (i.e. has oscillator strengths greater than 1) at energies some 20 cm−1
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Fig. 17.8 Oscillator strength
(top) and spectral
distribution (bottom) for
T = 10 K (black curve),
T = 80 K (red curve) and
T = 240 K (green curve).
For all curves, χ = 31 pN,
δε = 3 cm−1,
Rmax = 1.914 Å and
μ/

√
k = 0.14 D. The energy

is in cm−1
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below that of un-hydrogen-bonded ACN molecules. The bottom plot in Fig. 17.8
shows that the double peak struture of the absorption band at T = 240 K is due to a
double peak in the spectral distribution at that temperature. This latter double peak
is due to the fact that, at T = 240 K, the hydrogen bond distribution is very broad
(see the bottom plot of Fig. 17.3) and the value of Rmax of 1.914 Å creates a popula-
tion of ACN molecules which, although structurally hydrogen bonded to other ACN
molecules, have an interaction Hamiltonian (17.5) equal to zero, thus contributing to
energy states with energy centred on zero (the energy of un-hydrogen-bonded ACN
molecules). Notice also that the location of the maxima of the oscillator strength and
of the spectral distribution do not coincide, e.g., for T = 10 K, the maximum in the
oscillator strength is close to −20 cm−1, while the maximum in the spectral distribu-
tion it is close to −15 cm−1. Therefore, the location of the maximum of the spectral
distribution alone does not necessarily determine the location of the maximum of the
absorption spectrum.

One common feature of all the low temperature spectra presented in this section is
that they are constituted by a single peak, shifted with respect to the amide I energy
of un-hydrogen-bonded ACN molecule by an amount that depends mostly on χ ,
Rmax and μ/

√
k. However, the absorption spectrum at higher temperature (the green
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curve in Fig. 17.7) already gives a clue on how to obtain a double peak, namely, by
truncating the hydrogen bond distribution (see Fig. 17.3). Here a truncation in the
hydrogen bond length only was explored, but in the next two sections, truncations in
the orientation angle will also be considered.

17.5 Weak Orientational Dependence of the Amide I Energy

A few studies of energy transfer in proteins have included an orientational dependence
of the amide I energy in terms of cos(angle) [11, 12, 14–16, 28] (although the angle
(let us call it α) was that which the C=O group in a peptide makes with the NH
group of another peptide and therefore not equal to the angle θ which is defined
again below). We will now consider a function f (un, θ) with a similar orientational
dependence, namely:

f (un, θ) =
{

χ (un − Rmax) cos(θ) for un < Rmax
0 otherwise

(17.11)

where θ is the angle formed by atoms C,O,H, where the first two belong to the C=O
group of ACN molecule n and H belongs to the NH group of the ACN molecule
to which molecule n is hydrogen-bonded. The other parameters are as for function
(17.10).

Although the function (17.11) is different from (17.10), as is obvious when com-
paring the top left plot of Fig. 17.5 with the left plot of Fig. 17.9, the dependence of
the absorption spectrum on the parameters of the model (which are the same as in the
previous section since θ is calculated from the crystal configurations) is very similar
to that reported in the previous section. Indeed, only a close comparison between
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Fig. 17.9 Left Dependence of the amide I energy (given by (17.11)) on the hydrogen bond length
and on the angle θ (see text), for χ = 31 pN and Rmax = 1.914 Å. Right Absorpion line shape
for T = 10 K (black curve), T = 80 K (red curve) and T = 240 K (green curve). For all curves,
χ = 31 pN, δε = 3 cm−1, Rmax = 1.914 Å and μ/

√
k = 0.14 D. The energy is in cm−1
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the plot on the right of Fig. 17.9 with Fig. 17.7 reveals that, in the former, the spectra
are generally slightly thinner than in the latter and the peak position at T = 10 K
is shifted towards higher energies when function (17.11) is considered. The gen-
eral conclusion is that the smooth orientational dependence seen in the left plot of
Fig. 17.9 does not lead to a two peak structure in the amide I band of crystalline
ACN, at low temperature.

17.6 Strong Orientational Dependence
of the Amide I Energy

In a previous publication a two peak structure for the absorption was obtained when
the influence of the hydrogen bond on the amide I energy on hydrogen bond orienta-
tion was assumed to change abruptly to zero for angles α greater than 20◦ [16]. Here
we will determine the minimum degree of abruptness in the orientational dependence
that is needed to obtain a two peak absorption spectrum at low temperatures. The
function f (un, θ) we will use is:

f (un, θ) =
{

χ (un − Rmax) g(θ) for un < Rmax
0 otherwise

(17.12)

where g(θ) is given by:

g(θ) = 2

(
θ − θ0

W

)3

− 3

(
θ − θ0

W

)2

+ 1 (17.13)

θ0 being the angle beyond which the orientation of the hydrogen bond starts to affect
the amide I energy and θ0 + W being the angle beyond which the function f (un, θ)

(given by (17.12)) saturates to zero (as well as the interaction Hamiltonian (17.5)).
A plot of this function is presented in Fig. 17.10.

Fig. 17.10 Dependence of
the amide I energy (given by
expressions (17.12–17.13))
on the hydrogen bond length
and on the angle θ (see text),
for θ0 = 24o, W = 9.4◦,
χ = 31 pN and
Rmax = 1.914 Å. The energy
is in cm−1
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Fig. 17.11 Absorpion line shape for θ0 = 27◦, W = 6.4◦ (top left), θ0 = 29◦, W = 4.4◦ (top
right), θ0 = 31◦, W = 2.4◦ (bottom left) and θ0 = 33◦, W = 0.4◦ (bottom right). The black curves
are for T = 10 K, red curves for T = 80 K and green curves for T = 240 K. For all curves,
χ = 31 pN, δε = 3 cm−1, Rmax = 1.914 Å and μ/

√
k = 0.14 D. The energy is in cm−1

The introduction of function (17.12–17.13) adds two new parameters to the Hamil-
tonian (17.1–17.5), namely, θ0 and W . The dependence of the absorption spectra on
the other four (δε, χ , Rmax and μ/

√
k) is similar to what was shown in Sect. 17.4 and

will not be discussed again. Instead, in this section, we concentrate on the influence
of the two new parameters on the amide I absorption spectra, which is shown in
Fig. 17.11. The curves in the bottom right plot of Fig. 17.11 reproduce, qualitatively
and even in a semi-quantitative manner, the double peak structure of the amide I band
of crystalline ACN, as well as its temperature dependence (see, e.g. Fig. 2a of [29]).

The plots in Fig. 17.11 were made for values of θ0 and W such that θ0 + W =
C = 33.4◦. Decreasing C leads to an enhancement of the total intensity of the higher
energy peak and, vice-versa, increasing C leads to less intense higher energy peaks.
For C > 34◦ the absorption spectra are very similar to those obtained with function
(17.11) for the amide I energy. Keeping θ0 + W = 33.4◦, Fig. 17.11 shows that,
for T = 10 K, as W increases, first the total intensity of the lower energy peak
(the so-called unconventional or anomalous peak) increases, at the expense of the
higher energy peak (the so-called conventional peak). This is seen in the bottom left
plot of Fig. 17.11. Further increases in W lead to a progressive merging of the two
peaks (seen in the black curve of the top left plot of Fig. 17.11) and for W ≥ 6.4,

http://dx.doi.org/10.1007/978-3-319-21045-2_2
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the two peak structure at low temperature disappears and is replaced by a broad
line, red shifted with respect to zero (the amide I energy of the un-hydrogen-bonded
ACN molecules). Thus, with this model, only a strong orientational dependence of
the amide I energy can reproduce the main features of the absorption spectrum of
crystalline ACN.

17.7 Discussion and Conclusions

One fundamental difference between previous theories [1, 2, 7, 8, 13, 18, 21–24,
29–31, 43–45] and the present approach is that here it is assumed that all the atoms
in the crystal remain stationary during the time it takes to absorb a photon while in
the former theories the possibility that at least the hydrogen atoms of the NH group
move during absorption is considered. It is this motion that can lead to a self-trapped
state. In the present approach the contribution of self-trapped states to the absorption
spectrum is excluded a priori. This does not mean that self-trapped states do not
arise, but rather that they are only assumed to arise after the absorption has taken
place. We do indeed agree with most of the research community in this field that, at
low temperature, self-trapped amide I states can form as a result of the creation of
an amide I excitation. However, as suggested in [16], these states should be looked
for in the emission spectrum. While the nonlinear physics community is specifically
interested in the question of whether solitons have a role in biological processes, and
may lose interest if the answer is “no”, biophysicists are interested in how living
systems function, and will keep going, even if solitons are not the answer.

In the self-trapping picture [1, 2, 7, 8, 13, 18, 21–24, 29–31, 43–45] the higher
energy (conventional) peak is due to one quantum exciton states, the lower energy
peak is due to the self-trapped states and the energy shift between the two peaks
is the binding energy of the self-trapped state. One of its greatest successes is the
reproduction of the temperature dependence of both the amplitude [8] and of the
integrated intensity [44] of the anomalous peak, using the zero-phonon line formalism
developed for colour centers. To apply the latter formalism we need to determine
phonon ground states (phonon states in the absence of amide I excitations) and
phonon excited states (phonon states in the presence of one quantum of amide I). The
zero phonon line comes from the overlap of phonon ground states with phonon excited
states which have the same quantum number. Within a mixed quantum/classical
model it is not possible to do this calculation because the lattice (the ACN atoms)
are treated classically and thus are not represented by a wave function. However,
expression (17.8) can be considered as the classical correspondent of the quantum
zero phonon line. Indeed, the configurations in the equilibrium ensemble represent
the lattice excitations that are populated at each temperature and the amide I excited
states are calculated in those lattice configurations, i.e. not allowing for the creation of
any other phonons, which includes also the not allowing the creation of self-trapped
states. Instead, in this mixed quantum/classical approach, the anomalous peak is due
to strongly hydrogen-bonded ACN molecules, the conventional peak is due to weakly
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or un-hydrogen bonded ACN molecules and the temperature dependence of the full
amide I spectrum is calculated.

The mixed quantum/classical Hamiltonian (17.1–17.5) is also diagonal when
dipole-dipole interactions Vnm are negligible, thus lending itself to analytical cal-
culations in this limit. Indeed, in this case, all eigenstates |� j > are localized in
a single ACN molecule n, i.e., |� j >= ϕ jn â†

n |0 >= â†
n |0 >, and their ener-

gies are given by the diagonal elements of the energy matrix < � j |Ĥ |� j >=
εn + χ (un − Rmax) g(θ), where un is the length of the hydrogen bond that links
ACN molecule n to another ACN molecule in the crystal. It is also trivial to show
that the oscillator strength is 1 for all states |� j > so that the absorption spectrum at
energy E , given by (17.8), is just the spectral distribution at that energy, that is, the
number of states with that energy, at a given temperature. Figure 17.3 shows that the
length distribution of un has a maximum; let us call the location of this maximum
the equilibrium hydrogen bond distance, Req. Thus, most of the ACN molecules will
have an amide I state with energy E = εn +χ

(
Req − Rmax

)
g(θ). As εn is a random

variable with a Gaussian distribution centred on zero, the strongly hydrogen bonded
molecules will contribute a peak (the unconventional or so-called anomalous peak)
that is shifted from zero by:

shift = χ
(
Req − Rmax

)
(17.14)

(if we neglect the function g(θ) which will change this only slightly). On the other
hand, the weakly or non-hydrogen bonded ACN molecules will have amide I states
with energies E = εn which lead to a peak centred at zero (the conventional peak).
Thus, in this mixed quantum/classical approximation, the shift between the anom-
alous and the conventional peak is not the binding energy of the self-trapped state
but rather the product of the nonlinearity parameter, χ , by the difference between the
threshold variable, Rmax, and the equilibrium hydrogen bond length, Req. Reqcan
be obtained from the molecular dynamics simulations with (17.4), or from experi-
ment, and the other parameters can be determined from the widths of the two peaks,
as follows. δεn is the width of the conventional peak, which can be obtained from
experimental measurements (and here, it is the width of the Gaussian that represents
the effects of the local environment on the amide I energies ). On the other hand, the
width of the anomalous peak is δεn +χ δun , where δun is the width of the hydrogen
bond length distribution, which can also be determined either from the simulations or
from experiment. As Fig. 17.6 shows, finite values of the dipole-dipole interactions
lead to a decrease in the width of the peaks. Thus, using the width of the hydrogen
bond length distribution in the top plot of Fig. 17.3 (≈0.045 Å) and considering a
width of ≈10 cm−1 for the anomalous peak, a value of χ ≈ 31 pN is estimated.
Using this value of χ in the expression for the shift (17.14), and considering the
experimental value of ≈10 cm−1 for the width of the conventional peak, an estimate
for the threshold variable Rmax is ≈1.914 Å. These were the values of χ and Rmax
that were mostly used in this work.
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It was pointed out by Hamm and collaborators [29–31] that exciton states are not
eigenstates of the full quantum Hamiltonian (17.1). Nevertheless, using a numerically
exact method to determine eigenstates of the full quantum system, Hamm and Edler
[30] found eigenstates that resemble both self-trapped states and exciton states and
which are able to reproduce, in a qualitative manner, the low temperature amide I band
of crystalline ACN, for a very restricted and specific set of parameter values, namely,
when the intra-chain dipole-dipole interactions Vnm are all equal to −10 cm−1 and
the inter-chain dipole-dipole interactions are all +10 cm−1. Thus, they conclude
that the three-dimensional structure of crystalline ACN is essential to reproduce the
two peaks. Positive and negative dipole-dipole interactions were also successfully
explored in [13], within the self-trapping picture, as a cause for the existence of
two peaks, as well as for their temperature dependence. However, Fig. 17.4 shows
that although positive dipole-dipole interactions exist (and come from inter-chain
interactions), their values are, on average, smaller and less frequent so that, on the
whole, negative values of dipole-dipole interactions predominate. Using such values
of the dipole-dipole interactions in the calculations in [13, 30] it is not possible to
reproduce, even in a qualitative manner, the temperature dependent amide I band of
crystalline ACN.

It has been proposed by Austin and collaborators [25] that the two peaks in the
amide I band of crystalline ACN are due to the coexistence of two different lengths
for the hydrogen bonds, something that was not confirmed by the neutron scattering
experiments of Barthes and collaborators [34]. In this context it is important to note
that all the spectra presented here are associated with the hydrogen bond distributions
in Fig. 17.3 which have only one average length for the hydrogen bond. What the
results here show is that it is possible to obtain a two peak spectral distribution from
a single peak hydrogen-bond distribution. However, the weakness is that we have to
assume that the amide I energy has a strong dependence on the orientation of the
hydrogen bond. In the calculations reported here only ACN molecules in an inner
plane were used, in which all ACN molecules are hydrogen bonded, as displayed in
Fig. 17.2 (including periodic boundary conditions). The surface planes, in which none
of ACN molecules is hydrogen bonded, even at low temperature, were not included
because, in a single crystal, surface states are an infinitesimal part of the total number.
But close inspection of the differences in the amide I absorption spectra that have
appeared in the literature indicates that the samples used in the experiments may in
fact be poly-crystalline and that surface states may have a non-zero contribution to
the spectrum. Including such a contribution may allow for a less abrupt orientational
dependence of the amide I energy, a possibility that will be taken up in a forthcoming
publication.
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Chapter 18
Extreme Waves and Branching
Flows in Optical Media

Marios Mattheakis and George P. Tsironis

Abstract We address light propagation properties in complex media consisting of
random distributions of lenses that have specific focusing properties.We present both
analytical and numerical techniques that can be used to study emergent properties
of light organization in these media. As light propagates, it experiences multiple
scattering leading to the formation of light bundles in the form of branches; these are
random yet occur systematically in the medium, particularly in the weak scattering
limit. On the other hand, in the strong scattering limit we find that coalescence of
branches may lead to the formation of extreme waves of the “rogue wave” type.
These waves appear at specific locations and arise in the linear as well as in the
nonlinear regimes. We present both the weak and strong scattering limit and show
that these complex phenomena can be studied numerically and analytically through
simple models.

18.1 Introduction

The propagation of waves in complex media is a currently topic of scientific interest
with both theoretical and practical implications. Wave phenomena abound in nature;
for example, waves at sea exhibit a plethora of wave phenomena, scaling up ranging
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from small amplitude ripples to larger (but still periodic) waves to gigantic and highly
destructive solitary-like waves such as tsunamis and rogue waves. The propagation
properties of waves is an important scientific problem addressed by different means,
namely, theoretical, numerical and experimental means.

A complex medium gives rise to novel phenomena in wave propagation. It is
well known that waves may interfere leading to local amplitude enhancement or
diminution. This feature may be amplified by the properties of the complex medium
leading to very large transients as well as non-uniform propagation. The resulting
complex dynamics is reminiscent to similar phenomena that appear in condensed
mater physics and other areas. In the present chapter, we will focus primarily on
two dimensional wave evolution in several types of random media. The unifying
feature is that the wave scatterers have specific properties affecting drastically the
wave propagation. They typically focus or defocus strongly the waves leading to
phenomena with spatiotemporal complexity. Specifically, as the wave propagates
there are bifurcations in space leading to a light flow that is split in dominant as well
as in smaller branches.When the propagation of an electromagnetic wave takes place
in a dielectric, we observe dominant channels of wave coalescence “decorated” with
smaller and smaller channels, which constitute a typical fractal-like picture in space.
Light propagation becomes complex as a result of the strong but random influence
of the medium on the dynamics.

In addition to branching we may have other effects derived from the enhanced
but random focusing and interference. In specific locations of the medium a giant
fluctuation may appear generating a spatiotemporal “hot spot”. These transients may
classify as optical rogue or freakwaves, similar in several ways to the ones that appear
at sea. The latter are giant waves appearing essentially “from nowhere” (while the
oceanic conditions are not necessarily very bad). There are numerous reports on
rogue waves that carry high energy and are destructive for ships and lives. In the
optics context, these extreme waves seem to depend very much both on the ran-
domness of the medium and on its strong focusing or defocusing properties (strong
scattering random medium). Thus, the complexity features of electromagnetic wave
propagation in the medium consists of both branching aspects and rogue wave for-
mation. They seem to originate from a similar source, although light branches appear
also when the medium is weakly disordered.

The structure of this chapter is as follows. In Sect. 18.2 we present the mathe-
matical and computational methods that have been used for the investigation of the
electromagnetic wave propagation; in particular, emphasis is placed on the geomet-
rical optics limit and on the Finite Difference in Time Domain (FDTD) method. The
latter is a basic technique used for the numerical solution of Maxwell Equations.
These methods are used in order to investigate the electromagnetic wave propaga-
tion through certain configurations of special lenses known as Luneburg lenses. In
Sect. 18.3 we explore the electromagnetic wave propagation through a weak scatter-
ing random medium and present findings on the appearance of caustic formation of
light rays. Caustics are studied by means of the Lagrangian manifold method and
a statistical scaling law; the latter determines the position where the first caustic
appears. In Sect. 18.4 we investigate electromagnetic wave propagation through a
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strong scattering random medium and show that rogue waves can emerge in such
systems even when nonlinearity is absent. Finally, in Sect. 18.5 we conclude and
present a summary of the findings.

18.2 Mathematical Tools for Electromagnetic
Wave Propagation

In this section, we present methods that can be used in order to determine the char-
acteristics of light propagation in an inhomogeneous isotropic medium. We consider
structures embedded in themedium that have cylindrical symmetry and are described
via the refractive index n(r) = √

ε, where ε is the permittivity and r is the radial
coordinate of the structure. We focus on a propagating electromagnetic field near the
visible spectrum; in this regime, light oscillates very rapidly (with frequencies of the
order of 1014 Hz) resulting in very large magnitudes of the wavevector (i.e. k → ∞)
and very small magnitudes of wavelength (λ → 0). In this limit, the wave behaviour
of light can be neglected and the optical laws can be formulated in geometrical terms,
i.e., the electromagnetic waves are treated as rays. This approximation is well known
as geometrical optics and holds as the size of structures, which the light interacts, is
large compared to the wavelength [6, 13, 15, 16].

To follow the electromagnetic wave evolution in this inhomogeneous medium,
one may use one of three methods of geometrical optical propagation, which will
be outlined in detail below. These methods will be applied specifically in a medium
comprising spatial distributions of Luneburg lenses [16, 20]. The Luneburg lens is a
spherical lens with index of refraction that varies radially from the value one (n = 1)
in the outer boundary (when the surrounding medium is vacuum or air) to n = √

2
in the center; the functional dependence of the index of refraction on the radius is
given by:

n(r) =
√
2 −

( r

R

)2
, (18.1)

where R is the radius of the Luneburg lens. The basic property of a Luneburg lens is
that, in the geometrical optics limit, parallel rays impinging on the spherical surface
are focused to the opposite side of the lens. This feature makes Luneburg lenses
quite interesting for applications since the focal surface is predefined for parallel
rays of any initial angle. Luneburg lenses can be used to form gradient index (GRIN)
optical metamaterials; in the latter one exploits the spatial variation of the index of
refraction in order to enhance light manipulation in a variety of circumstances [20].
In the specific analysis, which will follow, we use primarily two dimensional media
and, as a result, we will employ cylindrical Luneburg lenses that have however the
same index variability as the one of (18.1), with r the radial coordinate and R the
radius of the cylindrical lens.
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We apply three distinct geometrical optics methods in order to analyze light prop-
agation. The first is based on Fermat’s principle that optimizes the optical path tra-
versed by light and bymeans of it, an exact ray tracing equation for a single Luneburg
lens is derived (Sect. 18.2.1); this approach is essentially a quasi two dimensional
approximation. The second method is a parametric two dimensional method based
also on Fermat’s principle; in this method, the arc length s in the light trajectory
is used as a free parameter (Sect. 18.2.2). The third geometrical optics approach is
based on the Helmholtz wave equation (Sect. 18.2.3). The results of the these three
geometrical optics methods are compared in Sect. 18.2.4 along with the correspond-
ing numerical solution of the time dependent Maxwell equations through the Finite
Difference in Time Domain method.

18.2.1 Quasi-two Dimensional Ray Solution

The time T that light takes to traverse a path between two points A and B in space is
given by the integral [6, 33]

T =
B∫

A

dt = 1

c

B∫

A

nds, (18.2)

where the infinitesimal time dt can be written in arc length terms as dt = ds/v and
v is the velocity of light in a medium with refractive index n (v = c/n), where c the
velocity of light in the bulk medium (we use vacuum in this section).

In the special case where the under investigation medium has spherical or cylin-
drical symmetry and thus n(r) ≡ n(r), the optical path length S of a ray propagating
from point A to point B is [6, 13, 15, 16, 20, 33]

S =
B∫

A

n(r)ds. (18.3)

In polar coordinates, the arc length is ds = √
dr2 + r2dφ2, where r, φ are the radial

and angular polar coordinates, respectively. In the quasi two dimensional approxi-
mation the coordinate r can be considered as “generalized” time and therefore the
arc length can be written as ds =

√
1 + r2φ̇2dr, with φ̇ ≡ dφ/dr. As a result, the

Fermat’s variational integral of (18.3) becomes

S =
B∫

A

n(r)
√
1 + r2φ̇2dr (18.4)
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yielding the optical Lagrangian [15, 16, 20, 33]

L(φ, φ̇, r) = n(r)
√
1 + r2φ̇2. (18.5)

The shortest optical path is obtained via the minimization of the integral in (18.4)
and can be calculated by solving the Euler-Lagrange equation for the Lagrangian of
(18.5), viz.

d

dr

∂L

∂φ̇
= ∂L

∂φ
, (18.6)

Since the Lagrangian of (18.5) is cyclic in φ, ∂L/∂φ = 0 and, thus, ∂L/∂φ̇ = C
where C is a constant. The resulting equation of motion [15, 20, 33]

n(r)r2√
1 + r2φ̇2

φ̇ = C (18.7)

is a nonlinear differential equation describing the trajectory r(φ) of a ray in an
isotropic medium with radial symmetry and refractive index n(r). Replacing the
term φ̇ ≡ dφ/dr and solving for dφ, we obtain a first integral of motion [6, 15, 20],
that is ∫

dφ =
∫

C

r
√

n2r2 − C2
dr. (18.8)

Equation (18.8) holds for arbitrary refractive indexes n(r). The differential equation
(18.7) and the integral (18.8) are the most important results of this subsection; they
provide, for a given refractive index profile, namely, the ray tracing equation for r(φ).

In the specific case of a single Luneburg lens with the refractive index function
of (18.1), the ray tracing solution in its interior is written as [19, 20]:

r(φ) = C′R√
1 − √

1 − C′2 sin (2(φ + β))

, (18.9)

where C′ and β are constants. This analytical expression may be cast in a direct
Cartesian form for the (x, y) coordinates of the ray; after some algebra we obtain

(1 − T sin(2β)) x2 + (1 + T sin(2β)) y2 − 2T cos(2β)xy +
(

T2 − 1
)

R2 = 0, (18.10)

where T and β are constants. We note that (18.10) is the equation of an ellipse. This
result agrees with the Luneburg theory and states that inside a Luneburg lens light
follows elliptic orbits [16, 20].

The constants T and β of (18.10) are determined by the ray boundary (or the
“initial” conditions) and depend on the initial propagation angle θ of a ray that enters
the lens at the point (x0, y0) located on the circle at the lens radius R [15, 20]. The
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entry point of the ray is at (x, y) = −R(cos θ, sin θ). Substituting these expressions
in (18.10) we obtain

T = sin (2β + 2θ) , (18.11)

In order to determine the constantsT andβ, we need an additional relation connecting
them. We take the derivative of (18.10) with respect to x and utilize the relation
dy/dx = tan(θ), where θ the initial propagation angle. In addition, using (x0, y0)
for the initial ray point on the Luneburg lens surface, we set x = x0 and y = y0 in
(18.10) and solve for T , getting

T = x0 + y0 tan(θ)

tan(θ)
[
x0 cos(2β) − y0 sin(2β)

] + [
x0 sin(2β) + y0 cos(2β)

] . (18.12)

Equations (18.11) and (18.12) comprise an algebraic nonlinear system expressing
the constants T and β as a function of the initial ray entry point in the Luneburg lens
at (x0, y0)with initial propagation angle θ . Combining (18.11) and (18.12) we obtain

β = 1

2

(
tan−1(x0/y0) − θ

)
, (18.13)

therefore, according to (18.11)

T = sin
(
tan−1(x0/y0) + θ

)
. (18.14)

Substituting now (18.13) and (18.14) into (18.10) and solving for y, we obtain the
ray tracing equation [19, 20]

y(x) =
(
2x0y0 + R2 sin(2θ)

)
2x20 + (1 + cos(2θ)) R2

x

+
√
2Ry0 cos(θ)

√
(1 + cos(2θ)) R2 + 2x20 − 2x2

2x20 + (1 + cos(2θ)) R2
(18.15)

−
x0 sin(θ)

√
(1 + cos(2θ)) R2 + 2x20 − 2x2

2x20 + (1 + cos(2θ)) R2
.

Equation (18.15) describes the complete solution of the ray trajectory through an
Luneburg lens. In the simple case where all the rays are initially parallel to the x axis
and, thus, the initial angle θ = 0, (18.15) simplifies to [19, 20]

y(x) = y0
x20 + R2

(
x0x + R

√
R2 + x20 − x2

)
. (18.16)
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Fig. 18.1 The dashed lines denote the arrangement of the Luneburg lenses. The solid lines represent
light rays that have been computed by the analytical ray tracing (18.15). a Ray tracing through a
single Luneburg lens; all rays are focused on a single point. b, c Light is guided by Luneburg lenses
across the linear network constituted of five Luneburg lenses in (b) and of six Luneburg lenses
in (c). Depending on the number of lenses, odd or even number, the rays are focused on the last
lens surface (b) or exit as they entered (c), respectively

We note that in order to determine the exit angle θ ′, i.e. the angle with which each ray
exits the lens, we take the arc tangent of the derivative of (18.15) with respect to x, at
the focal point on the surface of lens at x = R cos(θ). The solution of (18.15) can be
used to study several configurations of Luneburg lenses. We present, in Fig. 18.1,
the ray tracing propagation based on (18.15), through a single Luneburg lens
(Fig. 18.1a) and through twogeometrically linear Luneburg lenswaveguide networks
(Fig. 18.1b, c) [20]. Interestingly enough, depending on the number of lenses, odd or
even number, the rays are focused on the last Luneburg lens surface or exit as they
entered (parallel in the present case), respectively. In all cases the bulk media is air
with refraction index nair = 1.

When the rays are scattered backwards, the quasi-two dimensional approxima-
tion breaks down and the solution of (18.15) becomes complex. This failure is due
to the assumption that the radial coordinate plays the role of time, viz. a monoton-
ically increasing parameter similar to physical time. In order to address light back-
propagation it is advantageous to use parametric solutions where the Cartesian ray
coordinates x, y are both time-dependent variables. This approach is explained in
Sects. 18.2.2 and 18.2.3 where the parametric ray tracing solution is derived.

18.2.2 Parametric Two Dimensional Ray Solution

Since the quasi two dimensional approximation fails for backscattered rays, we need
to develop a real two dimensional parametric ray tracing equation. This is done
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through the use of Fermat’s principle while assuming that both ray coordinates are
time-dependent variables.

We use the infinitesimal arc length ds = √
dx2 + dy2 in Cartesian coordinates and

further introduce a parameter τ as generalized time, i.e. ds = √
ẋ2 + ẏ2 dτ where the

dot indicates differentiation with respect to parameter τ , (α̇ ≡ da/dτ ) and x ≡ x(τ ),
y ≡ y(τ ) [13, 16, 20, 33]. Hence, the infinitesimal arc length ds can be written as
ds = √

dx2 + dy2 = √
ẋ2 + ẏ2dτ , as a result the Fermat integral of (18.3) becomes

S =
B∫

A

n(x, y)
√

ẋ2 + ẏ2dτ, (18.17)

where n(x, y) is the refractive index in Cartesian coordinates; Minimization of the
travel path S leads to the optical Lagrangian [19, 20]

L(x, y, ẋ, ẏ, τ ) = n(x, y)
√

ẋ2 + ẏ2. (18.18)

We introduce the generalized optical momenta kx , ky that are conjugate to x, y rep-
resented as:

kx = ∂L

∂ ẋ
= nẋ√

ẋ2 + ẏ2
, (18.19)

ky = ∂L

∂ ẏ
= nẏ√

ẋ2 + ẏ2
. (18.20)

Equations (18.19) and (18.20) comprise an algebraic nonlinear system, which leads
to

k2x + k2y − n(x, y)2 = 0. (18.21)

We can rewrite (18.21) in vector form using r ≡ (x, y) and k ≡ (kx, ky), as

k2 − n(r)2 = 0. (18.22)

Multiplying (18.22) with the factor 1/2 reveals the direct analogy to the equations
of classical mechanics. The first term is the kinetic energy of the rays

T = k2

2
, (18.23)

the second is the corresponding potential energy given by
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V = −n(r)2

2
, (18.24)

while the total energy is given by

H(r, k) = k2

2
− n(r)2

2
= 0. (18.25)

Physically, (18.23), (18.21) and (18.25) represent the motion of a classical particle
of unit mass under the influence of the potential V (r), while the total energy of the
system is taken to be zero [6, 13, 16, 20].

We can obtain a Hamiltonian ray tracing system by solving Hamilton’s equations
for the Hamiltonian of (18.25) [20, 26, 33]; we get

dr
dτ

= ∂H

∂k
= k (18.26)

and
dk
dτ

= −∂H

∂r
= 1

2
∇n(r)2, (18.27)

where ∇ ≡
(

∂
∂x , ∂

∂y

)
, τ is an effective time related to real travel time t through

dτ = c dt, whereas c is the velocity of rays in the bulk medium with index of
refraction n0. Combining (18.26) and (18.27) we obtain [6, 13, 16, 20, 26, 33]

d2r
dτ 2

= 1

2
∇n(r)2 (18.28)

and restoring the real travel time t instead of the effective time τ , we obtain

r̈ = c2

2
∇n(r)2, (18.29)

where derivatives now are taken with respect to travel time t, namely q̇ = dq/dt for
arbitrary q(t). We conclude that (18.29) is a general equation of motion for ray paths
in a medium with an arbitrary refractive index function n(r). The explicit solution
for Luneburg lens will be given in Sect. 18.2.3.

18.2.3 Helmholtz Wave Equation Approach

An alternative geometrical optics approach may be developed starting from the
Helmholtz wave equation. In this approach we recover once again the ray tracing
equation (18.29) and find an explicit ray solution for light propagation through a
Luneburg lens with refractive index given by (18.1).
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A monochromatic electromagnetic wave propagating in a two dimensional
medium can be described by the Helmholtz equation [13, 33].

[
∇2 + (nk0)

2
]

u(x, y) = 0, (18.30)

where ∇2 = ∂2

∂x2
+ ∂2

∂y2
is the Laplacian in a two dimensional space, and u(x, y) is a

scalar function representing any component of the electric or magnetic field; n is the
refractive index that generally depends on position, k0 ≡ ω/c = 2π/λ0 is the wave
vector in the bulk media whereas ω and λ0 are the angular frequency and wavelength
of the electromagnetic wave, respectively, and c the velocity of the light [13, 20,
26, 33]. Although (18.30) is time-independent and therefore we cannot investigate
dynamical phenomena, we can determine the stationary paths followed by the light
rays; this is known as the ray tracing approximation.

Assuming that the scalar field u can be determined by an amplitude real function
A(x, y) and a phase φ(x, y) real function (Sommerfeld-Runge assumption), where
φ(x, y) is known as the eikonal equation [6, 13, 26, 33], we proceed with the well
known transformation

u(x, y) = A(x, y)eiφ(x,y). (18.31)

Substituting (18.31) into the wave equation (18.30) and separating the real from the
imaginary parts, we obtain the following system of equations [20, 26]:

(∇φ)2 − (nk0)
2 = ∇2A

A
, (18.32)

∇ ·
(

A2∇φ
)

= 0. (18.33)

Equation (18.33) expresses the constancy of the flux of the vector A2∇φ along any
tube formed by the field lines of the wavevector defined through k = ∇φ; the latter
transforms (18.32) into

k2 − (nk0)
2 = ∇2A

A
. (18.34)

The last term in (18.32), viz. ∇2A
A is the Helmholtz potential [20, 26]; it preserves the

wave behaviour in the ray tracing equation. In the geometrical optics limit where the
space variationL of the beamamplitudeA satisfies the condition k0L � 1, i.e.λ 	 L,
the Helmholtz potential vanishes; in this case (18.34) gives the well known eikonal
equation (18.35), which is the basic equation in the geometrical optics approach
[6, 13, 16, 26, 33], viz.

(∇φ)2 = (nk0)
2 . (18.35)



18 Extreme Waves and Branching Flows in Optical Media 435

The most important result of this approach is that rays are not coupled any more and
they propagate independently from one another.

We can introduce the optical Hamiltonian by multiplying (18.34) with the factor
c/(2k0); this leads to

H(r, k) = c

2k0
k2 − ck0

2
n2(r). (18.36)

Finally, the system of equations of motion can be written as a second order ordinary
differential equation by solvingHamilton’s equation described by (18.26) and (18.27)
and yields the same equation of motion found in the expression of (18.29), viz. the
equation

r̈ = c2

2
∇n2. (18.37)

Substituting the Luneburg lens refractive index equation (18.1) in the differential
equation (18.29), or (18.37), we obtain the following equation of motion describing
the ray paths inside a Luneburg lens:

r̈ + c2

R2 r = 0. (18.38)

We may now proceed with the solution of (18.38). Using the boundary conditions
r(0) = r0 = (x0, y0) and ṙ0 = k0 = (k0x, k0y) we obtain [20]

(
x(t)
y(t)

)
=

(
x0
y0

)
cos

( c

R
t
)

+
(

k0x

k0y

)
R

c
sin

( c

R
t
)

. (18.39)

The solution (18.39), in Cartesian coordinates, describes elliptical orbits, in agree-
ment with Luneburg’s theory [16] as well as with (18.15), (18.16) [20].

In Fig. 18.2 we present results based on the explicit ray solutions of (18.39). The
ray tracing propagation through a single Luneburg lens is indicated in Fig. 18.2a; this
is in agreement with the quasi two dimensional ray solution shown in Fig. 18.1a. In
Fig. 18.2b we show an 180◦ reversed bend waveguide formed by seventeen Luneburg
lenses; as can be seen, backward propagation can be described via the parametric
ray solution.

18.2.4 Numerical Solution of Maxwell Equations

The FiniteDifference in TimeDomain (FDTD)method is a numericalmethod used in
computational electrodynamics [34–36]; while most numerical methods are applied
in the frequency domain, the Finite Difference in Time Domain method solves the
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Fig. 18.2 The dashed lines denote the arrangement of Luneburg lenses which are spherical lenses
with index of refraction given by (18.1). The solid lines show the ray tracing performed via the
analytical parametric solution of (18.39). a Ray tracing through a single Luneburg lens, all rays are
focused on a single point. b An 180◦ reversed bend waveguide formed through seventeen Luneburg
lenses

time dependent Maxwell equations in the time domain, viz. the electromagnetic field
is calculated as it progresses at discrete steps both in time and space. Since it is a
time domain method, the solutions of Finite Difference in Time Domain can cover a
wide frequency range with a single simulation [34–36]. The Finite Difference Time
Domain method is used in several scientific and engineering problems related to
electromagnetic wave propagation and detection, such as antennas, radiation and
microwave applications, as well as in the interaction of electromagnetic waves with
solid state structures such as in plasmonic and photonic crystals.

We apply the Finite Difference in Time Domain method for a monochromatic
electromagnetic planewave sourcewithwavelengthλ and transversemagnetic polar-
ization; vacuum is used as bulk material with permittivity ε = 1. We use Luneburg
lens with radius R = 10λ and permittivity based on (18.1), i.e. ε = n2 = 2− (r/R)2.
We simulate the electromagnetic wave propagation through a single Luneburg lens
as in Figs. 18.1a and 18.2a, through a linearly spaced Luneburg lens waveguide sys-
tem comprising of five Luneburg lenses, as in Fig. 18.1b, and also through a 180◦
reversed bend waveguide formed by seventeen Luneburg lenses, as in Fig. 18.2b.

Figure18.3 presents the steady state intensity of the electric field calculated by
means of the FDTD simulations, verifying the analytical results that are shown in
Figs. 18.1 and 18.2.

In conclusion, in Sect. 18.2, four methods have been discussed in order to inves-
tigate the light propagation through media with space-dependent refractive indices
n(r) (equivalently, via media with permittivity ε(r)); namely, the Finite Difference
in Time Domain for solving the time dependent Maxwell equations and three geo-
metrical optics (or ray tracing) methods (the first two are based on Fermat principle
whereas the third method is based on Helmholtz wave equation).
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Fig. 18.3 The white dashed lines denote the arrangement of Luneburg lenses. We present the
intensity I of a transverse magnetic polarized electromagnetic wave propagating through a a single
Luneburg lens, b a linearly arranged Luneburg lens waveguide formed by five Luneburg lenses, c
a 180◦ reversed bend waveguide formed by seventeen Luneburg lenses. The simulations have been
performed using the finite difference in time domain method

All the methods have been applied to investigate the electromagnetic wave prop-
agation through certain configurations of Luneburg lenses (a metamaterial gradient
refractive index spherical lens with focus properties and index of refraction given
by (18.1)). We have shown that all these methods are in agreement. In addition, we
have discussed the formation of waveguides which are formed by specified networks
of multiple Luneburg lenses, in geometrically linear or bent configurations, signify
that Luneburg lenses may be used as efficient waveguides [20, 32]. Their advantage
over the usual dielectric guides is that light bending occurs naturally through the
Luneburg lens properties while the outgoing light may be also focused, if so desired
[19, 20].

18.3 Branching Flow in Weakly Disordered Media

When waves propagate through random media many interesting phenomena occur,
with the most well known being that of Anderson localization. Among those, there
are coherent phenomena related to branching of waves, the onset of caustic areas
as well as rogue wave formation. Of particular interest are phenomena related to
electron flow in a two dimensional electron gas [22, 37], transport properties of
semiconductors [22, 37], ocean waves [41], linear and nonlinear light propagation in
random fibers [27, 29, 30], sound wave propagation [5, 39, 40], microwave devices
[4, 11], resonance in nonlinear optical cavities [23] and light propagation through
random refractive index media [7, 14, 19, 24, 28, 31]. Many of these cases can be
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analyzed mathematically using a unified framework that provides results valid in
quite different circumstances.

In this section, we focus on branching effects that occur in two dimensional
conservative particle flows through a weak random potential. Even if the potential is
very weak, the flow can be strongly influenced by the disorder resulting in the onset
of caustics branches [12, 22].We first present the theoretical framework that has been
developed for the quantification of branching effects in the two-dimensional electron
flow. We then show that caustics emerge in an analogous way in the propagation of
light through a disordered network of lenses and we outline the similarities between
light propagation and electron flow.

18.3.1 Statistics of Caustics

We present the theoretical framework for caustics based on the Lagrangian man-
ifold approach in order to obtain analytical results for the caustics statistics. The
Lagrangian manifold approach offers the opportunity to adequately understand the
phase space geometry of a caustic. The analytical results are general and hold for
a variety of problems, since the initial point of this analysis is the Hamiltonian for-
malism [21, 22]. An appropriate way to study the branched flow is to analyse the
statistics of caustics, since each caustic is followed by branched flow.

We start with a Hamiltonian of the form

H = p2

2m
+ V (t, x), (18.40)

where x, p is the position andmomentum vectors, respectively, of a particle while t is
time. The corresponding Hamilton-Jacobi equation is a first order non-linear partial
differential equation given by

∂

∂t
S(t, x) + H = 0, (18.41)

where S(t, x) is the classical actionwhich is associatedwith the conjugatemomentum
vector as

p(x) = ∂S(x)

∂x
. (18.42)

Substituting (18.42) and (18.40) in (18.41) and assuming particles with unit mass
m = 1 we obtain

∂

∂t
S(t, x) + 1

2

(
∂S

∂x

)2

+ V (t, x) = 0. (18.43)
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For “weak”potentialswe canuse the quasi twodimensional or the paraxial approx-
imation with only one spatial coordinate, viz. x(t) = y(t) and p(t) = p(t) and with
time t playing the role of the propagation axis [13, 15, 19, 21]. The mathematical
problem is that of an (1 + 1) dimensional Hamilton-Jacobi equation with a time
dependent potential V (t, y(t)).

The curvature u of the action S is defined as the partial derivative of conjugate
momentum p with respect to position y, that is

u ≡ ∂p

∂y
= ∂2S

∂y2
. (18.44)

The curvature u is very useful quantity for investigation of caustics of focus points,
since its singularities, i.e u → ∞, point out high intensity (or high probability
density) areas [14, 19, 21]. In order to obtain a differential equation for the curvature
u,wedifferentiate twice (18.43)with respect to position y and, byusing the definitions
of (18.42) and (18.44) [14, 21], we obtain

∂

∂t
u + ∂S

∂y

∂

∂y
u + u2 + ∂2

∂y2
V (t, y) = 0

[
∂

∂t
+ p

∂

∂y

]
u + u2 + ∂2

∂y2
V (t, y) = 0. (18.45)

The operator in the bracket of (18.45) is called convective or material derivative
[21, 25], turning the differential equation from a partial to an ordinary one and, thus,
the Eulerian into a Lagrangian framework [21]. Subsequently, the equation (18.45)
takes the form

d

dt
u + u2 + ∂2

∂y2
V (t, y) = 0. (18.46)

The next step is to introduce random noise. Since we are interested in wave propa-
gation through weak random potential, we assume that the potential is simply white
noiseΓ (t)with correlation function c(t−t′) = 〈

Γ (t)Γ (t′)
〉 = 2δ(t−t′), i.e. the noise

is delta-correlated. Due to the paraxial approximation used, the noise term needs to
act only in the propagation direction t [4, 14, 21, 22]. The correlation function c(t, y)
of the stochastic term ∂yyV (t, y) of (18.46) is

c(t − t′, y − y′) = 〈
∂yyV (t, y) ∂y′y′ V (t′, y′)

〉 = ∂yy∂y′y′ c(t − t′, y − y′)

c(t − t′, y − y′) = 2δ(t − t′)∂yy∂y′y′c(y − y′). (18.47)

Although we assume that the random noise Γ (t) acts only in the propagation direc-
tion t, we would like to also retain the characteristics of the random potential in
the transverse axis y. This can be achieved by keeping constant the integral over
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derivatives of the correlation function c(y − y′) in the following way [14, 21, 22]:

σ 2 = 1

2

∞∫

−∞

∂4

∂y4
c(t, y)

∣∣∣∣
y=0

dt, (18.48)

where σ is the standard deviation of the random potential. The constant coefficient
D will be identified as the diffusion coefficient, related to the standard deviation σ

as
D = 2σ 2. (18.49)

Thus, the ordinary differential equation (18.46) becomes an ordinary stochastic dif-
ferential equation viz.

du(t)

dt
= −u2(t) − σ Γ (t). (18.50)

In the following, we will use the Fokker-Planck equation [8, 9], which is a partial
differential equation describing the time evolution of the probability density function.
The latter is derived from an ordinary stochastic differential equation [8, 9, 21] and
in the one dimension takes the form

ẏ(t) = f (y) + g(y)Γ (t), (18.51)

where f and g are arbitrary functions of y and Γ is a Gaussian delta-correlated white
noise. The corresponding Fokker-Planck equation for the density function P(y, t)
has the form

∂

∂t
P(y, t) =

[
− ∂

∂y
D(1)(y, t) + ∂2

∂y2
D(2)(y, t)

]
P(y, t), (18.52)

with drift and diffusion coefficientsD(1) andD(2), respectively, calculated via (18.51)
according to the relations

D(1)(y, t) = f (y) + g(y)
∂

∂y
g(y), (18.53)

D(2)(y, t) = g2(y). (18.54)

In addition to the Fokker-Planck equation, one may also use the backward Fokker
Planck Equation ((18.55), presented below) [8, 9], in which the space independent
variable is a function of the initial position y0. The main difference between the
forward and backward Fokker-Planck equation is that in the former the initial value
for the probability density is given, i.e. P(y0, t0) and the equation describes the time
evolution of this density P(y, t) for time t > t0. On the other hand, in the backward
Fokker-Planck equation, the final condition P(yf , tf ) is given, where yf , tf are the
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final values of variables y and t, while the initial conditions are unspecified. The
backward Fokker-Planck equation is very useful for the solution of problems where
the final state of process is known but we are not interested in or do not know the
initial conditions. In order to avoid confusion, we use P for the probability density in
the forward and pf for the backward Fokker-Planck equations respectively; for the
latter we have:

∂

∂t0
pf (y, t) =

[
−D(1)(y0, t0)

∂

∂y0
+ D(2)(y0, t0)

∂2

∂y20

]
pf (y, t). (18.55)

We derive the drift and the diffusion coefficient, based on (18.51), (18.53) and (18.54)
for (18.50)

D(1) = −u2, (18.56)

D(2) = σ 2 = D

2
. (18.57)

The Fokker-Planck equation of our problem is given by (18.52), (18.56) and (18.57),
viz.

∂

∂t
P(u, t) =

[
∂

∂u
u2 + ∂2

∂u2

D

2

]
P(u, t). (18.58)

In order to find the time necessary for the onset of a caustic for the first time, viz.
when the solution of the Fokker-Planck equation becomes infinity for the first time
(u(tc) → ∞, where tc is the mean time of this process), we ask the inverse question,
i.e. what is the probability that no singularity appears until time t, (meaning that when
a singularity appears, the process is terminated). This analysis can be performed by
means of the backward Fokker-Planck equation [14, 21]. Using the form of (18.55)
with coefficients given by (18.56) and (18.57), we have

∂

∂t
pf (u, t) =

[
−u2

0
∂

∂u0
+ D

2

∂2

∂u2
0

]
pf (u, t), (18.59)

where u0 the initial curvature.
We proceed with the calculation of the mean time 〈tc(u0)〉 necessary for the

initial curvature u0 to diverge and thus produce a caustic [14, 21]. According to
basic probability theory, the mean time 〈tc(u0)〉 is given by the probability density
pf via the relation

〈tc(u0)〉 =
∞∫

0

tpf dt. (18.60)
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In order to calculate 〈tc(u0)〉, we multiply the backward Fokker-Planck equation
(18.59) by t and afterwards we integrate over time t. The left hand side can be
evaluated by means of the integration by parts method, resulting in

∞∫

0

t
∂

∂t
pf dt = tpf

∣∣∞
0 −

∞∫

0

pf dt = 0 − 1 = −1. (18.61)

We assume that the probability density pf is normalized to unity, that is
∞∫
0

pf = 1,

and furthermore, it vanishes as time approaches infinity resulting in pf (t → ∞) = 0.
The left hand side does not include derivatives with respect to t and, therefore, the
integration is trivial; the equation thus becomes

− 1 = −u2
0

d

du0
〈tc(u0)〉 + D

2

d2

du2
0

〈tc(u0)〉, (18.62)

where we have used the definition of (18.60) and transformed the partial derivatives
(with respect to u0) to full derivatives, since the time derivatives have vanished.
Equation (18.62) is a second order inhomogeneous differential equation of the form

y′′(x) + f (x) y′(x) = g(x)

with exact solution given in [42]

y(x) = C1 +
∫

e−F
(

C2 +
∫

eF gdx

)
dx where F =

∫
fdx, (18.63)

Using (18.63) along with the boundary conditions

lim
u0→−∞〈tc(u0)〉 = 0 and lim

u0→∞〈tc(u0)〉 = finite. (18.64)

we obtain the final solution for the mean time 〈tc(u0)〉 in terms of a double integral
form, that is

〈tc(u0)〉 = 2

D

u0∫

−∞
e2ξ

3/3D

∞∫

ξ

e−2η3/3Ddηdξ. (18.65)

The integral in (18.65) can be evaluated numerically for a plane wave or point source
condition, viz. u0 = 0 and u0 = ∞, respectively, returning a numerical value for the
characteristic mean time (or, equivalently, the distance in the quasi two dimensional
approximation) from a plane or from a point source, where the first caustic appears
in [14, 21], thus
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〈tc(0)〉 = 4.18D−1/3 and 〈tc(∞)〉 = 6.27D−1/3

Employing (18.49) we can rewrite the results in terms of the standard deviation σ as

〈tc(0)〉 = 3.32σ−2/3 and 〈tc(∞)〉 = 4.98σ−2/3. (18.66)

Note that we can derive the same results as above if we start from the parabolic
equation (18.67), which is also a well known approximation for wave fields [13, 14,
33].

2ik
∂

∂t
ψ + ∇2ψ + k2ε(t, r)ψ = 0. (18.67)

We can then use as a starting point the Schrödinger-like equation (18.67), valid in
the paraxial approximation, instead of starting with the Hamiltonian of (18.40). In
this case, the time t is also the propagation axis (as in the paraxial approximation),
ψ = ψ(t, r) is any component of electric or magnetic field, k is the wavevector and
ε is the dielectric coefficient. In this case, the classical action S, which is defined by
(18.42), is the phase front of the electromagnetic wave, and the quantity u denotes
the curvature of the phase front [14]; ε is the random potential (random fluctuated
permittivity) [14].

The analysis of the section proves that the onset of caustics is a general phe-
nomenon taking place in conservative particle flows as well as in wave propagation
through a weak delta-correlated random potential. We have shown that the charac-
teristic mean distance from the source, where the first caustic occurs, is universal for
all such systems and it is given in terms of standard deviation of the random potential
according to the relations in (18.66).

In Sect. 18.3.2 we present numerical results that have been obtained through sim-
ulations of electromagnetic wave propagation via networks of randomly distributed
lenses; the numerical results are in agreement with the analytical findings presented
in this section.

18.3.2 Branching Flows in Physical Systems

Numerical simulations as well as experiments have revealed that branching flows can
arise in a variety of physical systems. Topinka et al. [37] have shown experimentally
that branching flow takes place in electron currents in a two dimensional electron
gas. Kaplan [12] and Metzger [21] have studied both analytically and numerically
the branching flow in electron propagation and have found that the scaling law gov-
erning the behavior of the first caustic position is the one described in Sect. 18.3.1
(18.66). In addition, Metzger et al., in [22], have found an analytical expression for
the number of branches that occur in various distances from the source. Moreover
Barkhofen et al. [4] have found experimentally a branching effect in microwave flow
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through disordered media fabricated though randomly distributed scatterers; addi-
tionally, they have shown that the statics of the position of the first caustic satisfies
the scaling rule described by (18.66). Another microwave study that has been per-
formed by Hohmann et al. [11], found by means of the ray dynamics method and by
wave propagation simulations, that branching flow can emerge in two dimensional
microwave propagation through media comprising of random metallic scatterers. Ni
et al. [24] have studied the electromagnetic wave propagation in an optical system
made of random scatterers with continuous refractive index, and have proposed that
branched waves can emerge as a general phenomenon in the regime between the
weak scattering limit and Anderson localization; moreover, they have found that
high intensities (i.e. caustics) are distributed following an algebraic law. A numeri-
cal investigation on sound waves has also been performed by Blanc-Benon et al. [5]
showing that branching flow can arise from high frequency sound wave propagation
through a turbulent field; experiments performed by Wolfson in [40] confirm the
numerical findings.

The theoretical finding presented in Sect. 18.3.1 will be now verified in the elec-
tromagnetic wave propagation through networks of randomly distributed Luneburg
lenses. In particular, we show that branching flow arises in light propagation via dis-
ordered optical media, resulting to caustic formation. Furthermore, we investigate
the location for the occurrence of the first caustic and demonstrate that the numerical
results agree very well with the scaling of (18.66). As it has been already mentioned
previously, while the wave intensity is very large in the caustic regime and substantial
deviations of the wave intensity are expected to appear. In this regime, a maximum
is expected for the standard deviation of the wave intensity I . A simple quantitative
measure to investigate the caustic formation is the scintillation index σI [2, 4], which
may be studied as a function of the propagation distance x. When the average wave
intensity I is calculated using many realizations of random potentials, the maximum
of the scintillation index (depicted through a peak in the curve of σI ) denotes the
onset of a caustic. We find that peaks for different values of the standard deviation
σ of the random potential are scaled as (18.66) predicts. The scintillation index σI

is defined as follows:

σ 2
I =

〈
I(x)2

〉
〈I(x)〉2 − 1. (18.68)

An alternativemeasure for the scintillation index is given by (18.69), if we average
the intensity over the transverse direction y. This definition ismore appropriate, when
we have a small number of random networks for performing the statistics [2, 4]. In
what follows, we use only the σI of (18.68).

s2I =
〈
I(x)2

〉
y

〈I(x)〉2y
− 1. (18.69)
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Fig. 18.4 Finite Difference
in Time Domain simulation
for electromagnetic wave
propagation through a single
Luneburg lens is illustrated;
Luneburg lens is shown by
the dashed white line, the
lighter color denotes high
intensity and the darker one
is for lower intensity. The
yellow solid line is the
scintillation index, σ 2

I , given
by (18.68). As can been
seen, σ 2

I takes its maximum
value in the focus point
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This definition is a more appropriate when the average is taken over a few real-
izations random realizations of the medium. In Fig. 18.4, we show that the peak of
scintillation index σ 2

I curve coincides with the location where the electromagnetic
wave is focused by a Luneburg lens, demonstrating that σI is an efficient way to
investigate caustics.

We proceed with numerical simulations of electromagnetic plane wave propaga-
tion through a random transparent medium consisting of randomly located Luneburg
lenses, each with refractive index profile given by (18.70). The simulations utilize
the Finite Difference in Time Domain method, as it is described in Sect. 18.2.4.

In order to investigate the branching flow for several values of the standard devi-
ation σ of the random Luneburg lens potential, we generalize the original Luneburg
index by introducing a strength parameter α in the Luneburg lens refraction index
function (18.1); this control parameter α is proportional to the standard deviation,
i.e. σ ∼ α. The generalized Luneburg lens refractive index function is then given by
the equation

n(r) =
√

α
(
n2L − 1

) + 1, (18.70)

where nL denotes the original Luneburg lens refraction index given by (18.1). For
α = 1 we obtain the original Luneburg lens index, while for α = 0 we have a flat
refractive index (n = 1).

For the simulations, amonochromatic electromagnetic planewave source ofwave-
length λ and with transverse magnetic polarization (TM) has been located at the
beginning (at the left side) of a rectangular lattice. A random network consisting of
150 randomly located Luneburg lenses each with radius R = 10λ has been used; λ

has been used as a normalized unit of length. The size of the disordered rectangu-
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Fig. 18.5 White lines denote the position of Luneburg lenses. Monochromatic electromagnetic
plane waves propagate through a disordered transparent media consists of generalized Luneburg
lenses with index of refraction given by (18.70). The intensity of electric field is denoted by lighter
color for high intensity and by darker color for lower intensity. In a the strength parameter is
α = 0.07 while in b α = 0.1. In both images the branching flow is evident

lar lattice is 460λ × 360λ with a constant filling factor f = 0.28. We use periodic
boundary conditions at the up and down edges and absorbing boundary condition at
the end.

The intensity of the electric field of the electromagnetic wave simulations through
random Luneburg lens networks for two different values of strength parameter α is
represented in Fig. 18.5. The randomly located Luneburg lenses are illustrated by
means ofwhite solid lines; the lighter color demonstrates high intensity areaswhereas
the darker denotes lower values of intensity. Figure18.5a indicates the propagation
for α = 0.07, whereas Fig. 18.5b shows the propagation for α = 0.1. In both cases
the branching flow in electromagnetic wave propagation is evidence [19].

In Fig. 18.6 we show the scintillation index σ 2
I , as it is given by (18.68), for several

values of strength parameter α (viz. several values of potential standard deviation
σ ). For each value of α we have computed the average of scintillation index for 300
simulations obtaining good accuracy. In Fig. 18.6a we plot the mean value of σ 2

I as
a function of the propagation coordinate x, whereas in Fig. 18.6c the same curves
are illustrated in a rescaled x axis, i.e. x → x/σ−2/3. The positions xpeak where the
maximum of scintillation index curves is found for each standard deviation (or each
α), are plotted in Fig. 18.6b where the slope of the solid line shows how these points
are distributed, i.e. which is the relation between the first caustic position and the
standard deviation of the random potential, manifesting that the theoretical findings
of (18.66) hold in the caustic formation of propagation of light through a random
medium.

In conclusion, in Sect. 18.3, we have developed a theory based onHamilton-Jacobi
equation for the description of propagation through disordered media, assuming
that randomness acts as a white noise upon the flow. This assumption leads to a
Fokker-Planck equation which is a well known partial differential equation derived
by an ordinary stochastic differential equation, describing the time evolution of a
probability density function. Afterwards, we have calculated the average distance
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Fig. 18.6 Scaling of the branching length with respect to the standard deviation of the random
potential σ . a Scintillation index σ 2

I (x) given by (18.68) as a function of the distance from the
source, for different values of σ b maximum position of the scintillation curves obtained from σ 2

I ;
the curve shows a scaling of σ−2/3 (solid line). The scaling is confirmed in panel (c), where the
curves from the first panel (a) are shown with a rescaled x axis, viz. x → x/σ−2/3, in which all
peaks occur at approximately the same distance

(or the mean time in the paraxial approximation) from the source, where the first
caustic appears, as a function of the standard deviation of random potential resulting
to the scaling law given by (18.66). Furthermore, we proceeded with numerical
simulations for monochromatic electromagnetic plane waves through a disordered
lattice consisting of randomly located generalized Luneburg lenses with refractive
indexgivenby (18.70); these simulations are takenplace for several values of standard
deviation (or Luneburg lens strength parameter α). In addition we introduced the
scintillation index σI , which is a useful quantity for determining a caustic. The
numerical results prove the validity of the theory that is discussed, since they show
that the relation between the first caustic position and the standard deviation of the
randompotential is in agreementwith the theoretical findings. It should bementioned
that it is a very interesting fact that the branched flow effect and the law that rules the
position of the first caustic in a turbulence flow are the same for conservative particle
flow as well as for the wave propagation in random media.

18.4 Rogue Wave Formation Through Strong
Scattering Random Media

Roguewaves or freakwaves , have for long triggered the interest of scientists because
of their intriguing properties. They are extreme coherent waves with very large mag-
nitudes, which appear suddenly from nowhere and disappear equally fast. Rogue
waves were first documented in relatively calm water in the open seas [10, 41] but
recent works have demonstrated that rogue wave-type extreme events may appear in
various physical systems such as microwaves, optics, nonlinear crystals, cold atoms
and Bose-Einstein condensates, as well as in non-physical systems such as financial
systems [1, 3, 4, 7, 11, 19, 23, 31, 38, 43].
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Rogue wave pattern formation emerges in a complex environment but it is still
unclear if their appearance is due to linear or nonlinear processes. Intuitively, one
may link the onset of rogue wave pattern formation to a resonant interaction of two
or more solitary waves that are present in the medium; it has been tacitly assumed
that extreme waves are due to nonlinearity [3, 7, 17, 18, 23, 31, 43]. However, large
amplitude events may also appear in a purely linear regime [4, 10, 11, 19, 28, 41]; a
typical example is the generation of caustic surfaces in the linear wave propagation
as it was discussed in Sect. 18.3.

In this section we investigate optical wave propagation in strongly scattering
optical media comprising Luneburg-type lenses randomly embedded in the bulk of
transparent glasses. In particular, we use a type of lenses, namely Luneburg holes
(or anti-Luneburg lenses) with refractive index profile given by (18.71) [19]. In
contrast to Luneburg lens, the Luneburg hole has purely defocussing properties as it
is illustrated in Fig. 18.7, where Fig. 18.7a is the ray tracing solution of ray equations
(18.29) and (18.37) for the refractive index of (18.71) whereas Fig. 18.7b is a wave
simulation performed by Finite Difference in Time Domain method. The difference
of the index of refraction for Luneburg lenses as well as holes, compared to the
background index, is very large, viz. of the order of 40% and thus a medium with a
random distribution of Luneburg holes can be characterized as a strongly scattering
random media. We are using this kind of lenses instead of original Luneburg lenses,
because they are easier to be fabricated in the bulk of a dielectric, such as silica
glass [19].

n(r) =
√
1 +

( r

R

)2
. (18.71)

By analysing the electromagnetic wave propagation in the linear regime we
observe the appearance of rogue type waves that depend solely on the scattering
properties of the medium. Numerical simulations have been performed using the
Finite Difference in Time Domain method, as it was discussed in Sect. 18.2.4, show-
ing that optical roguewaves are generated through strong scattering in such a complex
environment [19].

18.4.1 Rogue Waves in Optics

As it has been alreadymentioned, rogue waves are extreme coherent waves with very
large magnitude; a more precise definition of rogue waves specifies that the height
or intensity of a rogue wave has to be at least two times larger than significant wave
height Hs, where the latter is defined as the mean wave height of the highest one
third wave height distribution [10, 19, 41].

Another way to study rogue waves is by means of the distribution of wave heights
or intensities. According to the central limit theorem and the simple random wave
prediction for the probability distribution of wave intensities I , the intensities have
to follow the Rayleigh law, obeying a distribution of P(I) = e−I , where I = |E|2 (E
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Fig. 18.7 The dashed lines denotes Luneburg hole lenses, which are spherical lenses with index of
refraction given by (18.71). In a we present an exact solution of ray tracing propagation obtained
by solving the ray (18.29) or (18.37), with plane wave initial conditions while in b we present
Finite Difference in Time Domain simulation results of monochromatic electromagnetic plane
wave propagation through a single Luneburg hole lens, revealing the purely defocussing properties
of Luneburg hole lens

is the electric field), normalized to one. However, when extreme events appear, the
intensities distribution deviates from simple exponential and long tails appear, due
to the presence of very high intensities [10, 11, 19, 41].

In the following, we present Finite Difference in Time Domain numerical simula-
tions for the electromagnetic wave propagation through media consisting of random
located Luneburg holes. Each Luneburg hole lens, with refractive index given by
(18.71), has radius R = 3.5λ, where λ is the wavelength of the electromagnetic
wave. The medium has dimensions (175.0× 528.5) in (λ2 units) and 400 Luneburg
hole lenses are placed randomly in the dielectric (medium) with fixed filling factor
f = 0.17; absorbing boundary conditions have been applied.

In Fig. 18.8wepresent the numerical results based on the FiniteDifference inTime
Domain method for the linear medium. In Fig. 18.8a, b, we present the propagation
of a monochromatic electromagnetic plane wave with transverse magnetic (TM)
polarization, through a random Luneburg hole network, where a plane wave source
has been locatedon the beginningof lattice (left) and thewavepropagates from the left
to the right direction. We observe that the presence of lenses with strong defocussing
properties, forces light to form propagation channels (Fig. 18.8a) that can lead to
the generation of very large amplitude rogue type waves (Fig. 18.8b). In Fig. 18.8c,
the random Luneburg hole network which is used for Finite Difference in Time
Domain simulation of Fig. 18.8a, b, is presented. Figure18.9a shows the intensity
profile where a linear rogue type wave occurs; as can been seen, the highest pick is
larger than twice the significant wave height resulting in a rogue wave. Figure18.9b
represents, in semilog axis, the distribution of electric intensities (blue dots) and
the Rayleigh distribution (dashed black line). As can be seen, the distribution of
intensities deviates from the Rayleigh curve resulting in an extreme event signature
[19].
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Fig. 18.9 a Intensity profile in the rogue wave region as a function of y. b Intensities distribution
(blue dots) (in semilog scaling) for the entire lattice shows deviation from the Rayleigh curve (black
dashed line) resulting in an extreme event signature

Concluding, rogue waves are extreme waves that appear in diverse systems; in
Sect. 18.4, we have focused on studying complex media in which randomly placed
elements introduce strong light scattering and interference patterns. In the purely
linear regime, the coalescence of these light channels and the resulting complexity
leads to the appearance of extreme, transient waves. In addition to high intensity pro-
file, there is a clear departure from the Rayleigh law in large intensities where rogue
waves are produced, as a result we have a clear signature of extreme events. Themost
important result of this section is that optical extreme events are generated in strong
scattering linear media by the complexity of the medium that drives interference and
wave coalescence.

18.5 Conclusion

We have presented mathematical methods and tools in order to investigate electro-
magnetic wave propagation in optical media by means of ray tracing and the Finite
Difference in Time Domain methods. We have shown that the ray tracing equations
which have been developed in Sect. 18.2 can be used for the derivation of an exact
ray equation for a given refractive index function, as well as for simulations solving
numerically the ray tracing equation of motion. We have verified these results by
comparing them to the results obtained by the Finite Difference in Time Domain
simulations. Furthermore, as an implementation of ray tracing and wave methods,
we indicated that efficient electromagnetic waveguides can be formed by Luneburg
certain networks.

After presenting the mathematical tools for wave propagation, we investigated the
limits of a disordered optical lattice which consist of gradient refractive index lenses
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with specific refractive index profiles. We investigated the weak scattering limit
in random media consisting of weak generalized type Luneburg lenses. We found
that caustic formation and, therefore, branching flow can arise in such a system.
We also investigated the strong scattering limit by simulating the propagation of
monochromatic electromagnetic plane waves in a random optical network which
consists of Luneburg hole lenses at random locations. We found that rogue wave
formation can arise in such a system even with the absence of nonlinearity.

The appearance of branching flows and extreme waves of rogue type in disor-
dered optical media shows that complexity inherent in the latter systems leads to
forms of self-organization: branching introduces pathways for light propagation in
the medium; rogue waves result from extreme focusing and coherence. These fea-
tures show that the medium, especially in the strong scattering regime, exhibits
collective properties that emerge as a result of light scattering and propagation. It is
very interesting to continue this line of research in the direction of establishing effec-
tive equations that describe the complex dynamics of light propagation in strongly
scattering, disordered media. At the same time it is important to understand the onset
of roguewaves in thesemedia since this will lead to possible control of the generation
and detection of these waves. Research in complex optical media will undoubtedly
lead to numerous new and promising technology applications.
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Chapter 19
Discrete Bright Solitons in Bose-Einstein
Condensates and Dimensional Reduction
in Quantum Field Theory

Luca Salasnich

Abstract We first review the derivation of an effective one-dimensional (1D)
discrete nonpolynomial Schrödinger equation from the continuous 3D Gross-
Pitaevskii equation with transverse harmonic confinement and axial periodic poten-
tial. Then we study the bright solitons obtained from this discrete nonpolynomial
equation showing that they give rise to the collapse of the condensate above a critical
attractive strength. We also investigate the dimensional reduction of a bosonic quan-
tum field theory, deriving an effective 1D nonpolynomial Heisenberg equation from
the 3DHeisenberg equation of the continuous bosonic field operator under the action
of transverse harmonic confinement. Moreover, by taking into account the presence
of an axial periodic potential we find a generalized Bose-Hubbard model which
reduces to the familiar 1D Bose-Hubbard Hamiltonian only if a strong inequality
is satisfied. Remarkably, in the absence of axial periodic potential our 1D nonpoly-
nomial Heisenberg equation gives the generalized Lieb-Liniger theory we obtained
some years ago.

19.1 Introduction

Ultracold bosonic gases in reduced dimensionality are an ideal platform for prob-
ing many-body phenomena [3, 7]. In particular, the use of optical lattices has
allowed the experimental realization [9] of the well-known Bose-Hubbard Hamil-
tonian [14] with dilute and ultracold alkali-metal atoms. This achievement has been
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of tremendous impact on several communities [14], and in particular on theoreticians
and mathematicians working with discrete nonlinear Schrödinger equations [10].

The three-dimensional (3D) Gross-Pitaevskii equation, a cubic nonlinear Schrö-
dinger equationswhich accurately describes aBose-Einstein condensate (BEC)made
of dilute and ultracold atoms [13], is usually analyzed in the case of repulsive inter-
action strength which corresponds to a positive inter-atomic s-wave scattering length
[2]. Indeed, a negative s-wave scattering length implies an attractive interaction
strength which may bring to the collapse [13] due to the shrink of the transverse
width of a realistic quasi-1D bosonic cloud [8, 16, 20]. Nevertheless, in certain
regimes of interaction both continuous and discrete 3D Gross-Pitaevskii equations
predict the existence of meta-stable configurations which are usually called continu-
ous and discrete bright solitons [8, 16, 20].We remark that continuous bright solitons
have been observed in various experiments [5, 11, 17, 24] involving attractive bosons
of 7Li and 85Rb vapors. Instead, discrete (gap) bright solitons in quasi-1D optical
lattices have been observed [6] only with repulsive bosons made of 87Rb atoms.

In the first part we discuss an effective one-dimensional discrete nonpolynomial
Schrödinger equation obtained from the continuous 3D Gross-Pitaevskii equation
with transverse harmonic confinement and axial periodic potential [8, 16]. We show
that this 1D discrete nonpolynomial Schrödinger equation reduces to the 1D discrete
Gross-Pitaevskii equation only in the weak-coupling regime and we compare the
bright soliton of the discrete nonpolynomial Schrödinger equation bright solitons
with the bright solitons of the discrete Gross-Pitaevskii equation.

In the second part, we investigate the dimensional reduction of a bosonic quan-
tum field theory, deriving an effective 1D nonpolynomial Heisenberg equation from
the 3D Heisenberg equation of the bosonic field operator under the action of trans-
verse harmonic confinement. In particular, we prove that the discrete version of this
1D nonpolynomial Heisenberg equation becomes the 1D discrete nonpolynomial
Schrödinger equation only assuming that the quantummany-body state of the system
is a Glauber coherent state. As a by-product, we also obtain a reliable generalizaton
of the Lieb-Liniger theory for a quasi-1D uniform Bose gas [22].

It is important to stress that some years ago we used this generalized Lieb-Liniger
theory (but in the absence of axial lattice) to analyze the transition from a 3D Bose-
Einstein condensate to the 1D Tonks-Girardeau gas, showing that the sound velocity
and the frequency of the lowest compressional mode give a clear signature of the
regime involved [22]. In [22] we studied also the case of negative scattering length
deriving the phase diagram of the Bose gas (uniform, single soliton, multi soliton
and collapsed) in toroidal confinement. Quite remarkably, the experimental data on
a Tonks-Girardeau gas of 87Rb atoms of Kinoshita et al. [12] are compatible with the
one-dimensional theory of Lieb, Seiringer andYngvason [15] but are better described
by our theory that takes into account variations in the transverse width of the atomic
cloud [23]. In [23], by using our generalized theory we investigated also the free
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axial expansion of the 87Rb gas in different regimes: Tonks-Girardeau gas, one-
dimensional Bose-Einstein condensate and three-dimensional Bose-Einstein con-
densate.

19.2 Bose-Einstein Condensate in a Quasi-1D Optical Lattice

We consider a dilute BEC confined in the z direction by a generic axial potential
V (z) and in the plane (x, y) by the transverse harmonic potential

U (x, y) = m

2
ω2⊥

(
x2 + y2

)
. (19.1)

The characteristic harmonic length is given by

a⊥ =
√

�

mω⊥
, (19.2)

and, for simplicity, we choose a⊥ and ω−1
⊥ , as length and time units, and �ω⊥ as

energy unit. In the remaining part of this chapter we use non-dimensional variables.
We assume that the systemmade of fully condensed Bose atoms is well described

by the 3D Gross-Pitaevskii equation, and in scaled units it reads

i
∂

∂t
ψ(r, t) =

[
−1

2
∇2 + 1

2

(
x2 + y2

)
+ V (z) + 2πg|ψ(r, t)|2

]
ψ(r, t) ,

(19.3)

where ψ(r, t) is the macroscopic wave function of the BEC normalized to the total
number N of atoms and g = 2as/a⊥ with as the s-wave scattering length of the inter-
atomic potential. In addition, we suppose that the axial potential is the combination
of periodic and harmonic potentials, i.e.

V (z) = V0 cos (2kz) + 1

2
λ2z2. (19.4)

This potential models the quasi-1D optical lattice produced in experiments with
Bose-Einstein condensates by using counter-propagating laser beams [18]. Here
λ � 1 models a weak axial harmonic confinement.
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19.2.1 Axial Discretization of the 3D Gross-Pitaevskii
Equation

We now perform a discretization of the 3D Gross-Pitaevskii equation along the
z axis due to the presence on the periodic potential. In particular we set

ψ(r, t) =
∑

n

φn(x, y, t) Wn(z) , (19.5)

where Wn(z) is the Wannier function maximally localized at the nth minimum of
the axial periodic potential. This tight-binding ansatz is reliable in the case of a deep
optical lattice [18].

We insert this ansatz into (19.3), multiply the resulting equation by W ∗
n (z) and

integrate over z variable. In this way we get

i
∂

∂t
φn =

[
−1

2
∇2⊥ + 1

2

(
x2 + y2

)
+ εn

]
φn − J

(
φn + 1 + φn−1

) + 2πU |φn |2 φn ,

(19.6)
where the parameters ε, J and U are given by

εn =
∫

W ∗
n (z)

[
−1

2

∂2

∂z2
+ V (z)

]
Wn(z) dz , (19.7)

J = −
∫

W ∗
n + 1(z)

[
−1

2

∂2

∂z2
+ V (z)

]
Wn(z) dz , (19.8)

U = g
∫

|Wn(z)|4 dz. (19.9)

The parameters J and U are practically independent on the site index n and in the
tight-binding regime J > 0.

19.2.2 Transverse Dimensional Reduction of the 3D Discrete
Gross-Pitaevskii Equation

To further simplify the problem we set [8, 16]

φn(x, y) = 1

π1/2σn(t)
exp

[
−

(
x2 + y2

2σn(t)2

)]
fn(t) , (19.10)
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where σn(t) and fn(t), which account for discrete transverse width and discrete
axial wave function, are the effective generalized coordinates to be determined vari-
ationally. In [19] there is a detailed discussion of the variational approach with time-
dependent Gaussian trial wave-functions for the study of Bose-Einstein condensates.

We insert this ansatz into the Lagrangian density associated to (19.6) and integrate
over x and y variables. In this way we obtain an effective Lagrangian for the fields
fn(t) and σn(t).
The Euler-Lagrange equation of the effective Lagrangian with respect to f ∗

n is

i
∂

∂t
fn =

[
1

2

(
1

σ2
n

+ σ2
n

)
+ εn

]
fn − J ( fn + 1 + fn−1) + U

σ2
n
| fn|2 fn . (19.11)

while the Euler-Lagrange equation with respect to σn gives

σ4
n = 1 + U | fn|2. (19.12)

Inserting (19.12) into (19.11) we finally get

i
∂

∂t
fn = εn fn − J ( fn + 1 + fn−1) + 1 + (3/2)U | fn|2√

1 + U | fn|2 fn , (19.13)

that is the 1D discrete nonpolynomial Schrödinger equation, describing the BEC
under a transverse anisotropic harmonic confinement and an axial optical lattice
[8, 16].

1D discrete nonpolynomial Schrödinger equation reduces to the familiar 1D dis-
crete Gross-Pitaevskii equation

i
∂

∂t
fn = εn fn − J ( fn + 1 + fn−1) + U | fn|2 fn (19.14)

in the weak-coupling limit |U || fn|2 � 1, whereU can be both positive and negative.
On the contrary, 1D discrete nonpolynomial Schrödinger equation becomes a 1D
quadratic discrete nonlinear Schrödinger equation

i
∂

∂t
fn = εn fn − J ( fn + 1 + fn−1) + (3/2)

√
U | fn| fn (19.15)

in the strong-coupling limit U | fn|2 � 1, where U > 0.
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Fig. 19.1 Weakly repulsive bosons in the optical lattice. Axial density profile (atoms per site)
of N = 100 repulsive bosonic atoms in a optical lattice with a super-imposed harmonic potential
(λ = 0.1). The three panels correspond (from bottom to top) to increasing values of the dimensional
on-site interaction strength U/J : 0, 0.2, 1. Solid lines Results obtained by using the 1D discrete
nonpolynomial Schrödinger equation (DNPSE); dashed lines results obtained by using the 1D
discrete Gross-Pitaevskii equation (DGPE). In the lower panel (U/J = 0) the two curves are
superimposed

19.2.3 Numerical Results

We have solved numerically both 1D discrete nonpolynomial Schrödinger equation
and 1D discrete Gross-Pitaevskii equation by using a Crank-Nicolson predictor-
corrector algorithm with imaginary time [4] to get the ground-state of the system.

In Figs. 19.1 and 19.2 we report our results obtained with N = 100 atoms in
a quasi-1D optical lattice with weak axial harmonic confinement: λ = 0.1. The
plots are shown for different values of the repulsive on-site interaction strength U :
U > 0. Note that in the experiments U can be tuned by using the technique of
Feshbach resonances [13, 14, 18].

In Fig. 19.1 we plot the axial density profile | fn|2 of weakly repulsive bosons in a
optical lattice with a super-imposed harmonic potential. As described in the caption,
the three panels correspond (from bottom to top) to increasing values of the on-site
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Fig. 19.2 Strongly repulsive bosons in the optical lattice (U/J = 2). Upper panel Axial density
profile (atoms per site) of N = 100 repulsive bosonic atoms in a optical lattice with a sup9.5cmer-
imposed harmonic potential (λ = 0.1).Lower panel The transversewidth of the bosonic cloud. Solid
lines Results obtained by using the 1D discrete nonpolynomial Schrödinger equation (DNPSE);
dashed lines results obtained by using the 1D discrete Gross-Pitaevskii equation (DGPE)

interaction strengthU . Figure19.1 clearly shows that the results (solid lines) obtained
by using the 1D discrete nonpolynomial Schrödinger equation strongly differ with
respect to the ones (dashed lines) obtained by using the 1D discrete Gross-Pitaevskii
equation by increasing the on-site interaction. This effect is better shown in the upper
panel of Fig. 19.2, where we plot the axial density profile for a large value (U/J = 2)
of the on-site interaction. In the lower panel of Fig. 19.2we report the transversewidth
σi of the bosonic cloud as a function of the lattice site n. As expected, σi strongly
deviates from 1 (i.e. a⊥ is dimensional units) where the axial density | fn|2 is large.

Now we show the results obtained again with N = 100 atoms in a quasi-1D
optical lattice but with an attractive on-site interaction strength U : U < 0. In the
attractive case the ground-state is self-localized and it exists also in the absence
(λ = 0) of the axial harmonic potential: it is the discrete bright soliton. In Fig. 19.3
we plot the axial density profile | fn|2 in the presence of the super-imposed axial
harmonic potential (λ = 0.1) and in Fig. 19.4 in the absence of the super-imposed
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Fig. 19.3 Weakly attractive bosons in the optical lattice (U/J = −0.02). Upper panel Axial
density profile (atoms per site) of N = 100 attractive bosonic atoms in a optical lattice with a
super-imposed harmonic potential (λ = 0.1). Lower panel The transverse width of the bosonic
cloud. Solid lines Results obtained by using the 1D discrete nonpolynomial Schrödinger equation
(DNPSE); dashed lines results obtained by using the 1D discrete Gross-Pitaevskii equation (DGPE)

axial harmonic potential (λ = 0) choosingU/J = −0.02. The two figures show that
that the density profiles with and without axial harmonic potential are practically
the same. In the figures there is also the comparison between 1D nonpolynomial
Schrödinger equation (solid lines) and 1D Gross-Pitaevskii equation (dashed lines).

19.2.4 Collapse of the Discrete Bright Soliton

In Fig. 19.5 we report the axial width of the bright soliton as a function of the
(attractive) on-site interaction. As expected, for a small on-site interaction strength
the axial width is extremely large and 1D discrete nonpolynomial Schrödinger
equation and 1D discrete Gross-Pitaevskii equation give the same results. On
the other hand, if the on-site interaction strength is sufficiently large one finds
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Fig. 19.4 Weakly attractive bosons in the optical lattice (U/J = −0.02)without the super-imposed
harmonic confinement (λ = 0). Upper panel Axial density profile (atoms per site) of N = 100
attractive bosonic atoms in a optical lattice. Lower panel The transverse width of the bosonic
cloud. Solid lines Results obtained by using the 1D discrete nonpolynomial Schrödinger equation
(DNPSE); dashed lines results obtained by using the 1D discrete Gross-Pitaevskii equation (DGPE)

deviations between 1Ddiscrete nonpolynomial Schrödinger equation and 1Ddiscrete
Gross-Pitaevskii equation. By further increasing the attractive on-site interaction U
1DdiscreteGross-Pitaevskii equation shows that eventually all the atoms accumulate
into the same site. 1D discrete nonpolynomial Schrödinger equation shows instead
something different: before all the atoms populate the same site there is the collapse
of the condensate: 1D discrete nonpolynomial Schrödinger equation does not admit
anymore a finite ground-state solution.

Numerically we find that the collapse occurs when U < 0 and

|U |N
J

> 2.1 (19.16)

which is consistent with analytical result |U |N/J > 8/3 of the continuum limit [20].
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Fig. 19.5 Weakly attractive bosons in the optical lattice without the super-imposed harmonic con-
finement (λ = 0). Transverse width of the bosonic cloud of N = 100 atoms as a function of the
effective interaction strength |U |N/J . Solid lines Results obtained by using the 1D discrete non-
polynomial Schrödinger equation (DNPSE); dashed lines results obtained by using the 1D discrete
Gross-Pitaevskii equation (DGPE)

19.3 Dimensional Reduction of a Continuous
Quantum Field Theory

A full quantum treatment of interacting bosons in a optical lattice is obtained by
promoting the wavefunction ψ(r, t) of the 3D Gross-Pitaevskii equation (19.3) to a
field operator ψ̂(r, t) [21], namely

ψ(r, t) → ψ̂(r, t) , (19.17)

ψ∗(r, t) → ψ̂+(r, t). (19.18)

The bosonic field operator ψ̂(r, t) and its adjunct ψ̂+(r, t)must satisfy the following
equal-time commutation rules

[ψ̂(r, t), ψ̂+(r′, t)] = δ(r − r′) , [ψ̂(r, t), ψ̂(r′, t)] = [ψ̂+(r, t), ψ̂+(r′, t)] = 0 ,

(19.19)
By imposing these commutation rules one finds

ψ̂+(r, t)|0〉 = |r, t〉 , (19.20)
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that is the operator ψ̂+(r, t) creates a particle in the state |r, t〉 from the vacuum state
|0〉, and also

ψ̂(r, t)|r′t〉 = δ(r − r′) |0〉 , (19.21)

that is the operator ψ̂(r, t) annihilates a particle which is in the state |r, t〉.
After promoting the wavefunction ψ(r, t) to a field operator ψ̂(r, t), (19.3)

becomes

i
∂

∂t
ψ̂(r, t) =

[
−1

2
∇2 + 1

2

(
x2 + y2

) + V (z) + 2πgψ̂+(r, t)ψ̂(r, t)

]
ψ̂(r, t) ,

(19.22)
This equation is nothing else than the Heisenberg equation of motion

i
∂

∂t
ψ̂ = [ψ̂, Ĥ ] (19.23)

of the field operator ψ̂(r, t), where

Ĥ =
∫

d3r ψ̂+
[
−1

2
∇2 + 1

2

(
x2 + y2

)
+ V (z) + 2πgψ̂+ψ̂

]
ψ̂ (19.24)

is the many-body quantum Hamiltonian of the system, which is not necessarily
a BEC [21]. Thus, the many-body Hamiltonian (19.24) describes a dilute gas of
bosonic atoms confined in the plane (x, y) by the transverse harmonic potential and
by a generic potential V (z) in the z direction.

19.3.1 Dimensional Reduction of the Hamiltonian

To perform the dimensional reduction of the Hamiltonian (19.24) we suppose that

ψ̂(r)|G〉 = 1

π1/2σ(z)
exp

[
−

(
x2 + y2

2σ(z)2

)]
φ̂(z)|G〉 , (19.25)

where |G〉 is the many-body ground state, while σ(z) and φ̂(z) account respectively
for the transverse width and for the axial bosonic field operator. We apply this ansatz
to (19.24) and obtain

Ĥ |G〉 = Ĥe|G〉 (19.26)

where, neglecting the space derivatives of σ(z), the effective 1D Hamiltonian reads

Ĥe =
∫

dz φ̂+[
− 1

2
∂2

z + V (z) + 1

2

(
1

σ2 + σ2
)

+ g

2σ2 φ̂+φ̂
]
φ̂. (19.27)
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The transverse width σ(z) can be determined by averaging the Hamiltonian (19.27)
over the ground state |G〉 and minimizing the resulting energy functional

〈G|Ĥe|G〉 =
∫

dz
{
〈G|φ̂+[

− 1

2
∂2

z + V (z)
]
φ̂|G〉

+ 1

2

(
1

σ2 + σ2
)

〈G|φ̂+φ̂|G〉 + g

2σ2 〈G|φ̂+φ̂+φ̂φ̂|G〉
}

(19.28)

with respect to σ(z). In this way one gets

σ(z)4 = 1 + g
〈G|φ̂+(z)φ̂+(z)φ̂(z)φ̂(z)|G〉

〈G|φ̂+(z)φ̂(z)|G〉 . (19.29)

Thus, the ground state |G〉 is obtained self-consistently from (19.27) and (19.29).
Notice that introducing the local axial-density operator ρ̂(z) = φ̂+(z)φ̂(z), such
that ρ(z) = 〈G|φ̂+(z)φ̂(z)|G〉 = 〈G|ρ̂(z)|G〉 is the local axial density and
ρ2(z) = 〈G|φ̂+(z)φ̂+(z)φ̂(z)φ̂(z) = 〈G|ρ̂(z)ρ̂(z)|G〉 − δ(0) ρ(z) is the two-body
axial correlation function, (19.29) can be rewritten as

σ(z)4 = 1 + g
ρ2(z)

ρ(z)
. (19.30)

Clearly, if gρ2(z) � ρ(z) one has
σ = 1 (19.31)

and the effective Hamiltonian (19.27) reduces to

Ĥe = Ĥ1D + 1 , (19.32)

where Ĥ1D is the strictly one-dimensional Hamiltonian

Ĥ1D =
∫

dz φ̂+[
− 1

2
∂2

z + V (z) + g

2
φ̂+φ̂

]
φ̂ (19.33)

while 1 is the transverse energy (in units of �ω⊥).
Let us analyze the general case σ(z) �= 1. In the superfluid regime, where |G〉 is

the Glauber coherent state |GC S〉 of φ̂(z) [21], i.e. such that

φ̂(z)|GC S〉 = φ(z)|GC S〉 , (19.34)

from (19.29) one finds
σ(z)4 = 1 + g|φ(z)|2 (19.35)
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and the energy functional (19.28) then becomes

〈GC S|Ĥe|GC S〉 =
∫

dz φ∗[ − 1

2
∂2

z + V (z) +
√
1 + g|φ|2

]
φ. (19.36)

This is the familiar energy functional of the 1D nonpolynomial Schrödinger equation
[20].

19.3.2 1D Nonpolynomial Heisenberg Equation

From the effective 1D Hamiltonian (19.27), the Heisenberg equation of motion

i
∂

∂t
φ̂ = [φ̂, Ĥe] (19.37)

gives

i
∂

∂t
φ̂(z, t) =

[
− 1

2
∂2

z + V (z) + 1

2

(
1

σ2(z, t)
+ σ2(z, t)

)

+ g

σ(z, t)2
φ̂+(z, t)φ̂(z, t)

]
φ̂(z, t) , (19.38)

that is a 1D nonpolynomial Heisenberg equation because it must be solved self-
consistently with the equation

σ(z, t)4 = 1 + g
〈S|φ̂+(z, t)φ̂+(z, t)φ̂(z, t)φ̂(z, t)|S〉

〈S|φ̂+(z, t)φ̂(z, t)|S〉 , (19.39)

where |S〉 is the many-body quantum state on the system. Only if the many-
body state |S〉 coincides with the Glauber coherent state |GC S〉 [21], such that
φ̂(z, t)|GC S〉 = φ(z, t)|GC S〉, the 1D nonpolynomial Heisenberg equation reduces
to the 1D nonpolynomial Schrödinger equation [20], given by

i
∂

∂t
φ(z, t) =

[
− 1

2
∂2z + V (z) + 1

2

(
1

σ2(z, t)
+ σ2(z, t)

)
+ g

σ(z, t)2
|φ(z, t)|2

]
φ(z, t) ,

(19.40)
where φ(z, t) is a complex wavefunction and

σ(z, t) =
(
1 + g|φ(z, t)|2

)1/4
(19.41)

is the corresponding transverse width.
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19.3.3 Generalized Lieb-Liniger Theory

In the time-independent and uniform case, where V (z) = 0, the space-time depen-
dence in (19.39) disappears, i.e.

σ4 = 1 + g
ρ2

ρ
, (19.42)

and the energy functional (19.28) reduces to a function of ρ, ρ2 and σ, namely

〈G| Ĥe

L
|G〉 = 〈G|φ̂+[

− 1

2
∂2

z

]
φ̂|G〉 + g

2σ2 ρ2 + 1

2

(
1

σ2 + σ2
)

ρ , (19.43)

where L is the length of the uniform system. Due to the Lieb-Liniger theorem [15],
for g ≥ 0 the energy function (19.43) can be rewritten as

〈G| Ĥe

L
|G〉 = 1

2
ρ3 f (

g

ρσ2 ) + 1

2

(
1

σ2 + σ2
)

ρ , (19.44)

where f (x) is the Lieb-Liniger function, which is defined as the solution of a
Fredholm equation and it is such that f (x) = x − 4x3/2/(3π) for x � 1 and
f (x) = (π2/3)(x/(x + 2))2 for x � 1. The minimization of (19.44) with respect
to σ gives

σ4 = 1 + gρ f ′( g

ρσ2 ) , (19.45)

and consequently, comparing with (19.42), the two-body axial correlation function
ρ2 must satisfy the equation

ρ2 = ρ2 f ′( g

ρσ2 ). (19.46)

Notice that (19.44) and (19.45), which are a reliable generalization of the Lieb-
Lineger theory, have been obtained for the first time by Salasnich et al. [22] using
a many-orbitals variational approach. As discussed in the introduction, some years
ago we used this generalized Lieb-Liniger theory to analyze the transition from a
3D Bose-Einstein condensate to the 1D Tonks-Girardeau gas [22], showing that the
experimental data on a Tonks-Girardeau gas of 87Rb atoms of Kinoshita et al. [12] are
very well described by our theory that takes into account variations in the transverse
width of the atomic cloud [23].
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19.4 Dimensional Reduction for Bosons in a Quasi-1D
Lattice

To conclude this chapter, we perform a discretization of the 3D many-body
Hamiltonian (19.24) along the z axis due to the presence of the periodic potential,
given by (19.4). We use the decomposition [14]

ψ̂(r) =
∑

n

φ̂n(x, y) Wn(z) , (19.47)

that is the quantum-field-theory analog of (19.5) and we set up the quantum-field-
theory extension of the mean-field approach developed in the first part of this con-
tribution. In particular we write

φ̂n(x, y)|G〉 = 1

π1/2σn
exp

[
−

(
x2 + y2

2σ2
n

)]
b̂n|G〉 , (19.48)

where |G〉 is the many-body ground state, while σn and b̂n account respectively for
the on-site transverse width and for the bosonic field operator. We insert these ansatz
into (19.24) and we easily obtain the effective 1D Bose-Hubbard Hamiltonian [1]

Ĥe =
∑

n

{[
1

2

(
1

σ2
n

+ σ2
n

)
+ εn

]
n̂n − J b̂+

n

(
b̂n + 1 + b̂n−1

)
+ 1

2

U

σ2
n

n̂n(n̂n − 1)

}
.

(19.49)

where n̂n = b̂+
n b̂n is the on-site number operator, εn is the on-site axial energy, while

J and U are the familiar hopping (tunneling) energy and on-site energy, given by
(19.7), (19.8) and (19.9).

Our (19.49) takes into account deviations with respect to the strictly 1D case due
to the transverse width σn of the bosonic field. This on-site transverse width σn can
be determined by averaging the Hamiltonian (19.49) over a many-body quantum
state |G〉 and minimizing the resulting energy function with respect to σn . In this
way one gets [1]

σ4
n = 1 + U

〈G|n̂2
n|G〉 − 〈G|n̂n|G〉
〈G|n̂n|G〉 . (19.50)

Note that (19.49) and (19.50) must be solved self-consistently to obtain the ground-
state of the system. Clearly, if U < 0 the transverse width σn is smaller than one
(i.e. σn < a⊥ in dimensional units) and the collapse happens when σn goes to zero.
At the critical strength Uc of the collapse all particles are accumulated in few sites
and consequently Uc � −1/N .

We stress that, from (19.50), the system is strictly 1D only if the following strong
inequality
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U
〈n̂2

n〉 − 〈n̂n〉
〈n̂n〉 � 1 (19.51)

is satisfied for any n, such that σn = 1 (i.e. σn = a⊥ in dimensional units). Under
the condition (19.51) the problem of collapse is fully avoided. In this strictly 1D
regimewhere the effectiveHamiltonian of (19.49) becomes (neglecting the irrelevant
constant transverse energy)

Ĥ1D =
∑

n

εnn̂n − J
∑

n

b̂+
n

(
b̂n + 1 + b̂n−1

)
+ U

2

∑
n

n̂n(n̂n − 1) (19.52)

which is the familiar 1D Bose-Hubbard model [14].
Given the generalized Bose-Hubbard Hamiltonian (19.49), the discrete

Heisenberg equation of motion of the bosonic operator b̂n reads

i
∂

∂t
b̂n = [b̂n, Ĥe] , (19.53)

that is

i
∂

∂t
b̂n =

[
1

2

(
1

σ2
n

+ σ2
n

)
+ εn

]
b̂n − J

(
b̂n + 1 + b̂n−1

)
+ U

σ2
n

n̂n b̂n . (19.54)

This is a 1D discrete nonpolynomial Heisenberg equation because it must be solved
self-consistently with the equation

σ4
n = 1 + U

〈S|n̂2
n|S〉 − 〈S|n̂i |S〉
〈S|n̂n|S〉 . (19.55)

where |S〉 is the many-body quantum state on the system. Also in this discrete case,
only if the many-body state |S〉 coincides with the Glauber coherent state |GC S〉,
such that

b̂n |GC S〉 = fn |GC S〉 , (19.56)

the 1D discrete nonpolynomial Heisenberg equation reduces to the 1D discrete non-
polynomial Schrödinger equation, given by (19.11) and (19.12).

19.5 Conclusions

We have investigated the discrete bright solitons of a quasi-one-dimensional
Bose-Einstein condensate with axial periodic potential by using an effective one-
dimensional discrete nonpolynomial Schrödinger equation [8, 16]. We have shown
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that, contrary to the familiar one-dimensional discrete nonlinear Schrödinger equa-
tion, our gives rise to the collapse of the condensate above a critical (attrac-
tive) strength, in agreement with experimental data. We have also analyzed the
dimensional reduction of a bosonic quantum field theory finding an effective 1D
quantum Hamiltionian (and a corresponding effective 1D nonpolynomial Heisen-
berg equation) which gives a generalized Lieb-Liniger theory in the absence of axial
periodic potential [22, 23] and gives instead a generalized Bose-Hubbard model [1]
in the presence of axial periodic potential. In [1] we have used the Density-Matrix-
Renormalization-Group (DMRG) technique to study the bright solitons of the 1D
Bose-Hubbard Hamiltonian finding that beyond-mean-field effects become relevant
by increasing the attraction between bosons. In particular we have discover that, con-
trary to the MF predictions based on the discrete nonlinear Schrödinger equation,
quantum bright solitons are not self-trapped [1]. In other words, we have found that
with a small number N of bosons the average of the quantum density profile, that
is experimentally obtained with repeated measures of the atomic cloud, is not shape
invariant. This remarkable effect can be explained by considering a quantum bright
soliton as a MF bright soliton with a center of mass that is randomly distributed due
to quantum fluctuations, which are suppressed only for large values of N [1].
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Part VII
An Historical Perspective



Chapter 20
I Saw a Crystal: An Historical Account
of the Deciphering of the Markings in Mica

F. Michael Russell

Abstract Sometimes the progress in science in better understood within an historical
perspective specially for non specialist readers. This is what it is attempted in this
chapter. The background both in science and personal of a researcher is very likely
to influence reactions to casual observations that turns out to be important. The main
example is the author’s first encounter with a sheet of mica with dark tracks and dots.
His knowledge of particle physics and crystallography made possible to realize the
similitude of some tracks to particle tracks in a cloud chamber and stimulated his
curiosity and further research.

20.1 Introduction

The chance observation on a museum wall of a sheet of mica containing a bewildering
array of dark markings started a quest for the cause and possible meaning of those
marks that has lasted nearly half a century. Sometimes the study stalled waiting
for an essential breakthrough in a related field. On two occasions it was blocked
by bureaucratic meddling and ignorance. Often it was ignored due to problems of
communication when working in a cross-discipline subject. Progress sometimes
depended on help from friends and sympathetic colleagues but it was not seen as
mainstream or topical science and so was mainly starved of funds from Research
Councils. On the one occasion when a grant was given the progress was remarkable.
For most of the time, however, the studies were funded privately by the author who
started a business specifically for that purpose. At an early stage the work came to
the attention of a journalist with, almost inevitably, mixed blessings. It took a quarter
of a century for the studies to come in from the wilderness and begin the long haul to
respectability. Science has fashions and recently the once obscure work has gained
some attention, partly because of its possible relevance to clean power and repairing
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Fig. 20.1 A near life-size cluster of mica crystals, showing their layered nature and hexagonal
habit. These crystals are too small and contain insufficient amounts of impurities to show the dark
lines found in larger crystals

damage to nuclear reactors. But that also carries risks as it is easy to misinterpret the
science and extrapolate to the impossible.

It is very probable, indeed almost inevitable, that synthetic layered materials will
become of immense commercial importance in the future. This is because there is
no limit to the variety and complexity of materials that can be created by progressive
deposition of layers. This contrasts sharply with limitations imposed by Nature on the
growth of crystals from melt. Hence, one of the reasons for studying mica is because it
is layered (Fig. 20.1). Moreover, the ability to split the material easily in to thin sheets
is a great practical advantage for studying the interior of crystals. The ability of mica
to accommodate impurities during crystal growth that are subsequently precipitated
at different kinds of defects shines a light on those defects.

The principal aims of the author are to give a short history of the research leading
to the deciphering of the markings, to describe the main discoveries and explore
some possible applications. The study of mica involves several disciplines and for
this reason is complicated. Inevitably, scientific terms are used but, despite much of
the work being closely connected to mathematics, no equations are presented. The
story is told in two overlapping ways. Firstly, as an imaginary lecture to a general
audience. This can be read in isolation by those not interested in the details of
research. Secondly, the lecture is interspersed with numerous background notes and
explanations. This results in some repetition that could be annoying or confusing but
it might be helpful in treating concepts that are counter intuitive. Some of the notes
are presented as short fictional stories to illustrate a point. Although the lecture is



20 I Saw a Crystal: An Historical Account … 477

described as given at a lecture theatre in London a much shorter version was actually
given at an International Conference in Seville, Spain, in 2009. An ideal lecture place
would have been the Royal Institution for two reasons: to acknowledge the help given
by Professor Richard Catlow of the RI at a critical stage of the research and because
it is a delightful theatre.

A secondary aim is to illustrate the use of very different techniques for exploring
complex problems. In particular, mechanical analogues of nonlinear systems have
sometimes shown the way forward when more conventional methods like numerical
computation or mathematical analysis have not been possible.

The analogy I make to the deciphering of the Rosetta Stone has several facets. It
is not just the ability to understand the lines and marks in a particular sheet of mica.
Instead, it opens the door to all the information that has been recorded and stored in
all the mica where ever it might be, even that which is still hidden underground. But
there is an important difference. The deciphering of the Stone allowed previously
unreadable historical text to be understood but did not lead to the development of
new languages. In contrast, the deciphering of the lines led to the discovery of new
physical phenomena that are not yet fully understood but, surely, are destined for
unimagined applications. This aspect has a downside in that it is frustrating not
knowing what those applications might be or lead to.

Most of the characters are real with three exceptions listed at the end. Of course,
many other people contributed to the research to varying degrees by discussions at
conferences, by letters and later emails. A list of relevant references to published
scientific papers is given for those who might be tempted to delve deeper, together
with a glossary of technical terms. I would like to express my gratitude to my partner
P. Ann Lindsell who has stoically suffered my obsession with the lines and for helping
in the research by acting as a critical sounding board. This aspect of research is often
overlooked but it is where ideas get tested and slowly evolve in to hypotheses. I
wish also to thank those who have helped in proof reading and correcting the many
mistakes I have made.

Maurice Pope, a former professor of Classics at Cape Town, and author of an
excellent book on decipherment, has commented on the obsession shown by some
workers. In addition he is credited with the saying: “Decipherments are by far the most
glamorous achievements of scholarship. There is a touch of magic about unknown
writing, especially when it comes from the remote past, and a corresponding glory
is bound to attach itself to the person who first solves its mystery.”

20.2 The Early Years

His interest in rocks started in the uncertain times at the start of World War II. As
sons of a shopkeeper he and his older brother had attended a private school until
it closed in 1939. Then they were evacuated from the North East of London to a
supposedly safer place further to the North. One day, when playing in the local
park, Mike walked in to the path of a heavy boat-like metal swing loaded with older
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Fig. 20.2 A piece of shrapnel from anti-aircraft shells that fell near the author when he was running
home from school during the Battle of Britain in 1940. Small crystals were visible in the fractured
metal

boys. He was knocked unconscious and flattened. His brother ran back to the foster
parent’s home and told them what had happened. They carried him back and put him
to bed, where he stayed semiconscious for 15 h. His only recollection of the event
was waking up to find he had been sick in the bed. Hearing about the accident by
letter his mother set off immediately by bus and train to bring both of her sons back
to London. There she could at least look after them. Michael, as his mother called
him, had received a fractured skull, broken nose and a potentially dangerous blood
clot on his face. Soon after returning to London the Blitz started. A side effect of
the Blitz and bombs was that they broke things open. This was how Mike first got
to see inside metals and rocks. Running home from the local council school after
the siren sounded to warn of yet another air raid, he had heard gun fire and then
metallic pings nearby. He spotted a shiny thing on the pavement, picked it up and
immediately dropped it. It was hot! (Fig. 20.2). So he used his handkerchief to carry
it home. Studying the jagged thing later in his bedroom, he saw that it was a chunk
of metal. He saw, for the first time, that metals could have crystalline grains inside
them. His father told him it was a bit of shrapnel from exploding anti-aircraft shells.

Years passed and the war ended. He liked the science classes at school, especially
physics, and was made the laboratory attendant so had time to examine the apparatus
he put away after lessons. One day at the end of a physics lesson his teacher, Mr.
Peacock, asked him which universities he had applied to. Mike said: ‘What do you
mean, Sir?’ The next day he was given some forms to take home to his parents.
There probably was some discussion but his mother won and so the forms were
filled in and taken back to school. Shortly afterwards he was given a package; it was
a University robe worn by Mr. ‘Pop’ Emery, the senior physics teacher at the school
who had just retired. Perhaps by chance, it was of the same College that accepted
Mike to study physics. Unfortunately, he had applied to the College too late and had
to wait a year before starting. The headmaster soon decided it would benefit Mike,
and the school, if he gained some work experience. So he joined a local factory and
worked in the R&D section. There he learnt how to gas-weld and during lunchtimes
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walked round the factory studying the equipment and manufacturing processes. At
the end of a 3 years Honor’s course the interviews started. The first was about banking
but there was no mutual interest. The second one was something to do with atomic
energy, then the frontier subject. The interview seemed to go well and the work
sounded interesting. When asked if he had any questions he asked only if he would
be allowed to use any of the workshop machines. This was because, if he moved
away from home, he would miss using the tools and especially the metal working
lathe his parents had bought him. A month later a letter arrived offering him a job at
the UK Atomic Energy Research Establishment at Harwell, near Oxford in England.
Such work over 4 years was deemed to be in the National Interest and so qualified
for deferred National Service. He was informed that he could study part-time for a
PhD if he wanted to. After this 4 years probationary period and gaining his PhD he
was invited to join the staff.

Out of interest where their son would be working his parents drove with him
down to Harwell and saw the decommissioned WWII airfield that was becoming
the UK atomic research establishment. As they approached the site they saw many
prefabricated houses and wondered if he would be located in one. A week later he
arrived at the site and after signing the Official Secrets Act form and other formalities
was put in a coach. The coach seemed to drive for ages in the dark and finally
stopped outside a huge mansion surrounded by fields and tall trees. Inside he was
taken upstairs and shown his room which had a writing table, easy chairs and a
large bed. He was shown his toilet on the opposite side of the corridor and saw,
to his astonishment, that it contained a sunken marble bath. Shortly afterwards a
gong sounded and he followed the other inmates down the wide marble stairs to
an oak paneled dining room. There they were served at table by formally dressed
waitresses. Mike was overwhelmed by such surroundings and service and watched
how the others behaved. A Dutchman called Dr. Henk Boer introduced him to the
art of eating Stilton cheese. After dinner a long walk along a corridor led to a library,
where coffee was served. There he learnt that the mansion was used to accommodate
VIP scientists from overseas. He had been sent there because the dormitory where
he was intended to stay was full. Mike chose to continue to live in Buckland House
for the next 4 years. One visiting scientist he met there was Dr. E.C.H. Silk from
South Africa, who was the first person to make electron micrographs of the tracks
of fission fragments from 235U in mica.

Five years later, in 1961, he was sent to the US to work at the Oak Ridge National
Laboratory in Tennessee as an exchange scientist. Within days, encouraged by friends
and colleagues, he was visiting open-cut coal mines seeking fossils. Car trips on
weekends then brought him to rock shops by which time he was hooked on rocks
and geology. After 2 years it was time to return to England. On the car journey back to
New York to sail home on one of the Queens he visited, by chance, a mineral museum
near the Blue Ridge Parkway. There he saw a crystal. It was to have a profound
influence on his subsequent life. Now, 50 years later, he was seated in the front row
in a lecture theatre in London. Sitting next to him was Ann, his partner. Next to her
was Chris Eilbeck with his partner. Chris and Mike had been collaborating on aspects
of mica since 1995. There was also Juan Archilla who had flown in from Seville.
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Fig. 20.3 A photograph of a
replica of the rosetta stone
showing the three bands of
inscriptions. The top two are
in hieroglyphic and demotic
scripts and the bottom one is
in classical Greek. Taken at
the National Cryptologic
Museum, NSA, © Ryan
Somma (1980), (CC BY 2.0)

Mike was about to give a lecture. As the audience had entered the theatre they had
picked up Polaroid glasses with which to view three-dimensional projected images.
[The frontispiece] The static image being projected showed a mineral specimen with
a beautiful cluster of crystals, which enabled the audience to adjust to their glasses.
Exactly on time his host, who had played a vital part in the mica story, walked to the
front, scanned the audience for attention and started speaking.

Good evening, Ladies and Gentlemen. In 1822 Jean Francois Champollion suc-
cessfully deciphered the hieroglyphic message on the Rosetta stone (Fig. 20.3). He
was aided by three factors. Firstly, Napoleon’s army found the stone and recognised
that it held important information. Secondly, he knew that the marks on the stone
represented a language. Thirdly, the hieroglyphic inscription was accompanied by
the same passage in both Egyptian demotic and Greek scripts, which were already
understood. The language of the Egyptians, which had been lost for 3000years, could
again be read.

Our guest tonight faced a far more difficult task. Firstly, he had to find the stones.
Secondly, it was not known that the marks in the stones held any understandable
information. Thirdly, there were no hints for deciphering the language. His success
did not happen overnight and it took him to the edge of a mental abyss. Eventually,
based on his findings, he was able to predict a new phenomenon that was subsequently
verified by him and confirmed by others. The messages in these stones were about
300million years old and had been puzzling people for maybe 10,000years.
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Tonight I hope we will learn something about the actual deciphering process and
also hear about his most recent findings from the Messages in mica, which is the title
for his talk. It is my pleasure to introduce Professor Mike Russell.

Mike was already standing and, as he moved to the front, said:
Thank you for that kind introduction. I will try to meet your requests. It is a

great pleasure for me to be here tonight. Twenty five years ago I went to the Royal
Institution to discuss with Professor Catlow a problem to do with a kind of rock called
mica. He listened to my story and then said he knew someone who might be able to
help. After our meeting he showed me the famous lecture theatre and also some of
Michael Faraday’s equipment. He then introduced me to Dr. David Collins, one of
his post-graduates, and a new era in the study of mica began. But I have already
jumped too far ahead in the story of mica.

Mike nodded to John, his assistant at the lecture, the lectern light dimmed and
the projected three-dimensional image changed to a scene of mountains. In the fore-
ground was a gorge with basalt ridges standing out from its sides and in the back-
ground clouds rose from a volcano. A narrator’s voice described the scene: “The
Earth is in constant turmoil, the continental plates either crashing into one another or
drifting apart.” The foreground of the projected image split open on one side to reveal
a slice through the earth. “When the pressure in the magma gets too high it causes it
to push upwards towards the surface.” The image showed magma rising in a column.
Movement of the surrounding rocks created a region of weakness that the magma
forced open as it flowed in to create an isolated blob of liquid magma (Fig. 20.4).
“The birth place of mica crystals is in these isolated pockets of magma.” A digital
clock in the top left corner of the screen read ‘300,000,000 bp’. The ‘bp’ stood for
‘before present’ time. Another clock just below showed a line of zeros. Both sets of

Fig. 20.4 Diagram showing the forced intrusion of magma from a magma plume to form a side
chamber. As the material in the chamber, called a pegmatite, cools slowly, crystals of various min-
erals are formed. Eventually, by both uplifting of the surrounding rock and erosion such chambers
reach the surface of the Earth
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Fig. 20.5 The frontispiece showed a cluster of small crystals of mica. The photo shows a large
well formed crystal of muscovite mica. It has been broken along the easy cleavage plane in several
places during its extraction from the rock in the mine. It is about 60 cm high. It is on display in the
mineral section of the Australian Museum in Sydney

numbers then blurred as the magma in the blob cooled and crystals started to grow
from the rock face inwards in to the magma. “Slowly, the liquid magma cools and
then crystals of various minerals, including mica, begin to grow in the liquid. Some
crystals of mica can be quite large” (Fig. 20.5).

When the magma had almost completely solidified to crystals the clocks stopped
at 299,990,000 bp and 10,000, respectively. The image zoomed in to show a large
crystal of mica, about 30 cm in size, surrounded by many other crystals of different
sorts. Again the image zoomed in to the heart of the mica crystal. It looked like
a piece of tinted but otherwise clear glass. Again the numbers blurred. Suddenly,
a small black dot appeared. Then another. And another. More dots appeared with
some lying in a straight line. Then a thin black line appeared inside the crystal,
crossing from one side to the other. Then a second line in a different direction and a
few more random black dots. The upper clock showed 299,800,000 bp and the other
200,000. “After thousands of years of slowly cooling the mica crystals suddenly
become capable of recording microscopic disturbances in their interior at the atomic
level. The recoding process is so sensitive that even a single particle from cosmic
rays, which constantly bombard the Earth from outer space, can leave a track if it
passes through the mica crystal.” The numbers blurred again and the crystal became
filled with thousands of intersecting lines and dots (Fig. 20.6). Then all went still,
the clocks showing 299,790,000 bp and 210,000. It took just about 10,000 years for
the crystals to go from clear to nearly opaque.

“In barely a blink of geologic time the mica cools enough to turn off the recording
process. Thereafter, the patterns in the mica are frozen and remain unchanged for
millions of years.” The scene zoomed out back to the mountains and, as the numbers
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Fig. 20.6 Print of full size sheet of mica showing lines and dots. Each sheet displays a different
pattern. No chemical treatment is involved as the dark material is chemically stable in air

continued to blur, the mountains progressively rose up only to be worn away, the
process repeating in uncounted cycles. “Eventually, as the mountains slowly rise and
are worn away by the action of wind, frost and rain, the mica crystals slowly move
nearer the surface of the Earth.” Suddenly, a light shone from a spot on the side of
the mountain. The scene zoomed in to show a crystal of mica poking out from the
ground, reflecting the rays of the sun. The top clock showed 100,000 bp and the lower
299,900,000. The scene faded as lights over the bench slowly came on. There was a
slight murmur from the audience and Mike said:

Now you know how, when and where mica is formed and how it gets to the surface
of the Earth.

Then he picked up a book-size crystal of mica from the bench and, inserting a
fingernail into one edge, cleaved off a thin sheet from the crystal. Holding it up
he flexed and bent the sheet. He lit a Bunsen burner and put the sheet into the
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flame. Nothing happened. Next he placed the sheet on the optical overhead projector
and turned the light on. The sheet was tinted light brown and showed a pattern of
intersecting black lines. As he took it off the projector he tilted the sheet so as to
reflect the projector beam towards the audience. Finally, he put a corner of the sheet
between his lips but showed no adverse reaction. Looking at the audience he said:

In just a few seconds you have learnt quite a lot about mica. It is reasonable
to suppose that our remote ancestors also knew of these properties, as they would
have been curious about the silvery rock poking out of the ground that reflected the
sun’s rays. Mica can be found all over the world, wherever there are volcanic rocks.
Children would have played with it and the adults would have learnt how to make
use of it.

He tapped a key on his laptop and the main screen showed a list of properties.
It listed: transparent; heat resistant; flexible; easily cleaved; mechanically strong;
chemically and biologically inert and tasteless. He said:

These properties would have been common knowledge to our ancestors of at least
100,000years ago although they would not have know how to define them. How
might they have used mica?

As the lights over the bench dimmed the main screen came to life to show a slow
panoramic sweep of an African plain bounded on one side by an escarpment. A
fire smoldered in the foreground under a rock overhang in the escarpment that gave
shelter to a small group of hunter-gatherers. Two women sat near the fire preparing
food, one keeping a close watch on a small child crawling near the fire. As the child
reached out its hand towards the fire Mike noticed that Ann reacted slightly, then
she smiled and relaxed. Ann had been afraid that it would be a dreary academic
lecture. Instead it looked like it might be fun. The scene showed haze in the distance.
It was going to be another hot day. A skin for carrying water hung from the top of
a three-stick tripod, its drooping sides showing that someone would have to make
a trip to the stream soon. Bone fragments were scattered on the ground and there
was a small heap of skins. There was little else. Life in Africa was not easy and it
pushed our ancestors to the limits of their understanding and observation to survive.
An older woman arrived carrying some seeds, two tubers and an egg. She put the
tubers in among the fire embers and then went to the back of the shelter. She returned
with a sheet of mica which she placed on top of the fire, picked up the egg, broke it
over the mica and with a stick heaped up the mixture as it cooked (Fig. 20.7). To start
with, some child probably threw a bit of mica on to a fire to see what would happen.
Anyway, by trial and error the woman had found that a sheet of mica, when heated
from below, bows downwards to create a shallow bowl. She nudged the sheet to the
side of the fire then picked it up at the edge. She would have soon learnt that mica
cools quickly and does not cause bad burns. She placed it on her lap, called the child
over and started to feed it.

The scene changed to the plain. Two men and a youth were crouched watching a
Bushbuck antelope. On a signal all three ran in an encircling action but the animal
easily escaped them. It was the second day with no kill. Again they started walking
in search of something. For days the hunters would follow the animals trying to gain
some small advantage. The afternoon became progressively hotter to the point where
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Fig. 20.7 Cooking an egg on a sheet of mica. The flames from below cause the sheet to buckle into
a saucer shape, in which liquids can be poured. The sheet is about 210 mm × 200 mm × 1/5 mm
thickness. It can be used more than a hundred times if handled carefully

they decided to rest. In the distance a dust cloud sprung up from the ground. Then
another one. From their resting spot on a slight rise they could see a small herd of
Bushbuck. The dust clouds swirled about and one grew bigger. It was heading for the
herd. Realizing their chance the hunters moved towards the herd. If the dust clouds
moved over the heard then they would not be able to see the hunters nor hear them.
It offered the hunters a slight chance but they would have to cope with the stinging
dust in their eyes. As they got nearer to the animals the youth pulled a sheet of mica
from his belt, put it in front of his face and slipped a tie-cord of gut over his head. The
men chuckled. They accepted dust in their eyes as the unavoidable price for getting
nearer the animals. They did not know that the boy had been playing with his sheet
of mica for several months, slowly learning how he could use it to give him some
protection. Soon they were in the dust cloud and could just see the outlines of the
animals. The men had to keep their backs to the wind and screen their eyes with their
hands. The youth turned into the wind as the dust became almost blinding and ran
towards one animal. Because of the dust and wind the animal did not see or smell
him approach. At the last moment, as the youth lunged for the animal’s rear leg, it
jumped, pulling the youth over. He hung on with both hands but the animal kicked
and dragged him along, causing a painful deep graze on one of his thighs. The two
men located him by his calls and soon killed the animal. In the turmoil of the chase
and capture of the animal, the mica sheet slipped from his face and hung from his
neck. The youth stood up with blood spilling from the wound. As the dust cleared
the trio set off for the shelter with their prize. Their arrival was greeted with pleasure
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until the wound was seen. It was covered with flies. The older woman got up and
again went to the back of the shelter, returning with a slab of mica. After washing the
wound with water she prized off a very thin sheet from the crystal and placed it over
the wound. Perhaps the woman had thought through a connection between cooking
meat and using mica to cover flesh in a wound. Or maybe it was just an adaptation
of the use of broad leaves for covering a wound. Whatever the origin, the effect was
dramatic, quick—and visible. It slowed the flow of blood and kept the flies at bay.
The youth held it there while the woman found some stringy grass to wind round
the leg to hold the sheet in place. He was curious about what he saw under the sheet.
The main factor was keeping the flies at bay. Later, if parts of the wound festered,
small holes would be pricked in the mica to allow the puss out and healing oxygen
to penetrate to the wound. As he rested against the cave wall he ground some ochre
to use later when he recorded the hunting scene on the rocks of the shelter wall.

The scene faded as Mike picked up the story again by saying:
It is an interesting fact that freshly cleaved sheets of mica are biologically sterile.

They might have accidentally come across this property and made use of it. Out of
curiosity I also tried this out and found it worked fine on a small abrasion. In fact,
mica has a long history of use in India where it is known as Abrak and Abhra in
mythological stories. One type of mica called biotite is the basis for a potent medicine
that requires hundreds of steps, including treatment with fire, for its preparation. The
Greeks and Romans also made use of mica, also the American Indians who buried
their dead with considerable quantities of mica, as revealed by excavations in Ohio
(Zeitler, 1913 [45]).

He turned on the overhead projector to show an image of a sheet of mica with
several black lines and a few dots (Fig. 20.8). He said: They also would have seen
these marks, the lines and dots, and would have noticed that in each sheet the pattern
is different. It would have been a trivial observation of no significance to them.

0 1 cm

Fig. 20.8 A sheet of mica showing the characteristic pattern of lines at 60◦ angles. The bar is 1 cm
long
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He picked up a sliver of flint and, holding it like a pen, scratched gently on the
surface of the sheet. It left a permanent mark. He drew a few circles and various
shapes, even a simple sketch of an animal. He continued:

As you see, it is easy to make permanent marks on the surface. People would have
known this and probably put it to good use.

He nodded to John again. The lectern light dimmed as the main screen lit up.
It showed a map of the Indus valley; the digital clock showed 7,000 bp. The scene
changed to show people making a simple mud-brick building in the Mohenjo-Daro
complex, the site of an ancient civilization. The keeping of records was an essential
part of the early development of communal living. An official in a robe was keeping
a record of something by scratching notches on a stick of wood. Some of the sticks
had clay tokens at one end to show what was being recorded. At the end of each day
the stick records were placed in the corner of a room where others were stored. The
scene changed to night time, with the courtyard lit by the flames of a fire. Perhaps
by accident, the fire spread to dead leaves and twigs and finally reached the wooden
sticks, destroying the precious records. The scene changed again to the next morning
and showed the official poking in the ashes. Only some of the burnt clay tokens
survived the fire. This was a disaster for the official, for it was his responsibility to
maintain the records and keep them safe. As keeper of the records he was in trouble.
He knew he could replicate some of the recent sticks from memory but the older ones
would pose problems just making them look old. He is seen looking round the room
and walks to look at some sheets of mica used to cover a window. Although darkened
by soot the sheets had survived the fire. Under such times of stress the human mind
is often most inventive as it searches for a way out of a problem, in effect, how to
survive. He gently rubbed the soot clear, saw the black lines and noticed that they
had survived the fire. Pondering on the black lines he scratched the mica with the
stone flake he used to notch the sticks. It left a visible mark but not a black line.
Once again, an accident has shown a way forward. The official sees that he can make
permanent marks on the mica. By some leap of imagination he realizes that he has
found a safe way to record data. Safe, even against fire. The notches on the stick
became scratched lines on the mica.

Cuneiform is one of the oldest forms of writing dating from about 2600 BC.
It might well have developed from earlier pictograms. However, the shape of the
inscribed marks closely resemble the shape and size of the marks seen in mica
crystals, as shown in (Fig. 20.9). It is reasonable to ask why cuneiform strokes have
a wedge shape and not some other form such as a curve.

The scene changed to a courtyard, and the clock showed 6000 bp. A scribe was
peeling off another sheet of mica. The slab of mica was getting thin and would soon
be used up. To conserve the sheets he turned them over and used them again with
the scratches at an angle to the first set on the other side. Just like the dark lines
in the mica were at different angles. This doubled the storage capacity and avoided
confusion in reading the record. Eventually the mica slab was used up. By then an
alternative way to store information had been developed, using clay tablets. These
were heavy and could break but, unlike the mica, there was an unending supply of
clay. However, they were liable to water damage unless fired, which was expensive.
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Fig. 20.9 Contact print of a typical sheet of mica showing wedge shaped marks. These have a long
thing tail terminating in a progressively wider short head. Such sheets in crystals of mica would
have been found all over the world. Although it is impossible to prove that these marks inspired or
led to cuneiform it is reasonable to suppose that they were known to intelligent observers of nature.
The size shown is about 10 cm long

To differentiate the different types of records, pictograph headers were cut in the clay
tablets, similar to those of the earlier clay tokens. In reading back such records the
scribe would vocalize the results for others to understand. To those nearby it appeared
that he had written down the words, that he had, somehow, recorded speech. The path
to phonetization of writing was under way. The clock moved on to 5,300 bp. A clay
pot stood in the yard and the scene zoomed to the surface of the jar to reveal inscribed
patterns that resembled the lines in mica (Fig. 20.10). Even the angles were similar.
The jar was from Harappa. Five millennium later some archaeologists would propose
that the still not deciphered Indus script arose from such Harappan marks.

A delightful piece of lateral thinking by Genevieve von Petzinger [23], who studied
the patterns of marks that can be seen on the walls of caves between the pictures of
animals, has shown that the earliest marks consisted of dots, lines and lines at angles
of multiples of 30◦. Although the fact that these marks closely mimic those seen
in mica might be coincidence Occam’s razor suggests otherwise. The worldwide
occurrence of mica and the fact that the pattern in every piece is unique must have
registered in the minds of our forebears.

Sheets of high quality mica, when blackened with soot on one side, perhaps from
being used near a fire, act as reasonable mirrors. This would have been known to
the women. The scene changed to show ladies at the bathhouse. Through a window
one of the ladies looked towards a distant hill. Suddenly, there were flashes of light
from the hill. She turned to a friend nearby and pointed to the flashes. They probably
discussed if it was a message for the military or perhaps it announced the arrival of a
camel train. The scene faded, the lectern light came on and Mike picked up the story.
He said:
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Fig. 20.10 The top picture is of a piece of ocher found in the Blombos Cave in South Africa. Two
such inscribed pieces were found among hundreds of other pieces of ocher. Archeologists think the
design is too regular to be accidental. It is at least 70,000 years old. Reproduced with permission
from: Henshilwood et al. [12]. The lower picture is a drawing taken from the inscribed marks on
the surface of pottery found at Harappa in the Indus region. It is about 5000 years old

By about 3,000bp writing in various forms was widespread. Mica would have been
an excellent material for recording and keeping messages, especially for sea voyages
or travelers. It is inert, waterproof, chemically stable and offers a huge surface area
for writing on per unit volume of storage. It would, indeed, be surprising if it was
not used for recording data. In fact, one of the first things I did when I first handled
a sheet of mica containing black lines was to scratch the surface with a penknife
to see what effect the scratching might have on the lines. For example, where they
on the surface or deeper in the sheet? I immediately noticed that my scratching left
a permanent mark. I wiped away the dust with my finger but the mark remained.
Wetting my finger on my tongue I wiped the scratch. The scratch disappeared but
returned when dry. Later I used this scratch method to record information on each
sheet for identification purposes. I find it hard to believe that our distant ancestors
had not gone through the same discovery process as I had. Returning to the mica
story, it was not a rare commodity as it occurred at many places. In later years it was
traded for use in windows. Also, as we have just seen, some of the Harappan marks
resemble those in mica, with lines at about 60◦ instead of the simpler 90◦ crossing.
Perhaps the mica lines influenced the development of writing in the Indus valley. If
this speculation were true then it would indicate an important shift away from just
exploiting the physical properties of mica, to a more intellectual use where abstract
ideas were involved. It would be a major paradigm change. We must travel to Mexico
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for evidence to support this suggestion of an abstract component in the treatment of
mica.

The screen came to life again and showed an oblique aerial view of the Teotihucan
temple complex. The clock showed 1,700 bp. The Pyramid of the Sun was in the
background as workmen cut blocks of stone for a smaller structure in the foreground.
There was a problem. Officials and priests were standing about, waiting for a special
delivery of a precious material. It had come from a mine 3,000 km away, in Brazil. A
fanfare indicated its arrival and workers rushed to carry the precious material up the
steps of the new temple, led by the High Priest. At the top of the pyramidal structure
the floor had been carefully leveled and smoothed. The High Priest took a piece of
the material in both hands and raised it up, calling for the Gods to accept the gift. He
then knelt down and placed the piece on the floor. Immediately the workers started
cutting and placing the rest of the material so as to cover the floor in a thin layer
of the material. It was mica. The pieces were placed so that the lines were aligned
in certain directions. There was a mica mine much nearer the site but the material
was of poorer quality. When the layer was completed a second layer of the same
mica was placed over it. Finally, all traces of this special and highly valued mica
was buried under additional layers of stone. What was so special about the mica that
those in charge of building the temple complex would bring it from so far away?
As there was a mica mine nearby it was not simply for use as a waterproof layer to
protect the blocks of rock underneath. There had to be some more important reason
for the priests to be so interested in the material. This was not an isolated use of
mica for such a purpose. The scene changed and the Pyramid of the Sun came to the
foreground. About 200 years earlier, when it was being constructed, a thick layer of
mica was sandwiched between two of the upper levels.

The scene changed again and a different Temple complex was seen. The clock
showed 2,500 bp. The Temple sat on a hilltop in the central valley of Oaxaca, so
was warm and dry. It was Monte Alban, the administrative centre for a town of
10,000 souls. The clock ran on to 1,300 and the town had more than doubled in
size. Tombs had been constructed a short distance from the complex. One of these
tombs contained a large number of mica crystals along with some gold and other
treasures [3, 17, 26]. The crystals were about the size of a book but irregular in
shape (Fig. 20.11). The only common feature was that they all contained dark lines.
As the clock ran slowly forward the town began to decline. The elite and rulers
were worried. They needed some form of guidance. The scene changed to show the
High Priest being challenged by the rulers to read pages from the sacred books of
mica. He protested that for a thousand years the meanings of the markings within
the mica books had remained a closely guarded secret. He was told abruptly that it
was time to divulge their meaning. Unable to translate the messages from the Gods
he was dismissed—and dispatched for a closer and lasting acquaintance with the
Gods. Since no human was able to interpret the messages it was deemed that the best
solution—and safest—was for the ‘books of knowledge’ to be returned to the tombs
so that their occupants would have the sacred works at hand. The screen faded. With
a wry smile Mike said:
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Fig. 20.11 Slabs of mica found in tombs at the Monte Alban temple complex in the central valley of
Oaxaca State, Mexico. It is not known why mica crystal were prized enough to be placed in tombs.
They contain dark lines. The site was abandoned about 700 AD

Clearly, it was somewhat risky to study the messages in mica, as I found out many
years later!

This remark referred to the occasion when Mike was severely reprimanded by the
Director of the laboratory where he worked for studying mica. He went on:

Since the physical properties of mica do not vary greatly with place of origin
it must be concluded that the particular source was chosen for abstract reasons.
Also, there is no obvious mechanical or practical reason for mica to be built into the
Pyramids; it would be a poor waterproofing barrier. If mica did play a significant role
in the development of writing then it must be asked why the direct evidence for this
is apparently missing. In fact, there are two main reasons: frost and wind. Although
mica is chemically inert, once it is exposed to the weather, unless it is protected from
frost and wind, it is rapidly degrade by splitting into thin flakes which then get blown
about and ground up. You need only look at the surface of paths in regions where the
rocks contain mica to see this process in action. Small flakes glisten on the path. So
long as it is kept covered or protected from frost it has an indefinite lifetime. However,
despite this degradation, the use of mica at old camp and cave sites might be checked
by looking for small flakes.

The various types of defects in mica crystals, such as staining, lines, inclusions,
fractures and structural defects influence the value of each sheet. Since it is not
possible to remove these defects by external treatment each sheet must be examined to
determine possible use and value. Surprisingly, despite the commercial significance
of these defects little work was done on their cause or origin other than determining
their chemical composition. It was simply a natural feature.
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20.3 Hunting for Mica

It is clear that in the past mica was of interest and valued for more than just its
physical properties. It is probably not a coincidence that this interest occurred during
the time that writing was invented and progressively developed at different places in
the world. But as writing and especially phonetic writing became more advanced,
along with the invention of paper, then the persistent failure to decipher the natural
language of mica would have led to a loss of interest in the mica messages.

Despite this decline the scientific and industrial revolutions of the 19th century
led to a progressive increase in use of mica as an important industrial commodity.
For example, Michael Faraday kept some in his laboratory for use in his electrical
experiments. It was indispensable for electrical motors, high voltage condensers,
switchgear and heating elements. Moreover, following the invention of the electronic
vacuum tube in the early 20th century demand grew rapidly, because mica was used
as a spacer to support the grids and wires in so-called wireless valves. Although clear
mica is an excellent insulator the dark lines conduct electricity quite well. So the
most desired and commercially valuable mica was that which had no internal marks
or lines. Consequently, after mica was dug out of the ground it was immediately
split, cut and sorted into different grades. This led to a curious side effect: only clear
sheets were purchased for use in laboratories and so generations of scientists were
unaware of the lines and their possible significance.

The strategic importance of mica in an industrial society was well recognized
and some effort went into securing supplies of good quality mica during the two
world wars. At the beginning you saw how mica is formed in relatively small pockets
of rock. Not only is the surrounding rock hard but the mica crystals are fragile.
This makes extracting them difficult because it restricts the use of explosives and
heavy mining equipment. Often the mines were operated by small groups of men. A
hard-rock miners life was not easy.

Mike looked at John and then stepped back from the lectern. The screen lit up to
show a hot afternoon scene in the Australian outback. Nothing moved. The digital
clock now showed the years as AD; it read 1885. Some mountains could be seen in
the hazy background with mallee trees, saltbush and in the foreground spinifex, the
hiker’s-curse. The ground in-between the plants was stony and had a dark grey moss-
like covering that bound the top few millimetres of sandy soil. A lone prospector led
his mule towards the mountains. The scene changed to show him looking at a whitish
stain on the side of the nearby slope. A prospector is always looking for anything
unusual, in the vegetation, the soil or in any rock outcrops. He knelt down to examine
the stain. Experience told him that it was talc, a fine powder that had weathered from
outcrops of soapstone. So these mountains might be interesting after all. He started
exploring locally and chipped at rock outcrops. As he crested a small rise he saw
flakes of mica on the ground and soon found an outcrop of the mineral. He was in
the Hart’s Ranges, 150 km as the crow flies North East from Alice Springs.

The scene changed to show a band of Aborigines walking towards the mountains.
The rhythm of native life was not suddenly altered by the arrival of white people.
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Several other bands were moving that way, too, from different directions, all aiming
for the ‘Shining Mountain’ spot on one particular mountain flank. The mountain
shone because there was an outcrop of mica and mica flakes covered the slope below
the outcrop. The Aborigines were gathering for a corroboree. The scene changed to
the evening and showed that they had got a good size fire going. There were at least a
hundred men, women and children present. On the way in, one band saw a lone cow
not far away and after some discussion they decided to fetch it. To the Aborigines
animals are both sacred and a shared blessing. They had not yet learnt the possessive
ways of the white people. The chatting gives way to dancing as chunks of cow roast
over the fire. Only after all the meat was finished and the fire had burnt out did they
settle against trees or lay on the ground to sleep.

In the clear night air the flickering of the fire was seen 20 km away by a settler.
Guessing what it meant, the first thing next morning he set off for the police station.
After a short discussion with the two policemen it was decided they should collect
some of the other settlers and trackers and all ride in the direction of the fire to see
what was going on. They suspected that a large group of natives had moved into the
area and wanted to discourage them from raiding their livestock. They arrived at the
corroboree site in early afternoon when most of the natives were resting. Less than
10 min later they rode away leaving about seventy dead or dying. Life was hard for
both the settlers and the Aborigines.

The clock moved on to 1893 AD but still showed the same locality. Numerous
outcrops of mica had been found and two mines were producing good quality mica.
The scene showed three men eating lunch on a spoil heap at the entrance to one
mine. It was called Blackfellow Bones Mine because of the large number of bones
scattered on the ground nearby.

Mike looked at the clock on his laptop and saws that 12 min had already passed.
He was about on schedule to finish in under an hour. Standing in shadow at the end
of the bench he smiled at the mention of Blackfellow Bones as he recalled his first
visit there. Although he’d been studying the lines for more than 30 years he had not
actually dug a reasonable sized bit of mica out of rock himself. Four years before
the turn of the century, en route to Ann, there’d been a stopover in Sydney and,
as usual, he made for the museums. The main one in Sydney, typically called the
Australian Museum, at the corner of William and College Streets, was large and had
some good topical exhibits. An attendant at the front desk told him the way to the
mineral section. It filled an upper gallery and some of the more popular displays of
gold, opal and meteorites spilled out into connecting corridors. The second display
case just in from the entrance to the gallery contained a large pyramidal shaped
crystal of mica. It had been split at a couple of places and a thick slab had been
moved sideways slightly but nothing could be seen of the inside. A nice crystal. He
thought it would be fun to explore the interior. Moving round the gallery he stopped
occasionally to admire some of other mineral specimens. Having nearly completed
a tour of the gallery he glanced at the last case and his spirits soared as he saw a big
sheet of mica hung on the rear wall. It was covered with lines and markings. After
taking a photograph of the sheet he went down to the front desk again and asked to
speak to the person in charge of the mineral section. To his surprise 5 min later he
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was telling Dr. Lin Sutherland, the Senior Research Fellow, of his quest for a mica
mine. Lin brought in Ross Pogson, his Manager of Collections, and soon they were
recounting stories about visits to mica mines in the centre of Australia. At one point
Ross was a bit embarrassed as he described the occasion when, as a student with
a can of beer in one hand, he had jumped up and down on a large crystal of mica
poking out of the ground. It was when he’d gone to the Harts Mountains on a field
expedition. That settled it, thought Mike, that’s where he would go. After lunch with
Ross they’d examined the mica collections in the basement storage vaults for an hour
before Mike took his leave and headed for the airport and the flight to take him to
Ann.

Eighteen months later Ann and Mike were on their way to the Harts Ranges.
Although Mike was impatient to get to the Harts Ranges, Ann wanted to visit her
brother and sister-in-law, Geoff and Carol. So they took a somewhat roundabout
route. They started by flying to Brisbane then drove up the Gold Coast, with a detour
via the Bruce Highway to see a bit of the outback. Returning to the coast at Airlie
Beach they joined up with Ann’s brother and sister-in-law and went sailing in the
Whitsunday Islands on their 44-foot catamaran. Sailing in the clear blue waters was
a delight, amplified by the company. A flight then took them to Alice Springs where
they collected a 4 × 4 flip-top camper from Hertz. It was a converted Nissan Patrol
and was their first time with a 4 × 4. They visited an outback outfitters store and
bought a few essentials such as a torch, a small pickaxe, a wide brimmed hat and a
water bag, with a short hose and sprinkler, to hang on the front of the Patrol. Next
they went to a supermarket where they bought enough food and water to last them
for 5 days. Before leaving Alice Springs to go north they called in at the Department
of Mines where they were rewarded with maps and advice in their quest for mica
mines. In particular, the Department’s librarian was most helpful and brought to their
attention a recent Doctorate Thesis of a study of the lives of the mica miners [14]. A
couple of months later the Librarian sent them a copy of the thesis. By mid-day they
were on their way north on the Stuart Highway and a couple of hours later turned off
eastwards on to the Plenty Highway. After two more hours the hardtop turned into a
dirt road and soon the Harts Ranges appeared in the distance.

Ann was the first to see a white patch on the side of a hill. Earlier they had
discussed how they might find old mica mines. Mike had said that the tailings, or
spoil, from the old workings might show up as lighter colour smears on the sides of
the hills, due to sunlight being reflected by the tiny flakes of mica left in the tailings.
They found a track leading in the general direction of the patch and soon had to stop
the Patrol to engage the four wheel drive. This involved turning knobs on the hubs
of the front wheels. The track got more and more rutted and a barely readable sign
cautioned that the track was impassable a few km further on. Ann said it was already
impassable. She loved to walk and hike in the outback but the lurching of the 4 × 4
into ruts unsettled her. Mike noticed this, stopped the Patrol, got out and then walked
to the passenger side. Opening the door he said to her: ‘Your turn!’ She looked at
him for what seemed like a minute. Then, moving cautiously over to the driver’s seat,
she adjusted its position, put on the seat belt and engaged gear. Mike was relieved,



20 I Saw a Crystal: An Historical Account … 495

Fig. 20.12 Photograph of
the entrance to a mica mine.
The pegmatite was revealed
by some crystals exposed by
weathering near the entrance
and the cave was formed as
the mica was cut from the
rock. The entrance is about
2.5 m high and extends
inwards for only about 10 m.
Most of the mine workings
were back filled as the new
cuts were opened up. This
mine is in the Harts Ranges,
Northern territory, Australia

and amused, to see a smile slowly creep over Ann’s face. She soon relaxed and from
then on there were debates about who was going to drive the Patrol.

They drove as near as they could to the hill with the patch then scrabbled up to
it. Just above it was a short tunnel cut in the hillside with a spoil heap at its mouth.
For half an hour they poked and sorted bits from the heap. Then they climbed round
to the other side of the hill and found two more small old mines. One went straight
down into the ground and had crumbling edges at the top. There were some bits
of wood that once had formed a lifting winch. In the other, which was a more or
less horizontal tunnel about 10 m long, Mike spotted a mica crystal in the wall and
immediately went to work with his axe (Fig. 20.12). On the fifth hit the axe broke. It
then took a lot longer to extract the crystal but, finally, it came loose and was prized
out. Ann spent the time hunting in the spoil heap and found some small sheets with
lines in them. By then it was late afternoon so they returned to the camper somewhat
tired, hot and hungry but happy with their trophies.

It was only after they had returned to Adelaide and the copy of the Thesis arrived
that they learnt that they had spent that wonderful evening at the place called Black-
fellow Bones Mine. They talked about it. They agreed that something so natural and
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beautiful transcended the mistakes of the past. Perhaps some at the corroboree had
found pleasure in the surroundings, too.

The next day they explored more of the mountains and found the famous Disputed
Mine and also the Spotted Dog Mine. Both had ceased production by the middle of
the 20th century. The Disputed Mine had, in fact, operated for longer than any other
mica mine of significance in the world. They stopped overnight at the site of the
ruined living quarters of the Disputed Mine and lit a small fire in an old fireplace.
During the day they had noticed a stunningly beautiful halo round the sun. It was
caused by thin clouds of ice crystals high in the sky.

The scene changed to one of the larger mines and the clock showed 1927 AD.
Three men sat on a bench in a shed, each wearing a bib made from an old car tires.
In front of them were several wooden boxes. Each was splitting a slab of mica into
sheets about 1 mm thick by inserting a sharp knife in one edge and pushing inwards.
The process was a little erratic and the bib protected them when the knife occasionally
slipped. Each sheet was held up and scanned for defects such as cracks or inclusions.
These were excised with the knife by cutting the sheet with the knife nearly flat on
the sheet. In this way the mica could be cut easily. It was a semi-skilled job because
the aim was to cut and trim the sheet to give the largest possible rectangular area. Any
sheets that showed ‘staining’, as the lines were called by the workers, were tossed
into a central box just beyond the row of smaller boxes. The trimmed clear sheets
were sorted by area and placed in the appropriate box in front of them. Day after day
this process continued as more slabs were extracted from the rock in the mines.

In the mine on the other side of the valley a man was hard at work winning more
slabs of mica, or books as they are sometimes called, from the rock. It was slow and
very hard work. His wife also had a hard life. For most of the year the only source
of water was a creek ten km away. Usually, one of the two natives living in the camp
went for the water, taking one of the two camels. When the natives went absent or
were away with a camel on a supply run, she had to go. She tried to supplement the
routine meals with a few vegetables she had coached out of the dry ground in a small
fenced area back of the clapboard house. They had one child who also had a job to
do. They were Italians. They had come to Alice Springs like many other Italians who
were driven from their homeland by poverty and desperation. From there they had
walked for a week to get to the mines.

During World War II there were some imagined problems to do with perceived
loyalty of the Italians in the mines, as mica was considered to be a strategically
important material. In reality, there were no problems because it was all they could
do to survive. In 1955 G.F. Joklik of the Bureau of Mineral Resources prepared a
report on ‘The geology and mica-fields of the Harts Range, central Australia’ [16]. In
it he recommends that effort be put into developing further the mica mines. However,
the development of plastics destroyed the economic case for mica mining and the
last mine, the Disputed Mine, was finally abandoned in 1960 AD. In the report by
Joklik brief mention is made of inclusions of hematite and magnetite, pages 167
and 169. The ‘strict crystallographic orientation’ of the inclusions is noted but no
attempt was made to study them. Reference is made to the earlier work of Frondel
and Ashby [11], who suggested that the inclusions originate by exsolution from the
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muscovite. Even by 1960 the great wealth of information that lay silently in mica
crystals remained unknown. The window of opportunity to unravel the meaning of
the lines had not yet opened. It would have to wait for three more years.

20.4 The Discovery of Charged Particle Tracks

Mike was again standing by the lectern, his hands on the edges. He said:
It is a little ironic that shortly after the last mine closed in Australia the first serious

attempt was made to decipher the meaning of the lines. I first became aware of them
when, by chance, I visited a museum of minerals at Spruce Pine, North Carolina. A
large sheet in a display case hung on a wall, illuminated from behind to show up the
lines.

An image of the sheet of mica seen by Mike on the wall of the museum appeared
on the screen (Fig. 20.13). This chance observation, lasting less than a second, was
the all-important critical initial step in the general process of discovery. There are at
least four related aspects and necessary conditions for this fleeting image to initiate
further thought. The first is the pattern recognition ability of humans, in particular,
the ability to pick out something unusual in a scene. This might stem from the
need to spot potential danger. The next ingredient is inquisitiveness or curiosity,
described by Wikipedia as the fuel of science. The third factor, restricted to humans,

Fig. 20.13 The author next to the framed sheet of muscovite mica that in 1963 hung on the wall
of the mineral museum in Spruce Pine, North Carolina. This picture was taken in 1999 when the
sheet was stored behind a bookcase. Some of the dark lines can be seen. It is similar in size and
shape to two other sheets in museums and might have come from the same source crystal
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is a background of knowledge and training in scientific disciplines, in this case
physics, chemistry, geology and some astronomy. This is required to moderate wild
speculation and avoid non-physical explanations. The last factor is timing: certain
discoveries must have been made for a rational explanation of an effect to be possible
at a given time. The way in which this open-ended but self-controlling process works
is not easy to describe. It might help to look at Mike’s recollection of what actually
happened.

My first thought was ‘what a beautiful specimen’ followed by ‘what causes the dots and
lines’. A quick inspection of the sheet gave no indication that it was made of several parts, so
probably it was from a large single crystal. Whoa! What a find! The dots gave no obvious hints
as to their origin so I concentrated on the lines. These lay in three main directions at about
60◦ intervals all over the sheet, so probably were due or at least related to the crystal lattice,
which I knew was of a hexagonal nature and cleaved easily. This took about three seconds.
I then noticed two long lines that were not parallel to the other lines or to each other. These
lines reminded me of cloud chamber photographs of high energy charged particle tracks.
Could there be a connection? They looked similar in decoration and average width to the
other main lines. Also, all the lines started and finished within the crystal, so they could not
be due to fractures, which would have started at the edge of the sheet. That also ruled out
dislocations, as they either form closed loops or intersect an edge. That left only a twinning
boundary as a possible cause but that was inconsistent with the two disconnected and non-
parallel lines. So, despite how improbable it was, might they be tracks of charged particles?
But how could that be? As there were no new lines forming as I watched it suggested that
they must be ancient, in which case the crystal would have been deep underground. Total
thinking time was now about ten seconds. If underground then the long length of the two
strange lines ruled out particles arising from natural radioactivity. This left only cosmic rays
from outer space as the possible source. Again whoa! But how could the tracks of cosmic
rays be recorded and then made visible? Such recording and visualization of particle tracks
required very special conditions in a laboratory. So might there be a natural process that could
do the same thing? If that were true then it might be useful or perhaps could be exploited
in high energy experiments. With that possibility in mind I went back over my previous
thinking, looking for errors. So, after about a total of 30 s of looking and thinking I decided
it was worth studying the lines more carefully.

The restrained excitement but exhilaration of this thinking process reminded him
of an earlier occasion when he’d been studying a non-linear mathematical equation.
The problem was how to solve the equation, which related to how charged parti-
cles move in a spiral-ridge cyclotron. He tried various substitutions of the variables
and different formulations of the equation. After about an hour of playing with the
equation one arrangement looked familiar. It described the motion of a rotational
pendulum driven by an external periodic force. He then realized that he could make
a mechanical model of that pendulum and so could find solutions to the equation!
The euphoria lasted for several minutes but there was no one to share it with. The next
day he told his line manager about his finding but the manager was not impressed
because it was not a mathematical solution. This confirmed Mike’s impression that
scientists tend to fall into two groups. In one they are academically bright but lack
imagination and inventiveness. In the other are the dexterous and inventive lateral
thinkers who struggle with mathematics, like Faraday. Often senior management
come from the former group. After a couple of weeks with no mathematical solution
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in sight the mechanical analogue was authorized. The analogue worked and the
results contributed to his PhD thesis.

Standing in front of the sheet I mused over the possible origin of the lines. Nearly
all of them lay parallel to one another but in three directions. I knew that the atoms
in a crystal of mica were arranged in a hexagonal pattern, called the lattice. So
the parallel lines might relate in some way to the crystal structure, that is, to the
underlying structure of the lattice. However, what caught my attention were two long
lines that stood out from the rest because they were not parallel to any of the others.
After studying the sheet and especially those two long lines for about a minute I’d
eliminated several possible causes. They could not be dislocations of the crystal
structure because dislocations cannot start or end inside a crystal. They either form
a loop or intersect a crystal edge. Nor could they be defects in the growth of the
crystal, such as caused by twinning. The mental process in each case took only a few
seconds. Finally, there was only one hardly plausible cause left. It stemmed from my
background in high energy particle physics. Although I realized that it was highly
improbable, I wondered if they might be the tracks of cosmic ray particles, which
continually hit the Earth from outer space. Now, if that was indeed true then it would
be quite a coup! Certainly, they looked like tracks of something. If they were tracks
of particles then it implied that a previously unknown and very sensitive recording
process was at work. Finding out how the process worked could be important. Since
new lines did not appear spontaneously in a sheet left on a table, even after all kinds
of abuse to the sheet, it was likely that the lines were created either when the crystal
was growing or shortly afterwards. I decided to get some mica to study the lines in
greater detail later.

The museum attendant told me that there was a factory in the nearby town where
they did something with mica. I drove to the factory and walked through an open
door. Inside were a hundred or so boxes full of small sheets of mica, with a few
people sorting the sheets to feed a couple of stamping machines. The air was filled
with tiny flakes that sparkled in the sunlight. Someone pointed at an office. Inside
was an elderly man, the foreman of the factory. I told him of my interest in the lines
or stains and asked if I could buy a few sheets. He smiled and gave me half a dozen
in an envelope. After thanking him I went on my way again to New York. It was early
November 1963. I had been working in America for 2years at the Oak Ridge National
Laboratory, Tennessee, and was returning to England at the end of my secondment.

Over Christmas that year I studied the sheets using a homemade microscope that
was attached to a metal-working lathe. Science depends on making measurements of
some variable. The variable in this case was the angle of a line relative to the three
main crystal directions. Fortunately, these crystal directions can be found easily by
striking a sheet with a blunt steel point. The cracks so produced in the sheet lie in
the main crystal directions (Fig. 20.14). At the end of 2days there was enough data
to plot the results on a graph. It showed how the lines were distributed with angle in
the sheets.

John was ready for the next scene and tapped the key. It showed a graph with
“Number of lines at a given angle” on the vertical axis and “Angle” on the horizontal
axis. There were a lot of lines exactly at angles separated by 60◦, presumably related
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Fig. 20.14 Percussion figure
produced by striking a sheet
placed on a hard surface with
a dull steel point. The
fractures are parallel to the
main crystallographic
directions, with the most
prominent line parallel to the
(010) direction

to the crystal directions. In addition, there were a few lines scattered apparently at
random at other angles. With the graph still showing Mike continued:

Cosmic rays come to the earth from all directions. If the lines not lying in crystal
directions were the tracks of cosmic ray particles from outer space then they should
be at random angles. The data showed this was true and so the track hypothesis
survived its first test [27].

As a high energy charged particle, or cosmic ray particle, crashes through a
crystal it sometimes passes very close to the nucleus of a atom in the crystal . As
a result it repeatedly gets nudged or deflected slightly from a straight line. This
lack of straightness can be studied by measuring the exact position of the line at
regular intervals along the line followed by doing some simple arithmetic sums.
High accuracy was needed in the measurements so I looked for a precision traveling
microscope, to prevent errors in the measurements swamping the effect looked for.
Living near Oxford, I went to the Physics Department at Oxford University, explained
my need and got permission from Professor Don Perkins for me to use one of his
precision microscopes. It took 2days to make the measurements, partly because
constantly looking through the microscope caused me eye strain. The result was
clear, all the lines lying in random directions did show frequent small kinks. So the
hypothesis passed the second and more severe test.

Moreover, it was possible to analyze the data to see if this scattering occurred at
random, as expected for cosmic ray particles, rather than from repeated deflections
always of the same small angle. The hypothesis also passed this test.

There were more tests. Cosmic rays arrive at the earth with different energies.
The more energy a particle has the harder it is to deflect it, so the kinks in its path
are on average smaller. The average size of the kinks for each line was calculated
from the data. The results confirmed that some lines were more ‘kinky’ than others.

There were also several other effects that would be expected if cosmic ray particles
were the cause of some of the lines. For example, occasionally a cosmic ray might
hit a nucleus so hard it breaks the nucleus up into smaller bits. The bits flying
away would be expected also to leave tracks giving the appearance of an exploding
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firework in the mica, called a nuclear star. Several possible candidates for stars were
found by searching through the sheets. Another condition was that a charged particle
would have to be very energetic to travel nearly a metre in a crystal and cosmic rays
were known to be very energetic. For good measure, it also was known that some of
the particles making up cosmic rays could penetrate deep into the earth. This last
requirement indicated that the most probable type of sub-atomic particle causing the
slightly kinked lines was the muon. In fact, standing in front of the sheet at Spruce
Pine my thinking was: they might be particle tracks—what particles could get inside
a crystal—alphas and electrons from radioactivity—but their tracks would be only
millimetres long—that leaves only cosmic ray muons [41].

Since there was no other known explanation for the lines that would so precisely
mimic the properties of high energy muons, and the muon hypothesis fitted the exper-
imental evidence quite well, I decided to write up the work and then try to publish the
results. Although these studies had been done privately, I decided to mention them to
the Director of the Laboratory where I worked, which was dedicated to studying the
physics of high energy particles. The Director, Dr. Gerry T Pickavance, had recruited
me directly from College and I both liked and respected him. After reading my paper
he was very skeptical and said he doubted it would be accepted for publication by any
reputable journal but that I was free to try. In fact, it was peer reviewed and accepted
without change for publication in the scientific journal Physics Letters [27].

While waiting for the paper to be published I realized that if muons could leave
tracks then so should some other very energetic charged particles that are created
by muons as they dash through a crystal. In particular, a muon can create a very
energetic gamma ray, which in turn creates a pair of charged particles, one an
electron, the other a positron. This process of pair production is then repeated by
both the electron and the positron and the total number of particles rapidly increases
like a chain reaction. It is called an electron-positron shower. Now, a distinctive
feature of an electron-positron pair is that the tracks of the two particles form a
“V” with a small angle. Hence, as the number of particles in the shower grows they
spread out to form a cone in the crystal.

John was intensely interested in what Mike was saying because it revealed how a
scientist worked. So he was ready for the cue and tapped a key. The screen lit up to
show the interior of a mica crystal. An incoming dot representing a muon started to
plough through the crystal and created a pair. As the pair developed into a shower it
was seen that some of the new tracks lay in the plane of the sheets. These particular
lines were then colour coded in red for clarity. The image of the crystal slowly rotated
to show more clearly the cone-shaped shower. Mike was speaking again:

A shower has a unique property : it spreads over many sheets in a crystal whereas
a muon can only be in one sheet at a time. So there should be a correlation of
the directions of shower tracks in different sheets within a crystal. As soon as I
realized this I searched through some sheets and quickly found several examples of
showers with exactly the expected properties (Fig. 20.15). This was a very important
find. Firstly, I had made a prediction based on the muon-hypothesis and it had been
verified. Secondly, since the tracks in a shower spilled over many sheets inside a
crystal it meant that the recording process, whatever it was, worked in the whole
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Fig. 20.15 Diagram
showing how an
electron-positron shower
develops in space. Only
those tracks lying in the
(001) plane are recorded.
The unique signature of
showers is their development
in a cone that shows spatial
coordination of tracks in
adjacent sheets. The insert
photograph is one quarter
size [28]

crystal and not just at the surface of the crystal as it was growing. I wrote a paper on
the showers in mica and submitted it to the international journal Nature. It also was
accepted and published without change [28].

As these results had been achieved using the few sheets given to me by Mr. Conely,
the factory foreman in America, it was natural to ask if the lines were specific to a
particular source of mica or were they a common feature in mica from other locations.
I wrote to Mr. Conely seeking more samples and information and received a letter from
Mr. S.A. Montague, the Chairman of the Board of the Spruce Pine Mica Company.
He kindly arranged for samples from mines in North Carolina and in India to be sent
to me. He also suggested I contact Mr. Richard Hart, Director of Hart, Maylard &
Co., in London, who might be able to supply ‘stained’ mica. Over a period of 4years
I was able to purchase about 25kg of ‘stained’ mica, mainly from Tanzania as it was
then but some came from India. I owe a great debt to these businessmen who were
prepared to tolerate my commercial ignorance, questions and the inconvenience of
allowing me to select good samples of ‘stained’ mica from their shipments that were
suitable for detailed study and measurements. Initially I paid for the mica samples
but in 1968 the Rutherford Laboratory paid £ 100 for a 20kg load of random sheets.

The screen changed to show a 3D ball and stick model of the atomic structure
of mica. It was complicated but beautiful with the various kinds of atoms shown in
different colours (Fig. 20.16). At the top of the screen was a key relating colour of
ball to type of atom. As the model rotated various lines or chains of balls stood out as
the trees do in a plantation when driving by. The direction of rotation was changed
and suddenly an entire layer of white balls stood out from the surrounding mess. The
layer was just one ball thick. It was sandwiched between two identical but mirror
slabs containing several kinds of different coloured balls. The entire crystal consisted
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Fig. 20.16 A ball and stick
model of the atomic structure
of muscovite. Silicon is
shown in brown and oxygen
in red. The middle layer is
potassium K and the adjacent
layers are aluminium Al. The
view is looking along the
(001) plane of easy cleavage.
The openness of the
potassium layer due to the
large separation between the
K atoms is clear

of many repeats of this sandwich arrangement. The white balls represented potassium
atoms. It was at these layers that the mica could be split. The screen remained on as
Mike continued:

There was one more ingredient to be taken into account. Potassium has an isotope
that is radioactive and there are a lot of potassium atoms in mica. They can decay
in two ways, one causing an electron to be emitted from the nucleus and in the other
a positron is emitted. Since the electron-positron showers left tracks it was expected
that the electrons and positrons from the decays also should leave tracks. This was
Nature at its best. If these decay tracks could be identified then it would be possible
to make several tests of the track hypothesis. It turned out to be a complicated story
but they were soon found. They provided the key for deciphering the meaning of the
lines and the consequences were profound.

As often happens in the early stages of new work, the muon-track hypothesis
needed to be refined. It turned out that mica crystals cannot grow unless the magma
is under great pressure and that means at least 5km underground. Any muons created
deep in space quickly die before they reach us. The cosmic ray muons hitting the
surface of the earth are created by cosmic ray protons from outer space hitting
atoms in the atmosphere. Very few of these muons have enough energy to penetrate
5km into the earth to reach the mica and those that did would come the shortest
distance, that is, directly down. But it was known from physics experiments in deep
mines that muons came in all directions deep underground. The explanation was that
most of the muons found underground were created by very rare nuclear interactions
between energetic neutrinos that passed through the earth. These neutrinos were
created by cosmic rays hitting the earth but they also came from deep in space. So
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the muon-track hypothesis became the neutrino-created-muon-track hypothesis. The
more one learns about anything the more complicated it usually becomes. Such is
the way of science.

20.5 Rebuttal

Science is done by people. Each have their own reasons for doing it. Sometimes
there are conflicts. Shortly before Mike’s first paper was accepted for publication he
attended a lecture given by Professor Arnold Wolfendale. It was about new results
from a muon detector built underground in a gold mine in India. There were plans
to build a bigger and better detector. It was a good proposal but would be expensive.
After the lecture Mike spoke to Arnold about his mica studies and said that his muon
tracks came for free! Arnold invited Mike to give a talk to his group in Durham.
Only a few people were present at the talk. Mike knew there were huge gaps in his
understanding of the tracks but measurements had shown that they clearly exhibited
the properties expected of tracks. Arnold asked if Mike would give him some sheets
of mica to study. They were sent to him by post.

A few days later Mike’s first paper was published. It attracted quite a lot of
attention. He was interviewed on radio and gave a lecture at the laboratory to a
packed house. It was titled “Neutrinos, muons and mica”. Unknown to Mike, sitting
in the audience was Phil Tucker, the science correspondent for a national newspaper,
the Guardian. After the lecture Phil talked to Mike to get some background on the
work. Phil then wrote a long and detailed article on the research for the Guardian. His
article was picked up by the New York Times. Through this article Professor Reines,
who had become famous for proving by experiment the existence of neutrinos, heard
about Mike’s work and is reported to have commented: “That’s interesting. What
can be learnt from it?”

A couple of months later Arnold sent Mike a letter. On opening the letter Mike
saw a short hand written note attached to several pages . In the letter Arnold invited
Mike to comment on a draft of a paper he intended to publish on the studies his group
had done on mica. The title of the paper gave warning of what was to follow, as it
ended with a question mark. Quickly scanning the draft Mike became apprehensive
and then worried. Basically, it challenged the validity of the muon-track hypothesis.
Mike’s first reaction on reading the draft was to come out in a cold sweat. It was
written in a professional way, carefully reasoned and the experimental results looked
good. He got up from his desk and paced round the office. What had gone wrong?
What had he missed? More importantly, what had he miss-understood? At that point
panic struck. What could mimic muon tracks so accurately yet not be muons? He’d
gone over the possible alternatives many times and each time logic had brought him
back to muon tracks. He reread the draft several times, seeking some explanation but
was too worried and disturbed to think rationally. So he went for a short walk to the
library to try to calm down. His hands were shaking as he tuned pages of a journal.
A sip of water helped. He now had a headache, felt numb and a little sick. Later in
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the day his inner turmoil subsided and he reread the draft several more times. With
each reading he noticed potential flaws or problems with the proposed paper. It was
like two minds or people working side by side. One did the reading while the other
simultaneously did the thinking and reasoning. The measurements Arnold’s group
had made on the lines seemed to be of good quality and there was no reason to doubt
their validity. Their experimental results were slightly, but significantly, different
from those Mike had found. In essence, they had found that the ‘kinkiness’ of the
lines was too great if they were the tracks of muons. They concluded that, although
some of the lines might be the tracks of charged particles, there were insufficient
criteria for identifying muon tracks.

One of the points Mike noticed in the draft, in a caption to a graph, was that
they had restricted their study to lines that were shorter than a couple of centimetres
long whereas he had studied lines that were many centimetres long. Could this be
the cause for the difference in the measurements? Almost as soon as the question
was posed his subconscious mind suggested a possible solution. Mike realized that
this reaction was the classic response of an amateur. If the facts don’t agree with the
preconceived idea then change the idea to fit the facts. However, this is precisely what
professional scientists do: propose an idea, make measurements to test that idea and
if the results do not agree with the idea then start over again by modifying the idea.
The essential difference between amateur and professional is that the latter seeks and
relies on experimental verification. He decided to study his proposed solution. By
imposing this restriction on length of line Arnold’s group had discriminated against
muons and in favour of lower energy particles, which could have come only from the
decay of potassium atoms. But Arnold’s group seemed unaware of this possibility.
The next few days were interesting and exciting as Mike made measurements on the
shorter lines in mica. The results were very clear. The measurements on ‘kinkiness’ of
the shorter lines agreed exactly with Arnold’s results. Moreover, both sets of results
were consistent with independent measurements made on the tracks of electrons and
positrons recorded in photographic films [43] (Fig. 20.17) (see [30]). Arnold’s group
had studied the wrong tracks. They had imposed a criterion for selection of lines to
study that discriminated against muons.

In fact, that was not their only mistake in Mike’s opinion. The most serious one was
that they had ignored the fact that mica is a crystalline solid. Instead, they assumed
in their analysis it was amorphous, like glass. As the projected 3D image in Mike’s
lecture showed, the atomic structure of mica is quite remarkable. For example, in
the potassium layers the atoms are three times further apart than in the rest of the
structure. This makes it easier for a charged particle to go through the crystal when
moving in the layers. Just a few months before Mike stood in front of the sheet of
mica in the Spruce Pine museum he’d read about some work done by Drs. Robinson
and Oen in a different Department from the one he’d worked in at the Oak Ridge
National Laboratory. They had used a computer to simulate the way charged particles
traveled through a crystal [25]. What they found was that in certain directions, where
the atoms were lined up in rows or as sheets, the particles could penetrate very much
further than was possible in an amorphous material with the same density of atoms.
They had discovered the phenomenon called channeling. If a charged particle is
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Fig. 20.17 A critical test for the lines to be the tracks <20 mm of charged particles is how the lines
deviate from straightness due to them being scattered as they pass through a solid. Lord Rutherford
discovered a unique law that describes this process known as the ‘sine theta to the forth law’, which
deviates from random scattering described by the Gaussian Law. In the graph above the experimental
results for the scattering of positrons in photographic film [triangles] clearly follows the Rutherford
Law [43]. Also shown are the results obtained by the author [+] and by Wolfendale’s group [o].
These results also fit closely to the Rutherford Law, thus strongly supporting the hypothesis that
the lines are tracks of charged particles. Reproduced with permission from: Russell [30]. Copyright
(1988) by Elsevier

moving down a tunnel formed by the lined-up spaces between atoms in a crystal
then it can be reflected by the sides of the tunnel and so kept away from the atoms
forming the tunnel. As a result the moving particle loses energy by scattering much
more slowly and so goes much further through the crystal [24]. This effect allowed
the potassium decay particles to travel up to about ten times further in mica than they
would in the equivalent amorphous solid.

Mike thought about what he should do. He was grateful to Arnold for providing
evidence for the tracks of the lower energy potassium decay particles. On the other
hand, Arnold was about to publish a paper in Mike’s opinion containing serious
errors that questioned the muon track hypothesis. The letter accompanying Arnold’s
draft had asked him for comments. Finally, he decided to reply in a factual way. In
his response he pointed out that they had neglected to allow for the presence of the
potassium decay particles and explained the importance of channeling in analyzing
their measurements. The letter was quite long and detailed.

Two months later Arnold’s paper was published, also in Physics Letters [7]. It had
been modified by adding a sentence in the acknowledgements section thanking ‘Dr.
F.M. Russell for helpful comments and for supplying the mica’! Mike was astonished
and, not surprisingly, upset. The acknowledgement implied that he had both seen and
accepted the results and analysis. He thought about writing to the publisher about the
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misrepresentation of his comments? No, that would be seen as a disgruntled author
bleating. No, the correct, the professional, way was to prepare a paper based on the
latest discoveries and data, including Arnold’s excellent data on the kinkiness of
the lines, send a draft to Arnold for his comments, make any appropriate changes
and then submit it for publication via peer review. That would explain, and set in
context, the apparent disagreement between the results found by him and Arnold.
After about a month of intense work, mostly in the evenings, the paper was ready.
As was normal policy for any paper intended for publication it was copied to his
superior at the laboratory. It was then passed upwards to the Director. Unfortunately,
the Director was absent from the Laboratory. So the paper landed on the desk of the
Acting Director. Two days later he got a phone call saying that the Acting Director
wanted to see him.

Mike was told to leave his work on Mica which was considered without value or
to go working somewhere else. His arguments about having used standard scientific
procedure were not taken into account. In a daze Mike went back to his office and
sat down. For the next 20 min or so he experienced extreme mental turmoil. Was his
work of poor standard? Was he bending the facts? But he was performing well in his
‘proper work’ at the laboratory, as shown by the annual reviews and promotions. The
mica studies were done outside of working hours, mainly at weekends. However, as
his studies were not part of the official research program of the laboratory he felt
he could not discuss the situation with his immediate superior. He was alone and
felt very vulnerable. He was also disturbed by the fact that his blind faith in the
professionalism and scientific knowledge of the Acting Director was flawed. The
thought that he might be sacked weighed heavily, as he had a family to support
and had recently completed the building of his own house locally (Fig. 20.18). The
thought of having to find another job, of losing his house and supporting his family
was compounded by his parents buying a building plot next to his house for their
retirement home. His wife was not a scientist and she could not understand the
anguish he was suffering. He tried to explain but her response was how could he
even think about giving up his job and all that would entail to follow a wild idea?
Had he thought about the children who were now settled in their schools?

On several occasions Phil Tucker had phoned Mike to learn how the work was
progressing. Phil liked the story because it was about an individual trying to do on a
shoestring research normally done with big funds by large institutions. Phil was both
distressed and annoyed when he learnt about the situation. He asked if he could see
a copy of the paper Mike wanted to submit for publication in response to Arnold’s
paper. Since the work on mica was now effectively banned, Mike saw no reason for
not showing it to his friend. In fact, he welcomed Phil’s interest, partly because he
could discuss the science with him. Unknown to Mike, Phil had also contacted Arnold
to get his reaction to several points of scientific detail raised in Mike’s now banned
paper. In reality, Phil was doing his job as a reporter. Phil formed his own conclusions
and then wrote a long and quite detailed critique of Arnold’s paper. Phil’s article was
good and it subsequently earned him an international prize for scientific reporting.
Perhaps he realized that Mike would be sensitive about the article so he only told
him about it when it had already gone to press. Mike bought a copy of the paper
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Fig. 20.18 Photographs of stages in the construction of a house by the author, who did all the
work except for laying the top waterproof cover on the flat roof over the garage. It took 18 months
from start to moving in although not all the rooms were finished. At the time it was the only house
in town that had an indoor swimming pool. An essential preliminary test for Mike was the design
and construction of a mobile crane and cement mixer. It started life as a Morris 8 car

in the morning and was surprised at the careful and detailed analysis presented. Of
course, there was the usual journalist’s twist in the tail, suggesting that this research
was in danger of being snuffed out by officialdom. It did not take long for a reaction
to come from the Directorate.

Mid-morning on the day the article appeared Mike was called to the Director’s
Office again and told by the secretary that Arnold had been on the phone to the Acting
Director and that the Director was not happy. The secretary then handed Mike a letter.
It was typed on a single sheet of thin plain paper. It said that it was not the policy
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of the Laboratory to publish scientific results in newspapers, specially if they were
based in thin scientific evidence. Also that work on mica must cease.

Stunned, hurt and increasingly annoyed by the behaviour hindering this academic
study of natural events in mica Mike withdrew into himself. Sleep was not easy as
he would lie awake worrying about what he could or should do. Most troublesome
of all was the nagging doubt that began to grow about his professional ability and
judgment. Shortly afterwards an internal letter appeared in his in-tray. It was from
the Acting Director with similar content but the last two sentences suggested that
Mike could continue his research on Mica if it was done in collaboration with other
scientist in the Laboratory or the University and it did not take more than 10 % or
Mike’s time. These sentences indicated a softening of attitude against the research.
He seized on them and tried to find a colleague who he respected at the laboratory
to join him in the studies. Not too surprisingly, each one declined when shown the
letter. For a week he tried to enlist the help of colleagues in universities but all were,
quite reasonably, too busy with their own studies. Slowly, it became clear to him that
the second paragraph in the letter was only useful to make the Director’s position
seem reasonable.

There were several aspects of his life that Mike now had to consider. After gradu-
ation he had gone straight from University into research at a government laboratory.
The work was not classified so it could go towards his PhD. After gaining his Doctor-
ate he was promoted and got married. Working at the frontier of particle accelerator
design he was again promoted. Then he was seconded to a laboratory at Oak Ridge,
Tennessee, for 2 years. At Oak Ridge a new type of accelerator had been constructed.
It accelerated particles very well but the machine was flawed. The particles could
not be extracted from it, which made it almost useless. After hearing about the prob-
lem one lunchtime he proposed a solution to two colleagues, Ed Hudson and Dick
Lord, who became life-long friends. To his surprise, construction of the device he’d
proposed started immediately. About a month later it was ready, was fitted to the
machine and the beam was successfully extracted. Shortly afterwards he repeated
that success by extracting the beam from a second machine. For his outstanding con-
tributions to the work at the laboratory he was made an Honorary Citizen of the State
of Tennessee. On returning to England he was immediately fast-stream promoted.
Things were going well for him. He had a young family, had self-built a lovely house
near Oxford and, as the rapid promotions showed, was clearly successful in his work.
He’d used the same scientific methods and professionalism in his research on mica
as he’d used on his other work. So why was he now being so severely criticized?
Indeed, his ability as a physicist was being questioned.

Freedom to publish basic research is the linchpin for progress in science. It was
considered to be an inalienable right of scientists subject only to matters of national
security. Yet here he was being denied this basic right. Why? The more he thought
about it the more determined he was to continue with the mica work. He now had
two reasons for continuing: to discover the true meaning of the lines and to verify
that he was a capable physicist.

For a time he considered resigning in protest but realized that acting alone would
achieve little. Partly because of his parent’s political leanings and his own observa-
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tions of the behavior of unions he had not joined a union. Also, his case was unlikely
to be of interest to unions. Given the stark choice on options he decided to stay at the
laboratory and try to continue the research privately. During the following years he
sometimes thought about that decision and realized that resigning might well have
not assisted the subsequent research. The main reason for this conclusion was that,
following publication of the discovery of charged particle tracks, the next stage in
the research, the proposal of the quodon hypothesis, would have fallen on barren
ground. This was because the necessary mathematical studies of nonlinear systems
and the development of computers for numerical simulations needed to explore the
properties of quodons had not yet occurred. The window of opportunity would take
time to open.

Six months later Mike’s was told that Arnold’s underground muon experiment
had been funded. Mike thought that studying mica would have been much cheaper.
Reluctantly, he relegated the mica studies to occasional thinking and a few measure-
ments. As the years passed he came to realize that there was one useful aspect to
Arnold’s paper: it cast a protective shadow over the mica studies. He could take his
time in deciphering the lines. There were still many unanswered questions in the
mica studies. The most frequently asked one was how does the recording process
work?

The effectiveness of the ban on publishing the mica research became evident
in 1975 with the publishing of the textbook ‘Nuclear Tracks in Solids’, written by
Fleischer, Price and Walker [10]. They were leaders in the field of visualisation of
tracks of charged particles in transparent materials by chemical etching of the tracks.
They were aware of Mike’s paper in Nature on electron showers and also of the
paper by Wolfendale’s group on muons. However, they clearly were confused about
both the references and their content, (see chapter Tracks in mica: 50years later
in this book) as evidenced by their mixing up of muon and shower tracks. Perhaps
influenced by their study of microscopic tracks they suggested that the dark lines seen
in mica were consistent with some characteristics of etched dislocations. It seems
the obvious difference in size of the dark lines, of order 100 mm length, compared
to about 20µ for etched dislocations, a difference of 5000:1, was ignored! In fact,
no scientific evidence was ever offered to support their assertion that the long dark
lines in mica were caused by dislocations but that view persisted until 1988 when
publication of Mike’s research resumed.

20.6 Decay of Potassium Nuclei

The screen till showed the 3D model of the mica lattice. Mike was saying:
When working in a new field it is prudent to ask now and again if the data is

being selected in some way, albeit unintentionally, to fit some preconceived idea.
In the mica case this was important because the lines that satisfied the criteria for
them to be muons formed only a small fraction of the total number of lines. As we
saw earlier, most of the lines are parallel to the crystal directions and do not satisfy
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the criteria for muons. The particles coming from the decay of the potassium atoms
provided a clear answer to this question of possible selection and answered some
other questions, too. Measurements on those lines provided clear evidence of effects
that I did not know about beforehand, so could not have selected in their favour.

The fact that some potassium atoms decay to give electrons or positrons provides
us with effectively a complete physics experiment going on all the time inside the
crystal. We know the position of the potassium atoms in the lattice. We know their
rate of decay to give electrons or positrons and we know the maximum energy the
particles can have. The maximum energies are about 1.4 million electron volts, or
MeV, for the positron and 1.2 MeV for the electron. This is very much smaller than the
energy of the muons, which can be from a few hundred to tens of thousands of MeV.
As an electron or a positron, and also a muon, passes through a crystal it knocks out
electrons from the atoms and so loses energy. This leaves a trail of positively charged
atoms. The slower it goes the more electrons it knocks out; moving more slowly it has
more time to interact. Now, the rate at which electrons are knocked out determines
the width of a particle track. So, as a particle slows down the track gets wider. The
reason for this is that more impurity is deposited and, since it is constrained within
layers, it gets wider. The tracks look a bit like long tadpoles and are easy to spot
(Fig. 20.19).

By counting the number of ‘tadpoles per unit volume it was possible to calculate
the time the crystal was sensitive for recording tracks. If the tadpole tracks were
due to electrons then the recording process must have started and finished in a few
days [29]! In that case there would be almost no muon tracks because the flux of
muons deep underground is very low. Also, deep underground the driving force for
things to happen, like crystal growth or precipitation of impurities, is the slow cooling
of the rocks. In just a few days the temperature would change very little so not much
would be expected to happen. On the other hand, if the ‘tadpoles’ were caused by
the positrons, which occur about 100,000 times less often than the electrons, then
everything fitted together. This result showed that the recording process responded
only to positively charged particles—and some of the muons do have positive charge.
Moreover, the channeling effect is very much stronger for positively charged particles.
Hence, the lines that got progressively wider towards one end were very likely to be

Fig. 20.19 A photograph [X2] of a positron track moving exactly in a chain direction. These tracks
do not experience multiple scattering because they are guided by the lattice via diffraction. The
progressive increase in width of the track as the particle slows down is clearly seen



512 F.M. Russell

Fig. 20.20 Drawing with
the plot of the angular
distribution of positron
tracks in the (001) plane of
easy cleavage. A unique
aspect of this distribution is
the central peak at 0◦ which
is aligned with each of the
main crystallographic
directions at 60◦
corresponding to chains of
potassium atoms. This
central peak has essentially
zero width. The wings on
either side also are due to
diffraction scattering by the
lattice. A version of this
drawing was reproduced
in [31]

tracks of positrons from potassium decays. A definitive test was needed to confirm
this interpretation.

This came about as a result of a group-effect at the atomic level. When a positron
is emitted from an isolated atom of potassium it can go in any direction. However,
when the potassium atom is part of a crystal the direction the positron takes is
determined by the other atoms in the crystal. This is a quantum effect and is called
diffraction scattering. Knowing the arrangement of the atoms in the mica lattice
it was possible to calculate the probability for a positron to go in any particular
direction. Surprisingly, the calculation predicted that some of the positrons should
go exactly in the direction of the nearest atom of potassium. This effect was observed
in the angular distribution of the positron tracks shown in Fig. 20.20 (see [31]).
This was surprising because nuclei, like positrons, are positively charged and so a
repulsion might have been expected. Usually, quantum mechanical effects are not
visible to the unaided eye but here is an exception because of the track left by the
diffracted positrons. The theory of the process showed that electrons would behave
quite differently: essentially, none would propagate in the chain direction.

This diffraction effect can be demonstrated quite easily with visible light. All that
is needed is a small but intense source of light, an opaque disc and a screen or low
power microscope for observation. With the source of light placed behind the disc
light is diffracted at the edge of the disc and some moves towards the axis formed by
the source and centre of the disc. By looking along this axis a diffraction pattern is
seen consisting of concentric light and dark rings. The surprising feature is that at the
centre of this pattern there is a bright spot that persists along the axis. A delightful
example of this effect is given in Fundamentals of Physical Optics by F. Jenkins and
H. White (1937, p. 180) [15].
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Here was a clear prediction from the track hypothesis that I did not know about
when the angles of the tracks were measured at the start of the study. On plotting those
measurements the predicted sharp peak in the angular distribution was immediately
seen. This proved that I was not selecting the data to fit some theory. Here was
clear evidence that refuted Staffords claim. Later, other predictions were made and
independently verified.

So after about 12years of part-time study a part of the message in mica had been
deciphered. Some of the lines were the tracks of muons, some were tracks of positrons
from showers and some were tracks of positrons from the decay of potassium atoms
in the crystal. It is not surprising that the priests were baffled! It took many careful
measurements to distinguish between the different types of tracks. Nevertheless, only
a few percent of the lines could be interpreted as charged particle tracks. The origin
or meaning of the majority of the lines was still not known and there was still the
question of how the recording process worked.

Mike took another sip of water, checked his notes and the clock. Twenty five
minutes and still on schedule. He looked up at the audience and saw that a few had
their heads bent forward. In a couple of minutes he’d have something to stir them all.

To say there was no selection of the tracks is misleading. The most obvious
feature of the Spruce Pine sheet was the hatch-work of black lines. Looking at
individual lines Mike saw that they had irregular edges. From his knowledge of
solid state physics these two features suggested that the black material had probably
been precipitated as the crystal cooled down. Most naturally grown crystals contain
impurities and they can produce dramatic results quite disproportionate to the small
amount of the impurity present. A few of the lines had a reddish colour and some
of the black material was in the shape of small crystals. Again, this was consistent
with precipitation of impurities. Iron is a very common impurity and its presence
in mica was confirmed by chemical analyses of samples from all over the world, as
reported in various text books. Assuming the black material was an iron compound
then the colour pointed to the mineral magnetite,1 Fe2O3. It was easy to check this
because magnetite is magnetic. He balanced a sheet of mica on an edge and brought
a small magnet towards the black lines. He saw that the sheet was attracted to the
magnet. Simple but effective. Standing in front of the Spruce Pine sheet the question
in Mike’s mind was “What caused the impurity to precipitate in the form of lines
instead of spots or blotches?” The obvious answer was something that went through
the crystal and disturbed the atoms.

The usual way cosmic ray particles loose energy is by ionisation, that is, knocking
electrons off the atoms they go through. Since mica is an excellent electrical insulator
these knocked off electrons would hang about for some time before recombining
with the ionised atoms. The change from clear mica to black magnetite at some
point in the crystal must, by definition, involve some kind of phase change and it
was well known from many experiments that a phase change could be triggered
by ionisation. Relevant examples were the drops of water formed in wet air and
the bubbles formed in liquid hydrogen when a charged particle passed through the

1An oxide of iron. It is black in colour. It is magnetic and a conductor of electricity.
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liquid. It was no great leap of imagination to think a phase change could take place
in solid mica provided it had plenty of time to make the change. This was because
in a solid the interstitial impurity atoms move by diffusion, which is not very fast.
Detailed measurements on the widths of the positron tracks from Potassium decays
confirmed that the black magnetite was deposited in proportion to the amount of
local ionisation. Subsequently, detailed studies of the black precipitate using X-rays
and electron-microscopes showed that the black lines are in fact single crystals of
magnetite. The most probable way these could have formed is by a phase change
involving precipitation from the bulk crystal. Hence, one of the recording processes
almost certainly involved a solid-state phase change triggered by ionisation.

At various times Mike would try to gain some insight in to different aspects of the
recording process by talking to people in other possibly related disciplines. Some of
these fishing trips were by phone, some by letter and when possible by face to face
discussion. On one occasion he followed a trail of suggestions from people working
at Harwell that led up to the Head of the Theoretical Physics Department. To Mike’s
surprise he was invited to join the Head for lunch and so met Walter Marshall,
later Lord Marshall, at his office. Holding a discussion with Lord Marshall was an
unforgettable experience because of his delightfully unique way of talking. His voice
boomed across the table and to nearby tables, in the senior staff dining area, too. He
listened as Mike outlined his problem whilst joining in the banter with colleagues
at his dining table. Mike said he was trying to find out how the iron impurity could
precipitate so quickly on a charged particle track in mica. Walter asked a couple of
questions then seemed to forget the subject. Near the end of the meal he suddenly
boomed out that it was probably due to the small radius of triply ionized iron Fe+3.
This brief comment led to a better understanding of the recording process. Such
occasions would buoy up Mike for months during the long years of uncertainty.

The amount of iron impurity initially dissolved in a crystal is determined by local
factors and the composition of the magma. It is quite variable from one crystal to
another. If there was a lot of impurity then the lines would get heavily decorated,
making it difficult to locate the centre of the line. This would reduce the accuracy of
the measurements or even make measurements impossible. So sheets of mica were
selected for delicateness of the decoration. Of course, if there was too little impurity
present initially then no precipitation would occur and the crystals would be free of
lines. Studies showed that the positron tracks from Potassium, which produced the
highest rate of ionisation, were beautifully recorded at low concentrations of iron.
With increasing initial concentration of the impurity atoms the regularity of the lattice
was progressively disturbed and this hindered the passage of positrons through the
lattice. The tracks got shorter until in the limit they became just dots. The variability
of the impurity content certainly complicated the study of the lines.

The amount of iron contained in the decoration could be estimated easily. It was
given by the volume of the decoration times the density of the magnetite. The volume
was simply the area of the decoration times the thickness of the ribbons. The thickness
was found from transmission electron microscopy. Owing to the extreme thinness of
the ribbons the amount of iron was found to be astonishingly small. Many years later,
with the help of Professor Godfrey Fitton at Edinburgh University, the concentration
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of iron in crystals showing tracks with different extent of decoration was measured.
The result was very surprising. It was found that the concentration was unusually high
at about 4 atomic percentage irrespective of the extent of decoration. This suggested
that most of the iron was dispersed through the crystal with only a small excess in
the vicinity of the recording plane. Small variations of this excess would account for
the wide range of extent of decoration.

A chance observation happened when the condenser lens on the sub-stage of a
microscope was accidentally disturbed. This changed the way the light from the
mica specimen was transmitted through the lenses and created what is called phase-
contrast conditions. This way of looking at specimens is especially useful when the
different materials in the specimen are all of the same colour. The property that is
different from one material to another is the refractive index, which is a measure of
the speed of light in the material. He was looking for the longest positron tracks and
these were always exactly in the potassium chain directions. What Mike observed
was a long but very thin line of some clear material that joined on to the narrow
end of a black positron track, that is, at the start of the flight of the positron. The
clear line was about 1 micron wide and several centimetres long. Surprised, keeping
the microscope in the phase-contrast condition, he looked for another example and
found many more. He found that these clear lines occurred especially in crystals
of a certain chemical composition, in which some of the potassium is replaced by
calcium. There was the possibility that the clear line had simply grown from the end
of the black line. If this had happened then why was it exactly in the same direction as
the black line? The clear lines never formed in a different crystal direction to that of
the black lines. More telling was the observation that sometimes there were gaps in
the clear lines but the separate bits were exactly lined up. These observations pointed
to a different process for recording tracks but tracks of what?

To understand what was going on the first step was to determine the composition
of the clear material. In this task he had invaluable help from Professor John Steeds
at Bristol University, who agreed to study samples of the material in his high voltage
electron microscope. All that was needed were some samples. This created a bit
of a problem because the clear lines were thin ribbons about 1/1000 mm wide and
between a tenth and a hundredth of this in thickness. Also, they were very brittle and
were embedded in the mica crystal. A couple of days were spent thinning down mica
sheets using the sticky film technique to try to expose samples of the clear material.
Three minute samples, only visible under a microscope, were taken to Bristol to be
mounted in the copper grids used to hold specimens in the microscope. Sadly, one
blew away as it was lifted out from the plastic box used for transport, one fell through
the mesh and was lost and the third one exploded when hit by the electron beam.
Another three samples were extracted and sent off by post. This time John Steeds got
involved in mounting the samples and had success, remarkable success. He was able
to establish the composition of the material and even determine the crystal structure.
This enabled him to identify the clear material as the mineral epidote2 [40]. What he
found surprising was that it was already known that epidote cannot form naturally

2A calcium rich mineral containing iron, aluminium, silicon, oxygen and some hydrogen.
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in mica crystals. Hence, some unusual circumstances and processes must be at work
to trigger the phase change that created the clear lines. The epidote and magnetite
portions of the lines had to be created at the same time and at the same relatively high
temperature prevailing in the mica. Furthermore, to be seen in the mica millions of
years later both parts had to be stable in time as the crystal slowly cooled.

These clear epidote parts of the tracks always occurred where the positrons were
moving fastest and the rate of ionisation was lowest. Moreover, the width of the clear
parts was exactly uniform whereas ionisation causes local variation in the width
of the black lines. Hence, ionisation could be excluded as an important factor in
triggering the phase change leading to the epidote lines. This presented a major
problem, as the clear lines were intimately associated with the tracks of positrons.
Excluding a moving positron as the effective agent meant that there must be some
other cause related to the decay of the potassium nucleus. The only known related
effects are the emission of a neutrino and recoil of the nucleus. The fact that a neutrino
is uncharged and has a negligible cross section for interaction with matter ruled it
out as a causative agent. That left only the recoiling nucleus. But the small kinetic
energy of the recoiling nucleus meant that it could only move a very short distance,
of the order of a few tens of atoms, before coming to rest. Hence, the clear lines
could not be the tracks of the recoiling potassium nuclei, they were far too long.
Nevertheless, something was causing them, was active at the atomic scale and the
recording process was of comparable sensitivity to that of the ionization-precipitation
recording process. The importance of this study was that it showed a phase change
could be triggered in mica without involving ionisation.

The screen had been left on showing the 3D model of the lattice as it was slowly
rotated in space. This was intentional so the audience could absorb the intricacies of
the structure. Mike continued:

It took quite a long time to work out a self-consistent theory as to how the tracks
were recorded. Unfortunately, it was not possible to attempt to replicate the process
in the laboratory. Although the very high pressures and high temperatures needed for
growing mica crystals can be created the long time scales needed for the processes
involved makes it impossibly expensive. It was complicated further by the variable
composition and impurity content of the different mica crystals. In the end it was found
that there were two variants of the process at work. One involved local ionisation
of the mica that created nucleation sites with a positive charge. Since mica is an
excellent insulator such ionization sites would persist for a long time. The other
process involved local perturbation of the crystal lattice in such a way that it behaved
as a temporary positive charge. Further studies of the tracks of high energy positrons
in showers showed that the track of a positron between ionization sites could trigger
the phase change. The important point is that to trigger a phase change a localised
part of the lattice at the atomic scale must exhibit a positive charge for at least a
short time. The nature of the phase change, be it to produce magnetite or epidote,
depended on the composition of the mica and impurities present. Once the localised
conditions enabled the precipitation to start then it could grow by accretion.
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The process responsible for all the dark lines involved precipitation of ions or
atoms of iron that subsequently caused chemical changes within the mica leading to
the mineral magnetite. This formed epitaxially, that is, the local arrangement of the
surrounding atoms in mica ordered the atoms in the magnetite. The magnetite formed
in ribbons sandwiched between sheets in the mica and caused local distortion of the
crystal sheets. The second process catalysed a local re-arrangement of the atoms
leading to formation of epidote. As this involved chemical substitution rather than
precipitation it did not cause distortion of the lattice.

So just how sensitive was this recording process? Or is this process, as it continues
to operate in new mica crystals that were formed recently deep underground. From
measurements of the area and dimensions of the longest track of a positron from
potassium decay and knowing the maximum energy of the positron it was possible
to calculate the average sensitivity of the ionisation based recording process. It was
astonishing sensitive. All it took was for one electron to be knocked out from an
atom about every 10,000 atoms along the plight path. It was more sensitive than a
photographic film and occurred when the crystal was still nearly red hot. This result,
for sure, pushed even further the limits of credibility for doubters.

The screen changed to show a Hindu wedding in the grounds of the International
Hotel in Lahore, Pakistan. It then faded to show Mike standing at a lectern in a large
conference room. The clock showed 1988 AD. He picked up the story again:

As the physics of the lines and tracks in mica slowly unraveled my confidence also
slowly returned. I discussed the results with experts in related fields. Each said the
part they knew about was fine and asked why I had not published the results. My
response was always that I was not yet ready, as I was too embarrassed to say that
I was forbidden to publish. Twenty one years after my last meeting with Arnold he
agreed to meet me again to discuss the latest results. We met at the Royal Society
building in London. Unable to find an empty room we finally settled on two chairs on
the landing half way up the main staircase. For an hour I explained the results to him
and he finally conceded that the results were quite convincing. He said that he still
could not understand the recording process. He thought that such a sensitive process
ought to have other applications. A year later I was invited to give a paper at an
International Conference on Tracks in Solids, to be held in Lahore. There was by then
a new Director at the Laboratory and I asked permission to present the paper. It was
granted. The paper specifically set out criteria for identifying the several different
types of tracks in mica [30]. It brought to an end the first stage of the research. The
Conference was opened by a religious leader who blessed the proceedings. Perhaps
unwisely, I made a passing reference to God’s messages in mica in my opening
remarks.

Shortly after the staircase meeting Mike wrote to Arnold asking if he would send
a supportive letter to his boss at the laboratory. To his credit he did it. Mike was not
surprised but was a little disappointed that there was no response from any of the
management at the laboratory. Then the laboratory gained a new Director who had
no history in the mica saga.
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20.7 Lattice Excitations from Scattering of Muons

The scene faded and was replaced by an image of a mica sheet showing the lines and
marks that still had not been deciphered. He continued :

As I said arlier, most of the dark lines did not satisfy the criteria for charged
particle tracks but, superficially, they looked like them. Whatever it was that caused
them involved the same precipitation recording process. Since these unexplained
dark lines had about the same width as the muon tracks it suggested to me that the
cause of these lines might be some kind of disturbance of the lattice that was on the
same scale as that of a particle. But what could it be? It was highly unlikely to be
a new kind of charged particle that had gone undetected by other means. However,
if it was uncharged like a neutron then how could it trigger the recording process?
Also, there was the problem of what caused the clear epidote lines. These problems
hinted of some new phenomenon.

It is well known that energy can be transported through a crystal by harmonic
lattice excitations called phonons so the possibility that the crystal-related lines might
be due to energetic phonons was considered. This idea immediately hit a problem: at
the high temperature existing during the recording stage the crystal would be flooded
with energetic phonons, so the crystal should be black with phonon tracks. One idea
was that perhaps to be recorded it required several phonons to combine to create a
more intense pulse. Searching the literature in 1986 led me to the concept of ballistic
phonons but these were incompatible with highly localised energy pulses capable of
leaving a track of several centimetres length. The breakthrough came in 1988 from
one sheet of mica.

Mike looked at John who tapped a key. The new image showed a mess of lines in
the centre of a sheet. John liked this image because it was so informative (Fig. 20.21).
Mike continued:

It showed a single muon track surrounded by a host of other intersecting lines
that all lay exactly in the main crystal directions. Some of these lines seemed to
touch the muon track. Under the microscope it was seen that the crystal-related
lines were both coplanar and contiguous with the muon track. Either side of the
very thin layer containing all the lines the mica sheets were completely empty of any
lines or other decoration. This strongly suggested that the muon had in some way
created the other lines. The converse, that a muon had gone through the crystal by
chance after something else had created the crystal-related lines and had precisely
intersected one of those lines was highly unlikely. This was soon confirmed by finding
numerous examples of crystal-related lines associated with other muon tracks. Of
course, scattering of charged particles was expected, with some of the energy and
momentum of the particles being given to atoms in the mica. The problem was how
did that energy and momentum then propagate through the mica?

Scattering involves transfer of energy and of momentum and both of these involve
mass. I wondered if a charged particle of lower effective mass than a muon also
could produce crystal-related lines? In other words, was the transfer of momentum
in a scattering event a critical factor? This was tested by looking for examples of
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Fig. 20.21 The line m-m is the track of a muon. All the other straight lines are contiguous and
coplanar with this track and are the tracks of quodons. This sheet led to the hypothesis that the
scattering of muons could create mobile, highly-localised lattice excitations called quodons. The
alternative, that the muon track intercepted by accident an array of contiguous lines created by some
unknown process, is very improbable. Ockham’s razor points to the first interpretation

crystal-related lines associated with high energy positron tracks in showers. These
could have smaller mass than muons but, because of relativistic effects, larger mass
than that of positrons from potassium decay. Only a few examples of crystal related
lines from such tracks were found. It was then an obvious step to look for crystal-
related lines associated with tracks of positrons from the decay of potassium nuclei,
as these had least momentum. Suddenly, the study became complicated again. As
expected or hoped, no crystal-related lines were found that came off at an angle
from the positron tracks. But there were clear epidote lines that originated from the
decay origin of the positrons. The nucleus recoiling from ejection of a positron would
collide with the next atom in the chain and so was also a scattering event. These clear
epidote lines were in a crystal-related direction, too. So perhaps the same process
responsible for propagation of energy and momentum through the mica was acting
in all the scattering events. Since in all these cases there was a lot of energy available
compared to atomic interactions it suggested that transfer of sufficient momentum
was the determining factor for creation of a crystal related line.

The way charged particles interact with solids is one of the most studied subjects
in physics. It started with the discovery of radioactivity in 1896. Despite this long
history there are still unresolved questions. If the scattering is very energetic then an
atom can be kicked out of its position in the lattice. It might also cause some ionization
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or be ionized itself. The mobile atom or ion will then crash into nearby atoms and
quickly shares out its energy, perhaps knocking a few more out of position. In a
very short time the atoms get trapped back in the lattice but then vibrate violently.
Eventually, the energy spreads throughout the crystal and raises the temperature
a tiny bit. The part that was still not fully understood was how the energy moved
in the lattice when the atoms were vibrating violently. The problem was that the
forces between the atoms were then non-linear and no one had been able to solve
the equations of motion that govern how the atoms moved under those conditions.
With linear forces the force is proportional to the displacement but with non-linear
forces the force can vary much more rapidly with the displacement.

Still thinking about some variant of ballistic phonons I came across some the-
oretical work done by Prof. M. Toda in 1970 in which he had studied how a one-
dimensional chain of atoms responds when one atom is hit [42]. This work was
important because Toda used non-linear forces between the atoms. He found that a
kind of pulse of energy could propagate down the chain and keep on going. The pulse
was called a Toda soliton. This looked interesting. However, studies by two Russian
theorists showed that when the chain of atoms was surrounded by other atoms as
in a crystal then the Toda soliton quickly dissipated, by spreading sideways, after
going less than about 100 atoms along a chain. It looked like a dead end but it set
me thinking about non-linear systems.

One of the first people to study what happens in atomic collisions in a crystal was
R.H. Silbee in 1957 [39]. He assumed the atoms were hard spheres and were lined
up in rows and sheets. He showed that if one of these atoms was hit by a moving
projectile then some of the energy could be focused into a single row of atoms before
converting to thermal energy. There were two problems with that study: atoms are
not hard spheres and when two come close together the forces between them are
non-linear. No one knew how to deal with soft atoms and non-linear forces.

Mike decided to do an experiment in which the atoms were represented by small
permanent magnets, with their poles arranged so that the “atoms” would repel each
other. He had already studied how the force between two magnets varied with their
separation. It was nonlinear and resembled the variation of force between two atoms
of potassium as determined by molecular dynamic studies of the mica lattice. Each
magnet was fixed to the bottom end of a long stick of wood and the other end was
attached to a plate by a short bit of twine. This allowed the “atoms” to move freely in
a plane. A small array of such “atoms” was built and these were surrounded by other
“atoms” that were fixed to a base plate. In this way the mobile “atoms” were free to
move but were constrained not to move beyond the boundary of the array (Fig. 20.22).
When one of these “atoms” was struck he noticed that the ensuing interactions did
indeed focus energy into a single row of the “atoms”, as Silbee had reasoned. But
Mike noticed something else. He saw that the first “atom” actually vibrated violently
about its equilibrium position and this vibration set the next “atom” vibrating and
so on down the row. He noticed one more thing. Adjacent “atoms” were vibrating
almost in anti-phase. This meant that the “atoms” were coming very close together
and so the interactions would be non-linear.
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Fig. 20.22 This shows the first mechanical analogue of a chain of permanent magnets suspended at
the bottom of long rigid sticks to simulate the behaviour of a chain of atoms. The sticks are attached
at the top to a rigid fixture by means of cotton threads of 5 mm length. The suspended magnets
rest in potential energy wells created by an array of magnets attached to a steel base plate. This
analogue was used to study the behaviour of a chain of particles with nonlinear repulsive forces
when disturbed by an external impulse to one magnet. It demonstrated the focussing action first
postulated by Silbee in 1957

Fig. 20.23 Photograph of the arrangement of pendulums made from wire with permanent magnets
attached at the bottom to form a linear chain of interacting magnets

After thinking about what he had seen Mike decided to do another experiment, to
see how the energy in the oscillations moved down a chain of atoms. As he had only
sixteen magnets he decided to use all of these as “atoms” and keep the “atoms” in
their equilibrium positions by fixing the magnets to the bottom of short pendulums
made of wire in the form of a V (Fig. 20.23). In this arrangement the equilibrium
position of each “atom” was determined by gravity. To prevent the two end “atoms”
from being pushed away they were kept hanging vertically by means of a fixed
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magnet at each end. When the first “atom” was hit it set in motion what seemed
like a remarkable sequence of events. As it moved towards the next “atom” it started
to set it in motion, which in turn started the next one moving and so on along the
chain. A pulse of energy slowly moved down the chain at about half the speed of
sound. Within this pulse the individual “atoms” were oscillating violently about their
equilibrium positions. That is, as the pulse approached an “atom” the amplitude of
oscillation of that “atom” grew, reached a maximum and then faded away. It was a
new kind of lattice excitation.

A simple way was needed to extract quantitative data from the analogues. This
was achieved by the arrangement shown in diagrammatic form in Fig. 20.24. As
the energy pulse moved down the chain the positions of the magnets were recorded
photographically using a streak-camera, in which the film moved steadily through
the camera. A typical streak-plot is shown in Fig. 20.25. In this example, the last
‘atom’ is ejected from the chain.

The obvious next question was how far the oscillatory pulse would go down a
chain. But he only had sixteen magnets. The solution was to bend the chain into
a circle! (Fig. 20.26). The magnet behind the one to be hit was held fixed until the
pulse had moved half way round the circle and then it was released. To Mike’s joy

Fig. 20.24 Schematic
diagram of the camera
arrangement for recording
the simultaneous motions of
the pendulums of Fig. 20.22.
The film in the camera moves
steadily past a slit at the focal
plane where images of white
discs attached to the magnets
are focussed by a lens

lens

film

magnets

Fig. 20.25 A typical streak
plot of the motions of the
magnets when the end
magnet is given an impulse.
The excitation moves along
the chain at sub-sonic speed.
Depending on the phase and
energy of the motion of the
last magnet it is possible for
it to be ejected from the
chain as illustrated

Ejected 
atom

Impulse

Ti
m

e

displacement waveforms
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Fig. 20.26 Photograph of a
pendulum magnet analogue
with the magnets arranged in
a circle of 25 cm diameter.
This allows for unrestricted
propagation of quodons and
other types of excitation. To
create a quodon a magnet is
held fixed by a movable arm
and the adjacent magnet is
given an impulse. After the
quodon has progressed to
half way round the circle the
arm is removed. See [38]

the pulse just kept on going and going. It went thirty six times round the circle before
air damping and friction at the pivots of the pendulums finally dissipated all the
energy [38]. Delighted with this result he decided to demonstrate the apparatus and
the creation of the new energy pulse to his line manager, who had a background in
computing. He was not impressed! His facial expression showed clearly his disinter-
est in a collection of bits of wire and small magnets. This lack of appreciation of the
connection between the mathematical description of a problem and attempts to solve
that problem by numerical computing or mechanical analogues is not uncommon.
Provided the equations of motion describing a collection of atoms are the same or
close to those for a mechanical analogue then how one finds solutions is not that
important. Nevertheless, there is a tendency to place more trust in computational
results. This is unfortunate, because it is often easier to simulate the dynamics of an
array of atoms by magnets than to perform the numerical computations, the difficulty
increasing rapidly as the number of atoms in the array gets bigger.

The study of transient effects in complex systems is difficult. With the magnet
analogues the swinging magnets would be allowed to come to rest and then set in
motion again by hitting the end magnet in the chain. The resulting motions were then
watched and recorded mentally. This was informative but only of a qualitative kind.
To study how the energy and momentum of the individual magnets varied in time it
was necessary to measure the positions and speeds of the magnets as a function of
time. Without sophisticated equipment it meant going back to basic principles. So,
to study the motions of the magnets in the circular magnet model, he mounted an
old Polaroid camera above the model. After hitting the ‘start’ magnet he waited for a
second then took a flash picture. The next time he waited 2 s before taking a picture
and so on, taking more and more pictures till the pulses had completed several turns
round the circle. The pictures then had to be measured using a microscope to extract
data to give the instantaneous positions of the sixteen magnets. This data then had
to be corrected for the perspective view from the camera. Finally he was able to
calculate the displacement of each magnet from its quiescent position, from which
their speeds could be found. When plotted on a graph with time as the variable it
showed clearly how the energy pulse propagated along the chain. All this took many
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hours of tedious work but the result was fascinating. Of course, he still had a job to
do at the Laboratory during the day. To fund his work on mica he started a business
and later a limited company. The business was a retail shop selling water-sports
goods, which he started to meet the sporting needs of his children. Both of these
were managed during evenings and weekends.

At last he had a possible explanation for the crystal-related lines. Perhaps when a
muon hit an atom it created this new kind of lattice excitation that then propagated
down a chain of atoms in the mica. Certainly, the crystal related lines did lie in
the directions of chains of potassium atoms. And it was known that the recording
processes worked in the vicinity of the potassium layers. However, this hypothesis
raised a new set of problems and unknowns. For a starter, how could a localised oscil-
lation of atoms trigger the recording process? Might this moving excitation somehow
carry a positive charge? But where would that charge come from? Moreover, if it
carried a charge, either positive or negative, then why had it not been detected before
since these excitations seemed to be created easily? The simplest assumption was
that it did not carry any charge, as this avoided questions about the source of such a
charge and ruled out the possibility of multiple charges. The existence of the clear
epidote lines also was consistent with no charge. However, if these new excitations
did not carry a charge then how could their existence be demonstrated in a laboratory?

This was the part John liked because it was real “hands-on” science. The screen
showed a wooden frame with some wire V-shaped pendulums hanging from a fixed
top plate. Mike was saying:

I decided to build a simple model of the mica lattice using small magnets to
represent atoms. In this I was guided by two factors. The particle track studies had
shown that all the action took place in the potassium layer and the crystal-related
lines were parallel to rows of atoms in that layer. So I made a model of a row of
atoms in that layer. The magnets were attached to the bottom of short V-shaped wire
pendulums that were pivoted and hung from a fixed top plate. Measurements of how
the force between two magnets varied with their separation showed that the force
was non-linear and varied with their separation in a similar way to that calculated
by computer modelling of potassium atoms in the mica lattice. When the first magnet-
pendulum was given an impulse it oscillated violently and started the second one
oscillating. That set the third one going and so on down the chain. Here was a new
type of energy pulse, created by an impulse or scattering event, that could propagate
along chains of atoms in a crystal. Could this be the cause of the crystal-related
lines?

John touched a key and the projected image of the frame (Fig. 20.23) rotated to
jut out towards the audience. He touched another key and an imaginary ball came
from the rear to hit the first magnet-pendulum which then oscillated violently. It set
the next one going and so on and the oscillatory pulse kept on going right towards
and into the audience! There was once again a murmur from the audience. Then a
graph appeared at the top of the screen that showed how a single atom would behave
in time as the pulse approached it and then departed along the chain. Mike looked at
his notes to see what came next. Ah, yes, the Italian connection. He continued:
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Could such pulses be created and propagate in mica? Suddenly, the work on mica
took on some urgency. It was now not just about deciphering the markings but it might
also lead to a new kind of energy pulse. How could this hypothesis be tested? A little
thought showed that even if this new kind of pulse could be created it would be hard
to detect because it did not involve net movement of free electrons. To an imaginary
observer at the atomic scale all that would be seen as the excitation passed by would
be a violent shaking of a few atoms. There was no know way to detect such an event.
Probably the best way to detect such pulses would be by observing what happened
when one of them reached the end of a chain of atoms. Since it had been created by
something hitting the first atom in the chain it was just possible that the last atom
might be kicked out from the far end of the chain. In fact, exactly this experiment was
done using the magnet pendulum model and it worked exactly as predicted.

Fate now joined in. I was invited by a colleague, Dr. Rob Witty, to visit the Insti-
tute of Systems Engineering at Varese, near Lake Maggiore, Italy, where he was the
Director. The reason for the visit was to review the research programme of the Insti-
tute. As the review progressed it became clear to me that, although the programme
was good, it lacked a real cutting-edge project. In the evening there was a dinner for
the review panel, held in an old castle. It had atmosphere, the wine was good and
the food excellent. I mentioned to Rob that I might have a frontier type project for
his Institute. He invited me to submit a proposal. I did, he liked the project and it
was funded. The project was to study the mica lattice by computer modeling using
the latest molecular dynamic software. The aims were twofold: to see if large move-
ments of atoms in the lattice caused the forces to be non-linear and which chains of
atoms, if any, behaved as one dimensional chains, as in the magnet model. The grant
allowed for a full time research worker and I was fortunate to enlist the help of Dr.
David Collins, who had just completed his PhD thesis on the mica lattice with Prof.
Richard Catlow of the Royal Institution as his supervisor.

Mostly I looked forward to my regular visits to guide the research. The downside
was the chauffeur-driven Mercedes limousines that ferried visitors to and from Milan
airport to the Institute. Each journey was a personal challenge to the driver of the
day not to be overtaken by anyone else and to tailgate anyone who was in the same
lane.

One day I received a phone call from David suggesting I might like to see the latest
results. What he had found was clear evidence that the inter-atomic forces were non-
linear in a similar way to those in the magnet model. Also, he had examined each
atom in the mica lattice and found that only the chains of potassium atoms behaved
as one dimensional chains. The results were published shortly afterwards [33, 34]. At
last, some predictions from the new energy pulse hypothesis had been verified. A few
months later I got a phone call from Dr. Martin Dowell, a Department Head at the
Institute in Varese, asking if I knew about a conference on non-linear mathematics
and solitons that was to be held in Edinburgh later in the year. He thought it would
be a good place to present our results. It was.

One of the first people Mike told about the new energy pulse was Prof. Lin
Chen, Vice President of Peking University. They had met first in 1963 when the
then young Dr. Chen had visited the Rutherford Laboratory and Mike had invited
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him to spend a weekend at his home. Soon afterwards contact was lost due to the
Cultural Revolution. Then in 1989 Chen, now a Professor, made contact again. He
and his family had suffered terrible privations during the Revolution. The following
year Mike initiated a project at Peking University, aimed at improving the efficiency
of heat exchangers. It was developed by his limited company in the UK. This work
involved frequent visits to China and the research on mica was sometimes discussed.
Mike was invited to become an Honorary Professor and was asked to give a lecture.
There were flowers and various gifts. In the lecture he suggested that the crystal-
related lines might be the tracks of some new kind of “particle” that carried energy
but no charge. The computer and magnet analogue model results were putting flesh
on the bare bones of that suggestion. There were a few polite questions after the
lecture. Then one young woman student at the back asked several very pertinent
questions that showed she had followed the entire lecture. Mike inquired about her
future prospects and was told she probably would go to America.

Another person Mike told was Prof. F Bob A Hopgood, Department Head at
RAL. Bob kept the policy of having an open office door and Mike would sometimes
poke his head round and ask: Do you have a minute? He would then talk away
about his latest findings or ideas and Bob never said get out or I’m busy. Instead, he
listened. Such people are rare and Mike was deeply indebted to Bob who was always
sympathetic and supportive.

Talking face to face about the research in meetings was natural for Mike but he did
not like cold-calling people by telephone. Phones did not give helpful facial feedback
and on first contact you did not know how to interpret vocal nuances. The lure of
meeting someone who might know about the new kind of energy pulse, however,
was just too great. So he called the number he’d been given by Dr. Dowell and a
quietly spoken male voice said ‘Yes?’

Mike said he’d been told about a conference on non-linear mathematics and won-
dered if some of his work might be relevant and of possible interest.

The voice, speaking in a monotone, said ‘That depends on what you have got.’
Mike asked ‘Do you have a few minutes to spare now?’
The voice said ‘Yes, a few.’
So Mike started to summarise his findings. After a few minutes he became nervous

and then anxious. His call lasted in total about five minute but it seemed like a lifetime.
He was actually sweating so stopped.

The voice finally said ‘Yes that would be of interest.’
The voice was that of Professor Chris Eilbeck, in the Mathematics Department at

Heriot-Watt University, Edinburgh. Chris invited Mike to visit and give a seminar.
Somewhat apprehensive at the prospect of spending a few hours with mathematicians
he sorted out some mica samples and a few plastic transparencies of his results. It
was early April, 1995.

Chris met Mike at the airport and drove him to the campus. There he was checked
into the VIP suite in the accommodation block. Half an hour later he and Chris had
their first face to face chat. Chris was easy to talk to and seemed to be on the same
wavelength as Mike. Later Mike learnt that he had started out in physics. Then it was
time for the seminar. There were eleven people in the audience. None went to sleep
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during the 40 min of his talk and several stayed on afterwards to discuss the work
in more detail. Finally, back in Chris’ office Mike learnt that his model had solved
a problem that had been baffling the mathematicians for years. Chris said it would
be appropriate if Mike became an Honorary Professor at Heriot-Watt, to cement
links and encourage closer collaboration. He invited Mike to spend a sabbatical at
Edinburgh. It was very tempting but Mike’s mother was declining in health and he
would not leave her alone.

A month later, during a visit to see Chris, he was introduced to a young Ukrainian
postgraduate, Yaroslav Zolotaryuk, who had joined Chris’ group to study non-linear
systems. Mike had spent a few hours modifying the magnet model so that it could be
transported in a briefcase. Piles of books and sheets of paper on a small table near the
white-board in Chris’ office were pushed about to give a small clear space. The model
was set up, borrowing a jar of instant coffee to support one bit of the model. With
Chris and Yaro standing by the table the ‘start’ magnet was hit and off went Mike’s
new excitation. They just stood and watched as it kept going round and round. Chairs
were pulled up and all three of them started to play with the model, trying different
ways of launching the excitation. Then one magnet had a piece of lead added to it to
change its mass. The excitation just took it in its stride and kept going. They went
to dinner in the cafeteria and kept on talking. It was decided that Yaro would try to
make a computer model of the magnet model, to duplicate the results and to enable
the motions of the magnets to be studied in more detail. For example, how was the
energy and momentum distributed in the excitation and what was the relationship
between the phase velocity of the particles and the group velocity of the excitation
envelope? A typical result of his work is shown in Fig. 20.27 (see [46]).

Fig. 20.27 Plot of the
energy density of a breather
as it propagates round a ring
of interacting pendulums, as
found by numerical
simulation of the magnet
analogue. In this simulation
there is no damping due to
friction so the breather
persists. Reproduced with
permission from: Russell et
al. [38]. Copyright (1997) by
American Physical Society



528 F.M. Russell

20.8 Experimental Confirmation of Quodons

Mike wanted a useful name for the new kind of energy pulse. First of all, it was not a
true soliton. A soliton satisfies certain mathematical conditions and the new excitation
did not comply. Chris had suggested it be called a ‘Russell soliton’ but Mike was
against that idea. Instead, he proposed it be called a ‘qodon’. This name was derived
from the Quasi-One-Dimensional behaviour of the atomic chains combined with
the “on” suffix associated with physics particles such as electron, proton or phonon.
Later it got changed to quodon. Chris did not like this name. He pointed out that in
mathematical circles things like it were called Intrinsic Localized Modes, with further
qualifying sub-divisions, such as mobile and longitudinal optical mode excitations.
As this was a too long winded description they were often called “breathers”, on
account of the rhythmic motion of particles within the envelope of the excitation.
Mike didn’t like this name because it did not reflect the particle-like properties
and behaviour of the energy pulse. Chris said mathematicians would not notice
papers with quodon in their titles. Mike replied that experimentalists would not
notice Intrinsic Localized Modes or breathers. So both names were used, depending
on the context and intended audience.

The conference was held in July and was a success.3 Chris had worked hard
organising it in the run-up. One of the several memorable events was a recreation of
the conditions on a canal near Edinburgh that in 1834 had led to the discovery of the
first soliton by J. Scott Russell.4 This time, instead of a barge loaded with coal and
drawn by a horse, there was a power boat loaded with excited mathematicians and a
few physicists.

Mike decided to give his contribution to the conference from a physicist’s view-
point. He had prepared a short video of the quodon propagating round the magnet
model. When it was shown several people in the audience called out for it to be
repeated several more times. The talk seemed to go down well and there was a lot
of discussion afterwards. Mike’s quodons or mathematician’s breathers remained
for several years a computational curiosity, somewhat analogous to the early days
of the laser when it was called ‘an effect waiting for an application’. Interest in
breathers and quodons grew after it was demonstrated that quodons could be studied
experimentally.

A sip of water and Mike continued:
The conference was organised by Professor Chris Eilbeck of Heriot-Watt Univer-

sity, Edinburgh. I owe a big debt of gratitude to Chris. It was through our collabo-
ration that tasks, which looked impossible, were done. By the time of the conference
I was calling the new energy pulse a “quodon”. We had studied the behaviour of
quodons in one-dimensional chains. The big question was: how would these quodons
behave when the chains were inside a crystal. Would they meet the same fate as Toda’s
solitons, which were known to be unstable in a two-dimensional array? To tackle

3Conference on Nonlinear Coherent Structures in Physics and Biology, Heriot-Watt University,
Edinburgh, July 10–14, 1995.
4http://www.ma.hw.ac.uk/solitons/press.html.

http://www.ma.hw.ac.uk/solitons/press.html
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this problem we were helped by another young researcher, Jose Marin. Jose quickly
understood the problem and set about devising the code to simulate the motions of
atoms in a two-dimensional sheet [18]. A few days before Christmas of 1996 Chris
called me to say Jose had some results. I flew up and it was my turn to sit, as in a
trance, in front of a screen as computer generated quodons were created and sent on
their way.

The 3D-screen now showed three sets of equi-spaced parallel lines set at 60◦
angles. The lines intersected to form a hexagonal array and at those intersection
points there were black dots. These dots represented the Potassium atoms in mica.
John set the simulation running. A red arrow showed which atom had been hit and
the direction of the hit. The subsequent motions of the black dots showed how a
quodon propagated along chains of atoms in the layer. The red arrow moved to point
in a different direction but always the quodons moved along chains. Zooming in to
see more clearly what was happening, it was seen that most of the energy in a quodon
was concentrated in just one chain but the atoms in the adjacent parallel chains did
move a little bit. Mike continued:

As you see, the quodons could be created easily in a sheet and they propagated
great distances along chains in the sheet. This was the first time a localised energy
pulse had been demonstrated to propagate in a sheet without spreading sideways.
Such was the power of computing. There was a Champagne celebration in the
evening.

At last, 33years after the Spruce Pine encounter, a major set of markings in the
mica could be read. The ‘books of mica’ told quite a story: in a way they did contain
information from the Gods in that some of the messages had come from the stars
and beyond. There were records of cosmic rays from outer space, the strange wave-
related behaviour of positrons ejected from Potassium atoms when they decayed
and, most surprising of all, a new kind of energy pulse created when an atom got hit
that could travel along a chain of a billion atoms. This was even more remarkable
because the quodons travelled this vast distance in spite of the impurities and defects
in the crystal and that all the atoms in the crystal were vibrating strongly because
the crystal was red hot, when the recording took place. An example of a computer
generated breather on a single chain, which is an approximation to a quodon, was
created by Chris.5

Mike stood back from the lectern, took another sip of water and looked at the
audience. He had about 10 min left to finish. He noticed that Richard was still looking
at the screen that showed quodons being created and then moving through the lattice.
Taking a deep breath Mike continued:

Although the quodon hypothesis fitted the observed facts quite well it was still
just an idea. What was needed was some way to prove the existence or reality of
quodons. Ideally, they should be created and detected in a laboratory experiment.
Based on the conjectured properties of quodons, namely, highly localised energetic
oscillations of atoms contained within a small envelope that propagates at near the
speed of sound but has no net electric charge, it seemed unlikely that they could

5http://www.ma.hw.ac.uk/~chris/culham2.mpg.

http://www.ma.hw.ac.uk/~chris/culham2.mpg
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Fig. 20.28 Two examples of Z-tracks. The middle part p is the track of a proton that creates two
quodons when scattering into and then out of the (001) plane. This provides a unique way to identify
quodons tracks [37]

be detected in flight within a solid. It would require a detector of atomic size that
could sense large amplitude motions of atoms over a short interval of time. No such
detector is known.

One way to increase the confidence level of the hypothesis would be to imagine
and then find a unique signature of quodons that should occur in the recorded quodon
tracks in mica. A quite common feature of the dark lines that look like quodon tracks
pointed to such a test. An example is shown here (Fig. 20.28). It is identified by two
long parallel lines in chain directions joined somewhere by a short line that is not
in a chain direction. Such double lines cannot be due to a single quodon because
they can only propagate long distances along chains. Typically, the joining part is
of the order of a few millimetres to a few centimetres in length. The joining part has
the properties of a section of track caused by a charged particle carrying a single
positive charge but of greater mass than a positron. Although a muon is a possibility
the relatively short track length pointed to protons, as both protons and neutrons
are known to be produced by neutrino interactions underground. So, what signature
would a proton from this source generate in mica?
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When created in a neutrino interaction the proton could be moving in any direc-
tion. By scattering off a potassium atom it could enter a recording plane and then
create a track. The scattering by a potassium atom would create a quodon moving
in an approximately backwards direction. Eventually, the proton might again scatter
off another potassium atom and leave the recording plane. This second scattering
also would create another quodon but this time moving in an approximately forwards
direction. This process creates a unique signature of two quodons that are joined by
a section of particle track in a non-chain direction and matches the Z-like pattern
shown in the image. The resolved component of the scattering force perpendicular
to the recording plane cannot create a quodon as there are no chains in that direc-
tion. In addition to this signature it is expected that a proton could, occasionally,
suffer a slight deflection from a straight path in the recording plane, giving rise to a
small angle bend in the protons track. In this case, a quodon might be created at the
intermediate scattering event. Again, examples of such tracks were found.

Although these Z-like lines increased confidence in the quodon hypothesis the
evidence for both charged particle and quodon tracks in mica was still circumstantial,
in the same way as evidence for black holes or the big bang is only circumstantial.
Neither of the cosmic events can be duplicated in the laboratory, nor can the conditions
for recording particle tracks in mica be replicated in a realistic time frame. However,
the quodon hypothesis implied that they should be created easily in the laboratory
but their detection would be problematical. Fortunately, experiments with the magnet
analogues showed a way forward. It was found that if the first “atom” was hit hard
enough then the resulting quodon, when it reached the end of the chain, could eject
the last “atom” from the chain if the quodon was sufficiently energetic (Fig. 20.25). In
principle, this suggested a relatively simple experiment. Bombard a crystal of mica at
an edge with energetic heavy particles and atoms should be ejected from edges remote
from the bombardment site in directions of chains from that site (Fig. 20.29). Mike
first proposed this experiment to the Director of the Rutherford Appleton Laboratory,
RAL, in 1992 but failed to gain support. Several years later, after he retired from
RAL, he resolved to do the experiment in his own laboratory, an annex to his garage.
It took over a year to design and construct the apparatus.

First, nearly perfect crystals of mica had to be found. After searching the reposito-
ries of several museums a small clump of fine crystals was obtained from a museum
in Adelaide from which a few single crystals with well-formed edges were teased.
The next part, bombarding the crystal to create the quodons, could be achieved easily
by using energetic alpha particles from a radioactive source. He tried to buy a suitable
source from a supplier of radioactive materials but was denied any because he was not
working within an officially recognised organisation registered to handle radioactive
materials. So he purchased a discount pack of six domestic smoke detectors, each
of which contained a sufficiently strong source of alpha particles for the proposed
experiment.

The vacuum system and chamber to contain the experiment was constructed in his
workshop at home. Many years earlier, when a teenager and for a birthday present,
his parents had bought him a rotary backing pump for use in a vacuum system. At that
time he had made a simple oil diffusion pump but it was unable to achieve the quality
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Fig. 20.29 Schematic diagram of the experiment for observing the ejection of atoms from a crystal
of mica by inelastic scattering of quodons. Alpha particles from a radioactive source attached to the
crystal holder are directed to hit the edge of a mica crystal at near grazing incidence to minimise
channeling of the alphas. The quodons created by this bombardment travel through the crystal to
the opposite edge of the crystal. There they are either reflected or eject the last atom in the chain.
The ejected atoms are neutral and so must be ionized by a weak plasma before being accelerated
towards a grid and on to a channel plate detector. The output from the detector is amplified and
counted electronically. Care was taken to ensure that there was no pathway for the alphas to reach
the detector. The crystal was about 7 mm wide and 1.5 mm thick. See [36]

of vacuum needed for the proposed mica experiment. So he contacted a manufacturer
of vacuum pumps and managed to purchase a new turbo-molecular vacuum pump at
half price because they were having cash-flow difficulties. He also had to buy a high
quality vacuum gauge and control box but that was at full price.

The remaining problem was how to detect the ejected atoms since they were
expected to be uncharged. If uncharged then they would be very hard to detect. The
reason for thinking they would be uncharged was that the last atom would be ejected
by movement of the last but one atom, which like all atoms in the crystal would be
neutral. Hence, there was no obvious way for the ejected atom to become charged.
Nevertheless, it was hoped that some of the ejected atoms might become charged
by ionization if a sufficiently strong electric field was created in the vicinity of the
crystal edge. It was realised that this was a risky technique. If the field was too weak
then ionization would not occur. If it was too strong then atoms might be pulled from
the surface of the crystal or any other nearby surfaces, especially if there were any
points or sharp edges. It was already known that atoms pulled from a surface often
are ionized. It was hoped that there might be a small range of electric field strength
between these two extremes that would allow ejected atoms to become charged. The
electrodes used to create the electric field were shaped to accelerate and focus any
ejected atoms that were charged towards a detector. A second function of this field
was to stop any stray electrons from reaching the detector.

The detector chosen was a version of a channel plate detector, shaped in the form
of a short spiral. It is made from a hollow glass tube with a cone at one end. The
inside surface of the tube has a special coating. When an energetic particle hits this
coating it liberates a few electrons from the surface and these are then multiplied
by successive scattering on the walls of the detector as the electrons are accelerated
along the tube by an electric field. This leads to a large number of electrons that can
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Fig. 20.30 Photograph of
the apparatus used to observe
atoms ejected from a crystal
by inelastic scattering of
quodons. The vacuum
chamber containing the
crystal and alpha source is
labelled V, the external shaft
for rotating the crystal holder
R, the enclosure for the
channel plate detector D. G
for the vacuum ionization
gauge and H for the high
voltage power supply.
See [36]

be recorded as an electronic pulse. These pulses can then be counted by an electronic
counter. It transpired that the Frenchman responsible for making these detectors had
broken his leg and off work so delivery was delayed for a couple of months.

When assembly of the equipment was complete (Fig. 20.30) it was found that
the vacuum achieved was not as good as hoped for. The cause was tracked down
eventually to the use of old O-rings in various pipe connections, which were slowly
releasing a vapour. There were then two options: either try using the system as it
was or replace all the O-rings with metal seals. The latter option would mean a
considerable delay because all the pipe-work would have to be remade. So it was
decided to try the experiment in the presence of the low pressure vapour. This would
not seriously affect the motion of any ions ejected from the crystal. Testing of the
apparatus took a long time. The main reason for this was that to make sense of
the results only one variable, such as the strength of the electric field between the
target and the detector, could be changed at any given time. And there were many
variables. After about a month of long days and late nights he had learnt how to set
up the experiment. Only then could first attempts at the experiment be tried out. It
was found that if the electric field was too weak then no particles were detected,
as expected. At much higher field strengths it was found that the count rate of the
detector increased very rapidly and was independent of the bombardment of the
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crystal. This corresponded to the expected and unwanted pulling of atoms from the
target surfaces. The interesting part was between these two extremes, as had been
hoped.

After these preliminary studies the complete experimental apparatus was tested
by placing a radioactive source next to the crystal but shielded from it. When the
crystal holder and the radioactive source were rotated so the alpha particles from
the source could reach the detector a large signal was recorded, showing that the
detector system was working correctly. The crystal and associated parts then were
rotated so that only particles ejected from the edge of the mica crystal remote from
the bombarded face could reach the detector. Under these conditions the test source
of alpha particles was screened from the detector. It was found that at certain angles
the ejected particles were detected. The angles corresponded to the directions of the
atomic chains, as predicted. It was a surprise how quickly the first successful results
were obtained (Fig. 20.31). That led to a phone call to Chris in Edinburgh who, a
couple of days later, came to see the experiment for himself. He brought a bottle of
Champagne.

A second surprise was the high count rate of the ejected atoms. It seemed that
many of the ejected atoms were being ionized. After many tests the reason for this
was found. The electric field used to accelerate the charged atoms to the detector was
acting on the low pressure vapour filling the vacuum system to create a weak plasma.
This plasma was then ionizing the ejected atoms. This effect is well known and is
used in some types of particle detector, but Mike had not planned to use that effect

Fig. 20.31 Drawing representing the output from the channel plate detector as the crystal was
rotated in front of the detector. A second source of alphas was attached to the crystal holder that
could be brought to face the detector to test the detection and counting system. This source gave
the peak labelled T. The crystal was then rotated to bring the bombarded edge to face the detector.
Atoms sputtered from the bombarded edge and back scattered alphas gave the peaks labelled S.
Further rotation brought the rear edge of the crystal to face the detector from which ejected atoms
could reach the detector to give the peak labelled E. A version of this Plot was published in [36]
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when designing the experiment. Subsequently, it was found that essentially all the
atoms ejected were neutral but then ionized by the plasma. In reality, if the vacuum
had been of high quality then the experiment would have been much more difficult
to do due to a weaker signal-to-noise ratio. It might well have been abandoned!

In the following months many more tests were done, some requiring modifica-
tions to the apparatus, to check that the ejection results were real and not due to
some accident or other cause. One topic that had to be considered seriously was the
possibility that Mike had unintentionally manipulated the experiment or results to
give the result that he wanted. This topic weighed heavily on Mike as he realised
that doing the experiment in his own laboratory would raise eyebrows. The exper-
iment obviously was designed from the outset to give the desired results but care
was taken to exclude any process that involved subjective observations, such as rely-
ing on memory or visual images. For example, the count rate of the detector could
not be varied manually and all variable parameters were recorded. In particular, the
strength of the electric field in the vicinity of the crystal was strictly controlled. Also,
the detector was operated in a region where the count rate varied only slightly with
the voltage applied to it. Only after these tests were complete were the results written
up for possible publication [36].

Mike continued:
Despite the added confidence provided by the Z-like lines to the quodon hypothesis

the evidence for quodons in mica was still circumstantial. In fact, this was also true
of the evidence for tracks of charged particles as well as those of quodons. The need
for direct experimental evidence of quodons was essential, as confirmation of their
predicted existence would validate both the quodon and particle track hypotheses—
or Nature was playing a fiendish and astonishing trick of mimicry! Fortunately,
the behaviour of the magnet analogues of atomic chains suggested a possible way
forward. Playing with the analogue it was found that if the first atom was hit hard
enough then the quodon, on reaching the other end, was observed to eject the last
atom’. This unique behaviour should be reproducible at the atomic level and so
demonstrable in a laboratory experiment.

Having failed to get official support for this experiment from government sources,
the apparatus eventually was assembled in my own laboratory. In principle, quodons
would be generated by bombarding one edge of a mica crystal with alpha particles
from a radioactive source. The quodons then would propagate through the crystal
along chains until they reached the opposite edge of the crystal. There the quodons
would be reflected unless the motion of the most energetic atoms within them was
sufficient to eject the last atom in the chain. The remaining, and challenging, task
would be to detect any ejected atoms, as they were unlikely to be charged. To overcome
this problem the crystal was immersed in a very low density plasma that should ionize
some of the ejected atoms. Any that were ionized would then be accelerated towards
a detector by an electric field. The experimental arrangement is shown in schematic
form in Fig. 20.29 and a photograph of the apparatus in Fig. 20.30. To my great
relief, the experiment was successful and provided clear evidence for the predicted
ejection effect. A plot of the results Fig. 20.31 shows how the number of ions detected
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varied with the angle of rotation of the target with respect to the expected forward
chain direction, confirming the predicted ejection effect.

This experiment is similar to those used for studying the sputtering effect except
that in sputtering only atoms or ions ejected backwards from the bombarded surface
are examined. The quodon hypothesis also predicts that quodons generated in such
sputtering experiments could be reflected or scattered from major crystal defects
such as dislocations within a crystal. It follows from the previous experiment that
when a reflected quodon returns to the front surface it might eject the first atom
in the chain. The important point here is that any such ejected particles would be
delayed from the time of bombardment by the time taken for the quodons to travel
to the defect and back again to the surface. There has been unexplained reports of
this delay, for example in alkali-halide crystals after low energy (540eV) electron
bombardment [22]. In favour of the hypothesis was the unexplained dependence of
sputtering on the sound velocity of the material [44].

20.9 Still Not Understood Tracks

Having shown experimental evidence for the reality of quodons Mike paused for a
moment to let the implications sink in to the listeners, namely, that the tracks in mica
hypothesis and the related quodons derived from that hypothesis had been verified
in a laboratory experiment. He continued:

From the proceeding results it is clear that the causes of many of the lines and
marks have now been found but it is likely that more remains to be elucidated. It
is likely that the very sensitive recording processes could, and probably already
has, recorded every possible kind of disturbance that could happen in a crystal
that was strong enough to trigger the recording processes. An example of one such
decorated disturbance that was not understood until recently, about 2009, is a type
that resembles a lady’s fan.

The screen changed to show a projected image of a sheet of mica that contained
a heavily decorated particle track with several long fans coming off from both sides
(Fig. 20.32). Mike went on:

These fans arise from very energetic scatters of charged particles, which create
atomic cascades. Within the fans multiple parallel tracks are observed. Although
these multiple tracks resemble those of quodons they are inconsistent with the known
properties of quodons. In a high energy scattering event the struck atom moves off
with supersonic speed, knocks other atoms out of their positions also with supersonic
speeds and the process continues creating a cascade. In mica this cascade is modified
by the layered structure in to an expanding two-dimensional disturbance. Careful
study of molecular dynamic studies of such cascades shows that the energy is carried
along atomic chains by kink-like pulses. As shown by the fans, these kink-like pulses
propagate over astonishing distances more typical of quodons.

The way a high energy scattering event develops in a non-layered crystal such as
a metal is well understood from molecular dynamic studies. The hit atom moves at



20 I Saw a Crystal: An Historical Account … 537

Fig. 20.32 Copy of a sheet showing the track of an energetic baryon that experienced many scatter-
ing events. Most of these scatterings create atomic cascades the development of which are modified
by the layered structure of mica to give the characteristic fan shape. Within some of these fans the
tracks of quodons can be seen

high speed towards nearby atoms knocking them out of their equilibrium positions
in the lattice. Because the momentum given to the first hit atom has a direction the
successive scatterings and knock-ons develop within a conical envelope, with the
apex at the initial scattering and the axis in the direction of the momentum vector
(Fig. 20.33). This process is similar to the development of electron-positron showers
mentioned earlier. However, in a layered crystal this conical development is modified,
as shown by the tracks of electron-positron showers, which are seen in mica. The
selectivity of the recording process only records disturbances in adjacent sensitive
layers, which are separated by seven layers of other atoms. Measurements on the fans
show clearly that they do not develop symmetrically in a three-dimensional cone.
Instead, the excitation develops by spreading mainly in one or just a few layers, giving
the characteristic fan shape. The fans, however, show a unique property, namely, their
great range. Atomic cascades in non-layered crystals do not extend beyond about
a hundred unit cells. The only significant classical collective effect in a cascade is
a focuson, in which up to about ten successive knock-ons occur in a chain over a
few nanometres. In sharp contrast, the fans typically have ranges of order several
centimetres, a few million times longer. A significant property of a fan is that the
lattice is disturbed by an expanding front. Since the initial collisions involve high
energies the development of a fan will involve supersonic particles. These supersonic
atoms might create some kind of collective motion or shock wave. The important
point is that this excitation or shock wave carries energy and momentum through the
crystal and is not quickly dissipated. In fact, it is remarkably robust against thermal
motion and point defects, as shown by the extent of the decoration that defines
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Fig. 20.33 Diagram showing the various stages in development of an atomic cascade. The stages
explored by most molecular dynamic studies is indicated. Most of the energy of the incident particle
eventually passes through the stages where quodons and then breathers are created before finally
decaying into phonons

the extent of the excitation. This two-dimensional collective effect is significantly
different from the quasi-one dimensional quodons.

At present, [in 2008 when this imaginary lecture was given] the structure of the
moving front of the disturbance making a fan is not known. However, it is very likely
that within the moving front some of the energy will be associated with displacements
or knock-ons of atoms along chains, somewhat like multiple Toda solitons on adjacent
chains [19]. As the disturbance advances the energy per atom in the front will decrease
as it spreads sideways, partly due to creating multiple quodons, which are subsonic.
This difference in speed of the front and quodons has an important consequence.
Since the front is moving faster it reaches a point in the mica ahead of any quodons
that might be produced in the scattering events leading to the development of the fan.
Hence, the front will trigger the recording process, thereby relaxing the lattice, so
that any slower following quodons are unable, or less able, to trigger the recording
process. It was during these confusing thoughts that it was remembered that as the
moving front triggers the recording process it releases energy from the crystal. This
is because the precipitation process is exothermic. How would this release of energy
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affect the moving disturbance? This prompted another thought process similar to that
which Mike had gone through when first seeing the lines in mica on the museum
wall. The results are given in the second chapter of this book. A notable feature of
fans is that the two sides or edges defining them always straddle a chain direction
but not necessarily symmetrically. This likely reflects their close relationship to the
dynamics of atomic chains and the variability of the direction of the momentum
vector. A second feature is that the enclosed angle is somewhat variable. Again, this
may well reflect the variable momentum.

Mike continued:
In view of the ease with which quodons can be created by scattering of high speed

particles it is expected they would be created in most situations involving radiation
damage, such as nuclear fission and fusion reactors. However, in common with low
energy oscillation or motion of atoms in metals it is expected that quodons would
interact with free electrons via the electron-phonon coupling process, providing a
route for loss of energy. Hence, their mean free path in metals is expected to be
much shorter than in insulators. Circumstantial evidence for transport phenomena
involving intrinsic localised modes, ILMs, such as quodons, with ranges of order 1µ
has been reported in uranium, stainless steel and silicon.

Another of the possible effects of quodons, ILMs and breathers is their interaction
with crystal defects, leading to movement of those defects. A common problem in most
of these studies is the inability to detect the localised mode directly. It is expected
that there would be a continuous range of energies of these localised modes as
they degrade via scattering events. This progressive degradation of energy is seen
directly in quodon tracks in mica where a primary high energy quodon track can have
multiple side branches of lower energy quodons, caused by scattering at defects,
with each quodon propagating in a chain direction. The intensity of decoration
with magnetite of these side branches, measured as the average width of track,
progressively decreases at each scattering. There can be several tens of such side
tracks in a primary track of 20cm length. An example is shown in Fig. 20.34.

Fig. 20.34 Half size copy of a quodon track showing the creation of multiple secondary quodons
by scattering at crystal defects. The absence of fans from atomic cascades shows that the main
track is not that of a boson. This is further supported by the alignment of the tracks with chain
directions [37]
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Of course, the very existence of decorated quodon tracks demonstrates that
quodons can initiate a phase change in a meta-stable material. This raises the possi-
bility that quodons, ILMs or breathers might be useful in inducing phase changes in
other non-equilibrium materials. Indeed, evidence for a change of phase of a mineral
at a temperature too low for it to occur normally has been found by a Spanish group
under circumstances where breathers are expected to exist [1]. This was established
in experimental studies of a mica-related mineral of potential interest for the storage
of radioactive waste. Another question relates to how a quodon would interact with a
strained lattice. Could it release the stored energy? Some model tests with analogues
have shown it could, sometimes causing the quodon to get stronger.

Recently, there has been growing interest in how breathers and quodons might
interact with lattice defects, especially point defects like holes and interstitials. Dur-
ing irradiation of materials in nuclear reactors voids often are formed by the gathering
together of individual vacancies caused by scattering of atoms to create interstitials.
It has been found that voids in heavily irradiated materials can be reduced by contin-
uing to irradiate the sample but at a reduced rate. Dr. Vladimir Dubinko showed that,
in theory, if the range of quodons was sufficiently long then they could cause shrink-
age of voids [9]. The recording process in mica suggests how this might happen.
As a quodon approaches a point defect, such as an interstitial atom, which could be
an impurity atom, it changes the separation between atoms on the chain hosting the
quodon. The interstitial or impurity atom then has an increased probability to move
on to the chain and become absorbed within the quodon envelope. As the quodon
moves along the chain it causes the extra atom to push forward the one in front. In
turn, this pushes the next atom one step forward. This process can be demonstrated
with a magnet analogue. The overall effect is to shunt one atom to the end of the
chain, leaving the interstitial or impurity atom on the chain near its initial position.
This leads to the last pushed atom helping to fill the void. In principle, the quodon
is then free to repeat this process, thus being more effective as the range of quodons
increases.

Mike continued:
One of the beautiful aspects of studying mica is that it is possible to actually

see processes involving atomic interactions that usually are hidden from view inside
opaque materials. This is helpful in studying the behavior of quodons and breathers
in other materials. It is still not known in detail which crystal structures allow these
excitations to propagate. Although most of the theoretical and computational studies
so far have, for reasons of simplicity and cost, concentrated on two-dimensional
layers this does not imply that these excitations are restricted to two-dimensions.
Also, although the decorated tracks in mica originate in the two-dimensional sheets
of potassium atoms, it is clear that atoms of different elements in the adjacent sheets
are involved as they adjust their positions in response to the movement of potassium
atoms during passage of a quodon in the sheet they sandwich. Thus, we can be
sure that quodons are not strictly restricted to two-dimensional sheets. The envelope
containing the energy of a quodon extends in three-dimensions. However, it might
turn out that these localised modes, the quodons or breathers, are restricted to
layered crystals satisfying certain conditions of lattice symmetry. For example, it is
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Fig. 20.35 Examples of multiple quodon creation showing asymmetry of creation. The reason for
this asymmetry is not known

already known from computer simulations that they could propagate in some of the
layered high temperature superconductors. Might they play a role in the formation
of Cooper-pairs? At present little is known about how they interact with electrons
or holes. It will be interesting to see what Nature does with them. But let us return
to the deciphering of the lines. I wish now to show you some examples of lines and
markings that still are not explained or understood (Fig. 20.35). A logical analysis
of the lines suggests that a single particle or lattice excitation causes the creation
of many quodons. The problem is the one-sidedness of the distribution, whereas a
random left-right occurrence would be more likely. Could this be due to internal
strains in the crystal?

Continuing on with the topic of unexplained markings I would like to mention the
intriguing problem of the ‘curved lines’. They are rare. Perhaps one in 1,000years
in a single mica crystal of about one litre volume. They look like some kind of
particle track but not of any known kind (Fig. 20.36). If charged particles then
their range is inconsistent with the extent of multiple scattering and the scattering
should be random. Nor are they fractures of the crystal, as the adjacent layers are
undisturbed Fig. 20.37.

This would suggest that these events occurred during the sensitive recording time
of the crystal.

Even more rare are the unexplained ‘massive-damage events’. These are of special
interest because they seem to involve the recording process but also cause damage to
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Fig. 20.36 Examples of compound curved tracks. Some can be interpreted as combinations of
baryon and quodon tracks. The origin of those showing long curved section of track is not known.
The longest bar is about 14 cm
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Fig. 20.37 a Examples of massive damage events. These are inconsistent with fractures of the
crystal due to external forces and do not contain inclusions of other minerals. Example A shows
evidence of charged particles moving in adjacent layers. One possible interpretation is that they
are caused by baryons passing through the crystal at some angle incident to the (001) plane. The
multiple creation of atomic cascades, such as shown in Fig. 20.31, could deposit sufficient energy
in to the lattice locally as to cause significant structural damage. The with of the slabs is about
13 cm. b More examples. Also the with of the slabs is about 13 cm
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Fig. 20.37 (continued)

the crystal that extends over many layers. The possibility that they are caused by some
foreign body that became embedded in the crystal as it grew has been considered
but the structure of these ‘massive-damage events’ is inconsistent with known types
of inclusions. In each of the examples examined so far there is evidence of some kind
of disturbance that propagates through the crystal away from the damage site. This
feature is indicated as A in Fig. 20.37 and C in Fig. 20.37. So, one event in 1 lt of
crystal in 10,000years.
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Fig. 20.38 Arrangement of high temperature superconducting compounds in order of progressively
higher critical temperature Tc based on the type and number of layers in each unit cell. This suggests
that the highest Tc is obtained when the current carrying layers are most widely separated and the
chains perpendicular to the CuO layer least support breathers

20.10 Quodons, Breathers and Extraterrestrials

Mike turned next to the topic of possible involvement of quodons in other areas of
condensed matter physics. He said:

Clearly, quite a lot has been learnt about quodons but are they of any practical
use besides repairing radiation damage? I’d like now to describe briefly two possible
application areas—but we do not yet know if either of them is of practical use. The first
relates to the behaviour of quodons as they degrade to progressively lower energies
and become breathers.

In 1986 a remarkable discovery was made by [4]. They showed that a compound
containing layers of copper oxide, CuO2, was a superconductor of electricity at an
unexpectedly high temperature.

This was headline news and everyone was talking about. How did it work? When
Mike saw the first report giving the atomic structure of the new cuprate compound
he was instantly struck by the superficial similarity of the structure to that of mica.
Might his new kind of energy pulse be involved in this new type of high temperature
superconductivity (HTSC)? Searching for some guidance Mike plucked up courage
and wrote in 1994 to Sir Nevill Mott asking for a meeting. For an hour Sir Nevill
listened and asked questions. Mike was in awe of Sir Nevill and kept thinking what
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Fig. 20.39 Structural diagrams of three layered compounds consisting of one, two and three sheets
sandwiched between blocks of NI2BI2. The LHS and RHS structures contain quasi-one-dimensional
chains in the central sheet. Hence, they support breathers and are found to be superconductors.
The middle structure does not contain QOD chains and is not a superconductor. Reproduced with
permission from: Russell and Collins [35]. Copyright (1996) by Elsevier

might have happened if he had been one of Sir Nevill’s students. Sir Nevill introduced
Mike to Prof. Sasha Alexandrov, an expert on HTSC, and wrote to the Dr. Paul
Williams, Director of the Rutherford Laboratory in support of his work. Soon other
superconducting compounds were reported and they all had layered structures with
certain dynamical properties in common with mica. This prompted Mike to visit Prof.
Muller in 1995 at the IBM Research Centre in Switzerland, who made him welcome.
However, it soon became clear that they could hardly communicate because of their
different disciplines of study. Again, Mike was out of his depth. Nevertheless, he
asked David Collins to examine some of the superconducting compounds to see if
any atoms in the crystal behaved in a similar way to those in mica. Three compounds
were studied and the surprising answer was yes in each case. So it looked like the
essential structural feature was the existence of quasi-one-dimensional chains of
atoms. This is illustrated well in Fig. 20.39. The results were published in 1996 [35].
It soon became clear that the inability to describe a quodon or breather in a simple
mathematical form was a major obstacle to studying their possible role in HTSC.
Later, Chris used the numerical simulation techniques developed for mica to look
at CuO2 and found that quodons and breathers could propagate in a typical CuO2
layer [18]. That prompted a study to examine how electrons or holes might interact
with quodons/breathers. In the so-called BCS (for Bardeen, Cooper and Schrieffer)
theory that describes low temperature superconductivity, electrons with opposite
momentum are paired through the interaction with phonons, the vibrations of a linear
lattice. So Leonor Cruzeiro and Chris Eilbeck studied the possibility that breathers
might provide the glue between two electron or holes. Preliminary results showed
that this can indeed occur, even for reasonable values of electron-electron Coulomb
repulsion [8]. The advantage of this possibility is that breathers are more resistant to
temperature increases and can thus sustain the electron pairing at higher temperatures.
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It is useful to summarise the main reasons for thinking that breathers might be
involved in HTSC. It is very unlikely that quodons are involved because, by defini-
tion, they have energies that are too high compared to those expected to be involved in
HTSC. As previously stated, quodons degrade in to breathers of lower energy: there
is a smooth transition from quodon to breather and both the analogues and numer-
ical simulations show that breathers propagate in layers. It is obvious that HTSC
depends on the details of the chemical composition and on the structural arrange-
ment of the atoms in each compound. Since all the HTSC materials have layered
structures it is reasonable to suppose that the dynamical properties of layers is espe-
cially important. In the theory of conventional low temperature superconductivity,
the BCS theory, pairs of electrons interact with phonons to form so-called Cooper
pairs. The problem with extending this theory to higher temperatures is that as the
temperature is raised, thus creating more phonons of higher energy, the binding of
the Cooper pairs is destroyed due to scattering by these higher energy phonons. Now,
one of the remarkable properties of quodons and breathers is their stability against
scattering by phonons. So could Cooper pairs be formed with breathers? This is a
logical step as both phonons and breathers are lattice excitations, the main difference
being that breathers have higher frequencies of oscillation of the lattice. The answer
is not known.

In 1998 a beautiful experiment by Choy, Kwon and Park showed that a single
layer of a typical CuO2 compound had almost the same critical temperature Tc for
transition from normal to superconducting states as a thick slab with many CuO2
layers [6]. This demonstrated that HTSC is a two-dimensional property centered on
the CuO2 sheet. As more CuO2—based HTSC compounds were discovered it was
noticed that the Tc increased as the complexity of the compound increased, which
resulted in larger separation between the CuO2 sheets. This is seen in Fig. 20.38.
This set Mike thinking about the problem of scattering of breathers by other lattice
excitations. But we need not restrict ourselves to breathers. Suppose some kind of
lattice excitation is involved in Cooper pairs. As the temperature rises above absolute
zero lattice excitations will start to be formed—the phonons. These will certainly
be able to move in the CuO2 sheets. But lattice excitations also can exist on the
chains perpendicular to the CuO2 sheets. Might these additional excitations moving
in the z-chains be responsible for destroying the superconductivity? This raised the
question of how pulses of energy propagate in the z-chains perpendicular to the
CuO2 sheets. This was examined by using a magnet analogue in which the masses
of the particles along the chain had the same relative distribution as the atoms in
chains perpendicular to the CuO2 sheet in a HTSC compound. It was found that
the strength of an energy pulse decreased as the complexity of the chain increased,
heavy atoms being especially destructive. This suggested that the trend to higher Tc
with increasing spacing between CuO2 sheets resulted from reduced scattering by
excitations moving perpendicular to the CuO2 sheet. It follows that Tc should be
highest when there are no perpendicular moving breathers. It would seem that this
conflicts with the low Tc of the single CuO2 sheet case of Choy et al. However, in that
case the single sheet was grown on a substrate that allows excitations to form. All this
is speculative and what is needed is a specific testable prediction. It occurred to Mike
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that this prediction could be tested in the following way. If the Tc of a single CuO2
sheet of a given compound is limited by scattering of excitations moving in that sheet
as well as excitations moving in perpendicular directions then cutting the CuO2 sheet
on the substrate into thin strips should impede excitations moving perpendicular to
those strips in the sheets. The prediction is that the Tc should increase as the width
of the strips of CuO2 sheet decrease. Wide strips could be made by etching but ion
milling would be needed for narrower strips. Mike asked Sasha Alexandrov if he
knew of any research groups that might be approached in connection with this test.
Finally, it is worth mentioning that still no satisfactory explanation has been put
forward to explain why all HTSC materials have layered structures.

Mike continued; It is an interesting, and so far unexplained, fact that all high
temperature superconductors have layered structures that can support breathers.
This is a direct consequence of their structure and not of their chemical composition.
So it can reasonably be assumed that low energy breathers exist in such materials
as a result of thermal or phonon fluctuations. Since breathers consist of transient
displacements of atoms from their equilibrium positions in a lattice they will interact
with free electrons and holes, just as phonons do. What is not clear is whether the
breathers are naked or clothed by interaction with free charges. However, not all
layered structures can support breathers and, by inference, those that do not should
not be superconductors. This is illustrated by the inter-metallic family of compounds
shown in Fig. 20.38. The two end compounds contain quasi-one-dimensional (QOD)
chains and are superconductors. Although layered, the central compound does not
contain QOD chains and is not a superconductor.

Mike now turned to the second possible application area involving quodons of
the highest possible energy.

The second application area relates to the properties of quodons of the highest
achievable energy. Within a quodon atoms and hence their nuclei are brought repeat-
edly closer together than in the surrounding crystal. If quodons propagate in a crystal
containing sheets of deuterium or tritium atoms then, by a process called quantum
tunneling, there is a finite probability of adjacent nuclei fusing and thereby releasing
nuclear energy. The effective temperature at the centre of a quodon, based on the
collision energy of the atoms, can be surprisingly high. For example, in mica it can
be of order 50,000 ◦C. Of course, this is very low compared to the design temperature
of millions of degrees aimed at in a thermonuclear fusion reactor. However, there is
an important factor unique to quodons that mitigates this disparity. Once a quodon
is created it can apparently propagate forever. For example, natural crystals of mica
showing the dark lines contain a lot of impurities and many defects but, despite this,
quodons can propagate more than 500mm without showing signs of losing energy.
That means they have caused more than 1010 nuclei to have several close collisions.
So, although the probability for fusion per collision is very small the number of col-
lisions is very large, thereby increasing the chance of fusion per quodon. If a crystal
containing deuterium or tritium could be bent in to a ring of large diameter and the
ends fused together, which is possible in principle, then a quodon could continue to
circulate unimpeded until it eventually caused a fusion event.
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It is instructive to consider what might happen in a crystal reactor. Suppose that
a fusion event has just occurred creating two high speed particles, an atom and
either a proton or a neutron. These will collide with some of the surrounding atoms
including deuterium or tritium, causing a few high energy collisions with a relatively
high probability for fusion. This process will continue as the high speed atoms collide
and scatter almost at random but mostly in a forward direction, leading to a cascade.
The number of collisions will increase but the probability for fusion per collision will
decrease as the total energy is spread to more atoms and thus decreases the individual
collision energy.

Hence, in addition to the initial high energy two-particle interactions, involving
the products of a fusion event within the lattice, there are two more types of lattice
excitations that contribute to further fusion events. Namely, kink-like pulses and
quodons. It remains to be seen which can produce the highest rate of fusion events.

In principle, this route to controlled nuclear fusion is possible. However, its prac-
ticality depends critically on finding a suitable crystalline material. Such a material
should contain sheets or layers of hydrogen (deuterium or tritium) interspersed with
one or more layers with heavier elements. If no suitable material exists naturally
then perhaps it could be created artificially by sequentially depositing successive
layers on a substrate. One possible starting point is lithium hydride (deuteride), as
this has attractive properties for such an application. It is a crystalline insulator, has
a high melting point, atoms are arranged in sheets, it can be grown artificially and
the constituent elements are abundant in nature.

Mike continued:
This hypothetical approach to fusion involves moderately high temperatures that

can be created in highly localised regions in a crystal, the quodons and kink-like
pulses, surrounded by unaltered crystal at ambient temperature. It is called Lattice
Assisted Nuclear Fusion, LANF. Although the probability of eventually developing
the process in to a successful power generator is very small it is based on known
and well tested physics. LANF can cause fusion but the big question is how efficient
could it become. Despite there being many unknowns some experiments are justifiable
because the economic advantages of success would be inestimable. Estimates of the
power released in a LANF reactor using existing data range from milli-watts to mega-
watts per cubic metre of fuel. Even a power of just 1W requires about one million
million fusions per second. Clearly, a much better understanding of the processes
at work is needed to reduce this uncertainty. These estimates of fusion power were
made using the data for the fusion of nuclei in a low density plasma and thus ignored
possible gains from the close packing of atoms in solid fuel. It has been suggested
that even closer packing of deuterium could be achieved in radiation induced voids.
However, it is not known if the deuterium then has a crystal structure that could
support quodons or kink-like pulses [32].

Mike paused for a moment, looked up at the audience and said:
I have come almost to the end of my talk. I have been careful to include only those

facts that can be verified by anyone so inclined. Either read the literature or, even
better, find some mica and make the measurements yourself. Now I venture timidly
into an unknown area but still keeping to scientific facts—and I begin to wonder if the



550 F.M. Russell

Mexican priests and God-Kings might have been near the truth. The opening scene in
this talk of magma welling up could have been on the African continent or any other
continent. It also could have been on Io, Jupiters inner satellite, or any other place in
the Universe where there is volcanic activity and a good mix of elements in the magma.
If the laws of Nature are the same everywhere then it is inevitable that mica crystals
have grown and eroded to the surface at many places throughout the Universe. If
there are intelligent forms of life elsewhere then at the appropriate stage in their
evolution, for sure, the markings in mica will have been noticed and deciphered.
At that stage those intelligent beings also will have deduced the following facts.
Mica occurs everywhere; under natural conditions it can record almost anything
that disturbs the crystal during thousands of years; having recorded the events it
preserves them for almost ever. It is the ideal storage medium for leaving messages
to be picked up later by any intelligent organism able to decipher the markings. I
invite all of you to dig up some mica and marvel at the messages it contains. Thank
you.

20.11 Question Time

Mike turned to John and gestured “Thank you” with his hand then gave a small bow
to the audience. He looked at Ann who was smiling broadly and then at Richard who
was rising from his seat. He looked at his watch and saw that he had finished 1 min
over his planned time. The auditorium lights came on and there was some commotion
as people took off their Polaroid glasses. His host started to clap and it was taken up
by the audience as he walked slowly to the front of the bench. He said:

That was both enthralling and thought provoking. Are there any questions?
Several hands went up. He pointed to a woman at the back.
‘Do you think there are messages from other intelligent beings in the mica?’ she

asked.
Mike replied: ‘I don’t know. It is a logical place to leave a message. But what

kind of message? It does not have to be a deliberate message. For example, there
might be unusual or artificial events recorded in mica that arose as a byproduct of
extraterrestrial activity instead of by deliberate action. Because of its permanency
and great capacity for storage I think it offers more scope for seeking evidence of
extraterrestrials than listening for transient radio messages.’ said Mike.

‘But how could you leave a message when it is so deep underground?’ asked the
next person.

‘Even with today’s technology it would be possible, in principle, to fire a beam
of particles into the ground in regions where there is volcanic activity. Who knows
what might be possible in a hundred or ten thousand years’ time. At present we are
broadcasting light, radio waves and neutrinos from nuclear reactors to the Universe
as a byproduct of our own civilisation. The point is, we now know that the recording
process is universal.’ he replied.
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The next question was: ‘What was the hardest part in deciphering the marks in
mica?’

‘Oh, venturing into fields where I had no experience, both in the science and in
relations with other people.’ He then went on: ‘I was fortunate in having friends and
colleagues who encouraged me.’

‘What was the most satisfying part?’ a young woman asked.
‘There were two, actually. The first was when I realised that I could understand

at least some of the lines and marks, namely, the positron tracks from decaying
potassium nuclei. Either Nature was playing a great trick on me or they were indeed
positron tracks. The second time was when the quodon prediction was verified by
direct experiment.’

The next question was: ‘What are the prospects for developing LANF?’
‘A good question.’ Mike said and went on: ‘We know from the underlying physics

that quodons and kink-like pulses could cause fusion. But let me emphasize that we
do not know how far these excitations can go through a crystal in the absence of
the energy released by the recording process. There is a small possibility that the
energy released in fusion could replace the energy released by precipitation. So
small-scale tests of LANF probably would not work. The main uncertainty is about
the maximum rate of fusions per unit volume. Scaling factors help give an insight.
In a high temperature thermonuclear plasma reactor the losses are mainly from the
surface of the plasma whereas the fusion power increases with the volume. So scaling
up in size helps. In LANF the scaling factor is the lifetime of the quodons or kink-like
pulses. In principle, this can be maximised by using a large diameter ring of fuel.
Scaling the ring up in size increases the total fusion power liberated but not the fusion
power per unit volume. There is also a stability criterion, a limiting factor relating
to the energy stored in the quodons and kink-like pulses circulating in the ring. If
this total stored energy becomes comparable to the chemical energy of formation
of the solid fuel then the fuel might become unstable and melt. What is needed is a
search for a material, perhaps created artificially, containing deuterium that supports
quodons and kink-like pulses that allows higher internal energies than in lithium
deuteride. It might not exist.’

Richard pointed to a man in the second row. ‘Has the recording process been
duplicated in a laboratory?’ he asked.

‘Not as far as I know. It could be, if there was the need. Crystals of muscovite
require both high pressure and temperature to grow, so only small specimens have
been grown in the laboratory. Also, the decoration process is slow because it involves
diffusion of atoms in a solid. There is also the matter of the chemical composition
of the mica. The two main factors influencing the recording process are the amount
of impurity present and the rate of cooling. If the amount of iron available to be
precipitated is low then only ionisation events are recorded. This is because ionisation
sites persist whereas the disturbance to the lattice caused by quodons is transient.
Also, the positron tracks get longer because there is less scattering by the impurities.
Slow cooling also favors charged particles and discriminates against quodons due to
the reduction in the amount of impurity that is in the supersaturated state and thus
available for precipitation. In some ways, the study of information stored in mica
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is similar to astronomy: you make observations and measurements then analyse the
results but you might not be able to duplicate the underlying processes or events in
a laboratory.’

The next question was: ‘What do you think is the main property of quodons that
might be exploited?’

Mike replied: ‘Oh, their ability to release stored energy in a crystal’
The next question was direct: ‘You stated that the wedge shaped lines in mica

could have prompted the invention of Cuneiform. Is there any evidence?’
Mike replied: ‘It depends on what kind of evidence you seek. There is no doubt

that wedge shaped lines occur in mica and are of similar size to Cuneiform strokes.
Also, mica crystals were available and widely known in ancient times. All it would
take is for one person to transpose, either in their mind or actually, the wedge shaped
lines in mica on to a piece of clay. People are very observant and inventive. Of course,
any such pieces of mica would not have survived the natural processes of weathering
but even if they had there would be no way of knowing they had played a part.
However, a recent study of cave markings, similar to that made by Genevieve von
Petzinger that highlights the early common use of dots and lines, shows a tendency
for lines at angles of multiples of 30◦. The simplest explanation for this tendency is
that people were aware of the marks in mica,’

Although there were more hands raised Richard called a halt to the proceedings,
once again thanking Mike for his talk. As often happens at the end of a lecture a few
people lingered behind. John was busy collecting up the projection system. Richard
said he would like to know more about the curved lines. One young man asked about
the massive damage events. How many had been found? A woman pointed out that,
except for the identification of electron-positron showers, Mike had not said much
about correlation of tracks in space in the mica crystals. Perhaps computer analysis of
images of adjacent sheets could be used to search for tracks not lying in the recording
plane of the mica. As both of these topics were of considerable interest to Mike, and
were interrelated, he invited both of them to join his small group for a meal. They
accepted his offer.

20.12 After Dinner Discussion

Three taxis ferried them away from the lecture theatre. At the restaurant polite con-
versation held sway as the new guests settled in with Richard, Ann, Chris, Juan,
John and Mike. The man, probably in his late twenties, was Dr. Robert Williams,
a lecturer in physics in the University of London. Mike guessed the woman, Dr.
Susan Johnsen,6 was perhaps a little older. She was a project leader in an IT spin-off
company from Cambridge University. As soon as the ordering was finished Richard
started the questions.

‘Mike, about the curved lines. Do you have some examples?’

6The last two characters are fictional.
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A ring file was already on the table and Mike opened it near the end. He handed
it to Richard who started to turn the pages. Each page held two or more examples in
a transparent holder. It was soon clear to Richard why the curved lines were of an
unusual nature. They looked like particle tracks but the sudden changes in direction
of parts, together with the curved sections, was hard to reconcile with a single kind
of known particle. Even if it was assumed that the sudden change of direction of a
track was due to one particle decaying into another there was still the problem of the
curved parts. After looking at all fifteen examples Richard had to admit that they did
pose a problem. They were inconsistent with the properties of quodons, which left
either charged particles or something new. Interesting and probably challenging. He
wondered which, if any, of the students at his university might be interested. Lost
in thought he turned another page and saw a very different kind of pattern. It was
headed ‘Massive damage’.

Robert had been watching Richard quietly and read the heading, too. As he reached
out his hand he said politely: ‘Please, may I?’ It was then his turn to study mica for the
first time. There were only five examples. Both Kathy and Richard watched as Robert
flipped from page to page. Mike offered a watchmaker’s eyeglass, which Robert tried
to hold in his eye socket but only managed a few seconds before it fell. He gave up,
held the eyeglass and bent down close to the page. For about a minute he scanned the
samples. Looking up he asked if he could remove them from the plastic holder. Mike
nodded. Robert then saw that some of the sheets of mica containing the samples had
been split in to three thinner sheets, held together on one edge by tape. He carefully
turned the thin sheets and saw that the markings occurred in each of them. Looking
up he asked if more of the crystal was available, especially the adjacent sheets. Mike
shook his head and started to explain. When crystals of mica are dug out from the
mine they are immediately split in to sheets about 2 mm thick, to see if they are clear,
that is free of lines and markings. Clear sheets are more valuable commercially. The
only way to avoid the loss of spatial correlation by this preliminary splitting was to
go to a working mine. That he had failed to manage.

It was then Susan’s turn to examine the examples of massive damage. It was
obvious to her that the techniques she used to look for spatial correlations in both
mammogram and ultrasound images could be applied to mica. With each sheet typ-
ically containing hundreds of lines and even more dots it was almost impossible for
the human eye and brain to detect correlations between adjacent sheets except for
the most obvious cases. But such tasks were a doddle for computers. Looking up she
asked: ‘Do the particles move in all directions?’

Mike said: ‘Charged particles, yes, but not the quodons and kink-like pulses. The
path lengths of charged particles of the same energy will vary depending on their
direction relative to the crystal lattice due to channeling. The form of the decoration
on the massive damage events is very unusual. It does not show correlation with the
chain directions so is unlikely to be connected with fans from atomic cascades. Yet
there is something that propagates away from the centre of the massive damage region
that is correlated in adjacent sheets. There also is evidence for localised fracture of
the crystal but it is hard to see how fractures could occur in the middle of a crystal.
Do you think your techniques could be used here?’
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Susan nodded and, trying to hide her enthusiasm, said: ‘Yes, I think they could.’
Sensing her interest Mike said: ‘Might you be tempted?’ He then explained that

he knew his work was restricted by the lack of data on spatial correlations. Recalling
Richard’s introduction about the Rosetta stone, he said that so far his work was like
studying random loose pages from numerous books from which it was impossible
to deduce or build up a picture of the whole story. A whole new chapter, perhaps the
whole book, of the mica story could be opened up if someone started to apply her
techniques to mica.

The main courses arrived and mica was forgotten about. But not for long. Soon
Juan raised the topic of fusion. He said: ‘In your estimates of the rate of fusion in
lithium deuteride I think you said you used the data for rates of fusion applicable for
ions in a plasma. Have you looked at what happens if the nuclei are brought closer
together before the quodons get to them? As, for example, in a solid or even in a
fluid contained under high pressure, as suggested by Vladimir Dubinko.’

Mike nodded then said: ‘It is complicated. Let’s look at the ‘fluid-under-high-
pressure’ case first. Certainly, the nuclei can be brought closer together than in solid
lithium deuteride. This could happen in metals where deuterium has migrated to
voids caused by radiation damage. The first problem is that the deuterium might not
be organized in space so as to allow the propagation of quodons. The next one is
the problem of transmission of quodons from one lattice structure to another as it
passes from bulk material to the filled voids. I think these are real problems. As to the
effect of bringing the nuclei closer together in a solid I find it useful to think about
the energy of formation of the solid. Typically, the chemical energy needed to form
a solid is of order a few eV per atom, say, less than ten. This is much smaller than
the maximum collision energy expected when two quodons are interacting, perhaps
up to 300 eV. So I doubt that bringing the atoms a bit closer will help much. Kink-like
pulses can have even higher energies. However, the problem with them is that they
have a finite lifetime. For these reasons I think solid LiD is still the best potential fuel.
But what is the actual rate of fusion? A test experiment needs to be done. At present,
I am not hopeful that it can be raised in some way so as to become of practical use.
But who knows? Where are the young guns with new ideas? Will anyone attempt a
test of the idea? Perhaps it might be tried in India or China?’

Despite Mike’s somewhat gloomy thoughts on fusion, unknown to him Susan
was excited about the possibilities of looking for tracks, and who knows what else,
moving in all possible directions and not just in the very selective cleavage plane.
The scope was enormous! A relatively simple procedure would be to scan sheets
of about 1 mm thickness, look for black decoration dots that overlapped in adjacent
sheets and discard the rest. This should identify tracks that were at an angle to the
(001) recording plane. The same method could be used to identify quodon tracks
created by a particle moving in any direction. A nice thing was that it would not
require any great funding, as she had most of the equipment already. Probably, the
biggest challenge would be to get some mica crystals before they were split up at
the mine. She would do an online search immediately, looking for suppliers of mica
and follow that up with a search of government departments dealing with minerals
and resources. Another possibility might be to approach a museum that had a large
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crystal of muscovite to see if they would allow the information inside the crystal
to be extracted (Fig. 20.5). The crystal could be reassembled and glued afterwards
without it showing.

Meanwhile, Juan was coming to terms with the knowledge that he probably
held the key to unlocking a deeper understanding of the properties of quodons and
breathers by using molecular dynamic tools. The available experimental evidence
suggested that quodons propagated to some extent in most crystals satisfying the
basic C2 symmetry. Was the long term stability of quodons observed in mica depen-
dent on a layered crystal structure? Perhaps the stability arises from the quantum
properties of matter.

Almost as an afterthought, Mike mentioned a paper that Prof. Jesus Cuevas had
just brought to his attention. It reported studies of diffusion of impurities of boron
(B) and phosphorous (P) in a layered crystal of Germanium (Ge) when irradiated
with energetic protons [5]. It was a well-designed experiment and kink-like pulses
would be produced copiously. But there is no evidence for quodons propagating in
diamond-type lattices. It showed that B diffused faster than P. The main differences
between B and P are that they lie either side of Ge in the periodic table and, perhaps
more important, B has a smaller mass than P. The importance of this paper was
that it dealt with thin, artificially layered, crystal structures, which are becoming of
commercial importance. In fact, layered materials and their properties is a frontier
subject.

The meal ended, email addresses swapped and requests made for reports. Kathy
said she would be in touch with Mike. It had been an interesting day for all. Mike
realised that it might well be his last such meeting as he shook hands and brushed
faces with the delightful ladies.

When finally alone in the taxi and making their way back to their hotel Ann asked
Mike: ‘Happy?’ He replied: ‘Yes and no. Of course, deep down I’m at peace with
myself in that, despite all the self-doubts and often being out of my depth, I did make
a discovery in physics. From when I first started to learn about atoms and nuclei my
dream was to make a discovery. As to the significance of what I did only time will tell.
Obviously, it was not of Noble Prize class but science mostly progresses by small
steps. In contrast, my various inventions were satisfying but they were transitory.
The tracks in mica and the quodon stuff will last forever, with who knows what
might come from them. I’m quite excited about the possibility of looking for very
rare cosmic events. On the other hand, I’m disappointed that LANF seems not to
be practical. I really did hope that nonlinear confinement and localization of energy
in a lattice might offer an alternative way towards controlled fusion. The proposed
and planned plasma thermonuclear reactors are so complicated and have enormous
radiation damage problems. Maybe quodons will be of use in annealing some of that
damage.’

Ann said: ‘Yes, the dreaded quodons have taken up a lot of your life. Can they fly
on their own yet?’

‘You know, the mica stuff was so interesting I just could not forget it. It took me,
and you, to all sorts of new places with unexpected outcomes. Most of the time it just
sits at the back of my mind waiting for something to trigger a new thought. There
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were some blind alleys but mistakes are part of the game. Now I’m slowing down.
I think it might be timely to publish a short review of the decipherment of the mica
markings and, who knows, perhaps get a little of the glory Maurice Pope predicted!’

The next day he received an unexpected email from a Prof. Manuel G. Velarde
inviting him to join in a workshop, all expenses paid, to look at the possible involve-
ment of quodons or breathers in the still unsolved problem of high temperature
superconductors. Intrigued by the invitation, Mike emailed Juan to ask if he knew
anything about Prof. Velarde. Juan replied quickly, saying he was one of the most
respected scientists in Spain and said look on the web. That showed that Manuel was
at the Instituto Pluridisciplinar at the Universidad Complutense de Madrid, with an
astonishing output of work in many overlapping disciplines. Once again, just like his
first meeting with Chris, Mike was apprehensive of how he would fit in with a group of
theoreticians. Nevertheless, he accepted the invitation, scheduled for mid-February
2010.

20.13 Recent Developments

What has happened since this manuscript was written in 2010? As of December 2013
quite a lot. The main areas of study have been in the following topics:

1. Trying to reconcile the sometimes conflicting evidence from molecular dynamic
(MD) studies and computer simulations of lattice excitations with the mica evidence.
MD studies of atomic cascades in metals show clear evidence for supersonic kink-like
pulses but evidence for breathers remains elusive. Mobile breathers have been seen
in MD studies of a few metals but only in absence of thermal motions [13]. Kink-like
pulses seem to be ubiquitous, showing up in metals, insulators and diamond-type
crystals [20, 21].

2. Studies of the recording process opened new areas. It was a big surprise when
it was found that all the mica crystals that showed lines had an exceptionally high
iron content, of about 4 atomic percentage. This was found by Prof. Godfrey Fitton
at Edinburgh University in 2013. Mike’s studies of the amount of iron precipitated
showed that it was minute compared to the total iron content of a crystal. Typically,
only about 10−3 of the total was deposited in the most heavily decorated sheets and
as low as 10−6 in the sheets showing the finest lines of positron tracks. It is still not
know where the Fe atoms sit in the mica but it is clear that they must be near or in
the potassium layers because of the speed and sensitivity of the recording process
for recording relativistic positrons.

3. Perhaps the biggest development has been the realization that the fans in mica
are created by kink-like pulses created in atomic cascades. Kink-like pulses as seen
in MD studies have only short lifetimes giving ranges of 100 atoms. However, it
was realized that the recording process, which is exothermic, must give energy to
kink-like pulses and so could give them almost infinite range—provided they kept
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on gaining energy from the lattice [32]. The only site for energy gain of a kink-
like pulse is by insertion of an interstitial just behind the kink, where the spacing
between atoms is temporarily increased. This finding explained the observation of
small fans on muon tracks in crystals, due to atomic cascades from nuclear scattering,
with delicate decoration and large fans with heavy decoration. It is still not known if
quodons can progressively gain energy; it is thought that they sometimes gain energy
but at other times lose it, averaging to no net gain.

Until there is strong evidence for mobile breathers that are stable against thermal
motions in metals the long range effects reported in irradiation damage studies are
most likely due to kink-like pulses that gain energy from annealing defects. Some
possible experiments to test this hypothesis have been proposed.

4. For Mike, 2013 was a very special year because of the ‘Quodons in Mica’
conference held in his honour.7 It took place in Altea, Spain, and was conceived and
brought to fruition by Juan Archilla, who believes that the mica story deserves wider
dissemination.

5. Mike is now turning his attention to the very rare events seen in mica. These
were first seen decades ago. Before these could be studied it was first necessary to
understand the origin of the most common types of recorded events so they could be
eliminated as the cause of the rare events. The last hurdle was the long range of the
fans, now explained as due to energy gain of kink-like pulses.

6. At the beginning of 2015 a new hypothesis appeared that seemed to explain
many things. By analyzing the charge state of the daughters of 40K decay [2] it
seemed that quodons may carry an electronic charge. The charge would be mostly
positive because electron decay is the dominant one, leaving a positive charge at the
start of a quodon. This would be consistent with the fact that the positive charge of a
positron causes a dark track just like the quodon tracks. The width of quodon tracks
is almost exactly the same as that of positrons when moving at the same speed as
quodons, which is near speed of sound.

This also explained why a quodon carrying a negative charge resulting from
emission of a positron was not visible by a dark track. A new field of research and
experiments was opened.
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Phonon spectrum (ILMs splitting from), 233
Phonon spectrum of a solid, 374
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