
Efficient MapReduce-Based Method
for Massive Entity Matching

Pingfu Chao1,2, Zhu Gao2, Yuming Li1,2, Junhua Fang1,2, Rong Zhang1,2(B),
and Aoying Zhou1,2

1 Institute for Data Science and Engineering, New York, USA
{rzhang,ayzhou}@sei.ecnu.edu.cn

2 Shanghai Key Laboratory of Trustworthy Computing, Shanghai, China
{51121500001,10132510331,51141500019,52131500020}@ecnu.cn

Abstract. Most of the state-of-the-art MapReduce-based entity match-
ing methods inherit traditional Entity Resolution techniques on cen-
tralized system and focus on data blocking strategies in order to solve
the load balancing problem occurred in distributed environment. In this
paper, we propose a MapReduce-based entity matching framework for
processing semi-structured and unstructured data. We use a Locality
Sensitive Hash (LSH) function to generate low dimensional signatures for
high dimensional entities; we introduce a series of random algorithms to
ensure that similar signatures will be matched in reduce phase with high
probability. Moreover, our framework contains a solution for reducing
redundant similarity computation. Experiments show that our approach
has a huge advantage on processing speed whilst keeps a high accuracy.

1 Introduction

Entity matching aims to identify entities referring to the same real-world object.
However, the rapid growth of web data and User Generated Content (UGC)
brings new challenges for entity matching. For instance, in the scenario of C2C
(Customer to Customer) online markets, as the rarity of descriptions, missing of
uniform schema or intended errors generated by users, tradition entity matching
methods are not able to get good match performance.

Though MapReduce provides a new platform for solving massive entity
matching problem, new challenges occur: load balancing problem and net-
work transmission cost. Blocking-based entity matching algorithms have been
presented to deal with the imbalance problem. Some of the most influential
works include sorted neighborhood-based and load-balanced entity matching
in Dedoop[3], and document-similarity computation[1]. But for processing non-
structured data, these kinds of work meet high network cost and computation
cost.

This paper sketches out a random-based framework for entity matching based
on MapReduce for semi-structured and unstructured data. Inspired by previous
studies, our method expects to reduce both the computation cost and network
transmission cost whilst promises the processing performance. We convert high
c© Springer International Publishing Switzerland 2015
J. Li and Y. Sun (Eds.): WAIM 2015, LNCS 9098, pp. 494–497, 2015.
DOI: 10.1007/978-3-319-21042-1 48

Efficient MapReduce-Based Method for Massive Entity Matching 495

dimensional entity features into low dimensional bit vector by Locality Sensitive
Hash (LSH) function in map phase[4], which reduces the network transmission
cost dramatically. We do t rounds of random permutations to those bit vectors.
It helps to make similar items paired with high probabilities. Our random-based
design can also ensure load-balanced during matching process. Finally, we design
a new solution for removing redundant computation in reduce phase.

2 MapReduce-Based Entity Matching Framework

Our entity matching framework is shown in Fig. 1. We represent each entity by its
high dimensional feature vector generated from the structured, unstructured or
semi-structured description data, if any. These vectors are the input of our MapRe-
duce job, as shown in Fig. 2. The first round of MapReduce job implements the
Entity Matching job, while the second one realizes the Redundancy Control.

Fig. 1. Framework of random-based entity matching on MapReduce

Fig. 2. Example of random-based matching algorithm on MapReduce

Entity Matching. The input is a set of (key, value) pairs with the entity ID Eu

as its key and its k -dimension vector Vu as its value. In map phase, we generate a
signature for each item u using the LSH function hr defined in Eqn.1. We gener-
ate a random k -dimension vector set Vr with |Vr| = d. Calculating the hash values
between u and every vector inVr usinghr, we get a d -bits vectorSu as the signature
for item u, d � k. Then we apply t rounds of random permutations to every signa-
ture Su and get t different d -dimension bit vectors {Pu1, Pu2, ..., Put}. We regard
this result as our map output. So for each entity u, we have t different map outputs
as (i, Pui, Eu), in which i refers the permutation series number (i ∈ t), Pui refers
the ith permutation result, and Eu is the entity ID.

496 P. Chao et al.

In Reduce phase, each reducer receives permuted signatures of the same series
number. It sorts all signatures and generates pairs between each signature and
its m nearest neighbors. Then we calculate the hamming distance of every pair.
We output the entity pairs with their similarities as (EuEv, similarity) with
u < v.

hr(u) =

{
1 r.u≥0
0 r.u<0

(1)

We use the LSH function preserving cosine similarity [2] to generate a signa-
ture Su for each entity u. Since the signature carries most of the characteristics
of a vector, we can measure the similarity of two vectors by comparing their
signatures. We use the hamming distance between two signatures to represent
the similarity, which is reasonable and well proved [4]. In reduce phase, we pro-
pose a random permutation algorithm inspired by PLEB algorithm[4] to ensure
entities with high similarity to be paired with high probabilities.

Redundancy Control. There can be many duplicated pairs in different groups
during reduce phrase as marked in Fig. 2. It may cause significant redundant
computation cost. We introduce an extra MapReduce job to reduce duplication.
In reduce phase of the first MapReduce job, we remove the similarity computa-
tion step, and directly send all the pair-wise data to the second MapReduce job.
The second map job does nothing. After the shuffle phase, all pairs with the same
entity IDs are grouped together. So we pick one pair of permuted signatures in
the group and calculate its hamming distance on behalf of the others. At last,
we output the similarity (EuEv, similarity) as our result.

3 Experiments

We run experiments on a 22-node HP blade cluster. Each node has two Intel
Xeon processors (E5335 2.00GHz) with four cores and one thread per core, 16GB
of RAM, and two 1TB hard disks. All nodes run CentOS 6.5, Hadoop 1.2.1,
and Java 1.7.0. We use CiteSeerX data set, which contains nearly 1.32 Million
citations of total size 2.89 GB in XML format. Each citation includes record ID,
author, title, date, page, volume, publisher, etc and also abstract. We compare
the performance of our algorithms with Document Similarity Self-Join (DSSJ)[1]
and Dedoop[3]. We use accuracy and run-time metrics to evaluate performance.

In order to measure the accuracy, we manually generate a validation set
which contains 200 records. We output the top 10, 20 and 50 similar pairs for
each algorithm. Since Dedoop compares all possible pairs and calculates cosine
similarity directly, Dedoop is the best as in Fig.1. Ours achieves better accuracy
than DSSJ with much less computation cost as in Fig.3. For processing speed,
since Dedoop and DSSJ generate enormous size of pairs, they cost much network
transmission and bring big burden for in memory processing as in Fig. 3. In our
experiment, the transmission data generated by Dedoop or DSSJ is up to several

Efficient MapReduce-Based Method for Massive Entity Matching 497

Table 1. Accuracy Comparison

Name Top 10 Top 20 Top 50
DSSJ 90% 95% 94%
Ours 90% 100% 94%

Dedoop 100% 100% 100%

Fig. 3. Run-time Comparison

terabyte for 200MB source data. However, our algorithm is significantly faster
than Dedoop, and far more stable even dealing with gigabytes of input data.

4 Conclusion

In this paper, we study the problem of matching the entities with high-
dimensional feature vectors based on MapReduce. We take the MapReduce
framework as our programming model and point out the two major challenges
met on this model, which were load balancing problem and network transmis-
sion cost. We propose a random-based matching method to solve the matching
problem. We use LSH function to generate signatures for entities and based on
random permutations, we can promise similar candidate to be paired with high
probabilities. Given the proposed algorithm, we implement it in Hadoop and
compare with the other algorithms. We achieve much lower computation cost
while still keep high accuracy.

Acknowledgment. This work is partially supported by National Basic Research Pro-
gram of China (Grant No. 2012CB316200), National Science Foundation of China
(Grant No.61232002, 61402180 and 61332006), and Key Program of Natural Science
Foundation of Yunnan Province under grant No. 2014FA023.

References

1. Baraglia, R., De Francisci Morales, G., Lucchese, C.: Document similarity self-join
with mapreduce. In: Proc. of Data Mining (ICDM), pp. 731–736. IEEE (2010)

2. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: Proc.
of the Thiry-fourth Annual ACM symposium on Theory of Computing, pp. 380–388.
ACM (2002)

3. Kolb, L., Thor, A., Rahm, E.: Dedoop: efficient deduplication with hadoop. Proc.
of VLDB 5(12), 1878–1881 (2012)

4. Ravichandran, D., Pantel, P., Hovy, E.: Randomized algorithms and nlp: using
locality sensitive hash function for high speed noun clustering. In: Proc. of ACL,
pp. 622–629. Association for Computational Linguistics (2005)

	Efficient MapReduce-Based Method for Massive Entity Matching
	1 Introduction
	2 MapReduce-Based Entity Matching Framework
	Entity Matching.
	Redundancy Control.

	3 Experiments
	4 Conclusion
	References

