
SALA: A Skew-Avoiding and Locality-Aware
Algorithm for MapReduce-Based Join

Ziyu Lin1(B), Minxing Cai1, Ziming Huang1, and Yongxuan Lai2

1 Department of Computer Science, Xiamen University, Xiamen, China
{ziyulin,caiminxing,ziminghuang}@xmu.edu.cn

2 School of Software, Xiamen University, Xiamen, China
laiyx@xmu.edu.cn

Abstract. MapReduce is a parallel programming model, which is exten-
sively used to process join operations for large-scale dataset. However,
traditional MapReduce-based join is not efficient when handling skewed
data, because it can lead to partitioning skew, which further results in
longer response time of the whole join process. Additionally, some newly
proposed methods usually involve large amounts of intermediate results
over the network in the shuffle phase of Mapreduce-based join, which may
consume a lot of time and cause performance degradation. Here a novel
algorithm called SALA is proposed, which employs volume/locality-aware
partitioning instead of hash partitioning for data distribution. Compared
with other existing join algorithms, SALA has three typical advantages:
(1) makes sure that the data is distributed to reducers evenly when the
input datasets are skewed, (2) reduces the amount of intermediate results
transferred across the network by utilizing data locality, and (3) does
not make any modification of the MapReduce framework. The extensive
experimental results show that SALA not only achieves better load bal-
ance but reduces network overhead, and therefore speeds up the whole
join process significantly in the presence of data skew.

1 Introduction

MapReduce is an efficient programming model from Google for large-scale data
processing in domains such as search engine, data mining and machine learn-
ing. MapReduce is extensively used to process the join operation for large-scale
dataset, and various join algorithms have been proposed to implement join oper-
ation in MapReduce environment [3].

Traditional MapReduce-based join algorithms, however, are suffering perfor-
mance degradation when handling skewed data , because they use hash parti-
tioning to distribute data that can lead to partitioning skew. Partitioning skew
will bring some problems. On one hand, join algorithms have to take longer time
to deal with load imbalance caused by partitioning skew. On the other hand,

Supported by the Natural Science Foundation of China under Grant No. 61303004
and 61202012, and the Natural Science Foundation of Fujian Province under Grant
No.2013J05099.

c© Springer International Publishing Switzerland 2015
J. Li and Y. Sun (Eds.): WAIM 2015, LNCS 9098, pp. 311–323, 2015.
DOI: 10.1007/978-3-319-21042-1 25

312 Z. Lin et al.

large amounts of intermediate results have to be moved from mappers to reduc-
ers over the network, thus introducing extra network overhead. As a result, join
processing upon skewed data consumes more time.

Some methods such as SAND [2] and LEEN [2], have been proposed to
solve the problem of data skew in MapReduce-based join, which adopt parti-
tion schemes considering the key’s frequency distribution. However, SAND does
not take into account the network overhead. LEEN not only solves load imbal-
ance but also reduces network transmission, however, it changes the internal
implementation scheme of Hadoop and ignores the advantage of overlapping [1]
between the shuffle and map phases.

To overcome the above deficiency, we proposed SALA (Skew-avoiding and
Locality-aware) MapReduce-based join algorithm, which uses volume/locality-
aware partitioning to distribute data and does not make any modification of
the MapReduce framework. Our approach firstly obtains the distribution infor-
mation of key’s frequency and location through data sampling. Based on this
distribution information, SALA is able to guarantee the uniform distribution of
data even when skewed data exist, so as to effectively avoid partitioning skew.
At the same time, SALA reduces the amount of data transferred over network
by utilizing the data locality feature of MapReduce, i.e., assigning keys to the
nodes on which most of the intermediate results are located. This significantly
improves the efficiency of the whole join operation.

In summary, we make the following major contributions:

– A novel algorithm called SALA is proposed to handle skewed data in
MapReduce-based join. It not only achieves better load balance but reduces
shuffled data over the network, thus resulting in significantly performance
improvement.

– Volume/locality-aware partitioning scheme is proposed to distribute data,
which is easy to implement without any modification of the MapReduce
framework.

– We carry out extensive experiments and the results show the efficiency of
SALA in the presence of data skew.

The rest of this paper is organized as follows. Sect.2 briefly introduces
MapReduce-based join, and then we investigate the problem of data skew in
Sect.3. Sect.4 presents the detail of the SALA. Extensive experimental results
are reported in Sect.5. Related work is reviewed in Sect.6. Finally, we conclude
the paper and discuss our future work in Sect.7.

2 MapReduce-Based Join

MapReduce-based join algorithms can be classified into two categories: map-side
join and reduce-side join. For map-side join, the smaller input dataset is placed
on each mapper and join operation only needs to be executed in the map phase
to get the final results. Instead, a reduce-side join is carried out on the reduce
phase. First, the map function takes the input dataset from DFS(Distributed File

SALA: A Skew-Avoiding and Locality-Aware Algorithm 313

Fig. 1. The process of repartition join with the dataset R and S

System), and generates key-value pairs with the form of (Key, Value) as interme-
diate results, wherein Key represents join attribute. These intermediate results
are to be assigned to reducers using hash partitioning. Second, in the shuffle
phase, the reducers are notified to pull partitions across the network. Finally, the
reduce function performs join operation with (Key, list(Value)) pairs, wherein
list(Value) is a list of values associated with the given key Key, and writes the
final results to DFS. Fig.1 shows the process of a join operation between the
dataset R and S with a typical reduce-side join algorithm, which is called repar-
tition join[3].

Map-side join algorithms are more efficient than reduce-side join algorithms,
because they produce the final results in map phase without shuffling data across
the network. However, they can be used only in particular circumstances, i.e.,
one of the input datasets must be small enough to be buffered in memory of
nodes. Reduce-side join algorithms are commonly used because they have fewer
restrictions on input datasets. Therefore we focuse on the problem of data skew
in reduce-side join.

3 The Problems in MapReduce-Based Join

MapReduce-based join algorithms sometimes suffer performance degradation
from partitioning skew and heavy network overhead.

3.1 Partitioning Skew

Traditional join algorithms use hash partitioning to distribute data. Hash par-
titioning, the default partitioning function used in MapReduce model, is based
on key hashing: hash(Key) mod R, wherein R is the number of reducers, which
can allow data to be distributed uniformly when there are no skewness in the
input datasets. In practice, however, partitioning skew tends to occur in process-
ing skewed data and cause load imbalance, which means large amounts of data

314 Z. Lin et al.

are distributed on only a few nodes. Because the larger the volume of partition
is, the longer time it takes to process data. In addition, the response time of
a MapReduce job is dominated by the slowest reduce instance. So partitioning
skew results in longer response time of MapReduce-based join on the whole.

According to the process of repartition join shown in Fig.1, to which node
the intermediate results will be distributed, is determined by the partitioning
function. Therefore, the key factor to achieve load balance in MapReduce-based
join operation lies in whether or not the partitioning function can guarantee
uniform distribution of data.

3.2 Heavy Network Overhead

Apart from partitioning skew, network overhead is another non-negligible prob-
lem. Large amounts of intermediate results are produced and need to be trans-
ferred across the nodes through network, which may consume a lot of network
resources and result in longer execution time. For Hadoop, it runs mappers on
those machines where splits of input datasets are located, so as to avoid net-
work overhead. Most existing MapReduce-based join algorithms, however, does
not take full advantage of such data locality feature in the reduce phase, and
as a result, lots of intermediate results have to be transferred over network dur-
ing the shuffle phase. In addition, transmission for skewded partitions may also
introduce extra network overhead, because they have more data to transfer than
non-skewed partitions. What’s more, the reduce phase only can start after the
shuffle phase completes, so network overhead is to increase the response time of
the whole join operation.

Therefore, with evenly distribution of partitions, data transmission time
tends to be equal among various partitions. In addition, applying the data local-
ity feature in the reduce phase, can also reduce the amount of the transferred
data and further improve the performance of join operation.

4 SALA Join Algorithm

To solve the above problem, we propose SALA join algorithm to handle skewed
data and reduce network overhead. In this section, we first present an overview of
SALA, and then present the volume/locality-aware partitioning used in SALA in
detail. Also a example is discussed to compare SALA join with repartition join.
Finally, we propose a cost model to analyze the performance of our algorithm.

4.1 Overview

We propose SALA join algorithm to handle skewed data. The core idea of SALA
join is to distribute intermediate results based on the distribution information of
key’s frequency and location. With volume/locality-aware partitioning scheme,
SALA join is able to not only handle skewed data but also reduce network
overhead.

SALA: A Skew-Avoiding and Locality-Aware Algorithm 315

Fig. 2. The process of SALA join algorithm

Fig.1 shows the traditional process of MapReduce-based join, and the join
process with SALA is shown in Fig.2. The main difference between the two
algorithms is that SALA adds an additional MapReduce job to obtain key’s
distribution information. The SALA join includes two phases:

1. Phase 1: sample the input dataset and pre-compute the data to get the
partitioning results, represented as K-P. K-P is a mapping array, and each
of the array element is a map between a key and the partition that the key
is assigned to.

2. Phase 2: perform the actually join operation. The join process is similar with
repartition join, except that SALA join directly partitions the intermediate
results according to K-P instead of using hash partitioning.

Since phase 2 of SALA is similar with repartition join, so we mainly focus
on phase 1, i.e., the pre-partitioning process.

4.2 The Pre-partitioning Process

The pre-partitioning process is to pre-compute the sample input dataset to get
K-P. and includes three phases - map phase, combine phase and reduce phase:

– Map phase: process the sample input dataset and take the join attribute as
the Key. The output will be (Key, (node, 1)), wherein node represents the
node on which the data is located and the number 1 represents the frequency
of this key.

316 Z. Lin et al.

– Combine phase: the combine task will count the frequency of each key on
the current node and the output will be (Key, (node, sum)), i.e., outputting
the total frequency of each Key on the node.

– Reduce phase: volume/locality-aware partitioning is employed to get the
pre-partitioning result (Key, Partition), i.e., K-P.

Volume/locality-aware partitioning plays an important role in SALA join, so
we discuss it in more detail below.

4.3 Volume/Locality-Aware Partitioning

Volume/locality-aware partitioning can not only deal with partitioning skew to
achieve load balance, but also reduce the data transferred over network. Assum-
ing that the data volume is M (which can be represented by the rows of the
input dataset) and the number of nodes is N. In order to achieve load balance,
the volume of data distributed to each node should be close to M

N . To reduce
data transferred over network, volme/locality-aware partitioning makes full use
of data locality feature by adopting greedy selection strategy as follows:

1. Each key value is distributed in higher priority to the node on which most
intermediate results of this key are located.

2. First process the key value which has larger size of intermediate results.

Volume/locality-aware partitioning involves the following two steps:

1. Preparing step:
(a) Compute the total rows of intermediate results of each key value in all

nodes and write it as Tkey.
(b) Extract all (Key, node, sum) tuples from (Key, list(node, sum)) paris

and store them in list L, meanwhile, put all key values into set K. After
that, sequence all tuples in L in descending order based on the size of
sum.

2. Partitioning step:
(a) Traverse list L and process each tuple (Key, node, sum). We use Pkey

to represent the partitioning result of each key value, which means to
which node the key value should be distributed, and use Vnode to record
the volume of data that has been distributed to the node at present. If
Pkey is null, then determine whether or not Vnode + Tkey ≤ M

N . If it is
true, let Pkey = node and Vnode = Vnode + Tkey.

(b) Lastly, there may be some key values in K which have not been parti-
tioned. In this case, find out the smallest Vnode, to which the minimum
volume of data is distributed at present, and then Pkey will be the node
that refers to Vnode.

Algorithm 1 in Fig.3 formally describes volume/locality-aware partitioning.
Due to the random sampling method used in the pre-partitioning process, there

SALA: A Skew-Avoiding and Locality-Aware Algorithm 317

Algorithm1: Volume/Locality-aware Partitioning
Input: pairs of (Key, list(node, sum));

M← rows of input dataset; N← the number of nodes;
Output: partitioning results K-P

1. T← total rows of intermediate results in all nodes for each key value;
2. traverse the input and put all (Key, node, sum) into L, put all Key into K;
3. initialize the list P and V ;
4. for each (Key, node, sum) ∈ L do
5. if P [Key] is null and V [node] + T [key] ≤ M

N
then

6. P [Key] = node;
7. V [node] = V [node] + T [Key];
8. endif
9. endfor
10. for each Key ∈ K do
11. if P [Key] is null then
12. node ← the node that refers to minimum V [node] in V ;
13. P [Key] = node;
14. V [node] = V [node] + T [Key];
15. endif
16. endfor
17. return P as K-P ;

Fig. 3. The algorithm of volume/locality-aware partitioning

are some key values which may not be counted in. Therefore, when the interme-
diate results are partitioned in the perform-join process, key values which have
been counted in will be partitioned according to the K-P, while key values which
have not been counted in will still be partitioned by hash partitioning. Given
that key values which have not been counted in only involve a small part of all
key values, they will have negligible impact on the data distribution.

4.4 Example

Taking the following join operation for example: R
R.a=S.a

� S. Assuming that
there are 3 nodes in the cluster and the input data volume of each node is the
same, i.e., 70, but with skewed data. Fig.4(a) shows the intermediate results
produced in the map phase, in which, each row represents one key group (Key,
volume), wherein volume is the data volume of this key value on the present
node.

The partitioning results of repartitioning join and SALA join are shown in
Fig.4(b) and Fig.4(c) respectively. According to Fig.4(b), partitioning skew hap-
pens in repartition join. Too much data are distributed to Node3, almost four
times of that distributed to Node1. Therefore, load imbalance appears. However,
as Fig.4(c) shows, SALA join algorithm has achieved better load balancing, and
at the same time, the overall network overhead has reduced by 36% compared
with repartition join.

318 Z. Lin et al.

(a) Distribution of intermediate results

(b) Partitioning with repartition join (c) Partitioning with SALA join

Fig. 4. Partitioning results of various methods

With SALA join algorithm, the volume of data distributed to each node
will tend to be equal and load balance is therefore achieved. Further, because
each key value is first distributed to the node on which most of its intermediate
results are located, the overall volume of data to be transferred over network is
remarkably reduced and the performance of join operation is improved.

4.5 Cost Model

As shown in Fig.1, the whole processing time of the traditional reduce-side join
algorithm includes three parts: processing time of map phase, transmission time
of shuffle phase and processing time of reduce phase. For convenience, we use
the following notations in Table 1:

Table 1. Table of notations

Notation Meaning

tm processing time for a record of input datasets in map phase

ts transmission time for a record in shuffle phase

tr processing time for a record in reduce phase

M total rows of input dataset

Ms total rows of sampling input dataset

N the number of nodes

B average available bandwidth of nodes

L data locality of partitions

s skewness of input dataset

Because the response time of a MapReduce job is determined by the slowest
reduce instance, we can estimate the response time by the reducer which is
allocated the most volume of data, represented as R. Therefore, the cost model
for a traditional reduce-side join algorithm is as follows:

Ttra = tm · M
N

+
R · (1 − L)

B
+ tr · R (1)

SALA: A Skew-Avoiding and Locality-Aware Algorithm 319

With uniform distribution of data, Re tends to be M
N . In the case of parti-

tioning skew, however, Rs tends to be:

Rs = M · s +
M · (1 − x)

N
(2)

The key values are K={k1, k2, . . . kn}, and Fk represents the frequency
of key value k on nodes. With hash partitioning, the data locality Ltra is
∑kn

k=k1
mean(Fk)

M . Therefore, the cost model for a traditional reduce-side join algo-
rithm in the case of partitioning skew can further be written as:

Ttra = tm · M
N

+
Rs · (1 − Ltra)

B
+ tr · Rs (3)

With SALA join, the data locality Lsala tends to be
∑kn

k=k1
max(Fk)

M . SALA
join guarantees the uniform distribution of data, but needs an additional pre-
partitioning process, and the required time of pre-partitioning process is repre-
sented as Tpre. Therefore the cost model for SALA join is:

Tsala = Tpre + tm · M
N

+
Re · (1 − Lsala)

B
+ tr · Re (4)

Thus, SALA join algorithm is superior to traditional reduce-side join algo-
rithm when satisfying the following condition:

Tsala −Ttra < 0 ⇒ Tpre <
Rs · (1 − Ltra) − Re · (1 − Lsala)

B
+ tr · (Rs −Re) (5)

As can be seen from Eq.(5), SALA join performs better when the decreased
of time results in from avoiding solving the partitioning skew is greater than
the time used to process pre-partitioning. We can therefore employ Eq.(5) in
optimal query plan selection. Here, according to many experiments, Tpre tends
to be 0.23 × tm × M

N and tr tends to be 0.69 × tm. We take N=5 and s=10%,
then Lsala = 2.94×Ltra and Rs = 1.4×Re, so the Eq.(5) is satisfied, as is shown
in Eq.(6). Also with the case of greater data skewness and the lower available
bandwidth, SALA join will performs much better.

Tpre = 0.23 · tm · M
N

<
0.4 + 1.54 · Ltra

B
· M
N

+ 0.28 · tm · M
N

=⇒ − 0.05 · tm − 0.4 + 1.54 · Ltra

B
< 0 (6)

5 Empirical Study

In this section, we conduct experiments to verify the efficiency of our approach.
We mainly use the response time of join operation to demonstrate performance
difference in the case of data skew. We compare SALA join with the reparti-
tion join algorithm [3] and SAND join algorithm [2], because repartition join is
extensively used, and SAND join is a typical join algorithm to deal with skewed
data.

320 Z. Lin et al.

5.1 Environmental Setup

Our experiments run on AliCloud (Alibaba Cloud Computing) with a 6-node
cluster running native Hadoop 2.4.1, where there are 1 master node scheduling
the task and 5 slave nodes taking charge of both storage and computation. Each
node has two Xeon 2.3Ghz CPUs, 4GB memory and 60GB disk drive. HDFS
block size is set to be 128MB and each node is configured to run one reducer
task.

We use TPC-H to generate the input dataset and take the following query
in our experiments:

select * from CUSTOMER C join ORDER O on C.CUSKEY = O.CUSKEY

In order to control data skewness, we randomly choose a portion of the input
dataset ORDER and change its CUSKEY to the same value. For example, if the
skewness is 10%, it means that we change 10% rows of the input dataset ORDER
to have the same value in the join attribute CUSKEY. Finally, we generate 20
million records for query with various degree of data skewness.

5.2 Partitioning Effectiveness

Firstly, our concern is whether or not SALA join can effectively solve the par-
titioning skew problem. As analysis in Sect.2 has suggested that the key factor
of load balancing is uniform distribution of data, we can therefore evaluate the
capability of a join algorithm to handle skewed data by the value of max-reducer-
input, i.e., the maximum volume of data distributed to any reducer. According
to Fig.5(a), as the degree of skewness increases, repartition join concentrates a
large amount of data on hot nodes, while both SALA join and SAND join can
guarantee the uniform distribution of data.

0% 5% 10% 15% 20%
0

1M

2M

3M

4M

5M

6M

7M

8M

M
ax

-r
ed

uc
er

-in
pu

t v
ol

um
e

(K
/V

 p
ai

rs
)

Data skewness

 Repartition SAND SALA

(a) Max-reducer-input

0% 5% 10% 15% 20%
0%

10%

20%

30%

40%

50%

60%

D
at

a
lo

ca
lit

y

Data skewness

 Repartition SAND SALA

(b) Data locality

Fig. 5. Partitioning with three join algorithms

SALA: A Skew-Avoiding and Locality-Aware Algorithm 321

Meanwhile, we use data locality to represent the volume of intermediate
results that do not need to be transferred over network. From Fig.5(b), we can
see that the data locality for SALA is much larger than the data locality for
both repartition and SAND methods. Because the larger the data locality is, the
less the volume of data required to be transferred across the network, thus less
data needs to be transferred in SALA join algorithm than in both repartition
and SAND methods.

5.3 Response Time

Fig.6(a) shows comparison between response time used to complete the given
join operation under different degree of data skewness. The performance of repar-
tition join is the best in the case of no or little data skewness, and the reason
is that both SALA join and SAND join require additional MapReduce job to
obtain frequency distribution of key values. However, with the increase of data
skewness degree, the response time of repartition join increases almost linearly.
The reason is that as the degree of data skewness increases, data will concen-
trates on hot nodes as Fig.5(a) shows, which increases the completion time of
the overall join operation. However, both SALA and SAND can guarantee load
balance, and therefore the response time remains steady with the increase of
skewness degree. Most importantly, SALA join algorithm performs better than
others when skewed data exist, because SALA not only achieves load balance
but also reduces network overhead, thus speeding up the join operation process
with the increase of data skewness degree.

0% 5% 10% 15% 20%
80

120

160

200

240

280

R
es

po
ns

e
tim

e
(S

ec
co

nd
s)

Data skewness

 Repartition SAND SALA

(a) when data skewness changes

200 150 100 50 0
80

120

160

200

240

280

R
es

po
ns

e
tim

e
(S

ec
on

ds
)

Average available bandWitdh (Mbps)

 Repartition SAND SALA

(b) when average bandwidth changes

Fig. 6. Response time for three join algorithms

Fig.6(b) shows the variation of response time under different bandwidths
when the degree of data skewness is 10%. It can be seen that as the average
available bandwidth reduces, the problem of network overhead becomes promi-
nent. It is because that the lower the bandwidth is, the longer time it will cost

322 Z. Lin et al.

to complete network transmission. By taking full advantage of data locality fea-
ture, the minimum volume of data is transferred with SALA join algorithm, and
therefore SALA is preferable in the case of low bandwidth.

6 Related Work

In recent years, various approaches have been proposed to deal with skewed data
in MapReduce-based join, such as [3,11,10,2,6,4,9,8]. The research work in [12]
has demonstrated that the default hash partitioning function in Hadoop is not
efficient for the skewed data and may lead to load imbalance of reducers.

The partitioning skew problem due to data skew can be solved by making a
good partition scheme based on the key’s frequency distribution, while sampling
is a common way to obtain key’s frequency [12,2]. The SAND join alogoritm [2]
uses simple range partitioning for data distribution to achieve load balancing.
Yujie Xu et al. proposed two partition schemes, namely cluster combination opti-
mization and cluster partition combination based on random sampling results,
to handle slight skew and heavy skew respectively.

Reducing the volume of data transferred across the network is an efficient
way to further improve the performance of data-intensive join operation. Based
on the priori knowledge of skewed key values, PRPD join geography proposed in
[11] keeps all skewed rows locally to reduce the data volume transferred among
nodes over network. LEEN scheme presented in [6] partitions the intermediate
results based on key’s frequency and the fairness score that is calculated after
the shuffle phase. However, LEEN scheme changes the internal implementation
of Hadoop and overlooks the advantage of overlapping between the shuffle and
map.

An alternative strategy to mitigate skew is dividing the workload into fine-
grained computation tasks and then scheduling them dynamically at runtime
[5,7,9]. SkewTune [7] first identifies the task with the greatest expected remaining
processing time when a node in the cluster becomes idle. The unprocessed data
of this unfinished task is then repartitioned in a way that fully utilizes the
computing power of cluster nodes.

7 Conclusion

In this paper, we propose SALA join algorithm, using volume/locality-aware
partitioning to distribute intermediate results. On one hand, SALA guarantees
the uniform distribution of data based on key’s distribution information and
therefore avoids partitioning skew problem. On the other hand, SALA takes full
advantage of the data locality feature to reduce the volume of data transferred
across the network. Experiments show that SALA is efficient to deal with skewed
data. Our future work includes further improving performance of SALA join and
extending volume/locality-aware partitioning to other MapReduce applications.

SALA: A Skew-Avoiding and Locality-Aware Algorithm 323

References

1. Ahmad, F., Lee, S., Thottethodi, M., Vijaykumar, T.N.: Mapreduce with commu-
nication overlap (marco). J. Parallel Distrib. Comput. 73(5), 608–620 (2013)

2. Atta, F., Viglas, S.D., Niazi, S.: Sand join - a skew handling join algorithm
for google’s mapreduce framework. In: 2011 IEEE 14th International Multitopic
Conference (INMIC), pp. 170–175, December 2011

3. Blanas, S., Patel, J.M., Ercegovac, V., Rao, J., Shekita, E.J., Tian, Y.: A com-
parison of join algorithms for log processing in mapreduce. In: Proceedings of the
ACM SIGMOD International Conference on Management of Data, SIGMOD 2010,
Indianapolis, Indiana, USA, June 6–10, 2010, pp. 975–986 (2010)

4. Bruno, N., Kwon, Y.C., Wu, M.-C.: Advanced join strategies for large-scale
distributed computation. PVLDB 7(13), 1484–1495 (2014)

5. Dhawalia, P., Kailasam, S., Janakiram, D.: Chisel: a resource savvy approach for
handling skew in mapreduce applications. In 2013 IEEE Sixth International Con-
ference on Cloud Computing, Santa Clara, CA, USA, June 28 – July 3, 2013,
pp. 652–660 (2013)

6. Ibrahim, S., Jin, H., Lu, L., Wu, S., He, B., Qi, L.: LEEN: locality/fairness-aware
key partitioning for mapreduce in the cloud. In: Proceedings of the Cloud Comput-
ing, Second International Conference, CloudCom 2010, November 30 – December
3, 2010, Indianapolis, Indiana, USA, pp. 17–24 (2010)

7. Kwon, Y.C., Balazinska, M., Howe, B., Rolia, J.A.: Skewtune in action: Mitigating
skew in mapreduce applications. PVLDB 5(12), 1934–1937 (2012)

8. Kwon, Y.C., Ren, K., Balazinska, M., Howe, B.: Managing skew in hadoop. IEEE
Data Eng. Bull. 36(1), 24–33 (2013)

9. Lynden, S.J., Tanimura, Y., Kojima, I., Matono, A.: Dynamic data redistribution
for mapreduce joins. In: IEEE 3rd International Conference on Cloud Computing
Technology and Science, CloudCom 2011, Athens, Greece, November 29 – Decem-
ber 1, 2011, pp. 717–723 (2011)

10. Yu, X., Kostamaa, P.: Efficient outer join data skew handling in parallel DBMS.
PVLDB 2(2), 1390–1396 (2009)

11. Xu, Y., Kostamaa, P., Zhou, X., Chen, L.: Handling data skew in parallel joins
in shared-nothing systems. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada,
June 10–12, 2008, pp. 1043–1052 (2008)

12. Xu, Y., Zou, P., Qu, W., Li, Z., Li, K., Cui, X.: Sampling-based partitioning in
mapreduce for skewed data. In: ChinaGrid Annual Conference (ChinaGrid), 2012
Seventh, pp. 1–8, September 2012

	SALA: A Skew-Avoiding and Locality-Aware Algorithm for MapReduce-Based Join
	1 Introduction
	2 MapReduce-Based Join
	3 The Problems in MapReduce-Based Join
	3.1 Partitioning Skew
	3.2 Heavy Network Overhead

	4 SALA Join Algorithm
	4.1 Overview
	4.2 The Pre-partitioning Process
	4.3 Volume/Locality-Aware Partitioning
	4.4 Example
	4.5 Cost Model

	5 Empirical Study
	5.1 Environmental Setup
	5.2 Partitioning Effectiveness
	5.3 Response Time

	6 Related Work
	7 Conclusion

