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Abstract. There is growing evidence that vertex similarity based on
structural context is the basis of many link mining applications in com-
plex networks. As a special case of vertex similarity, role similarity which
measures the similarity between two vertices according to their roles in
a network can facilitate the search for peer vertices. In RoleSim, graph
automorphism is encapsulated into the role similarity measure. As a
real-valued role similarity, RoleSim shows good interpretative power in
experiments. However, RoleSim is not sufficient for some applications
since it is very time-consuming and may assign unreasonable similarities
in some cases. In this paper, we present CentSim, a novel role similarity
metric which obeys all axiomatic properties for role similarity. CentSim
can quickly calculate the role similarity between any two vertices by
directly comparing their corresponding centralities. The experimental
results demonstrate that CentSim achieves best performance in terms of
efficiency and effectiveness compared with the state-of-the-art.

Keywords: Complex network - Vertex similarity - Role similarity -
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1 Introduction

Nowadays, networked data, e.g., social network and web page, is proliferating
and attracting a growing interest among researchers. In sociology, individuals
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are often assigned “social roles”, such as a father, a doctor, or a professor. In the
past, role studies have primarily been the interest of sociologists on offline social
networks [1,17]. Recent studies have found that roles also appear in many other
type of networks, such as biological networks [13], web graphs [14], and techno-
logical networks [15]. On the one hand, role discovery is indeed an important task
for general graph mining and exploratory analysis since it is useful in many real
applications [20-22]. On the other hand, measuring role-based similarity between
any two vertices is also a key question in studying the roles in a network system
[7]. One reason is role similarity can help to predict vertex functionality within
their domains. For instance, in a protein-protein interaction network, proteins
with similar roles usually serve similar metabolic functions. Thus, if the func-
tion of one protein is known, all other proteins having the similar role would be
predicted to have similar function [5].

Despite its significance, the problem of role similarity has received little
attention. From the viewpoint of a network, automorphic vertices have equivalent
surroundings and hence share the same role. In [7], graph automorphism is encap-
sulated into the role similarity measure: two automorphically equivalent vertices
share the same role and have mazimal role similarity. Take the network shown
in Fig. 1a as an example. Clearly, vertices b and ¢ are automorphically equiva-
lent, thus they share the same role and should have the maximal role similarity.
Although vertices d and e are not automorphically equivalent, they have the very
similar surroundings and hence should have higher role similarity. To estimate how
role-similar two vertices are, a real-valued role similarity measure, called RoleSim
[7], was proposed. For vertex-pairs (b, ¢) and (d, ), RoleSim can successfully assign
their similarities, i.e., RoleSim(b,c) = 1 and RoleSim(d,e) = 0.589. For other
two vertex-pairs (a,b) and (a, e), RoleSim(a,b) < RoleSim(a,e). This result is
acceptable and reasonable.
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Fig. 1. Two example networks. The damping factor of RoleSim is set to be 0.1 and the
initialization of RoleSim is ALL-1 scheme [7]. The Degree, PageRank and Closeness
centralities are used in CentSim, and their weights are equally set to 1.

However, RoleSim assigns the same similarity score to vertex-pairs (a, f) and
(a, g) in Fig. 1a. That seems to be unreasonable. Furthermore, in Fig. 1b, RoleSim
always thinks that vertex-pairs (a,d) and (a,e;) have the same role similarity
regardless of the number of neighbors of vertex ¢. Although this situation should
not be deemed as a failure of RoleSim, there is clearly room to improve its
accuracy and sensitivity. In addition, the very serious problem in RoleSim is it
is a time-consuming method. Its time complexity is O(kN?2d') where k is the
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number of iterations, N is the number of vertices in a network, and d’ is the
average of (d, x d,) x log(d,, x d,) of all vertex-pairs (u,v). d,, is the degree of
vertex u. In [8], a scalable algorithm for RoleSim, namely IcebergRoleSim, was
presented to speed the computation of RoleSim while the cost is to prune the
vertex-pairs whose similarities are lower than a given threshold.

In this paper, we propose CentSim (centrality-based similarity measure), a
new real-valued role similarity measure to quickly and accurately compute the
role similarity of any vertex-pairs. In CentSim, we employ the centralities of
vertices to calculate their role similarities. When measuring two vertices’ role
similarity, CentSim just compares several of their centralities, while RoleSim
investigates all neighbor-pairs of the two vertices. Thus, CentSim can quickly
calculate any vertex-pairs’ role similarities. Furthermore, CentSim obeys all the
axiomatic role similarity properties [7] and hence is an admissible role similarity
metric. To show the performance of CentSim, we review the network shown in
Fig. 1la. Vertices b, c have the same role and d, e have the very similar surround-
ings, CentSim can assign reasonable similarities to (b, ¢) and (d, e), respectively.
That is CentSim(b,c¢) = 1 and CentSim(d,e) = 0.756. For vertex-pairs (a, f)
and (a, g), CentSim(a, f) = 0.376 and CentSim(a,g) = 0.395. For the network
shown in Fig. 1b, CentSim always assigns a smaller similarity to (a,d) than that
to (a,e1) for any value of m > 1. Compared to the similarities assigned by
RoleSim, these results are more reasonable.

The rest of this paper is organized as follows. Section 2 gives a brief intro-
duction of related work, and Section 3 contains some preliminaries for this work.
In Section 4, we detail the proposed role similarity measure and prove it is
an admissible role similarity metric. Section 5 demonstrates the experimental
results. Finally, the conclusion of this paper is presented in Section 6.

2 Related Work

To date, many link-based similarities have been proposed. Among them, Sim-
Rank [6] is a well-known one, which is based on the intuition that two vertices
are similar if they are linked by similar vertices. The computation of SimRank
is iterative. In each iteration, SimRank updates the similarity score between two
different vertices according to the average similarity of all their neighbor pairs
in the previous iteration. The idea of SimRank seems to be solid and elegant;
however, it may assign inaccurate or even counter-intuitive similarity scores [12]
as well as undesirably introduces the “zero-similarity” issue [25,26]. With the
help of mazimal weighted matching of neighbor pairs, MatchSim [12] overcomes
the counter-intuitive results of SimRank. In order to remedy the “zero-similarity”
issue, SimRank* [25] introduces a new strategy to find more paths that are largely
overlooked by SimRank. Similarly, E-Rank [26] deals with the meetings of two ver-
tices that walk along any length paths and also solves the “zero-similar” issue.
PageSim [11] is a quite different link-based similarity measure from SimRank.
Motivated by the propagating mechanism of PageRank [19] and simultaneously
employing the PageRank scores as vertices’ features, PageSim propagates Page-
Rank score of each vertex to other vertices via links, and then represents each
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vertex by a feature vector. The PageSim score of one vertex-pair is derived by
comparing their feature vectors.

Role similarity, which measures the similarity of vertices based on their roles,
is a special case in the link-based similarity problem. RoleSim [7], an admissible
role similarity metric, was proposed to evaluate how role-similar two vertices
are. Two main properties make RoleSim a role similarity metric. The first is
when updating the similarity between two different vertices, RoleSim adopts the
maximal weighted matching between their neighbors. And the second one is the
initialization of RoleSim is admissible.

3 Preliminaries

In this section, we give the necessary background and notations before we discuss
role similarity further.

3.1 Role Similarity Properties

A social network or other complex network is defined as an undirected graph
G(V,E) where V is the vertex set and E represents the edge set. For a given
vertex u in graph G, the set of its neighbors is denoted as N(u) and the degree
of u is the number of its neighbors, denoted as d,, d,, = |N(u)].

Given a graph G(V, E) and two vertices u,v € V, an automorphism of G is
a permutation o of V such that (u,v) € F iff (o(u),o(v)) € E. If u = o(v), then
vertices u and v are automorphically equivalent, denoted as u = v.

To theoretically depict the role similarity measure, Jin et al. [7] formulated
a series of axiomatic properties that all role similarity measures should obey.

Definition 1 (Axiomatic Role Similarity Properties). Let G(V, E) be a
graph and s(u,v) be the similarity score between any two vertices u,v € V. Five
axiomatic properties of role similarity are developed as follows:

1) Range: s(u,v) € [0,1].

2) Symmetry: s(u,v) = s(v,u).

3) Automorphism confirmation: If u = v, s(u,v) = 1.

4) Transitive similarity: If u = v,x = vy, then s(u,z) = s(u,y) = s(v,z) =
s(v,y).

5) Triangle inequality: d(u, z) < d(u,v) + d(v,z), where d(u,v) =1 — s(u,v).

If s(u,v) obeys the first four properties, it is an admissible role similarity
measure. If s(u,v) satisfies all five properties, it is called an admissible role
similarity metric.
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3.2 Centrality

Centrality is a general measure of vertex activity in a network and can be
calculated by several metrics. The most popular ones are degree, closeness,
betweenness and eigenvector centrality [18]. These measures determine the rela-
tive importance of a vertex within a network, particularly a social network. In
a social network, vertices with larger values of centrality measures are powerful
vertices and occupy the critical positions [4].

The degree centrality represents the local importance of a vertex. Generally,
a vertex with higher degree is inclined to have a greater ability of local influence
than others, or to be closer to the center of a network. Closeness measures the
reachability of a vertex to other vertices. Formally, it is the average length of all
shortest paths from a given vertex to all others in a network. Higher closeness
value of a vertex indicates more vertices can be reached with shorter paths,
which fits the human intuition of “centrally located.” The betweenness of a
vertex can commonly be interpreted as the frequency that this vertex lies on the
shortest paths between any two vertices. A vertex with high betweenness usually
occupies a critical position which connects two different regions and controls the
information flow between different communities. Eigenvector centrality measures
the influence or importance of a vertex. The basic idea of eigenvector centrality
is that the influence of a vertex is recursively defined by the influence of its
neighbors. PageRank [19] can be treated as a variant of eigenvector centrality.

4 CentSim: A Novel Role Similarity Metric

In this section, we describe the proposed new role similarity measure, CentSim.

4.1 Definition of CentSim

The basic idea of our similarity measure comes from two aspects. The first one
is the role of a vertex is deeply influenced by its position in a network. And
the second one is centrality is a general measure of how the position of a vertex
is within a network [18]. Thus, centrality can be elected as a favorable tool to
evaluate role similarity. Consequently, in CentSim, we employ vertex’s centralities
to calculate their role similarities. The formal computation of CentSim is given
in Definition 2.

Definition 2 (CentSim). Given a graph G(V,E) and two vertices u,v € V,
the CentSim score between u and v is defined as:

CentSim(u,v) =

Zi’:l wiei(ua ’U) (1)
where 1 is the number of different centralities adopted in CentSim. Coefficient
w; > 0 is the weight of centrality c;. 0;(u,v) is defined as:

el(u U) _ min(ci(u)vci(v)) (2)

" max(c;(u), ci(v))

where c¢;(u) is the value of the centrality ¢; of u. In Equation 2, we define % =1.
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From Definition 2, we can see that the core of the computation of CentSim
score is to compare the centrality values of vertices. Suppose the centrality values
of vertices are obtained in advance. Clearly, the CentSim score between any
two vertices can be computed straightforwardly. In our implementation, three
centralities, i.e., PageRank, Degree and Closeness, are employed. In default, we
set the weights of the three centralities equally to 1.

4.2 Admissibility of CentSim

Theorem 1 (Admissibility). CentSim is an admissible role similarity metric.

To prove Theorem 1, we can separately prove that CentSim obeys each of the
five axiomatic role similarity properties listed in Definition 1. Trivially, CentSim
holds true for the Range (property 1) and Symmetry (property 2). For the Tran-
sitive similarity (property 4), Jin et al. [7] proved that it is implied by the Tri-
angle inequality property. Therefore, in the following, we only need to prove
that CentSim satisfies the Automorphism confirmation (property 3) and Trian-
gle inequality (property 5).

Lemma 2. For any two vertices u,v in graph G, if u = v then ¢;(u) = ¢;(v).

Actually, two automorphically equivalent vertices are identical with respect
to all graph theoretic properties and hence have the same centrality score on
every possible measure (see chapter 12 in [24]).

Proof of Automorphism Confirmation. Since u = v, in the light of Lemma
2, we get 0;(u,v) = minleiG.cilv)) _ clw) _ 3 g4 that

max(ci(u),ci(v)) — ci(v)

Zi:l w;0;(u,v) _ 22:1 Wi

CentSim(u,v) = = =1. i

Proof of Triangle Inequality. Given any vertices z, y and z in G, we get
d(z,y) + d(y,z) — d(z, z) =1+ CentSim(z, z) — CentSim(z,y) — CentSim(y, z)
L Twben) S el Sl wi2)
Zi’:l wi Zi’:l wi Zi’:l Wi
S wi(1+0i(x, 2) — 0i(z,y) — 0i(y, 2))
Zi‘:l Wy

Let ¢;(x) = a, ¢;(z) = b and ¢;(y) = ¢, then

min(a,b) min(a,c)  min(d,c)

L+ 0i(x,2) — Oi(w,y) — 0:i(y,2) = 1+ max(a, b) max(a, c) max(b, c)

__la—¢ b — ¢ la — b

" max(a,c¢) max(b,c) max(a,b)
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Thus, to prove CentSim satisfies triangle inequality, it suffices to show that
Inequality 3 holds true.

la —b] la — ¢ |b—¢]
<
max(a,b) ~ max(a,c) max(b,c) (3)

If a, b and ¢ are positive numbers, the proof of Inequality 3 can be found in
[23]. If one or two or all of a, b and ¢ are Os, Inequality 3 also holds true, since
we defined that % = 1 in Definition 2. Therefore, CentSim satisfies the Triangle
inequality property. O

In conclusion, CentSim obeys all the axiomatic role similarity properties. That
is to say, CentSim is an admissible role similarity metric.

4.3 Complexity of CentSim

Suppose the centrality values of vertices are given in advance. Obviously, the
time complexity of CentSim is O(IN?)(I < N) where N is the number of vertices
in graph G and [ is the number of centralities used in CentSim. In fact, [ is a
constant when CentSim is implemented, thus the time complexity of CentSim
is reduced to O(N?). To obtain the similarity of all vertex-pairs, we need to
compute N (N —1)/2 similarity scores and record [N centrality values. Therefore,
the space complexity of CentSim is O(IN + N?).

5 Experiments

In this section, we experimentally study the performance of CentSim in terms
of efficiency and effectiveness. Five baselines are SimRank [6], SimRank* [25],
MatchSim [12], PageSim [11] and RoleSim [7].

5.1 Experimental Setup and Datasets

All experiments are conducted on a machine with AMD Opteron 8347 4 core
CPU and 16GB DDR2 memory. The operating system is Suse Linux Enter-
prise Server 10 SP2. CentSim and five baselines are implemented in C++, while
the scores of PageRank, Degree and Closeness centrality are computed by the
NetworkX! package of Python. In [25], the authors presented an algorithm for
computing SimRank* by means of fine-grained memoization, namely memo-gSR*.
However, in this paper, we only implement the naive algorithm of SimRank*. We
set the damping factors C' = 0.8 for both SimRank and SimRank*, and 8 = 0.1
for RoleSim. The initialization of RoleSim is ALL-1 [7].

For impartial comparison of similarity measures, we utilize four real-world
datasets from varying fields as benchmarks, which are PGP [16], Yeast [2], Enron
[9] and DBLP?. The DBLP is a co-author network derived from 7-year publica-
tions (2006-2012) in conferences of SIGMOD, VLDB, ICDE, KDD, ICDM, and

! http://networkx.github.io/
2 http://dblp.uni-trier.de/~ley/db/
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Table 1. Statistics of the largest connected Table 2. Running time of all measures
components of the four networks. N: num-  on four benchmarks (unit: second).

ber of vertex; M: number of edge; (k):
average degree of vertices; Kmaqz: maximal PGP|Yeast| Enron|DBLP
degree of vertices; (d): average shortest dis-  SimRank |1939| 200[{108121| 984

tance of all vertex-pairs. SimRank* | 849 571 203951 327
PGP | Yeast | Enron | DBLP MatchSim |4614| 921|273625| 2604
N 10680 | 2224 | 33696 | 5890 PageSim 4395 93422835 1271
M- 124316 | 7049 | 180811 | 19845 g jogin | 4800| 1003(326754) 2698
(k) | 4.554 | 6.339 | 10.732 | 6.739 .
Kma 205 66 1383 157 CentSim 91 5 981 28
(d)

7.486 | 4.377 | 4.025 5.782 Centralities| 486 13| 7204| 156

SDM. Each network is treated as an undirected unweighted graph and pruned
into its largest connected component. The statistics are listed in Table 1.

5.2 Comparison of Time Performance

This section compares the time performance of CentSim with the five baselines.
We perform each measure on the four benchmark datasets to compute the sim-
ilarities of all vertex-pairs and then count the running time. The results of time
are listed in Table 2. From Table 2, we can clearly see that CentSim outperforms
the others on all benchmarks. This achievement of CentSim is due to its straight-
forward computation of similarity. The last row in Table 2 gives the total time of
computing the scores of PageRank, Degree and Closeness centrality. As shown in
Table 2, even counting the time of computing centralities, CentSim still costs the
least time compared with the baselines. Therefore, our CentSim is more efficient
than the state-of-the-art on assigning the similarity scores for vertex-pairs.

5.3 Comparison of Accuracy Performance

For the time performance, it is easy to evaluate by tracking the total running
time. However, evaluating the performance of accuracy is quite hard, since it is
difficult to identify a benchmark in which the real roles of vertices are identified
or the role similarities of vertices are known. To delineate roles, two alternatives
are utilized in this work: (1) as in [7], we use K-shell [3] as a proxy; (2) we adopt
the roles of vertices discovered by the method proposed in [27] as ground-truth.

To quantitatively evaluate the performance of accuracy of a role similarity
measure, two criteria are utilized in this paper.

The first criterion comes from the following idea. That is, the higher role
similarity score two vertices have, the more likely they are within the same shell
or share the same role. To formulate this idea, we compute the fraction of top
ranked vertex-pairs that are within the same shells or share the same roles.

The accuracy performance evaluated by the fraction based on the two alter-
natives are shown in Fig. 2 and 3, respectively. Obviously, CentSim achieves the
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Fig. 2. Fraction of top ranked vertex-pairs that within the same shells

best performance on accuracy while RoleSim obtains the second best. In Fig. 2,
on both PGP and Yeast, all measures, except SimRank*  do well for the top
0.01% vertex-pairs. However, CentSim markedly outperforms the baselines when
more top-ranked vertex-pairs are considered. On Enron, PageSim unexpectedly
achieves the very bad results, while others do well for the top 0.01% and 0.1%
vertex-pairs. And furthermore, when the range is expanded, CentSim still does
well, while the performance of both SimRank and SimRank* decline significantly.
In our viewpoint, two reasons cause the poor accuracy of PageSim on Enron: one
is the variety of vertex’s degree is large, and the other is that the feature propa-
gating mechanism makes PageSim to assign high similarity scores to vertex-pairs
cross-shells. For the top 0.01% vertex-pairs ranked by PageSim, the maximum,
average and variance of the difference of degree of vertex-pair are 1382, 12.118
and 1375.711, respectively. On DBLP, CentSim, RoleSim, MatchSim and PageSim
do very well for the top 0.01% vertex-pairs; CentSim and RoleSim do well for the
top 0.1% and 1% vertex-pairs. But CentSim shows better performance on accu-
racy than RoleSim for the top 5% and 10% vertex-pairs. In Fig. 3, the results are
similar to those of Fig. 2. Due to lack of space, the details are omitted. In one
word, experimental results in Fig. 2 and 3 indicate that more similar vertex-pairs
ranked by CentSim are more likely to be within the same roles.
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Table 3. Accuracies of similarity mea- Table 4. Accuracies of similarity mea-
sures measured by auc statistic (ground-  sures measured by auc statistic (ground-
truth: K-shell). Each number is obtained  truth: role [27]). Each number is obtained
by averaging over 100 independent real- by averaging over 100 independent real-
izations. izations.

PGP | Yeast |Enron|DBLP PGP | Yeast |Enron | DBLP
SimRank | 0.485 | 0.448 | 0.491 | 0.551 SimRank |0.494 | 0.478 | 0.500 | 0.508
SimRank*| 0.568 | 0.466 | 0.795 | 0.635 SimRank*| 0.580 | 0.491 | 0.590 | 0.608
MatchSim | 0.527 | 0.680 | 0.635 | 0.618 MatchSim | 0.531 | 0.639 | 0.588 | 0.504
PageSim | 0.428 | 0.374 | 0.498 | 0.489 PageSim | 0.444 | 0.407 | 0.499 | 0.424
RoleSim | 0.822 | 0.864 | 0.877 | 0.827 RoleSim | 0.760 | 0.755 | 0.720 | 0.627
CentSim |0.823[0.872|0.933| 0.776 CentSim |0.820({0.801|0.795|0.699

The basic opinion of the second criterion is that the role similarity of two ver-
tices within-role (or shell) should be bigger than that of the other vertices cross-
role (or shell). So, we group all vertex-pairs into two parts: within-role pairs, P",
and cross-role pairs, P¢. To quantify the accuracy of similarity measures, we use
the AUC statistic. It can be interpreted as the probability that a randomly cho-
sen within-role pair (a pair in P™) is given a higher role similarity score than a
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randomly chosen cross-role pair (a pair in P¢). In the implementation, among n

independent comparisons, if there are n’ cases that the within-role pair has the

higher score, and n”” cases that the within-role pair and the cross-role pair have

the same score, as in the research of link prediction [10], we define AUC in Eq. 4.
’ 1"

AUC = 05 x T (4)

n

The accuracy results measured by AUC are shown in Table 3 and 4, respec-
tively. Generally speaking, CentSim can give overall better accuracy than the
baselines. After CentSim, RoleSim performs the next best, while the others,
particularly PageSim and SimRank, perform far worse. These results show that
CentSim has high probability to assign large role similarity scores for vertex-pairs
within-role.

In summary, the above experiments conducted in Section 5.2 and 5.3 demon-
strate that CentSim is not only more efficient than the state-of-the-art but also
outperforms them in accuracy. Therefore, we can conclude that the framework
of measuring role similarities of vertices by comparing their centrality scores is
competitive. Consequently, CentSim is competent to the task of role similarity.

6 Conclusion

In this paper, we proposed a novel and qualified similarity measure, namely
CentSim, to quickly and accurately assign the role similarity between any two
vertices of a network. We observe that the role of a vertex is related to its position
in a network and centrality generally measures the position of a vertex in a
network. Motivated by these two aspects, CentSim computes the role similarity
between two vertices by means of comparing their corresponding centralities.
Importantly, CentSim is an admissible role similarity metric since it obeys all
the axiomatic role similarity properties.

We experimentally evaluate the performance of CentSim in terms of efficiency
and effectiveness compared with SimRank, SimRank*, MatchSim, PageSim and
RoleSim on four real-world datasets. The experimental results demonstrate that
CentSim achieved overall best performance on both time and accuracy compared
with the state-of-the-art. Thus, CentSim is a qualified role similarity metric.
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