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    Chapter 16   
 Targeting Cancer Stem Cells 
and the Tumor Microenvironment       

       Alice     Turdo    ,     Matilde     Todaro    , and     Giorgio     Stassi    

    Abstract     Compelling evidence indicates that the survival and behavior of cancer 
stem cells (CSCs) are positively regulated by specifi c stimuli received from the 
tumor microenvironment, which dictates the maintenance of stemness, invasive-
ness, and protection against drug-induced apoptotic signals. CSCs are per se 
endowed with multiple treatment resistance capabilities, thus the eradication of 
CSC pools offers a precious strategy in achieving a long-term cancer remission. 
Numerous therapies, aimed at eradicating CSCs, have been elaborated such as: (i) 
selective targeting of CSCs, (ii) modulating their stemness and (iii) infl uencing the 
microenvironment. In this context, markers commonly exploited to isolate and iden-
tify CSCs are optimal targets for monoclonal antibody-based drugs. Furthermore, 
the molecules that inhibit detoxifying enzymes and drug-effl ux pumps, are able to 
selectively suppress CSCs. Auspicious outcomes have also been reported either by 
targeting pathways selectively operating in CSCs (e.g. Hedgehog, Wnt, Notch and 
FAK) or by using specifi c CSC cytotoxic agents. Other compounds are able to atten-
uate the unique stemness properties of CSCs by forcing cell differentiation, and this 
being the case in ATRA, HDACi, BMPs and Cyclopamine, among others. Targeting 
the interplay between paracrine signals arising in the tumor stroma and the nearby 
cancerous cells via the inhibition of VEGF, HIF, CD44v and CXCR4, is increas-
ingly recognized as a signifi cant factor in cancer treatment response and holds allur-
ing prospects for a successful elimination of CSCs. In the present chapter, we 
discuss the latest fi ndings in the optimization and tailoring of novel strategies that 
target both CSCs and tumor bulk for the eradication of malignancies.  
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1         Introduction 

 The concept that tumors are hierarchically organized and harbor cells with distinct 
tumor-initiating capabilities and self-renewal potential, referred to as cancer stem 
cells ( CSCs  ), has long been observed in a variety of hematopoietic malignancies 
and solid tumors and is now well-recognized by the scientifi c community (Valent 
et al.  2012 ). By virtue of their innate plasticity, it is worth considering that CSCs 
fuel and succeed in tumor growth, treatment resistance, distant metastasis formation 
and patient relapse. Mechanistically, CSCs share several biological properties with 
normal adult stem cells that endow them with a survival advantage upon chemo-
therapeutic intervention. These include dormancy (quiescence), active  DNA repair   
machinery, an enhanced reactive oxygen species ( ROS  ) defence capability, a higher 
expression of multiple drug resistance ( MDR  ) membrane transporters and anti- 
apoptotic proteins (Maugeri-Sacca et al.  2011 ; Zhou et al.  2014 ). 

 Thus, attractive emerging strategies have been developed to selectively target 
 CSCs   by using agents directed at  CSC  -surface markers, drug-detoxifying enzymes, 
drug effl ux pumps or key signaling pathways sustaining the stemness properties of 
CSCs. Otherwise, stemness modulator drugs force CSCs to differentiate terminally, 
resulting in the loss of self-renewal potential and the gaining of susceptibility to 
cytotoxic therapies. To eventually overcome cancer resistance and relapse, a simul-
taneous delivery of stem cells targeting drugs or stemness modulator compounds, 
has been tested in combination with standard anticancer drugs to successfully elimi-
nate CSCs, tumor bulk cells and spontaneously dedifferentiated non-CSCs (Chen 
et al.  2012 ; Chaffer et al.  2011 ). Of note, stem cell targeting drugs eradicate CSCs 
but at concentrations less toxic to non-CSCs. Conversely, stemness inhibiting drugs 
aim at reducing the stemness of CSCs and uniquely, at high doses, they may elimi-
nate CSCs and non-CSCs with similar potency. Finally, paracrine signals between 
cancer cells and stromal cells are required to trigger an epithelial-to-mesenchymal 
transition ( EMT  ) program. Besides the acquisition of a mesenchymal and invasive 
state, EMT seems to confer stem-like properties to neoplastic epithelial cells (Morel 
et al.  2008 ), and subsequently additional autocrine signals, arising from cancerous 
cells themselves, appear to maintain this mesenchymal state (Scheel et al.  2011 ). 
Therefore, specifi c molecular therapies that target CSC peculiarities and prominent 
tumor microenvironment signals may be powerful determinants in tumor shrinkage 
and successful elimination of CSCs (Fig.  16.1 ).

2        Selective Cancer Stem Cells Targeting Drugs 

 Proof of evidence that  CSCs   are endowed with self-renewal and differentiation 
capabilities is represented by the ability to engraft tumors when serially transplanted 
in immunocompromised mice. Further support, recently emerging from in vivo 
genetic cell fate tracking experiments, confi rmed the capability of CSCs to seed a 
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tumor and recapitulate its heterogeneity (Zhu et al.  2014 ; Schepers et al.  2012 ). The 
criteria used to identify CSCs in solid tumors and hematopoietic disorders include 
certain in vitro properties among which (i) CSCs can be distinguished and isolated 
with specifi c cell-surface marker profi les or intracellular molecules, (ii) CSCs are 
endowed with increased resistance to chemotherapeutic compound (CSCs are 
detectable for their high levels of detoxify enzymes and  MDR  ) and (iii) the activa-
tion of CSCs-dependent pathways, which could offer a functional marker for their 
identifi cation (Pattabiraman and Weinberg  2014 ). 

2.1      CSC   Surface Markers As a Therapeutic Target 

 Thus, the ability to use  CSCs  ’ peculiar surface markers has been suggested as a 
promising therapeutic approach. One must bear in mind that some limitations do 
exist such as, the existence of inter- intra- tumor heterogeneity and splicing variants, 
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  Fig. 16.1      Targeting     cancer stem cells and the tumor microenvironment . ( a ) Therapeutic approaches 
to selectively target  CSCs   use mAbs directed to  CSC  -surface markers (1), agents blocking drug 
effl ux pumps (2), inhibitors of signaling pathways that take part in controlling the fate of CSCs (3), 
CSC-specifi c cytotoxic compounds (4) and inhibitors of the  DNA repair   machinery (5). ( b ) 
Microenvironment modulator drugs can impair the effect of stromal- and cancer-derived factors 
(1), inhibit angiogenesis (2) and counteract the pro-oxidant environment generated by tumor 
hypoxia (3). ( c ) Stemness modulator compounds force the differentiation of CSCs and in combina-
tion with standard chemotherapy contribute to the successful elimination of CSCs and tumor bulk. 
CSC:  Cancer   stem cell, mAB: monoclonal antibody       
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the different methodologies used for CSCs detection and the presence of some com-
mon markers shared by normal adult stem cells. For instance,  CD44   is a transmem-
brane glycoprotein and the receptor for hyaluronic acid (HA) and osteopontin 
(OPN), among others. It is expressed in CSCs from distinct solid tumor types and 
H90, an anti-CD44 monoclonal antibody (mAb), was the fi rst antibody that showed 
 CSC   targeting properties. In vivo administration of H90 interfered with acute 
myeloid leukemia (AML) stem cells’ homing capability in the microenvironmental 
niche and maintained their stem cell status (Jin et al.  2006 ). Similarly, in a xenograft 
model initiated by triple negative breast cancer cells, the anti-CD44 mAb P245 
inhibited tumor growth and recurrence if injected during the apparent tumor remis-
sion period achieved after treatment with doxorubicin and cyclophosphamide 
(Marangoni et al.  2009 ). 

 GV5 is a recombinant human mAb that recognizes the extracellular domain of 
 CD44  ’s alternative splicing variant, termed CD44R1 (v8-v10). In athymic mice 
GV5 inhibited tumor formation, after the subcutaneous transplantation of larynx 
and cervix cancer cells, due to the induction of antibody-dependent cellular cytotox-
icity (ADCC) and internalization of CD44R1 (Masuko et al.  2012 ). H4C4 is an 
anti-CD44 mouse mAb that decreased pancreatic  CSC   capabilities of in vitro tumor 
sphere formation and in vivo tumor growth. It also impaired metastasis formation 
and recurrence after radiotherapy via  Nanog   and STAT3 signaling pathway inhibi-
tion (Li et al.  2014 ). Finally, due to its promising preclinical results, RO5429083, 
which is a humanized mAb directed against an extracellular epitope of human 
CD44, has been evaluated in a phase I clinical study on CD44-expressing metastatic 
and/or locally advanced solid tumors. Another phase I clinical study is still ongoing 
involving patients with AML (  http://www.cancer.gov/clinicaltrials    ). 

 MT110 is a bispecifi c bifunctional T-cell-engaging (BiTE) antibody that con-
comitantly binds to the epithelial cell adhesion molecule ( EpCAM  ), a common 
 CSC   marker, and to the T-cell receptor complex CD3 which, leads to the activation 
of cytotoxic T-cells against EpCAM-expressing cells and causes cell death via redi-
rected lysis. MT110 reduced the capacity of colon and pancreatic  CSCs  , co-cultured 
with peripheral blood mononuclear cells (PBMCs) as source of T-cells, to form 
spheres in vitro and to generate tumors in vivo (Herrmann et al.  2010 ; Cioffi  et al. 
 2012 ). MT110, is in early stages of clinical trials for patients with locally advanced, 
recurrent or metastatic solid tumors, known to widely express EpCAM (  http://www.
cancer.gov/clinicaltrials    ). 

 Catumaxomab is a bispecifi c trifunctional antibody (Triomabs) binding to 
 EpCAM   and the CD3 complex in T-cells. In addition, it binds macrophages, natural 
killer (NK) and dendritic cells via its Fc fragment thus, synergizing the anti-tumor 
effects exerted by T-cells. When Catumaxomab is administered to patients with 
advanced solid cancers and suffering from malignant ascites, it activated peritoneal 
T-cells, stimulated the release of proinfl ammatory Th1 cytokines, decreased the 
peritoneal level of  VEGF   and eliminated  CD133   + /EpCAM +   CSCs   (Jager et al. 
 2012 ). Catumaxomab has been approved in Europe for clinical use in the treatment 
of malignant ascites and the results, from a prospective randomized phase II/III 
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clinical trial, have been reported by Heiss et al. ( 2010 ). The ubiquitous expressed 
transmembrane antigen CD47 can trigger inhibition of phagocytosis (the so-called 
‘don’t eat me’ signal) on SIRPα-expressing phagocytic cells. CD47 blocking via the 
mouse mAb B6H12.2 favors the phagocytosis of human AML stem cells through 
mouse and human macrophages. Interestingly, B6H12.2 spares normal hematopoi-
etic stem cells because they express low levels of CD47 (Majeti et al.  2009 ). 7G3 is 
a mouse mAb and recognizes the human interleukin-3 (IL-3) receptor α chain 
(CD123), which is overexpressed on AML blasts and  CD34   +  AML stem cells. 7G3 
inhibits the engraftment and homing of AML stem cells in immunocompromised 
mice through ADCC (Jin et al.  2009 ). 

 CSL362, a humanized anti-CD123 mAb with an increased affi nity for human 
CD16, induces massive NK-mediated ADCC in both AML blasts and 
 CD34   + CD38 − CD123 +  AML stem cells (Busfi eld et al.  2014 ). CSL362 is currently 
in the beginning stages of clinical trials for patients with AML (  http://www.cancer.
gov/clinicaltrials    ). A more detailed list of  CSC   specifi c markers and their use as 
putative therapeutic targets has been reviewed recently (Medema  2013 ; Naujokat 
 2014 ).  

2.2      Targeting   ABC Transporters in  CSCs   

  ATP-binding cassette (ABC) transporters   have been used to identify  CSCs   because 
they are overexpressed on the membrane of both normal and cancer stem cells.  ABC 
transporter   s   enable the effl ux of drugs and are responsible for  MDR  . Thus, CSCs 
are able to expel the Hoechst 33342 dye by adopting such machinery and thus creat-
ing a ‘side population’ (SP) which, can be isolated by fl uorescence- activated cell 
sorting ( FACS  ). ABCB1 (P-glycoprotein), ABCG2 and ABCC1 are the most exten-
sively studied ABC transporters in stem cell biology. In order to avoid drug resis-
tance, much effort has been devoted to the design of ABC transporter inhibitors 
which, selectively eliminate CSCs but spare normal stem cells. However, several 
ABCB1 inhibitors, such as verapamil, tariquidar, and quinidine, have shown little 
effi cacy in clinical settings. The elimination of CSCs has not been successful per-
haps due to: clinical studies that were not designed correctly, the choice of an incor-
rect ABC transporter as a target and other combinations of  CSC   targeting drugs 
would have been preferable (Dean et al.  2005 ). Some ABCG2 inhibitors showed 
high toxicity both in vitro and in vivo .  Novel compounds are in preclinical studies 
such as the ABCG2 inhibitor YHO- 13351 which, sensitized the human cervical car-
cinoma cell line to irinotecan and reduced the CSC population (Shishido et al. 
 2013 ). Xia et al. developed an image-based high-content screening system and iden-
tifi ed 12 potent high drug effl ux cancer cell inhibitors from 1280 screened com-
pounds. These inhibitors sensitized lung cancer cells to chemotherapeutic drugs and 
possibly affected in vivo tumorigenic capabilities of the CSC compartment (Xia 
et al.  2010 ).  
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2.3     Molecules That Inhibit Pathways by Sustaining  CSCs   

  CSCs   are dependent on activated signaling pathways different from those sustaining 
the bulk population. Therefore, targeting the stemness determinants could effec-
tively conduct to the most durable remission and prevent resistance to chemother-
apy and radiotherapy. Being an important player in self-renewal and maintenance of 
CSCs (Chakrabarti et al.  2014 ), the Wnt signaling pathway has been targeted by 
both small-molecule and biologic inhibitors. The fi rst class of compounds includes 
ICG-001 which, acts as an antagonist of CREB-binding protein (CBP)/β-catenin 
(Emami et al.  2004 ) and showed to selectively eliminate drug resistant leukemic 
stem cells (Takahashi-Yanaga and Kahn  2010 ). Moreover, the small LGK974 (Liu 
et al.  2013 ) and IWP2 (Chen et al.  2009 ) molecules target the porcupine enzyme 
which, is responsible for palmitoylation of Wnt ligands, a required step in activating 
their secretion. A LGK974-based phase I clinical trial on patients with solid tumors 
is still ongoing (  http://www.cancer.gov/clinicaltrials    ). The second class of com-
pounds includes, the humanized mAb OMP-18R5 that binds to the extracellular 
domain of multiple Frizzled (FZD) receptors and blocks the Wnt3A-induced down-
stream pathway. In preclinical settings, it reduces tumorigenic capabilities of human 
breast, pancreatic, colon and lung cancer cells, compared to standard chemotherapy 
(Gurney et al.  2012 ), and is currently in its early stages of clinical trial for patients 
with solid tumors (  http://www.cancer.gov/clinicaltrials    ). The activation of the 
Hedgehog (Hh) pathway is mandatory for the maintenance of  CSC   properties in 
various human cancers. The molecules antagonist of smoothened (SMO), a G 
 protein-coupled transmembrane serpentine receptor that usually acts as a signal 
transducer of the proximal Hh pathway, such as GDC-0449, inhibit cell growth and 
induce apoptosis of pancreatic CSCs (Singh et al.  2011 ). Interestingly, the antineo-
plastic compound mithramycin, showed properties that target Sox2 +  medulloblas-
toma stem cells and bear the aberrant  Sonic hedgehog   ( Shh  ) pathway activation. 
Specifi c to this context, although Sox2 +  cancer cells were driven by Shh signaling, 
they were not affected by either the Shh-targeted therapy with GDC-0449 or anti-
mitotic chemotherapy. This suggests the existence of heterogeneity even within the 
Shh medulloblastoma subgroup and that a combination of bulk targeting drugs and 
CSCs targeted therapy could lead to a more notable control of the disease (Vanner 
et al.  2014 ). GDC-0449 is in phase II of the clinical trial regarding the treatment of 
basal cell carcinoma (  http://www.cancer.gov/clinicaltrials    ). 

 The  Notch signaling   pathway is a well-recognized positive regulator of  CSCs   
fate (Pannuti et al.  2010 ; Espinoza et al.  2013 ). The best way to target Notch activa-
tion, is to inhibit the proteolytic cleavage of the Notch intracellular domain (NICD) 
via the γ-secretase complex. γ-secretase inhibitors (GSIs) reduce self-renewal and 
tumorigenicity of GSCs and breast CSCs (Fan et al.  2010 ; Kondratyev et al.  2012 ). 
A phase I/II clinical trial that foresees the use of GSIs MK-0762 followed by 
docetaxel, whose purpose is killing breast cancer stem cells in advanced or meta-
static breast cancer, has recently been completed (Schott et al.  2013 ). Antibodies 
targeting the Notch ligand Delta-like 4 (Dll4) such as the humanized mAb 
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 OMP- 21M18, have been developed and effi ciently reduced  CSC   frequency in solid 
tumors (Hoey et al.  2009 ; Fischer et al.  2011 ). A comprehensive analysis of all 
ongoing and completed Notch clinical trials has recently been published (Andersson 
and Lendahl  2014 ). FAK activity seems to be critical for survival, migration and 
resistance to chemotherapy of CSCs (Sulzmaier et al.  2014 ; Schober and Fuchs 
 2011 ). Kang et al. demonstrated that the FAK inhibitor VS-6063 (which inhibits 
FAK autophosphorylation) overcomes resistance to paclitaxel in ovarian cancer by 
decreasing the AKT-dependent YB-1 phopshorylation which, in turn down-regu-
lates the  CD44   expression (Kang et al.  2013 ). Others showed that the up-regulation 
of CD44 favors breast cancer cell self-renewal, tumorspheres formation and induces 
paclitaxel resistance (To et al.  2010 ). Furthermore, CD44 up-regulates  Nanog  , 
responsible for increased ABCB1 expression and ovarian cancer cells acquired 
resistance to paclitaxel (Bourguignon et al.  2008 ). VS-6063 is currently in phase II 
of its clinical trial for  K-RAS  mutant non small cell lung cancer (NSCLC) patients. 
Similarly, other FAK inhibitors such as VS-4718 and PF-00562271, are in phase I 
of clinical evaluation (  http://www.cancer.gov/clinicaltrials    ). Finally, the BMI-1 
inhibitor PTC-209, has recently been proposed as an interesting small molecule 
affecting self-renewal of colorectal cancer cells with no systemic toxicity in pre-
clinical settings (Kreso et al.  2014 ).  

2.4     Agents That Selectively Eradicate  CSCs   

 A high-throughput screen for agents that selectively kill  CSCs   has been performed 
by Gupta et al. Among a library of 16,000 compounds tested, salinomycin induced 
breast  CSC  -specifi c toxicity.  Breast cancer   cells were initially forced to undergo an 
 EMT   by means of an  E-cadherin   knockdown. Pre-treatment with salinomycin 
inhibited tumorsphere formation in vitro and reduced tumor seeding ability in vivo 
by >100-fold, compared to paclitaxel. Salinomycin treatment also decreased tumor 
mass and metastasis and increased epithelial differentiation of breast CSCs in an 
immunocompromised mouse model (Gupta et al.  2009 ). Successively, similar 
results have been reached in some type of cancers, including leukemia, colorectal 
cancer, lung cancer, GIST and osteosarcoma. Some fi ndings also suggested that, a 
combination of salinomycin and conventional cytotoxic drugs could be a much 
more effi cient strategy than the use of a single agent to improve therapeutic out-
comes (Bardsley et al.  2010 ; Koo et al.  2013 ). Moreover, being that salinomycin 
seems to be toxic to normal stem cells at concentrations also effective in CSCs 
(Boehmerle and Endres  2011 ) it will render its clinical use as a single agent diffi -
cult. Salinomycin acts as a K +  ionophore in biological membrane that promotes 
mitochondrial and cytoplasmic K +  effl ux however, the exact mechanisms underly-
ing its toxicity against CSCs still remains unclear. It has been shown that salinomy-
cin is a powerful inhibitor of the multidrug resistance protein 1 ( MDR  -1) 
(P-glycoprotein/ABCB1) (Riccioni et al.  2010 ). It inhibits the phosphorylation of 
the Wnt co-receptor LRP6, induces apoptosis in chronic lymphocytic leukemia (Lu 
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et al.  2011 ) and is an antagonist of the mTORC1 signaling pathway in breast and 
prostate cancer cells (Lu and Li  2014 ). On the other hand, it encourages  ROS   pro-
duction and inhibits oxidative phosphorylation in mitochondria (Ketola et al.  2012 ), 
resulting in the possible elimination of CSCs, which rely on this metabolic process. 
In addition, recent studies have unveiled that salinomycin induces cell growth inhi-
bition and apoptosis in multi drug resistant ovarian cancer cell lines, by ablating the 
activity of the signal transducer and activator of transcription 3 (Stat3) and thus, 
diminishing the expression of Stat3 target genes, such as  cyclin D1, S-phase kinase- 
associated protein 2 (SKP2)  and  SURVIVIN  (Koo et al.  2013 ). This is not surprising 
if we consider the most recent evidence which highlights the major role that Stat3 
plays in reducing the effectiveness of drugs treatment. Specifi cally, the inhibition of 
MEK in ‘oncogene-addicted’ cancer cells, (driven by activated  EGFR  ,  HER2  , ALK, 
 MET   and KRAS pathways) triggers the feedback activation of Stat3 through IL-6R 
and FGFR, leading to treatment resistance (Lee et al.  2014 ). In line with these 
results, Kim et al. showed that the constitutive activation of the IL-6/Stat3/NF κB 
pathway in p53 −  PTEN   −  non-transformed MCF10A, was dependent on the proteo-
lytic degradation of SOCS3 and generated highly metastatic and EMT-like CSCs. 
Thus, proteasoma inhibition restored SOCS3 protein levels and the selective IL-6R 
antagonist, tocilizumab, repressed the CSC compartments, hampered tumor growth 
and dissemination in vivo (Kim et al.  2014 ).  

2.5     PARPi Affects  CSC   Survival 

 Recent breakthroughs displayed that inhibition of poly-ADP-ribose polymerase 
(PARP) could be a promising selective  CSC  -targeted therapy. Mechanistically, 
PARP is an abundant nuclear protein that mediates the repair of single strand breaks 
(SSBs) through base excision repair. The inhibition of PARP leads to the accumula-
tion of SSBs that during replication are converted into double-strand breaks (DSBs), 
usually repaired by the homologous recombination (HR) pathway, mediated by 
BRCA1 or BRCA2 whereas in neoplastic cells with defective HR, the DSBs cannot 
be repaired and lead to cell death. It was shown that AZD2281, a PARP inhibitor 
(PARPi), preferentially targets glioblastoma stem cells (GSCs) and reduced their 
survival, expansion and tumor initiation capabilities, as well as having sensitized 
them to radiation therapy (Venere et al.  2014 ). Moreover, a PARPi, GPI 15427, was 
able to counteract GSC’s resistance to temozolomide (Tentori et al.  2014 ). These 
examples opened a new road for the use of PARPi, even in the absence of mutations 
of  BRCA1/2 . This changed the classical idea of ‘synthetic lethality’ which exists 
between PARP and BRCA1/2 signaling pathways. Indeed, patients affected by tri-
ple negative breast cancer (non carriers of  BRCA1/2  mutations) have shown 
increased therapy response and survival following PARP inhibition (BSI-201) in 
combination with DNA-damaging chemotherapy. The latter of which may eventu-
ally obstruct the cellular  DNA repair   machinery and cause cell death (O’Shaughnessy 
et al.  2011 ). Moreover, deletions or mutations in other genes involved in key 
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genotoxic stress pathways such as   PTEN   , may sensitize them to PARPi administra-
tion (Mendes-Pereira et al.  2009 ). PARPi are currently under clinical evaluation in 
solid tumors as single agent or in combination with chemotherapy and detailed 
information about ongoing clinical trials has been published elsewhere (Curtin and 
Szabo  2013 ) (  http://www.cancer.gov/clinicaltrials    ).   

3     Stemness Modulator Drugs 

 Notwithstanding that  CSCs   embody a small portion of the tumor bulk, they are 
responsible for the heterogeneous cell population that constitutes the tumor mass 
and their intrinsic resistance to chemotherapy and radiotherapy shown by aggres-
sive tumors. Indeed, CSCs possess both self-renewing capabilities, by means of 
generating two identical CSCs daughter cells through symmetrical division, and the 
ability to differentiate through asymmetrical division, yielding the multitude of can-
cerous cells that account for overwhelming tumor growth (Kreso and Dick  2014 ). 
As previously discussed, a prominent mechanism of therapeutic resistance includes 
an altered kinetic cell cycle in quiescent CSCs. They are spared by chemotherapy- 
induced cytotoxicity because they are not actively cycling cells but are capable of 
activating  DNA repair   mechanisms. Thus, forcing terminal differentiation of CSCs 
could be an extremely powerful weapon in preventing resistance and relapse. 
Ideally, a clinically effective response could be achieved by the simultaneous admin-
istration of anti- CSC   therapy and conventional chemotherapy, in order to eliminate 
cytotoxic drug-susceptible non-CSCs and prevent their dedifferentiation in CSCs 
(Chaffer et al.  2011 ). Given that the development of clinical endpoints in this fi eld 
may prove challenging, an emergent amount of stemness modulator drugs is already 
in clinical use and others are in preclinical or early stages of clinical evaluation. 
Some examples are listed below. 

3.1      ATRA   Induces Differentiation of  CSCs   

 Among these, all-trans-retinoic acid ( ATRA  ), a derivate of vitamin A, has already 
been demonstrated to be a potent differentiation-inducing drug and a successful 
treatment strategy, in combination with arsenic trioxide, for AML patients carrying 
the PML-RARα fusion protein (Zhou et al.  2005 ). Campos et al. ( 2010 ) reported 
that ATRA induced differentiation and radio- and chemo-sensitization of stem-like 
glioma cells. Given that, ALDH is a common marker of breast  CSCs   and a detoxify-
ing enzyme responsible for the oxidation of intracellular aldehydes as well as of 
retinol to retinoic acid; it was shown that DEAB-mediated ALDH inhibition 
increased the  CSC   compartment by abrogating CSC differentiation. Conversely, 
ATRA treatment induced differentiation of breast CSCs and decreased the stem 
population (Ginestier et al.  2009 ). Similarly, Hammerle et al. ( 2013 ) suggested that 
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the neuroblastoma stem cells’ response to 13-cis-retinoic acid ( RA  ), could be 
enhanced by the proteasome inhibitor MG132. Interestingly, a combination of CSC 
genomics with connectivity map, analyzed a database of 6100 gene expression pro-
fi les of four breast cancer cell lines, treated with different concentrations of approxi-
mately 1000 FDA approved drugs. This revealed that ATRA is negatively associated 
with CSC-enriched gene expression signature. ATRA induced apoptosis, hampered 
mammosphere formation and forced differentiation of fulvestrant-resistant cells. 
Intriguingly, in the same study, a MEK inhibitor, selumetinib, sensitized the  K-RAS  
mutant breast cancer cell line, which was enriched with CSCs, to the ATRA treat-
ment (Bhat-Nakshatri et al.  2013 ).  

3.2     SAHA Modulates Differentiation and Apoptosis of  CSCs   

 Suberoylanilide hydroxamic acid (SAHA), also called vorinostat, a potent inhibitor 
of the histone deacetylase (HDAC) family, caused differentiation and apoptosis of 
several tumor type cells. In an in vivo prostate cancer tumor model, SAHA ham-
pered tumor growth with low systemic toxicity (Butler et al.  2000 ). Additionally, 
HDAC inhibitors can be therapeutically exploited to specifi cally target slow cycling 
cells. For instance, SAHA, coupled with imatinib mesylate, successfully fostered 
apoptosis in quiescent chronic myelogenous leukemia stem cells and offered a novel 
strategy to overcome chemoresistance and the diffi culties in targeting dormant cells 
(Zhang et al.  2010 ).  

3.3     BMPs: An Actor of Balance Between Differentiation 
and Stemness 

 It is the general understanding that the bone morphogenic protein family (BMPs) is 
required to inhibit the stem cell state and mesenchymal traits in a variety of normal 
and cancerous epithelial tissues (Scheel et al.  2011 ; Cordenonsi et al.  2011 ) and 
promote differentiation of adult and pluripotent stem cells (Varga and Wrana  2005 ). 
Mechanistically, BMPs are members of the transforming growth factor-β ( TGF-β  ) 
superfamily and bind to a combination of type I receptors (anaplastic lymphoma 
kinase 2 (Alk2), Alk3 (or BMPR1A), and Alk6 (or BMPR1B)) and type II receptors 
(BMPR2). They activate either the canonical BMP signaling pathway, through 
phosphorylation of smads receptors, or the PI3K/AKT-mediated non canonical 
BMP signaling pathway. Specifi cally, a BMP7 variant (BMP7v) abrogated in vitro 
proliferation of glioblastoma stem cells (GSCs) as well as the expression of stem 
associated markers and endothelial cord formation. In a glioblastoma orthotopic 
mouse model, BMP7v impaired tumor growth, invasion and angiogenesis (Tate 
et al.  2012 ). Likewise, our group demonstrated that BMP4 enhanced colorectal 
 CSCs  ’ differentiation and apoptosis and it their sensitized them to 5-fl uorouracil 
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and oxaliplatin treatment. However, the  SMAD4 -defective tumors carrying either 
mutations in  PI3K  or loss of   PTEN    are refractory to the treatment mentioned above 
thus, confi rming the BMP4-mediated activation of both canonical and non canoni-
cal pathways (Lombardo et al.  2011 ). On the contrary, molecules such as Coco, an 
antagonist of TGF-β ligands, reverse the effect of BMP thereby, enhancing the self- 
renewal of metastasis-initiating cells (Gao et al.  2012 ).  

3.4      Resveratrol   Affects  CSC   Self-Renewal 

 A number of epidemiological studies have proposed that resveratrol, a polyphenolic 
compound with which, many plant species are enriched with, exerts several bio-
chemical activities associated with tumorigenesis such as, inhibition of infl amma-
tion, cell proliferation and angiogenesis as well as, sensitizing tumor cells to 
chemotherapy (Harikumar et al.  2010 ). Even though the infl uence of resveratrol on 
 CSCs   is still under evaluation, recent evidence showed that  KRAS  G12D  mice, which 
spontaneously develop aggressive pancreatic cancer, treated with resveratrol devel-
oped smaller tumors (dimension and weight). Moreover, patient-derived pancreatic 
cancer and mice-derived  KRAS  G12D  CSCs, lost their self-renewal capability in pres-
ence of resveratrol, possibly by the inhibition of  Nanog  ,  Sox  -2, c-Myc and Oct4. In 
the same study, patient-derived CSCs underwent resveratrol-evoked apoptosis by 
activating caspase 3/7 and inhibiting XIAP and Bcl-2.  Migration   and invasion were 
suppressed following the inhibition of  EMT   related markers such as ZEB-1, SLUG 
and SNAIL (Shankar et al.  2011 ). Similarly, in  Glioblastoma   multiforme (GBM), 
resveratrol induced apoptosis and differentiation of stem-like cells and sensitized 
them to radiotherapy in vitro and in vivo, via disruption of STAT3 signaling (Yang 
et al.  2012 ). Thereafter, Sato et al. mechanistically explained the inhibitory effect 
observed after resveratrol treatment on self-renewal and the tumorigenicity of 
CSCs. Indeed, resveratrol promoted the phosphorylation and activation of p53, 
which in turn may directly favor Nanog degradation via proteasome machinery 
(Sato et al.  2013 ).  

3.5      Cyclopamine   Limits the Self-Renewal of  CSCs   

 An additional plant-derived compound, the steroidal alkaloid cyclopamine, is a 
potent cancer preventing compound that directly binds to the heptahelical bundle of 
SMO (Chen et al.  2002 ). As already discussed in the present chapter, Hh signaling 
is essential for the maintenance of stem-like traits in multiple myeloma, leukemia 
and gastric cancer, among others (Peacock et al.  2007 ; Dierks et al.  2008 ; Song et al. 
 2011 ). Hh pathway inhibition through cyclopamine inhibited tumorsphere forma-
tion in vitro and the establishment of orthotopic glioblastoma tumors (Clement et al. 
 2007 ). The newly synthesized cyclopamine-derived inhibitor of the Hh pathway, 
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IPI-926, ameliorated cyclopamine characteristics such as oral bioavailability, higher 
metabolic stability, and a better pharmacokinetic profi le (Tremblay et al.  2009 ). 
 Cyclopamine   and IPI-926 limited self-renewal potential of B-cell acute lympho-
cytic leukemia (B-ALL) cells (Lin et al.  2010 ). Interestingly, delivery of conven-
tional chemotherapy, such as gemcitabine, to the tumor site, may be potentiated by 
the simultaneously administration of IPI-926. Indeed, in vivo inhibition of the Hh 
pathway increased intratumoral drug absorption in a gemcitabine-resistant pancre-
atic ductal adenocarcinoma model thus, making IPI-926 an important  therapeutic 
strategy   for the management of pancreatic cancer chemoresistance (Olive et al. 
 2009 ). IPI-926 is undergoing early step clinical trials for solid malignancy in com-
bination with standard chemotherapy (Jimeno et al.  2013 ) (  http://www.cancer.gov/
clinicaltrials    ).  

3.6      Curcumin   Promotes  CSC   Differentiation 

  Curcumin   (diferuloylmethane) derives from the Indian spice plant turmeric. 
Extensive preclinical studies showed its therapeutic potential in a variety of human 
diseases, including cancer. Due to its pleiotropic activities, curcumin is able to mod-
ulate a variety of normal or aberrant biological processes, hence it has been selected 
as a promising anti-cancer drug in several clinical trials (Gupta et al.  2013 ). 
Moreover, studies have shown that curcumin displayed capability of eliminating 
colon  CSCs   either alone or in combination with standard chemotherapy, such as 
FOLFOX (5-fl uorouracil and oxaliplatin) and dasatinib (Nautiyal et al.  2011 ; Yu 
et al.  2009 ). Furthermore, Curcumin promotes GSCs terminal differentiation, which 
culminated in autophagy. Whereas, in an intracranial glioblastoma xenograft model, 
it repressed their self-renewal capability and tumorigenicity (Zhuang et al.  2012 ). 
Intriguingly, breast CSCs, derived from the MCF7 cell line, displayed inhibition of 
tumorsphere formation and the Wnt signaling pathway (Kakarala et al.  2010 ).  

3.7     Metformin in  CSC   Biology 

 Metformin is a well-established oral anti-diabetic drug of the biguanide class. It is 
an agonist of the adenosine monophosphate-activated protein kinase (AMPK) and 
an inhibitor of PI3K, mTOR and  IGF  . It has gained attention for its in vitro and 
in vivo antitumor effects and is now being tested in several advanced clinical trials 
(Rattan et al.  2012 ) (  http://www.cancer.gov/clinicaltrials    ). Metformin has also 
emerged as an important factor to counteract the retention of stemness and the acti-
vation of the  EMT   program of some cancer populations (Rattan et al.  2012 ). 
Metformin was able to inhibit the expression of Oct4 in the MCF7 cell line, medi-
ated by 17-β-estradiol treatment, and to reduce the fraction of CD44 high /CD24 low  
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cells (Jung et al.  2011 ). In line with these results, Vazquez-Martin et al. observed 
that metformin deprived basal-like breast cancer cells of the stem compartment and 
suppressed an EMT program activation through the transcriptional repression of 
ZEB1, TWIST1, SNAI2 and  TGF-β   (Vazquez-Martin et al.  2010 ). Metformin 
depleted the  CSC   pool in both gemcitabine-sensitive and -resistant pancreatic can-
cer cells, by decreasing the expression of CSC-specifi c markers such as  EpCAM  , 
Notch,  Nanog  , and  CD44  , as well as reexpressing miRNAs, (e.g. let7a, let7b, miR- 
200b, and miR-200c) usually associated with cellular differentiation (Bao et al. 
 2012 ). The studies performed by Oliveras-Ferraros et al. attempted to anticipate the 
possible mechanisms of acquired resistance to metformin treatment. They observed 
that the potential of metastatic dissemination of breast stem-like cells seemed to be 
fueled by the chronic administration of metformin to the estrogen–dependent MCF7 
cell line. Thus, the drug selected for the emergence of resistant cells, leads to a tran-
scriptome reprogramming which, drives them towards a metastatic stem-like profi le 
(Oliveras-Ferraros et al.  2014 ).   

4     Microenvironment Modulator Drugs 

4.1      Targeting   the  CSCs   Vasculature Niche 

 There is proof of evidence that tumor-associated stroma and the extracellular matrix, 
are an extremely powerful source of herotypic signals, responsible for the activation 
of an  EMT   program on cancer cells and possibly to nurture the  CSCs   within their 
niche. Among the stromal compartment, endothelial cells play a major role in sup-
porting the self-renewal capability of CSCs and in building up all the vasculature 
architecture needed from these cells to provide nutrients and an easy route to meta-
static dissemination. While the contribution of endothelial cells to tumor angiogen-
esis is self-evident, our understanding on  CSC   survival and drug resistance is still 
incomplete. Pioneer work from Calabrese et al., showed how the formation of a 
vascular niche is directly involved in the function of CSCs. Interestingly, glioblas-
toma stem cells (GSCs) can be induced to differentiate in either endothelial cells or 
pericytes, as a consequence of their undifferentiated state and their strict depen-
dence on microvasculature stimuli (Calabrese et al.  2007 ). Tumor vasculature is 
classically composed of a network of tortuous, saccular and extremely permeable 
vessels, endothelial cells that are abnormally covered by pericytes and an irregular 
basal membrane. As a result, cancer cells can easily penetrate into the bloodstream 
and colonize distant metastatic sites, and a higher interstitial hydrostatic pressure, 
due to plasma leakage, may impair the delivery of chemotherapeutic drugs to the 
tumor site (Jain  2005 ).  Vascular endothelial growth factor   ( VEGF  ) was identifi ed as 
an endothelial compartment mitogen which has a prominent role in positively regu-
lating physiological and pathological angiogenesis. The mammalian VEGF family 
consists of fi ve heparin-binding homodimeric glycoprotein of 45 kDa referred to as, 
VEGFA (VEGF), VEGFB, VEGFC, VEGFD and Placental growth factor (PlGF). 
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The predominant VEGF molecules are represented by several spliced variants 
denoted as, VEGF 121 , VEGF 145 , VEGF 148,  VEGF 165 , VEGF 183,  VEGF 189 , and VEGF 206  
(Tischer et al.  1991 ). They are commonly secreted by macrophages, neutrophils, 
fi broblast and several cancer cells but not by endothelial cells themselves. VEGF 
receptors consist of VEGFR1 (FLT1), VEGFR2 (FLK1) and VEGFR3 (FLT4). 
VEGFR1 is able to bind VEGF, VEGFB and PlGF. VEGFR2 is activated by VEGF, 
VEGFC and VEGFD. Lastly, VEGFR3 is primarily involved in lymphangiogenesis 
as a receptor for VEGFC and VEGFD. Although all VEGFRs are tyrosine kinase 
receptors, VEGFR2, in response to VEGF stimulation, has captured the most atten-
tion as the predominant effector in cancer initiation and progression. This is 
explained by the fact that VEGFR1 binds VEGF with a higher affi nity than VEGFR2 
but conversely exhibits weaker tyrosine kinase activity in response to its ligand 
(Ellis and Hicklin  2008 ). In this context, Park et al. also proposed that VEGFR1 
could act as a ‘decoy’ receptor able to negatively regulate VEGF activity, by pre-
venting its binding to VEGFR2 (Park et al.  1994 ). 

 The binding of VEGFs to their cognate receptors induces dimerization and auto-
phosphorylation of the intrinsic receptor’s tyrosine residues and consequently acti-
vates the dominant PI3K-AKT,  MAPK   and FAK pathways. It is now well established 
that VEGFs and VEGFRs are expressed in a variety of tumors (including colon, 
breast, lung, prostate, and ovarian cancer).  VEGF   signaling interferes in cancer 
biology and interestingly in  CSC   function, independently of angiogenesis and in 
autocrine fashion. Conversely, it is popular belief that tumors rely on the classical 
paracrine VEGF-mediated sprouting angiogenesis, the increased permeability and 
the infl uence from the immune cells and the tumor microenvironment’s fi broblasts 
(Goel and Mercurio  2013 ). The realization that VEGF signaling is a crucial deter-
minant in  EMT  -induced cancer stemness, is becoming an emerging theme. Indeed, 
VEGF-mediated angiogenesis by itself is not suffi cient but required to increase 
tumor initiating capacity and dissemination of breast cancer cells undergoing EMT, 
also suggesting that additional factors from the microenvironment are required 
(Fantozzi et al.  2014 ). For instance, a fraction of  CD133   +  GSCs showed a 10–20- 
fold increase of VEGF secretion and displayed strongly angiogenic and hemor-
rhagic tumors through the enhancement of resident endothelial cell function and 
recruitment to the tumor site of bone marrow-derived endothelial progenitors (Bao 
et al.  2006 ). In murine models, GSCs may be induced to differentiate into endothe-
lial cells and to directly contribute to tumor vasculature architecture, as proven by 
the positivity of those cells to VEGFR2 (Ricci-Vitiani et al.  2010 ). These fi ndings 
clearly establish that VEGF, secreted by tumoral cells, acts as a paracrine factor to 
sustain angiogenesis and as an autocrine factor to boost cancer stemness. 

 Folkman ( 1971 ) was the fi rst scientist to introduce the pioneer idea that solid 
neoplasms were always sustained by new vessel growth and envisioned angiogen-
esis as a new target for cancer treatment. In 2004, for the fi rst time the FDA approved 
an anti angiogenic compound, called Bevacizumab, for clinical use in combination 
with standard chemotherapy. It is a humanized monoclonal antibody specifi c to 
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 VEGF   that prevents the interaction of VEGF to its receptor. It became the standard 
means of treatment for metastatic  HER2   negative breast cancer, metastatic colorec-
tal cancer, glioblastoma, advanced or metastatic non-small-cell lung cancer, 
advanced renal-cell carcinoma and recently, for persistent, recurrent, or metastatic 
cervical cancer (Tewari et al.  2014 ). Later, Afl ibercept was approved as a ‘decoy’ 
receptor for VEGFA, VEGFB and PlGF (Patel and Sun  2014 ). The inhibition of 
VEGFR kinase activity, is another valid approach to counteract tumor angiogenesis. 
Sunitinib targets multiple receptor tyrosine kinases including PlGFR and VEGFRs 
in unresectable, local, advanced or metastatic disease in well differentiated pancre-
atic neuroendocrine tumors, renal-cell carcinomas, and imatinib-resistant gastroin-
testinal tumors. Similarly, Sorafenib inhibits Raf kinases, VEGFRs and PlGFR in 
thyroid, liver and hepatocellular carcinoma (Santoni et al.  2014 ). Since 1971, lots of 
studies have been published in the fi eld and seemed promising but little effi cacy has 
been shown yet. Besides their remarkable activity in the inhibition of primary tumor 
growth, anti-angiogenic drugs failed in producing lasting responses and patients’ 
illnesses eventually progress (Bergers and Hanahan  2008 ). This could be partially 
explained by the fact that alternative adaptive resistance mechanisms, used to over-
come the drug-mediated anti angiogenic effect, can occur. This could be the case 
when there is: an activation of alternative angiogenic pathways, including  Fibroblast   
growth  factor   1 (FGF1) and FGF2, Ephrin A1 (EFNA1) and EFNA2 and 
Angiopoietin1 (ANGPT1), the recruitment of proangiogenic cells, and the increased 
coverage of pericytes to support vessel integrity. Interestingly, in an in vivo engi-
neered model of KRAS-driven pancreatic ductal adenocarcinoma, resistant to anti- 
VEGF therapy, the MEK inhibitor substantially decreased the release of 
granulocyte–colony stimulating factor (G-CSF) by the tumor cell, which is usually 
responsible for the recruitment and mobilization of pro-tumorigenic and pro- 
metastagenic CD11b +  Gr1 +  myeloid-derived suppressor cells. CD11b +  Gr1 +  cells 
also helped the establishment of metastases by secreting matrix metalloproteinases 
(MMPs) as well as the Bv8 molecule, endowed with pro angiogenic features. This 
study revealed that a combination of MEK inhibitor and anti-VEGF therapy sub-
stantially decreased tumor burden and angiogenesis (Phan et al.  2013 ). Likewise, 
anti angiogenic therapy eradicated the brain tumor stem cell niche in an in vivo 
model of c6 rat glioma cell line and enhanced the effect of the conventional cyto-
toxic agent, cyclophosphamide (Folkins et al.  2007 ). 

 Even upon anti- VEGF   therapy, functional vessels tightly covered by pericytes 
have been observed. Indeed, endothelial cells can recruit perycites to protect them-
selves from anti angiogenic treatments and preserve their vascular structure. An 
attractive hypothesis suggested that  CXCR4   +  GCSs were mobilized towards the 
tumor site through an  SDF-1   gradient and, upon  TGF-β   release by endothelial cells, 
were forced to differentiate in pericytes and contributed to tumor vasculature and 
growth (Cheng et al.  2013 ). Moreover, Conley et al. showed that, hypoxic condi-
tions limit the effectiveness of the antiangiogenic agents bevacizumab and sunitinib, 
by increasing breast  CSC   populations (Conley et al.  2012 ).  
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4.2     Therapeutic Implications of Neuropilins in  CSCs   Biology 

  VEGF   receptors can functionally interact with other receptors and foster  CSC  - 
driven  tumor growth and progression. Within the same context, Neuropilins (NRPs) 
were described earlier as neuronal receptors for the semaphoring family and also 
involved in axon guidance. They act as transmembrane glycoproteins with a short 
cytoplasmic domain that lacks intrinsic catalytic activity and function as co recep-
tors of VEGFR1 and VEGFR2. NRP1 is commonly expressed by endothelial cells 
and tumor cells (Soker et al.  1998 ). Upon autocrine VEGF stimulation, NRP1 pro-
motes stemness and renewal of VEGFR2 +  squamous skin  CSCs   (Beck et al.  2011 ). 
Similarly, viability, self-renewal and tumorigenicity of  CD133   +  GSCs rely on auto-
crine VEGF/VEGFR2/NRP1 signaling and are maintained by a continuous secre-
tion of VEGF (Hamerlik et al.  2012 ). Cao et al. showed that VEGF and NRP1 
induced a dedifferentiated phenotype in vitro and promoted tumor formation in vivo 
(Cao et al.  2012 ). α6β1 integrin is necessary for the tumorigenicity of some sub-
populations of breast CSCs and GSCs (Goel et al.  2014 ; Lathia et al.  2010 ). In triple 
negative breast cancers, NRP2 resulted preferentially expressed in breast CSCs and 
associated with α6β1 integrin. Upon VEGF stimulation of the NRP2- α6β1 com-
plex, the focal adhesion kinase (FAK) mediated the activation of  MAPK   signaling 
and the subsequent expression of GLI1, an effector of the non canonical Hedgehog 
pathway. GLI1 in turn, induced BMI1 and positively fed back to the NRP2 expres-
sion, thus contributing to tumor initiation (Goel et al.  2013 ). NRP2 is also associ-
ated with aggressive prostate cancer and its expression is forced by  PTEN   loss. 
Activation of the VEGF/NRP2 axis culminates in BMI1 expression, which represses 
the transcription of the insulin like growth factor 1 receptor (IGF1R), commonly 
responsible for tumor progression. Interestingly, single targeting of NRP2 led to 
compensatory  IGF  -1R activation (Goel et al.  2012 ). Therefore, these fi ndings offer 
a perfect example of how an ideal combination of conventional chemotherapy, 
stemness modulator drugs (in this case anti-NRP specifi c antibodies), and anti IGFR 
antibodies could reduce tumor bulk, overcome treatment resistance and prevent 
relapse (Fig.  16.2 ).

   For instance, multiple compensatory signals could be activated when a single 
anti-angiogenic treatment is administrated, regardless of possible collateral stimula-
tion of pathways involved in invasiveness or tumor cell stemness. Given that 
Bevacizumab does not inhibit  VEGF   binding to NRPs, Pan et al. ( 2007 ) generated 
two anti-NRP1 monoclonal antibodies specifi c to the binding site of semaphorin 
and VEGF on NRP1. This caused a reduction in cell proliferation as well as vascu-
lar density in a NSCLC in vivo model, assuming that the inhibition of NRP1, 
impairs vascular remodeling and thus rendering vasculature more responsive to anti 
VEGF treatment. In contrast with these fi ndings, Snuderl et al. recently showed that 
the exclusive targeting of the PlGF/NRP1 pathway with the previously used phase I 
clinical trials, TB403 and 5D11D4, respectively an anti-murine PIGF antibody and 
an anti-human/murine PlGF antibody, reduced primary tumor burden and progres-
sion of medulloblastoma. PlGF seemed to be secreted by the tumor stroma, 
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 following tumor-derived  Shh   stimulation. PlGF only interacts with NRP1 rather 
than with VEGFR1 on medulloblastoma cells, for the enhancement of tumor spread. 
Authors suggested that the use of anti-NRP1 and –PlGF, in concert with standard 
chemotherapy, could make an additional improvement in the clinical setting 
(Snuderl et al.  2013 ). 

 Another example of multiple compensatory signaling activation was shown by 
Lu et al.. Indeed, bevacizumab treatment fostered an invasive phenotype in an 
in vivo model of GBM. The inhibition of  VEGF   suppressed the recruitment of the 
protein tyrosine phosphatase 1 B (PTP1B) from the VEGFR2/ MET   complex, 
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  Fig. 16.2     Therapeutic strategies to inhibit    VEGF     signaling in tumor cells . Besides regulating the 
common paracrine pathway on endothelial cells to sustain angiogenesis, VEGF signaling, when 
potentiated by NRPs, exerts its role in the autocrine stimulation of  CSC   self-renewal and migra-
tion. NRP2 can also interact with α6β1 integrin and trigger the integrin-mediated activation of 
FAK signaling cascade that culminates in the induction of BMI1 and NRP2. NRP1 interaction with 
VEGFR2 promotes the release of VEGF in the extracellular compartment, sustaining both the 
autocrine loop and the paracrine endothelial cell activation. Inhibition of VEGF signaling can be 
achieved mainly by mAb targeting VEGF and small molecules  TKIs  . mAbs directed against NRPs 
have been developed and proved to hamper self-renewal and tumorigenic capabilities of  CSCs  . 
However, inhibition of NRP2 can lead to compensatory IGF1R expression via BMI1 down- 
regulation, supporting the importance of multiple therapy administration aimed at targeting both 
NRPs and IGF1R.  Vascular endothelial growth factor   (V EGF  ), Neuropilin (NRP), cancer stem cell 
(CSC), focal adhesion kinase (FAK), monoclonal antibody (mAb), tyrosine kinase inhibitor ( TKI  ), 
insulin-like growth factor 1 receptor (IGF1R), extracellular matrix ( ECM  )       
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 consequently restoring hepatocyte growth factor (HGF)-mediated MET 
 phosphorylation and tumor invasiveness. Authors suggested that in selected patients 
with GBM, tumor recurrence could be avoided by the combined use of anti VEGF 
and anti MET treatments (Lu et al.  2012 ).  

4.3      Targeting   Microenvironment Stimuli 

 AMD3100 is an antagonist of  CXCR4  . This drug, in combination with G-CSF to 
improve hematopoietic stem cell mobilization to peripheral blood for autologous 
transplantation, was approved in 2008 by the FDA for clinical use as a treatment for 
non-Hodgkin’s lymphoma and multiple myelomas (DiPersio et al.  2009b ; DiPersio 
et al.  2009a ). 

 Commonly used for leukemia in several clinical trials, AMD3100 prevents 
 CXCR4   +  leukemia cell recruitment to the  SDF-1  -secreting bone marrow microenvi-
ronment, thus rendering cancerous cells more susceptible to cytotoxic drugs (Burger 
and Peled  2009 ). In agreement with this, invasive  CD133   +  pancreatic  CSCs   expressed 
CXCR4 and predominantly metastasize in the liver, being attracted by a gradient of 
SDF1, which is secreted by the stroma compartment (Hermann et al.  2007 ). 

 Recently,  CXCR4  -SDF1 signaling has been identifi ed as the driving force behind 
the establishment of bone metastasis in triple negative breast cancers. Particularly, 
 CAF  -rich stroma found in primary breast cancer secretes  SDF-1   and  IGF   and selects 
tumor cell clones with high Src activity and thus, characterized by an activation of 
PI3K-AKT pathway. Src hyperactive clones were primed for bone metastasis 
because endowed with a greater chance of survival in the bone environment enriched 
with SDF-1 and IGF. Mechanistically, human mesenchymal stem cells were stimu-
lated with a conditioned media from MDAMB231 cell line to constitutively secrete 
SDF-1 and IGF. Subsequently, authors cotransplanted breast cancer cell lines and 
stromal cells in an orthotopic mouse model. Following an in vivo treatment with 
CXCR4 inhibitor (AMD3100) and IGF1R inhibitor (BMS754807), the recovered 
cells were reimplanted and resulted in tumors, low in bone metastasis, compared to 
reimplanted cells from untreated tumors (Zhang et al.  2013 ). 

 Similarly, we recently showed that in colorectal cancer, the exposure to SDF1, 
HGF and OPN, increased the migratory capabilities of colorectal  CSCs   and induced 
the CD44v6 expression, an alternative splicing isoform of  CD44  , on transiently 
amplifying progenitors. Interestingly, in untreated colorectal CSCs, CD44v6 was 
already highly expressed whereas, it was lower in sphere-derived differentiated 
progeny and bulk primary cells. CD44v6 acts as a coreceptor of the tyrosine kinase 
receptor  MET  , and together with its ligand, the pleyotropic cytochine HGF, cooper-
ates to promote survival and migration through the PI3K-AKT pathway. When 
blocking  SDF-1  - CXCR4   activity with AMD3100, it reduced the invasive potential 
and abrogated the CD44v6 expression induced by HGF and OPN. Similarly the 
PI3K inhibitor, BKM120, killed CD44v6 +  colorectal CSCs and impaired metastatic 
dissemination (Todaro et al.  2014 ). It is worth considering that targeting these 
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 powerful effectors in the tumor microenvironment could have tremendous therapeu-
tic implications. In this context, the use of compounds which, target both MET and 
HGF, are still under evaluation in several clinical trials (Peters and Adjei  2012 ) and 
only few of them were recently approved by the FDA. Although discovered as a 
MET tyrosine kinase inhibitor, Crizotinib was approved at the end of 2013 exclu-
sively for the treatment of NSCLC as an ALK blocking compound (Malik et al. 
 2014 ). Similarly, Cabozantinib is a multi-kinase inhibitor against VEGFR1, 2 and 
3, RET, MET, TIE-2 and KIT and is currently administered uniquely for progressive 
medullary thyroid cancer (Elisei et al.  2013 ).  Clinical trial   s   for prostate, brain, 
breast, and NSCLC are still undergoing (  http://www.cancer.gov/clinicaltrials    ).  

4.4      Hypoxia   as a Therapeutic Target 

 Evidence that  CD44   variant isoforms (CD44v) could promote survival and multi-
drug resistance has been shown by Ishimoto et al. In gastrointestinal cancer cells, 
CD44v enhanced the synthesis of reduced glutathione (GSH), the predominant 
intracellular antioxidant factor, by physically interacting with and stabilizing the 
cystine transporter subunit (xCT) at the plasma membrane. xCT is the light chain 
subunit of the cysteine-glutamate exchange transporter, which exchanges intracel-
lular glutamate for extracellular cysteine, required for GSH synthesis. GSH protects 
the cell against reactive oxygen species ( ROS  ) damages and suppresses p38 MAPK  
activation, leading to cancer cell proliferation and resistance to ROS-inducing 
agents, such as docetaxel and cisplatin. As a result of these fi ndings, in vivo expo-
sure to sulfasalazine, a selective xCT inhibitor, induced p38 MAPK  signaling, enhanced 
response to chemotherapy, and avoided CD44-dependent tumor growth. Therefore, 
authors suggested that either sulfasalazine or CD44v-target therapy could abrogate 
ROS defense capabilities of  CSCs   and in turn sensitize to conventional cancer treat-
ments (Ishimoto et al.  2011 ). 

  Normal stem cell   s   as well as  CSCs  , harbor low levels of  ROS   and possess an 
effi cient defense mechanism against oxidative stress (Diehn et al.  2009 ). An increase 
in ROS levels can occur in response to either environmental extrinsic (e.g.  CAFs  , 
CAMs, and hypoxia) or intrinsic oxidative stress (e.g. ROS producing enzyme and 
Jun D down-regulation), along with iron chelators, nitric oxide (NO), and genetic 
alterations in  PTEN  , von Hippel-Lindau (VHL), succinate dehydrogenase (SDH), 
RAS- MAPK  , and PI3K-AKT accounts for the hypoxia-inducible factor 1 α 
(HIF-1α) stabilization (Moeller et al.  2004 ; Li et al.  2007 ; Lu and Kang  2010 ). As 
well as under normoxia, HIF-1α exerts its role in shielding tumor cells from oxygen 
deprivation and thus aids in meeting the metabolic requirements of the expanding 
tumor mass. The HIF family of transcription factors has a prominent role in a fi nely 
tuned and well characterized oxygen-sensor mechanism. They comprise a heterodi-
mer of an oxygen dependent α–subunit (either HIF-1α, HIF-2α or HIF-3α) together 
with a constitutively expressed β-subunit (HIF-1β). Under normoxic conditions and 
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in presence of iron, prolyl hydroxylases (PDH) modifi es Pro402 and Pro564 of 
HIF-1α and promotes the interaction with VHL, leading to ubiquitination and pro-
teasomal degradation. It prevents HIF-1α to dimerize with HIF-1β and to bind with 
the coactivator CBP/p300 to the hypoxia response element (HRE) in the promoters 
of hypoxia-target genes, regulating proliferation/apoptosis, glycolysis, angiogene-
sis, and invasion/metastasis (Harris  2002 ). A high HIF-1α level is observed in many 
human cancers and is associated with poor prognosis in brain, breast, ovary, cervix, 
colorectal, prostate, bladder, and oropharynx cancers (Semenza  2003 ; Talks et al. 
 2000 ). Particularly, HIF-1α has been reported to be hyperactivated in TNBCs and 
necessary for the maintenance of the CD44 high CD24 low  cell population. Chen et al. 
identifi ed XBP1, a component of the unfolded protein response (UPR) pathway, as 
a major controller of HIF-1α transcriptional activity in TNBCs. It is required for 
tumor relapse in a murine model and directly enriches the CD44 high CD24 low  popula-
tion in vitro .  XBP1 can also be associated with poor prognosis, suggesting that 
combinatory therapy using stem cell targeting drugs, such as inhibitors of the UPR 
pathway and standard chemotherapy may improve cancer therapeutic intervention 
(Chen et al.  2014 ). 

 A tight relationship exists between hypoxia and tumor dissemination. Low oxy-
gen levels in tumor microenvironment promote the overexpression of  EMT   master 
regulators such as SNAIL, TWIST, and ZEB1, while it attenuates  E-cadherin   
expression. Matrix remodeling requires basal membrane degradation via HIF-1α- 
dependent production of MMP2 and cathepsin D (CTSD). The so-called “invasive–
switch” is guided by hypoxia and sustained by  MET   and lysyl oxidase (LOX) 
expression.  Hypoxia   facilitates both intravasation and extravasation of tumor cells 
through the increased production of VEGFA. Meanwhile,  CXCR4  , OPN, and 
Angiopoietin-like 4 (ANGPTL4) increase the chance of homing and outgrowth to 
secondary organs (Catalano et al.  2013 ). 

 HIF-2α also contributes to the hypoxia-driven “angiogenic-switch” and is 
directly linked to stem cell biology as a regulator of  OCT4  (Covello et al.  2006 ) and 
 c-MYC  (Gordan et al.  2007 ). Given that it displays a restricted tissue-specifi c 
expression pattern compared to its homologs, little attention has been given to 
addressing its pro angiogenic and pro tumorigenic features (Gordan et al.  2007 ). 
One key study showed the preferential expression of HIF-2α on GSCs compared to 
the differentiated and normal counterpart and its association with poor survival in 
glioblastoma patients. Authors underlined that HIF-2α may support the  CSCs   niche 
by providing survival and metabolic advantages through the modulation of  OCT4 , 
 GLUT1 , and  SERPINB9  expression. This suggests that new therapeutic approaches 
should be aimed at targeting stem cell specifi c molecules involved in neoangiogen-
esis (Li et al.  2009 ) 

 On the contrary, besides being a member of the HIF system, HIF-3α’s role in the 
tumor hypoxia-inducible adaptive response system, is not well characterized. 
Indeed, it lacks the transactivation domain and likely functions as a negative regula-
tor of HIF-1α and HIF-2α due to sequestration of HIF-1β (Kaur et al.  2005 ). 

 As previously discussed, preclinical data provide evidence that hypoxic tumor 
cells play a pivotal role in tumor progression and resistance to therapies. Moreover, 
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the pro metastatic effect elicited by angiogenesis-induced hypoxia can compromise 
clinical outcomes in patients. Thus, targeting intratumoral hypoxia can be consid-
ered the gold standard to be exploited in neoplastic malignancy. Nevertheless, it is 
clear that hypoxia is heterogeneously diffused within a given tumor cell population 
and is endowed with an even more differentiated extension among patient tumors. 
Based on this observation, an appropriate measuring of tumor hypoxia either by 
direct or indirect methods, will facilitate the selection of the patient’s treatment as 
well as, the monitoring of their treatment-response (Wilson and Hay  2011 ). 
However, an interesting fi nding recently reported for the fi rst time is that, a chemo-
therapeutic agent, in this case doxorubicin, can stabilize HIF-1α even in normoxic 
cells. Indeed, doxorubicin increased the expression of STAT1, with consequent 
stimulation of iNOS, intracellular synthesis of NO and HIF-1α accumulation (Cao 
et al.  2013 ). 

 In recent years, several drugs have been designed to selectively target chemo- 
and radio-resistant hypoxic cancer cells. According to the action mechanism, they 
could be tentatively categorized as (a) agents targeting HIF-1α DNA binding, (b) 
agents attenuating HIF-1α protein translation, (c) agents inducing HIF-1α protein 
degradation, (d) prodrugs inducing hypoxia-mediated cytotoxicity (e) HRE-driven 
expression of enzymes converting prodrugs and (f) agents targeting downstream 
HIF pathway effectors. 

 Specifi cally, HIF-1α function can be directly targeted via chetomin, a small mol-
ecule that precludes HIF-1α binding to the transcriptional coactivator p300/CBP 
(Kung et al.  2004 ). Similarly, the proteasome inhibitor bortezomib, which has been 
approved by the FDA for clinical use in multiple myeloma and mantle cell lym-
phoma patients refractory to at least one prior therapy, affects the C-terminal activa-
tion domain (CAD) of HIF-1α. It was shown that bortezomib enhanced the HIF-1α 
hydroxylation of Asn803 residue, by the dioxygenase factor-inhibiting hypoxia 1 
(FIH-1), causing the inhibition of p300-HIF interaction (Kaluz et al.  2006 ). 
Intriguingly, anthracyclines, such as doxorubicin and daunorubicin, block HIF-1 
binding to HRE sequence, providing new evidence in refi ning their use as antiangio-
genic drugs (Lee et al.  2009 ). 

 HIF-1α expression can be modulated by the topoisomerase I inhibitor topotecan, 
one of the fi rst hypoxia inhibitor ever tested on humans and currently approved for 
the treatment of small cell lung cancer and recurrent cervix carcinoma. Cardiac 
glycoside digoxin inhibited the translation of HIF-1α in an mTOR-independent 
manner. In preclinical settings, PX-478 appeared to inhibit HIF-1α mRNA expres-
sion and translation, and foster HIF-1α degradation by preventing its deubiquitina-
tion (Onnis et al.  2009 ). Contrasting data have been generated regarding the 
contribution of the  mTOR pathway   in the modulation of hypoxia. Several mTOR 
inhibitors, such as everolimus and temsirolimus, have been approved by the FDA 
for clinical use in renal cancer patients and displayed remarkable antiangiogenic 
activity and inhibition of HIF-1α (Del Bufalo et al.  2006 ).  Hypoxia  , especially in 
early stage tumors, may negatively regulate HIF-1α expression according to the 
intensity and duration of oxygen deprivation (Wouters and Koritzinsky  2008 ). 
Another indirect mechanism of HIF-1α inhibition includes the targeting of upstream 
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pathways (e.g. PI3K-AKT and RAS- MAPK  ) involved in HIF-1α protein translation 
(Poon et al.  2009 ). Interestingly, the tumor suppressor p53 mediates apoptosis under 
hypoxic conditions. However, cancer cells with dysregulated p53, escape pro-
grammed death and p53-mediated HIF-1α inhibition (Ravi et al.  2000 ). P53 may 
either interact with HIF-1α or mediate its degradation through HDM2 (Ravi et al. 
 2000 ) or compete with HIF-1α for p300 thus, blocking its transcriptional activity 
(Schmid et al.  2004 ). Agents targeting p53, aim at reactivating mutant p53. This is 
the case of RITA (reactivation of p53 and induction of cell apoptosis), which induces 
DNA damage in order to stimulate p53-evoked cell apoptosis and inhibits MDM2 
to prevent p53 degradation. This mechanism seems to be hypoxia-independent 
(Yang et al.  2009 ). 

 HIF-1α degradation may be forced by the inhibition of chaperone HSP90. In 
normoxia and hypoxia, the HSP90 antagonists GA and 17-AAG mediate elimina-
tion of HIF-1α through E3 ubiquitin ligase and reduces angiogenesis in vivo (Isaacs 
et al.  2002 ). Trichostatin A is an inhibitor of HDAC and promotes proteasome- 
dependent HIF-1α degradation in osteosarcoma (Yang et al.  2006 ). Similarly, 
HDAC inhibitors FK228 and LAQ824 resulted in the abrogation of HIF-1α activity 
(Mie Lee et al.  2003 ; Qian et al.  2006 ). Of note, SAHA, the potent pan HDAC 
inhibitor, may act together with TRAIL, in breast cancer orthotopic models and 
down-regulate both  VEGF   and HIF-1α (Shankar et al.  2009 ). 

 One promising approach seeks to develop prodrugs that can be reduced by 
hypoxia in prodrug radicals, as intermediate products. In normoxia, they can be re- 
oxidized and converted back by oxygen while in hypoxic cells they can be either 
further reduced or fragmented so as to generate an active toxic drug. Examples of 
bioreactive prodrugs still in clinical development include RH-1, mitomycin C, 
AQ4N, PR-104, and SR4233. Some concerns have been reported regarding the pro-
drugs’ penetration into poorly perfused tumors and their toxicity. The activation of 
aerobic reductase also in normal tissues or the additional generation of DNA reac-
tive cytotoxins, make it hard to combine bioreductive prodrugs with standard che-
motherapy (Wilson and Hay  2011 ). 

 Moreover, in tumoral cells prodrugs can be converted into cytotoxins by a 
hypoxia-regulated expression vector which, encodes the enzyme responsible for 
this reaction.  Hypoxia   targeted gene therapy has been tested in a preclinical setting 
and consists in the expression, in tumoral cells, of plasmid vector carrying genes 
driven by a promoter containing HRE and encoding: thymidine kinase (TK), cyto-
sine deaminase (CD), uracil phosphoribosyltransferase (UPRT), and fl avoprotein 
cytochrome c P450 reductase (CPR) (Patterson et al.  2002 ; Hsiao et al.  2014 ). A 
triple suicide gene therapy has proven to enhance cytotoxicity to ganciclovir and 5 
fl uorocytosine and sensitize colorectal cancer cells, both in vitro and in vivo, to 
radiotherapy by simultaneous expression of TK, CD and UPRT (Hsiao et al.  2014 ). 

 Finally, multiple agents also aim at targeting the downstream component of the 
HIF signaling pathway such as the LOX inhibitors, β-aminoproprionitrile (βAPN) 
or anti-LOX antibody, which binds the LOX active site and blocks its enzymatic 
function (Erler et al.  2009 )   

A. Turdo et al.



467

5     Challenges and Limitations of Targeting Cancer Stem 
Cells and Their Niche 

 Conventional anti-cancer drug development has been focused on the identifi cation 
of cytotoxic chemotherapeutic agents that can target deregulated pathways and 
molecular markers in tumor cells. Despite all efforts, patients undergoing chemo-
therapy, after an apparent remission, often relapse and develop more aggressive 
diseases. This emphasizes that  CSCs   may be responsible for therapy failure due to 
the specifi c activated mechanisms which are peculiar to the undifferentiated status 
of these cells. In this context, novel compounds have been precisely designed to 
eliminate CSCs or affect their microenvironment and, administered in concert with 
conventional chemotherapy, can lead to tumor bulk shrinkage and ablate resistance 
and relapse. Of note, there is a need to refi ne such therapies to counteract their side 
effects. Indeed, such approaches could impair normal stem cell niches, have ‘off 
target’ effects on signals required for normal cells survival or, and as well as stan-
dard treatments, they should be administered at concentrations harmless to patients.  

6     Conclusion and Future Perspectives 

 The reviewed data show only a partial portion of the existing therapies in the fi eld. 
Anyhow, they seek to emphasize that despite of the efforts that have been made to 
develop powerful  CSCs   targeted therapy, multiple obstacles still need to be faced 
for the achievement of long lasting clinical benefi ts. The future use of appropriate 
tumor models and technologies refl ecting the phenotypic, genetic and epigenetic 
tumor heterogeneity constantly evolving to counteract the hostile milieu, will pos-
sibly overcome the achieved disappointing results. Moreover, a multitude of new 
inhibitors are currently being investigated and will possibly conduct to some encour-
aging experimental evidence.     
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