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    Chapter 15   
 Targeting Key Stemness-Related Pathways 
in Human Cancers       

       Krysta     M.     Coyle    ,     Margaret     L.     Thomas    ,     Mohammad     Sultan    , 
and     Paola     Marcato    

    Abstract     It is increasingly apparent that cancer stem cells (CSCs) play a substan-
tial role in the response of human cancers to therapy. Indeed, the failure of main-
stream chemotherapies to reduce the CSC burden may explain the high rates of 
tumor recurrence and metastasis. The development of new, anti-CSC agents is thus 
of great importance to reduce cancer-related mortality. One strategy to target CSCs 
focuses on their dependence on cell-signaling pathways, which differ from the 
majority of the tumor cells; these pathways include the embryonic Notch, Wingless- 
related (Wnt), and Hedgehog (Hh) pathways. Recently, there has been a surge in the 
development and clinical evaluation of targeted anti-Notch, anti-Wnt, and anti-Hh 
agents. Herein, we discuss the signaling paradigm for each of these pathways, iden-
tify druggable targets, and discuss selected pre-clinical and clinical fi ndings with 
agents targeting each pathway. A number of natural molecules have shown some 
effi cacy in inhibiting these stemness pathways. Importantly, we consider other 
disease- specifi c targeted agents to discuss roadblocks to the success of these anti- 
stemness agents – including fi nancial considerations, the development of resistance, 
and on-target adverse effects. Novel clinical trial elements are required to adequately 
assess the success of these agents; however, the future for anti-CSC therapy is 
promising.  
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1         Introduction 

1.1      Cancer   Stem Cells and Stemness Pathways 

 There is mounting evidence that, regardless of the cell-of-origin, the dysregulated 
proliferation and differentiation observed in many cancer types represents a return 
to an earlier developmental stage. The dependence of cancer cells and cancer stem 
cells ( CSCs  ) in particular, on self-renewal and multipotency make them reliant on a 
select few signaling pathways governing these characteristics. Indeed, the differ-
ence between cancerous and normal tissues has been characterized as dependent on 
the loss of stem-cell regulated homeostatic mechanisms which contribute to the 
maintenance of normal cell numbers (Tan et al.  2006 ). We will briefl y discuss the 
reliance of CSCs on Notch, Wingless-related (Wnt), and Hedgehog (Hh) signaling 
before discussing drug targets to modulate these pathways.  

1.2     Signaling Paradigm 

 A few pathways govern the development of entire organisms, including Notch, Wnt, 
Hh, receptor tyrosine kinase (RTK), Janus kinase/signal transducer and activator of 
transcription (Jak/STAT), and transforming growth factor beta ( TGF-β  ) pathways. 
As a result, they must be highly specifi c and well organized. Barolo and Posakony 
( 2002 ) identifi ed important characteristics which defi ne the signaling paradigm of 
these developmental pathways. First, these select pathways must be able to activate 
different or overlapping subsets of genes in various contexts. To facilitate this, path-
ways demonstrate activator insuffi ciency. Activation of the pathway is insuffi cient 
to activate transcription of all target genes with the same response element. This can 
be mediated by active repression of target genes in inappropriate signaling contexts. 
This requires the presence of  cis -regulatory elements which bind repressors or addi-
tional activators. Alterations often exist in negative regulators of these signaling 
pathways in various types of cancer (Pece et al.  2004 ; Westhoff et al.  2009 ). Second, 
developmental pathways require the cooperation of tissue-specifi c or cell-type- 
specifi c activators (Barolo and Posakony  2002 ). Binding sites for these local activa-
tors are often located near the signal-activated promoters and are signal-independent. 
For example, transcription activation in the Notch pathway requires the “CBF-1, 
Suppressor of Hairless, Lag-2” (CSL) complex and the mastermind-like proteins 
(MAML1-3 in humans). An alternatively spliced form of CSL (CSL-TREX) was 
identifi ed in acute myeloid leukemia (AML) and was associated with improved 
outcomes (Mansour et al.  2008 ). Alterations in the co-activator MAML have been 
identifi ed in mucoepidermoid carcinomas via a chromosomal translocation disrupt-
ing the Notch pathway (Tonon et al.  2003 ). In human-papillomavirus (HPV)-
induced cervical cancer, preliminary data has suggested that the E6 protein interacts 
with and interferes with MAML as a transcriptional co-activator in  Notch signaling  . 

K.M. Coyle et al.



395

This provides a possible mechanism for the inhibition of epithelial differentiation in 
HPV-induced cervical cancer (Wu and Griffi n  2004 ). 

 The fi nal characteristic identifi ed by Barolo and Posakony is default repression 
(Barolo and Posakony  2002 ). In the absence of signaling through these develop-
mental pathways, transcription is repressed. Each pathway has unique DNA-binding 
co-repressors; however, they often share non-DNA-binding co-repressors [such as 
the silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) and 
nuclear receptor corepressor (N-Cor)]. A number of alterations in co-repressors 
have been described in various cancer types (Bosserhoff et al.  2001 ; Sheng et al. 
 2004 ; Tostar et al.  2005 ; Fernández-Majada et al.  2007 ; Scales and de Sauvage 
 2009 ; Phelps et al.  2009 ), suggesting that these co-repressors play a not- insignifi cant 
role in modulating the self-renewal and cell-fate decisions of malignant cells. The 
signaling paradigm described by Barolo and Posakony ( 2002 ) is important to under-
stand how alterations in developmental signaling pathways contribute to the patho-
genesis of cancer. Additionally, the three characteristics they have identifi ed 
contribute to the selection of appropriate targets in the pharmacological modulation 
of signaling pathways.   

2      Targeting   Stem Cell Signaling Pathways 

2.1     Identifying Druggable Targets in Signaling Pathways 

 The convoluted nature and extensive cross-talk between the Wnt, Hh and Notch 
pathways makes identifying appropriate druggable targets diffi cult. Gashaw et al. of 
Bayer Health set out a list of fi ve characteristics to defi ne actionable drug targets 
(Gashaw et al.  2011 ). These include ensuring that: (1) target has a role in disease; 
(2) the target is disease-specifi c; (3) the target is not uniformly expressed through-
out the body; (4) there is a target- or disease-specifi c biomarker to monitor effi cacy; 
and (5) prediction of side effects is minimal. Finally, targets are more favorable for 
drug development if they, or corresponding biomarkers, are easily assayed. 

 The stem cell signaling pathways culminate in transcriptional responses, often 
characterized by the transcriptional activation of target genes.  Targeting   these tran-
scriptional responses can be diffi cult as drugs must pass through the nuclear mem-
brane, and only small molecules which can diffuse through the membrane, or 
proteins which can be chaperoned, will enter the nucleus (Lusk et al.  2007 ). The 
transcriptional co-factors involved in these responses also have convoluted structures 
and lack deep binding sites for ideal drug targeting (Grivas and Papavassiliou  2012 ). 
Targeting upstream segments of these signaling pathways, such as ligand:receptor 
interactions or kinases usually lack suffi cient specifi city. The potential of these tar-
gets is further limited by the redundancy between pathways and general cross-talk. 

 In many cases, targeting stem cell signaling pathways will not be disease- specifi c, 
which leads to a number of on-target side effects. These adverse effects are 
 sometimes dose-limiting and have led to the pursuit of alternate druggable targets. 
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One potential solution to this issue is the use of naturally-occurring molecules, as 
discussed in Sect.  2.2 .  

2.2      Targeted Molecules or Naturally Occurring Molecules? 

 Several important issues should be refl ected upon when considering the costs and 
benefi ts of targeted therapies compared to naturally occurring molecules. The cost 
of targeted therapy development is often astronomical when considering the number 
of patients who will benefi t (Kantarjian et al.  2013 ). Many of these drugs are tested 
in cancer patients who have exhausted all other means of treatment, resulting in 
minimal benefi ts to overall survival. 

 Targeted therapies will always be of benefi t to cancers which display consistent 
and widespread oncogene addiction (such as Her2-amplifi ed breast cancers and 
 MET  -overexpressing liver tumors). Gleevec (imatinib), the tyrosine kinase inhibitor, 
is one of the major successes of targeted therapy development and is used to treat 
chronic myelogenous leukemia (CML) and gastrointestinal stromal tumors. However, 
many drugs under development are beginning to focus on smaller and smaller sub-
sets of patients, and many have idealized this narrowing focus as the future of per-
sonalized medicine. At an average cost of $1 billion USD for FDA- approved clinical 
drugs (Goozner  2004 ), it will confer an enormous, perhaps unsustainable, burden to 
those patients who are being targeted and their health insurance providers. 

 Since 2007, at least 12 natural products or derivatives have been approved for 
cancer therapy (Basmadjian et al.  2014 ). This is an indication of the reemergence of 
naturally occurring molecules in the pharmaceutical fi eld. It is important to consider 
why natural molecules have been historically successful as anti-cancer therapeutics 
(e.g. etoposide, campothecin, paclitaxel, and rapamycin). Natural molecules have 
been described to occupy a different “area” of biochemical space than synthetic 
compounds (Ganesan  2008 ). They are subject to different restrictions in structure 
and are made up of different building blocks than synthetic molecules. The struc-
tural complexity of these molecules contributes to their specifi c interactions with 
targets, decreasing the possibility of dose-limiting side effects (Basmadjian et al. 
 2014 ). Notably, as the evolutionary purpose of these natural molecules is not as 
disease-modifying drugs, iterative alterations to their structures can improve their 
profi le as pharmaceutical agents, such as the semi-synthetic paclitaxel analog, 
docetaxel (Ganesan  2008 ). 

 Drug development in the area of embryonic signaling pathways provides an 
opportunity to look at the benefi ts of both targeted therapies and natural molecules. 
Importantly, many cancers display aberrant signaling through the Notch, Wnt and 
Hh pathways; this suggests a possible benefi t to many patients via treatment with 
signaling antagonists. A variety of targeted agents have been developed to each of 
these pathways, and are discussed in the following sections. Additionally, many 
existing medicinal agents (such as non-steroidal anti-infl ammatory drugs) and natu-
ral molecules (such as resveratrol and curcumin) have been investigated for their 
modulation of Notch, Wnt, or Hh signaling. These agents will also be discussed.   
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3      Notch Signaling Pathway 

3.1     The Notch Pathway and Druggable Targets 

 The Notch pathway is an intercellular communication pathway which is highly con-
served among multicellular organisms (Egan et al.  1997 ). Notch facilitates the 
maintenance of an undifferentiated state in stem cells, participates in cell fate deci-
sions, and can induce terminal differentiation. 

 The four Notch receptors (NOTCH1-4) are single-pass transmembrane proteins; 
the extracellular portion interacts with Delta-like ligands (DLLs) or Jagged ligands 
(JAGs) on nearby cells (Fig.  15.1 ). Upon receiving a signal via DLL or JAG, tumor 
necrosis factor-alpha-converting enzyme (TACE) or another ADAM protease 

  Fig. 15.1      Notch signaling     results in transcriptional activation at target genes.  ( a ) In its inac-
tive state, DLL or Jagged ligands on signaling cells undergo endocytosis and degradation which is 
mediated by Neuralized (NEURL) and Mindbomb (MIB) ubiquitin ligases. Signaling from Notch 
intracellular domain (NICD) is inhibited by Numb and Deltex, and Notch-target genes are 
repressed by a combination of histone deacetylases (HDAC), other co-repressors (coR) and the 
CSL complex. ( b ) When Notch ligands bind to the Notch receptor, Notch undergoes a conforma-
tional change allowing cleavage of the extracellular domain by ADAM/TACE and subsequent 
cleavage of NICD by the γ-secretase complex. Following release, NICD translocates to the nucleus 
where it activates transcription in cooperation with Mastermind-like (MAML) and other co- 
activators (coA).       
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(that containing a disintegrin and a metalloprotease domain) cleaves the extracel-
lular domain. This allows recognition of the Notch intracellular domain (NICD) by 
the y-secretase complex. The γ-secretase complex, consisting of nicastrin (NCSTN), 
presenilin (PSEN), presenilin enhancer 2 (PEN2), and anterior pharynx-defective 1 
(APH1), releases the NICD from the transmembrane portion of the protein. NICD 
translocates to the nucleus, where it binds with the CSL complex to release co- 
repressors and recruit MAML and other co-activators. This activates transcription 
of Notch target genes, such as the Hes and Hey families of transcription factors.

   The role of  Notch signaling   in oncogenesis is most clearly illustrated by T-cell 
acute lymphoblastic leukemia/lymphoma (T-ALL). Initially, Notch signaling was 
implicated in approximately 1 % of T-ALLs via the t(7;9)(q34;q34.3) chromosomal 
translocation. This translocation fuses the intracellular domain of Notch1 to the 
TCRβ promoter/enhancer, coupling T-cell development to constitutively activated 
Notch signaling (Reynolds et al.  1987 ). Two additional activating mutations were 
identifi ed in Notch1, which occur in up to 60 % of T-ALL patients. The fi rst of these 
leads to ligand-independent metalloproteases (ADAM/TACE) cleavage and release 
of the intracellular domain. The second stabilizes the intracellular domain and pre-
vents its degradation. 

 While Notch-activating mutations are frequent in T-ALL, they have not been 
observed in other solid cancer types; this indicates that ligand-dependent activation 
predominates in activating aberrant  Notch signaling   (Roy et al.  2006 ). This activa-
tion of Notch signaling can be oncogenic in many contexts, resulting in increased 
invasion, migration, and proliferation. Oncogenic Notch signaling has been 
described in breast cancer, pancreatic cancer, glioblastoma, colon cancer,  lymphoma 
and multiple myeloma (Stylianou et al.  2006 ; Wang et al.  2009 ; Li et al.  2011 ; 
Ylivinkka et al.  2013 ; Dai et al.  2014 ). Interestingly, there may be a specifi c role for 
Notch signaling in chemotherapeutic resistance and hypoxia-induced epithelial- to-
mesenchymal transition ( EMT  ) (Sahlgren et al.  2008 ; Wang et al.  2009 ). 

 Despite the multitude of evidence regarding the oncogenic role of  Notch signal-
ing  , a number of groups have identifi ed Notch as a tumor suppressor in several 
models (Sriuranpong et al.  2001 ; Nicolas et al.  2003 ; Proweller et al.  2006 ). 
Interestingly, Notch has been described as a tumor suppressor within the hemato-
poietic system, suggesting that the role of Notch is context specifi c, even within the 
hematopoietic system (Klinakis et al.  2011 ). 

 Identifying druggable targets in the Notch pathway is best done sequentially 
from extra-cellular-ligand binding through to activation of transcription at target 
genes (Fig.  15.1 ). First, preventing ligand:receptor interactions involves targeting 
the Notch receptor or the JAG/DLL ligands. Next, release of NICD, the intracellular 
molecule required for signaling activation, involves cleavage by ADAM/TACE and 
γ-secretase enzymes. Finally, transcription of target genes requires the CSL com-
plex and MAML. A number of agents directed at these targets have been developed, 
and are in various stages of pre-clinical and clinical evaluation (Fig.  15.2 ). The most 
advanced agents are γ-secretase inhibitors, owing to overlap between Alzheimer’s 
drug discovery and cancer therapy.
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  Fig. 15.2      Clinical trial     s     of targeted anti-Notch agents have shown varying degrees of effi -
cacy . A number of anti-DLL4 antibodies (e.g. demcizumab) and anti-Notch antibodies (e.g. OMP- 
59R5) have demonstrated promise in numerous cancer types. While GSIs are the most advanced in 
clinical development (e.g. RO4929091), they have not been as successful as those therapeutics 
inhibiting the Notch:ligand interaction.       
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3.2        Targeted Anti-notch Agents 

3.2.1     DLL4 Monoclonal Antibodies 

 DLL4 is a Notch ligand which is also important for tumor angiogenesis. It is 
expressed by the tumor vasculature, and not often by the tumor cells. The expres-
sion of DLL4 in the vessels supplying the tumor seems to be regulated by  VEGF  , 
and expression levels of both DLL4 and VEGF correlate in tumors. The expression 
of DLL4 is low in the vasculature in normal tissues (Mailhos et al.  2002 ; Patel et al. 
 2006 ; Li et al.  2007 ; Jubb et al.  2009 ). Inhibition of DLL4- Notch signaling   has led 
to increased vasculature; however, this is in general non-productive. This is due to 
hypersprouting of immature vessels, which are not able to perfuse the tissue effi -
ciently (Thurston et al.  2007 ; Kuhnert et al.  2011 ). In fact, this non-productive 
angiogenesis inhibits tumor growth (Noguera-Troise et al.  2006 ). While DLL4 has 
a function in angiogenesis, DLL4-Notch signaling also plays an important role in 
 CSC   maintenance. Inhibition of DLL4 reduced CSC populations (Hoey et al.  2009 ). 
In colon cancer, inhibition of DLL4 leads to more differentiated colon cells (Hoey 
et al.  2009 ). However, targeting DLL4 is not without safety concerns. A study of 
chronic anti-DLL4 therapy identifi ed changes in the livers of mice, rats, and cyno-
molgus monkeys; as well, skin lesions with features of vascular neoplasms were 
identifi ed (Yan et al.  2010 ). 

   Demcizumab 

 In 2014, FDA granted Orphan Drug status for demcizumab (OMP-21M18, Fig.  15.2 ) 
in the treatment of pancreatic cancer. Early preclinical studies demonstrated that 
demcizumab inhibited expression of Notch target genes (Hoey et al.  2009 ). In com-
bination with irinotecan, demcizumab decreased tumor growth and  CSC   frequency 
in a colorectal tumor model. A similar effect was seen when paclitaxel was com-
bined with demcizumab in a breast tumor xenograft (Hoey et al.  2009 ). Preclinical 
studies in ovarian cancer xenografts demonstrated that demcizumab inhibited tumor 
growth and reduced CSC frequency (Yen et al.  2012 ). Treatment of pancreatic 
tumor xenografts with demcizumab also demonstrated the anti-tumor effects; inter-
estingly, these effects were stronger when both human and mouse DLL4 were tar-
geted (Yen et al.  2012 ). The most dangerous side effect observed in clinical studies 
(phase I) of demcizumab has been grade III asymptomatic hypertension in 28 % of 
patients. If anti-DLL4 treatment is to be combined with anti- VEGF   therapy, patients 
must be carefully monitored (Ranpura et al.  2010 ; Twardowski et al.  2010 ).  

   Enoticumab (REGN421) 

 Enoticumab, a monoclonal anti-DLL4 antibody, is in phase I of development for 
advanced malignancies, led by Regeneron and Sanofi  (Fig.  15.2 ). Preclinical treat-
ment of ovarian tumor xenografts demonstrated an inhibition of tumor growth; 
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accompanied by an increase in tumor vascularization but reduced tumor perfusion 
(Kuhnert et al.  2013 ). These effects are consistent with those of other anti-DLL4 
treatments. In a phase I study of patients with advanced solid tumors, several patients 
demonstrated prolonged stable disease or partial response (Jimeno et al.  2013a ).  

   MEDI0639 

 The monoclonal antibody, MEDI0639 was identifi ed by AstraZeneca as a specifi c, 
anti-DLL4 modulator of  Notch signaling   (Jenkins et al.  2012 ). Results of a safety 
study in cynomolgus monkeys identifi ed a starting dose for a fi rst-in-human phase 
1 clinical trial; however, serious adverse events included reversible effects associ-
ated with gastrointestinal bleeding and heart failure (Ryan et al.  2013 ).   

3.2.2     Notch-Targeted Antibodies 

   OMP-59R5 (Tarextumab) 

 Led by OncoMed Pharmaceuticals and GlaxoSmithKline, OMP-59R5 is an anti- 
Notch2/3 antibody in clinical testing (Fig.  15.2 ). Limited results are available from 
clinical studies. Phase I trials revealed dosages which were well-tolerated, and pre-
liminary evidence of effi cacy was observed (Spigel et al.  2014 ). Phase Ib and phase 
II proof-of-concept trials are ongoing in pancreatic cancer (with Abraxane® and 
gemcitabine) and in small cell lung cancer (with cisplatin and etopside).  

   OMP-52M51 

 OMP-52M51 is a humanized monoclonal anti-NOTCH1 antibody developed by 
OncoMed Pharmaceuticals (Fig.  15.2 ). Preclinical testing of OMP-52M51 in 
T-ALL demonstrated delayed tumorigenicity in samples from poor responders or 
relapsed patients (Agnusdei et al.  2013 ), and decreased  CSC   frequency in a xeno-
graft model of breast cancer (Cancilla et al.  2013 ). Phase 1 single-agent trials are 
ongoing in hematologic and solid malignancies where NOTCH1 activation is impli-
cated. Preliminary data from those with solid tumors demonstrates treatment was 
well tolerated (Davis et al.  2013 ).   

3.2.3     γ-Secretase Inhibitors 

 Inhibitors of the γ-secretase complex, or GSIs, were initially developed to target the 
cleavage of the amyloid beta-protein precursor (AβPP) in Alzheimer’s disease. 
Cleavage of AβPP by β- and γ-secretases generate the amyloid beta-peptide (Aβ) 
implicated in Alzheimer’s disease. Treatment with GSIs in Alzheimer’s clinical 
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trials identifi ed a number of signifi cant and serious side effects which have been 
attributed to the role of γ-secretases in  Notch signaling   throughout the body. These 
include an effect on the thymus, spleen and intestines (Wong et al.  2004 ; van Es 
et al.  2005 ; Demehri et al.  2009 ). A number of pre-clinical and clinical trials identi-
fi ed dose-limiting gastrointestinal side effects (Milano et al.  2004 ; van Es et al. 
 2005 ); however, combining GSIs with steroids, such as glucocorticoid or dexameth-
asone, has contributed to a decrease in these side effects (Real et al.  2008 ). These 
‘off-target’ effects in the treatment of Alzheimer’s disease lead to the investigation 
of these as ‘on-target’ effects in cancer therapy. Alarmingly, however, treatment 
with GSIs may increase the risk of skin cancer (Xia et al.  2001 ; Li et al.  2007 ; 
Demehri et al.  2009 ), suggesting that further characterization of patient tumors is 
required to determine the contexts in which Notch signaling is oncogenic or tumor- 
suppressive. A number of theoretical risks have also been suggested when consider-
ing GSIs as a cancer therapeutic, including damage to normal stem cells leading to 
goblet cell metaplasia (Searfoss et al.  2003 ; Wong et al.  2004 ). Drug discovery for 
Alzheimer’s disease now focuses on modulators of γ-secretase activity, or Notch- 
sparing inhibitors; thus, there is no longer signifi cant overlap between the cancer 
fi eld and Alzheimer’s fi eld. 

   DAPT 

 N-[N-(3,5-difl uorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), is 
a dipeptide non-transition state analog, specifi c γ-secretase inhibitor (Dovey et al. 
 2001 ). DAPT targets presenilin and prevents γ-secretase activity at a site distinct 
from the catalytic and substrate binding sites (Morohashi et al.  2006 ). In vitro, 
DAPT has been shown to deplete or inhibit  CSC   populations in nasopharyngeal 
carcinoma, lung carcinoma, metastatic breast cancer, and ovarian carcinoma (Jiang 
et al.  2011 ; McGowan et al.  2011 ; Yu et al.  2012 ; Liu et al.  2014 ). A number of other 
GSIs were developed from DAPT which are signifi cantly more effective (e.g. 
RO-4929097, discussed below). It is thus not surprising that there are no clinical 
studies using DAPT.  

   L-685,458 

 An aspartyl protease transition state mimic, L-685,458 was identifi ed in 2000 as a 
AβPP y-secretase inhibitor (Shearman et al.  2000 ). This GSI is not Notch-sparing 
and was demonstrated to block the colony forming ability of lymphoma  CSCs   by 
inhibiting the Notch pathway (Wang et al.  2011 ). In addition, inhibition of Notch by 
L-685,458 inhibited the growth of human tongue squamous cell carcinoma cells, 
accompanied by cell cycle arrest and apoptosis (Yao et al.  2007 ). L-685,458 has 
been observed to inhibit the activity of signal peptide peptidases (SPPs), a family of 
aspartyl proteases that is closely related to the γ-secretase complex; as such, any 
observations about the anti-tumor effi cacy of L-685,458 cannot be assumed to be 
γ-secretase dependent (Weihofen et al.  2003 ).  
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   RO4929097 

 Preclinical profi ling of RO4929097 (Hoffman-La Roche, Fig.  15.2 ) demonstrated it 
was a very selective and potent inhibitor of γ-secretase activity and inhibited  Notch 
signaling   in vitro and in vivo (Luistro et al.  2009 ). RO4929097 was effective in 
reducing tumor growth of a number of xenograft models including pediatric models 
and melanomas; this was accompanied by a decrease in tumor initiating potential of 
melanoma (Huynh et al.  2011 ). Preclinical studies suggested intermittent dosing in 
clinical studies (Luistro et al.  2009 ). Interestingly, preclinical studies in infl amma-
tory breast cancer (IBC) indicated that RO4929097 sensitized IBC to radiotherapy; 
however, mammosphere formation effi ciency increased, contradicting previous evi-
dence from the melanoma xenograft study (Debeb et al.  2012 ). Characterization of 
clinical  CSC   frequency will be required to determine the effects of RO4929097 on 
tumorigenicity and CSC number. Data from a phase I study with RO4929097 and 
cediranib in patients with advanced solid tumors suggested the combination was 
well tolerated and some evidence of antitumor effi cacy was observed (Sahebjam 
et al.  2013 ). Similar results were observed by Diaz-Padilla et al. in advanced solid 
tumors and Tolcher et al. in refractory metastatic or locally advanced solid tumors 
(Tolcher et al.  2012 ; Diaz-Padilla et al.  2013 ). A phase II trial in refractory meta-
static colorectal cancer revealed no antitumor effi cacy and suggested it not be pur-
sued as a monotherapy for this patient population (Strosberg et al.  2012 ). A phase II 
study in previously treated metastatic pancreatic adenocarcinoma was well tolerated 
and stable disease was achieved in 25 % of patients. Enrollment was halted after 
development of RO4929097 was discontinued (De Jesus-Acosta et al.  2014 ). A 
number of clinical trials with RO4949097 are in progress (Fig.  15.2 ); however, the 
majority of these trials are no longer recruiting patients. Ultimately, while 
RO4929097 may have some synergistic effects with existing chemotherapies, it is 
unlikely it will achieve success as a single agent.  

   MRK003 and MK0752 

 Merck and Co., Inc. have developed two sulfonamide-containing non-transition- 
state analog GSIs, MRK003 and its human analog MK0752 (Fig.  15.2 ). MRK003 
has been tested in pre-clinical settings, and informed the use of MK0752 in clinical 
trials. In a mouse model of Her2-amplifi ed breast cancer, where tumors contain a 
larger percentage of  CSCs  , treatment with MRK003 eliminated CSCs and initiated 
tumor regression. MRK003 also inhibited the survival and tumor-initiating capabili-
ties of CSCs (Kondratyev et al.  2011 ). In a xenograft model of pancreatic cancer, 
MRK003 enhanced the anti-tumor effects of gemcitabine; up-regulation of B-cell 
receptor signaling and nuclear factor erythroid-derived 2-like 2 pathway correlated 
with the response of xenografts to the MRK003/gemcitabine regimen (Mizuma 
et al.  2012 ). In a patient-derived xenograft of uterine serous carcinoma, MRK003 
enhanced the effect of paclitaxel and carboplatin therapy (Groeneweg et al.  2014b ). 
Using platinum-resistant patient-derived xenografts of ovarian cancers, MRK003 in 
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combination with paclitaxel and carboplatin demonstrated anti-tumor effects greater 
than that of paclitaxel and carboplatin alone (Groeneweg et al.  2014a ). Preclinical 
testing of MRK003 demonstrated a reduction of CSCs in breast cancer tumor xeno-
graft models and an enhanced effect of docetaxel. Although several studies did not 
observe a strong effect of MRK003 (Watters et al.  2009 ; Efferson et al.  2010 ), it is 
likely that enhanced profi ling of those cancers which do benefi t will determine a 
previously-unidentifi ed factor affecting the response of these tumors to MRK003 – 
and possibly to other GSIs. Clinically, the human analog, MK0752, in combination 
with docetaxel, resulted in a decrease of CSCs in patient tumors. Preliminary evi-
dence of effi cacy was observed, suggesting further clinical trials are warranted 
(Schott et al.  2013 ). Results from a phase I trial in pediatric patients with refractory 
central nervous system (CNS) tumors determined that MK0752 was well tolerated; 
however, no objective responses were observed. Interestingly, dose-limiting GI 
symptoms were not observed in this pediatric study (Fouladi et al.  2011 ). Results 
from a phase I trial in adult patients with advanced solid tumors suggested a clinical 
benefi t to patients with high-grade gliomas (Krop et al.  2012 ). The range of effects 
seen following treatment with MK0752 demonstrates that further stratifi cation of 
patients is warranted to isolate only those who will benefi t.  

   PF-03084014 

 Pfi zer has developed PF-03084014, a selective tetralin amino imidazole GSI 
(Fig.  15.2 ). A 2010 pre-clinical study determined that PF-03084014 reduced NICD 
levels and down-regulated the transcription of Notch target genes. The same study 
identifi ed a dosing schedule which reduced gastrointestinal toxicity (Wei et al. 
 2010 ). In T-cell acute lymphoblastic leukemia (T-ALL), the combination of 
PF-03084014 with glucocorticoids contributed to a reduction of leukemic burden in 
a xenograft model (Samon et al.  2012 ). A pre-clinical study in breast cancer used 
docetaxel to activate the Notch pathway; subsequent treatment with PF-03084014 
reversed these effects and synergistically induced tumor regression in a xenograft 
model (Zhang et al.  2013a ). A combination of PF-03084014 and gemcitabine was 
effective at inducing tumor regression in a xenograft model of pancreatic ductal 
adenocarcinoma ( PDAC  ) (Yabuuchi et al.  2013 ) and also reduced  CSC   
(CD24 − / CD44   +  and Aldefl uor + ) burden. PF-03084014 also demonstrated effi cacy in 
colorectal xenografts with high activation of the Notch and Wnt pathways (Arcaroli 
et al.  2013 ); however, demonstrated limited effi cacy as a single agent in pediatric 
xenograft models of solid and T-ALL tumors (Carol et al.  2014 ). We await the 
results of ongoing clinical trials to evaluate the effi cacy of PF-03084014.  

   MPC-7869 

 The use of γ-secretase modulators (GSMs), such as MPC-7869 (tarenfl urbil, 
Flurizan™), was intended to reduce the off-target effects of GSIs and minimize 
their dose-limiting toxicities. GSMs do not affect the rate of enzyme processing or 
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cause a build-up of substrates. MPC-7869 is based on the non-steroidal anti- 
infl ammatory drug (NSAID) scaffold. Ultimately, MPC-7869 did not affect the 
γ-secretase cleavage of Notch, allowing signal transduction through the Notch path-
way (Kukar and Golde  2008 ). After a double-blind, placebo-controlled clinical trial 
in prostate cancer failed to meet its effi cacy endpoints (NCT00045123), Myriad 
Genetics Inc. discontinued its development as a cancer therapeutic (Fig.  15.2 ).  

   Conclusion 

 Current clinical trials of several GSIs are addressing the toxicity and effi cacy of 
these drugs. Unfortunately, numerous mechanisms of resistance have been identifi ed 
which will affect the success of GSIs in cancer therapy. One example is  PTEN   loss, 
which commonly occurs in T-ALL and contributes to GSI resistance (Palomero et al. 
 2008 ). Overexpression of MYC also contributes to GSI resistance (Rao et al.  2009 ). 
Cells which are resistant to GSIs demonstrate distinct signaling and transcriptional 
profi les, which have been attributed to a modifi ed epigenetic status (Knoechel et al. 
 2014 ). Other mechanisms for GSI resistance have also been described (Watters et al. 
 2009 ; Wang et al.  2011 ; Miyamoto et al.  2013 ). Several of these mechanisms may be 
bypassed if GSIs are included with other classes of agents such as histone deacety-
lases (HDACs) or proteasome inhibitors, which have enhanced the effects of GSIs in 
T-All (Sanda et al.  2009 ). Complete pre-clinical testing is essential to rationalize the 
use of GSIs in various disease states (Tejada et al.  2014 ).   

3.2.4     Other Agents 

   MAML-Stapled Peptide 

 MAML proteins are critical coactivators for the transcription of Notch-target genes, 
and have been implicated in the cross-talk with other signaling pathways such as 
Wnt/β-catenin (Alves-Guerra et al.  2007 ). As mentioned earlier, targeting nuclear 
proteins presents a signifi cant diffi culty for drug delivery. A 2006 study identifi ed 
that a dominant-negative (dn) form of MAML functioned as a pan-Notch inhibitor 
(Proweller et al.  2006 ), and further investigations led to the development of a stapled 
fragment of dnMAML to prevent binding of its full-length, functional counterpart 
of the CSL complex. This prevents transcriptional activation of Notch-target genes. 
Preclinical testing of this model in GSI-sensitive T-ALL cell lines reduced the pro-
liferation and leukemia-initiating capabilities of these cells (Moellering et al.  2009 ).  

   Anti-nicastrin Agents 

 In a pre-clinical study, silencing of nicastrin (a component of the γ-secretase com-
plex) resulted in a decrease of breast cancer cell motility and invasion. Similar 
 fi ndings were observed with anti-nicastrin antibodies in vitro. The authors suggest 
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that a nicastrin-blocking antibody may be an effective therapy against metastasis of 
breast cancer (Filipović et al.  2014 ). Further in vitro testing as well as investigations 
in clinical settings will determine the effi cacy of this strategy in other cancers.    

3.3     Conclusion 

 GSIs remain the most advanced drugs targeting the Notch pathway. While GSIs 
have been associated with a number of side-effects including dose-limiting gastro-
intestinal toxicity and an increased risk of skin cancer, it is unclear whether the 
other Notch-targeting agents will have these same side effects. Further clinical test-
ing will identify the consequences of chronic treatment using anti-DLL4 or anti- 
Notch antibodies.   

4     Wnt Signaling Pathway 

4.1     Wnt Signaling and Druggable Targets 

 The canonical Wnt signaling pathway functions in embryonic development and car-
cinogenesis by regulation of gene transcription. Wnt signaling is activated by the 
binding of a WNT ligand to the frizzled (FZD) receptor and low-density lipoprotein 
receptor-related protein (LRP) 5 or LRP6 on the cell surface. Dishevelled (DVL), 
adenomatous polyposis coli (APC), and axin are recruited to FZD, where they 
inhibit the activity of glycogen synthase kinase 3β (GSK3β) (Fig.  15.3 ). This pro-
motes the stabilization of β-catenin, which enters the nucleus, binds to  TCF  / LEF   
transcription factors and activates the transcription of β-catenin target genes (e.g. 
c-myc, cyclin D, c-Jun, CTLA4). In the absence of WNT ligands, GSK3β phos-
phorylates β-catenin which leads to its degradation in the proteasome. The  T-cell 
factor  /lymphoid enhancer factor (TCF/LEF) transcription factor is bound to 
Groucho and HDACs, preventing the transcription of target genes.

   Wnt signaling is a major contributor to oncogenesis of colorectal cancers. 
Mutations in APC and β-catenin frequently occur, leading to constitutive activation 
of the signaling pathway. In other cancers, dysfunctional Wnt signaling is often a 
result of irregular activation. Breast  CSCs   have displayed increased nuclear localiza-
tion of β-catenin, suggesting highly active Wnt signaling in this population, and a 
number of agents which inhibit Wnt signaling also selectively inhibit the growth and 
tumorigenicity of CSCs (Gupta et al.  2009 ; Khramtsov et al.  2010 ). Wnt signaling is 
essential for the initiation of pancreatic cancer, and β-catenin is highly expressed in 
cisplatin-resistant lung cancer cells (Zhang et al.  2013b , Wang et al.  2014 ). 

 Inhibiting Wnt signaling can be done at many levels. First, it may be possible to 
prevent the secretion of Wnt ligands. Next, the interaction between WNT and FZD 

K.M. Coyle et al.



407

or LRP5/6 can prevent activation of downstream signaling. Finally, transcription of 
Wnt/β-catenin target genes can be prevented by antagonizing the binding of 
β-catenin to the  TCF  / LEF   transcription factors or the CREB-binding protein (CBP) 
co-activator.  

4.2     Targeted Anti-Wnt Agents 

4.2.1     Porcupine Inhibitors 

 Porcupine (PORCN) is a membrane-bound O-acetyltransferase required for proper 
Wnt ligand secretion. Blocking Wnt ligand secretion by inhibiting porcupine activ-
ity may prevent full activation of the Wnt signaling pathway. 

  Fig. 15.3     Wnt signaling is dependent on the accumulation of β-catenin and its translocation 
to the nucleus . ( a ) In the absence of the WNT ligand, a “destruction complex” consisting of APC, 
GSK3β, and axin cooperate to phosphorylate β-catenin. This allows its ubiquitination, mediated by 
β-TRCP, and leads to proteasomal degradation. Wnt-target genes are inhibited by Groucho and 
HDAC binding to the  TCF  / LEF   transcription factors. ( b ) When WNT ligands bind to the Frizzled 
receptor and LRP5/6, the “destruction complex” is recruited to Disheveled (DSH) at the mem-
brane, inhibiting GSK3β. β-catenin is not phosphorylated and thus accumulates in the cytoplasm. 
The increasing levels of β-catenin drive it into the nucleus, where it can bind to TCF/LEF and 
activate transcription of target genes.       
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   LGK974 

 A small-molecule screen led to the identifi cation of LGK974 as a specifi c PORCN 
inhibitor by Liu et al. (Novartis, Fig.  15.4 ). They demonstrated its effi cacy in murine 
models of Wnt-dependent breast cancer and human head-and-neck squamous cell 
carcinoma. Additionally, when used in combination with paclitaxel, it inhibited the 
growth of a human breast tumor xenograft (Liu et al.  2013 ). The results from an 
ongoing Phase I clinical trial will inform further use of this agent.

      IWP Compounds 

 A cell-based synthetic-chemical screen identifi ed several inhibitors of Wnt produc-
tion (IWPs) as well as a number of inhibitors of Wnt response (IWRs). The IWP 
compounds, all sharing the same core chemical structure, specifi cally inhibited 
PORCN and subsequent secretion of Wnt ligands (Chen et al.  2009a ). While IWP-2 
has been tested pre-clinically in a number of models (Covey et al.  2012 ; Mo et al. 
 2013 ), its use as a clinical agent has not yet been determined.   

  Fig. 15.4     Targeted anti-Wnt agents are early in clinical development . These clinical agents 
target a range of interactions in Wnt signaling. Molecules targeting WNT secretion (LGK974, 
PORCN inhibitor) or acting as Frizzled decoy receptors are in early phases of clinical testing, 
allowing minimal conclusions about their effi cacy. PRI724, a CBP-inhibitor which antagonizes 
transcription of target genes, has a surprisingly low toxicity profi le.       
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4.2.2     Anti-frizzled Molecules 

   FZD8-Fc (Ipafricept) 

 The decoy receptor, FZD8-Fc (OMP-54F28, Fig.  15.4 ), consists of an immuno-
globulin fragment-crystallizable (Fc) region fused to the cysteine-rich domain of 
FZD8 by a series of 8 amino acids. The minimal Fzd8 protein contains residues 
1–155 and possible protease cleavage sites have been removed (DeAlmeida et al. 
 2007 ). This molecule binds Wnt ligands and prevents their signaling through native 
FZD receptors. Preclinical testing in an MMTV-Wnt1 tumor model as well as tera-
toma cell lines demonstrated signifi cant anti-tumor activity accompanied by a 
decrease in expression of WNT-target genes (DeAlmeida et al.  2007 ). The FDA 
placed a partial clinical hold on ipafricept for 2 months (July–August 2014) due to 
observed on-target bone-related adverse events. Amendments have been incorpo-
rated into the ongoing Phase Ib clinical trial.  

   OMP-18R5 (Vantictumab) 

 Preclinical analysis of OMP-18R5, a monoclonal antibody (Fig.  15.4 ) which binds 
to fi ve FZD receptors (FZD1, FZD2, FZD5, FZD7, FZD8), revealed anti-tumor 
effects on a range of tumor types including breast, NSCLC, pancreatic, colon, and 
teratocarcinoma; a decrease in tumorigenicity lowered to a decrease in  CSC   fre-
quency (Gurney et al.  2012 ). Treatment of a mouse model of Kras-dependent pan-
creatic cancer with OMP-18R5 inhibited Wnt signaling and fewer pancreatic lesions 
were observed (Zhang et al.  2013b ). Samples from patients enrolled in a phase Ia 
study of OMP-18R5 revealed that Wnt pathway target genes were regulated by 
vantictumab. There were dose-dependent effects on bone turnover markers (Smith 
et al.  2013 ). Increased bone turnover was observed, and more stringent exclusion 
criteria were developed in combination with prophylactic use of vitamin D and 
calcium, and use of zoledronic acid if required. Similar to the hold placed on ipafri-
cept, the FDA placed a hold on vantictumab until amendments were made to phase 
Ib trials.   

4.2.3     CREB-Binding Protein Targeted Agents 

   ICG-001 

 The small molecule ICG-001 binds CREB-binding protein (CBP) to disrupt its 
interaction with β-catenin and inhibit CBP function as a co-activator of Wnt/β-
catenin- mediated transcription; however, its growth-inhibiting effects in  PDAC   
cells were not due to inhibition of β-catenin-mediated transcription. Instead, micro-
array gene expression analyses implicated the potential disruption of DNA replica-
tion and cell cycle progression induced by CBP inhibition. Importantly, treatment 
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prolonged survival of PDAC-bearing mice, indicating the potential for CBP inhibi-
tion in PDAC treatment (Arensman et al.  2014 ).  

   PRI-724 

 Improvements to the ICG-001 structure led to the development of PRI-724. PRI724 
is a specifi c CBP/beta-catenin antagonist with an extremely low toxicity profi le 
(Fig.  15.4 ) (El-Khoueiry et al.  2013 ). This is somewhat surprising as CBP interacts 
with as many as 500 other cellular entities, including a large number of transcription 
factors (Lenz and Kahn  2014 ). Nevertheless, ongoing clinical trials will determine 
its effi cacy as an anti-cancer agent.    

4.3     Anti-Wnt Activity of Existing Medicinal Agents 

4.3.1     Non-steroidal Anti-infl ammatory Drugs 

 Non-steroidal anti-infl ammatory drugs (NSAIDS) exert their anti-infl ammatory, 
analgesic, and antipyretic effects by inhibiting cyclooxygenase (COX)-1 and COX2. 
An acetic-acid derivative NSAID, sulindac, and the COX2 inhibitor, celecoxib, 
have been shown to reduce ademonas in patients with familial adenomatous polypo-
sis (FAP) (Huls et al.  2003 ). Patients with FAP commonly have inactivating muta-
tions in APC, a negative regulator of Wnt signaling (Fig.  15.4 ). When NSAIDs are 
used in APC-mutant colorectal cells, Wnt signaling appears to be modulated (Stolfi  
et al.  2013 ); however, the precise mechanism of Wnt inhibition by NSAIDs is not 
fully understood. Some studies attribute the effects of NSAIDs to COX-dependent 
regulation of prostaglandin E2, which can suppress β-catenin degradation, while 
other studies have reported COX-independent mechanisms (Castellone et al.  2005 ; 
Buchanan and DuBois  2006 ). Understanding the mechanisms by which NSAIDs 
regulate Wnt signaling may lead to the derivation of new inhibitors which may have 
increased effectiveness as anti-cancer agents. 

   Acetaminophen 

 Wnt signaling is implicated in acetaminophen-induced liver injury (North et al. 
 2010 ), suggesting that acetaminophen may be able to modulate Wnt signaling at 
alternative dosages. Treatment of breast cancer cells in vitro with acetaminophen 
caused a decrease in β-catenin. The growth of subsequent engraftments of 
acetaminophen- treated cells was signifi cantly impaired (Takehara et al.  2011 ).  
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   Sulindac and Phosphosulindac 

 Sulindac binds to the PDZ domain (an interaction domain often found in scaffolding 
proteins) of DVL and blocks Wnt signaling (Lee et al.  2009 ). In patients treated 
with sulindac, nuclear β-catenin expression decreased from pre-treatment levels, 
suggesting a modulation of Wnt signaling (Boon et al.  2004 ). Sulindac treatment of 
colon cancer xenografts inhibited metastasis (Stein et al.  2011 ). Concomitant with a 
decrease in β-catenin levels, sulindac treatment inhibited proliferation of colon, 
lung, breast and prostate cancer cells (Han et al.  2008 ; Lu et al.  2008 ; Stein et al. 
 2011 ). Phosphosulindac, a safer and more effective derivative of sulindac, has been 
shown to inhibit the growth of breast and pancreatic cancer xenografts via inhibition 
of Wnt signaling and  EMT   in breast  CSCs   (Mackenzie et al.  2010 ,  2011 ; Zhu et al. 
 2012 ; Murray et al.  2013 ).  

   Celecoxib 

 The COX2 inhibitor, celecoxib, was approved by the FDA in 1999 for the treatment 
of FAP; however, this approval was withdrawn in 2011 as a decrease in colorectal 
cancer incidence upon treatment with celecoxib was not demonstrated. Treatment 
of colorectal cancer cells with celecoxib increases GSK3β kinase activity and phos-
phorylation of β-catenin. This was accompanied by a reduction of β-catenin/ TCF   
dependent transcription (Sakoguchi-Okada et al.  2007 ; Tuynman et al.  2008 ). These 
effects have been attributed to the prostaglandin-E2 bioactive component of cele-
coxib (Castellone et al.  2005 ; Buchanan and DuBois  2006 ). However, a phase II 
trial of celecoxib in combination with gemcitabine and cisplatin in pancreatic can-
cer did not appear to have any benefi t over the gemcitabine and cisplatin combina-
tion (El-Rayes et al.  2005 ). Selective targeting of tumors with high activation of 
Wnt signaling may be required to see any clinical benefi t from celecoxib.   

4.3.2     Antimicrobials 

   Streptonigrin 

 An antibiotic with anticancer activity, streptonigrin was investigated as early as 
1967 (Smith et al.  1967 ). Treatment with streptonigrin has been demonstrated to 
inhibit proliferation of cancer cells with activated β-catenin/Wnt signaling. 
Streptonigrin treatment decreased nuclear β-catenin and β-catenin/ TCF   transcrip-
tional activity. It is unclear whether this effect on transcription is a direct activity or 
whether it is due to suppression of upstream components such as GSK3β (Park and 
Chun  2011 ). Interestingly, a natural product screen determined that while streptoni-
grin was cytotoxic against melanoma cells, it was not effective against a CML cell 
line. Streptonigrin treatment also left a side-population of slow-cycling putative 
 CSCs   unaffected (Sztiller-Sikorska et al.  2014 ).  
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   Salinomycin 

 The anti- CSC   properties of salinomycin, an antibiotic potassium ionophore used in 
veterinary medicine, were fi rst described in 2009 (Gupta et al.  2009 ). Salinomycin 
was isolated from  Streptomyces albus  in a soil sample from Japan (Naujokat and 
Steinhart  2012 ). Salinomycin has been demonstrated to down-regulate Wnt target 
genes in endometrial cancer cells (Kusunoki et al.  2013 ). This may be due to inhibi-
tion of phosphorylation of LRP6 (Lu et al.  2011a ) or by activation of GSK3β and 
subsequent degradation of β-catenin (Tang et al.  2011 ; He et al.  2012 ; Wang et al. 
 2012 ). Evidence from breast cancer suggests that salinomycin is 100-fold more 
effi cacious than paclitaxel at reducing the CSC frequency (Gupta et al.  2009 ). 
Unfortunately, salinomycin treatment has been associated with severe toxicity; a 
recent report attributes this to elevated cytosolic sodium levels, which subsequently 
increase cytosolic calcium levels, activating caspase 9 and 3 to reduce cell viability 
(Boehmerle and Endres  2011 ). Evidence from chronic lymphocytic leukemia sug-
gests, however, that the effects of salinomycin on cell viability were specifi c to 
leukemic lymphocytes (Lu et al.  2011a ).  Safety   evaluations and further pre-clinical 
testing will clarify the risk-to-benefi t ratio of salinomycin.  

   Nigericin 

 Another potassium ionophore with a similar structure to that of salinomycin, nigeri-
cin, was observed to have anti- CSC   characteristics (Gupta et al.  2009 ; Deng et al. 
 2013 ). Evidence has suggested that nigericin can inhibit the Wnt pathway, though 
the mechanism for this interaction is unclear (Lu et al.  2011a ; Zhou et al.  2012 ).  

   Quinacrine 

 Wnt signaling can be inhibited by quinacrine, which up-regulates APC. This is fol-
lowed by a subsequent decrease in activated GSK3β, and increased degradation of 
β-catenin (Preet et al.  2012 ). These effects have contributed to an inhibition of 
growth in breast cancer cells, while sparing normal breast epithelial cells (Preet 
et al.  2012 ).  

   Niclosamide 

 As an anti-helminthic, nicolasmide is used primarily in the treatment of tapeworms. 
Niclosamide blocks Wnt signaling in cancer cells via LRP6 degradation (Lu et al. 
 2011b ). This induced apoptosis and inhibited proliferation of breast and prostate 
cancer cells. However, alternate evidence suggests that niclosamide antagonizes 
upstream Wnt signaling by promoting the endocytosis of FZD1 and down- regulating 
the DVL2 ligand (Chen et al.  2009b ).   
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4.3.3     Other Agents 

   Tetrandrine 

 The calcium channel inhibitor, tentrandrine is a bis-benzylisoquinoline alkaloid 
purifi ed from the root of  Stephania tetrandra . In preclinical tests, tetrandrine exhib-
ited better anticancer effects than 5-fl uorouracil and carboplatin. In treated tumors, 
there was a decrease in β-catenin levels, suggesting that the anticancer activity of 
tetrandrine may be due to a modulation of Wnt signaling (He et al.  2010 ). The addi-
tion of tetrandrine enhanced the effects of cisplatin in cell line and xenograft models 
(Zhang et al.  2011b ). One study suggested that tetrandrine specifi cally targets  CSCs   
in breast cancer (Xu et al.  2012 ). In clinical testing, the addition of tetrandrine to a 
gemcitabine/cisplatin combination regimen in patients with advanced NSCLC 
improved short-term effi cacy (Liu et al.  2012 ).  

   Trifl uoperazine 

 The antipsychotic, trifl uoperazine, inhibited the formation of tumorospheres in lung 
cancer models, which was accompanied by an inhibition of Wnt signaling. These 
effects enhanced the activity of gefi tinib in animal models of lung cancer (Yeh et al. 
 2012 ). A network-based analysis suggests that these effects may also be observed 
when using other phenothiazine drugs such as chlorpromazine and fl uphenazine (Qi 
and Ding  2013 ).    

4.4     Conclusions 

 Of the three stemness pathways discussed in this chapter, it is intriguing that Wnt 
has been the focus of few targeted therapies. Instead, research has primarily focused 
on the use of natural products or existing medicinal agents in modulating Wnt sig-
naling. It is unclear why this balance is different for Notch (Sect.  3 ) or Hh (Sect.  5 ). 
To date, some of the most successful pre-clinical fi ndings in Wnt inhibition have 
been derived from natural molecules. While targeted therapies such as anti-FZD 
antibodies may reach an endpoint in their effi cacy, developmental iterations of natu-
ral molecules will likely improve their effi cacy.   

5      Hedgehog Signaling Pathway 

5.1     Hedgehog Pathway and Druggable Targets 

 The Hh signaling pathway functions in embryonic development and carcinogenesis 
by regulating gene transcription. The binding of a hedgehog ligand ( Desert hedgehog   
DHH,  Sonic hedgehog   SHH, or  Indian hedgehog   IHH) to a 12-pass transmembrane 
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patched (PTCH) protein triggers the reversal of suppressor-of-fused (SUFU) inhibi-
tion of activating GLI proteins. The GLI proteins are effectors of Hh signaling and 
enter the nucleus, initiating a transcriptional response with CBP/p300 at Hh target 
genes (Fig.  15.5 ).

   Hh signaling has been unambiguously linked to a particular subtype of medul-
loblastoma. Hh signaling regulates cerebellar patterning, linking mutations in path-
way components such as PTCH or SUFU to the development of malignant brain 
tumors such as medulloblastoma. Approximately 30 % of medulloblastomas can be 
characterized by dysregulated Hh signaling (Northcott et al.  2012 ). Other cancers 
display activated Hh signaling, though to a lesser extent. For example, breast  CSCs   
have higher expression of PTCH and GLI proteins compared to the non-CSCs (Liu 
et al.  2006 ; Shipitsin et al.  2007 ). 

 Important druggable interactions in the signaling pathway are the binding of HH 
ligands to PTCH, the PTCH: SMO interaction, and the GLI-mediated transcriptional 
response. In some cases, activation of Hh is downstream from SMO and these drug 

  Fig. 15.5      Hedgehog signaling     requires a balance between repressive and activating GLI pro-
teins.  ( a ) Endogenous Patched inhibits Smoothened, preventing its interactions with Sufu. Active 
Sufu inhibits activating GLI proteins, allowing repressive GLI to bind to Hh-target genes. When 
HH ligands bind to PTCH, the inhibition of Sufu is relieved, allowing activating GLI proteins to 
bind to CBP at target genes, activating transcription.       
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candidates will not be effective (Nagao-Kitamoto et al.  2014 ). Thus, it is important 
to target downstream interactions such as GLI-mediated transcription.  

5.2     Targeted Anti-Hedgehog Agents 

5.2.1     Hedgehog: PTCH Inhibitors 

   5E1 

 This Hh pathway antagonist has been used in vitro and in vivo to study Hh signal-
ing. 5E1, a monoclonal antibody, blocks binding of the Hh ligands to PTCH. In 
hepatocellular carcinoma cells with activated Hh signaling, 5E1 decreased expres-
sion of Hh target genes, inhibited cell growth and resulted in apoptosis (Huang et al. 
 2006 ). Xenograft growth of colorectal cancer cells and pancreatic was signifi cantly 
decreased upon treatment with 5E1 (Yauch et al.  2008 ; Bailey et al.  2009 ). It has not 
progressed to clinical trials.  

   Robotnikinin 

 A high-throughput screen of aminoalcohol-derived macrocycles identifi ed robotni-
kinin as a small molecule which binds the SHH ligand and prevents its interactions 
with PTCH (Stanton et al.  2009 ; Peng et al.  2009 ). A number of analogues were 
identifi ed in a 2012 publication; however, none of these molecules have progressed 
to clinical trials (Dockendorff et al.  2012 ).   

5.2.2     Smoothened Inhibitors 

    Cyclopamine   

 Sheep grazing on corn lily ( Veratrum californicum ) on a farm in Idaho gave birth to 
lambs with cyclopia, or one-eyed lambs.  Cyclopamine   and jervine were fi nally 
identifi ed as the teratogenic components of the corn lily. It was not until the 1990s 
that the defects observed in these lambs were associated with dysregulated Hh sig-
naling (Chiang et al.  1996 ; Cooper et al.  1998 ). Cyclopamine is a steroidal jerve-
traum alkaloid which binds SMO to inhibit Hh signaling (Chen et al.  2002 ). The 
mechanism of action of cyclopamine is not fully understood; however, it likely 
infl uences the balance between the active and inactive forms of SMO (Taipale et al. 
 2000 ; Chen et al.  2002 ). Cyclopamine, however, exhibits poor solubility, acid sen-
sitivity, and weak potency when compared to other small-molecule antagonists. As 
such, derivatives of cyclopamine have been identifi ed which have increased bio-
availability and are more potent against human cancers (Zhang et al.  2008 ; Tremblay 
et al.  2008 ). One such derivative, IPI-926, is discussed below.  
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   GDC-0449 (Vismodegib) 

 Development of GDC-0449, a small molecule of the 2-arylpyridine class (Genentech 
Inc. and Curis Inc., Fig.  15.6 ), was approved in 2012 by the FDA for treatment of 
metastatic or locally advanced basal cell carcinoma (BCC). Locally advanced BCC 
includes those patients with post-surgical recurrent tumors, and patients who are not 
candidates for surgery or radiation. While vismodegib is an important addition to 
the treatment options for those with locally advanced BCC, phase II evidence lead-
ing to the approval of vismodegib for locally advanced BCC consisted of a small 
number of patients in a single-arm study (Lyons et al.  2014 ). A 2012 report identi-
fi ed a novel phenomenon of BCC tumor regrowth in or near to the original 
vismodegib- sensitive tumor bed while therapy is ongoing. The mechanism for this 
is not clear and may be due to heterogeneity of the original tumor (Chang and Oro 
 2012 ). Further evidence and long-term follow-up data will be essentially to fully 
evaluate the effi cacy of vismodegib in BCC and the benefi t to patient survival.

   Vismodegib is also under investigation in tumors of other origins. A phase I 
study determined that vismodegib was well tolerated in pediatric medulloblastoma 
patients (Gajjar et al.  2013 ). A phase II trial in metastatic colorectal cancer identi-
fi ed no benefi t from vismodegib, and actually described lower treatment intensity 
for the other standard-of-care components. The authors suggest that toxicity may 
have contributed to this decreased effi cacy (Berlin et al.  2012 ). A phase II trial in 
patients with ovarian cancer in second or third complete remission did not meet 
expectations for increased progression-free survival (Kaye et al.  2012 ).  

   BMS-833923 

 Bristol-Myers Squibb Co. and Exelixis Inc. have developed BMS-833923 (XL-139, 
Fig.  15.6 ). Treatment with BMS-833923 inhibited transcription of Hh target genes 
in esophageal adenocarcinoma cells and induced apoptosis (Zaidi et al.  2013 ). A 
phase I study of BMS-833923 demonstrated a partial response in one patient with 
basal cell nevoid syndrome with a known mutation in PTCH1 (Siu et al.  2009 ). 
Treatment was well-tolerated. The results from ongoing clinical trials will defi ne its 
use as an anti-cancer agent.  

   PF-04449913 

 The identifi cation of PF-04449913 was described by Munchhof et al. (Munchhof 
et al.  2011 ). Treating with PF-04449913 decreased tumorigenicity and leukemia- 
initiating potential of AML cells (Fukushima et al.  2013 ). The numerous clinical 
trials ongoing with PF-04449913 will instruct its future use in various cancer 
types (Fig 15.6).  
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  Fig. 15.6     Drug development against    Hedgehog signaling     focuses on Smoothened inhibition . 
The numerous anti-Hh agents in clinical testing almost exclusively target SMO. Vismodegib (anti- 
SMO) has already been approved by the FDA for the treatment of basal cell carcinoma. While 
resistant variants have been described, it appears that vismodegib resistance does not confer resis-
tance to all SMO inhibitors. Pre-clinical testing of downstream targets suggests that the next line 
of anti-Hh therapeutics will have different modes of action than those already in clinical use.       
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   TAK-441 

 Takeda Pharmaceutical Company, Ltd. modifi ed a previous molecule to generate 
TAK-441 with an improved pharmacological profi le including increased potency 
and bioavailability (Ohashi et al.  2012a ,  b ). TAK-441 binds to SMO and blocks Hh 
signal transduction (Ishii et al.  2013 ). Preclinical profi ling revealed anti-tumor 
effects in a murine model of medulloblastoma and in castration-resistant prostate 
xenografts (Ohashi et al.  2012a ; Ibuki et al.  2013 ). It may be possible to use GLI1 
mRNA expression (a target of Hh transcriptional response) as a biomarker to predict 
the effect of TAK-441 in clinical trials (Fig.  15.6 ) (Kogame et al.  2013 ).  

   LEQ506 

 Novartis has led the development of a SMO inhibitor, LEQ506 (Fig.  15.6 ). When 
compared to sonidegib (LDE225, another Novartis-lead pharmaceutical), LEQ506 
has improved aqueous solubility, increased potency against a mouse model of 
medulloblastoma, and increased inhibition of GLI-dependent transcription. LEQ506 
was effective against a SMO-mutant and vismodegib-resistant cell line. LEQ506, 
however, has a shorter half-life than sonidegib and requires a higher dosage (Peukert 
et al.  2013 ).  

   LY 2940680 (Taladegib) 

 Taladegib inhibits the Hh pathway by directly binding to  Smo   (Wang et al.  2013 ; 
Bai et al.  2014 ). This was observed in human xenograft and murine models of 
medulloblastoma. It was effective against the D473H-mutant cell line which is 
resistant to vismodegib (Bender et al.  2011 ).  

   SANT1-4 

 A small-molecule compound screen identifi ed four molecules (SANT1-4) which 
modulate SMO activity. SANT1 and SANT2 have been demonstrated to lock SMO 
into an inactive state, preventing its engagement of downstream Hh signaling 
(Rohatgi et al.  2009 ).  

   IPI-926 

 Developed by Infi nity Pharmacetuticals Inc., IPI-926 (saridegib, Fig.  15.6 ) is a semi-
synthetic analogue of cyclopamine. Preclinical profi ling revealed improved potency 
and pharmacokinetic profi le relative to cyclopamine. IPI926 induced complete 
tumor regression in a Hh-dependent medulloblastoma allograft model (Tremblay 
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et al.  2009 ). Treatment prolonged overall survival in a similar model and was active 
against the D473H point mutation (Lee et al.  2012 ). In phase I study, IPI-926 was 
well tolerated and a response was observed in one third of patients (Jimeno et al. 
 2013b ).  

   LDE225 

 In phase I testing, LDE225 (sonidegib or erismodegib, Fig.  15.6 ) exhibited activity 
in advanced basal-cell carcinoma and relapsed medulloblastoma. Side effects were 
relatively mild, with the exception of elevated serum creatine kinase in 18 % of 
patients. Reduction of GLI1 mRNA was observed in a dose-dependent manner 
(Rodon et al.  2014 ). Further clinical testing will identify if the effects of LDE225 
can be translated to other cancer types.   

5.2.3     GLI-Mediated Transcription Inhibitors 

   GANT58 and GANT61 

 GANT (GLI ANTagonist)-58 and GANT61 were identifi ed in a small-molecule 
screen described by Lauth et al. ( 2007 ). GANT58 has a thiophene core with four 
pyridine rings. Inhibition of GLI-mediated transcription by GANT58 in acute T-cell 
leukemia showed anti-cancer activity and demonstrated reduced viability of T-ALL 
cells (Hou et al.  2014 ). Treatment of prostate cancer xenografts with GANT58 con-
tributed to the development of stable disease in mice; however, GANT61 was more 
potent in initial testing. The vast majority of pre-clinical studies have thus focused 
on GANT61. GANT61 is a hexahydropyrimidine derivative shown to inhibit Hh 
signaling and reduce tumor growth of prostate cancer cells (Lauth et al.  2007 ). It is 
suggested that GANT61 alters the conformation of GLI1 and as a result compro-
mises DNA binding of GLI1 (Lauth et al.  2007 ). Treatment with GANT61 has been 
effective against Eweing Sarcoma cells, biliary tract carcinoma, lung squamous car-
cinoma, and  PDAC   (Xu et al.  2013 ; Huang et al.  2014 ; Matsumoto et al.  2014 ).  

   HPI1 and HPI4 

 Four HPI (Hedgehog Pathway Inhibitor) molecules were identifi ed in a small- 
molecule screen conducted by Hyman et al. They describe two of these compounds, 
HPI1 and HPI4, as modulators of GLI-dependent transcription. Both HPI1 and 
HPI4 affect the stability and processing of GLI1 and GLI2 (Hyman et al.  2009 ). 
Most recently, HPI1 has been packaged in a polymeric nanoparticle (NanoHHI) and 
shown to inhibit the growth of pancreatic and hepatocellular carcinoma xenografts 
(Chenna et al.  2011 ). NanoHHI treatment inhibited the expression of  CD133  , which 
marks a subpopulation of hepatocellular carcinoma  CSCs   (Xu et al.  2011 ).   
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5.2.4     Conclusions 

 Most of the side-effects of anti-Hh therapy have been mild (Amakye et al.  2013 ). 
The agents which have progressed into clinical testing almost exclusively target 
SMO. While several of them are effective against cancers which are resistant to 
fi rst-line SMO-inhibitor vismodegib, further resistance will require agents which 
target other aspects of the pathway.    

6     Cross-Talk Between Signaling Pathways 

 The development of an entire organism through several signaling pathways requires 
extensive cooperation, or cross-talk, between them. These interactions represent 
additional layers of complexity in targeting stem cell signaling in cancer, as inhibi-
tion of signaling through one pathway may lead to compensation via the remaining 
pathways. 

 Crosstalk between stemness pathways has been described and can occur by sev-
eral mechanisms (Guo and Wang  2008 ; Javelaud et al.  2012 ). First, there may be 
physical interactions between components of two pathways (e.g. Wnt effector, DVL 
inhibits Notch) (Axelrod et al.  1996 ). The GLI3 repressor protein can interact with 
β-catenin and prevent transactivation (Fig.  15.7 ) (Ulloa et al.  2007 ).

   Next, one component may be an enzymatic or transcriptional target of another 
pathway. Both Hh and Wnt signaling result in transcription of genes which are 
Notch-receptor ligands. One transcriptional target of Hh signaling is JAG2, while a 
target of  TCF  / LEF   transcription is JAG1 (Fig.  15.7 ) (He et al.  2006 ). Wnt signaling 
also results in the transcription of the Hh repressor protein, GLI3 (Alvarez-Medina 
et al.  2007 ). Alternatively, GLI proteins allow Hh to induce Wnt signaling as the 
WNT proteins are targets of GLI-mediated transcription (Mullor et al.  2001 ; Yang 
et al.  2009 ). This Hh-induced Wnt signaling has been observed in pancreatic cancer 
models (Pasca di Magliano et al.  2007 ). 

 Finally, one pathway may compete with or modulate a mediator of the other 
pathway. For example, SUFU can inhibit both activating GLI proteins (Hh signal-
ing) and β-catenin (Wnt signaling). Hh signaling has been reported to up-regulate a 
Wnt antagonist, secreted frizzled-related protein 1 (SFRP1), resulting in inhibition 
of Wnt signaling (Fig.  15.7 ) (He et al.  2006 ). 

 A number of publications have identifi ed additive growth suppression when 
more than one stem-cell pathway is inhibited. For example, simultaneous inhibition 
of Hh and Notch in leukemia, pancreatic and prostate cancer suggests these path-
ways cooperate in cancer progression as additive suppressive effects are observed 
(Ristorcelli and Lombardo  2010 ; Okuhashi et al.  2011 ). Similarly, inhibition of the 
 TGF-β   and Notch pathway suggests that these pathways cooperate in  EMT   (Guo 
and Wang  2008 ).  

K.M. Coyle et al.



421

  Fig. 15.7      Stemness pathway     s     exhibit numerous points of “cross-talk” . A few interactions 
between the Notch, Wnt, and Hh pathways are depicted here.  (a)  First, both Sufu and repressive 
GLI proteins (Hh signaling) can inhibit the activation of transcription by β-catenin (Wnt signal-
ing).  (b)  Next, transcriptional targets of Hh and Wnt signaling act as ligands for the Notch recep-
tors.  (c)  Wnt ligands are also transcriptional targets of Hh signaling, suggesting that Hh can 
activate Wnt signaling.  (d)  Finally, Dishevelled (DVL) can inhibit the function of NICD. These 
interactions demonstrate that stem cell signaling is a convoluted network of multiple pathways.       
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7     Molecules with Pan-inhibitory Effects 

7.1      Genistein   

  Genistein   (4,5,7-trihydroxyisofl avone) is an isofl avone phytoestrogen, derived from 
 Genista tinctoria . A variety of evidence indicates that genistein can inhibit  Notch 
signaling   (Wang et al.  2005 ; Pan et al.  2012 ; Dandawate et al.  2013 ). The precise 
mechanism is unknown; however, it may be due to miR-34a up-regulation (Xia 
et al.  2012a ). In phase I testing, isofl avone supplementation in prostate cancer 
patients revealed no toxicity (Miltyk et al.  2003 ; Takimoto et al.  2003 ; Fischer et al. 
 2004 ). An analog of genistein, phenoxodiol, inhibited breast cancer development in 
a rat model (Constantinou et al.  2003 ). Interestingly, it has also been demonstrated 
to enhance the activity of conventional chemotherapy drugs (Alvero et al.  2006 ). 
Further effi cacy testing is necessary before any conclusions can be made about the 
use of genistein or its derivatives in human cancers.  

7.2      Curcumin   

  Curcumin   is a diarylheptanoid and a natural phenol. It is the principle curcuminoid 
of turmeric. It has poor bioavailability as it is insoluble in water. Inhibition of Wnt 
signaling has been described in osteosarcoma, liver, breast, and colon cancers, 
resulting in potent growth inhibition (Jaiswal et al.  2002 ; Prasad et al.  2009 ; Leow 
et al.  2009 ; Kim et al.  2013a ). Natural analogs of curcumin down-regulated p300, 
an essential positive regulator of Wnt signaling (Ryu et al.  2008 ). Intriguingly, acti-
vation of Wnt by curcumin has also been described in neuroblastoma cells and in 
adipocytes (Ahn et al.  2010 ; Zhang et al.  2011a ), suggesting that further character-
ization is required to determine in which contexts curcumin can be used to inhibit 
Wnt signaling. Evidence suggests that curcumin may also modulate  Notch signal-
ing   by down-regulating Notch1 (Subramaniam et al.  2012 ; Li et al.  2012 ). The 
growth-inhibitory effects observed may be due to crosstalk with the NFκβ pathway 
(Wang et al.  2006 ). The preventative effects of curcumin have also been investigated 
in a phase IIa trial of patients at high risk for developing colorectal cancers. Patients 
receiving curcumin had a lower number of aberrant crypt foci, suggesting that high-
risk patients may benefi t from curcumin as a preventative treatment (Carroll et al. 
 2011 ). Curcumin has also been observed to inhibit Hh signaling (Elamin et al.  2009 ; 
Slusarz et al.  2010 ; Sun et al.  2013 ). These pan-inhibitory effects of curcumin make 
it a particularly appealing natural molecule for cancer therapy. Modifi cations to the 
structure of curcumin may increase its bioavailability and potency, thus enhancing 
its anti-cancer effects.  
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7.3      Resveratrol   

  Resveratrol   ( trans -3,5,4′-trihydroxystilbene) is a natural phenol and a member of 
the phyoalexin family. It is found in red grapes, wine, nuts, and several plants. A 
number of its anti-cancer effects have been attributed to inhibition of topoisomerase 
activity, or its estrogen-antagonizing structure (Bowers et al.  2000 ; Leone et al. 
 2012 ; Basso et al.  2013 ). 

 Interestingly, several studies have described activation of  Notch signaling   by res-
veratrol in carcinoid, medullary thyroid cancer, and glioblastoma cells, inducing 
apoptosis (Pinchot et al.  2010 ; Truong et al.  2010 ; Lin et al.  2011 ). A separate study, 
however, observed resveratrol-mediated inhibition of Notch signaling in T-ALL, 
which induced apoptosis (Cecchinato et al.  2007 ). Similar effects were seen in cer-
vical cancer cells; however, selective Notch inhibition did not achieve the same 
result (Zhang et al.  2014 ). The authors suggest that concurrent inhibition of Notch, 
Wnt, and STAT3 signaling resulted in the observed apoptotic effects of resveratrol. 
Additional studies have demonstrated obstruction of Wnt signaling by resveratrol 
(Hope et al.  2008 ; Vanamala et al.  2010 ). Many of these have focused on colon 
cancer, likely due to the importance of APC and Wnt signaling in FAP. A 2012 
study determined that resveratrol inhibits the formation of the β-catenin/ TCF   com-
plex, thus modulating transcription initiation at target genes (Chen et al.  2012a ). 
Phase I trials of resveratrol have demonstrated inhibition of Wnt signaling in normal 
colonic mucosa; and, using a micronized formulation, increased apoptosis of hepatic 
metastases (Nguyen et al.  2009 ; Howells et al.  2011 ). In human trials, the major 
dose-limiting side effect of resveratrol has been gastrointestinal toxicity (la Porte 
et al.  2010 ; Brown et al.  2010 ).  Resveratrol   may also inhibit Hh signaling. While the 
mechanisms range from decreased nuclear translocation of GLI and decreased tran-
scription of target genes to down-regulation of PTCH and SMO, resveratrol has 
been described to modulate Hh signaling in AML, prostate cancer, and pancreatic 
cancer (Slusarz et al.  2010 ; Su et al.  2013 ; Qin et al.  2014 ). 

 A major limiting factor in the clinical use of resveratrol is its poor bioavailability 
(Walle  2011 ). While resveratrol is easily absorbed, it is extensively metabolized in 
the intestine and liver resulting in limited effi cacy. The use of methylated derivatives 
of resveratrol may decrease clearance of resveratrol by increasing metabolic stabil-
ity and result in improved anti-cancer effects of resveratrol (Walle et al.  2007 ; Cai 
et al.  2010 ).  

7.4     Celastrol 

 Celastrol (tripterene) is a triterpenoid, isolated from the root extracts of  Tripterygium 
wilfordii  (Thunder god vine) and  Celastrus regelii . It has been described to have 
anti-oxidant, anti-infl ammatory, and anti-cancer activity (Allison et al.  2001 ). Some 
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of its anti-cancer effects may be a result of its modulation of  Notch signaling  , as 
treatment of leukemia cells resulted in a down-regulation of Notch1 (Wang et al. 
 2010 ). Interestingly, celastrol has been described to induce apoptosis via the activa-
tion of Wnt signaling. In colorectal cancer cells, celastrol increased nuclear beta-
catenin levels (Lu et al.  2012 ).  

7.5     Honokiol 

 Honokiol is a small-molecule polyphenol, isolated from various components of 
trees belonging to the genus  Magnolia . It has been shown to have anti- infl ammatory, 
anti-angiogenic, and anti-cancer properties (Fried and Arbiser  2009 ). Treatment 
with honokiol in preclinical models can modulate Wnt signaling, and may have 
 CSC  -specifi c effects. In oral squamous cell carcinoma  CSCs  , honokiol decreased 
β-catenin and a down-regulation of downstream targets was observed (Yao et al. 
 2013 ). Similar effects were seen in non-small cell lung cancer cells. Antagonism of 
the Notch pathway has also been observed following honokiol treatment. In a colon 
cancer model, honokiol sensitized CSCs to ionizing radiation. The expression of 
components of the γ-secretase complex as well as downstream target genes were 
reduced (Ponnurangam et al.  2012 ). The effects of honokiol could be reversed by 
the addition of NICD, suggesting that  Notch signaling   is vital for this response. A 
similar decrease in γ-secretase components was observed when melanoma cells 
were treated with honokiol (Kaushik et al.  2012 ).  

7.6     Arsenic Trioxide 

 Arsenic has been used as a medicinal agent for thousands of years. Currently, arse-
nic trioxide (ATO) is used in combination with all-trans retinoic acid in the treat-
ment of acute promyelocytic leukemia (APL). ATO promotes cellular differentiation, 
induces apoptosis in malignant and normal cells, and induces an accumulation of 
reactive oxygen species (Rojewski et al.  2002 ; List et al.  2003 ; Park et al.  2005 ). 
These effects may be mediated by inhibition of the Notch pathway. In gliomas, 
treatment with ATO resulted in decreased transcription of Notch-dependent genes. 
This was accompanied by a depletion of the  CSC   population (Zhen et al.  2009 ). 
Similar results have been observed in breast cancer and glioblastoma (Xia et al. 
 2012b ; Wu et al.  2013 ). ATO may also antagonize Hh signaling (Raju  2010 ; Kim 
et al.  2013b ). In a mouse model of Hh-dependent medulloblastoma, ATO treatment 
improved survival (Beauchamp et al.  2010 ). It is suggested that ATO binds GLI1 
and inhibits its transcriptional activity; however, a separate study observed an ATO- 
induced reduction of GLI2 (Kim et al.  2010a ). It is likely that the effects of ATO on 
the Hh pathway are mediated by the GLI proteins, and further experimentation will 
elucidate the precise mechanisms.   
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8     Conclusion and Future Perspectives 

8.1     Roadblocks to Success 

8.1.1     Preclinical/Clinical Failures 

 Drug development for stemness pathways closely follows that for many other tar-
gets. The vast majority of therapeutic agents remain in preclinical studies, and a 
number of agents which show promise in preclinical models fail in clinical trials. 
These disappointments may be due to any number of differences between preclini-
cal and clinical testing. Cell line models lack the inherent heterogeneity of human 
cancers, and the use of xenograft models requires immunocompromised hosts. 
Neither of these popular preclinical paradigms properly recapitulates the complex-
ity of treating patients. 

 It will be important to require the same success in preclinical models as we 
require in clinical settings – if clinical success is defi ned as inducing tumor regres-
sion or stable disease, then slowing tumor growth in preclinical tests is insuffi cient. 
The interesting concept of co-clinical trials presents an opportunity to hasten the 
progress of targeted therapies (Nardella et al.  2011 ; Chen et al.  2012b ). In principle, 
co-clinical trials encompass a genetically-engineered murine model paralleling a 
human clinical trial. This allows real-time feedback on treatment failures and suc-
cesses, and simultaneous integration of preclinical and clinical data.  

8.1.2     Strategies to Overcome Resistance 

 This approach to clinical testing of targeted therapies will allow rapid redeployment 
of alternate therapies when resistance develops. While targeting stemness pathways 
is a relatively young fi eld of anti-cancer therapy, it is not surprising that resistance 
to a number of these therapeutic agents has already been described. Indeed, it is 
most surprising that the emergence of resistance has not altered the strategies being 
used to target stemness pathways. The success of imatinib (Novartis) in treating 
 BCR-ABL   CML was followed quickly by the emergence of resistant variants 
(Valent  2007 ). This necessitated the development of second-generation tyrosine 
kinase inhibitors (dasatinib, nilotinib, and bosutinib) and third-generation ponatinib 
(Golas et al.  2003 ; Lombardo et al.  2004 ; Weisberg et al.  2005 ). Finally, a novel 
treatment for CML (omacetaxine), which acts independently of BCR-ABL tyrosine 
kinase inhibition, was developed; it has shown promise in treating patients who 
have failed fi rst- and second-generation tyrosine-kinase-inhibitor therapy and was 
approved by the FDA in 2012 (Pérez-Galán et al.  2007 ). 

 The development of anti-SMO therapies to inhibit Hh signaling mimics the 
 BCR-ABL   story. Mutations have already been described which confer resistance to 
the fi rst-line vismodegib (Metcalfe and de Sauvage  2011 ; Chang and Oro  2012 ), 
and while other SMO-antagonists may still be effective, it is likely only a matter of 
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time before resistance to second- and third-line antagonists emerges. It will be 
essential to hurry the development of therapies which target other aspects of the Hh 
signaling pathway as the SMO-antagonists move into wider clinical use (Metcalfe 
and de Sauvage  2011 ). In the Hh pathway, it may be essential to use a therapeutic 
such as GANT61 to target GLI-mediated transcription once resistance emerges at 
the SMO-level (Fig.  15.6 ) (Matsumoto et al.  2014 ). Therapeutic agents which target 
different aspects of the Notch, Wnt, and Hh pathways are in various stages of devel-
opment – while some classes of drugs, such as the Notch-targeted GSIs or the 
Hh-targeted SMO antagonists, are further ahead, the emergence of resistance will 
place a selective pressure on those less-developed agents. Alternatively, resistance 
to these targeted therapies may be addressed by combining anti-stemness agents 
with other specifi c agents. In SMO-antagonist-resistant tumors, this may mean the 
addition of a PI3K-inhibitor (Kim et al.  2010b ,  2013b ).  

8.1.3     Dealing with On-Target Side Effects 

 It is important to recognize that even targeted therapies have serious on- and off- 
target side effects. For example, a number of CML patients treated with imatinib 
developed congestive heart failure (Kerkelä et al.  2006 ). This was caused by a build-
 up of misfolded proteins in the endoplasmic reticulum, activating apoptosis. 
Inhibiting the  BCR-ABL   fusion protein also systemically inhibits the function of 
the ABL tyrosine kinase, leading to imatinib’s particular effects on cardiac 
function. 

 The clinical use of GSIs for leukemia patients and those with solid tumors 
exposed the importance of considering on-target side effects of anti-stemness 
agents. While the Notch, Wnt, and Hh pathways are vital for embryonic patterning 
and development, they are also active in many adult stem cell populations. Treatment 
with GSIs led to gastrointestinal toxicity due to the involvement of Notch in the 
intestinal tract (Searfoss et al.  2003 ; Milano et al.  2004 ; Wei et al.  2010 ). The result-
ing dose-limiting goblet cell hyperplasia has curtailed the use of GSIs in clinical 
settings and modifi ed dosing schedules have been investigated (Krop et al.  2012 ). 
The use of steroidal agents in combination with GSIs has also been investigated and 
seems promising (Real et al.  2008 ). 

 Similarly, on-target side effects have been observed in patients treated with Wnt 
signaling antagonists. Wnt and Hh signaling cooperate extensively in regulating 
bone turnover; thus, the use of targeted therapies in these pathways has resulted in 
abnormal bone mass. The FDA halted clinical testing of two anti-Wnt agents (ipafri-
cept and vantictumab) until the on-target bone side effects were addressed. The use 
of zoledronic acid in these patients appears to mediate these effects. 

  Targeting   stemness pathways will not be without consequence until a tumor- 
specifi c delivery platform can be mobilized. Ado-trastuzumab emtansine (Kadcycla 
or T-DM1, Genentech) consists of the Her2 monoclonal antibody, Herceptin, conju-
gated to a cyctotoxic agent, mertansine (Verma et al.  2012 ). Approved by the 
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FDA in 2013 for the treatment of metastatic Her2-positive breast cancer, T-DM1 
 exhibited a better safety profi le and improved effi cacy over trastuzumab alone. This 
is an important harbinger of the potential for tumor-specifi c delivery.   

8.2     Evidence for Success 

8.2.1     Immediate Clinical Successes 

 Several agents discussed in this chapter have already demonstrated clinical success, 
leading to FDA approval. Vismodegib (a SMO antagonist, Fig.  15.6 ) is approved for 
the treatment of locally-advanced or metastatic basal cell carcinoma, and demici-
zumab (anti-DLL4 agent, Fig.  15.2 ) received an orphan-drug designation for the 
treatment of pancreatic cancer. This demonstrates that targeted anti-stemness ther-
apy is an active and successful fi eld of drug development. Other agents in advanced 
stages of clinical testing, such as the Hh antagonist LDE225, the PF-03084014 GSI, 
and PRI-724, a CBP inhibitor, demonstrate benefi ts to patient outcomes. 

 Just as relevant, however, are those agents which have exhibited little-to-no clini-
cal success. RO4929097, a GSI, has little benefi t as a monotherapy, though it may 
still yet exhibit synergistic effects with conventional chemotherapies or even other 
targeted anti-Notch agents (Strosberg et al.  2012 ; De Jesus-Acosta et al.  2014 ). 
While some may call this a failure of the drug-development pipeline, it is important 
to consider how the success of anti-stemness agents is measured.  

8.2.2     Measuring Long-Term Effects 

 It is diffi cult to evaluate the long-term effi cacy of the targeted anti-Notch, Wnt, or 
Hh therapeutics discussed in this chapter, as many of them are fairly recent develop-
ments. An additional factor confounding the assessment of these agents is the rarity 
of the cell populations they target.  CSCs   often exhibit high signaling via these path-
ways when compared to the non- CSC   component of the tumor. Importantly, how-
ever, the frequency of CSCs in many cancers is less than 1 %. Thus, targeting 
stemness pathways in human cancers may show little immediate success over con-
ventional chemotherapy, as increased toxicity to 1 % of cells in a tumor is diffi cult 
to quantify. From another perspective, however, the hypothesized role for CSCs in 
cancer recurrence suggests that targeting CSCs may reduce recurrence rate and 
increase overall survival (Beck and Blanpain  2013 ). 

 Clinical testing of these targeted agents should include long-term follow-up as 
well as a determination of  CSC   frequency before, during, and after treatment. This 
data will allow us to determine if the overall effi cacy of the agent can be attributed 
to anti-CSC effects.   
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8.3     The Future of Targeting Stemness Pathways 

 With the hypothesized importance of  CSCs   in tumorigenesis, metastasis, chemo-
therapy resistance, and recurrence gaining increasing credence (Bonnet and Dick 
 1997 ; Singh et al.  2004 ; Ginestier et al.  2007 ), there has been a major thrust to 
identify novel therapies that target CSCs. The intrinsic linkage of stem cell signal-
ing pathways with  CSC   maintenance and tumorigenicity provides an avenue for 
therapeutic development and a more thorough study of CSCs in human cancers. The 
number of pre-clinical investigations and clinical trials examining the potential use 
of anti-stemness drugs has grown exponentially in recent years. The success of 
future trials will likely depend on extensive consideration of the cross-talk between 
stemness pathways. Future therapies may include dual-purpose agents such as the 
recently-described NL-103, a Hh and HDAC inhibitor (Zhao et al.  2014 ). 
Additionally, it is becoming increasingly apparent that the end result of signaling 
through these stemness pathways depends heavily on the cellular context – signal-
ing may be oncogenic or tumor-suppressive. Even the use of a single agent can 
activate or inhibit signaling (e.g. resveratrol). The identifi cation of patients who 
may benefi t from these therapies or combinations of anti-stemness therapeutics will 
necessitate an evaluation of stemness pathway cross-talk in patient tumors. 
Additionally, altered clinical paradigms should be considered, such as co-clinical 
trials and outcome measures that incorporate CSC frequency measurements. 

 Targeted therapies have outpaced natural product research in terms of resources 
spent by pharmaceutical companies on the development of novel anti-stemness 
pathway drugs for cancer. We will learn in the coming years if this strategy was 
effective, or if a new shift in research focus may occur. It has been suggested that 
natural molecules with novel mechanisms are more likely to be successful than 
many small molecules targeted at the same interaction (Ganesan  2008 ). Major 
advances may come from identifying the targets of natural molecules with proven 
anti-stemness/cancer activity and utilizing this information to generate semi- 
synthetic natural compounds with enhanced activity or developing novel strategies 
for targeted therapy (Pucheault  2007 ).      
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