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Abstract. Since 2000, manifold learning methods have been exten-
sively studied, and demonstrated excellent performance in dimension-
ality reduction in some application scenarios. However, they still have
some drawbacks in approximating real nonlinear relationships during the
dimensionality reduction process, thus are unable to retain the original
data’s structure well. In this paper, we propose an incremental version of
the manifold learning algorithm LTSA based on kernel method, which is
called IKLSTA, the abbreviation of Incremental Kernel LTSA. IKLTSA
exploits the advantages of kernel method and can detect the explicit
mapping from the high-dimensional data points to their low-dimensional
embedding coordinates. It is also able to reflect the intrinsic structure
of the original high dimensional data more exactly and deal with new
data points incrementally. Extensive experiments on both synthetic and
real-world data sets validate the effectiveness of the proposed method.

Keywords: Manifold learning · Dimensionality reduction · Kernel
method · Explicit mapping

1 Introduction

Dimensionality reduction is one of important tasks in machine learning. Man-
ifold learning aims at constructing the nonlinear low-dimensional manifold
from sampled data points embedded in high-dimensional space, is a class of
effective nonlinear dimension reduction algorithms. Typical manifold learning
algorithms include Isomap [16] and LLE [14] etc. These algorithms are easy to
implement and can obtain satisfactory mapping results in some application sce-
narios. However, they also have some limitations. When projecting complicate
high-dimensional data to low-dimensional space, they can keep only some char-
acteristics of the original high-dimensional data. For example, the local neighbor-
hood construction in Isomap is quite different from that of the original dataset,
and the global distance between data points cannot be maintained well by the
LLE method.
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Kernel methods are a kind of approaches that use kernel functions to project
the original data as inner product to high dimensional eigen-space where subse-
quent learning and analysis are done. Kernel functions are used to approximate
real data’s non-linear relations. From either global or local viewpoint [17], the
low dimensional mapping can reflect the intrinsic structure of the original high
dimensional data more accurately after dimension reduction. It is significant in
many fields such as pattern recognition and so on.

Research works in recent years indicate the close inherent relationship
between manifold learning and dimension reduction algorithms based on ker-
nel method [2,8]. Ham [4] studied the relationships between several manifold
learning algorithms including Isomap, LLE and Laplacian Eigenmap (LE) [1]
etc. and kernel method. These algorithms all can be seen as the problem of
calculating eigenvectors of a certain matrix, which satisfies the kernel matrix’s
conditions and reveals the characteristics to be preserved of the dataset. So all
these methods can be regarded as kernel methods that keep the geometric char-
acteristics of the original dataset after dimension reduction under the kernel
framework.

For the out-of-sample learning problems, the key point lies in that most
manifold learning algorithms find low-dimensional coordinates by optimizing a
certain cost function, while the mappings of data points in high dimensional
space to their low dimensional coordinates lack explicit formulation. When new
samples are added into the dataset, it is unable to get its corresponding low
dimensional coordinates directly by the obtained mappings, so the re-running
of the algorithm is required. If some specific mapping function can be obtained,
we can get newly-added data points’ low dimensional coordinates through the
mapping function directly. Then the processing efficiency can be significantly
improved for the new-coming data.

So if we bring the mapping function from high-dimensional input data to
the corresponding low-dimensional output coordinates into manifold learning
methods under the kernel framework, given the explicit mapping relationships
of kernel methods, we can combine the advantages of kernel methods and the
explicit mapping function. As a result, the learning complexity can be reduced,
and new data points’ low dimensional coordinates can be calculated more effi-
ciently, which makes the algorithms suitable for incremental manifold learning. In
addition, dimensionality reduction algorithms served as a kind of feature extrac-
tion methods have attracted wide attention in applications. If we can apply the
new method into these scenarios, human cost can be cut off greatly.

The rest of the paper is organized as follows. We review related work in
Sect. 2. We present the proposed method in detail in Sect. 3. In Sect. 4, exper-
iments on synthetic and real datasets are carried out to evaluate the proposed
method. Finally, we conclude the paper in Sect. 5.

2 Related Work

As Liu and Yan pointed out [10], linear manifold learning algorithms that
can extract local information, such as locality preserving projection (LPP) [5],
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neighborhood preserving embedding (NPE) [6], orthogonal neighborhood pre-
serving projection (ONPP) [7] have sprung up in recent years. Recently, Zheng
et al. used a kind of nonlinear implicit representation as a nonlinear polynomial
mapping, and applied it to LLE and thus proposed the neighborhood preserving
polynomial embedding algorithm (NPPE) [20]. This algorithm can keep the non-
linear characteristics of high dimensional data. Although these algorithms can
detect the local characteristics very well [11], they cannot deal with noise effec-
tively. Considering that real-world datasets inevitably contain outliers and noise,
it is challenging for these manifold learning algorithms to process real-world data
effectively.

Manifold learning algorithms based on kernel method are effective to solve
the out-of-sample learning problem. Considering that data inseparable in the lin-
ear space may be separable in a nonlinear space, people tend to study manifold
learning methods based on kernel functions (or kernel methods). Here, the selec-
tion of kernel function is the key step. Kernel function describes the dataset’s
characteristics. By doing eigen-decomposition on the kernel matrix, we can get
the original dataset’s characteristics, which improves the learning ability of the
out-of-sample problem. Furthermore, the compute cost can be decreased conse-
quently by doing eigen-decomposition on the kernel matrix instead of in high
dimensional eigen-space.

2.1 LLE Under the Kernel Framework

Several works combining kernel functions and manifold learning methods appear
in recent years. Take kernel LLE [4] for example, the last step of LLE is to search
the low dimensional embedding coordinates Y that can maintain the weight
matrix W optimally. The cost function is as follows:

Φ(Y ) =
∑

i

||Yi −
∑

j

wijYj || = ||Y (I − W )||2 = Trace(Y (I − W )(I − W )TY T )

= Trace(Y MY T ), whereM = (I − W )(I − W )T . (1)

We try to find the coordinates Y minimizing the cost function, which are
d-dimensional embedding coordinates, i.e., the d eigenvectors according to the d
smallest eigenvalues of matrix M . Ham [4] supposed that LLE’s kernel matrix
can be represented as K = (λmaxI − M), λmax is the largest eigenvalue of M .
Because M is positive definite, it can be proved that K is also positive definite,
which satisfies the requirement of kernel matrix consequently. The original cost
function can be rewritten as Φ(Y ) = Trace(Y TKY ). Then, the first d largest
eigenvectors of kernel matrix K that minimize the cost function are proved to
be the low dimensional embedding coordinates.

The LTSA [18,19] algorithm is similar to LLE in essence, both come down
to the eigen-decomposition of a matrix, which can be described as the kernel
matrix form. We put LTSA under the framework of kernel method to pursue
dimension reduction based on kernel technique.
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2.2 Manifold Learning Based on Explicit Mapping

The mapping relationship F between a high-dimensional dataset and its low
dimensional representation is usually nonlinear and cannot be represented in an
exact form [13]. One commonly used method is to use a linear function [3]
to approximate the real nonlinear mapping F in order to get the mapping
between the high dimensional input dataset and its low dimensional coordi-
nates. For example, in the locality preserving projection (LPP) [5] method,
a linear function Y = ATX is used, where X ∈ R

D, Y ∈ R
d, A ∈ R

D×d,
X and Y represent the input and output data respectively, and A represents
the linear transformation matrix. This linear function is then substituted into
the manifold learning method’s optimization objective function and we can get
arg min(aTX)L(aTX)T . The optimal linear transformation matrix A = [ai] can
be solved by minimizing the cost function Trace(Y TLY ) = Trace(aTXLXTa).
The mapping representation yi = ATxi gotten from the linear transformation
matrix A reflects the nonlinear mapping relationship from X to Y . So we can get
a newly-added data point’s corresponding low dimensional coordinates according
to the explicit mapping formula.

In the neighborhood preserving projections (NPP) [12] algorithm, based on
the LLE method, the authors used a linear transformation matrix to build the
linear connection yi = UTxi between the input dataset X = [x1, x2, ..., xN ] and
the corresponding output Y = [y1, y2, ..., yN ] after dimension reduction by LLE.
Then, the linear connection is put to a generic procedure of dimension reduction
of manifold learning to calculate the optimal linear transformation matrix U ,
so as to minimize the cost function Φ(Y ) = Trace(Y (I − W )(I − W )TY T ) =
Trace(Y MY T ). After that, we can get Trace(Y MY T ) = Trace(UTXMXTU).
By doing eigen-decomposition on matrix XMXT , we get the d smallest eigen-
vectors u1, u2, ..., ud, which can be represented as a matrix U = [u1, u2, ..., ud].
Finally, the low dimensional output coordinates Y are computed directly from
the linear function Y = UTX.

3 Incremental Kernel LTSA

3.1 LTSA Under Kernel Framework

For dimensionality reduction, both LTSA and LLE do eigen-decomposition on
a certain cost function to determine the low dimensional output coordinates of
a high-dimensional dataset. So we can use kernel in the third step of LTSA
to align the global coordinates. The optimization objective of the original cost
function min

U
tr(Y MY T ) with M = WWT can be formulated as min

U
tr(Y KY T ).

Now we define the kernel matrix as K = λmaxI − M , where λmax is M ’s largest
eigenvalue. K is positive definite because M = WWT is positive definite, which
can be proved as follows.
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The eigen-decomposition on matrix M is Y M = Y λ, multiplying both sides
by Y T , we get Y MY T = Y Y Tλ = λ, substituting M = λmaxI − K into the
equation above, we can get

Y (λmaxI − K)Y T = λ ⇒ Y λmaxIY T − Y KY T = λ ⇒ λmaxI − λ = Y KY T(2)

Considering that M is positive definite, we know M ’s eigenvalues λ are pos-
itive by Y M = Y λ. While λmax is M ’s largest eigenvalue, so it is positive and
λmaxI−λ > 0. So Eq. (2) is positive on both sides. That is, K is positive definite,
which satisfies the condition of kernel matrix.

3.2 Putting Explicit Mapping Function into the Kernel Framework

On the other hand, LTSA assumes that the coordinates of the input data points’
neighbors in the local tangent space can be used to reconstruct the global embed-
ding coordinates’ geometric structure. So there exist one-to-one correspondences
between global coordinates and local coordinates. We put the explicit mapping
function Y = UTX into the optimization function by kernel: min tr(Y KY T )

where K = λmaxI − M , M = WWT =
N∑
i=1

WiW
T
i , Wi = (I − 1

keeT )(I − Θ†
iΘi).

The constraint on Y is Y Y T = I. So the optimization function turns to
min
U

tr(UTXK(UTX)T ) = min
U

tr(UT (XKXT )U). Rewriting the constraint as

Y Y T = UTX(UTX)T = I, i.e., UTXXTU = I. Then, we put the constraint
into the optimization function and apply the Lagrangian multiplier to get the
following equation:

L(U) = UT (XKXT )U + λ(I − UTXXTU)

⇒ ∂L(U)
∂U

= 2(XKXT )U − 2λXXTU = 0 ⇒ (XKXT )U = λXXTU(3)

The problem can be transformed to eigen-decomposition on matrix XKXT .
The solution of the optimization problem min

U
tr(UT (XKXT )U) is U =

[u1,u2,...,ud], where u1, u2, ..., ud are corresponding eigenvectors of the d largest
eigenvalues λ1, λ2, ..., λd. With the coefficient matrix U , we can work out the
low dimensional output coordinates Y according to the function Y = UTX
between the local coordinates and the low-dimensional global coordinates. With
the explicit mapping function, a newly-added point xnew’s low-dimensional coor-
dinates can be obtained by ynew = UTxnew. This is the key point of incremental
manifold learning in this paper.

3.3 Procedure of the IKLTSA Algorithm

In this paper, the kernel method with an explicit mapping formulation Y =
UTX has the ability of processing newly-added data points incrementally. The
kernel matrix can be used to recover the original high-dimensional data’s intrinsic



IKLTSA: An Incremental Kernel LTSA Method 75

structure effectively. We call the method Incremental Kernel LTSA — IKLTSA
in short. The procedure of IKLSTA is outlined as follows.
Input: Dataset X, neighborhood parameter k
Output: Low-dimensional coordinates Y
Procedure:

– Step 1 (Extract local information): Use the k-nearest neighbor method
to evaluate each data point xi’s neighborhood Xi. Compute the eigenvec-
tors vi corresponding to the d largest eigenvalues of the covariance matrix
(Xi − xi e

T )T (Xi − xi e
T ) with respect to point xi’s neighborhood, and con-

struct matrix Vi, then get each point’s coordinates in the local tangent space
Θi = V T

i Xi(I − 1
keeT ).

– Step 2 (Align local coordinates): Minimize the following local reconstruc-
tion error to align the global embedding coordinates Yi corresponding to the
coordinates in the local tangent space: Ei = Yi(I − 1

keeT )(I − Θ†
iΘi). Let

Wi = (I − 1
keeT )(I − Θ†

iΘi), M =
N∑
i=1

WiW
T
i .

– Step 3 (Obtain the kernel function): Construct the kernel function by
K = λmaxI − M , λmaxis M ’s largest eigenvalue.

– Step 4 (Use the explicit mapping function): Do eigen-decomposition on
matrix XKXT and get the eigenvectors u1, u2, ..., ud corresponding to the d
largest eigenvalues by using the explicit mapping function Y = UTX.

– Step 5 (Compute the low dimensional output coordinates): After
getting the coefficient matrix U = [u1, u2, ..., ud], calculate the low dimensional
output coordinates Y in accordance with the function Y = UTX. For a newly-
added point xnew, the corresponding low dimensional coordinate are evaluated
directly by ynew = UTxnew.

4 Experimental Results

We conduct a series of experiments in this section to validate the proposed
algorithm. Tested datasets include both simulated benchmarks and real world
datasets of face images, handwritten digits etc.

4.1 Performance of Dimensionality Reduction

Here we show the dimensionality reduction effect of IKLTSA on datasets Swiss
Roll and Twin Peaks [15]. We compare a series of manifold learning algorithms:
LTSA [18], LE [1], LLE [14], ISOMAP [16], LPP [5], NPP [12], and the proposed
method IKLTSA.

We first use these methods to reduce the dimensionality of 1000 points in
the Swiss Roll dataset and map the points to two-dimensional space with k=14.
The results are shown in Fig. 1. We can see clearly that our algorithm preserves
best the mutual spatial relationships among data points after dimensionality
reduction, which indicates that our method can reflect the intrinsic structure
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Dimensionality reduction results of several manifold learning methods on Swiss
Roll dataset. (a) The original dataset (1000 points), (b) Result of LTSA, (c) Result of
LE, (d) Result of LLE, (e) Result of ISOMAP, (f) Result of LPP, (g) Result of NPP,
(h) Result of IKLTSA.

of the original high-dimensional data accurately. We then test these methods
on dataset Twin Peaks, and the two-dimensional results after dimensionality
reduction are demonstrated in Fig. 2. We can see that the proposed algorithm is
still superior to the other methods.

One major advantage of the proposed algorithm IKLTSA is that we can use
it to evaluate the low dimensional coordinates of a newly-added point by the
explicit formulation directly. To show this, we use three datasets: Swiss Roll,
Punctured Sphere [15] and Twin Peaks [15], each of which contains 1000 points.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Dimensionality reduction results of several manifold learning methods on twin
peaks dataset. (a) The original dataset (1000 points), (b) Result of LTSA (c) Result
of LE (d) Result of LLE (e) Result of ISOMAP (f) Result of LPP (g) Result of NPP
(h) Result of IKLTSA.
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Each dataset is divided into a testing subset (containing 20 points) and a train-
ing subset (containing 980 points). First, we reduce the dimensionality of points
in the training subset, then compute the corresponding low dimensional coor-
dinates of points in the testing subset by using the mapping function from the
original high dimensional data to the low dimensional coordinates. Furthermore,
we reduce the dimensionality of each dataset by using kernel function. All results
are shown in Fig. 3.

From Fig. 3, we can see that the coordinates of testing points computed by the
mapping function are close to the coordinates obtained by dimension reduction
on the whole dataset. This means that our algorithm is able to process new
data incrementally. For a new point, we can compute the corresponding low
dimensional coordinates directly by the explicit mapping function. Our method
has an obvious advantage in processing high dimensional data streams over the
other methods.

Fig. 3. Comparison between the low dimensional coordinates obtained by explicit map-
ping function and the coordinates obtained by direct dimension reduction on the whole
dataset. (a, d, g) The original datasets; (b, e, h) Results of dimension reduction in
training subset and the coordinates of points in the testing subset obtained by map-
ping function directly; (c, f, i) The low dimensional coordinates obtained by dimension
reduction over the whole dataset.
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4.2 Classification Performance

Dimension reduction is often used as a preprocessing step of classification task.
So dimension reduction outputs play an important role in classification. In this
section we first do dimension reduction on two real-world datasets using differ-
ent algorithms, then classify the low dimensional outputs using kNN (k-nearest
neighborhood) classifier. Finally, we compare the classification performance to
validate the effectiveness of our algorithm.

First, we use a human face image dataset sampled from Olivetti Faces [21]
as input. This dataset contains 8 individuals’ face images of size 64 by 64 pix-
els; each individual has 10 face images of different expressions, from which 5
images are used for training and the others for testing. The results are shown
in Fig. 4, where the horizontal axis represents the dimensionality of face images
after dimension reduction. From Fig. 4, we can see that our method IKLTSA per-
forms better than the other algorithms. Then we do the same experiments with
major incremental manifold learning methods, including incremental LE, incre-
mental LTSA, incremental Isomap, incremental LLE and incremental HLLE [9].
The results are shown in Fig. 5. Again we can see that our algorithm achieves
the best performance. This indicates that our algorithm can detect the intrinsic
structure hidden in the dataset well.

The second real-world dataset used here is the MNIST Handwritten Digits
dataset [21], which contains images of hand-written digits 0–9. Here we select
only 5 digits 0, 1, 3, 4 and 6, each of which has 980 images of size 28 by 28
pixels. These images are divided training set and testing set. We reduce the
dimensionality of each image to 1–8 dimensions using different manifold learning

Fig. 4. Classification performance comparison on the Olivetti Faces dataset with major
manifold learning algorithms.
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algorithms, and then classify the low-dimensional images using kNN classifier.
The classification results are shown in Fig. 6. We can see that our algorithm
achieves a higher accuracy than the other algorithms. Similarly, we compare
IKLTSA with major incremental methods on the same dataset, and get roughly
similar results, which are shown in Fig. 7.

Fig. 5. Classification performance comparison on the Olivetti Faces dataset with major
incremental manifold learning algorithms.

Fig. 6. Classification performance comparison on the MNIST Handwritten Digits
dataset with major manifold learning algorithms.
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Fig. 7. Classification performance comparison on the MNIST Handwritten Digits
dataset with major incremental manifold learning algorithms.

4.3 Dimensionality Reduction Performance on the Rendered Face
Dataset

Here we check the dimensionality reduction performance on the rendered face
dataset [16]. The results are shown in Fig. 8. The dataset contains 698 facial
sculpture images of 64 × 64 pixels. These images have 2 groups of pose parame-
ters: up to down and left to right. All images are transformed to 4096-dimension

Fig. 8. Dimensionality reduction results on the Rendered face dataset.
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vectors. We reduce the 698 high dimensional images to 2D using IKLTSA, and
are shown in Fig. 8. Here, each point represents a facial image. 10 images are
selected randomly and marked as red points in Fig. 8. We can see that the facial
poses are from right to left along the horizontal axis, and from look-up to look-
down along the vertical axis (posture is from up to down). So the low dimensional
projections obtained by our algorithm keep the original data’s intrinsic struc-
ture very well. The selected images are mapped to the low dimensional space

Fig. 9. Time cost comparison on the Swiss Roll dataset

Fig. 10. Time cost comparison on the Rendered face dataset
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accurately in accordance with their positions and poses in the original data. This
shows that the proposed algorithm is effective in detecting the implicit structures
of high dimensional images.

4.4 Time Cost

Here we compare time cost on dimension reduction of our IKLTSA method with
three existing incremental manifold learning algorithms, including incremental
LE, incremental LTSA and incremental HLLE, over the Swiss Roll and the
Rendered face datasets. Figures 9 and 10 show the time cost as the number of
data points or images processed increases. On the Swiss Roll dataset, although
IKLTSA consumes more time than incremental LE, it is faster than the other
incremental manifold learning algorithms to process the whole dataset. On the
Rendered face datasets. our algorithm is always faster than the other algorithms.

5 Conclusion

In this paper, we propose a new manifold learning algorithm based on kernel
that combines an explicit mapping function from the high dimensional data to
its low dimensional coordinates. Compared with existing batch and incremen-
tal manifold learning algorithms, the new method can directly compute newly-
added data points’ low dimensional coordinates by the explicit mapping function.
This enables the proposed method to process new data incrementally, which has
extensive applications in processing data streams.
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