
Efficient Mining of High-Utility Sequential Rules

Souleymane Zida1, Philippe Fournier-Viger1(B), Cheng-Wei Wu2,
Jerry Chun-Wei Lin3, and Vincent S. Tseng2

1 Department of Computer Science, University of Moncton, Moncton, Canada
esz2233@umoncton.ca, philippe.fournier-viger@umoncton.ca

2 Department of Computer Science, National Chiao Tung University,
Hsinchu, Taiwan

silvemoonfox@gmail.com, vtseng@cs.nctu.edu.tw
3 School of Computer Science and Technology, Harbin Institute of Technology

Shenzhen Graduate School, Shenzhen, China
jerrylin@ieee.org

Abstract. High-utility pattern mining is an important data mining task
having wide applications. It consists of discovering patterns generating
a high profit in databases. Recently, the task of high-utility sequential
pattern mining has emerged to discover patterns generating a high profit
in sequences of customer transactions. However, a well-known limitation
of sequential patterns is that they do not provide a measure of the con-
fidence or probability that they will be followed. This greatly hampers
their usefulness for several real applications such as product recommen-
dation. In this paper, we address this issue by extending the problem of
sequential rule mining for utility mining. We propose a novel algorithm
named HUSRM (High-Utility Sequential Rule Miner), which includes
several optimizations to mine high-utility sequential rules efficiently. An
extensive experimental study with four datasets shows that HUSRM is
highly efficient and that its optimizations improve its execution time by
up to 25 times and its memory usage by up to 50 %.

Keywords: Pattern mining · High-utility mining · Sequential rules

1 Introduction

Frequent Pattern Mining (FPM) is a fundamental task in data mining, which
has many applications in a wide range of domains [1]. It consists of discovering
groups of items appearing together frequently in a transaction database. How-
ever, an important limitation of FPM is that it assumes that items cannot appear
more than once in each transaction and that all items have the same importance
(e.g. weight, unit profit). These assumptions do not hold in many real-life appli-
cations. For example, consider a database of customer transactions containing
information on quantity of purchased items and their unit profit. If FPM algo-
rithms are applied on this database, they may discover many frequent patterns
generating a low profit and fail to discover less frequent patterns that generate
c© Springer International Publishing Switzerland 2015
P. Perner (Ed.): MLDM 2015, LNAI 9166, pp. 157–171, 2015.
DOI: 10.1007/978-3-319-21024-7 11

158 S. Zida et al.

a high profit. To address this issue, the problem of FPM has been redefined as
High-utility Pattern Mining (HUPM) [2,5,7,9,12,13]. However, these work do not
consider the sequential ordering of items in transactions. High-Utility Sequential
Pattern Mining (HUSP) was proposed to address this issue [14,15]. It consists of
discovering sequential patterns in sequences of customer transactions containing
quantity and unit profit information. Although, this definition was shown to be
useful, an important drawback is that it does not provide a measure of confidence
that patterns will be followed. For example, consider a pattern 〈{milk}, {bread},
{champagne}〉 meaning that customers bought milk, then bread, and then cham-
pagne. This pattern may generate a high profit but may not be useful to predict
what customers having bought milk and bread will buy next because milk and
bread are very frequent items and champagne is very rare. Thus, the probabil-
ity or confidence that milk and bread is followed by champagne is very low. Not
considering the confidence of patterns greatly hampers their usefulness for several
real applications such as product recommendation.

In FPM, a popular alternative to sequential patterns that consider confi-
dence is to mine sequential rules [3]. A sequential rule indicates that if some
item(s) occur in a sequence, some other item(s) are likely to occur afterward
with a given confidence or probability. Two main types of sequential rules have
been proposed. The first type is rules where the antecedent and consequent are
sequential patterns [10,11]. The second type is rules between two unordered sets
of items [3,4]. In this paper we consider the second type because it is more gen-
eral and it was shown to provide considerably higher prediction accuracy for
sequence prediction in a previous study [4]. Moreover, another reason is that
the second type has more applications. For example, it has been applied in
e-learning, manufacturing simulation, quality control, embedded systems analy-
sis, web page prefetching, anti-pattern detection, alarm sequence analysis and
restaurant recommendation (see [4] for a survey). Several algorithms have been
proposed for sequential rule mining. However, these algorithms do not consider
the quantity of items in sequences and their unit profit. But this information
is essential for applications such as product recommendation and market bas-
ket analysis. Proposing algorithms that mine sequential rules while considering
profit and quantities is thus an important research problem.

However, addressing this problem raises major challenges. First, algorithms
for utility mining cannot be easily adapted to sequential rule mining. The reason
is that algorithms for HUPM and HUSP mining such as USpan [14], HUI-Miner
[8] and FHM [5] use search procedures that are very different from the ones used
in sequential rule mining [3,4]. A distinctive characteristics of sequential rule
mining is that items may be added at any time to the left or right side of rules
to obtain larger rules and that confidence needs to be calculated. Second, the
proposed algorithm should be efficient in both time and memory, and have an
excellent scalability.

In this paper, we address these challenges.Our contributions are fourfold. First,
we formalize the problem of high-utility sequential rule mining and its properties.
Second, we present an efficient algorithm named HUSRM (High-Utility Sequen-
tial Rule Miner) to solve this problem. Third, we propose several optimizations

Efficient Mining of High-Utility Sequential Rules 159

Table 1. A sequence database

SID Sequences

s1 〈{(a, 1)(b, 2)}(c, 2)(f, 3)(g, 2)(e, 1)〉
s2 〈{(a, 1)(d, 3)}(c, 4), (b, 2), {(e, 1)(g, 2)}〉
s3 〈(a, 1)(b, 2)(f, 3)(e, 1)〉
s4 〈{(a, 3)(b, 2)(c, 1)}{(f, 1)(g, 1)}〉

Table 2. External utility
values

Item a b c d e f g

Profit 1 2 5 4 1 3 1

to improve the performance of HUSRM. Fourth, we conduct an extensive experi-
mental study with four datasets. Results show that HUSRM is very efficient and
that its optimizations improve its execution time by up to 25 times and its memory
usage by up to 50 %.

The rest of this paper is organized as follows. Sections 2, 3, 4 and 5 respec-
tively presents the problem definition and related work, the HUSRM algorithm,
the experimental evaluation and the conclusion.

2 Problem Definition and Related Work

We consider the definition of a sequence database containing information about
quantity and unit profit, as defined by Yin et al. [14].

Definition 1 (Sequence Database). Let I = {i1, i2, ..., il} be a set of items
(symbols). An itemset Ix = {i1, i2, ..., im} ⊆ I is an unordered set of distinct
items. The lexicographical order �lex is defined as any total order on I. Without
loss of generality, it is assumed in the following that all itemsets are ordered
according to �lex. A sequence is an ordered list of itemsets s = 〈I1, I2, ..., In 〉
such that Ik ⊆ I (1 ≤ k ≤ n). A sequence database SDB is a list of sequences
SDB = 〈s1, s2, ..., sp〉 having sequence identifiers (SIDs) 1, 2...p. Note that it is
assumed that sequences cannot contain the same item more than once. Each
item i ∈ I is associated with a positive number p(i), called its external utility
(e.g. unit profit). Every item i in a sequence sc has a positive number q(i, sc),
called its internal utility (e.g. purchase quantity).

Example 1. Consider the sequence database shown in Table 1, which will be the
running example. It contains four sequences having the SIDs 1, 2, 3 and 4. Each
single letter represents an item and is associated with an integer value representing
its internal utility. Items between curly brackets represent an itemset. When an
itemset contains a single item, curly brackets are omitted for brevity. For example,
the first sequence s1 contains five itemsets. It indicates that items a and b occurred
at the same time, were followed by c, then f , then g and lastly e. The internal
utility (quantity) of a, b, c, e, f and g in that sequence are respectively 1, 2, 2, 3, 2
and 1. The external utility (unit profit) of each item is shown in Table 2.

The problem of sequential rule mining is defined as follows [3,4].

160 S. Zida et al.

Definition 2 (Sequential Rule). A sequential rule X → Y is a relationship
between two unordered itemsets X,Y ⊆ I such that X ∩ Y = ∅ and X,Y �= ∅.
The interpretation of a rule X → Y is that if items of X occur in a sequence,
items of Y will occur afterward in the same sequence.

Definition 3 (Sequential Rule Size). A rule X → Y is said to be of size
k ∗ m if |X| = k and |Y | = m. Note that the notation k ∗ m is not a product. It
simply means that the sizes of the left and right parts of a rule are respectively
k and m. Furthermore, a rule of size f ∗ g is said to be larger than another rule
of size h ∗ i if f > h and g ≥ i, or alternatively if f ≥ h and g > i.

Example 2. The rules r = {a, b, c} → {e, f, g} and s = {a} → {e, f} are respec-
tively of size 3 ∗ 3 and 1 ∗ 2. Thus, r is larger than s.

Definition 4 (Itemset/Rule Occurrence). Let s = 〈I1, I2...In〉 be a sequence.
An itemset I occurs or is contained in s (written as I � s) iff I ⊆ ⋃n

i=1 Ii. A
rule r = X → Y occurs or is contained in s (written as r � s) iff there exists an
integer k such that 1 ≤ k < n, X ⊆ ⋃k

i=1 Ii and Y ⊆ ⋃n
i=k+1 Ii. Furthermore,

let seq(r) and ant(r) respectively denotes the set of sequences containing r and
the set of sequences containing its antecedent, i.e. seq(r) = {s|s ∈ SDB∧r � s}
and ant(r) = {s|s ∈ SDB ∧ X � s}.

Definition 5 (Support). The support of a rule r in a sequence database SDB
is defined as supSDB(r) = |seq(r)|/|SDB|.
Definition 6 (Confidence). The confidence of a rule r = X → Y in a sequence
database SDB is defined as confSDB(r) = |seq(r)|/|ant(r)|.
Definition 7 (Problem of Sequential Rule Mining). Let minsup, minconf
∈ [0, 1] be thresholds set by the user and SDB be a sequence database. A sequen-
tial rule r is frequent iff supSDB(r) ≥ minsup. A sequential rule r is valid iff it
is frequent and confSDB(r) ≥ minconf . The problem of mining sequential rules
from a sequence database is to discover all valid sequential rules [3].

We adapt the problem of sequential rule mining to consider the utility (e.g.
generated profit) of rules as follows.

Definition 8 (Utility of an Item). The utility of an item i in a sequence sc
is denoted as u(i, sc) and defined as u(i, sc) = p(i) × q(i, sc).

Definition 9 (Utility of a Sequential Rule). Let be a sequential rule r :
X → Y . The utility of r in a sequence sc is defined as u(r, sc) =

∑
i∈X∪Y u(i, sc)

iff r � sc. Otherwise, it is 0. The utility of r in a sequence database SDB
is defined as uSDB(r) =

∑
s∈SDB u(r, s) and is abbreviated as u(r) when the

context is clear.

Example 3. The itemset {a, b, f} is contained in sequence s1. The rule {a, c} →
{e, f} occurs in s1, whereas the rule {a, f} → {c} does not, because item c does
not occur after f . The profit of item c in sequence s1 is u(c, s1) = p(c)×q(c, s1) =

Efficient Mining of High-Utility Sequential Rules 161

5 × 2 = 10. Consider a rule r = {c, f} → {g}. The profit of r in s1 is u(r, s1) =
u(c, s1) + u(f, s1) + u(g, s1) = (5 × 2) + (3 × 3) + (1 × 2) = 18. The profit of r in
the database is u(r) = u(r, s1)+u(r, s2)+u(r, s3)+u(r, s4) = 18+0+0+9 = 27.

Definition 10. (Problem of High-Utility Sequential Rule Mining). Let
minsup,minconf ∈ [0, 1] and minutil ∈ R+ be thresholds set by the user
and SDB be a sequence database. A rule r is a high-utility sequential rule iff
uSDB(r) ≥ minutil and r is a valid rule. Otherwise, it is said to be a low
utility sequential rule. The problem of mining high-utility sequential rules from
a sequence database is to discover all high-utility sequential rules.

Example 4. Table 3 shows the sequential rules found for minutil = 40 and
minconf = 0.65. In this example, we can see that rules having a high-utility
and confidence but a low support can be found (e.g. r7). These rules may not
be found with regular sequential rule mining algorithms because they are rare,
although they are important because they generate a high profit.

Table 3. Sequential rules found for minutil = 40 and minconf = 0.65

ID Sequential rule Support Confidence Utility

r1 {a, b, c} → {e} 0.50 0.66 42

r2 {a, b, c} → {e, g} 0.50 0.66 46

r3 {a, b, c} → {f, g} 0.50 0.66 42

r4 {a, b, c} → {g} 0.75 1.0 57

r5 {a, b, c, d} → {e, g} 0.25 1.0 40

r6 {a, c} → {g} 0.75 1.0 45

r7 {a, c, d} → {b, e, g} 0.25 1.0 40

r8 {a, d} → {b, c, e, g} 1.0 1.0 40

r9 {b, c} → {e} 0.50 0.66 40

r10 {b, c} → {e, g} 0.50 0.66 44

r11 {b, c} → {g} 0.75 1.0 52

r12 {c} → {g} 0.75 1.0 40

Algorithms for mining sequential rules explore the search space of rules by
first finding frequent rules of size 1 ∗ 1. Then, they recursively append items to
either the left or right sides of rules to find larger rules [3]. The left expansion of a
rule X → Y with an item i ∈ I is defined as X∪{i} → Y , where i �lex j,∀j ∈ X
and i �∈ Y . The right expansion of a rule X → Y with an item i ∈ I is defined
as X → Y ∪ {i}, where i �lex j,∀j ∈ Y and i �∈ X. Sequential rule mining
algorithms prune the search space using the support because it is anti-monotonic.
However, this is not the case for the utility measure, as we show thereafter.

Property 1. (antimonotonicity of utility). Let be a rule r and a rule s, which is
a left expansion of r. It follows that u(r) < u(s) or u(r) ≥ u(s). Similarly, for a
rule t, which is a right expansion of r, u(r) < u(t) or u(r) ≥ u(t).

162 S. Zida et al.

Example 5. The rule {a} → {b}, {a} → {b, g} and {a} → {b, e} respectively
have a utility of 10, 7 and 12.

In high-utility pattern mining, to circumvent the problem that utility is not anti-
monotonic, the solution has been to use anti-monotonic upper-bounds on the
utility of patterns to be able to prune the search space. Algorithms such as Two-
Phase [9], IHUP [2] and UP-Growth [12] discover patterns in two phases. During
the first phase, an upper-bound on the utility of patterns is calculated to prune
the search space. Then, during the second phase, the exact utility of remaining
patterns is calculated by scanning the database and only high-utility patterns
are output. However, an important drawback of this method is that too many
candidates may be generated and may need to be maintained in memory during
the first phase, which degrades the performance of the algorithms. To address
this issue, one-phase algorithms have been recently proposed such as FHM [5],
HUI-Miner [8] and USpan [14] to mine high-utility patterns without maintaining
candidates. These algorithms introduces the concept of remaining utility. For a
given pattern, the remaining utility is the sum of the utility of items that can
be appended to the pattern. The main upper-bound used by these algorithms to
prune the search space is the sum of the utility of a pattern and its remaining
utility. Since one-phase algorithms were shown to largely outperform two-phase
algorithms, our goal is to propose a one-phase algorithm to mine high-utility
sequential rules.

3 The HUSRM Algorithm

In the next subsections, we first present important definitions and data structures
used in our proposal, the HUSRM algorithm. Then, we present the algorithm.
Finally, we describe additional optimizations.

3.1 Definitions and Data Structures

To prune the search space of sequential rules, the HUSRM algorithm adapts
the concept of sequence estimated utility introduced in high-utility sequential
pattern mining [14] as follows.

Definition 11 (Sequence Utility). The sequence utility (SU) of a sequence
sc is the sum of the utility of items from sc in sc. i.e. SU(sc) =

∑
{x}�sc

u(x, sc).

Example 6. The sequence utility of sequences s1, s2, s3 and s4 are respectively
27, 40, 15 and 16.

Definition 12 (Sequence Estimated Utility of an Item). The sequence
estimated utility (SEU) of an item x is defined as the sum of the sequence utility
of sequences containing x, i.e. SEU(x) =

∑
sc∈SDB∧{x}�sc

SU(sc).

Definition 13 (Sequence Estimated Utility of a Rule). The sequence esti-
mated utility (SEU) of a sequential rule r is defined as the sum of the sequence
utility of sequences containing r, i.e. SEU(r) =

∑
sc∈seq(r) SU(sc).

Efficient Mining of High-Utility Sequential Rules 163

Example 7. The SEU of rule {a} → {b} is SU(s1) + SU(s2) + SU(s3) = 27 +
40 + 15 = 82.

Definition 14 (Promising Item). An item x is promising iff SEU(x) ≥
minutil. Otherwise, it is unpromising.

Definition 15 (Promising Rule). A rule r is promising iff SEU(r) ≥ minutil.
Otherwise, it is unpromising.

The SEU measure has three important properties that are used to prune the
search space.

Property 2 (Overestimation). The SEU of an item/rule w is higher or equal to
its utility, i.e. SEU(w) ≥ u(w).

Property 3 (Pruning Unpromising Items). Let x be an item. If x is unpromising,
then x cannot be part of a high-utility sequential rule.

Property 4 (Pruning unpromising rules). Let r be a sequential rule. If r is
unpromising, then any rule obtained by transitive expansion(s) of r is a low
utility sequential rule.

We also introduce a new structure called utility-table that is used by HUSRM to
quickly calculate the utility of rules and prune the search space. Utility-tables
are defined as follows.

Definition 16 (Extendability). Let be a sequential rule r and a sequence
s. An item i can extend r by left expansion in s iff i �lex j,∀j ∈ X, i �∈ Y
and X ∪ {i} → Y occurs in s. An item i can extend r by right expansion in
s iff i �lex j,∀j ∈ Y, i �∈ X and X → Y ∪ {i} occurs in s. Let onlyLeft(r, s)
denotes the set of items that can extend r by left expansion in s but not by
right expansion. Let onlyRight(r, s) denotes the set of items that can extend r
by right expansion in s but not by left expansion. Let leftRight(r, s) denotes
the set of items that can extend r by left and right expansion in s.

Definition 17 (Utility-Table). The utility-table of a rule r in a database SDB
is denoted as ut(r), and defined as a set of tuples such that there is a tuple (sid,
iutil, lutil, rutil, lrutil) for each sequence ssid containing r (i.e. ∀ssid ∈ seq(r)).
The iutil element of a tuple is the utility of r in ssid. i.e., u(r, ssid). The lutil
element of a tuple is defined as

∑
u(i, ssid) for all item i such that i can extend

r by left expansion in ssid but not by right expansion, i.e. ∀i ∈ onlyLeft(r, ssid).
The rutil element of a tuple is defined as

∑
u(i, ssid) for all item i such that

i can extend r by right expansion in ssid but not by left expansion, i.e. ∀i ∈
onlyRight(r, ssid). The lrutil element of a tuple is defined as

∑
u(i, ssid) for

all item i such that i can extend r by left or right expansion in ssid, i.e. ∀i ∈
leftRight(r, ssid).

Example 8. The utility-table of {a} → {b} is {(s1, 5, 12, 3, 20), (s2, 5, 0, 10, 0)}.
The utility-table of {a} → {b, c} is {(s1, 25, 12, 3, 0)}. The utility-table of the
rule {a, c} → {b} is {(s1, 25, 12, 3, 0)}.

164 S. Zida et al.

The proposed utility-table structure has the following nice properties to calculate
the utility and support of rules, and for pruning the search space.

Property 5. Let be a sequential rule r. The utility u(r) is equal to the sum of
iutil values in ut(r).

Property 6. Let be a sequential rule r. The support of r in a database SDB is
equal to the number of tuples in the utility-table of r, divided by the number of
sequences in the database, i.e. supSDB(r) = |ut(r)|/|SDB|.
Property 7. Let be a sequential rule r. The sum of iutil, lutil, rutil and lrutil
values in ut(r) is an upper bound on u(r). Moreover, it can be shown that this
upper bound is tighter than SEU(r).

Property 8. Let be a sequential rule r. The utility of any rule t obtained by
transitive left or right expansion(s) of r can only have a utility lower or equal to
the sum of iutil, lutil, rutil and lrutil values in ut(r).

Property 9. Let be a sequential rule r. The utility of any rule t obtained by
transitive left expansion(s) of r can only have a utility lower or equal to the sum
of iutil, lutil and lrutil values in ut(r).

Now, an important question is how to construct utility-tables. Two cases need
to be considered. For sequential rules of size 1 ∗ 1, utility-tables can be built by
scanning the database once. For sequential rules larger than size 1 ∗ 1, it would
be however inefficient to scan the whole database for building a utility-table. To
efficiently build a utility-table for a rule larger than size 1 ∗ 1, we propose the
following scheme.

Consider the left or right expansion of a rule with an item i. The utility-
table of the resulting rule r′ is built as follows. Tuples in the utility-table of r
are retrieved one by one. For a tuple (sid, iutil, lutil, rutil, lrutil), if the rule r′

appears in sequence ssid (i.e. r � ssid), a tuple (sid, iutil′, lutil′, rutil′, lrutil′)
is created in the utility-table of r′. The value iutil′ is calculated as iutil +
u({i}, ssid). lutil′ is calculated as lutil − u(j, ssid)∀j �∈ onlyLeft(r′, ssid) ∧j ∈
onlyLeft(r, ssid) − [u(i, ssid) if i ∈ onlyLeft(r, ssid)]. The value rutil′ is cal-
culated as rutil − u(j, ssid)∀j �∈ onlyRight(r′, ssid) ∧j ∈ onlyRight(r, ssid) −
[u(i, ssid) if i ∈ onlyRight(r, ssid)]. Finally, the value lrutil′ is calculated as
lrutil − u(j, ssid)∀j �∈ leftRight(r′, ssid) ∧j ∈ leftRight(r, ssid) − [u(i, ssid) if i
∈ leftRight(r, ssid)]. This procedure for building utility-tables is very efficient
since it requires to scan each sequence containing the rule r at most once to
build the utility-table of r′ rather than scanning the whole database.

Example 9. The utility-table of r : {a} → {e} is {(s1, 2, 14, 0, 11), (s2, 2, 36, 2, 0),
(s3, 2, 4, 0, 9)}. By adding the iutil values of this table, we find that u(r) = 6
(Property 5). Moreover, by counting the number of tuples in the utility-table and
dividing it by the number of sequences in the database, we find that supSDB(r) =
0.75 (Property 6). We can observe that the sum of iutil, lutil, rutil and lrutil val-
ues is equal to 82, which is an upper bound on u(r) (Property 7). Furthermore, this

Efficient Mining of High-Utility Sequential Rules 165

value tells us that transitive left/right expansions of r may generate high-utility
sequential rules (Property 8). And more particularly, because the sum of iutil,
lutil and lrutil values is equal to 80, transitive left expansions of r may generate
high-utility sequential rules (Property 9). Now, consider the rule r′ : {a, b} → {e}.
The utility-table of r′ can be obtained from the utility-table of r using the afore-
mentioned procedure. The result is {(s1, 6, 10, 0, 11), (s2, 6, 32, 2, 0), (s3, 6, 0, 0, 9)}.
This table, can then be used to calculate utility-tables of other rules such as
{a, b, c} → {e}, which is {(s1, 16, 0, 0, 11), (s2, 26, 12, 2, 0)}.

Up until now, we have explained how the proposed utility-table structure is built,
can be used to calculate the utility and support of rules and can be used to prune
the search space. But a problem remains. How can we calculate the confidence
of a rule r : X → Y ? To calculate the confidence, we need to know |seq(r)|
and |ant(r)|, that is the number of sequences containing r and the number
of sequences containing its antecedent X. |seq(r)| can be easily obtained by
counting |ut(r)|. However, |ant(r)| is more difficult to calculate. A naive solution
would be to scan the database to calculate |ant(r)|. But this would be highly
inefficient. In HUSRM, we calculate |ant(r)| efficiently as follows. HUSRM first
creates a bit vector for each single item appearing in the database. The bit
vector bv(i) of an item i contains |SDB| bits, where the j-th bit is set to 1 if
{i} � sj and is otherwise set to 0. For example, bv(a) = 1111, bv(b) = 1011 and
bv(c) = 1101. Now to calculate the confidence of a rule r, HUSRM intersects
the bit vectors of all items in the rule antecedent, i.e.

∧
i∈X bv(i). The resulting

bit vector is denoted as bv(X). The number of bits set to 1 in bv(X) is equal to
|ant(r)|. By dividing the number of lines in the utility-table of the rule |ut(r)|
by this number, we obtain the confidence. This method is very efficient because
intersecting bit vectors is a very fast operation and bit vectors does not consume
much memory. Furthermore, an additional optimization is to reuse the bit vector
bv(X) of rule r to more quickly calculate bv(X ∪ {i}) for any left expansions of
r with an item i (because bv(X ∪ {i}) = bv(X) ∧ bv({i})).

3.2 The Proposed Algorithm

HUSRM explores the search space of sequential rules using a depth-first search.
HUSRM first scans the database to build all sequential rules of size 1 ∗ 1. Then,
it recursively performs left/right expansions starting from those sequential rules
to generate larger sequential rules. To ensure that no rule is generated twice, the
following ideas have been used.

First, an important observation is that a rule can be obtained by different
combinations of left and right expansions. For example, consider the rule r :
{a, b} → {c, d}. By performing a left and then a right expansion of {a} → {c},
one can obtain r. But this rule can also be obtained by performing a right and
then a left expansion of {a} → {c}. A simple solution to avoid this problem is
to not allow performing a left expansion after a right expansion but to allow
performing a right expansion after a left expansion. Note that an alternative

166 S. Zida et al.

solution is to not allow performing a left expansion after a right expansion but
to allow performing a right expansion after a left expansion.

Second, another key observation is that a same rule may be obtained by
performing left/right expansions with different items. For example, consider the
rule r9 : {b, c} → {e}. A left expansion of {b} → {e} with item c results in
r9. But r9 can also be found by performing a left expansion of {c} → {e}
with item b. To solve this problem, we chose to only add an item to a rule by
left (right) expansion if the item is greater than each item in the antecedent
(consequent) according to the total order �lex on items. By using this strategy
and the previous one, no rules is considered twice.

Figure 1 shows the pseudocode of HUSRM. The HUSRM algorithm takes as
parameters a sequence database SDB, and the minutil and minconf thresholds.
It outputs the set of high-utility sequential rules. HUSRM first scans the data-
base once to calculate the sequence estimated utility of each item and identify
those that are promising. Then, HUSRM removes unpromising items from the
database since they cannot be part of a high-utility sequential rule (Property 3).
Thereafter, HUSRM only considers promising items. It scans the database to
create the bit vectors of those items, and calculate seq(r) and SEU(r) for each
rule r of size 1 ∗ 1 appearing in the database. Then, for each promising rule r,
HUSRM scans the sequences containing r to build its utility-table ut(r). If r is
a high-utility sequential rule according to its utility-table and the bit-vector of
its antecedent, the rule is output. Then, Property 8 and 9 are checked using the
utility-table to determine if left and right expansions of r should be considered.
Exploring left and right expansions is done by calling the leftExpansion and
rightExpansion procedures.

The leftExpansion procedure (Algorithm 2) takes as input a sequential rule
r and the other parameters of HUSRM. It first scans sequences containing the
rule r to build the utility-table of each rule t that is a left-expansion of r. Note
that the utility-table of r is used to create the utility-table of t as explained in
Sect. 3.1. Then, for each such rule t, if t is a high-utility sequential rule according
to its utility-table and the bit-vector of its antecedent, the rule is output. Finally,
the procedure leftExpansion is called to explore left-expansions of t if Property 9
is verified. The rightExpansion procedure (Algorithm 3) is very similar to left-
Expansion and is thus not described in details here. The main difference is that
rightExpansion considers right expansions instead of left expansions and can call
both leftExpansion and rightExpansion to search for larger rules.

3.3 Additional Optimizations

Two additional optimizations are added to HUSRM to further increase its effi-
ciency. The first one reduces the size of utility-tables. It is based on the obser-
vations that in the leftExpansion procedure, (1) the rutil values of utility-tables
are never used and (2) that lutil and lrutil values are always summed. Thus, (1)
the rutil values can be dropped from utility-tables in leftExpansion and (2) the
sum of lutil and lrutil values can replace both values. We refer to the result-
ing utility-tables as Compact Utility-Tables (CUT). For example, the CUT of

Efficient Mining of High-Utility Sequential Rules 167

Algorithm 1. The HUSRM algorithm
input : SDB: a sequence database, minutil and minconf : the two

user-specified thresholds
output: the set of high-utility sequential rules

1 Scan SDB to calculate the sequence estimated utility of each item i ∈ I;
2 I∗ ← {i|i ∈ I ∧ SEU(i) ≥ minutil};
3 Remove from SDB each item j ∈ I such that j 	∈ I∗;
4 Scan SDB to calculate the bit vector of each item i ∈ I∗;
5 Scan SDB to calculate R, the set of rules of the form r : i → j(i, j ∈ I∗)

appearing in SDB and calculate SEU(r) and seq(r);
6 R∗ ← {r|r ∈ R ∧ SEU(r) ≥ minutil};
7 foreach rule r ∈ R∗ do
8 Calculate ut(r) by scanning seq(r);
9 if u(r) ≥ minutil according to ut(r) and confSDB(r) ≥ minconf then

output r;
10 if r respects Property 8 according to ut(r) then rightExpansion (r, SDB,

minutil, minconf);
11 if r respects Property 9 according to ut(r) then leftExpansion (r, SDB,

minutil, minconf);

12 end

{a, b} → {e} and {a, b, c} → {e} are respectively {(s1, 6, 21), (s2, 6, 32), (s3, 6, 9)}
and {(s1, 16, 11), (s2, 26, 12)}. CUT are much smaller than utility-tables since
each tuple contains only three elements instead of five. It is also much less expen-
sive to update CUT.

The second optimization reduces the time for scanning sequences in the lef-
tExpansion and rightExpansion procedures. It introduces two definitions. The
first occurrence of an itemset X in a sequence s = 〈I1, I2, ...In〉 is the itemset
Ik ∈ s such that X ⊆ ⋃k

i=1 Ii and there exists no g < k such that X ⊆ ⋃g
i=1 Ii.

The last occurrence of an itemset X in a sequence s = 〈I1, I2, ...In〉 is the itemset
Ik ∈ s such that X ⊆ ⋃n

i=k Ii and there exists no g > k such that X ⊆ ⋃n
i=g Ii.

An important observation is that a rule X → Y can only be expanded with items
appearing after the first occurrence of X for a right expansion, and occurring
before the last occurrence of Y for a left expansion. The optimization consists of
keeping track of the first and last occurrences of rules and to use this information
to avoid scanning sequences completely when searching for items to expand a
rule. This can be done very efficiently by first storing the first and last occur-
rences of rules of size 1 ∗ 1 and then only updating the first (last) occurrences
when performing a left (right) expansion.

4 Experimental Evaluation

We performed experiments to evaluate the performance of the proposed algo-
rithm. Experiments were performed on a computer with a fourth generation 64
bit core i7 processor running Windows 8.1 and 16 GB of RAM. All memory
measurements were done using the Java API.

168 S. Zida et al.

Algorithm 2. The leftExpansion procedure
input : r: a sequential rule X → Y , SDB, minutil and minconf

1 rules ← ∅;
2 foreach sequence s ∈ seq(r) according to ut(r) do
3 foreach rule t : X ∪ {i} → Y |i ∈ leftRight(t, s) ∪ onlyLeft(t, s) do

rules ← rules ∪ {t}; Update ut(t);

4 end
5 foreach rule r ∈ rules do
6 if u(r) ≥ minutil according to ut(r) and confSDB(r) ≥ minconf then

output r;
7 if r respects Property 9 according to ut(r) then leftExpansion (r, SDB,

minutil, minconf);

8 end

Algorithm 3. The rightExpansion procedure
input : r: a sequential rule X → Y , SDB, minutil and minconf

1 rules ← ∅;
2 foreach sequence s ∈ seq(r) according to ut(r) do
3 foreach rule t of the form X ∪ {i} → Y or X → Y ∪ {i}

|i ∈ leftRight(t, s) ∪ onlyLeft(t, s) ∪ onlyRight(t, s) do
rules ← rules ∪ {t}; Update ut(t);

4 end
5 foreach rule r ∈ rules do
6 if u(r) ≥ minutil according to ut(r) and confSDB(r) ≥ minconf then

output r;
7 if r respects Property 8 according to ut(r) then rightExpansion (r, SDB,

minutil, minconf);
8 if r respects Property 9 according to ut(r) then leftExpansion (r, SDB,

minutil, minconf);

9 end

Experiments were carried on four real-life datasets commonly used in the pat-
tern mining literature:BIBLE,FIFA,KOSARAK and SIGN. These datasets have
varied characteristics and represents the main types of data typically encountered
in real-life scenarios (dense, sparse, short and long sequences). The characteristics
of datasets are shown in Table 4), where the |SDB|, |I| and avgLength columns
respectively indicate the number of sequences, the number of distinct items and the
average sequence length. BIBLE is moderately dense and contains many medium
length sequences. FIFA is moderately dense and contains many long sequences.
KOSARAK is a sparse dataset that contains short sequences and a few very long
sequences. SIGN is a dense dataset having very long sequences. For all datasets,
external utilities of items are generated between 0 and 1,000 by using a log-normal
distribution and quantities of items are generated randomly between 1 and 5, sim-
ilarly to the settings of [2,8,12].

Efficient Mining of High-Utility Sequential Rules 169

Table 4. Dataset characteristics

Dataset |SDB| |I| avgLength Type of data

BIBLE 36,369 13,905 21.64 book

FIFA 573,060 13,749 45.32 click-stream

KOSARAK 638,811 39,998 11.64 click-stream

SIGN 730 267 93.00 sign language

Because HUSRM is the first algorithm for high-utility sequential rule mining,
we compared its performance with five versions of HUSRM where optimizations
had been deactivated (HUSRM1, HUSRM1,2, HUSRM1,2,3, HUSRM1,2,3,4 and
HUSRM1,2,3,4,5). The notation HUSRM1,2,...n refers to HUSRM without opti-
mizations O1, O2 ... On. Optimization 1 (O1) is to ignore unpromising items.
Optimization 2 (O2) is to ignore unpromising rules. Optimization 3 (O3) is to
use bit vectors to calculate confidence instead of lists of integers. Optimization
4 (O4) is to use compact utility-tables instead of utility-tables. Optimization 5
(O5) is to use Property 9 to prune the search space for left expansions instead of
Property 8. The source code of all algorithms and datasets can be downloaded
as part of the SPMF data mining library at http://goo.gl/qS7MbH [6].

We ran all the algorithms on each dataset while decreasing the minutil
threshold until algorithms became too long to execute, ran out of memory or a
clear winner was observed. For these experiments, we fixed the minconf thresh-
old to 0.70. However, note that results are similar for other values of the minconf
parameter since the confidence is not used to prune the search space by the com-
pared algorithms. For each dataset and algorithm, we recorded execution times
and maximum memory usage.

Execution times. Fig. 1 shows the execution times of each algorithm. Note
that results for HUSRM1,2,3,4,5 are not shown because it does not terminate
in less than 10, 000s for all datasets. HUSRM is respectively up to 1.8, 1.9, 2,
3.8 and 25 times faster than HUSRM1, HUSRM1,2, HUSRM1,2,3, HUSRM1,2,3,4

and HUSRM1,2,3,4,5. It can be concluded from these results that HUSRM is the
fastest on all datasets, that its optimizations greatly enhance its performance,
and that O5 is the most effective optimization to reduce execution time. In this
experiment, we have found up to 100 rules, which shows that mining high-utility
sequential rules is very expensive. Note that if we lower minutil, it is possible
to find more than 10,000 rules using HUSRM.

Memory usage. Table 4 shows the maximum memory usage of the algorithms
for the BIBLE, FIFA, KOSARAK and SIGN datasets. Results for HUSRM1,2,3,4,5

are not shown for the same reason as above. It can be observed that HUSRM
always consumes less memory and that this usage is up to about 50 % less
than that of HUSRM1,2,3,4 on most datasets. The most effective optimization to
reduce memory usage is O4 (using compact utility-tables), as shown in Table 5.

http://goo.gl/qS7MbH

170 S. Zida et al.

200

1000

1800

2600

3400

11000 10000 9500 9000 8500

tim
e

(s
)

minutil

KOSARAK

200

600

1000

1400

1800

40000 3 8000 36000 3 4000 32000

tim
e

(s
)

minutil

SIGN

HUSRM HUSRM1 HUSRM12 HUSRM123 HUSRM1234

100

400

700

1000

1300

1600

4 0 0 0 0 3 5 0 0 0 3 0 0 0 0 2 5 0 0 0 2 0 0 0 0

tim
e

(s
)

minutil

BIBLE

100

300

500

700

900

500000 470000 440000 420000 400000

tim
e

(s
)

minutil

FIFA

Fig. 1. Comparison of execution times (seconds)

Table 5. Comparison of maximum memory usage (megabytes)

Dataset HUSRM HUSRM1 HUSRM1,2 HUSRM1,2,3 HUSRM1,2,3,4

BIBLE 1,022 1,177 1,195 1,211 1,346

FIFA 1,060 1,089 1,091 1,169 1,293

KOSARAK 502 587 594 629 1,008

SIGN 1,053 1,052 1,053 1053 1,670

5 Conclusion

To address the lack of confidence measure in high-utility sequential pattern min-
ing, we defined the problem of high-utility sequential rule mining and studied
its properties. We proposed an efficient algorithm named HUSRM (High-Utility
Sequential Rule Miner) to mine these rules. HUSRM is a one-phase algorithm
that relies on a new data structure called compact utility-table and include
several novel optimizations to mine rules efficiently. An extensive experimen-
tal study with four datasets shows that HUSRM is very efficient and that its
optimizations respectively improve its execution time by up to 25 times and its
memory usage by up to 50 %.

Acknowledgement. This work is financed by a National Science and Engineering
Research Council (NSERC) of Canada research grant.

Efficient Mining of High-Utility Sequential Rules 171

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of International Conference on Very Large Databases,
pp. 487–499 (1994)

2. Ahmed, C.F., Tanbeer, S.K., Jeong, B.-S., Lee, Y.-K.: Efficient Tree Structures for
High-utility Pattern Mining in Incremental Databases. IEEE Trans. Knowl. Data
Eng. 21(12), 1708–1721 (2009)

3. Fournier-Viger, P., Wu, C.-W., Tseng, V.S., Cao, L., Nkambou, R.: Mining
Partially-Ordered Sequential Rules Common to Multiple Sequences. IEEE Trans.
Knowl. Data Eng. (preprint). doi:10.1109/TKDE.2015.2405509

4. Fournier-Viger, P., Gueniche, T., Zida, S., Tseng, V.S.: ERMiner: sequential rule
mining using equivalence classes. In: Blockeel, H., van Leeuwen, M., Vinciotti, V.
(eds.) IDA 2014. LNCS, vol. 8819, pp. 108–119. Springer, Heidelberg (2014)

5. Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V.S.: FHM: faster high-utility
itemset mining using estimated utility co-occurrence pruning. In: Andreasen, T.,
Christiansen, H., Cubero, J.-C., Raś, Z.W. (eds.) ISMIS 2014. LNCS, vol. 8502,
pp. 83–92. Springer, Heidelberg (2014)

6. Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C., Tseng, V.S.:
SPMF: a java open-source pattern mining library. J. Mach. Learn. Res. 15, 3389–
3393 (2014)

7. Lin, C.-W., Hong, T.-P., Lu, W.-H.: An effective tree structure for mining high
utility itemsets. Expert Syst. Appl. 38(6), 7419–7424 (2011)

8. Liu, M., Qu, J.: Mining High Utility Itemsets without Candidate Generation. In:
Proceedings of 22nd ACM International Conference on Information on Knowledge
and Management, pp. 55–64 (2012)

9. Liu, Y., Liao, W., Choudhary, A.K.: A two-phase algorithm for fast discovery of
high utility itemsets. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS
(LNAI), vol. 3518, pp. 689–695. Springer, Heidelberg (2005)

10. Lo, D., Khoo, S.-C., Wong, L.: Non-redundant sequential rules - theory and algo-
rithm. Inf. Syst. 34(4–5), 438–453 (2009)

11. Pham, T.T., Luo, J., Hong, T.P., Vo, B.: An efficient method for mining non-
redundant sequential rules using attributed prefix-trees. Eng. Appl. Artif. Intell.
32, 88–99 (2014)

12. Tseng, V.S., Shie, B.-E., Wu, C.-W., Yu, P.S.: Efficient algorithms for mining
high utility itemsets from transactional databases. IEEE Trans. Knowl. Data Eng.
25(8), 1772–1786 (2013)

13. Tseng, V., Wu, C., Fournier-Viger, P., Yu, P.: Efficient algorithms for mining the
concise and lossless representation of closed+ high utility itemsets. IEEE Trans.
Knowl. Data Eng. 27(3), 726–739 (2015)

14. Yin, J., Zheng, Z., Cao, L.: USpan: an efficient algorithm for mining high utility
sequential patterns. In: Proceedings of 18th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pp. 660–668 (2012)

15. Yin, J., Zheng, Z., Cao, L., Song, Y., Wei, W.: Efficiently mining top-k high utility
sequential patterns. In: IEEE 13th International Conference on Data Mining, pp.
1259–1264 (2013)

http://dx.doi.org/10.1109/TKDE.2015.2405509

	Efficient Mining of High-Utility Sequential Rules
	1 Introduction
	2 Problem Definition and Related Work
	3 The HUSRM Algorithm
	3.1 Definitions and Data Structures
	3.2 The Proposed Algorithm
	3.3 Additional Optimizations

	4 Experimental Evaluation
	5 Conclusion
	References

