
Cloud Computing: A Multi-tenant Case Study

Anindya Hossain and Farid Shirazi(&)

Ryerson University, Toronto, Canada
{anindya.hossain,f2shiraz}@ryerson.ca

Abstract. Cloud computing has enabled businesses to infinitely scale services
based on demand while reducing the total cost of ownership. Software as a
service (SaaS) vendors capitalized on the scalable nature of Infrastructure as a
Service (IaaS) to deploy applications without having the need for heavy upfront
capital investment. This study uses a real case study from a Canadian SaaS
vendor migrating from a single-tenant applications system to a single-tenant
applications (MTA) system. The results of this empirical study show a decrease
of a factor of 3 in setup times and a reduction in number of bugs reported and the
amount of time required to fix these bugs. Despite the fact that migration from a
single-tenant applications system to a multi-tenant system requires some
re-engineering efforts, but the benefits of MTA far outweigh these
re-engineering costs. Furthermore, migrating to MTA enables firms to focus on
their core competences. The empirical results of this study show that in the long
run, MTA can enable SaaS vendors to increase the quality of service, perfor-
mance, service level agreement adherence, re-focus on creating innovative
products, lower operational costs and earn higher profits.

Keywords: Cloud computing � Multi-tenant application � SaaS � IaaS � PaaS �
ANOVA

1 Introduction

Cloud computing has truly revolutionized the IT industry in the last decade. The
internet has evolved from a mere medium of communication to a medium of delivery
for software, middleware platforms and hardware infrastructure. Enterprises no longer
need to own their hardware to host applications, or manage and maintain software on
client computers. The recent advent of cloud computing has made computing into a
utility. Cloud computing has enabled businesses to infinitely scale services based on
demand while reducing the total cost of ownership. Software as a service (SaaS)
vendors capitalized on the scalable nature of Infrastructure as a Service (IaaS) to deploy
applications without having the need for heavy upfront capital investment.

Most SaaS applications such as email and CRM applications are very standard, i.e.
they all perform very similar tasks regardless of the organization using the system.
Some SaaS applications need to be somewhat customized for each client. Initially,
SaaS vendors started running independent application instances for each client
(single-tenant applications). However, when these SaaS vendors started to scale, they
ran into problems maintaining and setting up a separate instance for each client. They
started developing multi-tenant applications (MTA), which can handle multiple tenants

© Springer International Publishing Switzerland 2015
M. Kurosu (Ed.): Human-Computer Interaction, Part III, HCII 2015, LNCS 9171, pp. 178–189, 2015.
DOI: 10.1007/978-3-319-21006-3_18

within the same application. Earlier studies confirmed that an MTA would enable firms
to reduce their operating costs and reduce the number of hours spent doing mainte-
nance. However, there was no concrete industry data to prove these theories.

Online implementation and delivery of software, more commonly known as
Software as a Service (SaaS), has become more popular than ever before. Dubey and
Wagle (2007) claim that SaaS vendors are significantly less profitable than traditional
software vendors [1]. They speculate that this might be due to the lack of scale for
SaaS. For example, WebEx, one of the largest online meeting and collaboration SaaS,
has a profit margin that is almost double the SaaS industry average [1].One strategy to
increase scale is to adopt a multi-tenant architecture for SaaS. In addition, multi-tenant
systems are often set up in a single database to reduce the total cost of ownership [2].

Just like any other business, SaaS providers need to focus on their core compe-
tencies and continually innovate in order to be competitive in their industries. These
firms have a finite set of resources and these resources need to be properly managed to
maximize dynamic capabilities. In a multi-tenant environment, the software service
provider runs a single instance of the application that is configured for each client
(tenant). It typically runs on a single database and shares hardware resources. The goal
of this research will be to demonstrate that multi-tenant setups can enable firms to focus
more on their core competencies and not spend most of their resources on imple-
mentations. By focusing on their core competencies, SaaS vendors can continue to
innovate and offer better products that are able to return more profit. The aim of this
empirical study was to analyze the extent to which multi-tenant systems can be
effective in delivering software services on-demand to various clients. To this end, we
investigated two issues: a) does the setup of the multi-tenant system require less time to
implement than the single-tenant system and b) is a multi-tenant setup more robust and
does it require less maintenance time?

GrantStream Inc. a SaaS vendor in Canada made a strategic decision last year to
move away from custom single-tenant applications towards a multi-tenant application
(MTA) with a single instance of the application running on a shared database and
hardware setup. Data was collected from 9 setups in legacy single-tenant applications,
9 new setups in MTA and 9 migration setups in MTA.

This case study will enable us to use real industry data to validate our research
questions. The benefits and challenges of migrating to an MTA have been discussed by
many researchers. However, none explored the tangible or monetary benefits of this
migration. Momm and Krebbs were the first to suggest a simple cost model to evaluate
MTA migration for a SaaS vendor [4]. These research findings needed to be validated
using real-world data, and this case-study will enable us to validate claims made by
other researchers.

2 Cloud Computing Multi-tenant Architecture

An evolution in Internet technology, cloud computing is an advancement providing
users with the means to access a wide range of computing power, software and plat-
form as a service, as well infrastructure anytime, anywhere [5]. Cloud computing
enables on-demand network access to a shared pool of configurable computing

Cloud Computing: A Multi-tenant Case Study 179

resources, including servers, storage applications and services. Cloud computing ser-
vices encompass the following three main layers: the hardware infrastructure (IaaS),
middleware services (PaaS) and application services (SaaS). Cloud computing capa-
bilities have enabled businesses to offer services that seem to be infinitely scalable and
elastic. Subscribers of cloud services can keep their upfront costs low by adjusting their
level of service based on demand. It allows companies to start small and increase
incrementally with demand. Cloud computing has made IT resources into a utility that
is enabling businesses to enter the markets without the need for heavy initial capital
investment [6].

SaaS is a web-based software application associated with business software
applications deployed and operated as a hosted service [7]. These applications typically
run in the browser of a client (tenant) and can be accessed from anywhere. SaaS
applications can range from a simple web mail application to a more complex CRM
application [8]. They explain that SaaS vendors started allocating multiple clients on
the same application to increase efficiency and reduce Total Cost of Ownership (TCO).
They define multi-tenancy as: “an approach to share an application instance between
multiple tenants by every tenant a dedicated ‘share’ of the instance, which is isolated
from other shares with regard to performance and data privacy” [10:2]. SaaS providers
are usually required to adhere to certain standards set out in their service level
agreement (SLA). To be successful, providers need to ensure that the services are
scalable on-demand, comply with SLA terms, enable customers to achieve low TCO
and have low incremental costs [4]. They mention that for current SaaS providers
enabling multi-tenancy is the next big evolution step; it can help them achieve a lower
TCO by reducing setup and maintenance costs [4]. Bezemer and Zaidman write that
multi-tenancy architecture enables service providers to reach economies of scale by
sharing the same instance of the application and database. The application can be
configured for each tenant, and it may appear as a custom solution to the client. In
addition, multi-tenancy can enable SaaS providers to increase hardware utilization and
reduce costs [9].

Multi-tenant setups can have various configurations. Pervez, Lee and Lee catego-
rize SaaS into four maturity levels. The first level is “custom/ad hoc”, where the SaaS
application is fully customized or built for a specific client [10]. At the second level,
“Configurable”, the application is configured for a specific client, and an independent
instance of the application is used for each tenant. At the third level, “Configurable &
multi-tenant efficient”, a single instance of the application is used by multiple clients
and it is somewhat configured for each tenant. At the fourth level, “Scalable, Con-
figurable, multi-tenant-efficient”, a single instance of the application is used as in the
third level, but the services are fully configurable to handle a specific business work-
flow. In this last level, services are also fully scalable and the focus is to meet or exceed
all requirements mentioned in the SLA [10].

180 A. Hossain and F. Shirazi

3 The Key Characteristics of a Multi-tenant Platform

3.1 Sharing Hardware Resources

Sharing hardware resources among multiple tenants reduces costs for the SaaS pro-
vider. Bezemer and Zaidman mention that even though server efficiency can be
improved in single-tenant setups through virtualization, it imposes however, a high
memory requirement for each virtual setup [11].

They explain about the different types of hardware, software combinations for a
multi-tenant setup:

1. Single instance of application shared among tenants each with a separate database
2. Single instance of application with shared database, but separate Tables
3. Single instance of application with shared database and shared tables (pure

multi-tenancy)

Requires High Degree of Configurability. Unlike single-tenant SaaS, multi-tenant
setups cannot be completely customized since they are shared among different tenants.
Therefore, it is absolutely necessary for multi-tenant software to be highly configurable.
It needs to accommodate each client’s settings, workflows among other [9]. They explain
that in a typical single-tenant setup, updates are usually made by creating branches in the
development tree, but this does not work in multi-tenant setups and configuration needs
to be part of the product design itself. Other researchers propose building a workflow
engine on top of a multi-tenant application instance [12]. SaaS like Email and CRM has
the same workflow irrespective of which company is using the service. The service is
standard across the board. However, for most SaaS, the workflow changes from client to
client (tenant). As mentioned earlier, a key challenge in a multi-tenant environment was
to provide a configurable setup for each tenant. Pathirage et al. propose a configurable
“Workflow as a Service” (WFaaS) that will be added onto the existing multi-tenant SaaS
and will allow the application to be configured for each tenant [13].

Easier Deployments. In multi-tenant setups deployments and updates can be pushed
out easily as there is ideally only one instance of the program running. In some cases, a
provider might have multiple instance of the application running, but it will almost
always be lower than any single-tenant setups [11] Short setup times are a key
requirement for SaaS clients. They expect SaaS vendors to be able to set them up in days
instead of weeks or months [4]. SaaS vendors are required to agree to a Service Level
Agreement which stipulates the expected setup times. If the SaaS provider cannot meet
these tight deadlines, they might lose potential clients. Therefore, if multi-tenant setups
can enable SaaS vendors to reduce setup time, it can lead to a competitive advantage.

3.2 Challenges of a Multi-tenant Platform

Multi-tenant setups face some challenges that are more complex than similar challenges
faced in single-tenant setups. Multi-tenant setups share hardware infrastructures, dat-
abases, middleware, and the application itself. When issues arise, they cannot be

Cloud Computing: A Multi-tenant Case Study 181

contained within a certain client; they affect all clients. Bezemer and Zaidman write that
the main concerns in multi-tenant setups are performance, scalability, security,
downtime and maintenance. Before making the migration from a single-tenant setup to
a multi-tenant setup, SaaS providers need to fully understand these complexities [11].

3.3 Cost of Migration from Single-tenant to Multi-tenant

The cost of migrating from a single-tenant to a multi-tenant setup can vary depending
on the complexity of the software and its underlying architecture. Momm and Krebs
developed a cost model that includes two major components: Initial reengineering
costs and Continuous operating costs. They explain that any savings in operating costs
will amortize the initial reengineering costs over a certain period of time, the break
even period. Continuous operating costs can be calculated by evaluating fixed costs of
infrastructure, middleware, maintenance, etc. They argue that introducing an additional
shared resource or component in the stack saves Operating costs of (n-1) times the base
costs for the shared resource [4].

Momm and Krebbs propose a simple cost model to evaluate migration to a
multi-tenant architecture [4].

Months to break-even = Initial re-engineering costs / Savings in operating costs.

4 Research Approach and Theoretical Framework

Most research in this field of using single-tenant vs. multi-tenant SaaS setups is still
very theoretical. There is a body of research that suggests a multi-tenant setup might be
better for a large number of clients, but it does come with its own set of challenges [12].
However, none of these studies have looked at the existing SaaS industry to see how
they have handled these challenges. Migrating from a single-tenant to multi-tenant
setup will always require some re-engineering work as mentioned earlier, but the
benefits of migration can outweigh the costs.

This research will enable SaaS vendors to decide which type of architecture better
suits their strategies. Earlier studies have suggested that multi-tenant setups enable
SaaS vendors to quickly set up and maintain new tenants.

GrantStream Inc. is a Canadian SaaS vendor specialized in grant management
software. The company was founded in 2001 and is one of the earliest providers of
SaaS in the grant management software industry. The company focuses mainly on
providing services to small and medium size enterprises (SMEs). Tehrani and Shirazi
argue that despite the fact that adopting new technologies helps SMEs gain a com-
petitive advantage, it usually involves high costs. Cloud computing, as a new com-
puting paradigm, offers many advantages to companies, especially smaller ones.
Flexibility, scalability, and reduced cost are among many advantages that cloud
computing offers to SMEs [14].

Before the migration to the multi-tenant setup, GrantStream was one of the few
providers who provided custom SaaS applications in the grant management industry.
The company felt that their ability to customize their application would give them

182 A. Hossain and F. Shirazi

competitive sustainability. However, the management discovered that as they spent
more and more time on client setups, their core product did not receive the updates and
innovations it required to differentiate it from the competition. They discovered that
their product was falling behind, and to remain competitive they would need to redirect
their resources towards product development rather than tenant setups.

Looking at the impact of this change in strategy within this organization will help
us confirm the different theories that have been presented by earlier papers. Data from
this case study might not be representative of the population, but can confirm some of
the theories presented by other researchers. We will do a quantitative data analysis on
tenant setup times for:

1. Single-tenant setup
2. Migrate legacy client to multi-tenant
3. New setup in multi-tenant platform

The number of hours spent are recorded by the firm and are presented during the
post-project review. In addition, we will also explore the number of reported bugs in
the last 12 months for that specific tenant and how many hours were spent fixing these
bugs. The data analysis will help us understand how the migration from single-tenant to
multi-tenant architecture affected the setup times and bug resolution time. As men-
tioned earlier, these are key factors in SaaS vendors’ SLA terms.

4.1 Single-tenant Setup at GrantStream

As shown in Fig. 1, GrantStream’s legacy setup (single-tenant) used a shared database
and tables, and ran on a shared hardware setup, as well. By sharing resources,
GrantStream could keep its costs fairly low since the company was founded in the early
2000 s. However, having multiple instances of the application running for each tenant
made maintenance very hard. In addition, since setting up a new tenant included a
custom setup, it was very time-consuming and cumbersome.

4.2 Multi-tenant Setup at GrantStream

GrantStream’s multi-tenant architecture uses a single instance of the application, with
an underlying shared database and tables, which runs on a shared infrastructure
(see Fig. 2). GrantStream uses an IaaS service provider data center to host its SaaS
system. By subscribing to this provider GrantStream can minimize costs and increase
scalability without adding to operating costs. GrantStream’s application needed to be
re-engineered to enable it to handle multiple tenant configurations. GrantStream Inc.’s
multi-tenant application has reached level 3 of the SaaS maturity model as mentioned
earlier [10].

Cloud Computing: A Multi-tenant Case Study 183

4.3 The Research Methodology

Data was collected for 27 client setups during the post-project reviews, and through the
logged service tickets. As shown in Table 1 below, we collected number of hours to set
up a tenant from post-project reviews (variable HourToSetup). We also looked at
logged tickets in the last 12 months for each tenant (variable BugTickets) and the
amount of time required to fix each bug (variable HoursFixBug).

Of these 27 setups, 9 were during the single-tenant phase (legacy), 9 were new
setups using the multi-tenant application, and 9 were client migrations from the
single-tenant to multi-tenant platform (as shown in the column, TypeOfSetup in
Table 1). Setup times and hours spent on bug fixes are recorded by GrantStream during
a new client implementation project. They shared the data with us for this research, but
to protect the confidentiality of the clients, the names of the company’s clients were not
disclosed. This does not affect the results of the study.

Fig. 1. Single-tenant setup at GrantStream Inc

Fig. 2. Multi-tenant setup at GrantStream Inc

184 A. Hossain and F. Shirazi

5 Results

We completed a statistical data analysis with the data provided by GrantStream Inc. As
presented earlier, researchers like [4, 11] wrote about the many benefits of migrating
from the single-tenant architecture to a multi-tenant structure. However, these findings
were never confirmed using empirical data. This research will try to answer two
hypotheses previously mentioned: Multi-tenant clients need less time to setup and
Multi-tenant setups require less time to maintain. To test these hypotheses, we collected
data from 27 setups. Data was collected from 9 setups when the company was using a
single-tenant setup. After the migration, we collected data from 9 new setups in a
multi-tenant environment and 9 migration setups in the new platform.

Table 1. Data collected from GrantStream Inc.

Client name TypeOfSetup HourToSetup BugTickets HoursFixBug

BPE 1 98.58 0 0
CAN 1 79.38 1 1.5
GSC 1 117 4 2.36
SHL 1 102.7 2 1.76
MAL 1 27.65 1 0
SHU 1 77.38 0 0
STA 1 67.92 2 0
TAL 1 59 2 0.42
SLF 1 51.08 5 3.61
SH 2 57 2 1.42
AFF 2 41.72 4 0.8
ALL 2 211 4 6.5
AME 2 269 4 3.9
CPC 2 18 3 5.75
GE 2 37 1 0.33
LDC 2 63.57 4 1.2
PMV 2 128.68 0 0
SHW 2 125.77 2 3.16
MSC 3 240.6 12 20.8
BNC 3 467.45 2 2.25
PHR 3 347.83 1 1.6
UFA 3 110 0 0
IOXM 3 113 3 0.7
IOXMR 3 178 3 1.9
ENB 3 268 2 4.5
VLE 3 195 4 3.6
HDE 3 164.65 5 9.5

Type of setup: 1 = Migration to multi-tenant, 2 = New setup in multi-tenant, 3 = New setup in
single-tenant

Cloud Computing: A Multi-tenant Case Study 185

Hypothesis 1: Multi-tenant Setups Require Less Time to Implement Than Single
Tenant. GrantStream Inc. spent on an average almost 232 h implementing a new
tenant in the single-tenant architecture of their application. After they migrated to a
multi-tenant architecture, setup times dropped significantly. For new setups, they
started spending close to 106 h, and for migrating old clients they spent around 76 h.
However, both new setups in the legacy and multi-tenant environments have high
standard deviations of 116 and 86, respectively. Compared to new setups, migration
setups have a lower standard deviation of 28. New setups typically always have
unknown customizations and idiosyncrasies which can cause the setup times to fluc-
tuate more. For migration setups, the client and their setup are already known to the
company and setup times are more consistent. As shown in Table 3 below, a one-way
ANOVA was performed on the dataset with the TypeOfSetup as the independent
variable. We have discovered that the HourToSetup has a high F of 8.5. HourToSetup
has a high variance between groups and low variance within the group, which means
that the HourToSetup is highly correlated with the independent variable, TypeOfSetup.
Therefore, we can conclude that by migrating from a single-tenant to a multi-tenant
architecture did reduce the number of hours required to setup a client.

As indicated in Tables 2 and 3 below, the cloud clients who migrated to a
multi-tenant system experience the highest possible system performance and efficiency
as measured by the number of hours spent on bugs to be fixed annually. In fact, this
performance, as shown in the table, is more than 4 times higher than that for a
single-tenant setup. Another important finding is that setting up a new multi-tenant
system is more than 1.9 times more efficient than a single-tenant structure. The findings
indicate that the cloud multi-tenant system is more efficient than the traditional
single-tenant setup formats. When GrantStream Inc. was using a single-tenant appli-
cation, the system needed to be customized for each client. The company could not
capitalize on its learning from previous setups. After migrating to a multi-tenant
architecture, there was no need to create a new custom application for each tenant. New
setups were more efficient in handling different workflows of different clients. Imple-
mentation became standardized, and as a result, setup times dropped significantly.

Hypothesis 2: Multi-tenant Application Requires Less Maintenance Time. As
shown in Table 2, we collected data from 27 tenants during the last 12 months to
compare the number of bugs reported and the amount of time spent fixing these bugs.
As previously mentioned, out of the 27 tenants, 9 are in the legacy single-tenant
application, 9 were new tenants in the multi-tenant system and 9 were migrated from
the single-tenant to the multi-tenant system as depicted in Table 3. Table 3 indicates
also that tenants migrated to multi-tenant system had the lowest number of bugs
reported with an average of 1.9 for the year. As for the two other groups, new setups in
the multi-tenant system had an average of 2.7 per year and clients in the legacy
platform averaged about 3.6 per year. However, for all three groups the variance ranged
from 1.5 to 3.7 (shown in Table 2), which means that the number of bugs reported
varied significantly from client to client and there was no significant difference between
the tenants in one group compared to another. In addition, ANOVA with SetupTypes
set as the independent variable indicated that the number of BugsReported had an F of
1.080 (see Table 3), which means that the number of bugs reported is not correlated

186 A. Hossain and F. Shirazi

with the type of architecture being used by the SaaS vendor. However, when we
analyzed the amount of time it took to fix these bugs, FixBugHours, the results were
significantly different. Only 1 to 2.5 h per client were spent in the group where the
multi-tenant setup was used. In the legacy group, the company was spending close to
5 h per tenant per year to fix bugs reported. FixBugHours had F of 2.085 when
analyzed with SetupType as the independent variable. This reduction in the number of
hours spent fixing bugs can be attributed to the standard setup of a multi-tenant
application instance. Bug fixes are rolled out universally and any fix is applied for all
clients simultaneously. Whereas in the past each application for a client needed to be
fixed individually, in multi-tenancy fixes are rolled out once and apply to all tenants.
Therefore, by migrating from single-tenant architecture to a multi-tenant one, the
company is saving almost 2.5 to 4 h per client per year. If a SaaS vendor has 100
clients, they would be saving almost 250 to 400 h from their operating expenses.

Table 2. Statistical Report

Table 3. Analysis of variance (ANOVA)

Cloud Computing: A Multi-tenant Case Study 187

5.1 Cost Model of Migrating to a MTA

As mentioned earlier, Momm and Krebbs proposed a simple cost model to evaluate
migration to a multi-tenant architecture [4].

Months to break-even = Initial re-engineering costs/Savings in operating costs
Using the data provided above we can estimate the number of months required for a

SaaS vendor to break even given these assumptions:

– Re-engineering efforts for the application cost the company $100,000
– The vendor has approximately 100 tenants
– The vendor completes 1 new tenant setup every month
– Internal development and setup cost the company $100/hour

Cost savings in doing one setup = 232 h – 76 h * $100 = $15,600
Cost savings from bug tickets = [(5 h * 100) – (3.25 h * 100 clients)]*

$100 = $17,500/year
Months to break even = $100,000/[($15,600) + ($17,500/12) = 5.86 months
As shown above, a SaaS vendor can migrate to a MTA and break even fairly

quickly. After the break-even period, the company will continue benefiting from costs
savings. Instead of allocating much of its resources developing and maintaining cus-
tomized applications, vendors can now redirect their resources towards their core
competencies and focus more on developing a technological lead that will enable them
to sustain a competitive advantage. As mentioned earlier, Wernerfelt recommends that
firms engage their employees in stimulating jobs that create more value for the firm’s
products [3]. Therefore, by migrating to a multi-tenant application, SaaS vendors are
not only saving on operating costs, they also have the opportunity to free up resources
that can be focused on creating more innovative products and helping the firm earn
higher returns.

6 Limitations and Conclusions

The software industry is constantly changing. Software vendors might find a better way
to deliver their SaaS that can handle the simplicity of implementing a multi-tenant
setup while maintaining the customization of single-tenant setup. The goal of this study
was to investigate claims made in previous research through empirical data. This does
not mean that the findings will be universal.

The data collected in this research might not be representative of the population.
There have been other studies that made certain claims about multi-tenant setups, but
they were never proven with empirical data. This research has tried to investigate some
of those claims through data collected from a real organization. This organization has
been running a single-tenant application for almost 10 years, but recently changed
strategies and developed a multi-tenant application. The findings of this research might
not apply to all SaaS providers. As with all technological innovations, the software
industry is always changing.

In conclusion, cloud computing has truly revolutionized the IT industry. The
software industry dreamed of commoditizing computing for a long time, but it did not

188 A. Hossain and F. Shirazi

become a reality until the last decade. The internet has enabled firms to deliver soft-
ware, middleware platforms and hardware infrastructure. Enterprises no longer need to
own their hardware to host applications, or manage and maintain software on client
computers. Cloud computing has enabled businesses to infinitely scale services based
on demand while reducing the total cost of ownership. SaaS vendors capitalized on the
scalable nature of IaaS to deploy applications without having the need for heavy
upfront capital investment.

References

1. Dubey, A., Wagle, D.: Delivering software as a service. The McKinsey Quarterly 6, 1–12
(2007)

2. Aulbach, S., Grust, T., Jacobs, D., Kemper, A., Rittinger, J.: Multi-tenant databases for
software as a service: schema-mapping techniques. In: Proceedings of the 2008
ACM SIGMOD International Conference on Management of Data, pp. 1195–1206.
ACM, June, 2008

3. Wernerfelt, B.: A resource-based view of the firm. Strateg. Manag. J. 5(2), 171–180 (1984)
4. Momm, C., Krebs, R.: A qualitative discussion of different approaches for implementing

multi-tenant SaaS offerings. In: Software Engineering (Workshops), vol. 11 (2011)
5. Pallis, G.: Cloud computing – the new frontier of internet computing. IEEE Internet Comput.

14(5), 70–73 (2010)
6. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Zaharia, M.:

A view of cloud computing. Commun. ACM 53(4), 50–58 (2010)
7. Kwok, T., Thao, N., Linh, L.: A Software as a service with multi-tenancy support for

an electronic contract management application. IEEE Int. Conf. Serv. Comput. SCC 2008,
179–186 (2008)

8. Krebs, R., Momm, C., Kounev, S.: Architectural concerns in multi-tenant SaaS applications.
In: CLOSER, pp. 426–431, April, 2012

9. Bezemer, C. P., Zaidman, A., Platzbeecker, B., Hurkmans, T., & t Hart, A. (2010,
September). Enabling multi-tenancy: An industrial experience report. InSoftware
Maintenance (ICSM), 2010 IEEE International Conference on (pp. 1–8). IEEE

10. Pervez, Z., Lee, S., Lee, Y.K.: Multi-tenant, secure, load disseminated SaaS architecture. In:
The 12th International Conference On Advanced Communication Technology (Icact), 2010,
vol. 1, pp. 214–219). IEEE February, 2010

11. Bezemer, C.P., Zaidman, A.: Multi-tenant SaaS applications: maintenance dream or
nightmare? In: Proceedings of the Joint ERCIM Workshop on Software Evolution (EVOL)
and International Workshop on Principles of Software Evolution (IWPSE), pp. 88–92.
ACM, September 2010

12. Pathirage, M., Perera, S., Kumara, I., Weerasiri, D., Sanjiva Weerawarana, S.: A scalable
multi-tenant architecture for business process executions. Web Serv. Res. 9(2), 21–41 (2012)

13. Hay, B., Nance, K., & Bishop, M. (2011, January). Storm clouds rising: security challenges
for IaaS cloud computing. In System Sciences (HICSS), 2011 44th Hawaii International
Conference on (pp. 1–7). IEEE

14. Tehrani, S.R., Shirazi, F.: Factors influencing the adoption of cloud computing by small
and medium size enterprises (SMEs). In: Yamamoto, S. (ed.) HCI 2014, Part II. LNCS,
vol. 8522, pp. 631–642. Springer, Heidelberg (2014)

Cloud Computing: A Multi-tenant Case Study 189

	Cloud Computing: A Multi-tenant Case Study
	Abstract
	1 Introduction
	2 Cloud Computing Multi-tenant Architecture
	3 The Key Characteristics of a Multi-tenant Platform
	3.1 Sharing Hardware Resources
	3.2 Challenges of a Multi-tenant Platform
	3.3 Cost of Migration from Single-tenant to Multi-tenant

	4 Research Approach and Theoretical Framework
	4.1 Single-tenant Setup at GrantStream
	4.2 Multi-tenant Setup at GrantStream
	4.3 The Research Methodology

	5 Results
	5.1 Cost Model of Migrating to a MTA

	6 Limitations and Conclusions
	References

