Building Mobile Software Ecosystems -
A Practical Approach

Steffen Hessl(@), Susanne Braunl, Johannes Feldhaus2, Marco Hack2,
Felix Kieferz, Dominik Maginl, Matthias Naab', Dominik Richter',
Torsten Lenhart', and Marcus Trapp'

! Fraunhofer IESE, Kaiserslautern, Germany
{steffen. hess, susanne. braun, dominik. magin,
matthias.naab, dominik. richter, torsten. lenhart,
marcus. trapp}@iese. fraunhofer. de
2 John Deere ETIC and ISG, Kaiserslautern, Germany
{FeldhausJohannes, HackMarco,
KieferFelix}@JohnDeere. com

Abstract. Mobile apps are gaining great importance in the world of business
software. Developers’ intentions are to build apps that support a specific piece of
functionality with great user experience, business often needs to cover a large
spectrum of functionality. The results are Mobile software ecosystems (MSE),
which usually consist of a large number of apps supporting a certain type of
business and combine the strengths of multiple service providers. At a first
glance, developing mobile software might look simple. Doing it for business
and at an ecosystem scale makes it extremely challenging in practice. Initiating
an MSE means to come up with an attractive set of apps that provide adequate
openness so that other companies can contribute to them and increase the value
of the ecosystem for customers. This paper describes an approach to build MSEs
in their initial version. This approach is based on software engineering
state-of-the-art practices from requirements engineering, user experience
(UX) engineering, and software architecture. The paper elaborates the specifics
of MSEs and describes how they can be addressed in the approach. The
approach has been applied in a large-scale industrial case study in the agricul-
tural domain in a joint project of John Deere and Fraunhofer IESE. Within that
case study, lessons learned with regard to user experience and software archi-
tecture are derived and described in detail. Practitioners setting up an MSE can
avoid these pitfalls by taking our lessons learned into account.

Keywords: Mobile -+ App ecosystem -+ Practical experiences
Human-computer-interaction - Software architecture - User experience

1 Introduction

Mobile apps are gaining great importance in the world of business software. Devel-
opers’ intentions are to build apps that support a specific (usually small) piece of
functionality with great user experience, whereas business often needs to cover a large
spectrum of functionality. Thus, there is a trend to provide multiple apps, each of them

© Springer International Publishing Switzerland 2015
M. Kurosu (Ed.): Human-Computer Interaction, Part III, HCII 2015, LNCS 9171, pp. 165-177, 2015.
DOI: 10.1007/978-3-319-21006-3_17



166 S. Hess et al.

providing a decent amount of functionality. Therefore, companies have to develop and
maintain a large number of business apps which are interconnected and still easy to use,
and which share companies’ look & feel. Furthermore, companies are collaborating
more and more to provide added-value products and services for their users, which
neither of the involved companies could provide on their own. This is directly reflected
in their business software which requires the integration and alignment of their software
offerings and thus their mobile business apps. The results are mobile software eco-
systems (MSE), which usually consist of a large number of apps supporting a certain
type of business and combine the strengths of multiple service providers. “A software
ecosystem consists of the set of software solutions that enable, support and automate
the activities and transactions by the actors in the associated social or business eco-
system and the organizations that provide these solutions.” [1].

At a first glance, developing mobile software might look simple. Doing it for
business and at an ecosystem scale makes it extremely challenging in practice. Initiating
an MSE means to come up with an attractive set of apps that provide adequate openness
so that other companies can contribute to them and increase the value of the ecosystem
for customers. Providing a great and consistent user experience across apps, platforms,
devices, and form factors is really challenging. MSEs do not contain only mobile apps.
For business software, a tight integration with existing IT infrastructure and potentially
new backend software is necessary. Many challenges in MSEs are related to the han-
dling of data: Due to their many sensors and multiple connections (e.g., WLAN,
Bluetooth, NFC), mobile devices provide a lot of data sources and communication
possibilities. Providing always the best possible user experience requires an excellent
understanding of the domain and creative solutions. Sharing large amounts of data can
be challenging, as well as sharing data among apps on the same device (e.g. on iOS), but
sharing data between apps of different providers can be especially challenging as there
might be the need to restrict access on a very fine-grained level.

This is only a small excerpt of aspects that in the end determine the user experience
and the success of a mobile software ecosystem. In this paper, we want to describe our
approach (Sect. 2) and report our lessons learned (Sect. 3) from developing an MSE
that is used as an extended enterprise resource planning system running on iOS as well
as on Android as a native solution. This approach has evolved from many software
engineering best-practices and was refined with the learnings of multiple projects with
industrial customers.

2 Approach and Application in a Case Study

In this section, we describe our development approach for setting up an MSE. Prac-
titioners, which plan to initiate and develop an MSE, should work on the following four
questions:

What is my company’s maturity regarding mobile app development?
What is the mobility potential of my application domain?

What should our customers and users experience?

What is the best technical realization?



Building Mobile Software Ecosystems 167

Before starting to develop an MSE we recommend to assess your company’s
maturity regarding mobile app development. Therefore, in Sect. 2.1 we describe typical
maturity stages we experienced in a large number of projects with industrial partners in
various application domains. Our experience shows that it is hard to decide which
business processes or tasks will be supported by mobile apps and even harder which
ones will not be supported. To underline this assessment of the mobility potential of an
application domain we describe our mPOTENTIAL method in Sect. 2.2. As mentioned
before, a great user experience is crucial for mobile business apps. Due to the larger
number of apps within an MSE, each single app will not get the same attention as in a
single app development scenario. To assure the expected user experience we introduce
our mConcAppt method in Sect. 2.3. Each application domain and systems class has its
own architectural drivers that support architectural decisions. Section 2.4 therefore
introduces typical architectural drivers for MSEs.

We have applied and refined our approach in numerous projects with industrial
customers in several application domains. In this paper, we specifically focus on one
MSE which we developed in a large-scale case study of John Deere and Fraunho-
fer IESE. We illustrate aspects and specifics of the approach with examples from this
case study.

Key stakeholders in the agricultural domain are operators of machines and owners
or managers of farms. Additionally, there are contracting companies that offer services
like harvesting to farmers and own a large set of machines and employ further
operators.

Key elements in an agricultural ecosystem are operators that use machines to
conduct certain field or transport operations. Machines are often equipped with
so-called implements that are specific to certain operations, like a harvester implement.
Managers are planning and supervising the agricultural operations and are adequately
assigning machines and operators to certain operations on a specific field. Large farms
own hundreds of fields, machines and employ numerous operators.

While modern agricultural machines are already equipped with proprietary displays
and software, there is a trend towards using standard mobile devices for further sup-
porting applications. Similarly, existing desktop-based planning software is also
accompanied by further mobile solutions for managers. Thus, mobile devices like pads
and phones are gaining more and more importance.

Additionally, smart devices add further value: iBeacons can be used to track the
position of equipment, and wearables like watches and glasses allow further new
interactions for operators.

All mobile apps and devices need connection and integration in order to opti-
mally support the work on a farm. Thus, at least one backend system is necessary in
order to allow data transfer and orchestration. Further other sources of information
can complement an agricultural MSE: existing agricultural software systems might be
included and software services like one providing weather data or map data are
beneficial.



168 S. Hess et al.

2.1 Maturity Stages Towards Mobile Software Ecosystems

The typical development stages of an MSE are illustrated in Fig. 1. In stage 1 (first
app), companies usually start with a first app that is individually designed and
delivered in a good quality. The challenges are limited to the construction of the app
user interface and local data storage — usually a company look & feel is applied in a
hands-on way. Often, existing backend interfaces are simply reused for the app without
mobile specific adjustments to demonstrate the feasibility. With respect to stage 1 the
resulting quality is mainly based on applying a sound user centered design technique
that ensures that the individual requirements are met and a good user experience is
provided. Regarding the backend services, the most quality-critical aspect is whether
they can deliver the right data in the right time, otherwise UX is compromised.

In stage 2 (many single apps), companies deal with the existence of many single
apps that are not necessarily connected and usually delivered by different development
groups, business units, suppliers etc. This usually leads to potential inconsistencies
with regard to all software engineering disciplines. Technically, the treatment of
backend services is often uncoordinated and becomes harder with an increasing number
of single apps.

= s WRd
T - = i L e ‘
5350 N =] B oS
First App Many Single Apps ~ Connected App MSE
Community

Fig. 1. Mobile software ecosystem development stages

In stage 3 (connected app community), the rising ecosystem gains a lot of
maturity by aligning the apps with a uniform UX concept and introducing consequent
connections among apps, e.g. for navigation and data exchange. Technically, this step
often comes with a consolidation of backend services and their consequent alignment
with the needs of the mobile apps. Mostly, this means that the backend services for
mobile apps are different from those serving for other purposes, like data exchange with
other systems or web interfaces.

In stage 4 (app ecosystem), the state of a mobile software ecosystem is reached. It
goes beyond the app community by involving different organizations contributing to
the app ecosystem for added overall value. It is open towards the extension with further
apps and still has a focus on adequate and consistent UX, which might also mean an
intended differentiation along company boundaries of the contributors. Technically,
this stage requires a well-aligned communication across company boundaries and clear
concepts for data exchange, which strongly increases security demands.



Building Mobile Software Ecosystems 169

In the described large-scale case study, we developed an MSE that belongs to stage
4 of the ecosystem scale.

2.2 Mobility Potential Analysis

When developing an MSE the application domain provides very individual and unique
constraints. It is critical to clearly understand these specifics of the application domain
and the companies involved to evaluate the mobility potential.

The described case study takes place in the agricultural domain where we are
facing a scenario with a focus on online/offline capability, large amounts of precise data
due to precision farming techniques and very individual user requirements. Therefore,
we applied a mobility potential analysis (mMPOTENTIAL [2]) that consists of the
following stages:

1. The definition of goals and constraints defines the global goal that the MSE
should fulfill based on the overall company strategy. Another major outcome of this
stage is that the scope and possible cooperation partners are already drafted.

2. Identification of relevant business areas deals with the systematic analysis and the
definition of business areas that are promising from a business perspective. The
result is a prioritization that supports the evolution strategy of the MSE.

3. After that, the most promising business areas are analyzed with respect to the
involved roles and business processes. The goal is to identify possible mobile
touchpoints that could be supported by an app and provide both, business benefit
and user benefit.

4. The mobility potential analysis is concluded with an ideation phase that evolves
the intial app ideas a bit further so that app ideas are basically ready to decide if the
app should be part of the MSE and to determine what kind of app we are going to
build.

Those four steps described above may sound simple but as they deliver valuable
results and we expect MSEs to grow and get more and more complex, we assume that it
is necessary to perform them continuously in order to set a basic strategy and refine this
strategy throughout the development of single apps. We recommend to document the
results of each step at least roughly.

Especially in the agricultural domain, the integration of different legacy farm
management system backends, different kinds of machinery and mobile devices sets the
context. On the one hand, this means a lot of potential for innovation, on the other hand
it puts a lot of constraints on the MSE development.

In the agricultural domain, there are some specific aspects, for example, that
modern machines track data such as sensor information about soil, plant, and machine
conditions with a GPS positioning system and store the data every few seconds. This
huge amount of data can be distributed across several farm management systems and
needs to be accessed on mobile devices in the field.

The MSE has to integrate already existing mobile apps of different categories which
were developed before the MSE. While our MSE focusses mainly on enterprise
resource planning, other apps are closer to the agricultural machines as sources of data.



170 S. Hess et al.

Machine-related apps in agricultural business can be distinguished between docu-
mentation apps like the SeedStar Mobile app by John Deere [John Deere, 2014] and
semi-machine-controlling apps. These app types are closely related to the machine and
its data. Hence a CAN to Wi-Fi access point is needed to transmit the machine
information to the app. The communication between the electrical control units
(ECU) and a user interface is based on CAN bus technology. The communication flow
could be realized either directly between user interface devices and CAN bus or via the
backend, which of course has many architectural implications, in particular also on the
achievable UX.

Table 1. MSE product philosophy

Attribute A 1 2 3 4 5 Attribute B
Innovative Classic
Company Experience Native Experience
Playful Useful
Context Aware Static
Stand-Alone Integrated
Smart Sluggish
Easy of Learning Ease of Use
Explaining Intelligent

2.3 UX-Centered Mobile App Conception Method

When developing the overall UX strategy of an MSE, it is important to follow a holistic
strategy to ensure a high level of consistency across all the different platforms and
devices. Therefore, the starting point of UX foundation in our case study is the definition
of a so called product philosophy (see Table 1). This product philosophy supports the
achievement of a consistent experience as it is used continuously throughout the app
development process with different team and by different stakeholders. The product
philosophy of the case study shows that there is a high emphasis on innovation and
providing a very unique user experience. The product philosophy is mainly used as a
communication tool to substantiate decision making during the development of an MSE.

For the UX conception of single apps within the MSE we followed the mConcAppt
Approach [3]. This user centered approach (see Fig. 2) allows a lightweight conception
of the app performing exactly the steps that are necessary to develop apps of the MSE
and to gain information to coordinate with the architectural specification. In addition to
performing the app conception, decision points and activities are taken into account,
which is shown in Table 2.



Building Mobile Software Ecosystems

Workshop on App
Requirements

End User Interaction Concept
validation Specification

Communication to
other stakeholders

Fig. 2. mConcAppt overview

Table 2. Decision points that influence the UX of an MSE

171

Decision Points:

Target devices;
Linkage to the overall ecosystem product philosophy
Native vs. web

Elaboration of usage of artificial intelligence to support a positive UX

Service based app scoping

Possible reuse of user interface elements

Distribution of functionality between backend and client
Innovation and creativity

Variable vs. static user requirements

User requirements with regard to data usage

Adoption of already existing apps

Usage of ecosystem crowd functionalities

Innovation degree

Usage contexts within the MSE

Consistency

2.4 Architectural Drivers

When designing the architecture of an MSE, we often identify similar architectural
drivers which can be addressed in various ways by taking different architectural
decisions. The best suitable decision very often depends on the characteristics and
context of the respective system. At Fraunhofer IESE, we use the Architecture-centric
Engineering Solutions (ACES) [5] approach to identify the architectural drivers from
all relevant stakeholders and to derive appropriate decisions and views from them. This
approach is in general independent from the type of system under design. However, the
specific knowledge about MSEs is in the comprehension of the architecture-specifics of
this system category. Thus, we outline typical drivers and decisions we regularly

observe in MSEs below.



172 S. Hess et al.

Offline Capability: One common and important decision we often encounter is
how to deal with limited or interrupted network connections. While it means definitely
a much better user experience to offer the complete functionality of an app in offline
mode, it has to be considered that adding this feature significantly increases complexity
of synchronizing data between the different components of the app ecosystem. In the
end this often leads to the tradeoff of reduced maintainability and extendibility.
A compromise can be to implement offline support only for specific apps or particular
features of the ecosystem, but finally it depends on the importance of the offline
capability driver which approach should be taken.

Distribution of Functionality: Closely related to this is also the question where to
locate specific functions respectively their implementation in the system. Here again we
have a tradeoff between the limited resources on a mobile device that have to be
handled carefully and the non-disruptive user experience in offline mode. For example,
computing-intensive processes that need significant data from different resources
should clearly reside on the backend, tailored expert systems can be integrated directly
into the apps.

Selection of Synchronization Technologies: A crucial part of an MSE is also a
reliable, performant and easy-to-use synchronization mechanism that takes care of the
distribution of data between backend, apps and other involved components. Software
architects and developers typically have to decide if they want to use a third party
database replication technology or if they want to implement their own solution for this.
While the latter gives the opportunity to perfectly tailor the mechanism to specific needs,
such atask is very complex and costly in terms. On the other hand, even if using existing
solutions results in lower effort at first, it might turn out later that they cannot fulfill the
specific requirements in terms of performance and scalability, which in turn means
significant additional work for adapting the solution or replacing it by another one.

Design of Data Models: Another important decision to take is how to align the
data models on the different components of the system (backend, iOS apps, Android
apps...). On the first glance it may seem obvious that all parts of the system should
work on the same data model. However, since they are based on different technology
stacks this is often very hard to achieve and also has negative impact on the tools and
libraries that can be used as well as the maintainability of a specific app. On the other
hand having separate platform-optimized data models on each component also has
negative impact on the overall maintainability of the system and might lead to issues
because of incompatibilities between the different data models.

Categorization of Data: One crucial question that typically comes up is if all data
should be treated in the same way or if it should be distinguished between several types
of data, especially regarding their change frequency. There is a clear trend that data gets
classified in some way, e.g. master data, that changes seldom, is handled differently
than data related to a concrete transaction. However, there are several approaches that
differ in the number of data classes and the handling of them.

Design of APIs: An additional question that needs consideration is how to organize
the APIs between the different components of the system. Backend and Apps can
communicate via web services based on REST or SOAP, whereby REST is clearly
state-of-the-art nowadays. However, independent of the technology, it is important to



Building Mobile Software Ecosystems 173

build the API in a way that it is open and extendable so that new Apps or connections
to other MSEs or third party components can be realized with minimal effort.

There are many more recurring aspects that come up when designing a MSE, but
because of limited space, we cannot describe them in detail here. Among these are
multiple version support, internationalization, push notification concepts and data
validation.

The conceptual architecture of our agricultural MSE case study consists of various
elements. Farmers and their operators are the potential users of the apps. They use
native apps on tablet and phone devices (iOS and Android). The system requires the
availability of a central backend for data management and exchange. The backend
works in a multi-tenancy way to allow efficient operation for all customers with their
apps on the same backend machines. The backend is connected to external data
sources, like for example a weather data provider. More detailed architectural infor-
mation, with a particular focus on data, on this concrete case study can be found in
[Naab et al., 2015].

3 Experiences from Building Mobile Software Ecosystems

3.1 Lessons Learned on User Experience Foundation

The following lessons learned originate from our user interface conception work during
the prototyping of the described MSE. The by far most challenging task was reaching
consistency with regard to UX across the different platforms and devices.

Using Product Philosophy as a Communication Tool. Using the product philosophy
approach was time-consuming and unusual at the beginning, as every involved
stakeholder needs to adopt this method. In the end, it was very beneficial to keep track
of such a baseline that supports decision making on the interface between architecture
and user experience. Many existing conflicts with regard to feature prioritization
realization could be solved based on the specified philosophy. Additionally, every
business stakeholder could identify himself with the philosophy as this communicates
the general MSE vision on a consumable format.

Template-IOriented User Interface Conception. The usage of initial app templates
for user interface conception provided a high consistency across apps of the different
platforms. Reuse of design elements between smartphone and tablet was also sup-
ported. In the start-up period of the MSE, a set of user interface and interaction
templates have been created and continuously maintained throughout the project. This
enabled also a high amount of reusable assets during development. Nevertheless being
able to provide a unique experience by having those — it was very challenging to
balance between following the templates and individual solutions that provide a better
UX within the single app. The following decision points accompanied us throughout
the project: deciding if a template needs to be adopted; deciding in an optimal solution
needs to be adopted based on an existing template; decide if an individual solution is
appropriate; adopt the individual solution to the consistency requirement.



174 S. Hess et al.

Artificial Intelligence Provides a High Potential for UX Improvement. By classi-
fying historical user data and the application of learning algorithms in the backend a
MSE can provide positive UX to the end user. In a prototype we managed to realize
intelligent auto completion mechanisms based on intensive data analysis. This resulted
in faster and more efficient task planning of the farmer and provided a great satisfaction
in the end.

Close Alignment Between UX and Architecture Provides Unexpected Benefits.
Performing joint workshops including UX experts and architects to create ideas on how
UX can be improved by the reasonable usage of the data that is provided by the system
provides essential benefits. This joint activity produced valuable features that would not
have been identified by only applying a user-centered design approach. In the case
study, we could foresee many scenarios in which we precautionary saved and analyzed
data and leveraged functionalities that would not have been possible with the initial
specification.

Maintenance and Integration of UX Assets. Especially with larger MSEs it gets
important to think early about maintenance, integration and communication of UX
assets. Changes with respect to the user interface are often expensive if they need to be
done in various app instances. Therefore we recommend to use asset libraries, widgets
and templates from the very beginning and ensure a sound traceability between them.
In our case study we benefit a lot from having mobile developers involved into the
conception phases to overcome those challenges. In addition we used if available the
Ul-builder within the IDE (in our case XCode) for early prototyping to show inter-
activity and reuse created prototypes during implementation. In general, for MSE, UX
design and development need to have a tighter integration than in single app
development.

Integration of Smart Devices. A sound integration of wearables (glasses, watches)
and iBeacons for reasonable use cases provided a huge impact on the UX of the MSE.
However, the challenge is to design the right functionality on the right device, and the
design space becomes even larger when different types of smart devices are accom-
panying the usual mobile devices. In this case, iBeacons could be used to ensure that
the right operator is driving the intended machinery.

Balance Business Goals and User Goals. Comparing to mobile development — MSE
have a rather long development timespan although single apps within the MSE are
realized quickly. We made good experiences with a continuous involvement of various
business stakeholders and continuous user feedback. This has been very promising
during the strategy phase where the scope of mobile support was set. Several inno-
vative use cases have been provided by users and internal stakeholders (e.g., marketing,
product management). Negotiating the given ideas and communicating them back and
forth is a key success factor of the MSE.



Building Mobile Software Ecosystems 175

3.2 Lessons Learned on Technical Foundation

The following lessons learned originate from our design and implementation work in
the prototyping of the described app ecosystem. The by far most challenging task was
the design and implementation of data synchronization in order to support offline mode
for the apps of our ecosystem. Thus, our lessons learned mainly origin from this area.
Further lessons learned with a broader focus can be found in [Naab et al., 2015].

There is No One-Size-Fits-All Solution for Data Synchronization. Even though
mobile networks are still massively expanded, there may never be absolute connectivity
for mobile systems. Concurrent modifications of data during offline mode inevitably
lead to anomalies like e.g. lost updates. However, the criticality and the handling of
those anomalies highly differ between different application domains and even between
different use cases, as each use case can have completely different consistency
requirements.

Although there’s a lot of database replication technology around, it is a very hard
task to pick the right one upfront during design phase, as they will always provide you
with a compromise between availability, scalability and consistency. You will have to
choose the one that serves your specific application domain and workloads best.

Designing Data Synchronization Requires Close Collaboration of Software
Architects, UX Engineers and Requirements Engineers. We experienced that
finding a technical solution alone is not enough. The technical solution has to support
the application domain and its most important use cases in an optimal way in order to
provide outstanding user experience. For example, a technical solution might be to use
revision numbers in order to detect conflicting updates performed during offline mode.
Clients would be notified about the conflict and would have to resolve the conflict
somehow later. Nevertheless, as long as there are no good UI concepts for the pre-
sentation and resolving of conflicts this solution might be technically feasible but
would result in bad usability.

Data Synchronization is Costly to Develop. From our experience designing and
implementing sound synchronization is one of the most challenging tasks that software
architects and developers can face. Even experienced engineers regularly fail to think
ahead of all the pitfalls and imponderables. Therefore, software architects, UX engi-
neers and requirements engineers should carefully outweigh the costs for it with the
gain in user experience that brings the support for offline operations.

Keep Clients Simple with Respect to Data Synchronization. Although we do have a
trend towards fat native apps, the latter should be kept simple with respect to data
synchronization. If large parts of the synchronization logic like handling of concur-
rency anomalies, detection and resolution of conflicts is to be implemented by the
clients itself, it will add an enormous amount of complexity to the app code. If multiple
platforms are to be supported one will have to implement and test all or at least parts of
it multiple times. Still in our experience server-side software is easier to implement,
debug, quality-assure, maintain and to roll-out.



176 S. Hess et al.

A Great Deal of Data Validation and Security Checks must be Implemented on
the Client. On the other hand, clients must implement a great deal of data validation
and security rule checking. If the app permits the user to write invalid data or update
data he has no permission for, the app will later on not be able to synchronize back the
changes made during offline mode. At the worst, the app becomes unusable due to one
faulty data item that is in the change set. Thus, client-side data validation and security
defects can have an enormously negative impact on the usability of the app. There are a
lot of open questions on how to make the overall system more robust and fault tolerant
with respect to this issue: Is it possible to discard only parts of the faulty change set?
Moreover, if so, how to determine this part of the change set? If data has to be
discarded, how to notify the user about this? This is not trivial, in particular as the user
might have done the update some time ago during offline mode and is already in a
completely different usage context then.

4 Conclusion

The given paper shows our initial approach to the development of an MSE with an
emphasis on the provided UX and architectural decisions. As setting up an MSE is a
very complex activity with many pitfalls, we provide our lessons learned from the
application of our approach in a large scale case study within the agricultural domain.

Lessons learned from UX show that many additional aspects need to be taken into
account besides the user centered conception of a single user interface. In our case study
especially the usage of a product philosophy throughout the development of various apps
for communication purpose derived as a best practice as well as the usage of an approach
for object-oriented user interface conception. This conceptual approach has reduced the
effort for conception and maintenance of apps within the MSE in a significant way.

Lessons learned on the technical foundation show that data synchronization has
been a key success factor in our case study. There are many approaches available on
how to tackle this challenge within MSEs and our lessons learned show that a col-
laboration among the stakeholders of the user interface and the software architecture
overcomes many obstacles. This may sound obvious, but it has also impacts on the
other lessons learned described above such as ‘there is no one fits all solution’ and ‘data
synchronization is costly to develop’ as we recommend to develop a sound synchro-
nization concept from the very beginning.

Acknowledgement. This work has been partially supported by the German Ministry of Edu-
cation and Research, grant number 011S12053.

References

1. Bosch, J.: From software product lines to software ecosystems. In: 13th International Software
Product Line Conference, SPLC 2009 (2009)



Building Mobile Software Ecosystems 177

. Dérr, J., Trapp, M., Hess, S.: Mobile Prozesse: eine Chance fiir die Wirtschaft. Comput-
erwoche (2014). http://www.computerwoche.de/a/mobile-prozesse-eine-chance-fuer-die-
wirtschaft,2555126

. Hess, S., Kiefer, F., Carbon, R., Maier, A.: mConcAppt — a method for the conception of
mobile business applications. In: Uhler, D., Mehta, K., Wong, J.L. (eds.) MobiCASE 2012.
LNICST, vol. 110, pp. 1-20. Springer, Heidelberg (2013)

. Deere, J.: Press Release (2014)

. Keuler, T., Knodel, J., Naab, M.: Fraunhofer ACES: Architecture-Centric Engineering
Solutions. Fraunhofer IESE, IESE-Report, 079.11/E (2011)

. Naab, M., Braun, S., Lenhart, T., Hess, S., Eitel, A., Magin, D., Carbon, R., Kiefer, F.: Why
data needs more attention in architecture design - experiences from prototyping a large-scale
mobile app ecosystem. In: International Working Conference on Software Architecture,
WICSA 2015 (2015)


http://www.computerwoche.de/a/mobile-prozesse-eine-chance-fuer-die-wirtschaft,2555126
http://www.computerwoche.de/a/mobile-prozesse-eine-chance-fuer-die-wirtschaft,2555126

	Building Mobile Software Ecosystems - A Practical Approach
	Abstract
	1 Introduction
	2 Approach and Application in a Case Study
	2.1 Maturity Stages Towards Mobile Software Ecosystems
	2.2 Mobility Potential Analysis
	2.3 UX-Centered Mobile App Conception Method
	2.4 Architectural Drivers

	3 Experiences from Building Mobile Software Ecosystems
	3.1 Lessons Learned on User Experience Foundation
	3.2 Lessons Learned on Technical Foundation

	4 Conclusion
	Acknowledgement
	References


