
Chapter 6
Stochastic Almost Output Synchronization
for Time-Varying Networks of Nonidentical
and Non-introspective Agents Under
External Stochastic Disturbances
and Disturbances with Known Frequencies

Meirong Zhang, Anton A. Stoorvogel and Ali Saberi

Abstract We consider stochastic almost output synchronization for time-varying
directed networks of nonidentical and non-introspective (i.e., agents have no access
to their own states or outputs) agents under external stochastic disturbances. The
network experiences switches at unknown moments in time without chattering. A
purely decentralized (i.e., the additional communication channel among agents is
dispensed) time-invariant protocol based on a low- and high-gain method is designed
for each agent to achieve stochastic almost output synchronization,while reducing the
impact of stochastic disturbances.Moreover, we extend the problem to the casewhere
stochastic disturbances can have nonzeromean or other disturbances are present with
known frequencies. Another purely decentralized protocol is designed to completely
reject the impact of disturbances with known frequencies on the synchronization
error.

6.1 Introduction

Almost disturbance decoupling has a long history. It was the main topic of the Ph.D.
thesis of Harry Trentelman. Anton Stoorvogel was, as a Ph.D. student of Harry, also
looking at almost disturbance decoupling in connection to H2 and H∞ control. Ali
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Saberi was in this period working on the same class of problems. This paper looks
at a version of almost disturbance decoupling in the context of multiagent systems.

In the last decade, the topic of synchronization in amultiagent system has received
considerable attention. Its potential applications can be seen in cooperative control
on autonomous vehicles, distributed sensor network, swarming and flocking, and
others. The objective of synchronization is to secure an asymptotic agreement on
a common state or output trajectory through decentralized control protocols (see
[1, 12, 18, 28]). Research has mainly focused on the state synchronization based on
full-state/partial-state coupling in a homogeneous network (i.e., agents have identical
dynamics), where the agent dynamics progress from single- and double-integrator
dynamics to more general dynamics (e.g., [7, 14, 15, 21, 24–26, 29]). The coun-
terpart of state synchronization is output synchronization, which is mostly done on
heterogeneous networks (i.e., agents are nonidentical). When the agents have access
to part of their own states it is frequently referred to as introspective and, otherwise,
non-introspective. Quite a few of the recent works on output synchronization have
assumed agents are introspective (e.g., [3, 6, 27, 30]) while few have considered
non-introspective agents. For non-introspective agents, the paper [5] addressed the
output synchronization for heterogeneous networks.

In [7] for homogeneous networks a controller structure was introduced which
included not only sharing the relative outputs over the network but also sharing the
relative states of the protocol over the network. This was also used in our earlier work
such as [5, 16, 17]. This type of additional communication is not always natural.
Some papers such as [21] (homogeneous network) and [6] (heterogeneous network
but introspective) already avoided this additional communication of controller states.

Almost synchronization is a notion that was brought up by Peymani and his
coworkers in [17] (introspective) and [16] (homogeneous, non-introspective), where
it deals with agents that are affected by external disturbances. The goal of their work
is to reduce the impact of disturbances on the synchronization error to an arbitrary
degree of accuracy (expressed in theH∞ norm). But they assume availability of an
additional communication channel to exchange information about internal controller
or observer states between neighboring agents. The earlier work on almost synchro-
nization for introspective, heterogeneous networks was extended in [31] to design a
dynamic protocol to avoid exchange of controller states.

The majority of the works assumes that the topology associated with the network
is fixed. Extensions to time-varying topologies are done in the framework of switch-
ing topologies. Synchronization with time-varying topologies is studied utilizing
concepts of dwell time and average dwell time (e.g., [11, 22, 23]). It is assumed that
time-varying topologies switch among a finite set of topologies. In [32], switching
laws are designed to achieve synchronization.

This paper also aims to solve the almost regulated output synchronization prob-
lem for heterogeneous networks of non-introspective agents under switching graphs.
However, instead of deterministic disturbances with finite power, we consider sto-
chastic disturbances with bounded variance. We name this problem as stochastic
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almost regulated output synchronization.Moreover,we extend this problemby allow-
ing nonzero mean stochastic disturbances and other disturbances with known fre-
quencies.

6.1.1 Notations and Definitions

Given a matrix A, A′ denotes its conjugate transpose and ‖A‖ is the induced
2-norm. For square matrices, λi (A) denotes its i’th eigenvalue, and it is said to be
Hurwitz stable if all eigenvalues are in the open left half complex plane. We denote
by blkdiag{Ai }, a block diagonal matrix with A1, . . . , AN as the diagonal elements,
and by col{xi } or [x1; . . . ; xN ], a column vector with x1, . . . , xN stacked together,
where the range of index i can be identified from the context. A ⊗ B depicts the Kro-
necker product between A and B. In denotes the n-dimensional identity matrix and
0n denotes the n × n zero matrix; sometimes we drop the subscript if the dimension
is clear from the context. Finally, theH∞ norm of a transfer function T is indicated
by ‖T ‖∞.

A weighted directed graph G is defined by a triple (V ,E ,A ) where V =
{1, . . . , N } is a node set, E is a set of pairs of nodes indicating connections among
nodes, and A = [ai j ] ∈ R

N×N is the weighting matrix, and ai j > 0 iff (i, j) ∈ E .
Each pair in E is called an edge. A path from node i1 to ik is a sequence of nodes
{i1, . . . , ik} such that (i j , i j+1) ∈ E for j = 1, . . . , k − 1. A directed tree with root
r is a subset of nodes of the graph G such that a path exists between r and every
other node in this subset. A directed spanning tree is a directed tree containing all
the nodes of the graph. For a weighted graph G , a matrix L = [�i j ] with

�i j =
{ ∑N

k=1 aik, i = j,
−ai j , i �= j,

is called the Laplacian matrix associated with the graph G . Since our graph G has
nonnegative weights, we know that L has all its eigenvalues in the closed right half
plane and at least one eigenvalue at zero associated with right eigenvector 1.

Definition 6.1 Let LN ⊂ R
N×N be the family of all possible Laplacian matrices

associated to a graph with N nodes. We denote by GL the graph associated with a
Laplacian matrix L ∈ LN . A time-varying graph G (t) with N nodes is such that

G (t) = Gσ(t)

where σ : R → LN is a piecewise constant, right-continuous function with minimal
dwell time τ (see [8]), i.e., σ(t) remains fixed for t ∈ [tk, tk+1), k ∈ Z and switches
at t = tk , k = 1, 2, . . .where tk+1− tk ≥ τ for k = 0, 1, . . .. For ease of presentation
we assume t0 = 0.
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Definition 6.2 Amatrix pair (A, C) is said to contain the matrix pair (S, R) if there
exists a matrix Π such that Π S = AΠ and CΠ = R.

Remark 6.3 Definition 6.2 implies that for any initial condition ω(0) of the system

ω̇ = Sω, yr = Rω,

there exists an initial condition x(0) of the system

ẋ = Ax, y = Cx,

such that y(t) = yr (t), for all t ≥ 0 (see [10]).

6.2 Stochastic Disturbances

In this section, we consider the problem of almost output synchronization for time-
varying networks (i.e., multiagent systems) with nonidentical and non-introspective
agents under stochastic disturbances. The time-varying network is constrained in the
sense that we exclude chattering by imposing an, arbitrary small, minimal dwell time.
Our agents need not be the same and are non-introspective (i.e., they have no access
to any of their own states). We will achieve stochastic almost output synchronization
in such a way that outputs of agents are asymptotically regulated to a reference
trajectory generated by an autonomous system.

6.2.1 Multiagent System Description

Suppose a multiagent system/network consists of N nonidentical, non-introspective
agents Σ̃i with i ∈ {1, . . . , N } described by the stochastic differential equation:

Σ̃i :
{

dx̃i = Ãi x̃idt + B̃i ũidt + G̃idwi , x̃i (0) = x̃i0,

yi = C̃i x̃i ,
(6.1)

where x̃i ∈ R
ñi , ũi ∈ R

mi , and yi ∈ R
p are the state, input, and output of agent i ,

and w = col{wi } is a Wiener process (a Brownian motion) with mean 0 and rate Q0,
that is, Cov[w(t)] = t Q0 and the initial condition x̃i0 of (6.1) is a Gaussian random
vector which is independent of wi . Here Q0 is block diagonal such that wi and w j

are independent for any i �= j . Its solution x̃i is rigorously defined through Wiener
integrals and is a Gauss–Markov process. See, for instance, [13]. We denote by ρ̃i

the maximal order of the infinite zeros of (6.1) with input ũi and output yi .
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Remark 6.4 If we have an agent described by:

Σ̆i :
{ ˙̆xi = Ăi x̆i + B̆i ũi + Ği w̆i ,

yi = C̆i x̆i ,
(6.2)

with w̆i stochastic colored noise, then we assume that w̆i can be (approximately)
modeled by a linear model:

Σ̆wi :
{

d p̆i = Ăwi p̆idt + Ğwidwi ,

w̆i = C̆wi p̆i .
(6.3)

Combining (6.2) and (6.3) we get a model of the form (6.1).

The time-varying network provides each agent with a linear combination of its
own output relative to those of other neighboring agents, that is, agent i ∈ V , has
access to the quantity

ζi (t) =
N∑

j=1

ai j (t)(yi (t) − y j (t)), (6.4)

which is equivalent to

ζi (t) =
N∑

j=1

�i j (t)y j (t). (6.5)

We make the following assumption on the agent dynamics.

Assumption 6.5 For each agent i ∈ V , we have:

• ( Ãi , B̃i , C̃i ) is right-invertible and minimum-phase;
• ( Ãi , B̃i ) is stabilizable, and ( Ãi , C̃i ) is detectable;

Remark 6.6 Right invertibility of a triple ( Ãi , B̃i , C̃i ) means that, given a reference
output yr (t), there exist an initial condition x̃i (0) and an input ũi (t) such that yi (t) =
yr (t), for all t ≥ 0.

6.2.2 Problem Formulation

As described at the beginning of this section, the outputs of agents will be asymptot-
ically regulated to a given reference trajectory in the presence of external stochastic
disturbances. The reference trajectory is generated by an autonomous system

Σ0 :
{

ẋr = Sr xr , xr (0) = xr0,

yr = Rr xr ,
(6.6)
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where xr ∈ R
nr , yr ∈ R

p. Moreover, we assume that (Sr , Rr ) is observable and all
eigenvalues of Sr are in the closed right half complex plane.

Define ei := yi − yr as the regulated output synchronization error for agent i ∈ V
and e = col{ei } for the complete network. In order to achieve our goal, it is clear
that a nonempty subset π of agents must have knowledge of their output relative to
the reference trajectory yr generated by the reference system. Specially, each agent
has access to the quantity

ψi = ιi (yi − yr ), ιi =
{
1, i ∈ π,

0, i /∈ π,
(6.7)

where π is a subset of V .

Assumption 6.7 Every node of the network graph G is a member of a directed tree
with the root contained in π .

In the following, we will refer to the node set π as root set in view of Assumption
6.7 (A special case is when π consists of a single element corresponding to the root
of a directed spanning tree of G ).

Based on the Laplacian matrix L(t) of our time-varying network graph G (t), we
define the expanded Laplacian matrix as

L̄(t) = L(t) + blkdiag{ιi } = [�̄i j (t)].

Note that L̄(t) is clearly not a Laplacian matrix associated to some graph since it
does not have a zero row sum. From [5, Lemma 7], all eigenvalues of L̄(t) are in the
open right half complex plane for all t ∈ R.

It should be noted that, in practice, perfect information of the communication
topology is usually not available for controller design and only some rough charac-
terization of the network can be obtained. Next, we will define a set of time-varying
graphs based on some rough information of the graph. Before doing so, we first
define a set of fixed graphs, based on which the set of time-varying graphs will be
defined.

Definition 6.8 For given root setπ ,α, β, ϕ > 0 and positive integer N ,Gϕ,N
α,β,π is the

set of directed graphs G composed of N agents satisfying the following properties:

• The eigenvalues of the associated expanded Laplacian L̄ , denoted by λ1, . . . , λN ,
satisfy Re{λi } > β and |λi | < α.

• The condition number1 of the expanded Laplacian L̄ is less than ϕ.

1In this context, we mean by condition number the minimum of ‖U‖‖U−1‖ over all possible
matrices U whose columns are the (generalized) eigenvectors of the expanded Laplacian matrix L̄ .
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Remark 6.9 In order to achieve regulated output synchronization for all agents, the
first condition is obviously necessary.

Note that for undirected graphs the condition number of the Laplacian matrix is
always bounded. Moreover, if we have a finite set of possible directed graphs each
of which has a spanning tree then there always exists a set of the graph G

ϕ,N
α,β,π for

suitable α, β, ϕ > 0 and N containing these graphs. The only limitation is that we
cannot find one protocol for a sequence of graphs converging to a graph without
a spanning tree or whose Laplacian matrix either diverges or approaches some ill-
conditioned matrix.

Definition 6.10 Given a root set π , α, β, ϕ, τ > 0 and positive integer N , we define
the set of time-varying network graphs G̃ϕ,τ,N

α,β,π as the set of all time-varying graphs
G with minimal dwell time τ for which

G (t) = Gσ(t) ∈ G
ϕ,N
α,β,π

for all t ∈ R.

Remark 6.11 Note that a minimal dwell time is assumed to avoid chattering prob-
lems. However, it can be arbitrarily small.

We will define the stochastic almost regulated output synchronization problem
under switching graphs as follows.

Problem 6.12 Consider a multiagent system (6.1) and (6.4) under Assumption 6.5,
and reference system (6.6) and (6.7) under Assumption 6.7. For any given root set π ,
α, β, ϕ, τ > 0 and positive integer N defining a set of time-varying network graphs
G̃

ϕ,τ,N
α,β,π , the stochastic almost regulated output synchronization problem is to find, if

possible, for any γ > 0, a linear time-invariant dynamic protocol such that, for any
G ∈ G̃

ϕ,τ,N
α,β,π , for all initial conditions of agents and reference system, the stochastic

almost regulated output synchronization error satisfies

lim
t→∞Ee(t) = 0,

lim sup
t→∞

Var[e(t)] = lim sup
t→∞

Ee′(t)e(t) < γ trace Q0. (6.8)

Remark 6.13 Clearly, we can also define (6.8) in terms of the RMS, (see, e.g., [2]) as:

lim sup
T →∞

1

T
E

∫ T

0
e(t)′e(t) dt < γ trace Q0.

Remark 6.14 Note that because of the time-varying graph the complete system is
time variant and hence the variance of the error signal might not converge as time
tends to infinity. Hence we use in the above a lim sup instead of a regular limit.
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6.2.3 Distributed Protocol Design

The main result in this section is given in the following theorem.

Theorem 6.15 Consider a multiagent system (6.1) and (6.4), and reference system
(6.6) and (6.7). Let a root set π , α, β, ϕ, τ > 0 and positive integer N be given, and
hence a set of time-varying network graphs G̃ϕ,τ,N

α,β,π be defined.
Under Assumptions 6.5 and 6.7, the stochastic almost regulated output synchro-

nization problem is solvable, i.e., for any given γ > 0, there exists a family of dis-
tributed dynamic protocols, parametrized in terms of low- and high-gain parameters
δ, ε, of the form

⎧⎪⎪⎨
⎪⎪⎩

χ̇i = Ai (δ, ε)χi + Bi (δ, ε)

(
ζi

ψi

)

ũi = Ci (δ, ε)χi + Di (δ, ε)

(
ζi

ψi

) , i ∈ V (6.9)

where χi ∈ R
qi , such that for any time-varying graph G ∈ G̃

ϕ,τ,N
α,β,π , for all initial

conditions of agents, the stochastic almost regulated output synchronization error
satisfies (6.8).

Specifically, there exits a δ∗ ∈ (0, 1] such that for each δ ∈ (0, δ∗], there exists
an ε∗ ∈ (0, 1] such that for any ε ∈ (0, ε∗], the protocol (6.9) achieves stochastic
almost regulated output synchronization.

Remark 6.16 In the above, we would like to stress that the initial condition of the
reference system is deterministic while the initial conditions of the agents are sto-
chastic. Our protocol yields (6.8) independent of the initial condition of the reference
system and independent of the stochastic properties for the agents, i.e., we do not
need to impose bounds on the second-order moments.

In the next section, we will present a more general problem after which we will
present a joint proof of these two cases in Sect. 6.4.

6.3 Stochastic Disturbances and Disturbances with Known
Frequencies

In this section, the agent model (6.1) is modified as follows:

Σ̃i :
{

dx̃i = Ãi x̃idt + B̃i ũidt + G̃idwi + H̃1
i didt,

yi = C̃i x̃i + H̃2
i di ,

(6.10)
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where x̃i , ũi , yi , and wi are the same as those in (6.1), while di ∈ R
mdi is an exter-

nal disturbance with known frequencies, which can be generated by the following
exosystem:

xid = Sid xid , xid(0) = xid0
di = Rid xid ,

(6.11)

where xid ∈ R
ndi and the initial condition xid0 can be arbitrarily chosen.

In Remark 6.4 we considered colored noise. However, the model we used in that
remark to generate colored noise, clearly cannot incorporate bias terms. This is one
of the main motivations of the model (6.10) since the above disturbance term di can
generate bias terms provided Sid has zero eigenvalues. However, it clearly can also
handle other cases where we have disturbances with known frequency content.

Note that we have two exosystems (6.6) and (6.11) which generate the reference
signal yr and the disturbance di , respectively.We can unify the two in one exosystem:

xie = Si xie, xie(0) = xie0
di = Riexie,

yr = Rrexie,

(6.12)

where

Si =
(

Sid 0
0 Sr

)
, Rie = (

Rid 0
)
, Rre = (

0 Rr
)
. (6.13)

Note that

xie0 =
(

xid0
xr0

)

and therefore the second part of the initial condition has to be the same for each agent
while the first part might be different for each agent. Note that in case we have no
disturbances with known frequencies (as in the previous section) then we can still
use the model (6.12) but with

Si = Sr , Rie = 0, Rre = Rr (6.14)

while xie0 = xr0.
The time-varying topology G (t) has exactly the same structure as in Sect. 6.2, and

it also belongs to a set of time-varying graph G̃
ϕ,τ,N
α,β,π as defined in Definition 6.10.

The network defined by the time-varying topology also provides each agent with the
measurement ζi (t) given in (6.4).

6.3.1 Distributed Protocol Design

Here is the main result in this section:
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Theorem 6.17 Consider a multiagent system described by (6.10), (6.4), (6.7), and
reference system (6.12). Let a root set π , α, β, ϕ, τ > 0 and positive integer N be
given, and hence a set of time-varying network graphs G̃ϕ,τ,N

α,β,π be defined.
Under Assumptions 6.5 and 6.7, the stochastic almost regulated output synchro-

nization problem is solvable, i.e., there exists a family of distributed dynamic proto-
cols, parametrized in terms of low- and high-gain parameters δ, ε, of the form

⎧⎪⎪⎨
⎪⎪⎩

χ̇i = Ai (δ, ε)χi + Bi (δ, ε)

(
ζi

ψi

)

ũi = Ci (δ, ε)χi + Di (δ, ε)

(
ζi

ψi

) , i ∈ V (6.15)

where χi ∈ R
qi , such that for any time-varying graph G ∈ G̃

ϕ,τ,N
α,β,π , for all initial

conditions of agents, the stochastic almost regulated output synchronization error
satisfies (6.8).

Specifically, there exits a δ∗ ∈ (0, 1] such that for each δ ∈ (0, δ∗], there exists
an ε∗ ∈ (0, 1] such that for any ε ∈ (0, ε∗], the protocol (6.15) solves the stochastic
almost regulated output synchronization problem.

The proof will be presented in a constructive way in the following section.

6.4 Proof of Theorems 6.15 and 6.17

Note that Theorem 6.15 is basically a corollary of Theorem 6.17 if we replace (6.13)
by (6.14) and still use exosystem (6.12). In this section, wewill present a constructive
proof in three steps. As noted, we can concentrate on the proof of Theorem 6.17.

In Step 1, precompensators are designed for each agent to make the interconnec-
tion of an agent and its precompensator square, uniform rank (i.e., all the infinite
zeros are of the same order) and such that it can generate the reference signal for all
possible initial condition of the joint exosystem (6.12). In Step 2, a distributed linear
dynamic protocol is designed for each interconnection system obtained from Step 1.
Finally, in Step 3, we combine the precompensator from Step 1 and the protocol for
the interconnection system in Step 2, and get a protocol of the form (6.15) for each
agent in the network (6.10) (if disturbances with known frequencies are present) or
a protocol of the form (6.9) for each agent in the network (6.1) (if disturbances with
known frequencies are not present).

Step 1: In this step, we augment agent (6.10) with a precompensator in such
a way that the interconnection is square, minimum-phase uniform rank such that
it can generate the reference signal for all possible initial condition of the joint
exosystem (6.12).
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To be more specific, we need to find precompensators

{
żi = Aipzi + Bipui ,

ũi = Cipzi + Dipui ,
(6.16)

for each agent i = 1, . . . , N , such that agent (6.10) plus precompensator (6.16) can
be represented as:

{
dxi = Ai xidt + Bi uidt + Gidwi + H1

i didt,
yi = Ci xi + H2

i di ,
(6.17)

where xi ∈ R
ni , ui ∈ R

p, yi ∈ R
p are states, inputs, and outputs of the intercon-

nection of agent (6.10) and precompensator (6.16). Moreover,

• There exists Πi such that

AiΠi + H1
i Rie = Πi Si

CiΠi + H2
i Rie = Rre (6.18)

• (Ai , Bi , Ci ) is square and has uniform rank ρ ≥ 1.

The first condition implies that for any initial condition of (6.12) there exists an
initial condition for (6.17) such that for ui = 0, we have that Eyi = yr . We could,
equivalently, impose wi = 0 in which case, we should have yi = yr . In the special
case where we do not have disturbances with known frequencies (Theorem 6.15) we
have Rie = 0 and Si = Sr . In that case, the first condition reduces to the condition
that (Ci , Ai ) contains (Sr , Rr ).

For our construction of precompensator (6.16), we first note that the following
regulator equation

Ãi Π̃i + B̃i Γ̃i + H̃1
i Rie = Π̃i Si , C̃i Π̃i + H̃2

i Rie = Rre. (6.19)

has a unique solution Π̃i and Γ̃i since ( Ãi , B̃i , C̃i ) is right-invertible and minimum-
phase while Si has no stable eigenvalues (see [19]). Let Γoi , Soi ) be the observable
subsystem of (Γ̃i , Si ). Then we consider the following precompensator:

ṗi,1 = Soi pi,1 + Bi,1u1
i , ũi = Γoi pi,1 + Di,1u1

i (6.20)

where Bi,1 and Di,1 are chosen according to the technique presented in [9] to guar-
antee that the interconnection of (6.10) and (6.20) is minimum-phase and right-
invertible. It is not hard to verify that the interconnection of (6.10) and (6.20) is a
system of the form (6.17) for which there exists Πi satisfying (6.18). However, we
still need to guarantee that this interconnection is square and uniform rank.
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Let ρi be the maximal order of the infinite zeros for the interconnection of (6.20)
and (6.10). For i = 1, . . . , N and set ρ = max{ρi }. According to [20, Theorem 1],
a precompensator of the form

ṗi2 = Aip2 pi2 + Bip2u2
i ,

u1
i = Cip2 pi2 + Dip2u2

i ,
(6.21)

exists such that the interconnection of (6.20), (6.21), and (6.10) is square, minimum-
phase, and has uniform rank ρ. This interconnection of (6.20) and (6.21) is of the
form (6.16) while the interconnection of (6.20), (6.21), and (6.10) is of the form
(6.17) which has the required properties.

Without loss of generality, we assume that (Ai , Bi , Ci ) is already in the SCB
form, i.e., the system has a specific form where xi = [xia; xid ], with xia ∈ R

ni −pρ

representing the finite zero structure and xid ∈ R
pρ the infinite zero structure. We

obtain that (6.17) can be written as:

⎧⎨
⎩

dxia = Aia xiadt + Liad yidt + Giadwi + H1
iadidt,

dxid = Ad xiddt + Bd(ui + Eida xia + Eidd xid)dt + Giddwi + H1
iddidt,

yi = Cd xid + H2
i didt,

(6.22)
for i = 1, . . . , N , where Ad , Bd , and Cd have the special form

Ad =
(
0 Ip(ρ−1)
0 0

)
, Bd =

(
0
Ip

)
, Cd = (

Ip 0
)
. (6.23)

Furthermore, the eigenvalues of Aia are the invariant zeros of (Ai , Bi , Ci ), which
are all in the open left half complex plane.

Step 2: Each agent after applying the precompensator (6.16) is of the form (6.22).
For this system, we will design a purely decentralized controller based on a low- and
high-gain method. Let δ ∈ (0, 1] be the low-gain parameter and ε ∈ (0, 1] be the
high-gain parameter as in [4]. First, select K such that Ad − K Cd is Hurwitz stable.
Next, choose Fδ = −B ′

d Pd where P ′
d = Pd > 0 is uniquely determined by the

following algebraic Riccati equation:

Pd Ad + A′
d Pd − β Pd Bd B ′

d Pd + δ I = 0, (6.24)

where β > 0 is the lower bound on the real parts of all eigenvalues of expanded
Laplacian matrices L̄(t), for all t . Next, define

Sε = blkdiag{Ip, ε Ip, . . . , ε
ρ−1 Ip},

Kε = ε−1S−1
ε K and Fδε = ε−ρ Fδ Sε.
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Then, we design the dynamic controller for each agent i ∈ V :

˙̂xid = Ad x̂id + Kε(ζi + ψi − Cd x̂id),

ui = Fδε x̂id ,
(6.25)

where ψi is defined in (6.7).
The state x̂id is not an estimator for xid but actually an estimator for

N∑
j=1

�̄i j (t)xid(t). (6.26)

The following lemma then provides a constructive proof of Theorem 6.17. However,
by replacing (6.13) with (6.14) it also provides a constructive proof of Theorem 6.15.

Lemma 6.18 Consider the agents in SCB format (6.22) obtained after applying the
precompensators (6.16). For any given γ > 0, there exits a δ∗ ∈ (0, 1] such that, for
each δ ∈ (0, δ∗], there exists an ε∗ ∈ (0, 1] such that for any ε ∈ (0, ε∗], the protocol
(6.25) solves the stochastic almost regulated output synchronization problem for any
time-varying graph G ∈ G̃

ϕ,τ,N
α,β,π , for all initial conditions.

Proof Recall that xi = [xia; xid ] and that (6.17) is a shorthand notation for (6.22).
For each i ∈ V , let x̄i = xi − Πi xr , where Πi is defined by (6.18). Then

dx̄i = Ai xidt − Πi Si xrdt + Bi uidt + H1
i didt + Gidwi

= Ai x̄idt + Bi uidt + Gidwi

and
ei = yi − yr = Ci xi + H2

i Rie − Rrexr = Ci xi − CiΠi xr = Ci x̄i .

Since the dynamics of the x̄i systemwith output ei is governed by the same dynamics
as the dynamics of agent i , we can present x̄i in the same form as (6.22), with
x̄i = [x̄ia; x̄id ], where

dx̄ia = Aia x̄iadt + Liadeidt + Giadwi ,

dx̄id = Ad x̄iddt + Bd(ui + Eida x̄ia + Eidd x̄id)dt + Giddwi ,

ei = Cd x̄id .

Define ξia = x̄ia , ξid = Sε x̄id , and ξ̂id = Sε x̂id . Then

dξia = Aiaξiadt + Viadξiddt + Giadwi ,

εdξid = Adξiddt + Bd Fδξ̂iddt + V ε
idaξiadt + V ε

iddξiddt + εGε
iddwi ,

ei = Cdξid ,

where Viad = LiadCd , V ε
ida = ερ Bd Eida , V ε

idd = ερ Bd Eidd S−1
ε and Gε

id = SεGid .
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Then,

ζi + ψi =
N∑

j=1

�i j (t)(y j − yr ) + ιi (yi − yr ) =
N∑

j=1

�̄i j (t)e j .

Similarly, the controller (6.25) can be rewritten as

εdξ̂id = Ad ξ̂iddt + K
N∑

j=1

�̄i j (t)Cdξ jddt − K Cd ξ̂iddt.

Let
ξa = col{ξia}, ξd = col{ξid}, ξ̂d = col{ξ̂id}, w = col{wi }.

Then we have,

dξa = Aaξadt + Vadξddt + Gadw,

εdξd = (IN ⊗ Ad)ξddt + (IN ⊗ Bd Fδ)ξ̂ddt + V ε
daξadt + V ε

ddξddt + εGε
ddw,

εdξ̂d = (IN ⊗ Ad)ξ̂ddt + (L̄(t) ⊗ K Cd)ξddt − (IN ⊗ K Cd)ξ̂ddt,

where Aa = blkdiag{Aia}, and Vad , V ε
da , V ε

dd , Ga , Gε
d are similarly defined.

Define U−1
t L̄(t)Ut = Jt , where Jt is the Jordan form of L̄(t), and let

va = ξa, vd = (JtU
−1
t ⊗ Ipρ)ξd , ṽd = vd − (U−1

t ⊗ Ipρ)ξ̂d .

By our assumptions on the graph, we know that Jt and J−1
t are bounded. Moreover,

by the assumption on the condition number we can guarantee that Ut and U−1
t are

both bounded as well. Note that when a switching of the network graph occurs then
vd and ṽd will in most case experience a discontinuity (because of a sudden change
in Jt and Ut ) while va remains continuous. There exists m1, m2 > 0 such that we
will have:

‖vd(t+k )‖ ≤ m1‖vd(t−k )‖, ‖ṽd(t+k )‖ ≤ m2‖ṽd(t−k )‖

for any switching time tk because of our bounds on Ut and Jt . Here

f (t+) = lim
h↓0 f (t + h), f (t−) = lim

h↓0 f (t − h)

Between switching, the behavior of va, vd , and ṽd is described by the following
stochastic differential equations:

dva = Aavadt + Wad,t vddt + Gadw,

εdvd = (IN ⊗ Ad)vddt + (Jt ⊗ Bd Fδ)(vd − ṽd)dt
+W ε

da,t vadt + W ε
dd,t vddt + εḠε

d,tdw,

εdṽd = (IN ⊗ (Ad − K Cd))ṽddt + (Jt ⊗ Bd Fδ)(vd − ṽd)dt
+W ε

da,t vadt + W ε
dd,t vddt + εḠε

d,tdw,

(6.27)
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where Wad,t = Vad(Ut J−1
t ⊗ Ipρ), W ε

da,t = (JtU
−1
t ⊗ Ipρ)V ε

da ,

W ε
dd,t = (JtU

−1
t ⊗ Ipρ)V ε

dd(Ut J−1
t ⊗ Ipρ), and Ḡε

d,t = (JtU
−1
t ⊗ Ipρ)Gε

d .
Finally, let ηa = va , and define Nd such that

ηd := Nd

(
vd

ṽd

)
=

⎛
⎜⎜⎜⎜⎜⎝

v1d

ṽ1d
...

vNd

ṽNd

⎞
⎟⎟⎟⎟⎟⎠

where Nd =

⎛
⎜⎜⎜⎜⎜⎝

e1 0
0 e1
...

...

eN 0
0 eN

⎞
⎟⎟⎟⎟⎟⎠

⊗ Ipρ,

where ei ∈ R
N is the i’th standard basis vector whose elements are all zero except

for the i’th element which is equal to 1. Again the switching can only cause discon-
tinuities in ηd (and not in ηa). There exists m3 > 0 such that we will have:

‖ηd(t+k )‖ ≤ m3‖ηd(t−k )‖, (6.28)

for any switching time tk . Between switching the stochastic differential equation
(6.27) can be rewritten as:

dηa = Aaηadt + W̃ad,tηddt + Gadw,

εdηd = Ãδ,tηddt + W̃ ε
da,tηadt + W̃ ε

dd,tηddt + εG̃ε
d,tdw,

(6.29)

where

Ãδ,t = IN ⊗
(

Ad 0
0 Ad − K Cd

)
+ Jt ⊗

(
Bd Fδ −Bd Fδ

Bd Fδ −Bd Fδ

)
, (6.30)

and

W̃ad,t = (
Wad,t 0

)
N−1

d , G̃ε
d,t = Nd

(
Ḡε

d,t
Ḡε

d,t

)
,

W̃ ε
da,t = Nd

(
W ε

da,t
W ε

da,t

)
, W̃ ε

dd,t = Nd

(
W ε

dd,t 0
W ε

dd,t 0

)
N−1

d .

Lemma 6.19 Consider the matrix Ãδ,t defined in (6.30). For any δ small enough
the matrix Ãδ,t is asymptotically stable for any Jordan matrix Jt whose eigenvalues
satisfy Re{λti } > β and |λti | < α. Moreover, there exists Pδ > 0 and ν > 0 such
that

Ã′
δ,t Pδ + Pδ Ãδ,t ≤ −ν Pδ − 4I (6.31)

is satisfied for all possible Jordan matrices Jt and such that there exists Pa > 0 for
which

Pa Aa + A′
a Pa = −ν Pa − I. (6.32)
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Proof First note that if ν is small enough such that Aa + ν
2 I is asymptotically stable

then there exists Pa > 0 satisfying (6.32).
For the existence of Pδ and the stability of Ãδ,t we rely on techniques developed

earlier in [4, 21]. If we define

Āδ,ti =
(

Ad + λti Bd Fδ −λti Bd Fδ

λti Bd Fδ Ad − K Cd − λti Bd Fδ

)

and

B̄ =
(

Bd Fδ −Bd Fδ

Bd Fδ −Bd Fδ

)

then

Ãδ,t =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Āδ,t1 μ1 B̄ 0 · · · 0

0 Āδ,t2
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . . μN−1 B̄
0 · · · · · · 0 Āδ,t N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where λt1, . . . , λt N are the eigenvalues of Jt and μi ∈ {0, 1} is determined by the
Jordan structure of Jt . Define

P̄δ = ρ

(
Pd 0
0

√‖Pd‖P

)
,

where Pd is the solution of the Riccati equation (6.24) and P is uniquely defined by
the Lyapunov equation:

P(Ad − K Cd) + (Ad − K Cd)′ P = −I.

In the above we choose ρ such that ρδ > 1 and ρ
√‖Pd‖ > 2. As shown in [4] we

then have:

Ā′
δ,ti P̄δ + P̄δ Āδ,ti ≤ −ρ

(
δ I 0
0 1

2

√‖Pd‖I

)
≤ −I.

Via Schur complement, it is easy to verify that if matrices A11 < −k I , A22 < 0 and
A12 are given then there exists μ sufficiently large such that the matrix

(
A11 A12
A′
12 μA22

)
< −(k − 1)I.
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Define the matrix:

Pδ =

⎛
⎜⎜⎜⎜⎝

α1 P̄δ 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 αN P̄δ

⎞
⎟⎟⎟⎟⎠ .

Then we have that Pδ Ãδ,t + Ã′
δ,t Pδ is less than or equal to:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−α1 I α1μ1 P̄δ B̄ 0 . . . 0

α1μ1 B̄ ′ P̄δ

. . .
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . αN−1μN−1 P̄δ B̄

0 · · · 0 αN−1μN−1 B̄ ′ P̄δ −αN I

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Using the above Schur argument, it is not hard to show that if

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−α1 I α1μ1 P̄δ B̄ 0 . . . 0

α1μ1 B̄ ′ P̄δ

. . .
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . αN−2μN−2 P̄δ B̄

0 · · · 0 αN−2μN−2 B̄ ′ P̄δ −αN−1 I

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

≤ −6I,

then there exists αN such that:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−α1 I α1μ1 P̄δ B̄ 0 . . . 0

α1μ1 B̄ ′ P̄δ

. . .
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . αN−1μN−1 P̄δ B̄

0 · · · 0 αN−1μN−1 B̄ ′ P̄δ −αN I

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

≤ −5I.

Using a recursive argument, we can then prove there exists α1, . . . , αN such that:

Pδ Ãδ,t + Ã′
δ,t Pδ ≤ −5I.

This obviously implies that for ν small enough we have (6.31). If this ν is addi-
tionally small enough such that Aa + ν

2 I is asymptotically stable (recall that Aa is
asymptotically stable) then we obtain that there also exists Pa satisfying (6.32). �
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Define Va = ε2η′
a Paηa as a Lyapunov function for the dynamics of ηa in (6.29).

Similarly, we define Vd = εη′
d Pδηd as a Lyapunov function for the ηd dynamics in

(6.29). Then the derivative of Va is bounded by:

dVa = −νVadt − ε2‖ηa‖2dt + 2ε2Re(η′
a Pa W̃ad,tηd)dt

+ ε2 trace(PaGa Q0G ′
a)dt + 2ε2Re(η′

a PaGa)dw

≤ −νVadt + εc3Vddt

+ ε2r5 trace(Q0)dt + 2ε2Re(η′
a PaGa)dw, (6.33)

where r5 and c3 are such that:

trace(PaGa Q0G ′
a) ≤ r5 trace Q0

and

2Re(η′
a Pa W̃ad,tηd) ≤ 2r4‖ηa‖‖ηd‖ ≤ 1

2‖ηa‖2 + 2r24‖ηd‖2 ≤ 1
2‖ηa‖2 + ε−1c3Vd .

Note that we can choose r4, r5, and c3 independent of the network graph but only
depending on our bounds on the eigenvalues and condition number of our expand
Laplacian L̄(t). Taking the expectation, we get:

dEVa ≤ −νEVadt + εc3EVddt + ε2r5 trace(Q0)dt.

Next, the derivative of Vd is bounded by

dVd = −νε−1Vddt − 4‖ηd‖2dt + 2Re(η′
d PδW̃ ε

da,tηa)dt

+ 2Re(η′
d PδW̃ ε

dd,tηd)dt + ε trace(PδG̃ε
d,t Q0(G̃

ε
d,t )

′)dt

+ 2εRe(η′
d PδG̃ε

d,t )dw

≤ c2Vadt − (νε−1 + ν − ε2
c2c3
ν

)Vddt − ‖ηd‖2dt

+ εr3 trace(Q0)dt + 2εRe(η′
d PδG̃ε

d)dw, (6.34)

where
2Re(η′

d PδW̃ ε
dd,tηd) ≤ ‖ηd‖2

for small ε and

2Re(η′
d PδW̃ ε

da,tηa) ≤ εr1‖ηa‖‖ηd‖ ≤ ε2r21‖ηa‖2 + ‖ηd‖2 ≤ c2Va + ‖ηd‖2,

provided r1 is such that we have εr1 ≥ ‖PδW̃ ε
da,t‖ and c2 sufficiently large. Finally

trace(PδG̃ε
d,t Q0(G̃

ε
d,t )

′) ≤ r3 trace Q0
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for suitably chosen r3. Taking the expectation, we get:

dEVd ≤ c2EVadt − (νε−1 + ν − ε2
c2c3
ν

)EVddt

− E‖ηd‖2dt + εr3 trace(Q0)dt.

We get:
d

dt

(
EVa

EVd

)
≤ Ae

(
EVa

EVd

)
+

(
ε2r5 trace(Q0)

εr3 trace(Q0)

)
,

where

Ae =
(−ν εc3

c2 −ε−1ν − ν + ε2 c2c3
ν

)
.

Note that the inequality here is componentwise. We find by integration that

(
EVa

EVd

)
(t−k ) ≤ eAe(tk−tk−1)

(
EVa

EVd

)
(t+k−1) +

∫ tk

tk−1

eAe(tk−s)
(

ε2r5 trace(Q0)

εr3 trace(Q0)

)
ds

componentwise. In our case:

eAet = 1

1 + ε3 c2c3
ν2

(
eλ1t + ε3 c2c3

ν2
eλ2t ε2 c3

ν

(
eλ1t − eλ2t

)
ε c2

ν

(
eλ1t − eλ2t

)
eλ2t + ε3 c2c3

ν2
eλ1t

)
,

where λ1 = −ν + ε2 c2c3
ν

and λ2 = −ε−1ν − ν. We have a potential jump at time
tk−1 in Vd . However, there exists m such that

Vd(t+k−1) ≤ mVd(t−k−1),

while Va is continuous. Using our explicit expression for eAet and the fact that
tk − tk−1 > τ we find:

(
1 1

)
eAe(tk−tk−1)

(
EVa

EVd

)
(t+k−1) ≤ eλ3(tk−tk−1)

[
EVa(t−k−1) + EVd(t−k−1)

]
,

where λ3 = −ν/2. Moreover, it can be easily verified that:

(
1 1

) ∫ tk

tk−1

eAe(tk−s)
(

ε2r5 trace(Q0)

εr3 trace(Q0)

)
ds ≤ rε2 trace(Q0),

where r is a sufficiently large constant. We find

[
EVa(t−k ) + EVd(t−k )

] ≤ eλ3(tk−tk−1)
[
EVa(t−k−1) + EVd(t−k−1)

] + rε2 trace(Q0).
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Combining these time intervals, we get:

[
EVa(t−k ) + EVd(t−k )

] ≤ eλ3tk [EVa(0) + EVd(0)] + rε2

1 − μ
trace(Q0),

where μ < 1 is such that
eλ3(tk−tk−1) ≤ eλ3τ ≤ μ

for all k. Assume tk+1 > t > tk . Since we do not necessarily have that t − tk > τ

we use the bound:

eAe(t−tk)
(
EVa

EVd

)
(t+k ) ≤ 2meλ3(t−tk)

(
EVa

EVd

)
(t−k ),

where the factorm is due to the potential discontinuous jump.Combining all together,
we get:

[EVa(t) + EVd(t)] ≤ 2meλ3t [EVa(0) + EVd(0)] + (2m + 1)
rε2

1 − μ
trace(Q0).

This implies:

lim
t→∞E[η′

d(t)ηd(t)] ≤ 2m + 1

σmin(Pδ)

rε

1 − μ
trace(Q0).

Following the proof above, we find that

e = (IN ⊗ Cd)(IN ⊗ S−1
ε )(Ut J−1

t ⊗ Ipρ)
(
IN pρ 0

)
N−1

d ηd

= (Ut J−1
t ⊗ Cd)

(
IN pρ 0

)
N−1

d ηd

= �tηd ,

for suitably chosen matrix�t . Although�t is time-varying, it is uniformly bounded,
because for graphs in G

ϕ,N
α,β,π the matrices Ut and Jt are bounded. The fact that we

can make the asymptotic variance of ηd arbitrarily small then immediately implies
that the asymptotic variance of e can be made arbitrarily small. Because all agents
and protocols are linear it is obvious that the expectation of e is equal to zero. �

Step 3: Combining the precompensator (6.16) and the controller (6.25) in Step
2, we obtain the protocol in the form of (6.15) in Theorem 6.17 (or if we replaced
(6.13) by (6.14) we find the protocol for Theorem 6.15) as:

Ai =
(

Ad − KεCd 0
Bip Fδε Aip

)
, Bi =

(
Kε Kε

0 0

)
,

Ci = (
0 Cip

)
, Di = (

0 0
)
.

(6.35)



6 Stochastic Almost Output Synchronization for Time-Varying Networks … 121

6.5 Examples

In this section, we will present two examples. The first example is connected to
Theorem 6.15 (without disturbances with known frequencies). The second example
is connected to Theorem 6.17 (with disturbances with known frequencies).

6.5.1 Example 1

We illustrate the result in this section on a network of 10 nonidentical agents, which
are of the form (6.1) with

Ai1 =
⎛
⎝−1 1 0

0 0 1
0.1 0 0.1

⎞
⎠ , Bi1 =

⎛
⎝0
0
1

⎞
⎠ , C ′

i1 =
⎛
⎝0
1
0

⎞
⎠ , Gi1 =

⎛
⎝ 1

0
1.5

⎞
⎠ ,

Ai2 =
⎛
⎝−3 1 0

0 0 1
1 0.5 1

⎞
⎠ , Bi2 =

⎛
⎝0
0
1

⎞
⎠ , C ′

i2 =
⎛
⎝0
1
0

⎞
⎠ , Gi2 =

⎛
⎝0.5

1
1

⎞
⎠ ,

Ai3 =
⎛
⎝−2 1 0

0 0 1
2 2 2

⎞
⎠ , Bi3 =

⎛
⎝0
0
1

⎞
⎠ , C ′

i3 =
⎛
⎝0
1
0

⎞
⎠ , Gi3 =

⎛
⎝2
1
2

⎞
⎠ ,

and i1 ∈ {1, 2, 3}, i2 ∈ {4, 5, 6}, i3 ∈ {7, 8, 9, 10}, which will also be used as indices
for the following precompensators and interconnection systems. The degree of the
infinite zeros for each of the agent is equal to 2.

Assume the reference system as y0 = 1, which is in the form of (6.6) with
Sr = 0, Rr = 1, xr (0) = 1. By using themethod given in Sect. 6.4, precompensators
are designed of the form (6.16) as

Ai1 p = 0, Bi1 p = 10, Ci1 p = −0.1,

Ai2 p = 0, Bi2 p = −1.2, Ci2 p = −5

6
,

Ai3 p = 0, Bi3 p = −1

3
, Ci3 p = −3.

The interconnection of the above precompensators and agents have the degree of the
infinite zeros equal to 3, and can be written in SCB form:

Ai1 =

⎛
⎜⎜⎝

−1 1.4142 0 0
0 0 1 0
0 0 0 1

−0.0707 0.1 0 0.1

⎞
⎟⎟⎠ , Bi1 =

⎛
⎜⎜⎝
0
0
0
1

⎞
⎟⎟⎠ , C ′

i1 =

⎛
⎜⎜⎝
0
1
0
0

⎞
⎟⎟⎠ , Gi1 =

⎛
⎜⎜⎝
1.4142

0
1.5
0.25

⎞
⎟⎟⎠ ,
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Ai2 =

⎛
⎜⎜⎝

−3 1.562 0 0
0 0 1 0
0 0 0 1

−1.9206 1 0.5 1

⎞
⎟⎟⎠ , Bi2 =

⎛
⎜⎜⎝
0
0
0
1

⎞
⎟⎟⎠ , C ′

i2 =

⎛
⎜⎜⎝
0
1
0
0

⎞
⎟⎟⎠ , Gi2 =

⎛
⎜⎜⎝
0.781
1
1
2

⎞
⎟⎟⎠ ,

Ai3 =

⎛
⎜⎜⎝

−2 1.2019 0 0
0 0 1 0
0 0 0 1

−3.3282 2 2 2

⎞
⎟⎟⎠ , Bi3 =

⎛
⎜⎜⎝
0
0
0
1

⎞
⎟⎟⎠ , C ′

i3 =

⎛
⎜⎜⎝
0
1
0
0

⎞
⎟⎟⎠ , Gi3 =

⎛
⎜⎜⎝
2.4037

1
2
10

⎞
⎟⎟⎠ .

We select K = (3 7 3)
′
such that eigenvalues of (Ad − K Cd) are given by

(−0.5265, −1.2367 ± j2.0416), and then choose δ = 10−10, ε = 0.01 such that

Fδε = (−0.0018 −0.0021 −0.0012
)
, Kε =

⎛
⎝ 300

70000
3000000

⎞
⎠ .

Together with Ad , Cd with ρ = 3, we get the controller of the form (6.25) for each
interconnection system.

As stated in Theorem 6.15, the time-varying network topology switches in a set of
network graphGϕ,N

α,β,π with minimum dwell time τ , and a priori given α, β, π, ϕ, N .
In this example, we assume a graph set consists of three directed graphs G1, G2, G3,
with N = 10, α = 10, β = 0.3, π only contains node of agent 2, and ϕ can be
any bounded real number for this set is finite (with only 3 graphs). These graphs
are shown in Fig. 6.1. The reference system is connected to agent 2, which is in the
root set.

Figure6.2 shows the outputs of 10 agents with reference system y0 = 1 with
ε = 0.01, δ = 10−10. When tuning parameter ε to 0.001, regulated output synchro-
nization errors are squeezed to small and outputs of agents are much closer to the
reference trajectory, shown in Fig. 6.3.

Fig. 6.1 The network
topologies
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Fig. 6.2 Low- and high-gain parameters ε = 0.01, δ = 10−10
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Fig. 6.3 Low- and high-gain parameters ε = 0.001, δ = 10−10

6.5.2 Example 2

In this section, we will modify Sect. 6.5.1 by adding disturbances with known fre-
quencies. The H̃1

i , H̃2
i , Sid , and Rid for agent i are given by:
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H̃1
i1 =

⎛
⎝0 1
0 0
0 1.5

⎞
⎠ , H̃2

i1 = (
1 0

)
, Si1d =

⎛
⎝0 0 0
0 0 9
0 −9 0

⎞
⎠ , Ri1d =

(
1 0 0
0 0 1

)
,

H̃1
i2 =

⎛
⎝0 0.5
0 1
0 1

⎞
⎠ , H̃2

i2 = (
1 0

)
, Si2d =

⎛
⎝0 0 0
0 0 3
0 −3 0

⎞
⎠ , Ri2d =

(
1 0 0
0 1 0

)
,

H̃1
i3 =

⎛
⎝0 2
0 1
0 2

⎞
⎠ , H̃2

i3 = (
1 0

)
, Si3d =

⎛
⎝0 0 0
0 0 5
0 −5 0

⎞
⎠ , Ri3d =

(
1 0 0
0 0 1

)
,

where from Sid we find that the disturbances with known frequencies are constant
and sinusoid waves. Please note that i1 ∈ {1, 2, 3}, i2 ∈ {4, 5, 6}, i3 ∈ {7, 8, 9, 10}.
Assume we also have the constant reference trajectory y0 = 1. By applying the
method given in Sect. 6.4, we get precompensators

Ai1 p =
⎛
⎝ 0 −0.8441 0
0.8441 0 −8.9603

0 8.9603 0

⎞
⎠ , Bi1 p =

⎛
⎝0.7779
0.5959
0.6631

⎞
⎠ , C ′

i1 p =
⎛
⎝ 0

0
1.5079

⎞
⎠ ,

Ai2 p =
⎛
⎝ 0 −1.1235 0
1.1235 0 −2.7817

0 2.7817 0

⎞
⎠ , Bi2 p =

⎛
⎝0.2106
0.2285
0.3177

⎞
⎠ , C ′

i2 p =
⎛
⎝ 0

0
3.1469

⎞
⎠ ,

Ai3 p =
⎛
⎝ 0 −3.5038 0
3.5038 0 −3.5670

0 3.5670 0

⎞
⎠ , Bi3 p =

⎛
⎝0.0353
0.1059
0.1652

⎞
⎠ , C ′

i3 p =
⎛
⎝ 0

0
6.0544

⎞
⎠ .

We also use the same parameters as those in Sect. 6.5.1, i.e., K = (3 7 3)
′
,

δ = 10−10, ε = 0.01. Then, we have

Fδε = (−18.2574 −20.7160 −11.7519
)
, Kε =

⎛
⎝ 300

70000
3000000

⎞
⎠ .

For Ad , Cd with ρ = 3 given, we can get the controller of the form (6.25) for each
interconnection system.

The network topology also switches among the set of graph shown in Fig. 6.1
in the same way. Figure6.4 shows the outputs of 10 agents with reference system
y0 = 1 with ε = 0.01, δ = 10−10. When tuning parameter ε to 0.001, regulated
output synchronization errors are squeezed to small and outputs of agents are much
closer to the reference trajectory, shown in Fig. 6.5. We can find that even agents are
affected by any constant and any sinusoid wave with known frequencies, stochastic
almost regulated output synchronization is still obtained.
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Fig. 6.4 Low- and high-gain parameters ε = 0.01, δ = 10−10
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Fig. 6.5 Low- and high-gain parameters ε = 0.001, δ = 10−10
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