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Foreword

This volume is offered to Prof. Dr. Harry L. Trentelman in celebration of his
birthday. It contains papers by his collaborators, including a number of former
Ph.D. students and postdoctoral fellows.

This is the second of a series of two books, appearing in connection with the
workshop “Mathematical systems theory: from behaviors to nonlinear control”
dedicated to the 60th birthdays of Arjan van der Schaft and Harry Trentelman, both
at the Johann Bernoulli Institute for Mathematics and Computer Science and at the
Jan C. Willems Center for Systems and Control at the University of Groningen.
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Preface

I mean, what is an un-birthday present?
A present given when it isn’t your birthday, of course.

(L. Carroll, Through the Looking-Glass,
and What Alice Found There.
Chapter VI: Humpty Dumpty)

To those who are familiar with him since many decades, the scientist and human
being Harry L. Trentelman displays a remarkable almost invariance property. For
as long as we have known him, the adjectives that best continue to describe Harry’s
attitude to science and academic work are: resilient, creative, energetic, hard-
working. When one is almost giving up trying to prove some result and is ready to
add yet another assumption to make life a bit easier, Harry always comes to the
rescue (typically the next morning, after a night of hard thinking) with a simple and
effective solution. In science, Harry is also rigorous, original, open-minded, and
skeptical: we fondly recall his ability to shoot down our most cherished pet theories
with one sharp question, and his tireless efforts in correcting our sloppiness in
thinking or writing. One should add that Harry has always been the epitome of
scientific integrity, that he has consistently displayed an excellent taste in his choice
of problems and in finding elegant solutions to them, and that he is an ambitious,
kind, helpful, conscientious, and truly educational supervisor to his Master and
Ph.D. students. All these qualities have brought Harry to make pioneering and
lasting scientific contributions to areas as diverse as geometric control theory, the
behavioral approach, and most recently systems over networks. The excellency of
his work has been officially recognized in his recent nomination as IEEE Fellow
and Senior Editor for the IEEE Transactions on Automatic Control.

The adjectives that come to mind when trying to describe his personality are:
charming, sociable, enthusiastic, optimistic, witty. His particular brand of humor
would require far better writers than us to be described adequately; suffice it to say
that nobody who has sat next to him at conference dinners can easily forget his
cheeky, brilliant one-liners. All of those who know him even tangentially remember
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his outspoken passion for sports and outdoor activities, his appreciation of good
music, his love for and involvement in his family, and his taste for dancing.

Here is a man who loves life so unconditionally as to be an example to all who
meet him. He does not philosophise about how to live life fully; he shows one how
to do it in practice. What then, one could ask, does such a man deserve as a gift for
the anniversary of almost threescores years of a life? What could be the best token
of our appreciation for him as a man and a scientist?

As his friends and former students we pondered long over the obvious choices.
A luxurious penthouse in Manhattan? A shiny Lamborghini? A stately Tuscan
villa? After much deliberation we discarded all these options: none was good
enough to really translate our affection for and esteem of Harry (and given his
unswerving devotion to Volvo family cars, he would not have liked the
Lamborghini anyway).

Almost driven to desperation by our inability to make our feelings concrete, we
finally found the perfect gift: a collection of scientific papers written specifically for
this occasion by friends, colleagues, and former students! The confirmation that this
was the right idea was the enthusiasm with which it was accepted by the contrib-
utors to this volume, who quickly produced the high-quality works gathered in this
volume.

What you are holding in your hands then, Harry, is the best “sixtieth
un-birthday” gift we could think of. We present it to you with affection, admiration,
and our best wishes for several decades more of top-level scientific productivity.

Mumbai, India Madhu N. Belur
Groningen, The Netherlands M. Kanat Camlibel
Southampton, UK Paolo Rapisarda
Groningen, The Netherlands Jacquelien M.A. Scherpen
May 2015
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Chapter 1
Open Loop Control of Higher Order Systems

Paul A. Fuhrmann and Uwe Helmke

Abstract In this paper we solve the problem of computing open loop controls that
steer a higher order system from the equilibrium to a prescribed state, or partial state.
Using unimodular embeddings of coprime polynomial factorizations, we derive an
explicit formula for the inverse of the reachability map. Proceeding along the same
lines we outline the connection to flat outputs and develop an independent approach
for open loop control.

1.1 Introduction

In the pioneering work of Kalman [6], the basic concepts of reachability and observ-
ability for linear state space systems

xt+1 = Axt + But

yt = Cxt + Dut (1.1)

were introduced in a module theoretic framework. The modeling of electrical or
mechanical networks led in a natural way to higher order polynomial system repre-
sentations

T (σ )x = U (σ )u

y = V (σ )x + W (σ )u, (1.2)

a class of systems, forwhich no a priori state space has been available; seeRosenbrock
[9]. Fuhrmann [3] succeeded to associate with any system (1.2) a canonical state

P.A. Fuhrmann
Department of Mathematics, Ben Gurion University of the Negev, Beer Sheva, Israel
e-mail: fuhrmannbgu@gmail.com
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2 P.A. Fuhrmann and U. Helmke

space, the polynomial (or rational) model of the nonsingular polynomialmatrix T (z).
This led to representation free definitions of reachability and observability for higher
order systems in terms of the associated shift realization. Proceeding to a higher level
of abstraction, Jan C. Willems, see [8], introduced the theory of behaviors to analyze
higher order systems of the form

R(σ )w = 0 (1.3)

where R(z) denotes a rectangular polynomial system matrix. In this context, reacha-
bility and observability are defined in terms of spaces of trajectories, i.e., the behavior
of (1.3). For all underlying representations of a linear system the fundamental ques-
tion of reachability is: Can every state be reached from the zero state by a suitable
control sequence? A more important question is that of constructive reachability:
Given a state, or a partial state, how can one compute control sequences that steer
the system from rest to the desired state? This problem is very closely related to the
motion planning problem, i.e., the goal of designing desired system trajectories that
join two given states.

In this paper we will take a middle ground and focus our analysis on higher order
Rosenbrock type systems (1.2). As the reachability map of the state space system
(1.1) maps controls to states, the natural approach for constructive reachability is to
invert it.However, even if reachability of the given system is assumed, the reachability
map is surjective but not injective, so it has no regular inverse. In order to obtain a
regular inverse, we need to factor out its kernel and restrict the map to the associated
quotient space. Moreover, the reachability map is a homomorphism over the ring of
polynomials F[z] and the reduced reachability map can be inverted by embedding
an intertwining relation in a doubly coprime factorization. This leads to an explicit
formula for the inverse of the reduced reachability map that, strangely, seems to
be new. Each embedding in a unimodular matrix is tantamount to the addition of a
special output, which following [7], we refer to as a flat output. The concept of flat
outputs was first introduced by [1] in connection with state feedback linearizations
as a tool for control of higher order nonlinear systems. Flat outputs turn out to be a
useful tool in the solution of the terminal state problem and we proceed to a rather
complete analysis of flat systems using doubly coprime factorizations. Of course, the
use of coprime factorizations for analyzing flatness of higher order systems is not
new. While Levine and Nguyen [7] have studied a restricted class of systems (1.2)
where U (z) is a constant full column rank matrix, Trentelman [10] characterized flat
outputs for arbitrary behaviors. Our approach, that links flatness to the study of the
reachability map, though seems to be new.

This paper is dedicated to Harry Trentelman, a wonderful colleague and friend,
whose elegant work [10] has been a major source of inspiration for us. Of course
it is not the only paper by him that we admire! While all three of us had for long
been involved in developing linear systems theory, it may be interesting to note
that our current interests shifted almost simultaneously to networks; [4, 11]. We
are convinced that methods from algebraic systems theory, such as, e.g., flatness and



1 Open Loop Control of Higher Order Systems 3

open loop control, are bound to play an increasingly important role for observing and
controlling networks of systems. The future thus looks bright and we look forward
to further exciting work by Harry and to continue learning from him.

1.2 Functional Models and the Shift Operator

In this section, following [2, 3], we summarize the basic results of the theory of
polynomial models and introduce the shift realization. Proofs can be found in the
recent monograph [5]. Throughout this paper, F denotes an arbitrary field.

1.2.1 Polynomial and Rational Models

Polynomial models are concrete representations of quotient modules F[z]m/D(z)
F[z]m , defined for nonsingular polynomial matrices D(z) ∈ F[z]m×m . Explicitly,
the polynomial model associated with D(z) is defined as the F—vector space

X D = { f ∈ F[z]m | D(z)−1 f (z) is strictly proper}.

In contrast, the rational model of D is the F—vector space defined as

X D = {h ∈ z−1
F[[z−1]]m | D(z)h(z) is a polynomial}.

It is easily seen that X D and X D are both finite dimensional F—vector spaces
of dimension dim X D = dim X D = deg det D. We note that f (z) ∈ X D holds
if and only if D(z)−1 f (z) ∈ X D . To introduce a module structure on these spaces
we proceed as follows. Let F((z−1))m denote the vector space of truncated Laurent
series, i.e., f (z) = ∑n f

j=−∞ f j z j , f j ∈ F
m . Thus, f−1 denotes the residue of f (z).

We denote the canonical projections onto the strictly proper and polynomial parts,
respectively, by π− : F((z))m −→ z−1

F[[z−1]]m and π+ : F((z))m −→ F[z]m .

The backward shift σ : z−1
F[[z−1]]m −→ z−1

F[[z−1]]m acts on vectors of strictly
proper functions via

σ(h) = π−(zh(z)), (1.4)

i.e., as σ(
∑∞

j=1 h j z− j ) = ∑∞
j=1 h j+1z− j . Defining a projection map πD :

F[z]m −→ F[z]m by

πD f = Dπ−(D−1 f ), f ∈ F[z]m,
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we obtain the isomorphism

X D = Im πD � F[z]m/D(z)F[z]m,

which gives a concrete, but noncanonical, representation for the quotient module.
The shift operator SD : X D −→ X D is defined by

SD f = πD(z f ) = z f − D(z)ξ f , f ∈ X D,

where ξ f = (D−1 f )−1. A special case of interest is provided by the matrix pencil
of an n × n—matrix A. It is an elementary observation that the shift operator on
XzI−A is conjugate to the matrix A. This is the starting point for the polynomial
model state-space realization theory.

The polynomial model X D becomes an F[z]-module by using the SD-induced
module structure, i.e.,

p · f = πD(p f ), p ∈ F[z], f ∈ X D .

Similarly, the rational model X D is endowed with the F[z]-module structure

p · h = p(σ )h = π−(ph), p(z) ∈ F[z], h(z) ∈ X D .

It is easily seen that the linear map

X D −→ X D, f �→ D−1 f

is an isomorphism of F[z]—-modules.We next relate coprimeness to the very impor-
tant concept of doubly coprime factorizations. Let

G(z) = P(z)Q(z)−1 = T (z)−1U (z)

be a right and left coprime factorization of G(z) ∈ F(z)p×m , respectively. This
implies the intertwining relation

U (z)Q(z) = T (z)P(z). (1.5)

The next result, see [5], characterizes intertwining relations in terms of unimodular
embeddings.

Theorem 1.1 (Doubly Coprime Factorization) Let U (z) ∈ F[z]p×m, T (z) ∈
F[z]p×p be right coprime and P(z) ∈ F[z]p×m, Q(z) ∈ F[z]m×m be left coprime
with

T (z)P(z) = U (z)Q(z).
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Then, there exist unique polynomial matrices V (z) ∈ F[z]m×p, V (z) ∈ F[z]m×p,

W (z) ∈ F[z]m×m, W (z) ∈ F[z]p×p with

(
T (z) −U (z)
V (z) W (z)

) (
W (z) P(z)

−V (z) Q(z)

)

=
(

Ip 0
0 Im

)

,

such that V (z)T (z)−1 and Q(z)−1V (z) are strictly proper.

1.2.2 The Shift Realizations

The following result from Fuhrmann [2, 3] is central as it allows us to write down
a canonical state space realization, the so-called shift realization that is associated
with any coprime polynomial matrix factorization of a proper transfer function. This
establishes a canonical link between state space methods and polynomial system
matrices. It implies particularly that any state space realization (A, B, C) can be
regarded as the shift realization on the polynomial model space XzI−A.

Theorem 1.2 (Shift Realization) Consider any polynomial system matrix

P =
(

T (z) −U (z)
V (z) W (z)

)

∈ F[z](r+p)×(r+m)

with T (z) ∈ F[z]r×r nonsingular. Let G(z) be the associated p×m rational transfer
function defined as

G(z) = V (z)T (z)−1U (z) + W (z). (1.6)

Assume that G is proper with expansion G(z) = G0 +
∞∑

i=1

Gi z
−i . Then

1. The system defined, in the state space XT , by the quadruple of maps A, B, C, D,
with A : XT −→ XT , B : Fm −→ XT , C : XT −→ F

p and D : Fm −→ F
p, by

�V T −1U+W :=

⎧
⎪⎪⎨

⎪⎪⎩

A f = ST f f ∈ XT

Bξ = πT (Uξ), ξ ∈ F
m

C f = (V T −1 f )−1 f ∈ XT

D = G0

(1.7)

is a realization of G(z). We will refer to (1.7) as the shift realization.
2. The realization is observable if and only if V (z) and T (z) are right coprime and

reachable if and only if T (z) and U (z) are left coprime.
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3. The reachability and observability maps of the realization (1.7) are given by

Ru = πT (Uu), u ∈ F[z]m

and

O f = π−(V T −1 f ), f ∈ XT .

1.3 Open Loop Control for Shift Realizations

We present a simple approach to the terminal state problem for the shift realization
of higher order systems from the point of view of inverting the reachability map.
This leads directly to the problem of unimodular embedding and hence, indirectly,
to the study of flat outputs. Our explicit formula for the inverse of the reachability
map seems to be new and is of independent interest.

1.3.1 State Space Representations

We begin our investigation with a system given in state space form as

xt+1 = Axt + But . (1.8)

We assume that (A, B) ∈ F
n×n × F

n×m is a reachable pair and that the system has
been at rest till time t = −τ . Given a prescribed state x∗ ∈ F

n , our aim is to compute
control sequences u−τ , u−τ+1, . . . , u−1 that steer the system from the origin to the
state x∗ at time t = 0. This leads to the equation

x∗ =
τ∑

i=1

Ai−1Bu−i .

By our assumption on the reachability of the pair (A, B), this equation is solvable
for all τ ≥ n. The associated polynomial u(z) = ∑τ−1

j=0 u− j−1z j is called the input
polynomial.

To arrive at an algebraic formulation of the problem, we identify F
n , endowed

with the F[z]-module structure induced by A, with the polynomial model XzI−A.
Next, we recall the definition of the reachability map R(A,B) : F[z]m −→ XzI−A,
by

R(A,B)

s∑

i=0

ui z
i = πz I−A B

s∑

i=0

ui z
i =

s∑

i=0

Ai Bui ,

s∑

i=0

ui z
i ∈ F[z]m, (1.9)
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or, equivalently, by

R(A,B)u = πz I−A Bu, u(z) ∈ F[z]m . (1.10)

The reachabilitymap is anF[z]-module homomorphism.Clearly, to compute controls
that steer to a state x∗, one has to invert the reachability map R(A,B). We note that
R(A,B) has a large kernel, which is a full submodule of F[z]m , hence is representable
as QF[z]m for a nonsingular Q(z) ∈ F[z]m×m . To get an invertible map, we factor
out the kernel. Denote byR the reduced reachability map, namely themap induced
by R(A,B) on F[z]m/QF[z]m , which we identify with the polynomial model X Q .
Thus R : X Q −→ XzI−A is given by

Ru = πz I−A Bu, u(z) ∈ X Q . (1.11)

To determine the polynomial matrix Q that occurs in the reduced reachability
map, let

P(z)Q(z)−1 = (z I − A)−1B (1.12)

be a right coprime factorization of the transfer function (z I − A)−1B, with Q(z) ∈
F[z]m×m nonsingular and P(z) ∈ F[z]n×m . ByTheorem1.1, the intertwining relation

B Q(z) = (z I − A)P(z) (1.13)

can be embedded in the doubly coprime factorization

(
z I − A −B
V (z) W (z)

)(
W (z) P(z)
−V (z) Q(z)

)

=
(

In 0
0 Im

)

(1.14)

with V (z)(z I − A)−1 and Q(z)−1V (z) strictly proper. In particular, C := V (z) is a
constant matrix. We will see later that the output equation

yt = Cxt

defines a flat output of (1.1). The next result lists basic properties of the reduced
reachability map and gives an explicit formula for the inverse.

Theorem 1.3 Let P(z)Q(z)−1 be a right coprime factorization of (z I − A)−1B and
let (A, B) be reachable.

1. The reachability map R(A,B) is an F[z]-homomorphism with kernel

KerR(A,B) = Q(z)F[z]m . (1.15)
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The reachability map induces the isomorphism

R : X Q −→ XzI−A, R(u) = πz I−A Bu. (1.16)

2. Given a state x∗ ∈ F
n, there exists a unique input polynomial umin(z) ∈ X Q that

steers the system from the zero state to x∗ at time t = 0. The associated input
sequence is given by the reverse coefficients of umin(z) = R−1x∗. Specifically, in
terms of the doubly coprime factorization (1.14),

umin(z) = R−1x∗ = πQ V x∗. (1.17)

3. An arbitrary solution u∗(z) to the steering problem is given by

u∗(z) = umin(z) + Q(z)g(z), (1.18)

with g(z) ∈ F[z]m.

Proof Note that πz I−A(Bu) = 0 if and only (z I − A)−1Bu(z) = P(z)Q(z)−1u(z)
is a polynomial. Using the coprimeness of both sides of (1.12), it is easily seen that
the polynomial matrix P(z) is right prime, i.e., there exists a polynomial matrix
M(z) with M(z)P(z) = Im . Thus P(z)Q(z)−1u(z) is a polynomial if and only if
Q(z)−1u(z) is a polynomial, i.e., if and only if u ∈ Q(z)F[z]m . This proves the first
part.

From the doubly coprime factorization (1.14), one obtains the Bezout equation

(z I − A)W (z) + BV (z) = In

and therefore

(z I − A)−1BV (z) = (z I − A)−1 − W (z).

By strict properness of Q(z)−1V (z), we compute

RπQ(V x∗) = πz I−A
(
BπQ(V x∗)

) = (z I − A)π−
(
(z I − A)−1BV x∗

)
.

This proves

RπQ(V x∗) = (z I − A)π−
(
(z I − A)−1x∗

)
= x∗

and verifies the second claim. The last assertion follows from (1.15). �
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1.3.2 High Order System Representations

In many situations, the system under consideration is given not in state space terms,
but rather by difference equations of higher order. Thus, assuming ξ(z), u(z) to be
strictly proper Laurent series, the system is given by an equation of the form

T (σ )ξ(z) = U (σ )u(z), (1.19)

with σ the backward shift, T (z) ∈ F[z]r×r nonsingular and U (z) ∈ F[z]r×m . We
assume that T (z)−1U (z) is strictly proper, i.e., that (1.19) represents a strictly causal
system. Using the shift realization (1.7), we can associate with the system equation
(1.19) a natural state space realization

xt+1 = Axt + But , (1.20)

defined on the polynomial model XT as the state space. Here

A = ST , B = πT (U ·).

Our goal is to extend Theorem1.3 to the present situation, i.e., to compute controls
that steer the system (1.20) from the zero state to an arbitrary state f (z) in the state
space XT . By the Shift Realization Theorem, the pair (A, B) is reachable if and
only if T (z), U (z) are left coprime. Moreover, the reachability map of the shift
realization (1.20) is given as

RA,B : F[z]m −→ XT , RA,Bu = πT (Uu).

As in Theorem1.3 one shows that the kernel of the reachability map is a full
submodule Q(z)F[z]m . Therefore RA,B induces the reduced reachability map
R : X Q −→ XT by Ru = πT Uu. It defines an isomorphism of F[z] modules.

Proceeding as before we note that there exist right coprime polynomial matrices
Q(z) ∈ F[z]r×r , P(z) ∈ F[z]r×m that satisfy the intertwining relation:

T (z)P(z) = U (z)Q(z). (1.21)

Without loss of generality, Q(z) can be chosen column proper with column degrees
μ1 ≥ · · · ≥ μm ≥ 0. Note further that the intertwining relation (1.21) can be
embedded in the following doubly coprime factorization:

(
T (z) −U (z)
V (z) W (z)

) (
W (z) P(z)
−V (z) Q(z)

)

=
(

Ir 0
0 Im

)

, (1.22)

such that V (z)T (z)−1 and Q(z)−1V (z) are strictly proper. In that case, the pair
(V (z), T (z)) induces, by way of the shift realization, an observable pair in the state
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space XT . The following theorem, the counterpart of Theorem 1.3, summarizes the
main results.

Theorem 1.4 Let (T (z), U (z)) ∈ F[z]r×r × F[z]r×m be left coprime polynomial
matrices with T (z)−1U (z) strictly proper. Then

1. The kernel of the reachability map RA,B : F[z]m −→ XT is Q(z)F[z]m. The
reachability map induces the F[z] module isomorphism

R : X Q −→ XT , R(u) = πT (Uu).

2. There exists a unique control sequence whose input polynomial is in X Q and that
steers the shift realization (1.20) from the zero state to f (z) ∈ XT . It is given
by the (reversed) coefficients of umin(z) = R−1 f . Specifically, in terms of the
doubly coprime factorization (1.22),

umin(z) = R−1 f = πQ V f. (1.23)

3. An arbitrary control u∗(z) steers the shift realization (1.20) from the zero state to
f (z) at time t = 0 if and only if, for some g(z) ∈ F[z]m,

u∗(z) = umin(z) + Q(z)g(z). (1.24)

Proof The proof is analogous to that of Theorem1.3 and is therefore omitted. �

1.4 Flat Outputs and the Control of Partial States

In the preceding sections we solved the open loop control task for higher order
systems by steering to an arbitrary state xτ of the associated shift realization. It
is of course also of interest to compute controls that steer the origin to a given
partial state ξτ . This makes contact with flat outputs, using image representations
of the behavior defined by the higher order system. It seems that the paper [10] by
Trentelman was the first where the equivalence between flatness and the existence of
image representations of behaviors was observed. We begin with a brief analysis of
flat outputs in the context of higher order systems and then derive explicit formula
for controls that assign partial states.

1.4.1 Flat Systems

We introduce the notion of flatness for higher order linear systems and show how one
can compute explicit steering controllers via coprime factorizations. In the literature
on flatness we did not find any systematic account discussing flat outputs for higher
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order linear input/output systems. The only exceptions we are aware of are the papers
by [7], that characterize flat outputs for a restricted class of higher order systems,
and [10], that treats flatness in the larger context of behaviors.

Consider a linear higher order system

T (σ )ξ(z) = U (σ )u(z) (1.25)

where T (z) ∈ F[z]r×r is a nonsingular polynomial matrix, U (z) ∈ F[z]r×m and
strictly proper transfer function T (z)−1U (z). Here σ denotes the backwards shift
operator on z−1

F[[z−1]]r , which acts on strictly proper series ξ(z) ∈ z−1
F[[z−1]]r

in the usual way as σξ(z) = π−(zξ(z)). LetB(T,U ) denote the behavior associated
with (T (z), U (z)), i.e., the solution set of (1.25) in the space of strictly proper power
series as

B(T,U ) := {col (ξ(z), u(z)) ∈ z−1
F[[z−1]]r+m | T (σ )ξ(z) = U (σ )u(z)}.

Note, that B(T,U ) is a behavior in the terminological sense, i.e., a closed, backward
shift invariant linear subspace of z−1

F[[z−1]]r+m .

Definition 1.5 Consider any pair of polynomial matrices V (z) ∈ F[z]m×r , W (z) ∈
F[z]m×m . A linear output

y(z) = V (σ )ξ(z) + W (σ )u(z) ∈ z−1
F[[z−1]]m (1.26)

is called a flat output of system (1.25) if there exist polynomial matrices P(z) ∈
F[z]r×m, Q(z) ∈ F[z]m×m with the following two properties:

1. The behavior has the image representation

B(T,U ) = {col (P(σ )y(z), Q(σ )y(z)) ∈ z−1
F[[z−1]]r+m | y(z) ∈ z−1

F[[z−1]]m}.
(1.27)

2. The output condition holds

y(z) = V (σ )P(σ )y(z) + W (σ )Q(σ )y(z), ∀y(z) ∈ z−1
F[[z−1]]m, (1.28)

i.e., V (σ )P(σ ) + W (σ )Q(σ ) = id.

A system (1.25) is called flat if it possesses a flat output. The polynomial matrices
P(z), Q(z) are called the representing parameters of (1.25), while V (z), W (z) are
called the flat output parameters. The set

Π(P,Q) = {y(z) ∈ z−1
F[[z−1]]m | (P(z)y(z), Q(z)y(z)) ∈ z−1

F[[z−1]]r+m}
(1.29)

is called the set of flat parameters.
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The right coprimeness of P(z), Q(z) is equivalent to (1.27) being an observable
image representation. Similarly, the assumption on left coprimeness of T (z), U (z)
is a reachability condition. Note further that the output condition (1.28) is equivalent
to the Bezout identity

V (z)P(z) + W (z)Q(z) = Im . (1.30)

This implies that the pairs of polynomial matrices (V (z), W (z)) and (P(z), Q(z))
are left coprime and right coprime, respectively. Note further that the inclusion

{col (P(σ )y(z), Q(σ )y(z)) ∈ z−1
F[[z−1]]r+m | y(z) ∈ z−1

F[[z−1]]m} ⊂ B(T,U )

(1.31)

holds if and only if the polynomial matrices P(z), Q(z) satisfy

T (z)P(z) = U (z)Q(z). (1.32)

We note in passing that the reverse inclusion

B(T,U ) ⊂ {col (P(σ )y(z), Q(σ )y(z)) ∈ z−1
F[[z−1]]r+m | y(z) ∈ z−1

F[[z−1]]m}

implies that the polynomial matrix Q(z) is nonsingular. In fact, the reverse inclu-
sion implies z−1

F[[z−1]]m ⊂ Q(σ )z−1
F[[z−1]]m . This implies z−1

F[[z−1]]m ⊂
Γ (σ)Q(σ )P(σ )z−1

F[[z−1]]m , for any biproper rational matrix Γ (z) and any uni-
modular polynomial matrix P(z). Thus we can assume that Q(z) is in left Wiener-
Hopf canonical form, from which the claim easily follows.

Theorem 1.6 The following assertions are equivalent:

1. The system (1.25) has a flat output.
2. T (z), U (z) are left coprime.
3. The shift realization (1.7) for (1.25) is reachable.

Proof It suffices to prove the equivalence of the first two parts. The equivalence of
items two and three follows from Theorem 1.2.

Any unimodular polynomial matrix R(z) ∈ F[z](r+m)×(r+m) acts as a mod-
ule isomorphism R(σ ) on z−1

F[[z−1]]r+m that maps a behavior B(T,U ) onto the
behavior B(T,U )R . For any unimodular matrix L(z) ∈ F[z]r×r , we obtain the
equality of modules B(LT,LU ) = B(T,U ). Thus, without loss of generality, we
can assume that the r × (m + r) matrix (T (z) U (z)) = (D(z) 0) is in Smith
normal form with T (z) = D(z) = diag (d1(z), . . . , dr (z)) and U (z) = 0. Thus
(ξ1, . . . , ξr , u) ∈ B(T,U ) holds if and only if di (σ )ξi = 0 for i = 1, . . . , r and
U (σ )u = 0.

Conversely, assume that (1.26) is a flat output of (1.25). Let P(z), Q(z) denote
the associated polynomial matrices. Then D(z)P(z) = T (z)P(z) = U (z)Q(z) = 0
and therefore the first row vector P1(z) of P(z) vanishes. Choose any element
col (ξ1, . . . , ξr , u) ∈ B(T,U ) with d1(σ )ξ = 0 and ξ1 �= 0. we obtain d1(z) �= 0,
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as T (z) is nonsingular. Thus, such an element clearly exists if d1(z) �= 0 is not
a constant polynomial. On the other hand, by (1.27) we have ξ1 = P1(σ )y = 0,
which is a contradiction. Therefore, d1(z) is a constant polynomial. Similarly, all
the other nonzero invariant factors di (z), i = 1, . . . , r are constant polynomials.
Suppose, that for some 1 ≤ i ≤ r , di (z) = 0 is the zero polynomial. Then the
i − th row vector Pi (z) of P(z) satisfies Pi (z) = 0. Thus, (1.27) implies that any
element (ξ1, . . . , ξr , u) ∈ B(T,U ) satisfies ξi = 0. Since the elements ofB(T,U ) are
characterized by di (σ )ξi = 0, i = 1, . . . , r and U (σ )u = 0, we can always find
(ξ, u) ∈ B(T,U ) with ξi �= 0. This is a contradiction. Therefore, flatness implies that
all invariant factors of T (z), U (z) are nonzero constants. Thus T (z), U (z) are left
coprime. �

We next turn to the task of characterizing flat outputs. This can be done using
coprime factorizations. In fact, assume that we have a left coprime pair of polyno-
mial matrices T (z), U (z) with T (z) nonsingular. Then there exists a right coprime
factorization

P(z)Q(z)−1

of T (z)−1U (z). Thus, in particular, we obtain T (z)P(z) = U (z)Q(z). Choose any
polynomial solution V (z), W (z) of the Bezout equation

V (z)P(z) + W (z)Q(z) = Im . (1.33)

Then y = V (σ )ξ + W (σ )u is a flat output and the solution set B(T,U ) of (1.25) is
given as (1.27). Thus, the representing parameters P(z), Q(z) are obtained by any
right coprime factorization of the transfer function T (z)−1U (z), while the flat output
parameters are obtained by solving the Bezout Eq. (1.33).

The next result characterizes the set of all flat outputs for a given system (1.25).
For an extension of the result to behaviors we refer to [10].

Theorem 1.7 Assume that T (z), U (z) are left coprime. The following conditions
are equivalent:

(i) (1.26) is a flat output of system (1.25).
(ii) There exist right coprime polynomial matrices P(z) ∈ F[z]r×m, Q(z) ∈

F[z]m×m with Q(z) nonsingular and

T (z)P(z) − U (z)Q(z) = 0

V (z)P(z) + W (z)Q(z) = Im .
(1.34)

(iii) The polynomial system matrix

(
T (z) −U (z)
V (z) W (z)

)

(1.35)

is unimodular.
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Proof The direction (i) =⇒ (i i) is already shown. For a proof of (i i) =⇒ (i)
assume that polynomial matrices P(z), Q(z) exist that satisfy (1.34). Then P, Q are
right coprime and there exists an extension to a unimodular matrix

(
X (z) P(z)
Y (z) Q(z)

)

using suitable polynomial matrices X (z), Y (z). By (1.34) this implies

(
T (z) −U (z)
V (z) W (z)

) (
X (z) P(z)
Y (z) Q(z)

)

=
(

A(z) 0
B(z) Im

)

=
(

A(z) 0
0 I

) (
I 0

B(z) I

)

,

with polynomial matrices A(z) ∈ F[z]r×r , B(z) ∈ F[z]m×r . But this implies that
A(z) is a common left factor of T (z), U (z). Since T, U are assumed to be left coprime
we conclude that A(z) is unimodular. Thus, the system matrix

(
T (z) −U (z)
V (z) W (z)

)

is unimodular, too, and we obtain a representation

(
T (z) −U (z)
V (z) W (z)

) (
X(z) P(z)
Y (z) Q(z)

)

=
(

I 0
0 I

)

.

Therefore,

(
X(z) P(z)
Y (z) Q(z)

) (
T (z) −U (z)
V (z) W (z)

)

=
(

I 0
0 I

)

(1.36)

holds. Assume that ξ(z), u(z) is any element of B(T,U ). Then (1.36) implies that
(ξ(z), u(z)) = (P(z)y(z), Q(z)y(z)) for y(z) = V (z)ξ(z) + W (z)u(z). This shows
that (1.27), (1.28) hold. Thus (1.28) is a flat output and we are done.

By unimodularity of (1.35) there exist polynomial matrices P(z), Q(z) such that

(
T (z) −U (z)
V (z) W (z)

) (
P(z)
Q(z)

)

=
(

0
Ip

)

.

Thus condition (ii) is satisfied which implies (i). This proves (i i i) =⇒ (i). Con-
versely, assume that (1.26) is a flat output of system (1.25). Then the preceding proof
of (i) =⇒ (i i) shows that (1.35) is unimodular. This completes the proof. �

By the uniqueness part in the unimodular embedding, the preceding result has the
following consequence:
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Corollary 1.8 Let T (z)−1U (z) = P(z)Q(z)−1 be left and right coprime factor-
izations of a strictly proper transfer function. Then there exists a unique flat output
of (1.25)

y = V (σ )ξ(z) + W (σ )u(z) (1.37)

with V (z)T (z)−1 strictly proper. The output (1.37) is called the canonical flat output
of (1.25).

The set of flat parameters enables one to solve terminal state control problems in
a constructive way. Thus, the description of all flat parameters becomes important.
In general, for any flat output, the strictly proper series y(z) ∈ Π(P,Q) yield admissi-
ble input-state trajectories col (x(z), u(z)) = col (P(σ )y(z), Q(σ )y(z)) ∈ B(T,U ).
Therefore, the inclusion

{col (P(σ )y(z), Q(σ )y(z)) | y(z) ∈ Π(P,Q)} ⊂ B(T,U ) (1.38)

holds, which however, is only a proper inclusion. Nevertheless,Π(P,Q) is very useful
to solve control problems with fixed initial and terminal states.

Proposition 1.9 Assume that G(z) := T (z)−1U (z) is strictly proper and let
G(z) = P(z)Q(z)−1 be a right coprime factorization. Let Q(z) be column proper
with column degrees μ1 ≥ · · · ≥ μm ≥ 0.

1. For the space of flat parameters Π(P,Q), the equality

Π(P,Q) = Π Q := {y(z) ∈ z−1
F[[z−1]]m | Q(z)y(z) ∈ z−1

F[[z−1]]m} (1.39)

is satisfied. Moreover, Ker π Q = Π Q .

2. For any nonsingular polynomial matrix Q′(z) ∈ F[z]m×m with Q′(z)Q(z)−1

biproper there is the direct sum decomposition of vector spaces

Π(P,Q) ⊕ X Q′ = z−1
F[[z−1]]m . (1.40)

3. If y ∈ Π Q, then y is a flat output of the system (1.25).
4. The space of flat parameters has the representation

Π(P,Q) = {y(z) ∈ z−1
F[[z−1]]r | yi, j = 0, i = 1, . . . , r, j = 0, . . . , μi − 1},

(1.41)

where y(z) = col (y1(z), . . . , yr (z)) and yi (z) = ∑∞
j=0 yi, j z− j−1.

Proof Clearly, the inclusion Π(P,Q) ⊂ Π Q holds. In view of the strict properness
of P(z)Q(z)−1, it follows that, for any y(z) ∈ Π Q , the condition Q(z)y(z) ∈
z−1

F[[z−1]]m implies P(z)y(z) = (P(z)Q(z)−1)(Q(z)y(z)) ∈ z−1
F[[z−1]]r . Thus

Π Q ⊂ Π(P,Q) and equality (1.39) follows. Our assumption that Q(z) is column
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proper implies that Q(z) is properly invertible. This implies the equality Π Q =
Ker π Q .

Note that, for the rational model X Q , there are two equivalent representations,
namely

X Q = Ker Q(σ ) = Im π Q, (1.42)

where π Q is the projection map for the rational models. Note further that X Q = X Q′

holds for any nonsingular polynomial matrices Q, Q′ with Q(z)Q′(z)−1 biproper.
Since z−1

F[[z−1]]m = Im π Q ⊕ Ker π Q , the direct sum (1.40) follows.
The left coprimeness of T (z), U (z) implies the reachability of the behavior

B(T,U ) and hence the existence of an image representation of it, namely B(T,U ) =
Im

(
P(σ )

Q(σ )

)

. Thus, if y ∈ Π Q , then

(
ξ

u

)

=
(

P(σ )

Q(σ )

)

y =
(

P(z)
Q(z)

)

y. Using the

doubly coprime factorization (1.43), we compute

y = (
V (z) W (z)

)
(

P(z)
Q(z)

)

y = (
V (z) W (z)

)
(

ξ

u

)

,

which shows that y is a flat output.
By our assumption, we can write Q(z) = Γ (z)Δ(z), where Γ (z) is biproper, i.e.,

proper and properly invertible, and Δ(z) = diag (zμ1, . . . , zμr ). This implies that
Π Q = ΠΔ and, using (1.39), the representation (1.41) follows. �

1.4.2 Partial State Assignment for Higher Order Systems

We now turn to the task of generalizing our preceding approach to construct inputs
for controlling partial states. Thus, for the higher order system

T (σ )ξ = U (σ )u,

we search for an input sequence that steers ξ = 0 in finite time τ > 0 to a desired
partial state ξ∗. Here we assume that T (z) ∈ F[z]r×r is nonsingular and T (z), U (z)
are left coprime. Thus, the setting will be the spaces of formal power series in z−1

with zero constant term, that is, the input functions u(z) belonging to z−1
F[[z−1]]m ,

and similarly for ξ(z) and y(z). Since we want to include the present time t = 0,
we will write the trajectories as ξ(z) = ∑∞

j=0 ξ j z− j−1, and similarly for all other
variables.

To explain the flatness approach to open loop control of (1.25) we make use of
the unimodular embedding (1.22). To the system given by (1.25), we associate a flat
output

y(z) = V (σ )ξ + W (σ )u, (1.43)
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obtaining
(
0
I

)

y =
(

T (σ ) −U (σ )

V (σ ) W (σ )

) (
ξ

u

)

. (1.44)

As a consequence of the reachability assumption, the behavior Ker
(

T (σ ) −U (σ )
)

has an image representation, given by

Ker
(

T (σ ) −U (σ )
) = Im

(
P(σ )

Q(σ )

)

. (1.45)

Using the doubly coprime factorization (1.22), we compute

(
P(σ )

Q(σ )

)

y =
(

W (σ ) P(σ )

−V (σ ) Q(σ )

) (
0
I

)

y =
(

W (σ ) P(σ )

−V (σ ) Q(σ )

) (
T (σ ) −U (σ )

V (σ ) W (σ )

)(
ξ

u

)

=
(

ξ

u

)

,

that is,

ξ = P(σ )y
u = Q(σ )y.

(1.46)

Equations (1.46), which are at the heart of the flatness approach, are very suggestive.
They indicate that the top one is an underdetermined system of equations, to be
solved for the flat output y. The second equation then gives the required input.

We illustrate this process for the task of computing a controller that steers the
system (1.25) from the zero state at time t = 0 to a prescribed partial state ξ∗ ∈ F

r

at time t = τ . We note that, in general, the variable ξ is not a state variable. Thus, in
the absence of a map from the state space XT to the space Fr of partial states, one
cannot apply the preceding approach.

The next result gives an explicit approach to solve this partial state assignment
problem.

Theorem 1.10 Let (T (z), U (z)) ∈ F[z]r×r × F[z]r×m be left coprime polynomial
matrices with T (z) nonsingular and T (z)−1U (z) strictly proper. Let T (z)−1U (z) =
P(z)Q(z)−1 be a right coprime factorization with Q(z) ∈ F[z]m×m, P(z) ∈
F[z]r×m and Q(z) column proper with column degrees μ1 ≥ · · · ≥ μm ≥ 0.

A controller u∗(z) steers the system (1.25) from the zero state at time 0 to a
prescribed partial state ξτ = ξ∗ at time τ ≥ μ1 if and only if u∗(z) = Q(z)y(z) for
y(z) ∈ Π Q that satisfies

ξ∗ =
μ1−1∑

i=0

Pi yτ+i . (1.47)
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Proof Let y ∈ Π Q satisfy (1.47). Then u∗ = Q(σ )y is strictly proper and ξ =
P(σ )y satisfies ξτ = ξ∗. This proves the sufficiencyof the condition. For the necessity
part assume that (ξ, u∗) be a solution trajectory of (1.25)with ξτ = ξ∗. By the flatness
property of the solution behavior, it follows that ξ = P(σ )y and u∗ = Q(σ )y for
some strictly proper y. Since u∗ is strictly proper this shows that y ∈ Π Q . This
completes the proof. �

1.4.3 Linear State Space Systems

As an illustration of the preceding results, we analyze flatness for linear state space
systems

xt+1 = Axt + But , x0 = 0, t ∈ N0. (1.48)

Here A ∈ F
n×n and B ∈ F

n×m . Using the strictly proper formal power series

x(z) =
∞∑

j=1

x j

z j+1 , u(z) =
∞∑

j=0

u j

z j+1 , (1.49)

then (1.48) becomes equivalent to the equation among formal power series as

(z I − A)x(z) = Bu(z). (1.50)

By the Hautus criterion, the polynomial matrices T (z) = z I − A and U (z) = B are
left coprime if and only if (A, B) is reachable. Choose any factorization

(z I − A)−1B = P(z)Q(z)−1

with P(z), Q(z) right coprime. Then

y(z) = V (z)x(z) + W (z)u(z)

is a flat output of (1.50) if and only if V (z), W (z) are a solution of the Bezout identity

V (z)P(z) + W (z)Q(z) = Im .

We aim to describe all finite input sequences u0, . . . , uT that control the initial state
x0 = 0 into a desired terminal state x∗ = xT . For any reachable pair (A, B), the
reachability map defines a isomorphism of modules

R(A,B) : X Q −→ XzI−A, R(A,B) f = πz I−A(B f (z)).
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For any flat parameter y(z) ∈ Π(P,Q), the state and input strictly proper formal
power series are given as

x(z) = P(z)y(z) (1.51)

u(z) = Q(z)y(z). (1.52)

Thus, for any T > 0 and u(z) = ∑∞
j=0 u j z− j−1 the coefficients of π+(zT u(z)) =

∑T −1
j=0 u j zT − j−1 yield the finite input sequence uT −1, . . . , u0 (in reverse order) that

steers x0 = 0 into xT .

By reachability of (A, B), the polynomial matrix P(z) is right proper, i.e.,

P(z) =
⎛

⎜
⎝

P1(z)
...

Pn(z)

⎞

⎟
⎠ ,

with n linearly independent row vectors of polynomials Pi (z) ∈ F[z]1×m . Assume
further that Q(z) is column proper with column indices κ1 ≥ · · · ≥ κm . Note
that the column indices κi coincide with the reachability indices of (A, B). Since
P(z)Q(z)−1 = (z I − A)−1B is strictly proper, this implies that the j th column of
P(z) has maximal degree κ j . Thus we obtain the expansion

P(z) =
κ1−1∑

i=0

P(i)zi

with a rectangular n × mκ1—matrix of coefficients

[P] := (
P(0) . . . P(κ1−1)

)

of full row rank. By the degree constraint on the columns of P(z), the j th column of
P(i) satisfies P(i)

j = 0 for i ≥ κ j . Let M(P) denote the n × n submatrix of [P] with
columns P(i)

j , i < κ j , ordered lexicographically. Since [P] has full column rank,
thus M(P) is invertible.

The next result characterizes the canonical flat output of (A, B).

Theorem 1.11 Let (A, B) have reachability indices κ1 ≥ . . . ≥ κm and right
coprime factorization P(z)Q(z)−1 = (z I − A)−1B. Let Q(z) be column proper.

1. (A, B) is reachable if and only if the polynomial row vectors P1(z), . . . , Pn(z)
are F− linearly independent with deg pij(z) < κ j , i = 1, . . . , n, j = 1, . . . , m.
Equivalently, M(P) is invertible.

2. System (1.48) has a flat output if and only if (A, B) is reachable. In either case,
there exists a unique C ∈ F

m×n such that
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y = Cx

is a flat output.

Proof The first part is already shown, as well as that reachability of (A, B) is equiv-
alent to the existence of a flat output. Since P(z)Q(z)−1 is strictly proper, the row
vectors Pi (z) are a basis for polynomial model X Q , where the elements of X Q are
viewed as row vectors. Thus there exists a matrix C ∈ F

m×n such that C P(z) = Im .
Next, consider the polynomial system matrix

P(z) :=
(

z I − A −B
C 0

)

.

Embedding P(z), Q(z) into the unimodular matrix

(
P(z) X (z)
Q(z) Y (z)

)

,

then the product is

(
z I − A −B

C 0

) (
P(z) X (z)
Q(z) Y (z)

)

=
(

0 X(z)
C P(z) Y (z)

)

(1.53)

for suitable polynomial matrices X , Y . By (1.53), the matrix (0 X) is the product of
a left prime matrix and a unimodular one. Thus (0 X) is left prime and therefore X
is unimodular. Since C P(z) = I this shows that the product is unimodular and thus
P is unimodular. This shows that y = Cx is a flat output for (1.48). �

From the preceding argument, the condition for a flat output is

xT =
κ1−1∑

j=0

Pj yT + j . (1.54)

Decompose each vector yk ∈ F
m as

yk =
⎛

⎜
⎝

yk,1
...

yk,m

⎞

⎟
⎠ .

Thus (1.54) is equivalent to

xT =
m∑

j=1

κ j −1∑

i=0

P(i)
j yT +i, j ,
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or, equivalently, to

M(P)y = xT

where y ∈ F
n contains all components yT +i, j , i < κ j , ordered lexicographically.

Thus we have shown

Theorem 1.12 Let T ≥ κ1, (A, B) be reachable and let xT ∈ F
n be an arbitrary

terminal state vector. Let y = col (yT +i, j |i < κ j , 1 ≤ j ≤ m) ∈ F
n be the unique

solution of

M(P)y = xT . (1.55)

Define a sequence of vectors yT , . . . , yT +κ1−1 by assigning arbitrary values to the
other components of yT +i . Select arbitrary vectors yκ1 , . . . , yT −1 and set y0 = · · · =
yκ1−1 := 0. Then the set of all input sequences u = (u0, . . . , uT −1)

� that steers
x0 = 0 in time T to xT is the set of all vectors

u =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Qκ1
...

. . .

Q0 . . . Qκ1

. . .
. . .

Q0 . . . Qκ1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎝

yκ1
...

yT +n−1

⎞

⎟
⎠ (1.56)

1.5 Conclusions

The open loop control problems, discussed in this paper, can be solved for some
classes of exactly controllable, infinite dimensional linear systems. For that case,
one can single out minimal norm solutions. We leave these problems for the future
research.
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Chapter 2
Bilinear Differential Forms and the Loewner
Framework for Rational Interpolation

P. Rapisarda and A.C. Antoulas

Abstract The Loewner approach, based on the factorization of a special-structure
matrix derived from data generated by a dynamical system, has been applied suc-
cessfully to realization theory, generalized interpolation, and model reduction. We
examine some connections between such approach and that based on bilinear- and
quadratic differential forms arising in the behavioral framework.

2.1 Introduction

The Loewner framework was initiated in [17, 18] in the context of tangential interpo-
lation and partial realization problems (see also [1, 4]). Its relevance for the problem
of modeling from frequency response measurements and for model order reduction
has been reported in a series of publications (see [2, 3]), resulting also in impor-
tant applications in the (reduced-order) modeling of physical systems from data (see
[15, 16]). Time series modeling from a behavioral perspective has been introduced
in [30, 31], specialized to the vector exponential case in [32], and applied to metric
interpolation problems in [13, 14, 27].

The purpose of this paper is to illustrate some connections between these
two approaches. The relation between rational interpolation and partial realization
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problems and the behavioral framework for data modeling is well known, see [7];
we will concentrate here on the analogies and insights coming from a more recently
introduced approach (see [21, 25]) that while essentially behavioral (i.e., trajectory-
based) also uses Gramian-based ideas to derive models from data. An important tool
in such approach is the calculus of bilinear- and quadratic differential forms (B/QDFs
in the following), introduced in [33] and applied successfully in many areas of sys-
tems and control (see [22, 28]). In this paper we show that several results derived
in the Loewner approach can be formulated also in terms of the two-variable poly-
nomial matrix representations of B/QDFs derived from the system parameters. Of
particular relevance is that the factorization of the Loewner matrix—an important
step of the Loewner approach in obtaining state models from data—can be given a
trajectory-based interpretation based on B/QDFs.

The paper is organized as follows. In Sect. 2.2 we illustrate the essential concepts
of the Loewner approach, of bilinear- and quadratic differential forms, and of behav-
ioral systems theory. In Sect. 2.3 we show how the Loewner matrix and some of
its properties can be formulated in the polynomial language of the representations
of B/QDFs. In Sect. 2.4 we show how the computations of state equations based
on Loewner matrix factorizations have a straightforward interpretation in terms of
bilinear differential forms. Finally, Sect. 2.5 contains an exposition of directions of
current and future research.

2.1.1 Notation

The space of n-dimensional real (complex) vectors is denoted by R
n (respectively,

C
n), and that of m × n real matrices by R

m×n . R•×m denotes the space of real
matrices with m columns and an unspecified finite number of rows. Given matrices
A, B ∈ R

•×m , col(A, B) denotes the matrix obtained by stacking A over B.
The ring of polynomials with real coefficients in the indeterminate ξ is denoted by

R[ξ ]; the ring of two-variable polynomialswith real coefficients in the indeterminates
ζ and η is denoted by R[ζ, η]. Rr×q [ξ ] denotes the set of all r × q matrices with
entries in ξ , and R

n×m[ζ, η] that of n × m polynomial matrices in ζ and η. The set
of rational m × n matrices is denoted by R

m×n(ξ).
The set of infinitely differentiable functions fromR toRq is denotedbyC∞(R,Rq).

D(R,Rq) is the subset ofC∞(R,Rq) consisting of compact support functions. Given
λ ∈ C, we denote by eλ· the exponential function whose value at t is eλt .

2.2 Background Material

We restrict ourselves to theminimum amount of information necessary to understand
the rest of the paper. Formoredetails and a thorough introduction to behavioral system
theory, bilinear/quadratic differential forms, and the Loewner framework we refer to
[17, 19, 33], respectively.
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2.2.1 Behavioral System Theory

The basic object of study in the behavioral framework is the set of trajectories, the
behavior of a system. In this paper we consider linear differential behaviors, i.e.,
subsets of C∞(R,Rq) that consist of solutions w : R → R

q to systems of linear,
constant coefficient differential equations:

R

(
d

dt

)

w = 0. (2.1)

where R ∈ R
•×q [ξ ]. A representation (2.1) is called a kernel representation of the

behavior

B :=
{

w ∈ C∞(R,Rq) | R

(
d

dt

)

w = 0

}

,

and we associate to it in a natural way the polynomial matrix R ∈ R
•×q [ξ ]. Note

thatB admits different kernel representations; such a representation isminimal if the
number of rows of R is minimal among all possible representations ofB. We denote
with Lq the set of all linear time-invariant differential behaviors with q variables.

If a behavior is controllable (see Chap. 5 of [19] for a definition), then it also
admits an image representation. Let

w = M

(
d

dt

)

�, (2.2)

where M ∈ R
q×l [ξ ] and � is an auxiliary variable also called a latent variable; i.e.,

B := {w ∈ C∞(R,Rq) | ∃ � ∈ C∞(R,Rl) such that (2.2) holds} =: im M

(
d

dt

)

.

We call (2.2) an image representation ofB.
The latent variable � in (2.2) is called observable from w if [w = M( d

dt )� =
0] =⇒ [� = 0]. A controllable behavior always admits an observable image rep-
resentation. The set of linear differential controllable behaviors whose trajectories
take their values in Rq is denoted by L

q
cont.

A latent variable � is a state variable forB if there exist E, F ∈ R
•×•, G ∈ R

•×q

such that

B =
{

w | ∃ � s.t. E
d�

dt
+ F� + Gw = 0

}

, (2.3)

i.e., if B has a representation of first order in � and zeroth order in w. The minimal
number of state variables needed to represent B in this way is called the McMillan
degree of B, denoted by n(B).

http://dx.doi.org/10.1007/978-3-319-21003-2_5
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A state variable forB can be computed as the image of a polynomial differential
operator called a state map (see [9, 20, 26, 29]); such polynomial can act either on
the external variable w, or on the latent variable � of an image representation of B.

Finally,we introduce the notion of dual (or adjoint, see [29]) behavior. LetB ∈ Lq

and let J = J� ∈ R
q×q be an involution, i.e., J 2 = Iq . We call

B⊥J :=
{

w′ ∈ c∞(R,Rq) |
∫ +∞

−∞
w′� Jw dt = 0 forall w ∈ B ∩ c∞(R,Rq)

}

(2.4)

the J-dual behavior ofB; if J = Il , we denote it simply byB⊥. It can be shown that
if B = im M

( d
dt

) = ker R
( d

dt

)
, then B⊥J = im J R� (− d

dt

) = ker M� (− d
dt

)
J .

Note that if R induces a minimal kernel representation and M an observable image
representation of B, then M�(−ξ)J induces a minimal kernel representation and
J R�(−ξ) an observable image representation of B⊥J .

2.2.2 Bilinear- and Quadratic Differential Forms

Let Φ ∈ R
q1×q2 [ζ, η]; then Φ(ζ, η) = ∑

h,k Φh,kζ
hηk , where Φh,k ∈ R

q1×q2

and the sum extends over a finite set of nonnegative indices. Φ(ζ, η) induces the
bilinear differential form (abbreviated with BDF in the following) LΦ acting on
C∞-trajectories defined by

LΦ : C∞(R,Rq1) × C∞(R,Rq2) → C∞(R,R)

LΦ(w1, w2) :=
∑

h,k

(
dhw1

dth
)�Φh,k

dkw2

dtk

If q1 = q2 = q, then Φ(ζ, η) also induces the quadratic differential form (abbrevi-
ated QDF in the following) QΦ acting on C∞-trajectories defined by

QΦ : C∞(R,Rq) → C∞(R,R)

QΦ(w) :=
∑

h,k

(
dhw

dth
)�Φh,k

dkw

dtk
.

Without loss of generality we can assume that a QDF is induced by a symmetric
two-variable polynomial matrixΦ(ζ, η), i.e., one such thatΦ(ζ, η) = Φ(η, ζ )�; we
denote the set of such matrices by R

q×q
s [ζ, η].

Φ(ζ, η) ∈ R
q1×q2 [ζ, η] (and consequently also the BDF LΦ ) can be identified

with its coefficient matrix
Φ̃ := [

Φh,k
]

h,k=0,...,∞ ,
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in the sense that

Φ(ζ, η) = [
Iq1 ζ Iq1 · · ·] Φ̃

⎡

⎢
⎣

Iq2
ηIq2

...

⎤

⎥
⎦ .

Although Φ̃ is infinite, only a finite number of its entries are nonzero, since the
highest power of ζ and η in Φ(ζ, η) is finite. Note that Φ(ζ, η) is symmetric if and
only if Φ̃� = Φ̃.

Factorizations of the coefficient matrix of a B/QDF and factorizations of the two-
variable polynomial matrix corresponding to it are related as follows:

Preposition 2.1 Let Φ ∈ R
q1×q2 [ζ, η], and let Φ̃ be its coefficient matrix. Then the

following two statements are equivalent:

1. There exist real matrices F̃ , G̃ with n rows such that

Φ̃ = F̃�G̃;

2. There exist polynomial matrices F ∈ R
n×q1[ξ ], G ∈ R

n×q2 [ξ ] with coefficient

matrices F̃ , G̃, i.e., F(ξ) = F̃

⎡

⎢
⎣

Iq1
ξ Iq1

...

⎤

⎥
⎦ and G(ξ) = G̃

⎡

⎢
⎣

Iq2
ξ Iq2

...

⎤

⎥
⎦, such that

Φ(ζ, η) = F(ζ )�G(η).

Proof This follows from the discussion on p. 1709 of [33]. �

Factorizations as those of Proposition2.1, whichmoreover correspond to the min-
imal value n = rank(Φ̃), are called minimal (or canonical as in [33]). Note that the
matrices F̃ and G̃ involved in a minimal factorization of Φ̃ are of full row rank.
Minimal factorizations are not unique; using standard linear algebra arguments the
following proposition can be proved in a straightforward way.

Preposition 2.2 Given a minimal factorization Φ̃ = F̃�G̃, every other minimal
factorization Φ̃ = F̃ ′�G̃ ′ can be obtained from it by premultiplication of F̃ and
G̃ by a nonsingular n × n matrix S, respectively, S−�. In view of Proposition2.1
this implies that Φ(ζ, η) = F(ζ )�G(η) = F ′(ζ )�G ′(η) with F ′(ξ) := SF(ξ),
G ′(ξ) := S−�G(ξ).

Given LΨ , its derivative is the BDF LΦ defined by

LΦ(w1, w2) := d

dt
(LΨ (w1, w2)),
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for all wi ∈ C∞(R,Rqi ), i = 1, 2; this holds if and only if

Φ(ζ, η) = (ζ + η)Ψ (ζ, η) (2.5)

(see [33], p. 1710). An analogous result holds for QDFs. From this two-variable
characterization it follows that if LΦ = d

dt LΨ , then Φ(−ξ, ξ) = 0q1×q2 ; it can be
shown (see Theorem3.1, p. 1711 of [33]) that also the converse implication holds
true.

Finally, we introduce a standard result in B/QDF theory of great importance for
the rest of this paper. The first part of the result is a straightforward consequence
of the relation (2.5) between the two-variable representation of a B/QDF and its
derivative; the second part follows from Proposition10.1, p. 1730 of [33].

Preposition 2.3 Let R ∈ R
g×q [ξ ] and M ∈ R

q×l [ξ ] induce a minimal ker-
nel, respectively, observable image representation of B ∈ Lq . There exists Ψ ∈
R

g×l [ζ, η] such that
R(−ζ )M(η) = (ζ + η)Ψ (ζ, η) . (2.6)

Moreover, there exist polynomial matrices Z ∈ R
•×g[ξ ] and X ∈ R

•×l [ξ ] such that

Ψ (ζ, η) = Z(ζ )� X (η), (2.7)

and Z
( d

dt

)
is a minimal state map for B⊥ and X

( d
dt

)
is a minimal state map for B.

State maps such as Z and X in (2.7) are called matched. Factorizations such as (2.7)
can be computed factorizing canonically the coefficient matrix Ψ̃ as illustrated in
Proposition2.1, see also Proposition2.2.

2.2.3 Rational Interpolation and Modeling of Vector
Exponential Time Series

Define the left and right interpolation data as the triples in C × C
p × C

m and
C × C

m × C
p, respectively:

{(μi , �
∗
i , v∗

i )}i=1,...,k1 , μi ∈ C, �∗
i ∈ C

1×p, v∗
i ∈ C

1×m

{(λi , ri , wi )}i=1,...,k2 , λi ∈ C, ri ∈ C
m×1, wi ∈ C

p×1. (2.8)

In the rest of this paper, we will assume for simplicity of exposition that the μi s
and λi s are distinct; the general case follows with straightforward modifications
of the statements and the arguments. We will also assume that {μi }i=1,...,k1 ∩
{λ j } j=1,...,k2 = ∅.

http://dx.doi.org/10.1007/978-3-319-21003-2_3
http://dx.doi.org/10.1007/978-3-319-21003-2_10
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Let H ∈ R
p×m(ξ) be a proper rational matrix. H satisfies the interpolation

constraints if

�∗
i H(μi ) = v∗

i , i = 1, . . . , k1
H(λi )ri = wi , i = 1, . . . , k2 . (2.9)

Rational interpolation can be stated as behavioral modeling of vector exponential
functions (see [7]). Assume that H ∈ R

p×m(ξ) satisfies the interpolation constraints,
and let H(ξ) = N (ξ)D(ξ)−1 = P(ξ)−1Q(ξ) be right, respectively, left coprime
factorizations of H(ξ), with N ∈ R

p×m[ξ ], D ∈ R
m×m[ξ ], P ∈ R

p×p[ξ ], Q ∈
R

p×m[ξ ]. We associate to the right coprime factorization of H(ξ) the observable
image representation

M(ξ) :=
[

D(ξ)

N (ξ)

]

(2.10)

and to the left coprime factorization the minimal controllable kernel representation

R(ξ) := [
Q(ξ) −P(ξ)

]
. (2.11)

It follows from standard results in behavioral system theory (see Ch. 5 of [19]) that

ker
[
Q

( d
dt

) −P
( d

dt

)] = im

[
D

( d
dt

)

N
( d

dt

)

]

=: B. (2.12)

Under the standing assumption that D(μi ) and P(λi ) are nonsingular at μi ,
respectively λi , we rewrite (2.9) equivalently as

[
v∗

i −�∗
i

]
[

D(μi )

N (μi )

]

= 0 , i = 1, . . . , k1

[
Q(λi ) −P(λi )

]
[

ri

wi

]

= 0 , i = 1, . . . , k2. (2.13)

From the equalities (2.13) it follows that

[
v∗

j −�∗
j

] ∈ row span
[
Q(μ j ) −P(μ j )

]

[
ri

wi

]

∈ im

[
D(λi )

N (λi )

]

,

j = 1, . . . , k1, i = 1, . . . , k2. We conclude that the interpolation constraints (2.9)
(and the Eqs. (2.13)) are equivalent with

http://dx.doi.org/10.1007/978-3-319-21003-2_5
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wi (·) :=
[

ri

wi

]

eλi · ∈ B , i = 1, . . . , k2

w′
j (·) :=

[
v j

−� j

]

e−μ j · ∈ B⊥ , j = 1, . . . , k1, (2.14)

where B⊥ is the dual behavior B⊥ = im

[
Q� (− d

dt

)

−P� (− d
dt

)

]

= ker
[
D� (− d

dt

)]

[
N� (− d

dt

)]
. In the language of [31],B andB⊥, respectively, are unfalsified models

for the trajectories (2.14). Thus every solution of the interpolation problem yields
an unfalsified model for the exponential trajectories associated with the data; and
conversely, every minimal kernel or observable image representation of such an
unfalsified model for such trajectories yields a solution of the interpolation problem.

From (2.13) it follows that there exist vectors s j ∈ C
1×p, j = 1, . . . , k1 and

pi , i = 1, . . . , k2, uniquely defined because of observability and of minimality and
controllability, such that

[
v∗

j −�∗
j

] = s∗
j

[
Q(μ j ) −P(μ j )

]

[
ri

wi

]

=
[

D(λi )

N (λi )

]

pi . (2.15)

It is straightforward to check that such vectors define (unique) latent variable
trajectories pi eλi · and s j e−μ j · for the image representations B = im M

( d
dt

)
,

B⊥ = im R� (− d
dt

)
, respectively.

2.3 The Loewner Matrix and Its Properties

The Loewner matrix associated with the interpolation data (2.8) is defined by

L :=
[

v∗
i r j −�∗

i w j
μi −λ j

]

i=1,...,k1; j=1,...,k2
. (2.16)

The shifted Loewner matrix is defined by

Lσ :=
[

μi v∗
i r j −λ j �

∗
i w j

μi −λ j

]

i=1,...,k1; j=1,...,k2
. (2.17)

The first result of this paper connects the Loewner matrix and the two-variable
polynomial matrix Ψ (ζ, η) in (2.6), and is the fundamental connection between the
two approaches.
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Preposition 2.4 Let Ψ (ζ, η) ∈ R
p×m[ζ, η] be defined by (2.6), with M and R

defined by (2.10) and (2.11), and si and p j defined as in (2.15). Then

L = − [
s∗

i Ψ (−μi , λ j )p j
]

i=1,...,k1; j=1,...,k2
. (2.18)

Proof It follows from the equations (2.15) that if H ∈ R
p×m(ξ) satisfies the inter-

polation constraints, then the Loewner matrix (2.16) can also be written as

L =
[

s∗
i

[
Q(μi ) −P(μi )

]
[

D(λ j )

N (λ j )

]

p j

μi −λ j

]

i=1,...,k1, j=1,...,k2

, (2.19)

where si and p j are defined by (2.15). The claim follows easily from this equation
and the definition of Ψ (ζ, η). �

If all −μi and λi are all on one and the same side of the imaginary axis (e.g., the
left-hand side) then the two-variable polynomial (2.6) is associated with a BDF, and
the Loewnermatrix has the interpretation of a Gramian, as illustrated in the following
result.

Preposition 2.5 Partition the variables in B, respectively, B⊥ by w′ :=
[

y′
u′

]

∈

C∞(R,Cm+p), respectively, w :=
[

u
y

]

∈ C∞(R,Cm+p). Assume that λi ,−μ j ∈
C−, i = 1, . . . , k1, j = 1, . . . , k2.

Define the bilinear form 〈, 〉 on B′ ∩ D(R,Rq) × B ∩ D(R,Rq) by

〈w′, w〉 :=
∫ +∞

0
y′∗u + u′∗y dt.

Then
Li, j = 〈w′

i , w j 〉,

where w′
i , w j are defined by (2.14).

Proof The claim follows integrating w′�
i w j on the half line. �

The equality (2.18) is instrumental in obtaining the following result, analogous
to Lemma 2.1 in [17].

Preposition 2.6 Denote by n the McMillan degree of B. If k1, k2 ≥ n, then
rank L = n.

Proof Using the factorization (2.7) of Ψ (ζ, η), conclude that L = −S∗ P , where S
and P are defined by

S := [
Z(−μ∗

1)s1 . . . Z(−μ∗
k1

)sk1
] ∈ C

n×k1

P := [
X (λ1)p1 . . . X (λk2)pk2

] ∈ C
n×k2 .
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We now prove that under the assumption that the λi s are distinct, the matrix P has
full row rank n; a similar argument yields the same property for S.

Assume by contradiction that rank(P) = r < n; then there exist αi ∈ C,
i = 1, . . . , k2, not all zero, such that Pcol(αi )i=1,...,k2 = 0. Let F ∈ R

m×m[ξ ]
be such that ker

(
F

( d
dt

))
equals the subspace of C∞(R,Rm) spanned by vi eλi ·,

i = 1, . . . , k2; such F always exists (see section XV of [32]). Now consider the
following equations:

w = M

(
d

dt

)

�

x = X

(
d

dt

)

�

0 = F

(
d

dt

)

�. (2.20)

The external behavior B′ ⊂ B described by these equations is autonomous (see
[19]), of dimension k2. Moreover X

( d
dt

)
is a state map forB′, since it is a state map

for B. Consider the trajectory �̂ defined by �̂(t) := ∑N
i=1 αi pi eλi t , and let � = �̂ in

(2.20); then the value of x̂ := X
( d

dt

)
�̂ at t = 0 is zero. Since B′ is autonomous, it

follows that ŵ := M
( d

dt

)
�̂ is also zero. From the observability of M it follows then

that �̂ = 0, which is in contradiction with the assumption that not all αi ’s are equal
to zero. Consequently, P has rank n. �

Another result well known in the Loewner framework (see the first formula in (12)
p. 640 of [17]) follows in a straightforward way from (2.18) and Proposition2.3.

Preposition 2.7 Define the matrices

M := diag(−μi )i=1,...,k1

Λ := diag (λ j ) j=1,...,k2

S := [
s∗

i

[
Q(μi ) −P(μi )

]]
i=1,...,k1

∈ C
k1×q

W :=
[[

D(λ j )

N (λ j )

]

p j

]

j=1,...,k2

∈ C
q×k2 .

L satisfies the Sylvester equation

ML + LΛ = −S∗W. (2.21)
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Proof Observe that

Q(−ζ )�D(η) − P(−ζ )�N (η) = ζ
Q(−ζ )�D(η) − P(−ζ )�N (η)

ζ + η

+ η
Q(−ζ )�D(η) − P(−ζ )�N (η)

ζ + η
.

The claim follows in a straightforward way substituting ζ with −μ∗
i , η with λ j , and

multiplying on the left by s∗
i and on the right by p j . �

Remark 2.8 In the special case of lossless- and self-adjoint port-Hamiltonian sys-
tems, the results of Propositions2.6 and 2.7 coincide with results obtained in the
B/QDF approach in [25]. Note that Proposition2.4, on which the Loewner approach
is fundamentally based, is valid for any linear differential system, while the results
illustrated in [25] are valid only under the assumption of conservativeness or self-
adjointness.

The transfer function H(s) ∈ R
m×m[s] of a lossless port-Hamiltonian system

(see [22, 25] for the definition) satisfies the equality −H(−s)� = H(s). From
such property, using the right and left coprime factorizations already introduced we
conclude that given the image representation M , a kernel representation is

R(s) = M(−s)�
[
0 Im

Im 0

]

= [
N (−s)� D(−s)�

]
.

Thus for this class of systems the two-variable polynomial matrix Ψ (ζ, η) defined
in Proposition2.3 is

Ψ (ζ, η) =
[
N (ζ )� D(ζ )�

]
[

D(η)

N (η)

]

ζ + η
.

If we consider symmetric data, i.e., k1 = k2, μi = λi and si = pi , i = 1, . . . , k1,
then it is a matter of straightforward verification to check that the Loewner matrix
(2.16) coincides with the Pick matrix defined in formula (1) in [25]. Moreover, if
the frequencies μi and λ j lie all on one and the same side of the complex plane, the
Pick (i.e., Loewner) matrix has a straightforward interpretation as a Gramian for the
trajectories in the indefinite inner product on the half real line induced by

J :=
[
0 Im

Im 0

]

,

see formulas (2.8) and (2.11) of [25].
Under the assumptions mentioned above, the rank result of Proposition2.6 of this

paper coincides with the result of Proposition2.1 of [25], and the Sylvester equation
result of Proposition2.7 coincides with that of Proposition2.2 of [25].
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The transfer function H(s) ∈ R
m×m[s] of a self-adjoint port-Hamiltonian system

(see [25] for the definition) satisfies the equality H(s)� = H(s), from which using
the right and left coprime factorizations already introduced we conclude that given
an image representation M , a kernel representation is

R(s) = M(s)�
[

0 Im

−Im 0

]

= [
N (s)� −D(s)�

]
.

Thus for this class of systems the two-variable polynomial matrix Ψ (ζ, η) defined
in Proposition2.3 is

Ψ (ζ, η) =
[
N (−ζ )� −D(−ζ )�

]
[

D(η)

N (η)

]

ζ + η
.

If we consider symmetric data, i.e., k1 = k2, μi = λi and si = pi , i = 1, . . . , k1,
and if the frequencies λi lie all on the right or left half-plane, then the Loewner
matrix (2.16) coincides with the Pick matrix of formula (34) in [25]. In this case, the
Loewner matrix has an interpretation as Gramian for the indefinite inner product on
the half real line induced by

J ′ :=
[

0 Im

−Im 0

]

.

Results analogous to Proposition 2.6 and Proposition2.7 of this paper appear as
Proposition2.6 and Proposition2.7, respectively, in [25]. �

Remark 2.9 In this chapter we restrict ourselves to the problem of modeling
continuous-time trajectories. Gramian-based ideas for the identification of state-
space systems in the discrete-time case under the assumption of losslessness have
been illustrated in [23]. �

The shifted Loewner matrix (2.17) can be associated with a two-variable polyno-
mial matrix in the following way. From the right and left coprime factorizations of
H define

Ψ ′(ζ, η) := ζ Q(−ζ )�D(η) + P(−ζ )�N (η)η

ζ + η
; (2.22)

note thatΨ ′(ζ, η) is a polynomial matrix, since substituting−ξ in place of ζ and ξ in
place of η in ζ Q(−ζ )�D(η)+ P(−ζ )�N (η)η yields the zero matrix. The following
result follows in a straightforward way from (2.22).

Preposition 2.10 Let Ψ ′ ∈ R
k1×k2 [ζ, η] be defined by (2.22). Then

Lσ = − [
s∗

i Ψ ′(−μi , λ j )p j
]

i=1,...,k1; j=1,...,k2
.
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If the frequencies λi , −μi are all on one and the same side of the imaginary axis
(e.g., the left-hand side) then the two-variable polynomial (2.22) is associated with
the following BDF, and the Loewner matrix has the interpretation of a Gramian, as
illustrated in the following result.

Preposition 2.11 Assume that λi ,−μi ∈ C− and partition w′ and w as in Proposi-
tion2.5. Define the following BDF on B′ × B:

〈〈w′, w〉〉 :=
∫ +∞

0

(
d

dt
y′

)�
u + u′�

(
d

dt
y

)

dt ;

then

σLi, j = 〈〈w′
i , w j 〉〉,

where w′
i , w j are defined in (2.14).

Proof The claim follows integrating
( d

dt vi
)�

r j + �′�
i

( d
dt w j

)
on the half line. �

Another dynamical interpretation of the shifted Loewner matrix can be given as
follows: associate to the behavior B defined in (2.12) the behavior

B′ :=
{

col(y′, u′) | ∃ col(y, u) ∈ B s.t. y′ := d

dt
y, u′ = u

}

. (2.23)

To each trajectory (2.14) in B, B⊥ one can associate a corresponding trajectory
in B′ by “differentiating the output variable”. It is straightforward to see that the
shifted Loewner matrix is the Loewner matrix of such new set of interpolation data,
or equivalently, the Loewner matrix associated with the transfer function s H(s).
Now following an argument analogous to that used in proving Proposition2.7, one
can prove that Lσ satisfies the following Sylvester equation:

MLσ + Lσ Λ = −S′ P ′,

where M , L are as in Proposition2.7 and

S′ := [
s∗

i

[
Q(μi )μi −P(μi )

]]
i=1,...,k1

∈ C
k×(l+g)

P ′ :=
[[

D(λ j )

λ j N (λ j )

]

p j

]

j=1,...,k2

∈ C
(l+g)×q .

This is the counterpart of the second formula in (12) p. 640 of [17].
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2.4 Computation of Interpolants

Generalized state-space formulas of interpolants based on the Loewner matrix and
the shifted Loewner matrix are given in Lemma 5.1 p. 643 of [17]. The dimension
of the generalized state variable equals the number of right interpolation data, and
thus in general this procedure does not produce a minimal order interpolant; on
the other hand, the interpolant is constructed directly from the Loewner and shifted
Loewnermatrices, without need of further computations. In Sect. 5.2 of [17] formulas
for a minimal order interpolant are obtained in terms of the short singular value
decomposition of the matrix νL−Lσ , where ν ∈ {μ j } ∪ {λi }, under the assumption
(20) on p. 645 ibid. In this section we show how analogous results can be derived
in the B/QDF approach; we examine separately the mono-directional interpolation
problem (where only the right or left interpolation constraints need to be satisfied)
and the bidirectional one.

Given a matrix S ∈ R
k1×k2 , a rank-revealing factorization of S is any factor-

ization S = U1U2 with U ∈ R
k1×n , U2 ∈ R

n×k2 of full rank n = rank S; such a
factorization can be computed in a straightforward way from a singular value decom-
position of S. The results presented in this section are based on the following fun-
damental result connecting rank-revealing factorizations of the Loewner matrix and
state trajectories corresponding to the vector exponential ones (2.14) in the external
variables of the primal- and the dual system.

Preposition 2.12 Let L = Z∗V be any rank-revealing factorization of the Loewner
matrix associated with the data (2.8); denote by Vi , respectively Zi , the i th column
of V , respectively, Z .

There exists a minimal state representation (2.3) of B, respectively B⊥, such
that Vi eλi ·, respectively, Zi e−μi ·, are minimal state trajectories of B, respectively,
B⊥.

Proof The claim follows straightforwardly from Propositions2.3 and 2.4. �

Different rank-revealing factorizations of L yield different state trajectories and
thus different realizations; see [24] for an application to the computation of canonical
realizations.

2.4.1 Mono-directional Interpolants and Factorizations
of the Loewner Matrix

We first show that under suitable assumptions on the number of interpolation data,
a minimal state representation (2.3) of an interpolant of the right interpolation data
can be computed from a rank-revealing factorization of L.

http://dx.doi.org/10.1007/978-3-319-21003-2_5
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Preposition 2.13 Assume k1, k2 ≥ n = rank(L), and let L = Z∗V be a rank-
revealing factorization with Z ∈ C

n×k1 and V ∈ C
n×k2 . Define

M := diag(−μi )i=1,...,k1 ∈ C
k1×k1

S := [
s∗

i

[
Q(μi ) −P(μi )

]]
i=1,...,k1

∈ C
k1×q

Then a minimal state representation (2.3) of a right interpolant for the data(

λi ,

[
ri

wi

])

, i = 1, . . . , k2 is

Z∗ d

dt
x + (

M Z∗) x + Sw = 0. (2.24)

Proof We prove that the external behavior of (2.24) contains the trajectories[
ri

wi

]

eλi ·, i = 1, . . . , k2, i.e., that there exist trajectories xi , i = 1, . . . , k2 such

that (2.24) is satisfied. Denote by vi the i th column of the matrix V of the rank-
revealing factorization of L, and define xi (·) := vi eλi ·, i = 1, . . . , k2. It follows
from Proposition2.12 and the Sylvester Eq. (2.21) that with such positions (2.24) is
satisfied. �

Remark 2.14 Formula (2.24) is similar to formula (15) p. 642 of [17], which gives
a input-state-output representation of an interpolant of McMillan degree k1. Note
however that the McMillan degree of (2.24) equals rank(L).

Remark 2.15 Proposition2.13 implies that the rational matrix −(s Z∗ + M Z∗)−1S
satisfies the equations

(λi Z∗ + M Z∗)−1S

[
ri

wi

]

= vi , i = 1, . . . , k2,

where vi is the i th column of the matrix V associated with the rank-revealing fac-
torization of L. Thus the matrix V plays a role analogous to that of the generalized
tangential controllability matrix of p. 639 of [17]. �

Remark 2.16 When minimal, respectively, observable, kernel, and image represen-
tations of B are known, a state representation (2.3) of B can be obtained directly
from the coefficient matrices of Z(ξ) and X (ξ) in (2.7), see sect. 2.5 of [29]. �

In order to find an input-state-output (iso) representation

E
d

dt
x = Ax + Bu

y = Cx + Du (2.25)
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of an interpolant, assume k1, k2 ≥ n = rank(L), and compute a rank-revealing
factorization L = Z∗V . Define

U := [
r1 . . . rk1

] ∈ C
m×k1

Y := [
w1 . . . wk1

] ∈ C
p×k1 .

The following result, whose proof is straightforward and hence omitted, characterizes
ISO representations of right interpolants.

Preposition 2.17 A quintuple (E, A, B, C, D) ∈ R
n×n ×R

n×n ×R
n×m ×R

n×p ×
R

m×m defines an ISO representation of a right interpolant if and only if

[
E −A −B 0n×p

0 C D −Ip

]
⎡

⎢
⎢
⎣

V Λ

V
U
Y

⎤

⎥
⎥
⎦ = 0. (2.26)

It follows from Proposition2.17 that in order to find an ISO representation of a
right interpolant it suffices to find a matrix whose rows form a basis for the space

orthogonal to im

⎡

⎢
⎢
⎣

V Λ

V
U
Y

⎤

⎥
⎥
⎦, and with the special structure

[
E −A −B 0n×p

0 C D −Ip

]

.

This can be achieved with standard linear algebra computations; we will not deal
with such details here.

Remark 2.18 In Proposition2.4 and section VI of [25] explicit formulas in terms of
the matrices arising from a rank-revealing factorization of L are given for computing
A, B, C , D of an input-state-output representation

d

dt
x = Ax + Bu

y = Cx + Du

of a right interpolant for data generated by conservative- and adjoint port-Hamiltonian
systems (see Remark2.8 of this paper). Moreover, a parametrization for all such
interpolants is also given. �

Remark 2.19 Following an argument analogous to that used in proving Proposi-
tion2.13 it can be shown that a state representation (2.3) of an interpolant for the left



2 Bilinear Differential Forms and the Loewner Framework for Rational Interpolation 39

interpolation data can be computed defining E := V ∗, F := V ∗diag(λi ), G := W ∗.
Moreover, a result analogous to that of Proposition2.17 holds true also for left inter-
polants; we will not state it explicitly. �

2.4.2 Bidirectional Interpolation and BDFs

In Theorem5.1 of [17] formulas are given for the matrices E , A, B, and C of an ISO
representation (2.25) of a left and right interpolant. In the following we show that
these can be given an interpretation in terms of BDFs, and in case the interpolation
points are all on the same side of the imaginary axis, in terms of factorization of the
Loewner and shifted Loewner matrix.

In the following, besides the ISO representation (2.25) we consider its dual (note
that the terminology “dual” is not uniform in the literature; on this issue see also
[8, 10, 11]), defined by

E� d

dt
z = −A�z − C�u′

y′ = −B�z, (2.27)

where z ∈ C∞(R,Rn), u′ ∈ C∞(R,Rp), y′ ∈ C∞(R,Rm).
The following two results are crucial for computing E and A from factorizations

of the Loewner matrices.

Preposition 2.20 Let col(x, u, y) and col(z, u′, y′) be full trajectories of the behav-
iors described by (2.25) and (2.27), respectively. Then

d

dt

(
z�Ex

)
= −u′�y − y′�u = − [

u′� y′�]
[
0 Ip

Im 0

] [
u
y

]

. (2.28)

Proof The claim follows from the following chain of equalities:

d

dt

(
z�Ex

)
=

(
d

dt
z�

)

Ex + z�E

(
d

dt
x

)

=
(
−z� A − u′�C

)
x + z� (Ax + Bu)

= −u′�y − y′�u.

We now state another important result.

Preposition 2.21 Let col(x, u, y) and col(z, u′, y′) be full trajectories of the behav-
iors described by (2.25) and (2.27), respectively. Then

d

dt

(
z� Ax

)
= −u′�

(
d

dt
y

)

+
(

d

dt
y′�

)

u. (2.29)

http://dx.doi.org/10.1007/978-3-319-21003-2_5
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Proof The claim follows from the following chain of equalities:

u′�
(

d

dt
y

)

−
(

d

dt
y′�

)

u = u′�
(

C
d

dt
x

)

−
(

− d

dt
z�B

)

u

=
(

u′�C
) d

dt
x + d

dt
z� (Bu)

= −
(

d

dt
z�E + z� A

)
d

dt
x + d

dt
z�

(

E
d

dt
x − Ax

)

= − d

dt

(
z� Ax

)

The next result follows in a straightforward way from Propositions2.20 and 2.21
and reformulates (2.28) and (2.29) in two-variable polynomial terms.

Preposition 2.22 Let R ∈ R
p×(p+m)[ξ ], respectively, M ∈ R

(m+p)×m[ξ ] be a min-
imal kernel, respectively, observable image representation of the external behavior
B of (2.25). Define

Ψ (ζ, η) := R(−ζ )M(η)

Ψ ′(ζ, η) := R(−ζ )

[
0 −Ipη

ζ Im 0

]

M(η).

There exist state maps X, Z ∈ R
•×m[ξ ] for B and B⊥, respectively, such that

Ψ (ζ, η) = (ζ + η)Z(ζ )�E X (η)

Ψ ′(ζ, η) = (ζ + η)Z(ζ )� AX (η). (2.30)

The following is an important consequence of Propositions2.20, 2.21 and 2.22.

Preposition 2.23 Let (2.25) be an ISO representation of a bidirectional interpolant.
There exist X ′, X ∈ C

n×k such that

L = X ′∗E X

Ls = X ′∗ AX. (2.31)

Moreover, the columns of X ′, respectively, X correspond to the directions of (expo-
nential) state trajectories of the dual, respectively, primal system, corresponding to
the external trajectories (2.14).

Proof The claim follows by substituting μi in place of ζ and λi in place of η in
(2.30), and multiplying on the left by s∗

i and on the right by p j . �

Remark 2.24 If−μi and λ j lie on the same half plane, the result of Proposition2.23
can be proved integrating by parts (2.28) and (2.29) along the trajectories (2.14). �
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To compute E and A from L and Ls , respectively, observe that from (2.31) it
follows that

[
L Ls

] = X ′∗ [
E X AX

]

[
L

Ls

]

=
[

X ′∗E
X ′∗ A

]

X. (2.32)

These factorizations are the counterpart of those in formula (2.25) of [5], with Y =
X ′∗, � X̃∗ = [

E X AX
]
and Ỹr =

[
X ′∗E
X ′∗ A

]

. A “short” SVD of the two matrices

on the left-hand side of (2.32) yields matrices X ′∗ and X with orthonormal rows;
under such assumption we recover E and A by projection of L and Ls as

E = X ′
LX∗

A = X ′
Ls X∗,

respectively, see the first two formulas (22) p. 646 of [17].
The matrices B, C of a representation (2.25) can be obtained as follows. From the

output equation y′ = −B�z of the dual system (2.27) it follows that V = −B� X ′,
where

V := [
�1 . . . �k1

] ∈ C
m×k1 .

Assuming that X ′ has been obtained via a short SVD, it follows that

B = −X ′V ∗.

This is the third equation in (2.28) p. 17 of [6]. Analogously, from the output equation
y = Cx of the primal system (2.25) it follows that W = C X , where

W := [
w1 . . . wk2

] ∈ C
m×k2 .

Consequently
C = W X∗,

the fourth equation in (2.28) p. 17 of [6].

Remark 2.25 The BDFs used to compute E and A in Propositions2.20 and 2.21 are
not the same; such difference goes against the interpretation of the shifted Loewner
matrix as the Loewner matrix associated with the transfer function s H(s). It is
currently investigated whether such asymmetry depends on our possibly nonstan-
dard definition of the dual system (2.27), or whether there is an intrinsic motivation
to it. �
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2.5 Conclusions

We have shown that several results in the Loewner framework for interpolation can
be given a direct interpretation in the language of bilinear differential forms and
their two-variable polynomial matrix representations. We have shed new light on
known results in the Loewner framework (e.g., the rank result of Proposition2.6, the
Sylvester equation in Proposition2.7), and we have also given insights of a more
fundamental nature (e.g., the correspondence between state trajectories and factor-
izations in Proposition2.12, the interpretation of the Loewner matrices as Gramians,
see Propositions2.5 and 2.11).

For reasons of space we have refrained from illustrating the correspondences
between the Loewner approach to model order reduction and that based on BDFs
(see Sect. 3 of [6], sectionV of [25]); this will be pursued elsewhere. Current research
questions include the formulation of recursive interpolation in the BDF framework,
and the extension to parametric interpolation and parametric model order reduction
(see [12]).
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Chapter 3
Noninteraction and Triangular Decoupling
Using Geometric Control Theory
and Transfer Matrices

Jacob van der Woude

Abstract In this chapter we consider linear systems that in addition to a control
input and a measurement output also have μ exogenous inputs and μ exogenous
outputs. The main topic is then the design of measurement feedback controllers such
that in the closed-loop system the transfer matrix between certain specified pairs of
exogenous inputs and outputs is zero. Two cases are considered in particular. First,
the case that the off-diagonal blocks of the closed-loop system transfer matrix are
zero, resulting in a noninteracting behavior. And second, the case that only the blocks
above the main diagonal in the closed-loop system transfer matrix are zero, resulting
in triangular decoupling. The techniques in this chapter to derive solvability condi-
tions and measurement feedback controllers are based on transfer matrices and the
celebrated geometric approach toward system theory. The main results are necessary
and sufficient conditions in geometric or transfer matrix terms for the noninteract-
ing control problem and the triangular decoupling problem. Also variations of these
problems are treated, like the version with additional stability requirements, or the
‘almost’ version of the two problems.

3.1 Introduction

In this chapter we present results of joint research with Harry Trentelman that was
done in the beginning of his Eindhoven period. It was the time before H∞- and H2-
control and the behavioral approach toward system theory. More precisely, it was the
time that the geometric approach toward system theory still was fully in the spotlight
of research in system theory.
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Harry and I started both in 1974 with the study ofMathematics at the Rijksuniver-
siteit Groningen. About 7 years later, in June 1981, we obtained the MSc degree in
Mathematics. Harry was 10min before me, because his family name comes before
mine, alphabetically speaking. Harry still likes to joke that he graduated (a long time)
before me.

In our MSc period, around 1979, we were both educated in system theory by
Jan Willems, who then was working on invariant and almost invariant subspaces.
During the lectures of Jan Willems, we got immersed in the geometric approach
toward system theory based on the well-known book byWonham [12]. The approach
is an elegant linear algebra based way of treating fundamental issues in system
theory. Although it was not easy, Harry and I got infected by this geometric approach
virus. For this reason, we both continued working on invariant and almost invariant
subspaces in subsequent PhD projects after our MSc period. Harry directly became
PhD student under the supervision of Jan Willems. I first made a detour to industry
for about a year before retuning to the university, i.e., to the Eindhoven University of
Technology, where I became a PhD student under the supervision of Malo Hautus.

First, we worked separately from each other on challenges in system theory.
Unaware of each other, we tried to tackle the same problemon noninteracting control,
formulated by Jan Willems in the conference paper [8]. The moment after his PhD
that Harry became assistant professor in Eindhoven we learned about each other’s
research and results on the topic of noninteracting control. Harry had become an
expert in all kinds of exact and almost invariant subspaces, and I had been able to
develop some intuition behind the notion of radical, introduced by Wonham.

It was nice that we could complement each other. Together, we could tackle certain
aspects of the noninteracting control problem. Jointly, we were definitely more than
the two of us alone. The collaboration resulted in a paper for the CDC in Athens and
a paper in Linear Algebra and its Applications. Some of our results are also reported
in this chapter.

Inspired by our positive results on noninteracting control I continued to study the
problem of triangular decoupling and was lucky to find conditions for the solvability
of various types of this problem. The results of this research were included in my
PhD thesis and some of them are also reported in this chapter.

Working together with Harry in Eindhoven was great. His typical style and humor
made it a very nice experience that I never will forget. He also supervised me when I
was completingmyPhD thesis. Itwas therefore great thatHarry could be co-promoter
in my PhD committee, next to the promotors Malo Hautus and Jan Willems.

Harry has a thorough way of working, is very methodically, enthusiastically, with
an eye for detail, and has a good sense of humor. I want to thank him for the nice
collaboration in Eindhoven, although it lasted for only 2 years or so. I have learned
a lot from and by him.

Harry, thank you for the great collaboration during my PhD period in Eindhoven.
Perhaps we can do a joint project once more again?
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3.2 Setting the Scene

In this chapter we consider the linear system described by

ẋ(t) = Ax(t) + Bu(t) + �i∈μGi vi (t), (3.1)

y(t) = Cx(t), (3.2)

zi (t) = Hi x(t), i ∈ μ, (3.3)

where μ ∈ N,μ > 1 and μ := {1, 2, · · · ,μ}. In the above, x(t) ∈ R
n denotes

the state, u(t) ∈ R
m the (control) input, y(t) ∈ R

p the (measurement) output, and
A, B and C are matrices of suitable dimensions. Further, vi (t) ∈ R

qi denotes the
i th exogenous input and zi (t) ∈ R

ri the i th exogenous output, where i ∈ μ. The
matrices Gi and Hi , for i ∈ μ, are matrices of suitable dimensions.

Throughout this chapter we assume that the system (3.1)–(3.3) is controlled by
means of a measurement feedback compensator of the form

ẇ(t) = K w(t) + Ly(t), (3.4)

u(t) = Mx(t) + N y(t), (3.5)

where w(t) ∈ R
k denotes the state of the compensator, and K , L , M , and N are

matrices of suitable dimensions.
The interconnection of the system (3.1)–(3.3) and compensator (3.4)–(3.5) yields

a closed-loop system with μ exogenous inputs and μ exogenous outputs. The closed-
loop system is described by

ẋe(t) = Aexe(t) + �i∈μGi,evi (t), (3.6)

zi (t) = Hi,exe(t), i ∈ μ, (3.7)

where

xe(t) =
[

x(t)
w(t)

]

, Ae =
[

A + B NC B M
LC K

]

, (3.8)

and

Gi,e =
[

Gi

0

]

, Hi,e = [
Hi 0

]
, i ∈ μ. (3.9)

Throughout this chapter we denote the set of rational functions with real coeffi-
cients byR(s). The set of proper rational functions with real coefficients and strictly
proper rational functions with real coefficients is denoted by R0(s) and R+(s),
respectively. We call a vector a ((strictly) proper) rational if all its components are
in the set of ((strictly) proper) rational functions, and similarly for matrices.
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We assume in this chapter that a stability regionCg is given a priori. Such a region
is a nonempty subset of the complex plane that is ‘symmetric’ with respect to the
real axis, with a nonempty intersection with the real axis when necessary.

We say that a rational function, vector, or matrix is stable if all of its poles are
located in Cg . The set of eigenvalues of a real square matrix is denoted by σ. For
instance, the eigenvalues of the closed-loop system (3.6)–(3.7) are σ(Ae).

Let T (s) denote the transfer matrix of the closed-loop system (3.6)–(3.7). Then
T (s) can be partitioned according to the dimensions of the exogenous inputs and
outputs as T (s) = (Ti j (s)), i, j ∈ μ, where Ti j (s) = Hi,e(s I − Ae)

−1G j,e denotes
the transfer matrix between the j th exogenous input and the i th exogenous output in
the closed-loop system (3.6)–(3.7).

We denote the transfer matrices in the open loop system (3.1)–(3.3) by

P(s) = C(s I − A)−1B, M j (s) = C(s I − A)−1G j ,

L j (s) = Hi (s I − A)−1B, Ki j (s) = Hi (s I − A)−1G j ,

where i, j ∈ μ, and the transfer matrix of the compensator (3.4)–(3.5) by

F(s) = N + M(s I − K )−1L .

An easy calculation shows that in the closed-loop system (3.6)–(3.7)

Ti j (s) = Ki j (s) + Li (s)X (s)M j (s), i, j ∈ μ,

where X (s) = (I − F(s)P(s))−1F(s). Note that the inverse in the latter expression
exists as a rational matrix, because I − F(s)P(s) is a bicausal rational matrix (cf.
[2]). A bicausal rational matrix is a proper rational matrix with a proper rational
inverse. A proper rational matrix is bicausal if and only if its determinant does not
vanish at infinity. It is clear that X (s) is a proper rational matrix and that F(s) =
X (s)(I + P(s)X (s))−1.

3.3 Problem Formulations and Basic Result

In the spirit of [8] we formulate the following control problems, where we assume
that the linear system (3.1)–(3.3) is given together with a stability region Cg . Also,
we recall a basic result from [9].

3.3.1 Noninteracting Control

Definition 3.1 The noninteracting control problem by measurement feedback, deno-
ted NICPMμ, consists of finding a measurement feedback compensator (3.4)–(3.5)
such that in the closed-loop system (3.6)–(3.7): Ti j (s)=0 for all i, j∈μ with i �= j .
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If, in addition to the feature of noninteracting control, we also require internal
stabilization, we obtain the following.

Definition 3.2 The noninteracting control problem by measurement feedback with
internal stabilization, denoted NICPMs

μ, consists of finding ameasurement feedback
compensator (3.4)–(3.5) such that in the closed-loop system (3.6)–(3.7): Ti j (s) = 0
for all i, j ∈ μ with i �= j and σ(Ae) ⊆ Cg .

The almost version, using the H∞-norm for stable transfer functions, of NICPMμ

reads as follows.

Definition 3.3 The almost noninteracting control problem by measurement feed-
back, denoted ANICPMμ, consists of finding, for all ε > 0, a measurement feed-
back compensator (3.4)–(3.5) such that in the closed-loop system (3.6)–(3.7):
||Ti j (s)||∞ ≤ ε for all i, j ∈ μ with i �= j .

The following corollary is now easily follows from the previous.

Corollary 3.4

(a) NICPMμ is solvable if and only if there exists a proper rational matrix X (s)
such that Ki j (s) + Li (s)X (s)M j (s) = 0 for all i, j ∈ μ with i �= j .

(b) ANICPMμ is solvable if and only if for all ε > 0 there exists a proper rational
matrix X (s) such that ||Ki j (s) + Li (s)X (s)M j (s)||∞ ≤ ε for all i, j ∈ μ with
i �= j .

3.3.2 Triangular Decoupling

Definition 3.5 The triangular decoupling problem by measurement feedback,
denoted TDPMμ, consists of finding a measurement feedback compensator (3.4)–
(3.5) such that in the closed-loop system (3.6)–(3.7): Ti j (s) = 0 for all i, j ∈ μ
with i < j .

If we require additional internal stabilization, we obtain the following.

Definition 3.6 The triangular decoupling problem by measurement feedback with
internal stabilization, denoted TDPMs

μ, consists of finding a measurement feedback
compensator (3.4)–(3.5) such that in the closed-loop system (3.6)–(3.7): Ti j (s) = 0
for all i, j ∈ μ with i < j and σ(Ae) ⊆ Cg .

The almost version of TDPMμ is given as follows.

Definition 3.7 The almost triangular decoupling problem by measurement feed-
back, denoted ATDPMμ, consists of finding, for all ε > 0, a measurement feed-
back compensator (3.4)–(3.5) such that in the closed-loop system (3.6)–(3.7):
||Ti j (s)||∞ ≤ ε for all i, j ∈ μ with i < j .
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Also, the following corollary is immediate.

Corollary 3.8

(a) TDPMμ is solvable if and only if there exists a proper rational matrix X (s) such
that Ki j (s) + Li (s)X (s)M j (s) = 0 for all i, j ∈ μ with i < j .

(b) ATDPMμ is solvable if and only if for all ε > 0 there exists a proper rational
matrix X (s) such that ||Ki j (s) + Li (s)X (s)M j (s)||∞ ≤ ε for all i, j ∈ μ with
i < j .

3.3.3 Basic Result

In order to develop a method by which we can check the solvability of (A)NICPMμ

and (A)TDPMμ, we consider the rational matrix equation

U (s)X (s) = W (s), (3.10)

whereU (s) andW (s) are given strictly proper rationalmatrices, X (s) is the unknown
rational matrix, and where all matrices have suitable dimensions. We say that (3.10)
is solvable overR(s), respectively, overR0(s), if there exists a rational matrix X (s),
respectively, a proper rational matrix X (s), such that (3.10) is satisfied.

The next theorem is due to [10] and plays an important role in this chapter.

Theorem 3.9 For every ε > 0 there exists a proper rational matrix Xε(s) such that
||U (s)Xε(s) − W (s)||∞ ≤ ε if and only if (3.10) is solvable over R(s).

In other words, the solvability of (3.10) over R(s) is equivalent to the almost
solvability of (3.10) over R0(s).

The proof of the theorem in [10] is quite involved. For an alternative proof, see
[13] or [14]. There also is a construction given about how a possibly nonproper
rational solution X (s) of (3.10) can be modified into a proper rational matrix Xε(s)
such that ||U (s)Xε(s) − W (s)|| ≤ ε, where ε > 0 is an a priori given error bound.

Observe that the collection of μ2 − μ equations Ki j (s) + Li (s)X (s)M j (s) = 0
for all i, j ∈ μ with i �= j , involved in noninteracting control, can be reformulated
by Kronecker products into one (large) equation of the form (3.10) (note that in
this process the meaning of matrix X (s) is changing). A similar remark holds with
respect to triangular decoupling.

Since solvability over R(s) is equivalent to almost solvability over R0(s), the
following corollary is now obvious.

Corollary 3.10

(a) ANICPMμ is solvable if and only if there exists a rational matrix X (s) such that
Ki j (s) + Li (s)X (s)M j (s) = 0 for all i, j ∈ μ with i �= j .

(b) ATDPMμ is solvable if and only if there exists a rational matrix X (s) such that
Ki j (s) + Li (s)X (s)M j (s) = 0 for all i, j ∈ μ with i < j .
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It is clear that the solvability of ANICPMμ is equivalent to the solvability of a
certain rational matrix equation of the form (3.10) overR(s), whereas the solvability
of NICPMμ is equivalent to the solvability of the same rational matrix equation
over R0(s). Furthermore, it is clear that any proper rational solution to this equation
provides a proper rational X (s) such that Ki j (s)+Li (s)X (s)M j (s) = 0 for all i, j ∈
μ with i �= j . The transfer matrix of a compensator that solves NICPMμ can then be
calculated as F(s) = X (s)(I + P(s)X (s))−1. Realizing F(s) as N +M(s I −K )−1L
a compensator of type (3.6)–(3.7) is obtained that solves NICPMμ.

Starting from a rational solution of the equation of type (3.10) mentioned above
and a positive ε, a proper rational matrix Xε(s) can be computed by the above
mentioned construction in [13] or [14], such that ||Ki j (s)+Li (s)X (s)M j (s)||∞ ≤ ε
for all i, j ∈ μwith i �= j . Then Fε(s) = Xε(s)(I +P(s)Xε(s))−1 will be the transfer
matrix of a compensator that achieves almost interaction with accuracy less than αε,
whereα is a constant dependingon the dimensions of thematrices involved.Realizing
Fε(s) as Nε + Mε(s I − Kε)

−1Lε a compensator of type (3.6)–(3.7) is obtained that
solves NICPMμ approximately.

Similar remarks can be made with respect to TDPMμ and ATDPMμ.

3.4 State Space Approach

The above presented approach is heavily based on finding a common (proper) rational
solution to equations of the form Ki j (s) + Li (s)X (s)M j (s) = 0 for certain i, j .

For ANICPMμ and ATDPMμ it turns out to be possible to express the solvability
directly in terms of conditions involving the matrices Ki j (s), Li (s), M j (s), without
using Kronecker products! These conditions will be presented later.

ForNICPMμ andTDPMμ the derivation of such ‘direct’ conditions ismuch harder
and state space methods seem to be more appropriate. To introduce these state space
methods, we consider the next linear system

ẋ(t) = Ax(t) + Bu(t) + Gv(t), (3.11)

y(t) = Cx(t), (3.12)

z(t) = H x(t), (3.13)

which can be seen a version of system (3.1)–(3.3) for μ = 1.
Assume that (3.11)–(3.13) is controlled by the feedback compensator (3.4)–(3.5)

with F(s) = N + M(s I − K )−1L . The closed-loop system is then given by

ẋe(t) = Aexe(t) + Gev(t), (3.14)

z(t) = Hexe(t), (3.15)
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where Ae is as given in (3.8) and Ge =
[

G
0

]

, He = [
Hi 0

]
. Then, see also before,

the transfer matrix between v and z in the closed loop system (3.14)–(3.15) is given
by He(s I − Ae)

−1Ge. This transfer matrix is exactly equal to zero if and only if
there is a proper rational matrix X such that

K (s) + L(s)X (s)M(s) = 0,where X (s) = (I − F(s)P(s))−1F(s),

with P(s) = C(s I − A)−1B as before, and

K (s) = H(s I − A)−1G, L(s) = H(s I − A)−1B, M(s) = C(s I − A)−1G.

We then say that the so-called disturbance decoupling problem by measurement
feedback, abbreviated DDPM, is solved for the system (3.11)–(3.13).

The latter property can also be expressed in state space terms. To derive/present
state space conditions for the solvability of DDPM and the control problems in this
chapter, we introduce the following concepts, see [1, 4, 5, 9, 11] and [12].

• First, we focus on the system given by ẋ = Ax + Bu with initial state x0 ∈ R
n .

– We say that x0 has a (ξ,ω)-representation if there are rational vectors ξ(s) and
ω(s) of appropriate dimensions such that x0 = (s I − A)ξ(s) − Bω(s).

– We call a (ξ,ω)-representation regular when both ξ(s) and ω(s) are strictly
proper rational vectors.

– We call a (ξ,ω)-representation stable if both ξ(s) and ω(s) are stable rational
vectors.

– We say that a linear subspace V is a controlled invariant subspace if every
x0 ∈ V has a regular (ξ,ω)-representation such that ξ(s) ∈ V .

– A linear subspace V is called an stabilizability subspace if every x0 ∈ V has a
stable regular (ξ,ω)-representation such that ξ(s) ∈ V .

– A linear subspace V is called an almost controlled invariant subspace if every
x0 ∈ V has a (ξ,ω)-representation such that ξ(s) ∈ V (note that the regularity
condition is dropped).

• Many properties of the above subspaces are known.

– For instance, V is control invariant ⇐⇒ AV ⊆ V + inB ⇐⇒ there exists
F such that (A + B F)V ⊆ V .

– Another useful property is that (A, B) is stabilizable and V is a stabilizability
subspace ⇐⇒ there exists F such that (A+B F)V ⊆ V andσ(A+B F) ⊆ Cg .

• It is further well known that the largest of each of the above subspaces contained in
ker H exists and can be computed bymeans of recursive algorithms only requiring
a finite number of iterations.

– The largest controlled invariant subspace contained in ker H is denoted as
V ∗(kerH). The subspace can be described as V ∗(kerH) = {x0 ∈ kerH |x0 has
a regular (ξ,ω)-representation such that Hξ(s) = 0}.
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– The largest stabilizability subspace contained in ker H is denoted asV ∗
g (kerH).

The subspace can be described as follows: V ∗
g (kerH) = {x0 ∈ kerH |x0 has a

stable regular (ξ,ω)-representation such that Hξ(s) = 0}.
– The largest almost controlled invariant subspace contained in ker H is denoted
as V ∗

a (kerH). The subspace can be described as follows: V ∗
a (kerH) = {x0 ∈

kerH |x0 has a (ξ,ω)-representation such that Hξ(s) = 0}.
– It turns out that the above largest almost controlled invariant subspace does not
fit our purposes. The version in which the initial states are not restricted to lie
in ker H is more useful in this chapter. This subspace is denoted as V ∗

b (kerH)

and defined as follows: V ∗
b (kerH) = {x0 ∈ R

n|x0 has a (ξ,ω)-representation
such that Hξ(s) = 0}.

• It is clear that the condition for the celebrated disturbance decoupling problem
by state feedback, abbreviated DDP, see [12], for the system described by (3.11)
and (3.13), given by im G ⊆ V ∗(kerH) is equivalent to the existence of strictly
proper rational matrices X (s) and U (s) such that I = (s I − A)X (s)− BU (s) and
H X (s)G = 0. This alternative characterization will be useful later on.

• In addition, also the next characterizations are well known, see [1] and [9].

– im G ⊆ V ∗(kerH) ⇐⇒ there exist strictly proper rational matrices X (s) and
U (s) such that (s I − A)X (s) − BU (s) = G and H X (s) = 0 ⇐⇒ there
exist a strictly proper rational matrix V (s) such that H(s I − A)−1BV (s) =
H(s I − A)−1G .

– im G ⊆ V ∗
b (kerH) ⇐⇒ there exist rational matrices X (s) and U (s) such

that (s I − A)X (s) − BU (s) = G and H X (s) = 0 ⇐⇒ there exist a rational
matrix V (s) such that H(s I − A)−1BV (s) = H(s I − A)−1G .

• Dualizing the above, we can introduce subspaces related to ẋ = Ax and y = Cx ,
so relative to the pair (C, A).

– A subspace S is called conditioned invariant (with respect to the pair (C, A))
if S⊥ is controlled invariant with respect to the pair (A�, C�). It turns out that
S is conditioned invariant ⇐⇒ A((S ∩ kerC) ⊆ S ⇐⇒ there exists a
matrix J such that (A + JC)S ⊆ S .

– In the same dual way the almost conditioned invariant subspace and the
detectability subspace can be defined, being the orthogonal complement of
the almost controlled invariant subspace and the stabilizability subspace with
respect to the pair (A�, C�).

– Moreover, given im G there exists a smallest conditioned invariant subspace
that contains im G. This subspace is denoted byS ∗(im G) and can be computed
by means of recursive algorithms only requiring a finite number of iterations.
The same applies to the smallest almost conditioned invariant subspace con-
taining im G and the detectability subspace containing im G. These subspaces
are denoted S ∗

b (im G) and S ∗
g (im G), respectively.
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In the context of system (3.11)–(3.13)we nowhave the following results providing
the relation between solvability conditions for certain well-known problems in state
space terms and in the transfer domain.

Theorem 3.11

(a) The almost disturbance decoupling problem by measurement feedback, abbre-
viated ADDPM, see [9]: im G ⊆ V ∗

b (ker H), S ∗
b (imG) ⊆ kerH ⇐⇒ there

exists a rational matrix X (s) such that K (s) + L(s)X (s)M(s)
= 0.

(b) The disturbance decoupling problem by measurement feedback, abbreviated
DDPM, see [5, 11]:S ∗(im G)⊆V ∗(ker H) ⇐⇒ there exists a proper rational
matrix X (s) such that K (s) + L(s)X (s)M(s)=0.

The following condition in terms of ranks of rational matrices for the solvability
of ADDPM will be useful later on.

Corollary 3.12 There exists a rational matrix X (s) such that K (s) + L(s)X (s)

M(s) = 0 ⇐⇒ rank L(s) = rank [L(s), K (s)] and rank M(s) = rank

[
M(s)
K (s)

]

.

By Theorem 3.11, the existence of a (proper) rational solution of the equation
K (s)+ L(s)X (s)M(s) = 0 can be expressed in well-known and constructively ver-
ifiable state space conditions. It is also possible to include additional stability condi-
tions. This is most easily done in state space terms. Therefore, the following proper-
ties, relevant for decoupling and internal stabilization, are presented, see [5] and [13],

Proposition 3.13

(a) If S ⊆ V , S is a conditioned invariant subspace and V is a controlled in
variant subspace, then there are matrices F, J and N such that (A+B F)V ⊆ V ,
(A + JC)S ⊆ S and (A + B NC)S ⊆ V .

(b) If S ⊆ V , S is a detectability subspace, V is a stabilizability subspace,
(A, B) is stabilizable and (C, A) is detectable, then there are matrices F, J and
N such that (A + B F)V ⊆ V , (A + JC)S ⊆ S , (A + B NC)S ⊆ V ,
σ(A + B F) ⊆ Cg and σ(A + JC) ⊆ Cg.

(c) If Si ⊆ Vi , Si−1 ⊆ Si , Vi−1 ⊆ Vi , Si is a detectability subspace, Vi is a
stabilizability subspace, for all i ∈ μ, with S0 = V0 = 0, (A, B) is stabilizable
and (C, A) is detectable, then there are matrices F, J and N such that (A +
B F)Vi ⊆ Vi , (A + JC)Si ⊆ Si and (A + B NC)Si ⊆ Vi , for all i ∈ μ,
σ(A + B F) ⊆ Cg and σ(A + JC) ⊆ Cg.

Remark 3.14 The use of Proposition 3.13 lies in the fact that with the matrices F, J
and N compensators of the form (3.6)–(3.7) can be derived togetherwith Ae-invariant
subspaces in the state space of the closed-loop system such that the noninteracting
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control or triangular decoupling problems can (be proved to) be solved, see for
instance [5] or [11]. Indeed, using the information in part (b), define the matrices

K = A + B F + JC − B NC, L = B N − J, M = F − NC

and the subspace

W =
{[

s
0

]

+
[

v
v

]

|s ∈ S , v ∈ V

}

.

Recall that

Ae =
[

A + B NC B M
LC K

]

and define

S ⊕ 0 =
{[

s
0

]

|s ∈ S

}

, V ⊕ R
n =

{[
v
w

]

|v ∈ V , w ∈ R
n
}

.

Then it can be shown easily that

σ(Ae) ⊆ Cg, AeW ⊆ W , S ⊕ 0 ⊆ W ⊆ V ⊕ R
n .

Hence, if im G ⊆ S ⊆ V ⊆ ker H , then

σ(Ae) ⊆ Cg, AeW ⊆ W , imGe ⊆ W ⊆ kerHe,

implying that He Ak
e Ge = 0 for all k ≥ 0, in turn implying that T (s) = 0. Hence, the

system is disturbance decoupled by measurement feedback and internally stabilized
because σ(Ae).

3.5 Noninteracting Control

In this section we will treat the problems of (almost) noninteracting control. It turns
out that the version with state feedback can be solved completely. The version with
measurement feedback can (so far) only be solved partially from a transfer matrix
point of view.

3.5.1 (Almost) Noninteracting Control by State Feedback

In this subsection we shall be dealing with (dynamic) state feedback. This means that
in equation (3.2) we assume that C = I . Then the interconnection of the feedback
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compensator (3.4)–(3.5) with the linear system (3.1)–(3.3) results in a closed-loop
system described by

ẋe(t) = A′
exe(t) + �i∈μGi,evi (t), (3.16)

zi (t) = Hi,exe(t), i ∈ μ, (3.17)

where xe(t), and Gi,e, Hi,e, i ∈ μ, are as in (3.8)–(3.9), and

A′
e =

[
A + B N B M

L K

]

.

Let T ′(s) denote the transfer matrix of the closed-loop system (3.16)–(3.17) and
partition T ′(s) = (T ′

i j (s)), i, j ∈ μ, where T ′
i j (s) = Hi,e(s I − A′

e)
−1Gi,e denotes

the transfer matrix between the j-th exogenous input and the i-th exogenous output
in the latter closed-loop system.

Denote P ′(s) = (s I − A)−1B and M ′
j (s) = (s I − A)−1G j , j ∈ μ. In terms of

transfer matrices we then have that T ′
i j (s) = Ki j (s) + Li (s)X (s)M ′

j (s), i, j ∈ μ,

where X (s) = (I − F(s)P ′(s))−1F(s), and Ki j (s), Li (s) and F(s) are as described
in the previous.

We can now formulate the following control problem, where we assume that the
system (3.1)–(3.3) with C = I is given.

Definition 3.15 The noninteracting control problem by state feedback, denoted
NICPSμ, consists of finding a feedback compensator (3.4)–(3.5) such that in the
closed-loop system (3.16)–(3.17): T ′

i j (s) = 0 for all i, j ∈ μ with i �= j .

With Cg as stability region we can formulate the following.

Definition 3.16 The noninteracting control problem by state feedback with internal
stabilization, denoted NICPSs

μ, consists of finding a feedback compensator (3.4)–
(3.5) such that in the closed-loop system (3.16)–(3.17): T ′

i j (s) = 0 for all i, j ∈ μ

with i �= j and σ(A′
e) ⊆ Cg .

The almost version reads as follows.

Definition 3.17 The almost noninteracting control problem by state feedback,
denoted ANICPSμ, consists of finding, for all ε > 0, a feedback compensator (3.4)–
(3.5) such that in the closed-loop system (3.16)–(3.17): ||T ′

i j (s)||∞ ≤ ε for all
i, j ∈ μ with i �= j .

In order to derive necessary and sufficient conditions in state space terms for the
solvability of the control problems defined above, we introduce the following.

Let {Li |i ∈ μ} be a family of linear subspaces in R
n and denote

L ∨
i :=

∑

j∈μ, j �=i

L j , i ∈ μ.
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We say that the family is independent ifLi ∩L ∨
i = 0 for all i ∈ μ. Define the linear

subspace L ∨ as

L ∨ :=
∑

i∈μ

(Li ∩ L ∨
i ).

The linear subspace L ∨ is called the radical of the family {Li |i ∈ μ} (see [12]).
It is clear that a family of linear subspaces is independent if and only if its radical

is equal to the zero subspace. When the radical is nonzero, it can be shown that the
factor spaces {(Li + L ∨)/L ∨|i ∈ μ} are linearly independent. The latter has the
following consequence.

Proposition 3.18 Let {Li |i ∈ μ} be a family of linear subspaces in R
n and let

{L̄i |i ∈ μ} be a family of linear subspaces such that L̄i ⊆ Li , L̄i ∩ L ∨ = 0 and

Li + L ∨ = L̄i + L ∨ for all i ∈ μ. Then the family {L ∨, L̄1, L̄2, · · · , L̄μ} is
independent (in the above sense).

Proof Straightforward. See, also [7] or [13].

In the following we shall derive necessary and sufficient conditions in state space
terms for the solvability of NICPSμ and NICPSs

μ. We denote

Gi := im Gi , i ∈ μ, G ∨
i := ∑

j∈μ, j �=i
G j , i ∈ μ,

G ∨:= ∑

i∈μ
(Gi ∩ G ∨

i ),

Ki := ⋂

j∈μ, j �=i
ker Hj , i ∈ μ K := ⋂

i∈μ
ker Hi .

Let the linear system (3.1)–(3.3) with C = I be given and let Cg be a given
stability region. Then we have the following result.

Theorem 3.19 NICPSμ is solvable if and only if Gi ⊆ V ∗(Ki ) for all i ∈ μ and
G ∨ ⊆ V ∗(K ).

Proof For the original proof of the theorem and its extensions, we refer to [7] or [13].
Analternative proof of the necessity of the conditions canbegiven easily byobserving
that whenNICPSμ is solvable there exist A′

e-invariant subspacesWi wedged between
specific ‘input’ and ‘output’ subspaces. The projection of the subspacesWi onto the
state space of (3.1)–(3.3) are (A, B)-invariant subspaces that contain Gi and G ∨,
and are contained inKi and K , respectively, where i ∈ μ, see [5]. Then taking the
largest of these (A, B)-invariant subspaces, the necessity part follows.

The central idea for the sufficiency part of the proof is that because Gi ⊆ V ∗(Ki ),
for all i ∈ μ, there exist strictly proper rational matrices Xi (s) and Ui (s) such that
(s I − A)Xi (s) − BUi (s) = I and Hj Xi (s)Gi = 0 for all i, j ∈ μ with i �= j .
Also, because G ∨ ⊆ V ∗(K ), there exist strictly proper rational matrices X0(s) and
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U0(s) such that (s I − A)X0(s) − BU0(s) = I and Hj Xi (s)Ḡ0 = 0 for all j ∈ μ,

where Ḡ0 is a full column rank matrix such that im Ḡ0 = G ∨. Let further Ḡi be as
indicated in Proposition 3.18, and let Ḡi be a full column rank matrix such that im
Ḡi = Ḡi . Then [Ḡ0, Ḡ1, . . . , Ḡμ] is a full column rankmatrix. Let Ḡμ+1 be such that
[Ḡ0, Ḡ1, . . . , Ḡμ, Ḡμ+1] is invertible, and let Xμ+1(s) and Uμ+1(s) be any strictly
proper rationalmatrices such that (s I −A)Xμ+1(s)Ḡμ+1−BUμ+1(s)Ḡμ+1 = Ḡμ+1.
We can then define Xs) and U (s) through

X (s)[Ḡ0, Ḡ1, . . . , Ḡμ+1] = [X0(s)Ḡ0, X1(s)Ḡ1, . . . , Xμ+1(s)Ḡμ+1],

U (s)[Ḡ0, Ḡ1, . . . , Ḡμ+1] = [U0(s)Ḡ0, U1(s)Ḡ1, . . . , Uμ+1(s)Ḡμ+1].

It can be shown that X (s) is invertible and Hj X (s)Gi = 0 for all i, j ∈ μwith i �= j .
Further, define F(s) = U (s)X−1(s). It follows easily that F(s) is a proper rational
matrix. Realizing F(s) as N + M(s I − K )−1L a compensator of type (3.6)–(3.7) is
obtained that yields noninteraction by state feedback, since we assumed that C = I ,
i.e., y = x .

In a similar way, the following theorem can be proved.

Theorem 3.20 NICPSs
μ is solvable if and only if Gi ⊆ Vg(Ki ) for i ∈ μ, G ∨ ⊆

V ∗
g (K ), and the pair (A, B) is stabilizable.

We conclude this subsection by presenting necessary and sufficient conditions in
state space terms for the solvability of ANICPSμ, as described previously. In fact,
the following theorem can be proved.

Theorem 3.21 ANICPSμ is solvable if and only if Gi ⊆ V ∗
b (Ki ) for all i ∈ μ and

G ∨ ⊆ V ∗
b (K ).

The proof of the theorem is completely analogously to the previous theorems by
using the following two propositions. In the first proposition, we derive an alternative
characterization of the linear subspace V ∗

b (kerH) (see [6]). See also Theorem 3.9.

Proposition 3.22 V ∗
b (kerH) = {x0 ∈ R

n| for all ε > 0 there exists a regular
(ξ,ω)-representation such that ||Hξ(s)||∞ ≤ ε}.
Proposition 3.23 im G ⊆ V ∗

b (kerH) if and only if for all ε > 0 there exist strictly
proper rational matrices Xε(s) and Uε(s) such that I = (s I − A)Xε(s) − BUε(s)
and ||H Xε(s)G||∞ ≤ ε.

3.5.2 Almost Noninteracting Control by Measurement
Feedback

In the above the noninteracting control problems by state feedback were considered
and nice state space conditions for the solvability of the problems could be derived.
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Unfortunately, this is not (yet) the case for the versions of the problem with mea-
surement feedback. The only known result so far for the solvability of ANICPMμ is
a condition in terms of the transfer matrices of the open loop system, i.e., a condition
in terms of Ki j (s), Li (s) and M j (s) for the existence of a rational X (s) such that
Ki j (s) + Li (s)X (s)M j (s) = 0 for all i, j ∈ μ with i �= j , see also Corollary 3.10.

To present these explicit solvability conditions, we introduce matrices

L(s) :=

⎡

⎢
⎢
⎢
⎣

L1(s)
L2(s)

...

Lμ(s)

⎤

⎥
⎥
⎥
⎦

, M(s) := [
M1(s), M2(s), . . . , Mμ(s)

]
,

and for i ∈ μ we define

Ľi (s) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

L1(s)
...

Li−1(s)
Li+1(s)

...

Lμ(s)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Δi (s) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

K1i (s)
...

Ki−1 i (s)
Ki+1 i (s)

...

Kμ i (s)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

M̌i (s) := [
M1(s), . . . , Mi−1(s), Mi+1(s), . . . , Mμ(s),

]
,

�i (s) := [
Ki1(s), . . . , Ki i−1(s), Ki i+1(s), . . . , Ki μ(s),

]
,

�i (s) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 . . . 0 −K1 i (s) 0 . . . 0
...

...
...

...
...

0 . . . 0 −Ki−1 i (s) 0 . . . 0
Ki1(s) . . . Ki i−1(s) 0 Ki i+1(s) . . . Ki μ(s)

0 . . . 0 −Ki+1 i (s) 0 . . . 0
...

...
...

...
...

0 . . . 0 −Kμ i (s) 0 . . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then the following result can be shown, see [15].

Theorem 3.24 There is a rational matrix X (s) such that Ki j (s) +
Li (s)X (s)M j (s) = 0 for all i, j ∈ μ with i �= j if and only if for all i ∈ μ

(a) rank Ľi (s) = rank [Ľi (s),Δi (s)], (b) rank M̌i (s) = rank

[
M̌i (s)
�i (s)

]

,

(c) rank

[
0 M(s)

L(s) 0

]

= rank

[
0 M(s)

L(s) �i (s)

]



60 J. van der Woude

Recall that for i, j ∈ μ

Ki j (s) = Hi (s I−A)−1G j , Li (s) = Hi (s I−A)−1B, M j (s) = C(s I−A)−1G j .

Hence, for i ∈ μ

Ľi (s) = Ȟi (s I − A)−1B, Δi (s) = Ȟi (s I − A)−1Gi ,

M̌i (s) = C(s I − A)−1Ǧi , �i (s) = Hi (s I − A)−1Ǧi ,
,

where

Ȟi :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H1
...

Hi−1
Hi+1

...

Hμ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Ǧi := [
G1, . . . , Gi−1, Gi+1, . . . , Gμ

]
.

Observe that rank Ľi (s) = rank [Ľi (s),Δi (s)] if and only if there exists a ratio-
nal matrix V (s) such that Ľi (s)V (s) = Δi (s). Similarly for rank M̌i (s) =
rank

[
M̌i (s)
�i (s)

]

.

Therefore, the conditions (a) and (b) in Theorem 3.24 can be translated into state
space terms as follows:

(a) im Gi ⊆ V ∗
b (ker Ȟi ) (b) S ∗

b ( im Ǧi ) ⊆ ker Hi ,

for i ∈ μ
Unfortunately, condition (c) of Theorem 3.24 cannot (so easily) be translated into

state space terms. Therefore, conditions for the solvability of ANICPMμ that are
completely in state space terms are not (yet) known. Hence, for now we have

Theorem 3.25 ANICPMμ is solvable if and only if im Gi ⊆ V ∗
b (ker Ȟi ),

S ∗
b ( im Ǧi ) ⊆ ker Hi , rank

[
0 M(s)

L(s) 0

]

= rank

[
0 M(s)

L(s) �i (s)

]

for all i ∈ μ.

3.5.3 Some Extensions

This section is largely based upon [7, 13] and [16], where, in addition to the problems
formulated above, also the formulation can be found of the extension of (A)NICPSμ

toward additional input/output f -stabilization and internal s-stabilization (compare
with the formulation of NICPSs

μ). The latter means that the off-diagonal blocks have
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to be zero, the diagonal blocks are f -stable (with f for fast), and the underlying
system is s-stable (with s for slow). In the formulation of this extension it is assumed
that the linear system (3.1)–(3.3) with C = I is given and thatC f ,Cs withC f ⊆ Cs

are given stability regions. In [7] also necessary and sufficient conditions are derived
for the solvability of the almost version of extended problem. The treatment of this
problem gives rise to an analysis that is considerably more involved than its exact
counterpart.

3.6 Triangular Decoupling

In this section we present some solvability conditions in the context of (almost)
triangular decoupling as introduced before. It turns out that we can tackle the problem
directly for measurement feedback (and do not need to focus on state feedback first)
and that the conditions can be formulated in state space terms.

Some of the conditions will be obtained immediately, others through a transfer
matrix reasoning.

3.6.1 Triangular Decoupling by Measurement Feedback

To present necessary and sufficient conditions in state space terms for solvability of
the control problems TDPMμ and TDPMs

μ, let the linear system (3.1)–(3.3) be given
and let Cg be a given stability region. For all i ∈ μ − 1 denote

G̃i :=
μ∑

j=i+1

im G j , ˜Ki :=
i⋂

j=1

ker Hj . (3.18)

Then we have the following result.

Theorem 3.26 TDPMμ is solvable if and only if S ∗(G̃i ) ⊆ V ∗( ˜Ki ) for all i ∈
μ − 1.

Theorem 3.27 TDPMs
μ is solvable if and only if S ∗

g (G̃i ) ⊆ V ∗
g ( ˜Ki ) for all i ∈

μ − 1, the pair (A, B) is stabilizable and the pair (C, A) is detectable.

Proof The necessity of the subspace inclusions can be given easily by observing
that in case TDPMs

μ is solvable there exist μ − 1 subspacesWi that are Ae-invariant
subspaces wedged in between specific ‘input’ and ‘output’ subspaces in the state
space of the closed-loop system. Following [5], it is clear that for all i ∈ μ − 1
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(a) the intersection of Wi with the state space of the system (3.1)–(3.3) yields a
detectability subspace Si that contains G̃i ,

(b) the projection of Wi onto the state space of the system (3.1)–(3.3) yields a
stabilizability subspace Vi that is contained in ˜Ki ,

(c) Si ⊆ Vi .

Then taking the smallest of such detectability subspaces and the largest of such stabi-
lizability subspaces, the necessity of the subspace inclusions follows. The necessity
of the stabilizability of (A, B) and the detectability of (C, A) is obvious from the
fact that σ(Ae) ⊆ Cg .

Themain idea for the proof of the sufficiency part is the application of Proposition
3.13.Observe that for G̃i+1 ⊆ G̃i and ˜Ki+1 ⊆ ˜Ki , for all i ∈ μ − 1,wherewedefined

Ḡμ = ¯Kμ = 0. Hence, it follows that S ∗(G̃i+1) ⊆ S ∗(G̃i ), V ∗( ˜Ki+1) ⊆ V ∗( ˜Ki )

andS ∗(G̃i ) ⊆ V ∗( ˜Ki ), for all i ∈ μ − 1. FromProposition 3.13, it then follows that

there exist F, J and N such that (A+ B F)V ∗( ˜Ki ) ⊆ V ∗( ˜Ki ), (A+ JC)S ∗(G̃i ) ⊆
S ∗(G̃i ) and (A + B NC)S ∗(G̃i ) ⊆ V ∗( ˜Ki ), for all i ∈ μ − 1, σ(A + B F) ⊆ Cg

and σ(A + JC) ⊆ Cg . Then using a construction as described in Remark 3.14, it
follows easily that there exists a measurement feedback compensator of the type
(3.6)–(3.7) such that Hi,e Ak

e G j,e = 0 for all k ≥ 0 and 1 ≤ i < j ≤ μ. Also it
follows that σ(Ae) ⊆ Cg .

3.6.2 Almost Triangular Decoupling by Measurement
Feedback

In this subsection we shall derive necessary and sufficient conditions in state space
terms for the solvability of ATDPMμ. The conditions will not be derived directly
using state space methods, but will be a consequence of the result formulated below.
Therefore, recall that for i, j ∈ μ

Ki j (s) = Hi (s I−A)−1G j , Li (s) = Hi (s I−A)−1B, M j (s) = C(s I−A)−1G j .

To present the solvability conditions, we redefine for i ∈ μ

Δi (s) :=

⎡

⎢
⎢
⎢
⎣

L1(s)
L2(s)

...

Li (s)

⎤

⎥
⎥
⎥
⎦

, �i (s) := [
Mi+1(s) Mi+2(s) . . . Mμ(s)

]
,
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�i (s) :=

⎡

⎢
⎢
⎢
⎣

K1 i+1(s) K1 i+2(s) . . . K1μ(s)
K2 i+1(s) K2 i+2(s) . . . K1μ(s)

...
...

...

Ki i+1(s) Kii+2(s) . . . Kiμ(s)

⎤

⎥
⎥
⎥
⎦

.

Then the following result can be shown, see [13].

Theorem 3.28 There is a rational matrix X (s) such that Kij(s) +
Li (s)X (s)M j (s) = 0 for all i, j ∈ μ − 1 with i < j if and only if for all i ∈ μ − 1

(a) rank Δi (s) = rank [Δi (s), �i (s)], (b) rank �i (s) = rank

[
�i (s)
�i (s)

]

.

Note that for i ∈ μ − 1

Δi (s) =

⎡

⎢
⎢
⎢
⎣

H1
H2
...

Hi

⎤

⎥
⎥
⎥
⎦

(s I − A)−1B, �i (s) = C(s I − A)−1 [
Gi+1 Gi+2 . . . Gμ

]
,

and

Γi (s) =

⎡

⎢
⎢
⎢
⎣

H1
H2
...

Hi

⎤

⎥
⎥
⎥
⎦

(s I − A)−1 [
Gi+1 Gi+2 . . . Gμ

]
.

Hence,with the notation introduced in (3.18), it follows that the first rank condition
in Theorem 3.28 is equivalent to G̃i ⊆ V ∗

b ( ˜Ki ), whereas the second rank condition

is equivalent toS ∗
b (G̃i ) ⊆ ˜Ki , for all i ∈ μ − 1. Thus, we have proved

Theorem 3.29 ATDPMμ is solvable if and only ifS ∗
b (G̃i ) ⊆ ˜Ki and G̃i ⊆ V ∗

b ( ˜Ki )

for all ∈ μ − 1.

3.7 Conclusions

In this chapter we have recalled some results on noninteracting control and triangular
decoupling by state and measurement feedback. The results are derived using trans-
fer matrices techniques and the geometric approach toward system theory that was
initiated by Wonham in his book [12]. Not all results in this chapter are presented
in full generality. More details and results can be found in the list of references,
specifically in [7, 13] and [16]. Also in hindsight, some of the results could have



64 J. van der Woude

been derived easier or in a different way. Further, there are still relevant gaps that can
be worked on. For instance, on requirements on the diagonal blocks in both types
of problems with respect to rank and/or stability. As the geometric approach has
proved to be of limited value for applications, also the H∞- or H2-versions of the
noninteracting control and triangular decoupling by state andmeasurement feedback
may be worthwhile to look at.
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Chapter 4
Simultaneous Stabilization Problem
in a Behavioral Framework

Osamu Kaneko

Abstract This article addresses the simultaneous stabilization problem in the
behavioral framework. First, simultaneous stabilization problem for two linear sys-
tems is addressed. There, a necessary and sufficient condition for two linear systems
to be simultaneously stabilizable is a generalization of the result in the standard con-
trol theory. In addition, a parameterization of simultaneous stabilizers for a class of
a pair of linear systems is also presented. Based on these results, a sufficient condi-
tion for three linear systems to be simultaneously stabilizable is provided. Then, a
parameterization of simultaneous stabilizer for this case is also presented.

4.1 Introduction

It is a great pleasure to contribute this article to the Festschrift in honor of Harry L.
Trentelman on the occasion of his 60th birthday. About 20years ago, when I was
a Ph.D student, I was studying the behavioral system theory. As everyone knows,
the behavioral approach was proposed by Jan C. Willems and enables us to view a
dynamical system from a more broader perspective than conventional system theory.
In 1996, I attended CDC held in Kobe and participated in some organized sessions
on behavioral system theory as one of the audience. There Harry gave some talks on
quadratic differential forms and control in a behavioral context. I was so impressed
that I read and studied papers written by Harry and Jan on behavioral system theory.
When I visited Jan in Groningen at the end of the summer of 1999, it was the first
time I ever had a talk with Harry. Since then, whenever we met in some international
conferences or symposiums, he gave insightful and sharp comments on my results.
Luckily, I had a chance to stay in Groningen for about six weeks in the autumn of
2009. At that time, fruitful discussions with Harry were very exciting for me. The
next year, he visited Kanzazawa and gave a lecture on rational representations of the
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behaviors, which are very interesting topics (and then he also enjoyed a hot spa).
From the above backgrounds, my research centered on behavioral system theory
is greatly influenced by Harry. Thus I think that a topic on control in a behavioral
context is appropriate for this festschrift.

As one of the issues on behavioral control theory, this article considers simulta-
neous stabilization problems in a behavioral framework. Simultaneous stabilization
is the problem of finding a condition under which there exists a single controller that
stabilizes multiple plants. This problem was first proposed and investigated in [22]
from the viewpoints of reliable control synthesis. Then there have been many studies
in the input/output setting, see [7–9, 16, 17, 21, 23]. In the case of two plants, it
was shown that a pair of linear plants is simultaneously stabilizable if and only if
there exists a strong stabilizer [26]—the denominator of the stabilizer also has all
roots in open left half plane—for the augmented system constructed by using these
two systems. In the case of three or more systems, shown in [3–5] by Blondel, it is
impossible to find a necessary and sufficient condition that is checkable by a finite
number of arithmetic or logical computations. That is, simultaneous stabilization
problem for three or more plants is rationally undecidable. Since then, simultaneous
stabilization is known as one of open problems in systems and control theory [6,
18]. On the other hand, studies of simultaneous stabilization are expected to provide
insightful gradients, which are meaningful for theoretical developments.

J.C. Willems proposed the behavioral approach, which provides a new viewpoint
for dynamical system theory [19, 24, 25]. In the behavioral approach, a system is
viewed as a set of the trajectories of a system and there is no input/output partition in
the variables that interact with the environment while a transfer function as the map
from input to output plays a crucial role in the standard system theory. Control in the
behavioral approach is regarded as an “interconnection” [15, 20, 25] which corre-
sponds to pick up the desired trajectories by sharing the variables with a controller.
Of course, control is not necessarily realized by the feedback architecture. This is
also a generalization of the concept of “control” from a broader perspective. Thus, it
is expected that the behavioral approach provides new and meaningful insights for
an important theoretical issue like the simultaneous stabilization problem.

From these expectations, the author has been studying the simultaneous stabi-
lization problem from the behavioral perspective in [11–14]. This article presents
these results with some new remarks and observations. First, we provide an equiva-
lent condition for two linear systems to be simultaneously stabilizable, and then also
presents a parameterization of simultaneous stabilizers under the assumption that the
interconnection of these two behavior is stable [11, 12]. By using this result, we pro-
vide a condition for three linear systems to be simultaneously stabilizable. We show
that if one of the behavior stabilizes the other two behaviors, then three behaviors
are simultaneously stabilizable [13, 14]. Although this condition corresponds to the
result by Blondel in [2], the approach presented here is completely self-contained and
is also independent of [2]. Particularly, a parameterization of simultaneous stabilizers
in the three systems case is also presented here.
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[Notations]LetR[ξ ]denote the set of polynomialswith real coefficients andRp×q[ξ ]
denote the set of polynomialmatriceswith real coefficients of size p×q, respectively.
Let R(ξ) denote the set of rational functions with real coefficients and R

p×q(ξ)

denote the set of rational matrices with real coefficients of size p × q, respectively.
For a nonsingular polynomial matrix R ∈ R

q×q[ξ ], all of the roots of det(R) are
located in the open left half plane, R is said to be Hurwitz. Let RH[ξ ] and R

q×q
H [ξ ]

denote the set of Hurwitz polynomials and the set of Hurwitz polynomial matrices
of size q × q, respectively.

4.2 Linear Time-Invariant Behaviors

We give brief reviews of behavioral system theory for linear time-invariant systems
based on the references [19, 24, 25]. In the behavioral framework, a dynamical
system is characterized as the set of the trajectories, i.e., the behavior. Let P denote
the behavior of a system and q denote the number of the variables which interact
with its environment. If a system is linear and time-invariant, the behavior P is

representable by RN
d N w
dt N +· · ·+R1

dw
dt +R0w = 0,where Ri ∈ R

•×q, i = 0, · · · , N .
This is called a kernel representation of P and the variable w is called a manifest
variable. A kernel representation is written as R( d

dt )w = 0 by using a polynomial
matrix R := R0 + R1ξ + · · ·+ RN ξ N ∈ R

•×q[ξ ]. It should be noted that there is no
input/output partition in w. There are many kernel representations forP. Particularly,
we call a kernel representation R( d

dt )w = 0 minimal if R has normal full row
rank. In the following, the minimal rank of polynomial matrices inducing kernel
representations is denoted by p.

P is said to be controllable if for allw1, w2 ∈ P there existw ∈ P and T1, T2(∈ R)

such that w(t) = w1(t) for t ≤ T1 and w(t) = w2(t) for t > T2. In the case of linear
time invariant behavior,P is controllable if andonly if aminimal kernel representation
is induced by a polynomial matrix R(ξ) with the property that R(λ) is full row rank
for all complex number λ. The controllability of P is also equivalent to saying that P

is described by w = ML
d L�
dt L +· · ·+ M1

d�
dt + M0�, where Mi ∈ R

q×•, i = 0, · · · , L .
This is called an image representation of P and � is called a latent variable. Similar
to kernel representations, we use the notation w = M( d

dt )� by using a polynomial
matrix M := M0+ M1ξ +· · ·+ MLξ L ∈ R

q×•[ξ ]. Moreover, there are many image
representations forP. Particularly, � is said to be observable from w if w = 0 implies
� = 0. A latent variable � in w = M( d

dt )� is observable from w if and only if M(λ)

is full column rank for all complex number λ.
Note that RM = 0 and that there exists a polynomial matrix Q ∈ R

(q−p)×q[ξ ]
such that

(
RT QT

)T
is unimodular and QM = I . Similarly, there exists a polynomial

matrix N ∈ R
q×p[ξ ] such that (N M) is unimodular and RN = I . Thus,

(
R
Q

)
(

N M
) = I (4.1)
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holds, which is referred as a doubly coprime factorization [10]. Throughout this
article,we address controllable behaviors and their observable image representations.

P is said to be stable if w ∈ P implies w(t)→0 as t→∞. A behavior P is stable if
and only if a minimal kernel representation of P is induced by a Hurwitz polynomial
matrix R ∈ R

q×q
H [ξ ]. Control in the behavioral framework can be formalized as

“interconnection” [25]. This corresponds to pickup the common trajectories between
the behavior of a plant P and a controller C by sharing their external variables. The
behavior after the interconnection can be restricted as P ∩ C. There exist two kinds
of interconnections, one is full interconnection [25] where two systems share all of
their variables. The other is partial interconnection [1] where some of their variables
are shared by each system. This article focuses on full interconnection.

In order to stabilize the plant P, a controller C, which is described by a kernel
representation Cw = 0 with C ∈ R

(q−p)×q[ξ ], must be designed so as to satisfy that
the behavior P ∩ C is described by

(
R

( d
dt

)

C
( d

dt

)

)

w = 0 (4.2)

is stable, or equivalently,
(

RT CT
)T

must be an element of Rq×q
H [ξ ]. It was shown

in [15] by Kuijper that all of the stabilizing controllers for P can be induced by
polynomial matrices

C := (
F B

)
(

R
Q

)

, (4.3)

for arbitrary B ∈ R
(q−p)×(q−p)
H [ξ ] and arbitrary F ∈ R

(q−p)×p[ξ ]. This is the
behavioral version of the parameterization of all of the stabilizing controllers, which
is the extension of the conventional result in [27]. Related to (4.3), it was also shown
in [15] that C ∈ R

(q−p)×q[ξ ] induces a stabilizing controller forP if and only if C M
is a Hurwitz polynomial matrix for any observable image representation w = M�.

4.3 Simultaneous Stabilization Problem for Two Linear
Systems in a Behavioral Framework

4.3.1 Problem Formulation

Nowwe consider the simultaneous stabilization problem for the case of two systems.
We are given two linear time-invariant controllable behaviors P1 and P2. We assume
that the output cardinalities of themare the same, i.e., the ranks of theirminimal kernel
representations are the same. Let Ri ∈ R

(q−p)×q[ξ ] induce a kernel representation
of Pi for i = 1, 2. Then, the problem we consider here is to find a condition under
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which there exists a single controller C such that P1 ∩ C and P2 ∩ C are stable. In
terms of polynomial matrices, this problem can be equivalently formalized as finding
a condition under which there exists a polynomial matrix C ∈ R

(q−p)×q[ξ ] such that
(

Ri (ξ)T C(ξ)T
)T

is an element of Rq×q
H [ξ ] for i = 1, 2.

In the following, let Mi ∈ R
(q−p)×(q−p)[ξ ] denote a polynomial matrix induc-

ing an observable image representation of Pi for each i = 1, 2. Similarly, let
Qi ∈ R

(q−p)×(q−p)[ξ ] and Ni ∈ R
(q−p)×(q−p)[ξ ] denote polynomial matrices

which satisfy the doubly coprime factorization (4.1).

4.3.2 A Necessary and Sufficient Condition for Two Linear
Systems to be Simultaneous Stabilizable

In the standard control theory, it is well known that the simultaneous stabilizability of
two linear systems is equal to the strong stabilizability [27] of the augmented system
which consists of the given two systems [23]. Here, we show the corresponding result
in the behavioral framework.

For P1 and P2 with involved polynomial matrices, we introduce the augmented
behavior P12 described by a kernel representation

R2(
d
dt )

(
N1(

d
dt ) M1(

d
dt )

)
w = 0. (4.4)

It is easy to see that an observable image representation of P12 is described by

w =
(

R1(
d
dt )

Q1(
d
dt )

)

M2

(
d

dt

)

�. (4.5)

Then, we can obtain the following theorem [11].

Theorem 4.1 Two behaviors P1 and P2 are simultaneously stabilizable if and only
if there exist F12 ∈ R

(q−p)×q[ξ ] and H12 ∈ R
(q−p)×(q−p)
H [ξ ] such that

Ca12 := (
F12 H12

) ∈ R
(q−p)×q[ξ ] (4.6)

induces a stabilizer for P12. �

Here, we give a brief review of the proof of this theorem. We define

C12 := Ca12

(
R1
Q1

)

= (
F12 H12

)
(

R1
Q1

)

. (4.7)

It follows from theparameterization (4.3) byKuijper [15] and H12 ∈ R
(q−p)×(q−p)
H [ξ ]

that C12 described by (4.7) induces a stabilizing controller for P1. In addition, by
usingKuijper’s result on the relationship between an observable image representation
and a controller as reviewed in the previous section, we see that C12M2 is an element
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of R(q−p)×(q−p)
H [ξ ]. Thus, P1 and P2 are simultaneously stabilizable. Conversely,

we assume thatP1 andP2 are simultaneously stabilizable. In other words, a stabilizer
for P1 induced by

(
F12 H12

)
(

R1
Q1

)

(4.8)

for H12 ∈ R
(q−p)×(q−p)
H [ξ ] and F12 ∈ R

(q−p)×p
H [ξ ] also stabilizes P2. This implies

that

(
F12 H12

)

︸ ︷︷ ︸
Ca12

(
R1
Q1

)

M2 =: B12 (4.9)

is also Hurwitz. This is equivalent to saying that the above Ca12 with Hurwitz H12
is also a stabilizer for P12. For more detailed proof, see [11].

Here, we have two points to be mentioned. One is on the symmetric structure on
simultaneous stabilizers. The above theorem can be equivalently applied to another
augmented behavior obtained by the exchange of P1 and P2. We denote it by P21.
This is described by a kernel representation

R1(
d
dt )

(
N2(

d
dt ) M2(

d
dt )

)
w = 0 (4.10)

or an observable image representation described by

w =
(

R2(
d
dt )

Q2(
d
dt )

)

M1

(
d

dt

)

�. (4.11)

It is easy to see that P1 and P2 are simultaneously stabilizable if and only if there
exist F21 ∈ R

(q−p)×p[ξ ] and H21 ∈ R
(q−p)×(q−p)
H [ξ ] such that P21 is stabilized by

Ca21 induced by

Ca21 := (
F21 H21

) ∈ R
(q−p)×q[ξ ]. (4.12)

The proof of this statement is similar to the above theorem. Thus, we see that

(
F21 H21

)

︸ ︷︷ ︸
Ca21

(
R2
Q2

)

M1 =: B21 (4.13)

is also Hurwitz. We also define

A21 := (
F21 H21

)
(

R2
Q2

)

N1. (4.14)
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At this point, we see that
(

A21 B21
)
also induces a strong stabilizer for P12. Sim-

ilarly, we also see that
(

A12 B12
)
also induces a strong stabilizer for P21 where

A12 is defined by the exchange of P1 and P2 in (4.14). If we use the terminologies
on the transfer functions in the conventional control theory, the interpretation of this
observation is that the pole of the denominator of a strong stabilizer for P12 can be
the pole of the closed loop between P21 and Ca21 and vice versa. Since a strong
stabilizer for P12 (P21) is proper while that for P21 (P12, respectively) is nonproper,
such an observation on the symmetric structure cannot be obtained in the transfer
function setting.

The other point to be mentioned is on the case of multiple plants. Although we
treat the case of two linear systems, the above equivalent condition can be quickly
extended to the case ofmultiple linear systems. ForPi (i = 1, 2 · · · , n), we introduce
the augmented behaviorP1i which is described by a kernel representation induced by

R1
(

Ni Mi
)

for i = 2, 3, · · · , n. (4.15)

Then, multiple systems Pi (i = 1, 2 · · · , n) are simultaneous stabilizable if and only
if there exist F1i ∈ R

(q−p)×q[ξ ] and H1i ∈ R
(q−p)×(q−p)
H [ξ ] such that

Ca1i := (
F1i H1i

) ∈ R
(q−p)×q[ξ ] (4.16)

induces a stabilizer for P1i for i = 2, 3, · · · , n. This is also a generalization of the
result in [22] for the transfer function setting.

4.3.3 The Behavioral Version of the Strong Stabilizability

In the input/output setting, (4.6) can be also described by the transfer function
H−1
12 F12. From this, we can regard that the H12 corresponds to the “denominator”

in the case where Ca12 is described by a standard transfer function, so (4.6) corre-
sponds to “strong stabilizer” for P12 in the behavioral setting. It is well known that
the strong stabilizability for single-input and single-output systems is characterized
as the parity interlacing property (p.i.p) condition on unstable real zeros with ∞ and
unstable poles on the real axis [26]. In the behavioral setting, the well-known p.i.p
condition can be slightly moderated.

Consider the strong stabilization of single-input and single-output systems in the

behavioral framework. Let
(

d n
) ∈ R

1×2[ξ ] be a kernel representation which can
be also described by the transfer function− n

d . The strong stabilizability of this system
is equivalent to saying that there exists a

(
c1 c2

) ∈ R
1×2[ξ ] with c2 ∈ RH[ξ ] such

that h := c1n + c2d is also Hurwitz. This condition can be also rewritten as that
there exist c2, h ∈ RH[ξ ] and c1 ∈ R[ξ ] such that

d + c1
c2

n = h

c2
(4.17)



72 O. Kaneko

holds. Note that c1
c2

and h
c2

are not restricted to be proper rational functions in the
behavioral setting while the obtained result in [23, 27] for the standard control theory
requires that these rational functions is to be proper. In addition,we have no restriction
on the properness of n

d . From these discussions, we can obtain a moderated p.i.p
condition as follows.

Theorem 4.2 Let d ∈ R[ξ ] and n ∈ R[ξ ] be coprime polynomials. Let σi (i =
1, 2, · · · , m) denote nonnegative real roots of the numerator n such that 0 ≤ σ1 ≤
σ2 ≤ · · · ≤ σm < ∞. Then the following two statement are equivalent.

1. There exists r ∈ R(ξ) such that the denominator and numerator of d +rn ∈ R(ξ)

are stable and the denominator of r is stable.
2. For every interval (σi , σi+1) i = 1, 2, · · · , m − 1, there exists even numbers of

roots of d with multiplicity.

The difference between the above theorem and the well-known p.i.p condition [23,
27] is only the point that the above theorem requires the intervals 0 ≤ · · · ≤ σm < ∞
while the condition in [23, 27] requires the 0 ≤ · · · ≤ σm ≤ ∞. That is, the above
p.i.p condition is moderated in the sense that the interval on the infinite zeros of n

d is
eliminated. The proof is straightforward from [23, 27].

We return to the simultaneous stabilization problem by illustrating an example.
Consider the following two systems P1 and P2 described by

R1 = (−(ξ − 1)(ξ + 1) ξ − 2
) ∈ R

1×2[ξ ]
R2 = (−(ξ − 2)(ξ + 1) ξ − 1

) ∈ R
1×2[ξ ],

respectively. For P1, we compute N1 = (− 1
3

1
3 (ξ + 2)

)T
. By using N1, M1 and

R2, a kernel representation of the augmented behavior P12 can be induced by

R12 := (− 2
3ξ (ξ + 1)(2ξ − 3)

) ∈ R
1×2[ξ ].

It is easy to see that R12 =: (
d12 n12

)
satisfies the moderated p.i.p condition (while

it does not satisfy the p.i.p condition in the standard setting [23, 27]). In fact, one of
the strong stabilizers for P12 can be obtained as a kernel representation induced by

Ca12 := (− 1
3ξ −ξ − 5

2

)
.

Using this, one of the simultaneous stabilizers of P1 and P2 can be obtained as a
kernel representation induced by

C12 := (
2 + 2

3ξ − 3
2

)
. (4.18)

In fact, it is easy to check that both
(

RT
1 CT

12

)T
and

(
RT
2 CT

12

)T
are Hurwitz. More-

over, (4.18) can be also described by the transfer function as − 4
3 + 4

9ξ which is
nonproper. On the other hand, it follows from the standard p.i.p condition in [23, 27]
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that these two systems cannot be simultaneously stabilizable. Thus, these two sys-
tems can be simultaneously stabilizable by a nonproper controller while they cannot
be simultaneously stabilizable by any proper controller.

4.3.4 Parameterization of Simultaneous Stabilizers for a Class
of Pairs of Linear Systems

We provide a parameterization of simultaneous stabilizers for two linear systems
in the behavioral framework. Such a parameterization has not been provided in the
standard control theory.

Here, we suppose that q = 2 and p = 1. In addition, as a crucial assumption, we
assume that P1 ∩ P2 is stable, which is equivalent to saying that one is a stabilizer
of the other. From the viewpoints of polynomials, this assumption is also equivalent
to saying that R1M2 and R2M1 are elements of RH[ξ ].

From the observation in the previous subsection, P1 and P2 are simultaneously
stabilizable if and only if there exist Hurwitz H12 and H21 such that

(
F12 H12

)
(

R1
Q1

)

M2 = H21. (4.19)

Thus, we obtain the following equivalent condition for two linear systems to be
simultaneously stabilizable with respect to the solvability of a polynomial equation
as follows.

Theorem 4.3 Let P1 and P2 denote linear time invariant controllable behaviors.
Then, P1 and P2 are simultaneously stabilizable if and only if the following polyno-
mial equation

H12Q1M2 − H21 = −F12R1M2 (4.20)

is solvable with respect to H12, H21 ∈ RH[ξ ], and F12 ∈ R[ξ ].
In (4.19), we focus on the part which was already introduced in (4.8). Since H12 is

Hurwitz, it follows from the parameterization of all stabilizing controllers in (4.3) that
(4.8) induces a kernel representation of the stabilizer for P1 as stated in the previous
subsection. In addition, (4.20) implies that (4.8) also induces a kernel representation
of the stabilizer for P2. Namely, if F12 and H12 are solutions of (4.19), then (4.8)
with these solutions induces a kernel representation of the simultaneous stabilizer
for P1 and P2. Thus, we obtain the following theorem on the parameterization of
simultaneous stabilizers for two linear systems.

Theorem 4.4 Assume that (4.20) is solvable with respect to H12, H21 ∈ RH[ξ ], and
F12 ∈ R[ξ ]. Then (4.8) with the solutions H12 and F12 of (4.20) induces a kernel
representation of a simultaneous stabilizer of P1 and P2.
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Next, we consider the condition under which (4.20) is solvable. From an assump-
tion that P1 ∩P2 is stable, we define R1M2 = R2M1 =: B12 ∈ RH[ξ ]. Then, (4.20)
can be described as

H12Q1M2 − H21 = −F12B12. (4.21)

Note that H12 and H21 should be Hurwitz polynomials. If they includes B12 as a
common factor, (4.21) can be rewritten as

B12H ′
12Q1M2 − B12H ′

21 = −F12B12 (4.22)

where H ′
12, H ′

21 ∈ RH[ξ ]. The above (4.22) is always solvablewith respect toHurwitz
polynomials H ′

12 and H ′
21, and a polynomial F12, because,

F12 = H ′
12Q1M2 − H ′

21 (4.23)

is a solution of (4.22) for arbitrary Hurwitz polynomials H ′
12 and H ′

21. Hence, under
the assumption that P1 ∩ P2 is stable, Theorem 4.4 can be modified as follows:

Theorem 4.5 Assume thatP1∩P2 is stable and define a Hurwitz polynomial B12 :=
R1M2 = R2M1. Then, a kernel representation of a simultaneous stabilizer for P1
and P2 is induced by

C12 := (
H ′
12Q1M2 − H ′

21 B12H ′
12

)
(

R1
Q1

)

(4.24)

for arbitrary H ′
12 and H ′

21 ∈ RH[ξ ].
The above theorem provides a parameterization of simultaneous stabilizers under
the assumption that P1 ∩ P2 is stable.

4.4 Simultaneous Stabilization of Three Linear Systems
in a Behavioral Framework

4.4.1 A Sufficient Condition for Three Linear Systems
to Be Simultaneously Stabilizable

Let P1, P2, and P3 denote the behaviors of three linear systems. We also assume that
P1 ∩P2 and P1 ∩P3 are stable. In other words, one of three behaviors stabilizes the
other two behaviors. Similar to B12 = R1M2 = R2M1 for P1 and P2, we also define
a Hurwitz polynomial

B13 := R1M3 = R3M1. (4.25)
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Applying Theorem 4.5 to P1 and P3 yields that a kernel representation of a simulta-
neous stabilizer for P1 and P3 is induced by

C13 := (
H ′
13Q1M3 − H ′

31 B13H ′
13

)
(

R1
Q1

)

(4.26)

for arbitrary Hurwitz polynomials H ′
13 and H ′

31. Compare the simultaneous stabilizer
for P1 and P2 described by (4.24) with the simultaneous stabilizer for P1 and P3
described by (4.26). We see that if the following two identical equations:

H ′
12Q1M2 − H ′

21 = H ′
13Q1M3 − H ′

31 (4.27)

B12H ′
12 = B13H ′

13 (4.28)

hold, a simultaneous stabilizers for P1 and P2 is equal to that for P1 and P3. That
is, (4.24) or (4.26) with the identical Eqs. (4.27) and (4.28) induces a simultaneous
stabilizer for P1, P2, and P3. Thus, we focus on the problem of whether (4.27) and
(4.28) are solvable with respect to Hurwitz polynomials H ′

12, H ′
21, H ′

13, and H ′
31.

First, we focus on the solvability of (4.28). For this, sincewe just have to guarantee
that H ′

12 and H ′
13 are Hurwitz, we select them as

H ′
12 = B13H (4.29)

H ′
13 = B12H (4.30)

where H ∈ RH[ξ ] can be arbitrary given. Next, we focus on the solvability of (4.27).
Sincewe have already determined H ′

12 and H ′
13 so as to satisfy Eqs. (4.29) and (4.30),

(4.27) is written as

H B13Q1M2 − H ′
21 = H B12Q1M3 − H ′

31 (4.31)

or equivalently

H B13Q1M2 − H B12Q1M3 = H ′
21 − H ′

31. (4.32)

For simplicity, we restrict H = 1 in the following. The left-hand side of (4.32)
has already been determined. This implies that the problem is to show whether the
polynomial B13Q1M2 − B12Q1M3 can be described by the subtraction of Hurwitz
matrices. In the case where B13Q1M2 − B12Q1M3 is Hurwitz, for instance, we can
choose

H21 := αB13Q1M2 − B12Q1M3

H31 := (α − 1)B13Q1M2 − B12Q1M3

for an arbitrary α ∈ R. In general, B13Q1M2− B12Q1M3 is not necessarily Hurwitz.
In such a case, this is described as the product of the Hurwitz polynomial and the
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anti-Hurwitz one. The Hurwitz part can be included as the factor of both H ′
21 and

H ′
31. Thus, the problem is to check whether the anti-Hurwitz part can be decomposed

as the subtraction of Hurwitz polynomials. As for this problem, we can obtain the
following lemma.

Lemma 4.6 Let a ∈ R[ξ ] be an arbitrary anti-Hurwitz polynomial. Then there exist
Hurwitz polynomials b1 and b2 ∈ RH[ξ ] such that

a = b1 − b2. (4.33)

The proof will be contained in the future publications by the author. Based on
Lemma 4.6, it is possible to guarantee that there exist Hurwitz H ′

21 and H ′
31 such

that

B13Q1M2 − B12Q1M3 = H ′
21 − H ′

31. (4.34)

Therefore, if P1 ∩ P2 and P1 ∩ P3 are stable, then P1, P2 and P3 are simultaneous
stabilizable. Moreover, together with Theorem 4.5, we can obtain a parameterization
of simultaneous stabilizers for three linear systems under this assumption.

Theorem 4.7 Assume that P1 ∩P2 and P1 ∩P3 are stable. Define Hurwitz polyno-
mial B12 := R1M2 = R2M1 and B13 := R1M3 = R3M1. Then, a kernel represen-
tation of a simultaneous stabilizer for P1, P2 and P3 is induced by

(
H B13Q1M2 − H ′

21 B12B13
)
(

R1
Q1

)

(4.35)

or

(
H B12Q1M3 − H ′

31 B13B12
)
(

R1
Q1

)

(4.36)

where H ′
21 and H ′

31 are Hurwitz polynomials obtained by the decomposition as

H B13Q1M2 − H B12Q1M3 = H ′
21 − H ′

31 (4.37)

and H is arbitrary Hurwitz polynomial.

The same condition holds if the role of P1 and P2 (or P3) are replaced. Conse-
quently, we can also obtain the following theorem.

Theorem 4.8 Let P1, P2, P3 denote the behaviors of three linear systems. If one of
them stabilizes the other two behaviors then these three behaviors are simultaneously
stabilizable.

In [2], the similar theorem has already been obtained in the transfer function
setting. The approach addressed here is completely self-contained and is derived
independently from [2]. Particularly, the approach in the behavioral setting also
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gives a parameterization of a simultaneous stabilizer, which are different point from
the result in [2].

4.4.2 Example

We give a simple example [13] in order to illustrate how the result in this article
works in the simultaneous stabilization. Let P1, P2, and P3 be described as kernel
representations induced by

R1 = [−2 ξ − 1
] ∈ R

1×2[ξ ], (4.38)

R2 = [
ξ 2ξ + 1

] ∈ R
1×2[ξ ], (4.39)

R3 = [
ξ − 3 3ξ − 1

] ∈ R
1×2[ξ ], (4.40)

respectively. A matrix Q1 such that [RT
1 QT

1 ]T is unimodular can be easily com-
puted as

Q1 = [
0 1

2

] ∈ R
1×2[ξ ]. (4.41)

First, we check whether P1 ∩ P2 and P1 ∩ P3 are stable. Actually, from simple
computations, we see that

B12 := R1M2 = −ξ2 − 2ξ − 2 (4.42)

B13 := R1M3 = −ξ2 − 2ξ − 1. (4.43)

Thus, the sufficient condition for a triple of the behaviors to be simultaneously
stabilizable is satisfied. We compute

B ′
13Q1M2 − B ′

12Q1M3 = −ξ2 − 4ξ − 3. (4.44)

One of the candidates of the decomposition described by (4.44) is

H ′
21 = 2(−ξ2 − 4ξ − 3)

H ′
31 = −H ′

21.
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Then, we obtain

B ′
13Q1M2 − H ′

21 = B ′
12Q1M3 − H ′

31 = 1

2
ξ3 − ξ2 − 15

2
ξ − 6.

Hence, the behavior of a simultaneous stabilizer, say C, is induced by

C := (
B ′
13Q1M2 − H ′

21 B ′
12B ′

13

)
(

R1
Q1

)

= (−ξ3 + 2ξ + 15ξ + 12 −4ξ3 − 11ξ − 2ξ + 5
) ∈ R

1×2[ξ ].

Indeed, we can validate thatC induces simultaneous stabilizers forP1,P2, andP3.
As forP1∩C, we see that C M1 = B ′

12B ′
13, which is stable. The roots of polynomials

of C M2 and C M3 are {−1,−1,−1,−3} and {−1,−1,−2,−3} respectively, which
implies that they are also Hurwitz. Thus, we see that C described by (4.37) induces
a simultaneous stabilizers for P1, P2, and P3.

4.5 Conclusions and Future Works

In this article, we have addressed the simultaneous stabilization problem in the behav-
ioral framework. We have explained a necessary and sufficient condition for a pair of
linear systems to be simultaneously stabilizable.We have also discussed the relation-
ship between the strong stabilizability in the behavioral setting and that in the standard
setting.Wehave also provided a parameterization of simultaneous stabilizer under the
assumption that the interconnection of the two systems are stable. Then we have also
considered the case of three systems. For this problem, we have provided a sufficient
condition for three systems to be simultaneously stable. This condition is that one of
the three systems stabilizes the other two systems. Although this condition coincides
with the results in [2] by Blondel, the derivation is completely self-contained and
our result yields a representation of simultaneous stabilizers. Finally, we have also
provided a parameterization of simultaneous stabilizers under the assumption that
one of the three behaviors stabilizes the other two behaviors.

There are many issues to be looked into in the future. In this article, we suppose
that simultaneous stabilization can be done by regular interconnection. On the other
hand, there exist many cases where a kernel representation of Pi is not minimal, that
is, the output cardinality is not the same. In such cases, a necessary and/or sufficient
condition should be provided. To address this problem, we believe that the results
by Harry and Praagman in [20] could be very useful.

In addition, we have explained necessary and sufficient conditions for a class of
pairs/triples of linear systems. These results should be extended to larger classes of
pairs/triples. Finally, as shown in [5, 6], the simultaneous stabilization problem for
a triple of linear systems is undecidable. Then, the problem on what kind of triples
is decidable might be interesting from the theoretical points of view.
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Chapter 5
New Properties of ARE Solutions for Strictly
Dissipative and Lossless Systems

Chayan Bhawal, Sandeep Kumar, Debasattam Pal
and Madhu N. Belur

Abstract Algebraic Riccati Equation (ARE) solutions play an important role in
many optimal/suboptimal control problems. However, a key assumption in formu-
lation and solution of the ARE is a certain ‘regularity condition’ on the feedthrough
term D of the system. For example, formulation of the ARE requires nonsingularity
of D + DT in positive real dissipative systems and, in the case of bounded real
dissipative systems, one requires nonsingularity of I − DT D. Note that for lossless
systems D + DT = 0, while for all-pass systems I − DT D = 0; this rules out the
formulation of the ARE. Noting that the ARE solutions are also extremal “storage
functions” for dissipative systems, one can speak of storage function for the lossless
case too. This contributed chapter formulates new properties of the ARE solution;
we then show that this property is satisfied by the storage function for the lossless
case too. The formulation of this property is via the set of trajectories of minimal
dissipation. We show that the states in a first-order representation of this set satisfy
static relations that are closely linked to ARE solutions; this property holds for the
lossless case too.Using this property, we propose an algorithm to compute the storage
function for the lossless case.
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5.1 Introduction

The algebraic Riccati equation (ARE) has found widespread application in many
optimal and suboptimal control/estimation problems. For example, Kalman filter,
LQ control, H∞ and H2 control; see [1, 11], for example. Since its introduction in
control theory by Kalman, many conceptual and numerical methods to solve ARE
have been developed [3, 11] for instance. In the context of dissipative systems, the
ARE solutions are extremal storage functions of the system. More about the link
between storage functions, dissipative systems and solvability of AREs can be found
in [16, 18]. However, for a special class of dissipative systems, namely, conservative
systems, the ARE does not exist. This happens due to the formulation of the ARE
depending on a suitable regularity condition on the feedthrough term D of any input-
state-output representation of a system. The precise form of the regularity condition
depends on the supply rate function, with respect to which dissipativity holds. For
example, in case of the “positive real supply rate,” uT y, where u is the input and y is
the output of the system, existence of the corresponding ARE requires nonsingularity
of D + DT . Similarly, for the “bounded real supply rate,” uT u − yT y, nonsingularity
of I − DT D is required for existence of the corresponding ARE. Contrary to this
regularity condition, systems that are conservative with respect to the positive real
supply rate and the bounded real supply rate have D + DT = 0 and I − DT D = 0,
respectively.1 Hence, for such systems the regularity conditions are violated, and
consequently, the corresponding ARE does not exist. In this chapter, we formulate
new properties of the ARE solution in terms of the set of trajectories of “minimal
dissipation” as formulated recently in [17]: for reasons we will elaborate later, we
will call this set “a Hamiltonian system.” We show that the ARE solution is closely
linked to the static relations that hold between the states in a first-order representation
of this set. We then show that this property is satisfied for the storage function for the
conservative case too, though the ARE does not exist in this case. We use this result
to develop an algorithm to compute the unique storage function for the conservative
systems case.

Wenowelaborate further on thekeyproperty that theAREsolution satisfies:which
we extend to the lossless case. The property is based on an observation concerning
the relation between ARE solutions and Hamiltonian systems. It is well known that
when the feedthrough term satisfies the regularity conditions, that is, when the ARE
exists, the solutions to the ARE can be found using suitable invariant subspaces of
a corresponding Hamiltonian matrix. Note that, in the singular cases (lossless/all-
pass), theHamiltonianmatrix does not exist. Consequently, thismethod involving the
invariant subspace fails to work for the singular cases. However, this same method,
when viewed from a different perspective opens up a new way of computing the

1Lossless systems, with u input and y output, are conservative with respect to the “positive real
supply rate” uT y and have D + DT = 0. Similarly, all-pass systems are conservative with respect
to the “bounded real supply rate” uT u − yT y. For all-pass systems I − DT D = 0. Hence, all
arguments about ARE solutions and storage functions made for lossless systems are applicable to
all-pass systems as well.
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ARE solutions, which extends naturally to the singular case, too. This new point of
view stems from the fact that the first-order system defined by theHamiltonianmatrix
associated to anARE is nothing but a state representation of a systemcomprised of the
“trajectories of minimal dissipation.” Consequently, choosing an invariant subspace
im

[
I
K

]
of the Hamiltonian matrix to get K as a solution to the ARE, can be viewed

as obtaining a subsystem of the Hamiltonian system by restricting the trajectories
to satisfy an extra set of equations as z = K x , where x, z are state variables of the
original system and its ‘dual’, respectively. The crucial fact about this new view-point
is that, although, the Hamiltonian matrix and the ARE do not exist in the singular
case, the Hamiltonian system, comprising of the trajectories of minimal system does
exist. We show in this chapter that, in such cases too, the strategy of putting static
relation z = K x leads to a storage function xT K x to the original system.

The notation used in the chapter is standard. The set R and C denote the fields of
real and complex numbers, respectively. The setR[ξ ] denotes the ring of polynomials
in ξ with real coefficients. The set Rw×p[ξ ] denotes all w× p matrices with entries
from R[ξ ]. We use • when a dimension need not be specified: for example, Rw×•
denotes the set of real constant matrices having w rows.R[ζ, η] denotes the set of real
polynomials in two indeterminates: ζ and η. The set of w× w matrices with entries
in R[ζ, η] is denoted by R

w×w[ζ, η]. The space C∞(R,Rw) stands for the space of
all infinitely often differentiable functions from R to R

w, and D(R,Rw) stands for
the subspace of all compactly supported trajectories in C∞(R,Rw).

This chapter is structured as follows: Sect. 5.2 summarizes preliminaries required
in the chapter.Newproperties ofARE solutions are presented in Sect. 5.3. In Sect. 5.4,
we formulate and prove new results that help computation of storage function K for
conservative behaviors based on the notion of “trajectories of minimal dissipation”.
Section5.5 uses the main result in Sect. 5.4 and proposes a numerical algorithm to
compute storage function of conservative systems. Section5.6 contains numerical
examples to illustrate the main results. Some concluding remark is presented in
Sect. 5.7.

5.2 Preliminaries

In this section, we give a brief introduction to various concepts that are required to
formulate and solve the problem addressed in the chapter.

5.2.1 Behavior

We start with some essential preliminaries of the behavioral approach: a detailed
exposition can be found in [12].
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Definition 5.1 A linear differential behavior B is defined as the subspace of infi-
nitely often differentiable functions C∞(R,Rw) consisting of all solutions to a
set of linear ordinary differential equations with constant coefficients, i.e., for
R(ξ) ∈ R

•×w[ξ ]

B :=
{

w ∈ C∞(R,Rw) | R

(
d

dt

)

w = 0

}

. (5.1)

The variable w in Eq. (5.1) is called the manifest variable of the behavior B. We
denote linear differential behaviors with w number of manifest variables as Lw.
Equation (5.1) is what we call a kernel representation of the behavior B ∈ Lw and
we sometimes also write B = kerR( d

dt ). We assume the polynomial matrix R(ξ)

has full row rank without loss of generality (see [12, Chap.6]). This assumption
guarantees existence of a nonsingular block P(ξ) (after a permutation of columns,
if necessary, with a corresponding permutation of the components of w) such that
R(ξ) = [

P(ξ) Q(ξ)
]
. Conforming to this partition of R(ξ), partition w into w =[ y

u

]
, where it has been shown that u, y are the input and output of the behavior

B respectively: note that this partition is not unique. Such a partition is called an
input-output partition of the behavior. The input-output partition is called proper if
P−1Q is a matrix of proper rational functions. Although there are a number of ways
in which the manifest variables can be partitioned as input and output, the number
of components of the input depends only onB: we denote this number as m(B), and
call it the input cardinality of the behavior. The number of components in the output
is called the output cardinality represented as p(B). It is well known that p(B) =
rank R(ξ) and m(B) = w− p(B).

In the behavioral approach, a system is nothing but its behavior: we use the
terms behavior/system interchangeably. There are various ways of representing a
behavior depending on how the system is modeled: a useful one is the latent variable
representation: for R(ξ) ∈ R

•×w and M(ξ) ∈ R
•×m[ξ ],

B :=
{

w ∈ C∞(R,Rw) | there exists � ∈ C∞(R,Rm) such that R

(
d

dt

)

w = M

(
d

dt

)

�
}
.

Here � is called a latent variable.
Controllability is another important concept required for this chapter.

Definition 5.2 AbehaviorB is said to be controllable if for every pair of trajectories
w1, w2 ∈ B there exists w3 ∈ B and τ > 0 such that

w3(t) =
{

w1(t) for t � 0,
w2(t) for t � τ.

We represent the set of all controllable behaviors with w variables as Lwcont. The
familiar PBH rank test for controllability has been generalized: a behavior B with
minimal kernel representationB = kerR( d

dt ) is controllable if and only if R(λ) has
constant rank for allλ ∈ C. One of theways bywhich a behaviorB can be represented
if (and only if)B is controllable is the image representation: for M(ξ) ∈ R

w×m[ξ ]
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B :=
{

w ∈ C∞(R,Rw)| there exists � ∈ C∞(R,Rm) such thatw= M

(
d

dt

)

�

}

.

(5.2)

If M(ξ) is such that M(λ) has full column rank for all λ ∈ C, then the image
representation is said to be an observable image representation: this can be assumed
without loss of generality (see [12, Sect. 6.6]).

5.2.2 Quadratic Differential Forms and Dissipativity

This section contains a brief review ofQuadratic Differential Forms (QDFs):more on
QDFs can be found in [18]. We often encounter quadratic expressions of derivatives
of the manifest and/or latent variables of the behavior B. Two-variable polynomial
matrices can be associated with such quadratic forms. Consider a two-variable poly-
nomial matrix φ(ζ, η) := ∑

j, k φ jkζ
jηk ∈ R

w×w[ζ, η] where φ jk ∈ R
w×w. The

QDF Qφ induced by φ(ζ, η) is a map Qφ : C∞(R,Rw) → C∞(R,R) defined as

Qφ(w) :=
∑

j, k

(
d j w

dt j

)T

φ jk

(
dkw

dtk

)

.

Of course, when Σ ∈ R
w×w, then QΣ(w) = wT Σw. Using the definition of QDFs,

we next define a dissipative system.

Definition 5.3 Consider Σ = ΣT ∈ R
w×w and controllableB ∈ Lwcont. The system

B is said to be Σ-dissipative if

∫

R

QΣ(w) dt � 0 for every w ∈ B ∩ D. (5.3)

The function QΣ(w) is also called the supply rate: it is the rate of supply of energy to
the system. For simplicity, we also call Σ the supply rate. Equation (5.3) formalizes
the notion that dissipative systems are such that the net energy exchange is always
an absorption when the trajectories considered are those that start-from-rest and
end-at-rest, i.e. compactly supported. The link with existence of a storage function
is well known for the controllable system case: a controllable behaviorB ∈ Lwcont is
dissipative with respect to Σ if and only if there exists a quadratic differential form
Qψ(w) such that

d

dt
Qψ(w) � QΣ(w) for allw ∈ B.

The QDF Qψ is called a storage function forB with respect to the supply rate Σ .
The notion of a storage function captures the intuition that the rate of increase of

stored energy in a dissipative system is at most the power supplied. In this chapter, we
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shall be dealing with supply rates QΣ induced by real symmetric constant nonsin-
gular matrices Σ only. We need a count of the number of positive eigenvalues (with
multiplicities) of the symmetric matrix Σ : call this number the positive signature of
the matrix Σ and denote it by σ+(Σ).

For a Σ-dissipative system, m(B), the input cardinality of the behavior, cannot
exceed the positive signature σ+(Σ) of the supply rateΣ i.e.m(B) � σ+ (�) (details
in [18, Remark 5.11] and [19]). For this chapter, we restrict ourselves to the so-called
maximum input cardinality condition, i.e.

m(B) = σ+(�). (5.4)

Given Σ ∈ R
w×w and a system described by the observable image representation

w = M( d
dt )�, the QDF QΣ(w) can also be expressed as QΦ(�) in the latent variables

induced by Φ(ζ, η) ∈ R
m×m[ζ, η] is given by

Φ(ζ, η) := M(ζ )T Σ M(η).

Conservative systems are a special class of dissipative systems and this work
focusses on the conservative systems’ case: this iswhen the algebraicRiccati equation
does not exist.

Definition 5.4 Consider a symmetric and nonsingular matrix Σ ∈ R
w×w and a

behavior B ∈ Lwcont. The system B is called Σ-conservative if

∫

R

QΣ(w)dt = 0 for allw ∈ B ∩ D.

In order to simplify the exposition in this chapter, we shall be using the positive real
supply rate 2uT y i.e.

QΣ =
[

u
y

]T

Σ

[
u
y

]

induced byΣ =
[
0 I
I 0

]

(5.5)

where u and y are the input and output of the system respectively. Systems con-
servative with respect to the positive real supply rate are known in the literature as
lossless systems: see Footnote 1.Wewill be dealing with only lossless systems in this
chapter. However, the results in the chapter can be extended to system conservative
with respect to other supply rates also.

5.2.3 State Representation and Trimness

A state variable representation of a behavior B is a latent variable representation
where the latent variable x satisfies the axiom of state:whenever (w1, x1), (w2, x2) ∈
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Bfull and x1(0) = x2(0), the concatenation2 (w1, x1) ∧0 (w2, x2) at t = 0 also
satisfies the equations ofBfull in a weak/distributional sense. For such a system, we
have a first-order description, called the state-space description:

E
dx

dt
+ Fx + Gw = 0where E, F, G are constant real matrices. (5.6)

A state-space description is said to be minimal if the number of components in
the state x is the minimum amongst all possible state representations. The number of
states corresponding to a minimal state representation of B is called the McMillan
degree of the behavior B. When the state x is not minimal (but is observable from
the system variable w), it is known that one or more components in x satisfy a static
relation and the states are said to be nontrim. A more formal definition of state trim
is presented next.

Definition 5.5 The state x in Eq. (5.6) is said to be trim if for every a ∈ R
n there

exist a w ∈ B such that x(0) = a and (w, x) satisfies Eq. (5.6).

The algorithm proposed in this chapter is based on this notion of state trimness.
The static relation between the state x of the given lossless system and the “dual
state” z of the adjoint system are used to find the unique storage function for the
lossless case: see Theorem 5.13 below.

5.2.4 Minimal Polynomial Basis

This section contains a review of the notion of a minimal polynomial basis.
The degree of a polynomial vector r(s) ∈ R

n[s] is the maximum degree among
the n components of the vector. The degree of the zero polynomial and the zero
vector in Rn[s] is defined as −∞.

For R(s) ∈ R
n×m[s], the set of all polynomial vectors v(s) ∈ R

m[s] that satisfy
R(s)v(s) = 0 forms a vector space over the field of scalar rational functions. It is
known from the literature that such a vector space admits a polynomial basis called
the right nullspace basis of the polynomial matrix R(s): see [8, Sect. 6.5.4]. There
is a special nullspace basis called the minimal polynomial basis of the polynomial
matrix R(s) which is of importance to us in this chapter. Consider the polynomial
matrix R(s) ∈ R

n×m[s] of rank n. Let the set {p1(s), p2(s), . . . , pm−n(s)} be a
nullspace basis of R(s) ordered by their degrees d1 � d2 � · · · � dm−n. The
set {p1(s), p2(s), . . . , pm−n(s)} is said to be a minimal polynomial basis of R(s)
if every other nullspace basis {q1(s), q2(s), . . . , qm−n(s)} with degree c1 � c2 �

2For trajectories (w1, x1) and (w2, x2), their concatenation at t0, denoted by (w1, x1)∧t0 (w2, x2),
is defined as

(w1, x1) ∧t0 (w2, x2)(t) :=
{

(w1, x1)(t) for t < t0
(w2, x2)(t) for t � t0.

.
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· · · � cm−n is such that di � ci , fori = 1, 2, . . .m−n. The degrees of the vectors of
minimal polynomial basis of R(s) are called the (Forney invariant) minimal indices
or Kronecker indices (more details in [8, Sect. 6.5.4]).

5.3 The Algebraic Riccati Equation (ARE)
and Hamiltonian Systems

With a proper input-output partition (u, y), a controllable dissipative behavior B
admits the following minimal i/s/o representation.

ẋ = Ax + Bu, y = Cx + Du, A ∈ R
n×n, B, CT ∈ R

n×p and D ∈ R
p×p
(5.7)

with (C, A) observable. We assume here that the number of input m(B) = number of
output p(B): this assumption is in view of the maximum input cardinality condition

andΣ =
[
0 I
I 0

]

. The storage functions of a dissipative behavior are closely related to

the algebraic Riccati inequality (ARI) and the Hamiltonian matrix. One of the results
relating LMI, controllable behavior and storage function is theKalman–Yakubovich–
Popov (KYP) lemma: details in [6, Sect. 5.6]. For easy reference, we present the K Y P
lemma, in a behavioral context, as a proposition next.

Proposition 5.6 A behavior B ∈ Lwcont, with a controllable and observable minimal
i/s/o representation as in Eq. (5.7), isΣ-dissipative if and only if there exists a solution
K = K T ∈ R

n×n to the LMI

[
AT K + K A K B − CT

BT K − C −(D + DT )

]

� 0. (5.8)

For systems with D + DT > 0, the Schur complement with respect to D + DT in
LMI (5.8) results in the algebraic Riccati inequality

AT K + K A + (K B − CT )(D + DT )−1(BT K − C) � 0. (5.9)

The corresponding equation to the inequality (5.9) is called the algebraic Riccati
equation (ARE). Symmetric solutions to the ARE have a one-to-one correspondence
to n-dimensional invariant subspaces of the matrix below (details in [10, Theorem
3.1.1]).

H =
[

A − B(D + DT )−1C B(D + DT )−1BT

−CT (D + DT )−1C −AT + CT (D + DT )−1BT

]

(5.10)
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The matrixH is known as the Hamiltonian matrix. Every n-dimensionalH invari-

ant subspace spanned by columns of

[
I
K

]

corresponding to a suitably chosen set of

eigenvalues ofH , provides a solution K to the ARE.
The detailed procedure to find the solution to the ARE from n-dimensional

eigenspaces of the Hamiltonian matrix can be found in [4]. We provide a brief
review of the procedure next. In the lines of [10] and [13, Definition 5.1.1], we
define a Lambda set (Λ) to define the partition of eigenvalues of the Hamiltonian
matrixH . Λ̄ denotes the set of complex conjugates of the elements in Λ.

Definition 5.7 Consider an even polynomial p(ξ) ∈ R[ξ ] with no roots on the
imaginary axis. A set of complex numbers Λ ⊂ roots (p) is called a Lambda set of
the roots of p if the following conditions are satisfied:

1. Λ = Λ̄

2. Λ ∩ (−Λ) = ∅
3. Λ ∪ (−Λ) = roots of p(ξ) (counted with multiplicity)

Condition 1 in Definition 5.7 implies that the Lambda set should contain conjugate
pairs of complex roots of p(ξ). By condition 2, polynomial p(ξ) should not have
any roots on the imaginary axis.

In this chapter, we use the word Lambda set with respect to the eigenvalues of
a matrix to mean the Lambda set corresponding to the roots of the characteristic
polynomial of the matrix. Constructing Lambda set from the set of eigenvalues of
H (spec(H )), we find the solutions to the ARE. This is a well-known result in the
literature [10] and we present it as a proposition here.

Proposition 5.8 Consider a minimal i/s/o system given by Eq. (5.7) and the alge-
braic Riccati equation AT K + K A + (K B − CT )(D + DT )−1(BT K − C) = 0.
The corresponding Hamiltonian matrix H ∈ R

2n×2n is given by Eq. (5.10). Assume
that the Hamiltonian matrix H has no eigenvalues on the imaginary axis and define
Λ to be a Lambda set of spec (H ). Let the n-dimensional H -invariant subspace
corresponding to the Lambda set Λ be

SΛ := im

[
X1
X2

]

, where X1, X2 ∈ R
n×n

Then, X1 is invertible and K := X2X−1
1 is a real symmetric solution to the ARE.

The solutions to the ARE are storage functions xT K x of the behavior B with x the
state in i/s/o representation (Eq. (5.7)).

In order to describe the algorithm and the main results of the chapter, we need the
definition of the orthogonal complement of a behavior B.

Definition 5.9 Consider a controllable behavior B ∈ Lwcont and a symmetric Σ ∈
R
w×w. The Σ-orthogonal complement behavior B⊥Σ of B is defined as
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B⊥Σ :=
{

v ∈ C∞(R,Rw) |
∫ ∞

−∞
vT Σw dt = 0 for allw ∈ B ∩ D

}

.

It is well known that an i/s/o representation of B (with w = (u, y) ∈ B) gives one
for B⊥Σ : see [18, Sect. 10]. If ẋ = Ax + Bu, y = Cx + Du is a minimal i/s/o
representation of B, then (with respect to the positive real supply rate), a minimal
i/s/o representation B⊥Σ (with v ∈ B⊥Σ , v = (u, y)) is

ż = −AT z + CT u and y = BT z − DT u. (5.11)

For a given behavior B ∈ Lwcont and supply rate Σ , we call B ∩ B⊥Σ a Hamil-
tonian system and denote it byBHam: see Remark 5.10 below for a brief background.
It has been shown in [17] that these trajectories are trajectories of minimal dissipa-
tion for the given supply rate. The first-order representation for this set has a good

structure: this has been used in [15] for example. Define E :=
⎡

⎣
In 0 0
0 In 0
0 0 0

⎤

⎦ and

H :=
⎡

⎣
A 0 B
0 −AT CT

C −BT D + DT

⎤

⎦. A (possibly nonminimal) first-order representation of

BHam is given by
(

d

dt
E − H

)
⎡

⎣
x
z
y

⎤

⎦ = 0. (5.12)

Define R(ξ) := (ξ E − H); we call R(ξ) a ‘Hamiltonian pencil’.

Remark 5.10 In classical optimal control theory, given a quadratic cost functional,
the systemof trajectories satisfying the correspondingEuler–Lagrange (EL) equation
can be considered aHamiltonian system. Further, the trajectories are called stationary
with respect to this cost: see [14, Sect. 4] for example. The EL equation with respect
to the integral of QDF QΣ turns out to be ∂Φ( d

dt )� := M(− d
dt )

T Σ M( d
dt )� = 0 with

� ∈ C∞(R,Rm). For �� satisfying this system of equations, w� := M( d
dt )�

� turns out
to be stationary with respect to wT Σw: see [14, Proposition 4.1]. For a behaviorB ∈
Lwcont and its orthogonal complementB⊥Σ , it is shown in [7, Theorem 3.3] thatB∩
B⊥Σ = M( d

dt )ker∂Φ( d
dt ); with this background, we call B ∩ B⊥Σ a Hamiltonian

behavior and thematrix pencil R(ξ) related to the first-order representation ofBHam,
a Hamiltonian pencil.

Corresponding to a Λ-set of the eigenvalues of H , we associate a behavior
(BHam)Λ ∈ Lw such that (BHam)Λ contains (possibly polynomial times) exponential
trajectories with the time-exponent λi an element in Λ. Further (BHam)Λ is a sub-
behavior ofBHam, i.e., all the trajectories in (BHam)Λ are trajectories inBHam. This
notion has been used elsewhere too. For example, for Λ-set corresponding to the n
eigenvalues of H in C+, the corresponding (BHam)Λ = (BHam)antistab as defined
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in [17, Theorem 3.6]. The same notion has also been used in [15, Sect. 3]. We present
a theorem next which shows the relations between Hamiltonian systems and storage
functions of a behavior. Some of the equivalences are known. This theorem is the
one we extend to the lossless case in Theorem 5.13 below.

Theorem 5.11 Consider a controllable, strictly dissipative behavior B ∈ Lwcont
with minimal state-space representation as in Eq. (5.7) and McMillan degree n. The
corresponding Hamiltonian behavior BHam = kerR( d

dt ) where R(ξ) := ξ E − H ∈
R

(2n+p)×(2n+p) is the Hamiltonian pencil defined in Eq. (5.12). Suppose K ∈ R
n×n

is a solution to the ARE corresponding to the behavior B. Then, the following
statements hold.

1. The Hamiltonian behavior BHam is autonomous, i.e. det R(ξ) �= 0.
In fact deg det R(ξ) = 2n.

2. d
dt xT K x = 2uT y for all

[
u
y

]

∈ (BHam)Λ.

3. rank

[
R(ξ)

−K I 0

]

= rank R(ξ) = 2n+ p.

4. rank

[
R(λ)

−K I 0

]

= rank R(λ) < 2n+p for each λ ∈ Λ(roots det R(ξ)).

Proof Statement 1 is trivial and so we do not dwell on it further: see [18, Sect. 4].
The polynomial matrix R(ξ) is full row rank and hence 3 is true. Statement 2 has
been proved in [18, Theorem 4.8]. Hence, we proceed to prove Statement 4.

4: In order to prove 4 of Theorem 5.11, we first prove that

ker

[
R(λ)

−K I 0

]

= kerR(λ) for any λ ∈ Λ(roots det R(ξ)) = Λ(spec(H )).

Of course ker

[
R(λ)

−K I 0

]

⊆ ker R(λ) holds and the reverse inclusion requires

to be proved.
Conversely, let v ∈ ker R(λ). Hence v is an eigenvector3 of R(ξ) corresponding to

eigenvalue λ. By Proposition 5.8 we have
[

I
K
0

]
spans the eigenspace of R(ξ). Hence

v ∈ span
[

I
K
0

]
. It is obvious that

[ −K
I
0

]
is orthogonal to

[
I
K
0

]
. Hence [−K I 0 ] v = 0.

Thus we conclude that kerR(λ) ⊆ ker

[
R(λ)

−K I 0

]

, and this proves equality of the

kernels. This proves that the ranks are equal. Hence 4 follows. This completes the
proof of Theorem 5.11. �

3As in [5], for a square and nonsingular polynomial matrix R(s), we call the values of λ ∈ C at
which rank of R(λ) drops the eigenvalues of the polynomial matrix R(s) and we call the vectors in
the nullspace of R(λ) the eigenvectors of R(s) corresponding to λ.
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5.4 Storage Functions for Lossless Systems

Due to the condition D + DT = 0 for lossless systems, Proposition 5.8 cannot be
used to find storage functions of lossless systems. However, for lossless systems, the
LMI (5.8) still exists with equality and solution to this LME can be interpreted as
storage functions even in the absence of the ARI and Hamiltonian matrix. The LME
is equivalent to solving the following matrix equations.

AT K + K A = 0 and BT K − C = 0 (5.13)

For a lossless behaviorB, the first-order representation of theHamiltonian system
BHam is ⎡

⎣
ξ In − A 0 −B

0 ξ In + AT −CT

−C BT 0

⎤

⎦

⎡

⎣
x
z
y

⎤

⎦ = 0. (5.14)

Ourmain result (Theorem5.13) belowuses the nontrimness aspect in the states above.
A special case of [2, Lemma 11] relates to trimness: we state this as a proposition
below for easy reference.

Proposition 5.12 Consider a Σ-dissipative behavior B ∈ Lwcont and its orthogonal
complement behavior B⊥Σ with supply rate induced by the nonsingular matrix Σ

of Eq. (5.5) (i.e. the positive real supply rate). Assume the behavior satisfies the
maximum input cardinality (Eq. (5.4)). Then the following are equivalent.

1. B is lossless.
2. B = B ∩ B⊥Σ = B⊥Σ

Since theMcMillan degree ofB is n, from Proposition 5.12, we infer thatMcMil-
lan degree of the Hamiltonian behavior BHam is also n. However, the Hamiltonian
behavior in Eq. (5.14) has 2n states and hence B ∩ B⊥Σ = BHam is not state
trim, i.e., there is a static relationship between state x and the dual state z. The next
theorem helps extract the static relations of the first-order representation (5.14) of
behaviorBHam and in the process yields the unique storage function for the lossless
behavior B.

Theorem 5.13 Consider a controllable, lossless behavior B ∈ Lwcont with minimal
state-space representation as in Eq. (5.7). The McMillan degree of B is n. The
corresponding Hamiltonian behavior BHam = ker R( d

dt ) where R(ξ) := ξ E − H is
the Hamiltonian pencil described in Eq. (5.12)with D+ DT = 0. Then the following
statements hold.

1. The Hamiltonian behavior BHam is not autonomous, i.e. det R(ξ) = 0.
2. There exists a unique symmetric matrix K ∈ R

n×n that satisfies

d

dt
xT K x = 2uT y for all

[
u
y

]

∈ BHam = B. (5.15)
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3. There exists a unique symmetric matrix K ∈ R
n×n that satisfies

rank

[
R(ξ)

−K I 0

]

= rank R(ξ). (5.16)

Proof Statement 1 is well known and details on it can be found in [7, 14] for example.
Statement 2 shows the existence of a storage function and this has been dealt with
in [18, Remark 5.9]. Hence we prove 3 next.

3: We prove Eq. (5.16) of Theorem 5.13 here.
Using 2 of Theorem 5.13, we have

d

dt
xT K x = 2uT y i.e. ẋ T K x + xT K ẋ = 2uT y

Using system Eq. (5.7) of behavior B, we have

[
x
u

]T [
AT K + K A K B − CT

BT K − C 0

] [
x
u

]

= 0 for each(x, u) satisfying system equations.

Since (A, B) is controllable and u is input to the system, there is a system trajectory
(x, u) that passes through each (x0, u0) for x0 ∈ R

n and u0 ∈ R
m. Hence

[
AT K + K A K B − CT

BT K − C 0

]

= 0

Therefore, we infer that

AT K + K A = 0 and BT K − C = 0 (5.17)

It is known from [18, Sect. 10] that

d

dt
xT z = 2uT y = d

dt
xT K x which evaluates to ẋ T z + xT ż − ẋ T K x − xT K ẋ = 0.

Using the Eqs. (5.7) and (5.11), we have

(Ax + Bu)T z + xT (−AT z + CT u) − (Ax + Bu)T K x − xT K (Ax + Bu) = 0

i.e. uT BT z + xT CT u − xT (AT K + K A)x − uT BT K x − uT BT K x = 0

Using Eq. (5.17), we have

2uT BT (z − K x) = 0 (5.18)
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Equation (5.18) is satisfied for all system trajectories and at every time instant. This
proves that BT (z − K x) = 0. We crucially use (A, B) controllability and (C, A)

observability, together with Eq. (5.17) to conclude that z − K x = 0 is satisfied over

all system trajectories. Thus we proved that adding the laws
[−K I 0

]
⎡

⎣
x
z
y

⎤

⎦ to the

system equations R( d
dt )

⎡

⎣
x
z
y

⎤

⎦ imposes no further restriction on B. This proves that

rank

[
R(ξ)

−K I 0

]

= rank R(ξ), and thus completes the proof of Theorem 5.13.

�
The next corollary states that Conditions 2 and 3 of Theorem 5.13 are equivalent.

This equivalence condition is used to develop an algorithm to compute the storage
function of a lossless behavior B.

Corollary 5.14 Consider a controllable, lossless behavior B ∈ Lwcont with mini-
mal state-space representation as in Eq. (5.7). Let the McMillan degree of B be
n. Consider the corresponding Hamiltonian behavior BHam = ker R( d

dt ) where
R(ξ) := ξ E −H is the Hamiltonian pencil described in Eq. (5.12)with D+DT = 0.
Then a necessary and sufficient condition for K = K T ∈ R

n×n to be a storage func-
tion for B is

rank

[
R(ξ)

−K I 0

]

= rank R(ξ). (5.19)

Proof (Necessity) This follows from Statements 2 and 3 of Theorem 5.13.
(Sufficiency) We assume a symmetric matrix K ∈ R

n×n satisfies Eq. (5.19) and
show that K satisfies Eq. (5.15) i.e. K induces the storage function for B. Using
Eq. (5.19), behavior BHam has trajectories that satisfy z = K x . By definition of
“dual states,” the relation between “states” and its “dual states” is

d

dt
xT z = 2uT y i.e.

d

dt
xT K x = 2uT y.

Hence K satisfies Eq. (5.15) if and only if K satisfies Eq. (5.19). This completes the
proof of Corollary 5.14. �

Using Corollary 5.14, we conclude that [−K I 0] is in the row span of the
polynomial matrix R(ξ). The corollary guarantees that K ∈ R

n×n serves as the
unique storage function of the lossless behavior B. In the next section, we present
an algorithm to find the unique storage function of the lossless behaviorB using the
fact that [−K I 0] is in the row span of R(ξ).
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5.5 Lossless System’s Storage Function: Algorithmic Aspects

Algorithm 5.5.1 is based on extraction of static relations in first order representation
of the Hamiltonian behavior BHam described in Sect. 5.4. The Hamiltonian pencil
R(ξ) is an input to the algorithm and a unique symmetric matrix K that induces
storage function of the lossless behavior is the output.

Algorithm 5.5.1 Static relations extraction-based algorithm.

Input: R(ξ) := ξ E − H ∈ R[ξ ](2n+p)×(2n+p), a rank 2n polynomial matrix.
Output: K ∈ R

n×n with xT K x the storage function.
1: Calculate a minimal polynomial nullspace basis of R(ξ).
2: Result: A full column rank polynomial matrix M(ξ) ∈ R[ξ ](2n+p)×p.

3: Partition M(ξ) as

[
M1(ξ)

M2(s)

]

where M1(ξ) ∈ R[ξ ]2n×p.

4: Calculate a minimal polynomial nullspace basis of M1(ξ)T .
5: Result: A full column rank polynomial matrix N (ξ) ∈ R[ξ ]2n×(2n−p).

6: Partition N (ξ) =
[

N11 N12(ξ)

N21 N22(ξ)

]

with N11, N21 ∈ R
n×n. (See Theorem5.15 below)

7: The storage function xT K x induced by the symmetric matrix K is given by

K := −N11N−1
21 ∈ R

n×n

Using the partition of the various matrices in the Algorithm 5.5.1, we state the
following result about the unique storage function for a lossless behavior.

Theorem 5.15 Consider R(ξ) := ξ E − H ∈ R[ξ ](2n+p)×(2n+p) as defined in
Eq. (5.12) constructed for the lossless behaviorB ∈ L

2p
cont. Let M(ξ) ∈ R[ξ ](2n+p)×p

be any minimal polynomial nullspace basis (MPB) for R(ξ). Partition M =
[

M1(ξ)

M2(ξ)

]

with M1 ∈ R[ξ ]2n×p. Let N (ξ) be any MPB for M1(ξ)T . Then, the following state-
ments are true.

1. The first n (Forney invariant) minimal indices of N (ξ) are 0, i.e. first n columns
of N (ξ) are constant vectors.

2. Partition N into
[
N1 N2(ξ)

]
with N1 ∈ R

2n×n and further partition N1 =
[

N11
N21

]

with N21 ∈ R
n×n. Then,

a. N21 is invertible.
b. K := −N11N−1

21 is symmetric.
c. xT K x is the unique storage function for B, i.e. d

dt xT K x = 2uT y for all
system trajectories.
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Proof 1: Using Statement 1 of Theorem 5.13, we have det R(ξ) = 0. Hence there
exists a nullspace M(ξ) of R(ξ). Since rank R(ξ) = 2n where n is the McMillan
degree of the behaviorB and R(ξ) ∈ R

(2n+p)×(2n+p)[ξ ], we have that the minimal
polynomial basis M(ξ) ∈ R

(2n+p)×p[ξ ].
Using Corollary 5.14, we have

[−K I 0
]
is in the row span of R(ξ). Therefore,

[−K I 0
]

M(ξ) = 0 i.e.
[−K I 0

]
[

M1(ξ)

M2(ξ)

]

= 0, where M1 ∈ R[ξ ]2n×p

This implies that

[−K I
] [

M1(ξ)
] = 0 i.e. M1(ξ)T

[−K
I

]

= 0

The nullspace of M1(ξ)T must have n constant polynomial vectors. Hence the first
n (Forney invariant) minimal indices are 0. This proves 1 of Theorem 5.15.
2: Here we prove 2 of Theorem 5.15.
The minimal nullspace basis of M1(ξ)T is the columns of N (ξ) ∈ R[ξ ]2n×(2n−p).

Partition N into
[
N1 N2(ξ)

]
with N1 ∈ R

2n×n and further partition N1 =
[

N11
N21

]

with N21 ∈ R
n×n. Further

span

[
N11
N21

]

= span

[−K
I

]

.

This proves that N21 is invertible and therefore K = −N11N−1
21 . The entire proof is

based on Theorem 5.13 and Corollary 5.14, hence the symmetric matrix K found by
Algorithm 5.5.1 induces storage function of the lossless behaviorB i.e. d

dt xT K x =
2uT y for all system trajectories. Hence 2 of Theorem 5.15 follows. This completes
the proof of Theorem 5.15. �
Algorithm 5.5.1 is based on computation of nullspace basis of polynomial matrices.
Computation of nullspace basis of a polynomial matrix can be done by block Toeplitz
matrix algorithm: more details can be found in [9, 20].

5.6 Examples

In this section, we consider two examples: one in which we have strict dissipativity
and another in which we have losslessness. We use Algorithm 5.5.1 for calculating
K for the lossless case.

Example 5.16 In this example, we illustrate the conditions in Theorem 5.11. Con-
sider a strictly dissipative behaviorBwith transfer function G(s) = s+2

s+1 . A minimal
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i/s/o representation of the system is ẋ = −x + u and y = x + u. The Hamiltonian
pencil for the behavior B as obtained from Eq. (5.12) is

R(ξ) =
⎡

⎣
ξ + 1 0 −1
0 ξ − 1 −1

−1 1 −2

⎤

⎦

Hence det R(ξ) = 4 − 2ξ2 �= 0, deg det R(ξ) = 2 and R(ξ) ∈ R
3×3[ξ ] i.e.

Hamiltonian system is autonomous. The roots of det R(ξ) = {−√
2,

√
2}. Following

Definition 5.7, two Lambda sets can be formed Λ1 = {−√
2} and Λ2 = {√2}. For

Λ1, the storage function KΛ1 = 0.171. Notice that

rank

[ −√
2+1 0 −1
0 −√

2−1 −1
−1 1 −2

]

= 2 and rank

[ −√
2+1 0 −1
0 −√

2−1 −1
−1 1 −2

−0.171 1 0

]

= 2.

It can be verified that the storage function for Lambda set Λ2 is KΛ2 = 5.828 and it
also satisfies the conditions in Theorem 5.11. Consider any other arbitrary value of
K which is not a solution to the ARE corresponding to the behavior B. Say K = 1
then

rank

[ −√
2+1 0 −1
0 −√

2−1 −1
−1 1 −2
−1 1 0

]

= 3.

Hence for any other arbitrary value of K , rank

[
R(ξ)

−K I 0

]

�= rank R(ξ).

Next we consider transfer function of a lossless behaviorB that brings out the use
of Theorem 5.13. In order to calculate the storage function K we useAlgorithm 5.5.1.

Example 5.17 Consider a lossless behavior B with transfer function G(s) = s
s2+1

.
A minimal i/s/o representation of the behavior is

ẋ =
[
0 1

−1 0

]

x +
[
0
1

]

u and y = [
0 1

]
x + 0 u

The Hamiltonian pencil for the behavior B as obtained from Eq. (5.12) is

R(ξ) =

⎡

⎢
⎢
⎢
⎢
⎣

ξ −1 0 0 0
1 ξ 0 0 −1
0 0 ξ −1 0
0 0 1 ξ −1
0 −1 0 1 0

⎤

⎥
⎥
⎥
⎥
⎦

and one can check that det R(ξ) = 0.

Thus the behavior BHam is not autonomous. We next calculate the storage function
using Algorithm 5.5.1.
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1. A minimal polynomial nullspace basis (MPB) of R(ξ) is M(ξ) =
⎡

⎣

1
ξ
1
ξ

1+ξ2

⎤

⎦.

2. Partitioning M(ξ) by Step 3 of Algorithm 5.5.1, we have: M1(ξ) =
[

1
ξ
1
ξ

]

.

3. MPB of M1(ξ)T is N (ξ) =

⎡

⎢
⎢
⎢
⎢
⎣

−4 −√
2 −3ξ√

2 −4 3

4
√
2 −3ξ

−√
2 4 3

⎤

⎥
⎥
⎥
⎥
⎦
.

4. Using Step 6 of the same algorithm, we partition N (ξ). Hence N11 =

[−4 −√
2√

2 −4

]

and N21 =

[
4

√
2

−√
2 4

]

.

5. Therefore, the matrix K = −N11N−1
21 =

[
1 0
0 1

]

induces the storage function of

the lossless behavior B.

It can be verified that rank

[
R(ξ)

−K I 0

]

= rank R(ξ) = 4.

With any arbitrary K =
[
2 0
0 1

]

(say), we will have rank

[
R(ξ)

−K I 0

]

= 5. Hence

for arbitrary K , rank

[
R(ξ)

−K I 0

]

�= rank R(ξ).

5.7 Concluding Remarks

This chapter dealt with the formulation of new properties of the ARE solution for the
casewhen the equation exists: namely, when regularity conditions on the feedthrough
term are satisfied. These results were extended to the case when the ARE does not
exist: for example, the lossless case. For this case, the “ARE” solution is the storage
function, which is unique for the lossless case. We formulated an algorithm that
computes this storage function. The algorithm was developed exploiting the fact that
the states in the Hamiltonian system (corresponding to a conservative behavior) are
not trim. Static relations of the form z = K x helped to extract this nontrimness and
hence led to a storage function xT K x to the original system.

Acknowledgments This work was supported in part by SERB-DST, IRCC (IIT Bombay) and
BRNS, India.
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Chapter 6
Stochastic Almost Output Synchronization
for Time-Varying Networks of Nonidentical
and Non-introspective Agents Under
External Stochastic Disturbances
and Disturbances with Known Frequencies

Meirong Zhang, Anton A. Stoorvogel and Ali Saberi

Abstract We consider stochastic almost output synchronization for time-varying
directed networks of nonidentical and non-introspective (i.e., agents have no access
to their own states or outputs) agents under external stochastic disturbances. The
network experiences switches at unknown moments in time without chattering. A
purely decentralized (i.e., the additional communication channel among agents is
dispensed) time-invariant protocol based on a low- and high-gain method is designed
for each agent to achieve stochastic almost output synchronization,while reducing the
impact of stochastic disturbances.Moreover, we extend the problem to the casewhere
stochastic disturbances can have nonzeromean or other disturbances are present with
known frequencies. Another purely decentralized protocol is designed to completely
reject the impact of disturbances with known frequencies on the synchronization
error.

6.1 Introduction

Almost disturbance decoupling has a long history. It was the main topic of the Ph.D.
thesis of Harry Trentelman. Anton Stoorvogel was, as a Ph.D. student of Harry, also
looking at almost disturbance decoupling in connection to H2 and H∞ control. Ali
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Saberi was in this period working on the same class of problems. This paper looks
at a version of almost disturbance decoupling in the context of multiagent systems.

In the last decade, the topic of synchronization in amultiagent system has received
considerable attention. Its potential applications can be seen in cooperative control
on autonomous vehicles, distributed sensor network, swarming and flocking, and
others. The objective of synchronization is to secure an asymptotic agreement on
a common state or output trajectory through decentralized control protocols (see
[1, 12, 18, 28]). Research has mainly focused on the state synchronization based on
full-state/partial-state coupling in a homogeneous network (i.e., agents have identical
dynamics), where the agent dynamics progress from single- and double-integrator
dynamics to more general dynamics (e.g., [7, 14, 15, 21, 24–26, 29]). The coun-
terpart of state synchronization is output synchronization, which is mostly done on
heterogeneous networks (i.e., agents are nonidentical). When the agents have access
to part of their own states it is frequently referred to as introspective and, otherwise,
non-introspective. Quite a few of the recent works on output synchronization have
assumed agents are introspective (e.g., [3, 6, 27, 30]) while few have considered
non-introspective agents. For non-introspective agents, the paper [5] addressed the
output synchronization for heterogeneous networks.

In [7] for homogeneous networks a controller structure was introduced which
included not only sharing the relative outputs over the network but also sharing the
relative states of the protocol over the network. This was also used in our earlier work
such as [5, 16, 17]. This type of additional communication is not always natural.
Some papers such as [21] (homogeneous network) and [6] (heterogeneous network
but introspective) already avoided this additional communication of controller states.

Almost synchronization is a notion that was brought up by Peymani and his
coworkers in [17] (introspective) and [16] (homogeneous, non-introspective), where
it deals with agents that are affected by external disturbances. The goal of their work
is to reduce the impact of disturbances on the synchronization error to an arbitrary
degree of accuracy (expressed in theH∞ norm). But they assume availability of an
additional communication channel to exchange information about internal controller
or observer states between neighboring agents. The earlier work on almost synchro-
nization for introspective, heterogeneous networks was extended in [31] to design a
dynamic protocol to avoid exchange of controller states.

The majority of the works assumes that the topology associated with the network
is fixed. Extensions to time-varying topologies are done in the framework of switch-
ing topologies. Synchronization with time-varying topologies is studied utilizing
concepts of dwell time and average dwell time (e.g., [11, 22, 23]). It is assumed that
time-varying topologies switch among a finite set of topologies. In [32], switching
laws are designed to achieve synchronization.

This paper also aims to solve the almost regulated output synchronization prob-
lem for heterogeneous networks of non-introspective agents under switching graphs.
However, instead of deterministic disturbances with finite power, we consider sto-
chastic disturbances with bounded variance. We name this problem as stochastic
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almost regulated output synchronization.Moreover,we extend this problemby allow-
ing nonzero mean stochastic disturbances and other disturbances with known fre-
quencies.

6.1.1 Notations and Definitions

Given a matrix A, A′ denotes its conjugate transpose and ‖A‖ is the induced
2-norm. For square matrices, λi (A) denotes its i’th eigenvalue, and it is said to be
Hurwitz stable if all eigenvalues are in the open left half complex plane. We denote
by blkdiag{Ai }, a block diagonal matrix with A1, . . . , AN as the diagonal elements,
and by col{xi } or [x1; . . . ; xN ], a column vector with x1, . . . , xN stacked together,
where the range of index i can be identified from the context. A ⊗ B depicts the Kro-
necker product between A and B. In denotes the n-dimensional identity matrix and
0n denotes the n × n zero matrix; sometimes we drop the subscript if the dimension
is clear from the context. Finally, theH∞ norm of a transfer function T is indicated
by ‖T ‖∞.

A weighted directed graph G is defined by a triple (V ,E ,A ) where V =
{1, . . . , N } is a node set, E is a set of pairs of nodes indicating connections among
nodes, and A = [ai j ] ∈ R

N×N is the weighting matrix, and ai j > 0 iff (i, j) ∈ E .
Each pair in E is called an edge. A path from node i1 to ik is a sequence of nodes
{i1, . . . , ik} such that (i j , i j+1) ∈ E for j = 1, . . . , k − 1. A directed tree with root
r is a subset of nodes of the graph G such that a path exists between r and every
other node in this subset. A directed spanning tree is a directed tree containing all
the nodes of the graph. For a weighted graph G , a matrix L = [�i j ] with

�i j =
{ ∑N

k=1 aik, i = j,
−ai j , i �= j,

is called the Laplacian matrix associated with the graph G . Since our graph G has
nonnegative weights, we know that L has all its eigenvalues in the closed right half
plane and at least one eigenvalue at zero associated with right eigenvector 1.

Definition 6.1 Let LN ⊂ R
N×N be the family of all possible Laplacian matrices

associated to a graph with N nodes. We denote by GL the graph associated with a
Laplacian matrix L ∈ LN . A time-varying graph G (t) with N nodes is such that

G (t) = Gσ(t)

where σ : R → LN is a piecewise constant, right-continuous function with minimal
dwell time τ (see [8]), i.e., σ(t) remains fixed for t ∈ [tk, tk+1), k ∈ Z and switches
at t = tk , k = 1, 2, . . .where tk+1− tk ≥ τ for k = 0, 1, . . .. For ease of presentation
we assume t0 = 0.
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Definition 6.2 Amatrix pair (A, C) is said to contain the matrix pair (S, R) if there
exists a matrix Π such that Π S = AΠ and CΠ = R.

Remark 6.3 Definition 6.2 implies that for any initial condition ω(0) of the system

ω̇ = Sω, yr = Rω,

there exists an initial condition x(0) of the system

ẋ = Ax, y = Cx,

such that y(t) = yr (t), for all t ≥ 0 (see [10]).

6.2 Stochastic Disturbances

In this section, we consider the problem of almost output synchronization for time-
varying networks (i.e., multiagent systems) with nonidentical and non-introspective
agents under stochastic disturbances. The time-varying network is constrained in the
sense that we exclude chattering by imposing an, arbitrary small, minimal dwell time.
Our agents need not be the same and are non-introspective (i.e., they have no access
to any of their own states). We will achieve stochastic almost output synchronization
in such a way that outputs of agents are asymptotically regulated to a reference
trajectory generated by an autonomous system.

6.2.1 Multiagent System Description

Suppose a multiagent system/network consists of N nonidentical, non-introspective
agents Σ̃i with i ∈ {1, . . . , N } described by the stochastic differential equation:

Σ̃i :
{

dx̃i = Ãi x̃idt + B̃i ũidt + G̃idwi , x̃i (0) = x̃i0,

yi = C̃i x̃i ,
(6.1)

where x̃i ∈ R
ñi , ũi ∈ R

mi , and yi ∈ R
p are the state, input, and output of agent i ,

and w = col{wi } is a Wiener process (a Brownian motion) with mean 0 and rate Q0,
that is, Cov[w(t)] = t Q0 and the initial condition x̃i0 of (6.1) is a Gaussian random
vector which is independent of wi . Here Q0 is block diagonal such that wi and w j

are independent for any i �= j . Its solution x̃i is rigorously defined through Wiener
integrals and is a Gauss–Markov process. See, for instance, [13]. We denote by ρ̃i

the maximal order of the infinite zeros of (6.1) with input ũi and output yi .
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Remark 6.4 If we have an agent described by:

Σ̆i :
{ ˙̆xi = Ăi x̆i + B̆i ũi + Ği w̆i ,

yi = C̆i x̆i ,
(6.2)

with w̆i stochastic colored noise, then we assume that w̆i can be (approximately)
modeled by a linear model:

Σ̆wi :
{

d p̆i = Ăwi p̆idt + Ğwidwi ,

w̆i = C̆wi p̆i .
(6.3)

Combining (6.2) and (6.3) we get a model of the form (6.1).

The time-varying network provides each agent with a linear combination of its
own output relative to those of other neighboring agents, that is, agent i ∈ V , has
access to the quantity

ζi (t) =
N∑

j=1

ai j (t)(yi (t) − y j (t)), (6.4)

which is equivalent to

ζi (t) =
N∑

j=1

�i j (t)y j (t). (6.5)

We make the following assumption on the agent dynamics.

Assumption 6.5 For each agent i ∈ V , we have:

• ( Ãi , B̃i , C̃i ) is right-invertible and minimum-phase;
• ( Ãi , B̃i ) is stabilizable, and ( Ãi , C̃i ) is detectable;

Remark 6.6 Right invertibility of a triple ( Ãi , B̃i , C̃i ) means that, given a reference
output yr (t), there exist an initial condition x̃i (0) and an input ũi (t) such that yi (t) =
yr (t), for all t ≥ 0.

6.2.2 Problem Formulation

As described at the beginning of this section, the outputs of agents will be asymptot-
ically regulated to a given reference trajectory in the presence of external stochastic
disturbances. The reference trajectory is generated by an autonomous system

Σ0 :
{

ẋr = Sr xr , xr (0) = xr0,

yr = Rr xr ,
(6.6)
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where xr ∈ R
nr , yr ∈ R

p. Moreover, we assume that (Sr , Rr ) is observable and all
eigenvalues of Sr are in the closed right half complex plane.

Define ei := yi − yr as the regulated output synchronization error for agent i ∈ V
and e = col{ei } for the complete network. In order to achieve our goal, it is clear
that a nonempty subset π of agents must have knowledge of their output relative to
the reference trajectory yr generated by the reference system. Specially, each agent
has access to the quantity

ψi = ιi (yi − yr ), ιi =
{
1, i ∈ π,

0, i /∈ π,
(6.7)

where π is a subset of V .

Assumption 6.7 Every node of the network graph G is a member of a directed tree
with the root contained in π .

In the following, we will refer to the node set π as root set in view of Assumption
6.7 (A special case is when π consists of a single element corresponding to the root
of a directed spanning tree of G ).

Based on the Laplacian matrix L(t) of our time-varying network graph G (t), we
define the expanded Laplacian matrix as

L̄(t) = L(t) + blkdiag{ιi } = [�̄i j (t)].

Note that L̄(t) is clearly not a Laplacian matrix associated to some graph since it
does not have a zero row sum. From [5, Lemma 7], all eigenvalues of L̄(t) are in the
open right half complex plane for all t ∈ R.

It should be noted that, in practice, perfect information of the communication
topology is usually not available for controller design and only some rough charac-
terization of the network can be obtained. Next, we will define a set of time-varying
graphs based on some rough information of the graph. Before doing so, we first
define a set of fixed graphs, based on which the set of time-varying graphs will be
defined.

Definition 6.8 For given root setπ ,α, β, ϕ > 0 and positive integer N ,Gϕ,N
α,β,π is the

set of directed graphs G composed of N agents satisfying the following properties:

• The eigenvalues of the associated expanded Laplacian L̄ , denoted by λ1, . . . , λN ,
satisfy Re{λi } > β and |λi | < α.

• The condition number1 of the expanded Laplacian L̄ is less than ϕ.

1In this context, we mean by condition number the minimum of ‖U‖‖U−1‖ over all possible
matrices U whose columns are the (generalized) eigenvectors of the expanded Laplacian matrix L̄ .
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Remark 6.9 In order to achieve regulated output synchronization for all agents, the
first condition is obviously necessary.

Note that for undirected graphs the condition number of the Laplacian matrix is
always bounded. Moreover, if we have a finite set of possible directed graphs each
of which has a spanning tree then there always exists a set of the graph G

ϕ,N
α,β,π for

suitable α, β, ϕ > 0 and N containing these graphs. The only limitation is that we
cannot find one protocol for a sequence of graphs converging to a graph without
a spanning tree or whose Laplacian matrix either diverges or approaches some ill-
conditioned matrix.

Definition 6.10 Given a root set π , α, β, ϕ, τ > 0 and positive integer N , we define
the set of time-varying network graphs G̃ϕ,τ,N

α,β,π as the set of all time-varying graphs
G with minimal dwell time τ for which

G (t) = Gσ(t) ∈ G
ϕ,N
α,β,π

for all t ∈ R.

Remark 6.11 Note that a minimal dwell time is assumed to avoid chattering prob-
lems. However, it can be arbitrarily small.

We will define the stochastic almost regulated output synchronization problem
under switching graphs as follows.

Problem 6.12 Consider a multiagent system (6.1) and (6.4) under Assumption 6.5,
and reference system (6.6) and (6.7) under Assumption 6.7. For any given root set π ,
α, β, ϕ, τ > 0 and positive integer N defining a set of time-varying network graphs
G̃

ϕ,τ,N
α,β,π , the stochastic almost regulated output synchronization problem is to find, if

possible, for any γ > 0, a linear time-invariant dynamic protocol such that, for any
G ∈ G̃

ϕ,τ,N
α,β,π , for all initial conditions of agents and reference system, the stochastic

almost regulated output synchronization error satisfies

lim
t→∞Ee(t) = 0,

lim sup
t→∞

Var[e(t)] = lim sup
t→∞

Ee′(t)e(t) < γ trace Q0. (6.8)

Remark 6.13 Clearly, we can also define (6.8) in terms of the RMS, (see, e.g., [2]) as:

lim sup
T →∞

1

T
E

∫ T

0
e(t)′e(t) dt < γ trace Q0.

Remark 6.14 Note that because of the time-varying graph the complete system is
time variant and hence the variance of the error signal might not converge as time
tends to infinity. Hence we use in the above a lim sup instead of a regular limit.
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6.2.3 Distributed Protocol Design

The main result in this section is given in the following theorem.

Theorem 6.15 Consider a multiagent system (6.1) and (6.4), and reference system
(6.6) and (6.7). Let a root set π , α, β, ϕ, τ > 0 and positive integer N be given, and
hence a set of time-varying network graphs G̃ϕ,τ,N

α,β,π be defined.
Under Assumptions 6.5 and 6.7, the stochastic almost regulated output synchro-

nization problem is solvable, i.e., for any given γ > 0, there exists a family of dis-
tributed dynamic protocols, parametrized in terms of low- and high-gain parameters
δ, ε, of the form

⎧
⎪⎪⎨

⎪⎪⎩

χ̇i = Ai (δ, ε)χi + Bi (δ, ε)

(
ζi

ψi

)

ũi = Ci (δ, ε)χi + Di (δ, ε)

(
ζi

ψi

) , i ∈ V (6.9)

where χi ∈ R
qi , such that for any time-varying graph G ∈ G̃

ϕ,τ,N
α,β,π , for all initial

conditions of agents, the stochastic almost regulated output synchronization error
satisfies (6.8).

Specifically, there exits a δ∗ ∈ (0, 1] such that for each δ ∈ (0, δ∗], there exists
an ε∗ ∈ (0, 1] such that for any ε ∈ (0, ε∗], the protocol (6.9) achieves stochastic
almost regulated output synchronization.

Remark 6.16 In the above, we would like to stress that the initial condition of the
reference system is deterministic while the initial conditions of the agents are sto-
chastic. Our protocol yields (6.8) independent of the initial condition of the reference
system and independent of the stochastic properties for the agents, i.e., we do not
need to impose bounds on the second-order moments.

In the next section, we will present a more general problem after which we will
present a joint proof of these two cases in Sect. 6.4.

6.3 Stochastic Disturbances and Disturbances with Known
Frequencies

In this section, the agent model (6.1) is modified as follows:

Σ̃i :
{

dx̃i = Ãi x̃idt + B̃i ũidt + G̃idwi + H̃1
i didt,

yi = C̃i x̃i + H̃2
i di ,

(6.10)
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where x̃i , ũi , yi , and wi are the same as those in (6.1), while di ∈ R
mdi is an exter-

nal disturbance with known frequencies, which can be generated by the following
exosystem:

xid = Sid xid , xid(0) = xid0
di = Rid xid ,

(6.11)

where xid ∈ R
ndi and the initial condition xid0 can be arbitrarily chosen.

In Remark 6.4 we considered colored noise. However, the model we used in that
remark to generate colored noise, clearly cannot incorporate bias terms. This is one
of the main motivations of the model (6.10) since the above disturbance term di can
generate bias terms provided Sid has zero eigenvalues. However, it clearly can also
handle other cases where we have disturbances with known frequency content.

Note that we have two exosystems (6.6) and (6.11) which generate the reference
signal yr and the disturbance di , respectively.We can unify the two in one exosystem:

xie = Si xie, xie(0) = xie0
di = Riexie,

yr = Rrexie,

(6.12)

where

Si =
(

Sid 0
0 Sr

)

, Rie = (
Rid 0

)
, Rre = (

0 Rr
)
. (6.13)

Note that

xie0 =
(

xid0
xr0

)

and therefore the second part of the initial condition has to be the same for each agent
while the first part might be different for each agent. Note that in case we have no
disturbances with known frequencies (as in the previous section) then we can still
use the model (6.12) but with

Si = Sr , Rie = 0, Rre = Rr (6.14)

while xie0 = xr0.
The time-varying topology G (t) has exactly the same structure as in Sect. 6.2, and

it also belongs to a set of time-varying graph G̃
ϕ,τ,N
α,β,π as defined in Definition 6.10.

The network defined by the time-varying topology also provides each agent with the
measurement ζi (t) given in (6.4).

6.3.1 Distributed Protocol Design

Here is the main result in this section:
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Theorem 6.17 Consider a multiagent system described by (6.10), (6.4), (6.7), and
reference system (6.12). Let a root set π , α, β, ϕ, τ > 0 and positive integer N be
given, and hence a set of time-varying network graphs G̃ϕ,τ,N

α,β,π be defined.
Under Assumptions 6.5 and 6.7, the stochastic almost regulated output synchro-

nization problem is solvable, i.e., there exists a family of distributed dynamic proto-
cols, parametrized in terms of low- and high-gain parameters δ, ε, of the form

⎧
⎪⎪⎨

⎪⎪⎩

χ̇i = Ai (δ, ε)χi + Bi (δ, ε)

(
ζi

ψi

)

ũi = Ci (δ, ε)χi + Di (δ, ε)

(
ζi

ψi

) , i ∈ V (6.15)

where χi ∈ R
qi , such that for any time-varying graph G ∈ G̃

ϕ,τ,N
α,β,π , for all initial

conditions of agents, the stochastic almost regulated output synchronization error
satisfies (6.8).

Specifically, there exits a δ∗ ∈ (0, 1] such that for each δ ∈ (0, δ∗], there exists
an ε∗ ∈ (0, 1] such that for any ε ∈ (0, ε∗], the protocol (6.15) solves the stochastic
almost regulated output synchronization problem.

The proof will be presented in a constructive way in the following section.

6.4 Proof of Theorems 6.15 and 6.17

Note that Theorem 6.15 is basically a corollary of Theorem 6.17 if we replace (6.13)
by (6.14) and still use exosystem (6.12). In this section, wewill present a constructive
proof in three steps. As noted, we can concentrate on the proof of Theorem 6.17.

In Step 1, precompensators are designed for each agent to make the interconnec-
tion of an agent and its precompensator square, uniform rank (i.e., all the infinite
zeros are of the same order) and such that it can generate the reference signal for all
possible initial condition of the joint exosystem (6.12). In Step 2, a distributed linear
dynamic protocol is designed for each interconnection system obtained from Step 1.
Finally, in Step 3, we combine the precompensator from Step 1 and the protocol for
the interconnection system in Step 2, and get a protocol of the form (6.15) for each
agent in the network (6.10) (if disturbances with known frequencies are present) or
a protocol of the form (6.9) for each agent in the network (6.1) (if disturbances with
known frequencies are not present).

Step 1: In this step, we augment agent (6.10) with a precompensator in such
a way that the interconnection is square, minimum-phase uniform rank such that
it can generate the reference signal for all possible initial condition of the joint
exosystem (6.12).
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To be more specific, we need to find precompensators

{
żi = Aipzi + Bipui ,

ũi = Cipzi + Dipui ,
(6.16)

for each agent i = 1, . . . , N , such that agent (6.10) plus precompensator (6.16) can
be represented as:

{
dxi = Ai xidt + Bi uidt + Gidwi + H1

i didt,
yi = Ci xi + H2

i di ,
(6.17)

where xi ∈ R
ni , ui ∈ R

p, yi ∈ R
p are states, inputs, and outputs of the intercon-

nection of agent (6.10) and precompensator (6.16). Moreover,

• There exists Πi such that

AiΠi + H1
i Rie = Πi Si

CiΠi + H2
i Rie = Rre (6.18)

• (Ai , Bi , Ci ) is square and has uniform rank ρ ≥ 1.

The first condition implies that for any initial condition of (6.12) there exists an
initial condition for (6.17) such that for ui = 0, we have that Eyi = yr . We could,
equivalently, impose wi = 0 in which case, we should have yi = yr . In the special
case where we do not have disturbances with known frequencies (Theorem 6.15) we
have Rie = 0 and Si = Sr . In that case, the first condition reduces to the condition
that (Ci , Ai ) contains (Sr , Rr ).

For our construction of precompensator (6.16), we first note that the following
regulator equation

Ãi Π̃i + B̃i Γ̃i + H̃1
i Rie = Π̃i Si , C̃i Π̃i + H̃2

i Rie = Rre. (6.19)

has a unique solution Π̃i and Γ̃i since ( Ãi , B̃i , C̃i ) is right-invertible and minimum-
phase while Si has no stable eigenvalues (see [19]). Let Γoi , Soi ) be the observable
subsystem of (Γ̃i , Si ). Then we consider the following precompensator:

ṗi,1 = Soi pi,1 + Bi,1u1
i , ũi = Γoi pi,1 + Di,1u1

i (6.20)

where Bi,1 and Di,1 are chosen according to the technique presented in [9] to guar-
antee that the interconnection of (6.10) and (6.20) is minimum-phase and right-
invertible. It is not hard to verify that the interconnection of (6.10) and (6.20) is a
system of the form (6.17) for which there exists Πi satisfying (6.18). However, we
still need to guarantee that this interconnection is square and uniform rank.
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Let ρi be the maximal order of the infinite zeros for the interconnection of (6.20)
and (6.10). For i = 1, . . . , N and set ρ = max{ρi }. According to [20, Theorem 1],
a precompensator of the form

ṗi2 = Aip2 pi2 + Bip2u2
i ,

u1
i = Cip2 pi2 + Dip2u2

i ,
(6.21)

exists such that the interconnection of (6.20), (6.21), and (6.10) is square, minimum-
phase, and has uniform rank ρ. This interconnection of (6.20) and (6.21) is of the
form (6.16) while the interconnection of (6.20), (6.21), and (6.10) is of the form
(6.17) which has the required properties.

Without loss of generality, we assume that (Ai , Bi , Ci ) is already in the SCB
form, i.e., the system has a specific form where xi = [xia; xid ], with xia ∈ R

ni −pρ

representing the finite zero structure and xid ∈ R
pρ the infinite zero structure. We

obtain that (6.17) can be written as:

⎧
⎨

⎩

dxia = Aia xiadt + Liad yidt + Giadwi + H1
iadidt,

dxid = Ad xiddt + Bd(ui + Eida xia + Eidd xid)dt + Giddwi + H1
iddidt,

yi = Cd xid + H2
i didt,

(6.22)
for i = 1, . . . , N , where Ad , Bd , and Cd have the special form

Ad =
(
0 Ip(ρ−1)
0 0

)

, Bd =
(
0
Ip

)

, Cd = (
Ip 0

)
. (6.23)

Furthermore, the eigenvalues of Aia are the invariant zeros of (Ai , Bi , Ci ), which
are all in the open left half complex plane.

Step 2: Each agent after applying the precompensator (6.16) is of the form (6.22).
For this system, we will design a purely decentralized controller based on a low- and
high-gain method. Let δ ∈ (0, 1] be the low-gain parameter and ε ∈ (0, 1] be the
high-gain parameter as in [4]. First, select K such that Ad − K Cd is Hurwitz stable.
Next, choose Fδ = −B ′

d Pd where P ′
d = Pd > 0 is uniquely determined by the

following algebraic Riccati equation:

Pd Ad + A′
d Pd − β Pd Bd B ′

d Pd + δ I = 0, (6.24)

where β > 0 is the lower bound on the real parts of all eigenvalues of expanded
Laplacian matrices L̄(t), for all t . Next, define

Sε = blkdiag{Ip, ε Ip, . . . , ε
ρ−1 Ip},

Kε = ε−1S−1
ε K and Fδε = ε−ρ Fδ Sε.
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Then, we design the dynamic controller for each agent i ∈ V :

˙̂xid = Ad x̂id + Kε(ζi + ψi − Cd x̂id),

ui = Fδε x̂id ,
(6.25)

where ψi is defined in (6.7).
The state x̂id is not an estimator for xid but actually an estimator for

N∑

j=1

�̄i j (t)xid(t). (6.26)

The following lemma then provides a constructive proof of Theorem 6.17. However,
by replacing (6.13) with (6.14) it also provides a constructive proof of Theorem 6.15.

Lemma 6.18 Consider the agents in SCB format (6.22) obtained after applying the
precompensators (6.16). For any given γ > 0, there exits a δ∗ ∈ (0, 1] such that, for
each δ ∈ (0, δ∗], there exists an ε∗ ∈ (0, 1] such that for any ε ∈ (0, ε∗], the protocol
(6.25) solves the stochastic almost regulated output synchronization problem for any
time-varying graph G ∈ G̃

ϕ,τ,N
α,β,π , for all initial conditions.

Proof Recall that xi = [xia; xid ] and that (6.17) is a shorthand notation for (6.22).
For each i ∈ V , let x̄i = xi − Πi xr , where Πi is defined by (6.18). Then

dx̄i = Ai xidt − Πi Si xrdt + Bi uidt + H1
i didt + Gidwi

= Ai x̄idt + Bi uidt + Gidwi

and
ei = yi − yr = Ci xi + H2

i Rie − Rrexr = Ci xi − CiΠi xr = Ci x̄i .

Since the dynamics of the x̄i systemwith output ei is governed by the same dynamics
as the dynamics of agent i , we can present x̄i in the same form as (6.22), with
x̄i = [x̄ia; x̄id ], where

dx̄ia = Aia x̄iadt + Liadeidt + Giadwi ,

dx̄id = Ad x̄iddt + Bd(ui + Eida x̄ia + Eidd x̄id)dt + Giddwi ,

ei = Cd x̄id .

Define ξia = x̄ia , ξid = Sε x̄id , and ξ̂id = Sε x̂id . Then

dξia = Aiaξiadt + Viadξiddt + Giadwi ,

εdξid = Adξiddt + Bd Fδξ̂iddt + V ε
idaξiadt + V ε

iddξiddt + εGε
iddwi ,

ei = Cdξid ,

where Viad = LiadCd , V ε
ida = ερ Bd Eida , V ε

idd = ερ Bd Eidd S−1
ε and Gε

id = SεGid .
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Then,

ζi + ψi =
N∑

j=1

�i j (t)(y j − yr ) + ιi (yi − yr ) =
N∑

j=1

�̄i j (t)e j .

Similarly, the controller (6.25) can be rewritten as

εdξ̂id = Ad ξ̂iddt + K
N∑

j=1

�̄i j (t)Cdξ jddt − K Cd ξ̂iddt.

Let
ξa = col{ξia}, ξd = col{ξid}, ξ̂d = col{ξ̂id}, w = col{wi }.

Then we have,

dξa = Aaξadt + Vadξddt + Gadw,

εdξd = (IN ⊗ Ad)ξddt + (IN ⊗ Bd Fδ)ξ̂ddt + V ε
daξadt + V ε

ddξddt + εGε
ddw,

εdξ̂d = (IN ⊗ Ad)ξ̂ddt + (L̄(t) ⊗ K Cd)ξddt − (IN ⊗ K Cd)ξ̂ddt,

where Aa = blkdiag{Aia}, and Vad , V ε
da , V ε

dd , Ga , Gε
d are similarly defined.

Define U−1
t L̄(t)Ut = Jt , where Jt is the Jordan form of L̄(t), and let

va = ξa, vd = (JtU
−1
t ⊗ Ipρ)ξd , ṽd = vd − (U−1

t ⊗ Ipρ)ξ̂d .

By our assumptions on the graph, we know that Jt and J−1
t are bounded. Moreover,

by the assumption on the condition number we can guarantee that Ut and U−1
t are

both bounded as well. Note that when a switching of the network graph occurs then
vd and ṽd will in most case experience a discontinuity (because of a sudden change
in Jt and Ut ) while va remains continuous. There exists m1, m2 > 0 such that we
will have:

‖vd(t+k )‖ ≤ m1‖vd(t−k )‖, ‖ṽd(t+k )‖ ≤ m2‖ṽd(t−k )‖

for any switching time tk because of our bounds on Ut and Jt . Here

f (t+) = lim
h↓0 f (t + h), f (t−) = lim

h↓0 f (t − h)

Between switching, the behavior of va, vd , and ṽd is described by the following
stochastic differential equations:

dva = Aavadt + Wad,t vddt + Gadw,

εdvd = (IN ⊗ Ad)vddt + (Jt ⊗ Bd Fδ)(vd − ṽd)dt
+W ε

da,t vadt + W ε
dd,t vddt + εḠε

d,tdw,

εdṽd = (IN ⊗ (Ad − K Cd))ṽddt + (Jt ⊗ Bd Fδ)(vd − ṽd)dt
+W ε

da,t vadt + W ε
dd,t vddt + εḠε

d,tdw,

(6.27)
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where Wad,t = Vad(Ut J−1
t ⊗ Ipρ), W ε

da,t = (JtU
−1
t ⊗ Ipρ)V ε

da ,

W ε
dd,t = (JtU

−1
t ⊗ Ipρ)V ε

dd(Ut J−1
t ⊗ Ipρ), and Ḡε

d,t = (JtU
−1
t ⊗ Ipρ)Gε

d .
Finally, let ηa = va , and define Nd such that

ηd := Nd

(
vd

ṽd

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

v1d

ṽ1d
...

vNd

ṽNd

⎞

⎟
⎟
⎟
⎟
⎟
⎠

where Nd =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

e1 0
0 e1
...

...

eN 0
0 eN

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⊗ Ipρ,

where ei ∈ R
N is the i’th standard basis vector whose elements are all zero except

for the i’th element which is equal to 1. Again the switching can only cause discon-
tinuities in ηd (and not in ηa). There exists m3 > 0 such that we will have:

‖ηd(t+k )‖ ≤ m3‖ηd(t−k )‖, (6.28)

for any switching time tk . Between switching the stochastic differential equation
(6.27) can be rewritten as:

dηa = Aaηadt + W̃ad,tηddt + Gadw,

εdηd = Ãδ,tηddt + W̃ ε
da,tηadt + W̃ ε

dd,tηddt + εG̃ε
d,tdw,

(6.29)

where

Ãδ,t = IN ⊗
(

Ad 0
0 Ad − K Cd

)

+ Jt ⊗
(

Bd Fδ −Bd Fδ

Bd Fδ −Bd Fδ

)

, (6.30)

and

W̃ad,t = (
Wad,t 0

)
N−1

d , G̃ε
d,t = Nd

(
Ḡε

d,t
Ḡε

d,t

)

,

W̃ ε
da,t = Nd

(
W ε

da,t
W ε

da,t

)

, W̃ ε
dd,t = Nd

(
W ε

dd,t 0
W ε

dd,t 0

)

N−1
d .

Lemma 6.19 Consider the matrix Ãδ,t defined in (6.30). For any δ small enough
the matrix Ãδ,t is asymptotically stable for any Jordan matrix Jt whose eigenvalues
satisfy Re{λti } > β and |λti | < α. Moreover, there exists Pδ > 0 and ν > 0 such
that

Ã′
δ,t Pδ + Pδ Ãδ,t ≤ −ν Pδ − 4I (6.31)

is satisfied for all possible Jordan matrices Jt and such that there exists Pa > 0 for
which

Pa Aa + A′
a Pa = −ν Pa − I. (6.32)
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Proof First note that if ν is small enough such that Aa + ν
2 I is asymptotically stable

then there exists Pa > 0 satisfying (6.32).
For the existence of Pδ and the stability of Ãδ,t we rely on techniques developed

earlier in [4, 21]. If we define

Āδ,ti =
(

Ad + λti Bd Fδ −λti Bd Fδ

λti Bd Fδ Ad − K Cd − λti Bd Fδ

)

and

B̄ =
(

Bd Fδ −Bd Fδ

Bd Fδ −Bd Fδ

)

then

Ãδ,t =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Āδ,t1 μ1 B̄ 0 · · · 0

0 Āδ,t2
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . . μN−1 B̄
0 · · · · · · 0 Āδ,t N

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where λt1, . . . , λt N are the eigenvalues of Jt and μi ∈ {0, 1} is determined by the
Jordan structure of Jt . Define

P̄δ = ρ

(
Pd 0
0

√‖Pd‖P

)

,

where Pd is the solution of the Riccati equation (6.24) and P is uniquely defined by
the Lyapunov equation:

P(Ad − K Cd) + (Ad − K Cd)′ P = −I.

In the above we choose ρ such that ρδ > 1 and ρ
√‖Pd‖ > 2. As shown in [4] we

then have:

Ā′
δ,ti P̄δ + P̄δ Āδ,ti ≤ −ρ

(
δ I 0
0 1

2

√‖Pd‖I

)

≤ −I.

Via Schur complement, it is easy to verify that if matrices A11 < −k I , A22 < 0 and
A12 are given then there exists μ sufficiently large such that the matrix

(
A11 A12
A′
12 μA22

)

< −(k − 1)I.
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Define the matrix:

Pδ =

⎛

⎜
⎜
⎜
⎜
⎝

α1 P̄δ 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 αN P̄δ

⎞

⎟
⎟
⎟
⎟
⎠

.

Then we have that Pδ Ãδ,t + Ã′
δ,t Pδ is less than or equal to:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−α1 I α1μ1 P̄δ B̄ 0 . . . 0

α1μ1 B̄ ′ P̄δ

. . .
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . αN−1μN−1 P̄δ B̄

0 · · · 0 αN−1μN−1 B̄ ′ P̄δ −αN I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Using the above Schur argument, it is not hard to show that if

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−α1 I α1μ1 P̄δ B̄ 0 . . . 0

α1μ1 B̄ ′ P̄δ

. . .
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . αN−2μN−2 P̄δ B̄

0 · · · 0 αN−2μN−2 B̄ ′ P̄δ −αN−1 I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

≤ −6I,

then there exists αN such that:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−α1 I α1μ1 P̄δ B̄ 0 . . . 0

α1μ1 B̄ ′ P̄δ

. . .
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . αN−1μN−1 P̄δ B̄

0 · · · 0 αN−1μN−1 B̄ ′ P̄δ −αN I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

≤ −5I.

Using a recursive argument, we can then prove there exists α1, . . . , αN such that:

Pδ Ãδ,t + Ã′
δ,t Pδ ≤ −5I.

This obviously implies that for ν small enough we have (6.31). If this ν is addi-
tionally small enough such that Aa + ν

2 I is asymptotically stable (recall that Aa is
asymptotically stable) then we obtain that there also exists Pa satisfying (6.32). �
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Define Va = ε2η′
a Paηa as a Lyapunov function for the dynamics of ηa in (6.29).

Similarly, we define Vd = εη′
d Pδηd as a Lyapunov function for the ηd dynamics in

(6.29). Then the derivative of Va is bounded by:

dVa = −νVadt − ε2‖ηa‖2dt + 2ε2Re(η′
a Pa W̃ad,tηd)dt

+ ε2 trace(PaGa Q0G ′
a)dt + 2ε2Re(η′

a PaGa)dw

≤ −νVadt + εc3Vddt

+ ε2r5 trace(Q0)dt + 2ε2Re(η′
a PaGa)dw, (6.33)

where r5 and c3 are such that:

trace(PaGa Q0G ′
a) ≤ r5 trace Q0

and

2Re(η′
a Pa W̃ad,tηd) ≤ 2r4‖ηa‖‖ηd‖ ≤ 1

2‖ηa‖2 + 2r24‖ηd‖2 ≤ 1
2‖ηa‖2 + ε−1c3Vd .

Note that we can choose r4, r5, and c3 independent of the network graph but only
depending on our bounds on the eigenvalues and condition number of our expand
Laplacian L̄(t). Taking the expectation, we get:

dEVa ≤ −νEVadt + εc3EVddt + ε2r5 trace(Q0)dt.

Next, the derivative of Vd is bounded by

dVd = −νε−1Vddt − 4‖ηd‖2dt + 2Re(η′
d PδW̃ ε

da,tηa)dt

+ 2Re(η′
d PδW̃ ε

dd,tηd)dt + ε trace(PδG̃ε
d,t Q0(G̃

ε
d,t )

′)dt

+ 2εRe(η′
d PδG̃ε

d,t )dw

≤ c2Vadt − (νε−1 + ν − ε2
c2c3
ν

)Vddt − ‖ηd‖2dt

+ εr3 trace(Q0)dt + 2εRe(η′
d PδG̃ε

d)dw, (6.34)

where
2Re(η′

d PδW̃ ε
dd,tηd) ≤ ‖ηd‖2

for small ε and

2Re(η′
d PδW̃ ε

da,tηa) ≤ εr1‖ηa‖‖ηd‖ ≤ ε2r21‖ηa‖2 + ‖ηd‖2 ≤ c2Va + ‖ηd‖2,

provided r1 is such that we have εr1 ≥ ‖PδW̃ ε
da,t‖ and c2 sufficiently large. Finally

trace(PδG̃ε
d,t Q0(G̃

ε
d,t )

′) ≤ r3 trace Q0
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for suitably chosen r3. Taking the expectation, we get:

dEVd ≤ c2EVadt − (νε−1 + ν − ε2
c2c3
ν

)EVddt

− E‖ηd‖2dt + εr3 trace(Q0)dt.

We get:
d

dt

(
EVa

EVd

)

≤ Ae

(
EVa

EVd

)

+
(

ε2r5 trace(Q0)

εr3 trace(Q0)

)

,

where

Ae =
(−ν εc3

c2 −ε−1ν − ν + ε2 c2c3
ν

)

.

Note that the inequality here is componentwise. We find by integration that

(
EVa

EVd

)

(t−k ) ≤ eAe(tk−tk−1)

(
EVa

EVd

)

(t+k−1) +
∫ tk

tk−1

eAe(tk−s)
(

ε2r5 trace(Q0)

εr3 trace(Q0)

)

ds

componentwise. In our case:

eAet = 1

1 + ε3 c2c3
ν2

(
eλ1t + ε3 c2c3

ν2
eλ2t ε2 c3

ν

(
eλ1t − eλ2t

)

ε c2
ν

(
eλ1t − eλ2t

)
eλ2t + ε3 c2c3

ν2
eλ1t

)

,

where λ1 = −ν + ε2 c2c3
ν

and λ2 = −ε−1ν − ν. We have a potential jump at time
tk−1 in Vd . However, there exists m such that

Vd(t+k−1) ≤ mVd(t−k−1),

while Va is continuous. Using our explicit expression for eAet and the fact that
tk − tk−1 > τ we find:

(
1 1

)
eAe(tk−tk−1)

(
EVa

EVd

)

(t+k−1) ≤ eλ3(tk−tk−1)
[
EVa(t−k−1) + EVd(t−k−1)

]
,

where λ3 = −ν/2. Moreover, it can be easily verified that:

(
1 1

)
∫ tk

tk−1

eAe(tk−s)
(

ε2r5 trace(Q0)

εr3 trace(Q0)

)

ds ≤ rε2 trace(Q0),

where r is a sufficiently large constant. We find

[
EVa(t−k ) + EVd(t−k )

] ≤ eλ3(tk−tk−1)
[
EVa(t−k−1) + EVd(t−k−1)

] + rε2 trace(Q0).
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Combining these time intervals, we get:

[
EVa(t−k ) + EVd(t−k )

] ≤ eλ3tk [EVa(0) + EVd(0)] + rε2

1 − μ
trace(Q0),

where μ < 1 is such that
eλ3(tk−tk−1) ≤ eλ3τ ≤ μ

for all k. Assume tk+1 > t > tk . Since we do not necessarily have that t − tk > τ

we use the bound:

eAe(t−tk)
(
EVa

EVd

)

(t+k ) ≤ 2meλ3(t−tk)
(
EVa

EVd

)

(t−k ),

where the factorm is due to the potential discontinuous jump.Combining all together,
we get:

[EVa(t) + EVd(t)] ≤ 2meλ3t [EVa(0) + EVd(0)] + (2m + 1)
rε2

1 − μ
trace(Q0).

This implies:

lim
t→∞E[η′

d(t)ηd(t)] ≤ 2m + 1

σmin(Pδ)

rε

1 − μ
trace(Q0).

Following the proof above, we find that

e = (IN ⊗ Cd)(IN ⊗ S−1
ε )(Ut J−1

t ⊗ Ipρ)
(
IN pρ 0

)
N−1

d ηd

= (Ut J−1
t ⊗ Cd)

(
IN pρ 0

)
N−1

d ηd

= �tηd ,

for suitably chosen matrix�t . Although�t is time-varying, it is uniformly bounded,
because for graphs in G

ϕ,N
α,β,π the matrices Ut and Jt are bounded. The fact that we

can make the asymptotic variance of ηd arbitrarily small then immediately implies
that the asymptotic variance of e can be made arbitrarily small. Because all agents
and protocols are linear it is obvious that the expectation of e is equal to zero. �

Step 3: Combining the precompensator (6.16) and the controller (6.25) in Step
2, we obtain the protocol in the form of (6.15) in Theorem 6.17 (or if we replaced
(6.13) by (6.14) we find the protocol for Theorem 6.15) as:

Ai =
(

Ad − KεCd 0
Bip Fδε Aip

)

, Bi =
(

Kε Kε

0 0

)

,

Ci = (
0 Cip

)
, Di = (

0 0
)
.

(6.35)
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6.5 Examples

In this section, we will present two examples. The first example is connected to
Theorem 6.15 (without disturbances with known frequencies). The second example
is connected to Theorem 6.17 (with disturbances with known frequencies).

6.5.1 Example 1

We illustrate the result in this section on a network of 10 nonidentical agents, which
are of the form (6.1) with

Ai1 =
⎛

⎝
−1 1 0
0 0 1
0.1 0 0.1

⎞

⎠ , Bi1 =
⎛

⎝
0
0
1

⎞

⎠ , C ′
i1 =

⎛

⎝
0
1
0

⎞

⎠ , Gi1 =
⎛

⎝
1
0
1.5

⎞

⎠ ,

Ai2 =
⎛

⎝
−3 1 0
0 0 1
1 0.5 1

⎞

⎠ , Bi2 =
⎛

⎝
0
0
1

⎞

⎠ , C ′
i2 =

⎛

⎝
0
1
0

⎞

⎠ , Gi2 =
⎛

⎝
0.5
1
1

⎞

⎠ ,

Ai3 =
⎛

⎝
−2 1 0
0 0 1
2 2 2

⎞

⎠ , Bi3 =
⎛

⎝
0
0
1

⎞

⎠ , C ′
i3 =

⎛

⎝
0
1
0

⎞

⎠ , Gi3 =
⎛

⎝
2
1
2

⎞

⎠ ,

and i1 ∈ {1, 2, 3}, i2 ∈ {4, 5, 6}, i3 ∈ {7, 8, 9, 10}, which will also be used as indices
for the following precompensators and interconnection systems. The degree of the
infinite zeros for each of the agent is equal to 2.

Assume the reference system as y0 = 1, which is in the form of (6.6) with
Sr = 0, Rr = 1, xr (0) = 1. By using themethod given in Sect. 6.4, precompensators
are designed of the form (6.16) as

Ai1 p = 0, Bi1 p = 10, Ci1 p = −0.1,

Ai2 p = 0, Bi2 p = −1.2, Ci2 p = −5

6
,

Ai3 p = 0, Bi3 p = −1

3
, Ci3 p = −3.

The interconnection of the above precompensators and agents have the degree of the
infinite zeros equal to 3, and can be written in SCB form:

Ai1 =

⎛

⎜
⎜
⎝

−1 1.4142 0 0
0 0 1 0
0 0 0 1

−0.0707 0.1 0 0.1

⎞

⎟
⎟
⎠ , Bi1 =

⎛

⎜
⎜
⎝

0
0
0
1

⎞

⎟
⎟
⎠ , C ′

i1 =

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠ , Gi1 =

⎛

⎜
⎜
⎝

1.4142
0
1.5
0.25

⎞

⎟
⎟
⎠ ,
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Ai2 =

⎛

⎜
⎜
⎝

−3 1.562 0 0
0 0 1 0
0 0 0 1

−1.9206 1 0.5 1

⎞

⎟
⎟
⎠ , Bi2 =

⎛

⎜
⎜
⎝

0
0
0
1

⎞

⎟
⎟
⎠ , C ′

i2 =

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠ , Gi2 =

⎛

⎜
⎜
⎝

0.781
1
1
2

⎞

⎟
⎟
⎠ ,

Ai3 =

⎛

⎜
⎜
⎝

−2 1.2019 0 0
0 0 1 0
0 0 0 1

−3.3282 2 2 2

⎞

⎟
⎟
⎠ , Bi3 =

⎛

⎜
⎜
⎝

0
0
0
1

⎞

⎟
⎟
⎠ , C ′

i3 =

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠ , Gi3 =

⎛

⎜
⎜
⎝

2.4037
1
2
10

⎞

⎟
⎟
⎠ .

We select K = (3 7 3)
′
such that eigenvalues of (Ad − K Cd) are given by

(−0.5265, −1.2367 ± j2.0416), and then choose δ = 10−10, ε = 0.01 such that

Fδε = (−0.0018 −0.0021 −0.0012
)
, Kε =

⎛

⎝
300

70000
3000000

⎞

⎠ .

Together with Ad , Cd with ρ = 3, we get the controller of the form (6.25) for each
interconnection system.

As stated in Theorem 6.15, the time-varying network topology switches in a set of
network graphGϕ,N

α,β,π with minimum dwell time τ , and a priori given α, β, π, ϕ, N .
In this example, we assume a graph set consists of three directed graphs G1, G2, G3,
with N = 10, α = 10, β = 0.3, π only contains node of agent 2, and ϕ can be
any bounded real number for this set is finite (with only 3 graphs). These graphs
are shown in Fig. 6.1. The reference system is connected to agent 2, which is in the
root set.

Figure6.2 shows the outputs of 10 agents with reference system y0 = 1 with
ε = 0.01, δ = 10−10. When tuning parameter ε to 0.001, regulated output synchro-
nization errors are squeezed to small and outputs of agents are much closer to the
reference trajectory, shown in Fig. 6.3.

Fig. 6.1 The network
topologies
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Fig. 6.2 Low- and high-gain parameters ε = 0.01, δ = 10−10
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Fig. 6.3 Low- and high-gain parameters ε = 0.001, δ = 10−10

6.5.2 Example 2

In this section, we will modify Sect. 6.5.1 by adding disturbances with known fre-
quencies. The H̃1

i , H̃2
i , Sid , and Rid for agent i are given by:
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H̃1
i1 =

⎛

⎝
0 1
0 0
0 1.5

⎞

⎠ , H̃2
i1 = (

1 0
)
, Si1d =

⎛

⎝
0 0 0
0 0 9
0 −9 0

⎞

⎠ , Ri1d =
(
1 0 0
0 0 1

)

,

H̃1
i2 =

⎛

⎝
0 0.5
0 1
0 1

⎞

⎠ , H̃2
i2 = (

1 0
)
, Si2d =

⎛

⎝
0 0 0
0 0 3
0 −3 0

⎞

⎠ , Ri2d =
(
1 0 0
0 1 0

)

,

H̃1
i3 =

⎛

⎝
0 2
0 1
0 2

⎞

⎠ , H̃2
i3 = (

1 0
)
, Si3d =

⎛

⎝
0 0 0
0 0 5
0 −5 0

⎞

⎠ , Ri3d =
(
1 0 0
0 0 1

)

,

where from Sid we find that the disturbances with known frequencies are constant
and sinusoid waves. Please note that i1 ∈ {1, 2, 3}, i2 ∈ {4, 5, 6}, i3 ∈ {7, 8, 9, 10}.
Assume we also have the constant reference trajectory y0 = 1. By applying the
method given in Sect. 6.4, we get precompensators

Ai1 p =
⎛

⎝
0 −0.8441 0

0.8441 0 −8.9603
0 8.9603 0

⎞

⎠ , Bi1 p =
⎛

⎝
0.7779
0.5959
0.6631

⎞

⎠ , C ′
i1 p =

⎛

⎝
0
0

1.5079

⎞

⎠ ,

Ai2 p =
⎛

⎝
0 −1.1235 0

1.1235 0 −2.7817
0 2.7817 0

⎞

⎠ , Bi2 p =
⎛

⎝
0.2106
0.2285
0.3177

⎞

⎠ , C ′
i2 p =

⎛

⎝
0
0

3.1469

⎞

⎠ ,

Ai3 p =
⎛

⎝
0 −3.5038 0

3.5038 0 −3.5670
0 3.5670 0

⎞

⎠ , Bi3 p =
⎛

⎝
0.0353
0.1059
0.1652

⎞

⎠ , C ′
i3 p =

⎛

⎝
0
0

6.0544

⎞

⎠ .

We also use the same parameters as those in Sect. 6.5.1, i.e., K = (3 7 3)
′
,

δ = 10−10, ε = 0.01. Then, we have

Fδε = (−18.2574 −20.7160 −11.7519
)
, Kε =

⎛

⎝
300

70000
3000000

⎞

⎠ .

For Ad , Cd with ρ = 3 given, we can get the controller of the form (6.25) for each
interconnection system.

The network topology also switches among the set of graph shown in Fig. 6.1
in the same way. Figure6.4 shows the outputs of 10 agents with reference system
y0 = 1 with ε = 0.01, δ = 10−10. When tuning parameter ε to 0.001, regulated
output synchronization errors are squeezed to small and outputs of agents are much
closer to the reference trajectory, shown in Fig. 6.5. We can find that even agents are
affected by any constant and any sinusoid wave with known frequencies, stochastic
almost regulated output synchronization is still obtained.
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Fig. 6.4 Low- and high-gain parameters ε = 0.01, δ = 10−10
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Fig. 6.5 Low- and high-gain parameters ε = 0.001, δ = 10−10
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Chapter 7
A Characterization of Solutions
of the ARE and ARI

A. Sanand Amita Dilip and Harish K. Pillai

Abstract This article is about a characterization of the solution set of algebraic
Riccati equation (ARE) and the algebraic Riccati inequality (ARI) over the reals, for
both controllable and uncontrollable systems. We characterize these solutions using
simple linear algebraic arguments. It turns out that solutions of ARE ofmaximal rank
have lower rank solutions encoded within it. We demonstrate how these lower rank
solutions are encodedwithin the full rank solution and how one can retrieve the lower
rank solutions from the maximal rank solution. We also obtain a parametrization for
solutions of certain specificARIs.We generalizeWillems’ result Kmin ≤ K ≤ Kmax

for ARI arising out of controllable systems to some specific kind of uncontrollable
systems.

7.1 Introduction and Preliminaries

About 15 years ago, Harry Trentelman and the second author occupied adjacent
offices for nearly two years. Thosewere very exciting days forme in IWI, Groningen.
The lunches were the most important part of the day when debates on just about
everything under the sun took place. More often than not, Harry and I ended up
taking diametrically opposite viewpoints, especially when it came to world politics.
There were also several topics on which we agreed—sports, mountaineering, and
mathematics being some of them. Unfortunately, Harry and I have not written a
paper together but perhaps there is still time.

A topic on which Harry has worked extensively is the topic of Algebraic Riccati
equations (ARE) andAlgebraicRiccati Inequality (ARI). Some ofHarry’s bestworks
have been closely related to this topic and I find his paper on Quadratic Differential
Forms [25], one of the best papers I have read. Moreover, a lot of my understanding
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about ARE and ARI started from my interactions with Harry. I, therefore, think it
appropriate to write something about ARE and ARI. This article is based on work
done with my student Sanand.

Algebraic Riccati equation occurs naturally in control theory, filtering, numerical
analysis, and many other engineering applications. In optimal control, algebraic
Riccati equation (ARE) arises in infinite horizon continuous time LQR problem.
ARE is also related to power method, QR factorization inmatrix computations [1, 9],
spectral factorization [5, 6, 16]. Riccati equation shows up in Kalman filters too [11].
In [16], solutions of ARE are used in the study of acausal realizations of stationary
processes. Further it is shown howAREs are involved in spectral factorization and in
balancing algorithm (related to stochastic balancing) in [16]. In [5, 6] solutions ARE
are used for parametrization of minimal spectral factors. In [4], solutions of ARE are
used to obtain parametrization of minimal stochastic realizations. For a treatment on
discrete-time ARE, refer [7, 26].

Algebraic Riccati inequality (ARI) arises in H∞ control [18, 19, 22] and also
in formulation of storage functions for dissipative systems in behavioral theory of
systems [25]. The solution set of the ARI (which is a spectrahedron) characterizes
the set of all possible storage functions [25]. This ARI comes from an LMI arising
from the dissipation inequality [25]. Study of symmetric solutions of ARI has also
appeared in [3, 8, 12–15, 17, 21, 24] and some of the references therein.

TheAREandARI originate from theDifferential Riccati equation (DRE) given by
K̇ = −AT K −KA− Q +KBBT K . This DRE defines a flow on the set of symmetric
matrices. The equilibrium points of DRE are the solutions of the corresponding
algebraic Riccati equation −AT K − KA − Q + KBBT K = 0.

In this article, we concentrate on the ARE of the form −AT K − KA − Q +
KBBT K = 0 and ARIs of the form −AT K − KA − Q + KBBT K ≤ 0 where
A, B, Q are real constant matrices having dimensions n × n, n × m and n × n,
respectively, with Q being symmetric. (Note that in the characterization of storage
functions, the ARI takes the form Q − AT K −KA−KBBT K ≥ 0 which one obtains
from ARI: −AT K − KA − Q + KBBT K ≤ 0 by replacing K by −K .)

We begin our analysis by considering the scalar DRE: dk
dt = k̇ = −q −2ak+b2k2

with k ∈ R. If the discriminant of the polynomial −q −2ak +b2k2 is greater than or
equal to zero, then the polynomial has real roots and there are two real equilibrium
points. If the discriminant is strictly greater than zero, then there are two distinct
roots of −q − 2ak + b2k2 = 0. Let kmin and kmax be the two solutions (equilibrium
points of the DRE) such that kmax > kmin . Clearly, k̇ → +∞when k → ±∞. In the
region kmin ≤ k ≤ kmax , k̇ ≤ 0 and hence direction of flow is toward kmin . Outside
the line segment joining kmin and kmax , i.e., for k < kmin and k > kmax , k̇ > 0. For
k < kmin , k̇ > 0, thereby implying that the direction of flow is toward kmin for all
k < kmin . Therefore kmin is a stable equilibrium point of the DRE. For k > kmax ,
k̇ > 0 which implies kmax is an unstable equilibrium point. The line segment joining
kmin and kmax are precisely those values of k that satisfy the ARI.

If the discriminant of the polynomial −q − 2ak + b2k2 is equal to zero, then
the polynomial has a double root and therefore kmin = kmax in this case. Thus, the
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region satisfying the strict ARI is absent in this case. Note further that in this case,
the equilibrium point is unstable.

If the discriminant of the polynomial −q − 2ak + b2k2 is negative, then the
polynomial has no real solutions and therefore there are no real solutions for the
corresponding ARE and ARI.

We want to investigate the situation for the matrix case. One can expect some sort
of similarity between the scalar andmatrix cases. From the literature,weknow that for
matrix case, an equilibrium point exists if there exists an n-dimensional Lagrangian
H -invariant subspace. We assume that this is the case and fix an arbitrary solution
K0 of the ARE. Let K = K0 + X where X can be thought of as a perturbation from
K0. We can then rewrite −AT K − KA − Q + KBBT K as

= − AT (K0 + X) − (K0 + X)A − Q + (K0 + X)BBT (K0 + X)

= − AT K0 − K0A − Q + K0BBT K0 − AT X − XA + K0BBT X

+ XBBT K0 + XBBT X

= − (A − BBT K0)
T X − X (A − B BT K0) + X B BT X. (7.1)

(Since − AT K0 − K0A − Q + K0BBT K0 = 0)

Let A0 = A − BBT K0. The original DRE can now be thought of as K̇ = Ẋ =
−AT

0 X − XA0 + XBBT X . We denote −AT
0 X − XA0 + XBBT X by Ric(X). Then

solutions to the equation Ric(X) = 0, would characterize all the equilibrium points
of the original DRE, i.e., the solutions of the ARE. Similarly, all solutions to the
equation Ric(X) ≤ 0 would characterize all the solutions of the original ARI.

7.2 Building Blocks for Solutions of Ric(X) = 0 and
Ric(X) ≤ 0

Clearly, X = 0 is a solution of Ric(X) = −AT
0 X −XA0+XBBT X = 0.We now look

for nonzero X that satisfy Ric(X) = 0. We start with the simplest case of matrices
X that have rank one. Since X is symmetric, let X = αvvT where α ∈ R and v ∈ R

n

with ||v|| = 1. Further, let β = ||BT v||.
Theorem 7.1 Let X = αvvT , such that ||v|| = 1. Then
1. if v is an eigenvector of AT

0 , the rank of Ric(X) is at most one and Ric(X) is
definite.
2. for all other v, Ric(X) is indefinite.

Proof Let X = αvvT , where v is a right eigenvector of AT
0 , with λ the correspond-

ing eigenvalue. Clearly, Ric(X) = (−2αλ + α2β2)vvT has rank at most one and
depending on the sign of (−2αλ + α2β2) it is positive or negative semidefinite.

Let X = αvvT where v is not an eigenvector of AT
0 . Let AT

0 v = γ u with ||u|| = 1.
Therefore,
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Ric(X) = [
u v

]
[

0 −αγ

−αγ (αβ)2

] [
uT

vT

]

Now

[
0 −αγ

−αγ (αβ)2

]

is indefinite which implies Ric(X) is indefinite. �

Observe that the zero matrix is a very special case of a definite matrix. From the
above theorem it is clear that if v is not an eigenvector of AT

0 , then we are not going
to get solutions of Ric(X) = 0 along X = vvT .

Consider the DRE: Ẋ = −AT
0 X − XA0 + XBBT X when X = αvvT , where v

is an eigenvector of AT
0 and α ∈ R. We obtain the differential equation vα̇vT =

v(−2αλ + α2β2)vT which is actually equivalent to the scalar Riccati differential
equation: α̇ = −2αλ+α2β2. If β �= 0, then the equilibrium points are at α = 0 and
α = 2λ/β2. Note that α = 0 corresponds to the equilibrium point K0 of the original
DRE, whereas α = 2λ/β2 corresponds to a new equilibrium point of the original
DRE. Thus α ∈ [0, 2λ/β] corresponds to X that satisfy Ric(X) ≤ 0. If β = 0, then
α = 0 is the only equilibrium point. Note further that for X = αvvT , Ẋ remains
along the direction vvT if v is an eigenvector of AT

0 .
Consider the pair of matrices (A0, B). Using a change of basis, it is possible to

write A0 and B in the following form [10, 27]

A0 =
[

A11
0 A12

0
0 A22

0

]

, B =
[

B1
0

]

where (A11
0 , B1) form a controllable pair. Eigenvalues of A11

0 are controllable while
eigenvalues of A22

0 are uncontrollable. Left eigenvectors corresponding to uncon-
trollable eigenvalues are of the form vT = [

0 uT
]
. All such vectors v are right

eigenvectors of AT
0 such that BT v = 0. All right eigenvectors of AT

0 that belong to
kernel of BT , are called eigenvectors that correspond to uncontrollable modes. If v
is an eigenvector of AT

0 associated with a controllable eigenvalue, then BT v �= 0 and
so these eigenvectors correspond to controllable modes.

Theorem 7.2 If A0 has an uncontrollable zero eigenvalue, then rank one solutions
of Ric(X) = 0 and Ric(X) ≤ 0 form an unbounded set.

Proof Let v be an eigenvector of AT
0 corresponding to zero eigenvalue which is

associated to an uncontrollable mode. Therefore, AT
0 v = BT v = 0. Let X = αvvT

where α ∈ R. Ric(X) = 0 for all α ∈ R and therefore one has an unbounded set of
rank one solutions for Ric(X) = 0 and Ric(X) ≤ 0. �

Assuming that there are no uncontrollable modes corresponding to zero eigen-
value, one obtains:

Theorem 7.3 There is one-to-one correspondence between rank one solutions of
Ric(X) = 0 and eigenvectors v of nonzero real eigenvalues of AT

0 that correspond
to controllable modes.
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Proof Let X = αvvT where α ∈ R and v is an eigenvector of AT
0 with corresponding

eigenvalue λ. Therefore, Ric(X) = (−2αλ + α2β2)vvT . If AT
0 v = 0, then λ = 0

and Ric(X) = (α2β2)vvT . Hence Ric(X) = (αβ)2vvT = 0 has only one solution
given by α = 0. This solution to Ric(X) = 0 is a rank zero solution and not a rank
one solution.

Assume λ �= 0 and let v ∈ R
n be an associated eigenvector of AT

0 corresponding
to a controllable mode. Hence, β = ||BT v|| �= 0. Therefore, Ric(X) = 0 for
α = 2λ/β2, i.e., for X = (2λ/β2)vvT . If the eigenvector v corresponds to an
uncontrollable mode, then β = 0 and Ric(X) = −2αλvvT which is zero only when
α = 0. But α = 0 implies X = 0 which is of rank zero. �

Following theorem gives parametrization of all rank one solutions of the ARI
Ric(X) ≤ 0.

Theorem 7.4 If v is an eigenvector of AT
0 corresponding to some nonzero real

eigenvalue, then
• if v is an eigenvector corresponding to a controllable mode, then there is one-to-
one correspondence between all rank one solutions of Ric(X) ≤ 0 along vvT and a
bounded interval.
• if v is an eigenvector corresponding to an uncontrollable mode, then there is one-
to-one correspondence between all rank one solutions of Ric(X) ≤ 0 along vvT and
a half line.

If (A, B) is uncontrollable, then (A0, B) is also uncontrollable. If A0 has a real
eigenvalue which has an uncontrollablemode, then rank one solutions of Ric(X) ≤ 0
are unbounded. Conversely, if rank one solutions of Ric(X) ≤ 0 are unbounded, then
(A, B) must be uncontrollable.

If all real uncontrollable eigenvalues of A0 are inR+, then all rank one solutions of
Ric(X) ≤ 0 are bounded from below. Similarly, if all real uncontrollable eigenvalues
of A0 are in R−, then all rank one solutions of Ric(X) ≤ 0 are bounded from above.
If real uncontrollable eigenvalues lie in both R+ and R−, then rank one solutions of
Ric(X) ≤ 0 are neither bounded above nor below. Thus, we have a characterization
of all real rank one solutions of Ric(X) ≤ 0.

7.2.1 Rank Two Solutions of Ric(X) = 0 and Ric(X) ≤ 0

Notice that all real rank one solutions of the ARE and ARI are related to eigendirec-
tions corresponding to real eigenvalues. The complex eigenvalues of A0 play no role
in these rank one solutions. As the complex eigenvalues come in a conjugate pair,
one can expect them to play a role in determining the real rank two solutions of the
ARE and ARI. We, therefore, now concentrate on all rank two solutions of the ARE

and the ARI. Let X = LL LT where L = [
u v

]
and L =

[
α1 α3
α3 α2

]

is a

rank two symmetric matrix. Here u, v ∈ R
n , with ||u|| = ||v|| = 1.
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Theorem 7.5 If X = LL LT (where L is n × 2 and L is 2 × 2) such that two
columns of L are linearly independent, then Ric(X) is definite only if column span
of L is a AT

0 −invariant subspace.

Proof See Theorem 4 of [2]. �
This theorem holds for general rank k perturbations also and proof runs along

similar lines. From the above theorem, it is clear that to find solutions of Ric(X) = 0
or Ric(X) ≤ 0 where X = LL LT , column span of L must be AT

0 −invariant.

7.2.2 Complex Eigenvalues of A0

Let pA0(x) ∈ R[x] be the characteristic polynomial of A0. Every two dimensional
AT
0 −invariant subspace has a minimal polynomial given by a degree two polynomial

which is a factor of pA0(x). Consider the case when A0 has a pair of complex
conjugate eigenvalues λ ± iμ. Let v = v1 + iv2 be the complex eigenvector of AT

0
for λ + iμ. Therefore, AT

0 v1 = λv1 − μv2 and AT
0 v2 = μv1 + λv2. Thus v1, v2 span

a two-dimensional AT
0 -invariant subspace whose minimal polynomial is a degree

two irreducible factor of pA0(x). Let X = LL LT where L is n × 2 matrix having
columns v1 and v2 and L is 2 × 2 symmetric matrix.

Theorem 7.6 Let X = LL LT , where L is a symmetric (2 × 2) matrix of rank 2
and the two columns of L are the real and imaginary parts of a complex eigenvector
corresponding to an eigenvalue λ + iμ. Further assume λ �= 0 and the eigenvalues
λ ± iμ are controllable. Then Ric(X) = 0 has a unique rank two solution of the
given form. Further, this rank two solution is definite.

Proof See Theorem 5 of [2]. �
Consider X = LL LT , where columns of L are obtained from real and imaginary

parts of an eigenvector of AT
0 corresponding to a complex eigenvalue λ + iμ. Since

column span of L does not contain any real one-dimensional AT
0 -invariant subspace,

there are no rank one solutions of Ric(X) ≤ 0 where X has the structure specified
above. For the above case, note that Ric (X) = L(−DL − L DT + L ML )LT

where D =
[

λ μ

−μ λ

]

and M = LT BBT L . Ric(X) ≤ 0 iff −DL − L DT +
L ML ≤ 0. We now state a lemma applicable to this specific case where D has the
structure given above and M ≥ 0.

Lemma 7.7 Let λ > 0. If L1 is a rank two solution of ARI: −DL − L DT +
L ML ≤ 0 andL ∗ is the rank two solution of ARE: −DL −L DT +L ML = 0,
then 0 < L1 < L ∗ and L ∗ − L1 is rank two positive definite matrix.

In the above lemma, if M = 0, the ARE becomes: −DL − L DT = 0 which
has only one solution, namely L = 0. The corresponding ARI becomes −DL −
L DT ≤ 0. When λ > 0, for every C ≤ 0, the linear equation −DL −L DT = C
has a solution L̂ > 0. Further if α > 0, then L = αL̂ also satisfies −DL −
L DT ≤ 0.
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Remark 7.8 If real part of the complex conjugate eigenvalues is strictly less than
zero and M �= 0, using arguments similar to those used in Lemma 7.7, one can show
that ifL1 is a rank two solution of ARI: −DL − L DT + L ML ≤ 0 and L ∗ is
the rank two solution of ARE: −DL − L DT + L ML = 0, then 0 > L1 > L ∗
andL ∗ −L1 is rank two negative definite matrix. Further, if real part of the complex
conjugate eigenvalues is strictly less than zero and M = 0, then one can show that
if L̂ is a rank two solution of ARI: −DL − L DT ≤ 0, then 0 > L̂ .

Now we consider the case when A0 has purely imaginary eigenvalues ±iμ.

Theorem 7.9 If X = LL LT where columns of L form the two-dimensional AT
0 -

invariant subspace associated with a complex conjugate pair of purely imaginary
eigenvalues ±iμ of AT

0 , then both Ric(X) = 0 and Ric(X) ≤ 0 are not satisfied for
any nonzero X of the given form.

We, therefore, conclude

Theorem 7.10 If X = LL LT (L is 2× 2 matrix of rank 2) where two columns of
L form AT

0 -invariant subspace corresponding to a pair of complex conjugate eigen-
values (λ ± iμ) which are not purely imaginary, then
• if the pair of complex conjugate eigenvalues are controllable, then rank two solu-
tions of ARI: Ric(X) ≤ 0 of the form X = LL LT are bounded.
• if the pair of complex conjugate eigenvalues are uncontrollable, then rank two
solutions of ARI: Ric(X) ≤ 0 of the form X = LL LT are unbounded.

Note that when complex eigenvalues were controllable and not purely imaginary,
rank 2 solutions of Ric(X) ≤ 0 along the AT

0 -invariant subspaces corresponding to a
pair of complex conjugate eigenvalues lie in the matrix interval (0,L ∗] or [L ∗, 0)
depending on the sign of the real part of the complex eigenvalue pair. (L ∗ is the
rank two solution of the reduced 2 × 2 algebraic Riccati equation.) As the real part
of this complex conjugate pair tends to zero, the corresponding matrix interval of
solutions collapse to a single point which is the zero solution and there are no nonzero
rank two solutions of Ric(X) ≤ 0 along these AT

0 -invariant subspaces corresponding
to a pair of purely imaginary eigenvalues. Recall that for real eigenvalues that are
controllable, rank one solutions of Ric(X) ≤ 0 along the AT

0 -invariant subspace
corresponding to the eigenvalue are in one-to-one correspondence with numbers
in the interval (0, (2λ/β2)] or [(2λ/β2), 0). As the real eigenvalue tends to zero,
this interval collapses to a single point and there are no nonzero solution in the
direction corresponding to the eigenvector of the eigenvalue 0. If a real eigenvalue
which is uncontrollable tends to zero, then rank one solutions of Ric(X) = 0 and
Ric(X) ≤ 0 which were unbounded from one side, becomes unbounded from above
and below. However, if the real part of complex conjugate pair of eigenvalues which
are uncontrollable tends to zero, then there are no nonzero solutions of Ric(X) = 0
and Ric(X) ≤ 0 along the direction of AT

0 −invariant subspace corresponding to
this pair of purely imaginary eigenvalues. Thus the set of solutions collapse from an
unbounded set to just the zero solution.
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We have now characterized all solutions of Ric(X) = 0 and Ric(X) ≤ 0
that can arise from a two-dimensional AT

0 -invariant subspace associated to a pair of
complex conjugate eigenvalues.

7.2.3 Real Eigenvalues of A0

Wenow consider a two-dimensional subspace spanned by two independent eigenvec-
tors/generalized eigenvectors of AT

0 , say v1 and v2 corresponding to real eigenvalues
λ1 and λ2, respectively, such that λ1 + λ2 �= 0. Let X = LL LT where v1, v2 form
columns of L and L is a rank two 2 × 2 symmetric matrix.

Theorem 7.11 Let X = LL LT (L is 2 × 2 with rank 2) where the columns of L
span a AT

0 -invariant subspace. Further assume that the two columns of L are linearly
independent (generalized) eigenvectors of AT

0 corresponding to a pair of controllable
modes associated to nonzero real eigenvalues λ1, λ2 such that λ1 + λ2 �= 0. Then
Ric(X) = 0 has a unique rank two solution of the given form.

Proof See Theorem 7 of [2]. �

Next we consider the case when A0 has eigenvalues λ and −λ.

Theorem 7.12 If X = LL LT (L is 2 × 2 with rank 2) where two columns of L
form linearly independent eigenvectors of AT

0 corresponding to a pair of controllable
modes associated to nonzero real eigenvalues λ1, λ2 such that λ1 + λ2 = 0, then
Ric(X) = 0 has either (a) no rank two solution of the given form or (b) infinite rank
two solutions of the given form.

Proof See Theorem 8 of [2]. �

We demonstrate the above result with an example.

Example 7.13 Let

A0 =
[−1 0

0 1

]

, B =
[
1
1

]

Clearly A0 = AT
0 = D has eigenvalues −1, 1. M = BBT =

[
1 1
1 1

]

(since we

can choose L as the identity matrix ). One wants to find rank two solutions for this
simplified ARE: −DL − L DT + L ML = 0. If such a solution exists, then its
inverse Y satisfies the Lyapunov equation Y D + DT Y = M . Let Y = [yi j ]. Clearly,
(−1 + 1)y12 = m12. Since m12 �= 0, Lyapunov equation Y D + DT Y = M has no
solution. Thus, there are no rank two solutions of Ric(X) = 0 in this case.
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Now consider a system with same A0 as above but B =
[
1 0
0 1

]

. Therefore,

M = BBT is also the identity matrix. Since m12 = m21 = 0, Y =
[−1/2 α

α 1/2

]

(for any α ∈ R) satisfies the Lyapunov equation YD + DT Y = M (where D = A0).
Thus one obtains several Y s that are invertible and their inverses give infinitely many
rank two solutions of Ric(X) = 0.

Next we consider a special case when both real eigenvalues of A0 are either
positive or negative and both of them are controllable. Without loss of generality, we
assume that both eigenvalues are positive. If both eigenvalues of A0 are positive, then
rank two solution of Ric(X) = 0 is positive definite (this follows from the solution of
Lyapunov equation −Y AT

0 − A0Y + BBT = 0 being positive definite if eigenvalues
of A0 lie in open right half plane [23]). If both the eigenvalues are negative, then the
rank two solution is negative definite. We denote by DJ an upper triangular matrix
in Jordan canonical form. We now state a couple of lemmas without their proofs.

Lemma 7.14 Suppose both eigenvalues of DJ are real and positive and L ∗ be a
rank two solution of simplified ARE −DJL −L DT

J +L ML = 0. If L1 is a rank
one solution, of this simplified ARE, then L1 ≤ L ∗.

Lemma 7.15 Let DJ be a 2 × 2 matrix in Jordan canonical form such that both
eigenvalues of DJ are positive. Let the unique rank 2 solution of simplified ARE:
−DJL − L DT

J + L ML = 0 be denoted by L ∗. Then every solution L̂ of the

simplified ARI: −DJL − L DT
J + L ML ≤ 0 is such that 0 ≤ L̂ ≤ L ∗.

Consider the case when D has eigenvalues λ1 and−λ2 such that both are control-
lable (λ1, λ2 > 0). Note that we may have λ1 = λ2. By Theorem 7.12, there may
not be a rank two solution or there could be infinitely many rank two solutions of
Ric(X) = 0. LetL ∗

r be a rank one solution of ARE −DL −L DT +L ML = 0
corresponding eigenvector associated with positive eigenvalue λ1 of D and L ∗

�

be a rank one solution corresponding eigenvector associated with negative eigen-
value −λ2 of D such that L ∗

r = diag(Lr , 0) and L ∗
� = diag(0,L�). Note that

Lr = 2λ1/(m11) and L� = −2λ2/(m22).

Theorem 7.16 Consider D = diag(λ1,−λ2) (where λ1, λ2 > 0 and they may or
may not be distinct). Let L ∗

r and L ∗
� be the solutions of ARE as stated above. Then

every solution L̂ of the simplified ARI: −DL − L DT + L ML ≤ 0 is such that
L ∗

� ≤ L̂ ≤ L ∗
r .

Finally, if either one of the eigenvalues is uncontrollable, then from Theorem 7.4,
rank one solutions become unbounded. If both the eigenvalues are uncontrollable,
then M = 0 and rank two solutions become unbounded. By Theorem 9 of [2], if
λ is a repeated eigenvalue of A0 with nontrivial Jordan form such that (A0, B) is
partially controllable, then Ric(X) = 0 has no nontrivial solution. On the other hand,
the set of rank one solutions corresponding to an eigenvector of the uncontrollable
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eigenvalue become unbounded. Now suppose A0 has two eigenvalues λ and −λ

such that one is controllable and other is uncontrollable. By Theorem 10 of [2],
Ric(X) = 0 has infinitely many rank two solutions and this forms an unbounded
set. Therefore, rank two solutions of Ric(X) ≤ 0 also form an unbounded set. Set
of rank one solutions corresponding to eigenvector of the uncontrollable eigenvalue
also forms an unbounded set.

In this section, we have enumerated nearly all situations that give rise to either
rank one or rank two solutions of Ric(X) = 0 and Ric(X) ≤ 0. As it turns out, this
is all that is required to completely understand all the solutions of Ric(X) = 0 and
Ric(X) ≤ 0. These rank one and rank two solutions are like building blocks and all
the other solutions can be build up from them. We, therefore, now look for higher
rank solutions of Ric(X) = 0.

7.3 Solutions of ARE, ARI of General Rank

Any rank k solution of Ric(X) = 0 and Ric(X) ≤ 0 can be written as X = LL LT

where L isn×k andL is k×k symmetricmatrix.Using arguments fromTheorem7.5,
if columns of L do not form an AT

0 -invariant subspace, then Ric(X) is indefinite.
Therefore, to get rank k solutions of the ARE or the ARI, columns of L must span an
AT
0 -invariant subspace.When AT

0 is diagonalizable, without loss of generalitywe can
take columns of L as eigenvectors of AT

0 .When A0 has complex eigenvalues, then one
takes the real and imaginary parts of the complex eigenvector of AT

0 as the columns
of L . For the more general case of repeated eigenvalues in a Jordan block, one takes
generalized eigenvectors of AT

0 as the columns of L . Using X = LL LT (whereL
is k × k matrix), Ric(X) is reduced to expression L(−DJL −L DT

J +L ML )LT

where M = LT BBT L and DJ is the Jordan form associated with the AT
0 -invariant

subspace.

Theorem 7.17 If A0 has a zero eigenvalue which is controllable, then the corre-
sponding eigenvectors/generalized eigenvectors do not correspond to any nonzero
solution of Ric(X) ≤ 0.

Corollary 7.18 If A0 has a zero eigenvalue which is uncontrollable, then X =
LucL LT

uc is a solution of Ric(X) ≤ 0 for any symmetric L , where columns of
Luc are eigenvectors of AT

0 associated with the uncontrollable modes of the zero
eigenvalue.

If A0 has purely imaginary eigenvalueswith nontrivial Jordan structure, then using
Theorem 7.9, one can show that the invariant subspace corresponding to these purely
imaginary eigenvalues of AT

0 does not support the nonzero solutions of Ric(X) ≤ 0.
We, therefore, consider the case when A0 has only nonzero eigenvalues that are not
purely imaginary.
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7.3.1 Maximal Rank Solutions of Ric(X) = 0

Using X = LL LT (where columns of L are eigenvectors/generalized eigenvectors
of AT

0 corresponding to real eigenvalues and real and imaginary part of the com-
plex eigenvectors/generalized eigenvectors associated with complex eigenvalues),
the problem reduces to the simplified ARE: −DJL − L DT

J + L ML = 0. By
assumption, all eigenvalues of DJ are nonzero and not purely imaginary.

Theorem 7.19 If (A0, B) is controllable and A0 has eigenvalues λi (1 ≤ i ≤ n)

such that λi + λ j �= 0 for all 1 ≤ i, j ≤ n , then Ric(X) = 0 has a unique rank n
solution.

Proof See Theorem 12 of [2]. �

Putting together the results so far in this article, one can conclude that a unique full
rank solution exists for Ric(X) = 0 whenever all the eigenvalues of A0 are nonzero,
controllable and the sum of any two eigenvalues is never equal to zero. It has been
demonstrated in Theorem 7.17 that a controllable zero eigenvalue of A0 results in
rank deficient solutions of Ric(X) = 0. On the other hand, Corollary 7.18 shows that
an uncontrollable zero eigenvalue of A0 does not hinder the existence of full rank
solutions for Ric(X) = 0, but then uniqueness is lost. Theorem 7.19 demonstrates
the conditions for existence of a unique full rank solution for Ric(X) = 0 when all
the eigenvalues are controllable. Finally, for the case when the sum of two nonzero
eigenvalues of A0 add up to zero, a full rank solution may or may not exist. If a full
rank solution does exist, then there are an infinite number of such full rank solutions.

One can isolate several special cases where all the conditions listed above are
satisfied. For example, if one considers all the eigenvalues of A0 to be controllable
and lying in the open right half complex plane (i.e., having real parts that are strictly
positive), then Ric(X) = 0 has a unique full rank solution. In this case, one can in
fact show that this full rank solution of Ric(X) = 0 is positive definite.

On similar lines, one can also conclude that if all eigenvalues of A0 are controllable
and lies in the open left half plane, then Ric(X) = 0 has a full rank solution which
is negative definite.

On the other hand, if (A0, B) is not controllable, then one can divide the eigenval-
ues into two sets: those eigenvalues which are controllable (denoted by Spec(A0)c)
and those eigenvalues which are not controllable (denoted by Spec(A0)uc). If the
controllable subspace is k-dimensional, then one can guarantee a rank k solution,
provided λi + λ j �= 0 for all λi , λ j ∈ Spec(A0)c. If this condition is not satisfied,
then either no rank k solution exists or infinitely many rank k solutions exist. As for
the uncontrollable part, if all the eigenvalues are nonzero, then no nontrivial solu-
tion of Ric(X) = 0 comes from the AT

0 -invariant subspace corresponding to the
uncontrollable eigenvalues in general. The only exception to this rule arises out of
a very special situation—if an eigenvalue λ ∈ Spec(A0)c and an eigenvalue −λ ∈
Spec(A0)uc, then one gets solutions whose rank is greater than k (see [2]). Finally,
if 0 ∈ Spec(A0)uc, then again one gets solutions whose rank is greater than k. In all
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these cases, where the uncontrollable eigenspaces contribute nontrivially to solutions
of Ric(X) = 0, the uniqueness of maximal rank solution is lost.

7.3.2 Information Content in a Maximal Rank Solution
of Ric(X) = 0

Assume (A0, B) is controllable and a unique full rank solution of Ric(X) = 0 exists.
From our earlier discussions, it is clear that this full rank solution of Ric(X) = 0
has the form X = LL ∗LT where L is a real n × n matrix whose columns are either
the (generalized) eigenvectors of AT

0 corresponding to real eigenvalues or the real
and imaginary parts of complex (generalized) eigenvectors of AT

0 corresponding to
complex eigenvalues. ThematrixL ∗ is the solution of the simplifiedARE−DJL −
L DT

J + L ML = 0. The matrix M = LT BBT L and the matrix DJ is a block
diagonal Jordan matrix. Note that the eigenvalues of A0 are such that λi + λ j �= 0
for all eigenvalues λi , λ j ∈ Spec(A0).

In order to find a rank k solution of Ric(X) = 0 (where k < n), we take
X = LkL LT

k where columns of Lk are either (generalized) eigenvectors of AT
0

corresponding to real eigenvalues or the real and complex parts of complex (general-
ized) eigenvectors of AT

0 corresponding to complex eigenvalues. In other words, Lk

is a n × k submatrix of L . Therefore, AT
0 Lk = Lk Dk where Dk is the corresponding

k × k submatrix of DJ . Then the ARE: −AT
0 X − X A0 + X B BT X = 0 becomes

−AT
0 X − X A0 + X B BT X = −AT

0 LkL LT
k − LkL LT

k A0 + LkL LT
k BBT LkL LT

k

= −Lk DkL LT
k − LkL DT

k LT + LkL MkL LT
k

= Lk(−DkL − L DT
k + L MkL )LT

k

where Mk = LT
k BBT Lk

Note that Mk is the appropriate k × k submatrix of the original matrix M . Further
observe that the rank k solution is obtained by solving the simplified ARE:−DkL −
L DT

k + L MkL = 0 which is a chopped up version of the original full rank
simplified ARE −DJL − L DT

J + L ML = 0. Assuming that L has rank k, we
can pre- and post-multiply the chopped up version of the ARE by Y = L −1 thereby
obtaining the linear equation

− Y Dk − DT
k Y + Mk = 0 (7.2)

This Lyapunov equation has a unique solution Yk (note that our assumption in this
section of controllability and λi + λ j �= 0 where λi , λ j ∈ Spec(A0) is necessary
for this conclusion). From Yk , one obtains a rank k solution Lk = (Yk)

−1 of the
chopped up ARE: −DkL − L DT

k + L MkL = 0. One can show that such a Yk

is invertible. But clearly, this rank k solution of Ric(X) = 0 is related to the full
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rank solution of Ric(X) = 0 as the governing equation of the former is a chopped up
version of the latter.We now bring out this relationship between the various solutions
of Ric(X) = 0.

Theorem 7.20 Let (A0, B) be controllable. If A0 has real and distinct eigenvalues
λ1, . . . , λn such that λi + λ j �= 0 (for 1 ≤ i, j ≤ n), then the lower rank 2n − 2
nonzero solutions of simplified ARE: −DL −L D+L ML = 0 are obtained from
Schur complements of all the 2n − 2 strict principal submatrices of L ∗, the unique
full rank solution of the simplified ARE.

Proof See [2]. �

Note that from the above theorem, if one obtains L of rank k that satisfies sim-
plified ARE: −DL − L D + L ML = 0, then X = LL LT gives a rank k
solution of Ric(X) = 0. Thus, the above theorem states that the full rank solution
of −DL − L D + L ML = 0 has all the other solutions encoded within it. It is
enough to find the full rank solution and all other solutions can be read off from this
solution.

Example 7.21

A =

⎡

⎢
⎢
⎣

1 1 1 1
2 4 5 1
0 2 4 0
0 0 5 4

⎤

⎥
⎥
⎦ , B =

⎡

⎢
⎢
⎣

1 −1
1 1
1 1
1 2

⎤

⎥
⎥
⎦ , Q =

⎡

⎢
⎢
⎣

4 1 1 1
1 5 1 1
1 1 2 1
1 1 1 5

⎤

⎥
⎥
⎦ ,

Fixing K0 (a solution of the ARE: −AT K − KA − Q + KBBT K = 0), we get
A0 = A−BBT K0 with eigenvalues {10.4939, 3.8178, 2.6097, 1.5784}. Forming the
matrix L using eigenvectors of AT

0 , the Riccati equation gets modified into diagonal
form −DL − L D + L ML = 0 with

M = LT BBT L =

⎡

⎢
⎢
⎣

10.7996 6.8110 5.8111 1.3180
6.8110 26.5759 39.5777 −19.1530
5.8111 39.5777 61.0133 −31.5026
1.3180 −19.1530 −31.5026 18.0857

⎤

⎥
⎥
⎦

Let Y ∗ be the solution of Lyapunov equation −Y ∗ D − DY ∗ + M = 0. Full rank
solution of −DL − L D + L ML = 0 is given by L ∗ = (Y ∗)−1

L ∗ =

⎡

⎢
⎢
⎣

4.0715 −5.3083 3.0651 0.6581
−5.3083 28.9839 −22.2105 −11.1036
3.0651 −22.2105 17.8956 9.6775
0.6581 −11.1036 9.6775 5.9889

⎤

⎥
⎥
⎦ ,
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For the (1, 1) principal submatrix of L ∗, one obtains a rank one solution by taking

appropriate Schur complement to getL1 =

⎡

⎢
⎢
⎣

1.9434 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦. Similarly,

for the leading 2× 2 principal submatrix, taking the appropriate Schur complement

one gets L12 =

⎡

⎢
⎢
⎣

2.2247 −0.3042 0 0
−0.3042 0.3289 0 0

0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦. A rank one solution of Ric(X) = 0 is

given by X1 = LL1LT . Similarly a rank two solution is given by X12 = LL12LT .
Full rank solution is given by X∗ = LL ∗LT . Thus, all the 14 lower rank nonzero
solutions can be obtained by taking appropriate Schur complements of the full rank
solutionL ∗. Finally, all 16 solutions of the ARE are obtained as K0 + X , where X
is a solution of Ric(X) = 0.

Theorem 7.20 can be generalized to include A0 that have complex eigenvalues. In
this case too, the maximal rank solution encodes all the lower rank solutions within
it. The only difference from Theorem 7.20 is that the Schur complements of all
principal submatrices are not admissible in this case. We now give a corollary and
an example that conveys the general layout of these results.

Corollary 7.22 Let (A0, B) be controllable. Let A0 have nonzero distinct eigenval-
ues λ1, . . . , λn such that λi + λ j �= 0 for all 1 ≤ i, j ≤ n. Let λ ± iμ be a complex
conjugate pair of eigenvalues of A0. Then the Schur complement of the principal
submatrix of L ∗ associated with all the other eigenvalues of A0, determines a rank
two solution of the simplified ARE −DL − L DT + L ML = 0.

Example 7.23

A =
⎡

⎣
1 1 0
0 1 1
0 0 1

⎤

⎦ , B =
⎡

⎣
0
0
1

⎤

⎦ , Q =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ ,

Fixing K0 (a solution of the ARE: −AT K − KA − Q + KBBT K = 0) one gets
A0 = A − BBT K0 with eigenvalues {1.4142, 1.0987+ i0.4551, 1.0987− i0.4551}.
Let L be a matrix whose first column is an eigenvector of AT

0 corresponding to
the eigenvalue 1.4142 whereas the second and third columns of L are the real and
imaginary parts respectively of the complex eigenvector of AT

0 corresponding to the
eigenvalue 1.0987 + i0.4551.

M = LT BBT L =
⎡

⎣
14.6489 15.7125 10.8940
15.7125 16.8533 11.6850
10.8940 11.6850 8.1016

⎤

⎦



7 A Characterization of Solutions of the ARE and ARI 143

Let Y ∗ be the solution of Lyapunov equation−Y D− DT Y +M = 0. Rank 3 solution
L ∗ is given by L ∗ = (Y ∗)−1.

L ∗ =
⎡

⎣
87.3255 −60.2755 −24.9669

−60.2755 42.8452 16.1228
−24.9669 16.1228 8.3025

⎤

⎦

From the Schur complement of lower 2× 2 principal submatrix ofL ∗, one obtains

L1 =
⎡

⎣
0.1931 0 0

0 0 0
0 0 0

⎤

⎦ , and from the Schur complement of the (1, 1) princi-

pal submatrix, one obtains

L23 =
⎡

⎣
0 0 0
0 1.2407 −1.1103
0 −1.1103 1.1643

⎤

⎦. From these solutions, one constructs the

other three solutions of the original Riccati equation.

Now assume that A0 has repeated eigenvalues whose algebraicmultiplicity equals
its geometric multiplicity. We continue to impose the condition (A0, B) is control-
lable and λi + λ j �= 0 for λi , λ j ∈ Spec(A0). Let columns of L be real eigenvectors
of AT

0 or real/imaginary parts of complex eigenvectors of AT
0 associated with com-

plex eigenvalues. Due to the repeated eigenvalues, the matrix L is far from unique.
One can show in this case that the full rank solution of Ric(X) = 0 is unique. For
each choice of L , one gets a unique rank n solutionL ∗ and the Schur complements
of appropriate (n − k)× (n − k) principal submatrices (k < n) give rank k solutions
of simplified ARE: −DL − L DT + L ML = 0. Note that for different choices
of L , the matrix M changes and therefore one gets different L ∗s. Thus, the Schur
complements of the principal submatrices of the variousL ∗ need not give the same
solutions as the choice of columns of L were different. As a result, the number of
rank k solutions, for k < n need not be finite.

Corollary 7.24 Let (A0, B) be controllable. If A0 has nonzero repeated eigenvalues
with trivial Jordan structure such that λ and −λ do not coexist in Spec(A0), then
the Schur complements of appropriate principal submatrices of L ∗ give lower rank
nonzero solutions of −DL −L DT +L ML = 0. HereL ∗ is the full rank solution
of −DL − L DT + L ML = 0.

Next we consider the case of nontrivial Jordan blocks. In this case, the Schur
complement of every principal submatrix of the maximal solutionL ∗ need not give
a solution of the equation −DJL −L DT

J +L ML = 0. If DJ has a Jordan block
of size k corresponding to a real eigenvalue λ, then there are precisely (k +1) choices
as far as taking Schur complements are concerned.We demonstrate with an example.

Example 7.25 Consider the ARE with

A =
⎡

⎣
1 1 0
1 1 0
0 0 1

⎤

⎦ , B =
⎡

⎣
2 0
0 0
0 1

⎤

⎦ , Q =
⎡

⎣
1 1 0
1 5 0
0 0 1

⎤

⎦ ,
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Choosing a solution K0 =
⎡

⎣
−0.5 0.5 0
0.5 −2.5 0
0 0 −0.4142

⎤

⎦ of the ARE, we can

form the matrix AT
0 =

⎡

⎣
3 1 0

−1 1 0
0 0

√
2

⎤

⎦. Let X = LL LT where

L =
⎡

⎣
1 1 0

−1 0 0
0 0 1

⎤

⎦

contains generalized eigenvectors of AT
0 . Ric(X) = 0 is reduced to L(−DJL −

L DT
J + L ML )LT = 0 where DJ =

⎡

⎣
2 1 0
0 2 0
0 0

√
2

⎤

⎦. Observe that DJ has

a Jordan block of size 2 corresponding to the eigenvalue 2 and a block of size 1
corresponding to eigenvalue

√
2. Thus there are (2 + 1)(1 + 1) = 6 solutions to

Ric(X) = 0. Observe that AT
0 has two eigenvectors which generate two rank one

solutions of Ric(X) = 0. There are two subspaces which are two-dimensional and
AT
0 -invariant that generate rank two solutions. The full space generates a rank three

solution and zero subspace generates the zero solution. So there are six solutions of
Ric(X) = 0.

We obtain the full rank solution from L ∗ =
⎡

⎣
10 −12 0

−12 16 0
0 0 2.8284

⎤

⎦. Taking

the Schur complements of the principal submatrix involving row and column indices
2 and 3 give us a rank one solution. Similarly, taking the Schur complement of the
principal matrix involving row and column indices 1 and 2 gives another rank one
solution. Similarly, the Schur complements of the 1 × 1 submatrices L ∗(2, 2) and
L ∗(3, 3) gives the two rank two solutions. We give below the solution obtained by
taking the Schur complement of the principal submatrix involving row and column
indices 2 and 3, which turns out to be a rank one solution.

X1 = LL1LT =
⎡

⎣
1 −1 0

−1 1 0
0 0 0

⎤

⎦

The rank three solution involves all of L ∗ whereas the last solution is X = 0.

Remark 7.26 Note that we beganwith the assumption that a unique full rank solution
exists for the case under consideration. There are, however, cases where λ and −λ

simultaneously belong to Spec(A0), where an infinite number of full rank solutions
exist. In these cases too, taking Schur complements of any full rank solutionL ∗ of
the equation −DJL −L DT

J +L ML = 0, one arrives at lower rank solutions of
the equation.
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Earlier, we had enumerated various special cases, where there is no possibility of
a full rank solution of Ric(X) = 0. For these special cases where full rank solution
of the simplified ARE −DJL − L DT

J + L ML = 0 do not exist, one can still
obtain useful information from those solutions (of the simplified ARE) which have
the largest rank.

Throughout this subsection, we had assumed that (A0, B) is controllable. If
we relax this condition, then one needs to consider the controllable subspace. If k
is the dimension of the controllable subspace, then the maximum rank of a solution
of Ric(X) = 0 one can generically expect is k, provided there are no uncontrollable
modes corresponding to the zero eigenvalue and the situation of an eigenvalue being
controllable and its negative being another eigenvalue which is not controllable does
not arise.

In this section, a complete characterization of all solutions of Ric(X) = 0 was
obtained in terms of the unique maximal rank solution of Ric(X) = 0. In case of
multiple maximal rank solutions too, this characterization holds—but now the Schur
complements of each one of the maximal solutions yield solutions of Ric(X) = 0.

7.3.3 Higher Rank Solutions of Ric(X) ≤ 0

The rich structure displayed by the solutions of the ARE Ric(X) = 0 makes one
expect some similar rich structure in the solutions of the ARI Ric(X) ≤ 0. As it turns
out, this is indeed true. Recall that the solutions of the AREwere the endpoints of the
interval that satisfied the ARI in the scalar Riccati equation. For the matrix case too,
one could think of the solutions of the ARE Ric(X) = 0 as some sort of endpoints of
an interval that satisfies the ARI. Of course, this interval is a matrix interval, where
matrices have to be thought of as being partially ordered by positive definiteness. By
this we mean that a matrix X1 ≥ X2 is defined as the matrix X1 − X2 being positive
(semi)-definite. We now state some results that bring out this fact.

Lemma 7.27 Let DJk be a k × k (1 ≤ k ≤ n) matrix in Jordan canonical form
such that Spec(DJk ) lies in the open right half complex plane. Let the unique rank k
solution of simplified ARE: −DJkL − L DT

Jk
+ L MkL = 0 be denoted by L ∗.

Then every solution L̂ of the simplified ARI: −DJkL − L DT
Jk

+ L MkL ≤ 0 is

such that 0 ≤ L̂ ≤ L ∗.

Observe that if Spec(DJk ) lies in the open left half plane, then one can conclude
that 0 ≥ L̂ ≥ L ∗, where L ∗ is the unique rank k solution of the corresponding
ARE. Note that the result above implies that solutions of Ric(X) ≤ 0 satisfy 0 ≤
X ≤ X∗ when A0 has all eigenvalues in the open right half complex plane where
X∗ is the full rank solution of ARE. Therefore, one can obtain Willems’ result
Kmin ≤ K ≤ Kmax [17, 24] for ARI by using K = Kmin + X .
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Lemma 7.28 Let DJk be a k × k (1 ≤ k ≤ n) matrix in Jordan form such that
Spec(DJk ) lies in the open right half complex plane. Then, all rank k solutions of
simplified strict ARI: −DJkL −L DT

Jk
+L MkL < 0 are parametrized by all k ×k

positive definite matrices.

One can now combine earlier results to obtain results about the most general case
of the simplified ARI:−DJL −L DT

J +L ML ≤ 0. Assume that DJ has nonzero
eigenvalues which are not purely imaginary. Without loss of generality, assume that
DJ = diag(DJr , DJ�

) where DJr contains all the eigenvalues in the open right half
plane and DJ�

contains all the eigenvalues in the open left half plane. Let L ∗ be
a maximal rank solution simplified ARE: −DJL − L DT

J + L ML = 0. From
the earlier results, one knows that Schur complements ofL ∗ with respect to modes
corresponding to the left/right half complex planes, namelyLr andL� respectively,
are also solutions of the ARE. To be more specific, two special solutions of the
ARE areL ∗

r = diag(Lr , 0) andL ∗
� = diag(0,L�). This brings us to an important

theorem.

Theorem 7.29 Suppose (A0, B) is controllable. Consider DJ = diag(DJr , DJ�
)

which is a Jordan form of AT
0 . Let L ∗ be a maximal rank solution of the simplified

ARE and let L ∗
r and L ∗

� be the solutions of ARE obtained by Schur complements,

as stated above. Then every solution L̂ of the simplified ARI: −DJL − L DT
J +

L ML ≤ 0 is such that L ∗
� ≤ L̂ ≤ L ∗

r .

Example 7.30

A =
⎡

⎣
1 0 0
0 2 0
0 0 −4

⎤

⎦ , B =
⎡

⎣
1
1
1

⎤

⎦ , Q = 0

Since A is diagonal, we can write A = A0 = DJ and M = B BT . DJ has two
eigenvalues in RHP and one eigenvalue in LHP. Let D2 be the leading 2×2 principal
submatrix of DJ and M11 be corresponding principal submatrix of M . Restricting
to 2× 2 case for eigenvalues in RHP and solving −D2L −L DT

2 +L M11L = 0
for 2× 2 case, we get rank two solutionLr as discussed in the above theorem from
which we obtain

L ∗
r =

⎡

⎣
18 −24 0

−24 36 0
0 0 0

⎤

⎦

Now similarly, corresponding to eigenvalue in LHP, we obtain rank one solution
given by

L ∗
l =

⎡

⎣
0 0 0
0 0 0
0 0 −8

⎤

⎦
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LetL1 =
⎡

⎣
0.72 0 −1.92
0 0 0

−1.92 0 −2.88

⎤

⎦.L1 satisfies−DJL1−L1DT
J +L1ML1 =

0. It turns out that L ∗
l ≤ L1 ≤ L ∗

r . This is true for all the solutions of simplified
ARE.

Let L̂ =
⎡

⎣
9.216 −12 −0.5760
−12 18 0

−0.5760 0 −2.4640

⎤

⎦ which satisfies ARI −DJ L̂ −

L̂ DT
J + L̂ ML̂ ≤ 0. L̂ also satisfies the inequality L ∗

l ≤ L̂ ≤ L ∗
r .

When one goes back to the equation Ric(X) ≤ 0, the above theorem translates to
the existence of a maximal and a minimal solution. We now utilize this observation
to generalize a well-known result from the literature. Willems [24] proved that when
(A, B) is controllable, all the solutions K of ARI:−AT K −KA− Q +KBBT K ≤ 0
satisfy inequality Kmin ≤ K ≤ Kmax . If one starts with the assumption (A, B) is
controllable, fix some solution K0 of the ARE, obtain A0 = A − BBT K0, consider
the equation Ric(X) ≤ 0 obtained using this data, then one reaches a situation where
Theorem 7.29 is applicable. Thus Kmin and Kmax in Willems’ result really comes
fromL ∗

� and L ∗
r , respectively.

Observe that Theorem 7.29 is applicable for cases where a maximal rank solution
exists for the simplified ARE. Moreover, the assumption that there are no purely
imaginary eigenvalues of DJ has been imposed. If we relax this condition, then one
needs to consider a block structure of DJ of the form diag(DJ0 , DJr , DJ�

), where
the submatrix DJ0 contains all the purely imaginary eigenvalues of DJ . If the purely
imaginary eigenvalues are controllable, then this translates to the following: the
submatrix of M corresponding to the submatrix DJ0 of DJ is positive semidefinite.
From the earlier results (specifically Theorem 7.9), one can therefore conclude that
the corresponding block ofL (a solution of theARI)must be zero. Thus the existence
of the maximal and minimal solution for the ARI holds for the controllable case.

Willems’ result is about boundedness of the solutions of ARI. We now generalize
this result. First we state a condition for the solutions K being unbounded.

Theorem 7.31 If (A, B) is not a controllable pair and A has uncontrollable eigen-
values which are not purely imaginary, then the set of solutions K of the ARI:
−AT K − KA − Q + KBBT K ≤ 0 is unbounded.

Now we give a complete characterization as to when the solutions K of the ARI
−AT K − KA − Q + KBBT K ≤ 0 is bounded. This theorem is a generalization of
Willems’ result [24].

Theorem 7.32 Consider the pair (A, B) whose uncontrollable modes correspond to
nonzero and purely imaginary eigenvalues. Then the solutions K of the ARI −AT K −
KA − Q + KBBT K ≤ 0 satisfy the inequality Kmin ≤ K ≤ Kmax .

Study of existence of solutions of ARE and ARI with uncontrollable modes on
the imaginary axis has appeared in [20]. We end this section with a theorem that
gives further boundedness properties of ARI for uncontrollable systems. Variants of
this result has appeared in [14, 17].
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Theorem 7.33 If all uncontrollable eigenvalues lie in the open right half plane,
then the solution set of Ric(X) ≤ 0 is bounded from below. If all uncontrollable
eigenvalues lie in open left half plane, then the solution set of Ric(X) ≤ 0 is bounded
from above. If uncontrollable eigenvalues lie in both half planes, then solution set of
Ric(X) ≤ 0 is neither bounded below nor bounded above.

7.4 Conclusions

In this article, we have done yet another characterization of all solutions of the
algebraic Riccati equation. Importantly, we have only used simple linear algebraic
arguments to obtain this characterization. We homogenized the ARE/ARI into an
equivalent ARE/ARI problem Ric(X) = 0 / Ric(X) ≤ 0. The matrix X may then be
viewed as a perturbation matrix from a particular solution of the original ARE. We
then characterized all the solutions of Ric(X) = 0, ordering them by their rank. We
demonstrated how all the solutions are in some sense build up from rank one and
rank two solutions, which may be associated to the real and complex eigenvalues of
a matrix related to the ARE. We obtain the characterization for both controllable and
uncontrollable situations.

We provided conditions under which a unique full rank solution exists for the
equation Ric(X) = 0. Special situations that prevent the existence of a unique full
rank solution were enumerated and demonstrated. It was then demonstrated how
this unique full rank solution encodes within it all lower rank solutions (under some
special conditions). Evenwhen these special conditions are not satisfied, the full rank
solution does encode several low rank solutions. Further, it was shown that for the
cases when a unique full rank solution of Ric(X) = 0 does not exist, all the maximal
rank solutions encode within it information about the lower rank solutions.

In parallel, we also characterized the solutions of the ARI. We obtained a general-
ization of awell-known result from the literature and gave conditions on boundedness
and unboundedness of solutions of the ARI.

Wishing Harry a very Happy Birthday and lots of fun in the years to come.

References

1. Bittanti, S., Laub, A.J., Willems, J.C.: The Riccati Equation. Springer, New York (1991)
2. A.S.A. Dilip, H.K. Pillai: Yet another characterization of solutions of the algebraic Riccati

equation. To appear in Linear Algebra and its Applications, (April 2015). doi:10.1016/j.laa.
2015.04.026

3. P. Faurre: Realisations markoviennes de processus stationnaires. Technical report 13,
INRIA(LABORIA), Le Chesnay, France (1973)

4. Ferrante, A.: A parametrization ofminimal stochastic realizations. IEEETrans. Autom.Control
AC 39, 2122–2126 (1994)

5. Ferrante, A.: A homeomorphic characterization of minimal spectral factors. SIAM J. Control
Optim. 35, 1508–1523 (1997)

http://dx.doi.org/10.1016/j.laa.2015.04.026
http://dx.doi.org/10.1016/j.laa.2015.04.026


7 A Characterization of Solutions of the ARE and ARI 149

6. Ferrante, A., Michaletzky, G., Pavon, M.: Parametrization of all minimal square spectral fac-
torss. Syst. Control Lett. 21, 249–254 (1993)

7. Ferrante, A., Ntogramatzidis, L.: The generalized discrete algebraic riccati equation in linear-
quadratic optimal control. Automatica 49, 471–478 (2013)

8. Ferrante, A., Pavon, M.: The algebraic riccati inequality: parametrization of solutions, tightest
local frames and general feedback matrices. Linear Algebra Appl. 292, 187–206 (1999)

9. Helmke, U., Moore, J.: Optimization and Dynamical Systems. Springer, Berlin (1994)
10. Kailath, T.: Linear Systems. Prentice Hall Inc, New Jersey (1980)
11. Lancaster, P., Rodman, L.: Algebraic Riccati Equation. Clerendon press, Oxford (1995)
12. Lindquist, A., Michaletzky, G., Picci, G.: Zeros of spectral factors, the geometry of splitting

subspaces, and the algebraic riccati inequality. SIAM J. Control Optim. 33, 365–401 (1995)
13. Lindquist, A., Picci, G.: A geometric approach to modelling and estimation of linear stochastic

systems. J. Math. Syst. Estim. Control 1, 241–333 (1991)
14. Pal,D.,Belur,M.N.:DissipativityOfUncontrollable Systems, StorageFunctions andLyapunov

Functions. SIAM Journal on Control and Optimization 47, 2930–2966 (2008)
15. Pavon, M.: On the parametrization of nonsquare spectral factors, In: Helmke, U., Mennicken,

R., Saurer, J. (eds.) Systems andNetworks:Mathematical Theory andApplication, Proceedings
of the International Symposium on MTNS’93, vol. 2, pp. 413–416 (1993)

16. Picci, G., Pinzoni, S.: Acausal models and balanced realizations of stationary processes. Linear
Algebra Appl. 205–206, 997–1043 (1994)

17. Scherer, C.: Solution set of the algebraic riccati equation and the algebraic riccati inequality.
Linear Algebra Appl. 153, 99–122 (1991)

18. Scherer, C.: H∞−control by state-feedback for plants with zeros on the imaginary axis. SIAM
J. Control Optim. 30, 123–142 (1992)

19. Scherer, C.: The state feedback H∞− problem at optimality. Automatica 30, 293–305 (1994)
20. Scherer, C.: The algebraic riccati equation and the algebraic riccati inequality for systems

with uncontrollable modes on the imaginary axis. SIAM J. Matrix Anal. Appl. 16, 1308–1327
(1995a)

21. Scherer, C.: The general nonstrict algebraic riccati inequality. Linear Algebra Appl. 219, 1–33
(1995b)

22. Scherer, C.: The Riccati Inequality and State-space H∞−Optimal Control. Ph.D. thesis, Uni-
versity of Wurzburg (1995c)

23. Snyders, J., Zakai, M.: On nonnegative solutions of the equation AD + DA′ = −C∗. SIAM J.
Appl. Math. 18, 704–714 (1970)

24. Willems, J.C.: Least squares stationary optimal control and the algebraic riccati equation. IEEE
Trans. Autom. Control AC 16, 621–634 (1971)

25. Willems, J.C., Trentelman, H.L.: On quadratic differential forms. SIAM J. Control Optim. 36,
1703–1749 (1998)

26. Wimmer, H.K.: Unmixed Solutions of the Discrete-Time Algebraic Riccati Equation. SIAM
Journal of Control and Optimization 30, 867–878 (1992)

27. Wonham, W.: Linear Multivariable Control. Springer, Berlin (1984)



Chapter 8
Implementation of Behavioral Systems

Diego Napp and Paula Rocha

Abstract In this chapter, we study control by interconnection of a given linear
differential system (the plant behavior) with a suitable controller. The problem for-
mulations and their solutions are completely representation free, and specified only
in terms of the system dynamics. A controller is a system that constrains the plant
behavior through a certain set of variables. In this context, there are two main situ-
ations to be considered: either all the system variables are available for control, i.e.,
are control variables (full control) or only some of the variables are control vari-
ables (partial control). For systems evolving over a time domain (1D) the problems
of implementability by partial (regular) interconnection are well understood. In this
chapter, we study why similar results are not valid in the multidimensional (nD) case.
Finally, we study two important classes of controllers, namely, canonical controllers
and regular controllers.

8.1 Introduction
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As the topic of our article, we have chosen an issue which is at the core of systems
and control theory, namely control and, in particular, the implementation of systems
in the behavioral framework. This topic goes back to the seminal contribution of
J.C. Willems in [17] where the fundamental ideas of the problem were established.
However, it was Harry who thoroughly investigated this issue and provided many
fundamental results in this area. It is our intention to make this article an appropriate
tribute to his wide ranging scientific interests and to the influence that his work had
in the field of behavioral approach to systems and control theory. For this purpose,
we have gathered in this chapter our results that are more connected with Harry’s
own research, together with some new results and insights. In order to keep the paper
self-contained and to give a better idea of the kind of reasoning involved, we have
included the proofs of most of those results.

A behavior, denoted byB, is a set of trajectories that obey certain laws described
by a mathematical model. In this context, control is viewed as the ability to impose
adequate additional restrictions to the variables of the behavior in order to obtain a
desired overall functioning pattern. Hence, the behavioral approach proposes a new
perspective to control which is based on interconnection of systems, and where no
a priori input/output partition is considered [17]. The act of controlling a system
is simply viewed as intersecting its behavior with a controller behavior in order to
achieve a desired behavior. Thus, a general control (implementation) problem can be
stated as follows: Given, a plant behaviorB and a control objective corresponding to
a desired behavior that wewant to implementK , find a controller behaviorC , within
a certain controller class, such that the behavior resulting from the interconnection
of B and C , B ∩ C , coincides withK .

Most of the literature on behavioral control is concerned with the situation in
which all variables of B are available for control, i.e., it is allowed to impose extra
restrictions on all the variables of B. We refer to this situation as full control or
full interconnection [10, 11, 17]. Another important case considered in the literature
is when the system variables are divided into two sets: the variables that we are
interested to control (called to-be-controlled variables) and the variables onwhichwe
are allowed to enforce restrictions (called control variables). This situation is known
as partial control or partial interconnection [1, 4, 12, 15, 18]. In this more involved
situation, although we cannot act directly upon the to-be-controlled variables, we
can nevertheless influence their dynamics by imposing restrictions on the control
variables.

Of particular interest is the kind of interconnection that is called regular inter-
connection. In such interconnection, the restrictions imposed on the plant by the
controller are independent of the restrictions already present in the plant. These type
of interconnections are closely related to the notion of feedback control in the classi-
cal state-space systems since only system inputs are restricted, as in a feedback loop
[14, 17].

The first results on implementability of full control problems were obtained in
[18, 20] for linear systems evolving over a time domain (1D behaviors) and in [16]
for a very general class of systems. Later, results for 1D behaviors were general-
ized to regular partial interconnections in [1] (see also [2, 12, 19]). In the context
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of multidimensional systems (nD behaviors) full regular interconnections were first
investigated in [14, 24] and results on the partial interconnection counterpart were
first presented in [13, 15]. The case of nD behaviors constituted by compactly sup-
ported functions was investigated in [8].

The problem of implementability by regular interconnections is well understood
and fully characterized for 1D behaviors in both contexts of full and partial control,
see for instance [1, 10, 11, 18]. In fact, K ⊂ B is implementable by regular full
interconnection if and only if B = Bc + K where Bc is the controllable part
of B. Moreover, in [1] the solvability of a 1D partial control problem was related
to the solvability of a suitable associated full control problem involving only the
to-be-controlled variables and in terms of the controllable and autonomous parts
of the behavior. The situation in the nD case is somewhat more involved, and a
direct characterization in terms of implementation of the to-be-controlled variables
seems to be impossible. In this chapter, our aim is to reinvestigate the problem
of implementability by full and partial regular interconnections of nD behaviors.
More concretely, we study the role of the so-called hidden behavior and also of the
controllable-autonomous decomposition.

This chapter is organized as follows: we begin by introducing some necessary
background from the field of nD behaviors, centering around concepts such as con-
trollability, autonomy, orthogonal module, etc. We conclude this section with a sub-
section on behaviors with two types of variables. Section8.3 is devoted to the study
of the problem of implementation by regular interconnection. We first analyze the
implementation by full control to conclude the chapter by treating the more general
case of implementation by partial interconnections.

8.2 Preliminaries

In order to state more precisely the questions to be considered we introduce in this
section the necessary material and notation on behavioral theory for nD systems. The
last subsection is concerned with the theory of behaviors with two different types of
variables (the to-be-controlled variables and the control variables).

8.2.1 nD (kernel) Behaviors

In the behavioral approach to nD systems, a system or behavior is defined by a triple
(U , q,B), whereU is the signal space or trajectory universe, q ∈ Z

+ is the number
of components of the system variable vector, and B ⊂ U q is the behavior. In this
chapter, we assume U = (C)Z

n
.

Since the theory of continuous linear time-invariant systems as discussed in [21]
is completely analogous to that of the present chapter, the same tools and conclu-
sions will apply in the continuous case, where U is the space of all infinitely often
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differentiable functions from R
n to R, or all R-valued distributions on R

n . For the
sake of simplicity we will however focus on the discrete case.

We call B a linear difference nD behavior or simply nD behavior if it is the
solution set of a system of linear, constant-coefficient partial difference equations,
more precisely, ifB is the subset of U q given by:

B = ker R(σ , σ−1) := {w ∈ U q | R(σ , σ−1)w ≡ 0}, (8.1)

σ = (σ1, . . . , σn), σ−1 = (σ−1
1 , . . . , σ−1

n ), the σi ’s are the elementary nD shift
operators (defined by σi w(k) = w(k + ei ), for k ∈ Z

n , where ei is the i th element
of the canonical basis of Cn) and R(s, s−1) ∈ R

p×q [s, s−1] is an nD Laurent-
polynomial matrix known as representation ofB. If no confusion arises, given an nD
Laurent-polynomial matrix A(σ , σ−1), we sometimes write A instead of A(σ , σ−1)

and A(s, s−1).
Instead of characterizing B by means of a representation matrix R, it is also

possible to characterize it by means of its orthogonal module Mod(B), which
consists of all the nD Laurent-polynomial rows r(s, s−1) ∈ C

q [s, s−1] such that
B ⊂ ker r(σ , σ−1), and can be shown to coincide with the C[s, s−1]-module
RM(R) generated by the rows of R, i.e., Mod(B) = RM(R(s, s−1)) [21]. Note that
this corresponds to the set of all (linear constant-coefficient difference) equations
that are satisfied by all the elements (trajectories) ofB.

It turns out that sums, intersections, and inclusions of behaviors can be formulated
in terms of the corresponding modules.

Theorem 8.1 ([24, p. 1074]) Let B1 and B2 be two behaviors. Then, B1 +B2 and
B1 ∩ B2 are also behaviors and

1. Mod(B1 + B2) = Mod(B1) ∩ Mod(B2).
2. Mod(B1 ∩ B2) = Mod(B1) + Mod(B2).
3. B1 ⊂ B2 ⇔ Mod(B2) ⊂ Mod(B1).

Note that part 3 in Theorem 8.1 implies that ifB1 = ker R1 ⊂ B2 = ker R2, then
there exists an L-polynomial matrix S such that R2 = S R1.

For a full column rank L-polynomial matrix R ∈ R
p×q [s, s−1] define its Laurent

variety (or zeros) as

V (R) = {(λ1, λ2) ∈ C
2 | rank(R(λ1, λ2)) < rank(R), λ1λ2 �= 0},

where the first rank is taken over C and the second one over R[s, s−1]. Note that
V (R) is equal to the set of common zeros of the q × q minors of R.

Definition 8.2 A full column rank L-polynomial matrix R ∈ R
p×q [s, s−1] is said

to be right minor prime (rMP) if V (R) is finite and right zero prime (rZP) if V (R)

is empty. A full row rank L-polynomial matrix R ∈ R
p×q [s, s−1] is said to be

left minor/zero prime (�MP/�ZP) if RT is right minor/zero prime, respectively. An
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L-polynomial matrix L is called a minimal left annihilator (MLA) of R if LR = 0,
and for any other L-polynomial matrix S such that SR = 0 we have that S = AL for
some L-polynomial matrix A. We define minimal right annihilators in a similar way,
with the obvious adaptations.

We next review the notions of controllability and autonomy in the context of the
behavioral approach.

Definition 8.3 AbehaviorB ⊂ (Rq)Z
n
is said to be controllable if for all z1, z2 ∈ B

there exists δ > 0 such that for all subsets U1, U2 ⊂ Z
n with d(U1, U2) > δ, there

exists a z ∈ B such that z |U1 = z1 |U1 and z |U2 = z2 |U2 .

In the above definition, d(·, ·) denotes the Euclidean metric on Z
n and z |U , for

some U ⊂ Z
n , denotes the trajectory z restricted to the domain U .

In contrast with the one dimensional case, nD behaviors admit a stronger notion
of controllability called rectifiability (also known in the literature as strong control-
lability). Whereas controllable behaviors are the ones that can be represented by an
MLA of some L-polynomial matrix or in others words Cq [s, s−1]/Mod(B) is tor-
sion free, rectifiable behaviors are the ones that can be represented by �ZP matrices,
i.e., the R[s, s−1]-module Cq [s, s−1]/Mod(Bc) is free.

On the other hand, we shall say that a behavior is autonomous if it has no free
variables, i.e., no “inputs”. It can be shown that B = ker R is autonomous if and
only if R has full column rank. In the 1D case, all autonomous behaviors are finite
dimensional vector spaces but in the nD case this is no longer true. Whereas for 1D
systems initial conditions are given in a finite number of points, nD autonomous
systems are generally infinite dimensional. But even in this case the amount of infor-
mation (initial conditions) necessary to generate the trajectories of an autonomous
nD system may vary. Hence, given an autonomous behavior, a natural question to
ask is how much information is necessary in order to fully determine the system tra-
jectories, i.e., how large is the initial condition set. This question has been analyzed
in [5, 22] by introducing the notion of autonomy degrees for behaviors.

Definition 8.4 Let B be a non-zero autonomous behavior and R ∈ R
p×q [s, s−1]

be an nD Laurent-polynomial matrix with full column rank such that B = ker R.
We define autodeg(B) = n − dimV (R) to be the autonomy degree of B. The
autonomy degree of the zero behavior is defined to be ∞.

It turns out that the larger the autonomy degree, the smaller is the freedom to
assign initial conditions, see [5].

Every nD behavior B can be decomposed into the sum B = Bc + Ba, where
Bc is the controllable part of B (defined as the largest controllable sub-behavior
of B) and Ba is a (non-unique) autonomous sub-behavior. This sum can be chosen
to be direct for 1D behaviors, but this is not always possible for multidimensional
behaviors, see [23].
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8.2.2 Behaviors with Two Types of Variables

Since in this chapter we are interested in considering different types of variables in a
behavior (the to-be-controlled variables and the control variables), we introduce the
notationB(w,c) for a behavior whose variable z is partitioned into two sub-variables
w and c. Partitioning the corresponding representationmatrix as [R M], we canwrite

B(w,c) = {(w, c) ∈ U w+c | R(σ , σ−1)w + M(σ , σ−1)c = 0} = ker [R M].

In the case one is only interested in analyzing the evolution of one of the sub-variables,
say, w, it is useful to eliminate the other one (c) and consider the projection of the
behavior B(w,c) into U w, defined as

πw(B(w,c)) = {w | ∃ c such that (w, c) ∈ B(w,c)}.

The elimination theorem [9] guarantees that πw(B(w,c)) is also a (kernel) behavior,
for which a representation can be constructed as follows: take a minimal left annihi-
lator (MLA) E of M . Then πw(B(w,c)) = ker (ER), see [9, Corollary 2.38].

On the other hand given a behaviorB = ker R ⊂ U w we define the lifting ofB
into U w+c as

B∗
(w,c) := {(w, c) ∈ U w+c | c is free and w ∈ B}. (8.2)

ObviouslyB∗
(w,c) = ker [R 0]. Analogous definitions can be given if the roles of w

and c are interchanged. For the sake of brevity, if no confusion arises, we identifyB
and B∗

(w,c) and denote Bw := πw(B(w,c)) and Bc := πc(B(w,c)).

Definition 8.5 Given a behavior B(w,c) ⊂ U w+c we say that c is observable from
w if (w, c1), (w, c2) ∈ B(w,c) implies c1 = c2.

Usually, in control problems involving behaviors with two types of variables it
is important to consider the set of variables that are not observable or hidden from
the remaining set of variables, see [15–17]. Hence, given a behaviorB(w,c) we shall
define

B(0,c) := {c ∈ U c | (0, c) ∈ B(w,c)},

as the behavior of the variables c that are not observable or hidden from w. Clearly,
ifB(w,c) = ker [R M] thenB(0,c) = ker M . Similarly, we defineB(w,0) as the set
of w variables that are hidden from the variables c. Taking into account that we are
dealing with linear behaviors, it is not difficult to verify that c is observable from w
if and only if B(0,c) is the zero behavior. Similarly, w is observable from c if and
only ifB(w,0) is the zero behavior.
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8.3 Implementation

The behavioral approach to control rests on the basic idea that to control a system is
to impose appropriate additional restrictions to its variables in order to obtain a new
desired behavior. These additional restrictions are achieved by interconnecting the
given system with another system called the controller. From the mathematical point
of view, system interconnection corresponds to the intersection of the behavior to be
controlled with the controller behavior.

Two situations have been considered in the literature. The first one is known as full
interconnection and corresponds to the casewhere the controller is allowed to impose
restrictions on all the system variables. The second, called partial interconnection,
considers interconnections where one is only allowed to use some of the system
variables for the purpose of interconnection.

8.3.1 Control by Regular Full Interconnection

The full interconnection of a behavior to be controlled, B ⊂ U w, with a controller
behavior, C ⊂ U w, yields a controlled behavior given by

K = B ∩ C , (8.3)

or alternatively, in module terms, byMod(K ) = Mod(B)+Mod(C ). If (8.3) holds,
we say that K is implementable by full interconnection fromB.

A particular interesting type of interconnection corresponds to the case where the
restrictions imposed by the controller do not overlap with the restrictions already
active for the behavior to be controlled. Recalling that the elements of the modules
associated with a behavior represent the corresponding equations (or restrictions),
this means, in terms of the corresponding modules that

Mod(B) ∩ Mod(C ) = {0},

(or, equivalently, that B + C = U w) and therefore

Mod(K ) = Mod(B) ⊕ Mod(C ).

In this case, we say that the interconnection of B and C is a regular intercon-
nection and denote it by B ∩reg C . For a 1D behaviors, we know from the work
of Willems [18] that controllability is equivalent to implementation of any sub-
behavior by means of regular interconnection. Again the situation for nD behaviors
is more involved. The following necessary (and not necessarily sufficient) condition
for implementation of nD behaviors by regular interconnection has been derived in
[14, Theorem 4.5, p. 124].
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Theorem 8.6 LetB andK be two nD behaviors andBc the controllable part ofB.
Then if K is implementable by regular interconnection from B then B = Bc +K .

This result can be intuitively explained by the fact that an autonomous part of a
behavior may be somehow considered as obstructions to the (regular) control of that
behavior, as happens for instance with the noncontrollable modes in the context of
pole-placement for classical state-space systems. Using this result it is possible to
show the next useful Lemma.

Lemma 8.7 ([4, Lemma 6]) Let B and C be two nD behaviors. If the interconnec-
tion of B and C is regular then so is the interconnection between Bc and C .

Proof Let B ∩ C = K with regular interconnection, i.e., Mod(B)⊕ Mod (C ) =
Mod(K ). Using Theorem 8.6 we have that B = Bc + K or equivalently
Mod(B) = Mod(Bc)∩Mod(K ) = Mod(Bc)∩ (Mod(B)⊕Mod(C )). Using that
Mod(B) ⊂ Mod(Bc) one easily show that Mod(Bc) ∩ (Mod(B) ⊕ Mod(C )) =
(Mod(Bc) ∩ Mod(C )) ⊕ Mod(B). Since Mod(B) ∩ Mod(C ) = {0} we have that
Mod(Bc) ∩ Mod(C ) = {0}. �

Lemma 8.7 shows that the controllable part of a behavior plays an important
role in the context of regular interconnections. Indeed, a controller which does not
interconnect with Bc in a regular way, can not interconnect withB regularly.

Next we present a more surprising result, proven in [5, Theorem 18], that shows
that the possibility of implementing autonomous sub-behaviors of B by regular
interconnection may also impose conditions in the controllable part ofB, depending
on the autonomy degree of such sub-behaviors. We shall include its short proof for
the sake of completeness.

Theorem 8.8 Let B be a behavior. If K ⊂ B is regularly implementable from
B and has autonomy degree larger than 1 then Bc (the controllable part of B) is
rectifiable.

Proof In order to prove the result we will make use of the duality between B and
Mod(B). Obviously,B∩regC = K if and only ifMod(B)⊕Mod(C ) = Mod(K ).
The assumption thatK has autonomy degree ≥ 2 amounts to saying that the height
of the annihilator of Cq [s, s−1]/(Mod(B) ⊕ Mod(C )) is ≥ 2, see [22, Lemma 4.7,
p. 54]. Equivalently, the annihilator of Cq [s, s−1]/(Mod(B) ⊕ Mod(C )) contains
at least two coprime elements, see [22, Lemma 3.6].

Further, the interconnection B ∩ C is regular if and only if Bc ∩ C c is regular,
where Bc and C c denote the corresponding controllable parts, see [6, Lemma 12].
ObviouslyBc ∩C c ⊂ B∩C and therefore autodeg(Bc ∩C c) ≥ autodeg(B∩C ).

Thus we have, by assumption, that the annihilator of Cq [s, s−1]/(Mod(Bc) ⊕
Mod(C c)) contains at least two coprime elements, say d1, d2. Note that since Bc

andC c are controllable,Cq [s, s−1]/Mod(Bc) andCq [s, s−1]/Mod(C c) are torsion
free.

We prove thatBc is rectifiable by showing that Cq [s, s−1]/Mod(Bc) is free as a
R[s, s−1]-module.
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Consider, an element ξ ∈ C
q [s, s−1]. There are coprime elements d1, d2 with

d1ξ = a1 + b1, d2ξ = a2 + b2 with a1, a2 ∈ Mod(Bc), b1, b2 ∈ Mod(C c). The
element τ1 = a1

d1
= a2

d2
∈ C

q(s, s−1) has the property d1τ1, d2τ1 ∈ C
q [s, s−1],

where Cq(s, s−1) stands for the field of rational Laurent polynomials. Since d1, d2
are coprime, this implies that τ1 ∈ C

q [s, s−1]. Since Cq [s, s−1]/Mod(Bc) has no
torsion, one obtains τ1 ∈ Mod(Bc).

The same argument shows that τ2 = b1
d1

= b2
d2

belongs to Mod(C c). Hence

ξ = τ1 + τ2 ∈ Mod(Bc) ⊕ Mod(C c) and C
q [s, s−1] = Mod(Bc) ⊕ Mod(C c).

Then Mod(Bc) and Mod(Cc) are projective modules and therefore free. Finally,
since Mod(Cc) ≈ C

q [s, s−1]/Mod(Bc) one obtains that Cq [s, s−1]/Mod(Bc) is
free. This concludes the proof. �

One can conclude from Theorem 8.8 that, in contrast to the 1D case, regular
implementability is a very restrictive property in the context of nD behaviors (with
n ≥ 2).

When the controllable part of B is rectifiable, it is possible to further exploit the
simplified form of the rectified behavior in order to derive the following result on the
autonomous-controllable decomposition of B.

Theorem 8.9 ([5, Prop. 4]) Let B be a behavior with rectifiable controllable part.
Then, there always exists an autonomous sub-behavior Ba of B such that B =
Bc ⊕ Ba.

8.3.2 Control by Regular Partial Interconnection

In the case of partial interconnection, one starts from a full behavior B(w,c), where
w is the variable to be controlled and c is the control variable. The goal is to find
a control variable behavior C whose interconnection with B(w,c) yields a desired
behavior, K for the variable w. This can be formulated as finding C such that:

K = πw(B(w,c) ∩ C ∗
(w,c)).

For simplicity of notation we shall write Cc or instead of C ∗
(w,c); moreover we

shall skip the subscript with the indication of the variable (and write, for instance, C
and B instead of Cc and Bw, respectively) if no confusion arises.

Also in this context regularity plays an important role. Given two behaviors
B(w,c) ⊂ U w+c and C ⊂ U c, we say that the interconnection B(w,c) ∩ C ∗

(w,c)
is regular if

Mod(B(w,c)) ∩ Mod(C ∗
(w,c)) = {0},

or equivalently ifB(w,c) +C ∗
(w,c) = U w+c. In this case, we denote the interconnec-

tion by B(w,c) ∩reg C ∗
(w,c) or (in simplified notation) by B(w,c) ∩reg C . Obviously,
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if C = ker C , Mod(C ∗
(w,c)) = RM([0 C]) and when no confusion arises we write

Mod(C ∗
(w,c)) = Mod(C ).

The following lemma presents some interesting results about partial interconnec-
tions and hidden behaviors that can be found in [7, Lemma 9] or in [15, Corollary 14].

Lemma 8.10 Let B(w,c) ⊂ U w+c and C ⊂ U c be two behaviors. Then, the
following hold true.

1. πw(B(w,c) ∩ C ) = πw(B(w,c) ∩ (C + B(0,c))).
2. B(w,c) ∩reg C if and only if B(w,c) ∩reg (C + B(0,c)).
3. B(w,c) ∩reg C if and only if Bc ∩reg C .

Proof Let B(w,c) = ker [R M] and C = ker C . Note that B(0,c) = ker M ⊂ U c

and sinceB(0,c) ⊂ C +B(0,c), then C +B(0,c) = ker KM for some L-polynomial
matrix K .

1. It is enough to show thatπw(B(w,c)∩(C +B(0,c))) ⊂ πw(B(w,c)∩C ) since the
other inclusion is trivial. Letw ∈ πw(B(w,c)∩(C+B(0,c))). Then, by definition ofπw

there exists a c such that (w, c) ∈ B(w,c) ∩ (C +B(0,c)) = ker

[
R M
0 K M

]

. Clearly,

c must satisfy KMc = 0, i.e., c ∈ C +B(0,c) = ker KM and therefore c = c∗ + c∗∗,
where c∗ ∈ C and c∗∗ ∈ B(0,c) = ker M . Hence, as (w, c) ∈ ker [R M],
(w, c∗) ∈ ker [R M] which implies that (w, c∗) ∈ ker

[
R M
0 C

]

= B(w,c) ∩C , and

therefore w ∈ πw(B(w,c) ∩ C ).
2. By Theorem 8.1, the proof of 3 amounts to showing that

RM([R M])∩RM([0 C]) = {0} if and only if RM([R M])∩RM([0 KM]) = {0}.

As ker C = C ⊂ C +B(0,c) = ker KM, RM(K M) ⊂ RM(C) and the “only if” part
is obvious. For the converse, let (0, 0) �= (r, m) ∈ RM([R M])∩RM([0 C]). Clearly
r must be zero and then there exists an L-polynomial row s such that s[R M] =
(0, m) �= (0, 0), which implies sM = m ∈ RM(C) ∩ RM(M) = RM(K M). Thus,
(0, m) ∈ RM([R M]) ∩ RM([0 KM]).

3. In terms of the corresponding modules we need to show that

RM([R M]) ∩ RM([0 C]) = {0} if and only if RM(LM) ∩ RM(C) = {0},

where L is an MLA of R. In order to prove the “if” part, let (0, 0) �= (r, m) ∈
RM([R M]) ∩ RM([0 C]). It is easy to see that r must be zero and therefore there
exists s ∈ L such that s[R M] = (0, m). Thus, 0 �= sM = m ∈ RM(LM)∩RM(C).
To prove the converse implication suppose that 0 �= m ∈ RM(L M) ∩ RM(C).
Then, m = αLM = βC for some L-polynomial rows α and β. This implies that
(0, m) = αL[R M] = β[0 C] and therefore (0, 0) �= (0, m) ∈ RM([R M]) ∩RM
([0 C]). �
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A behaviorK ⊂ U w is trivially implementable from a given behaviorB ⊂ U w

by full (not necessarily regular) interconnection if and only ifK ⊂ B. This condition
is however not enough in the partial interconnection case. Indeed, it was proven in
[1, 15, 16] that K is implementable by partial (not necessarily regular) intercon-
nection from B(w,c) if and only if

B(w,0) ⊂ K ⊂ Bw = πw(B(w,c)).

For regular partial interconnections the implementation problem was fully
addressed and solved in the 1D context in [1]. In effect, the following necessary and
sufficient conditions for the regular implementation of a behavior K were given:

1. K is implementable by partial interconnection, i.e.,B(w,0) ⊂ K ⊂ Bw,
2. K + Bc

w = Bw, where Bc
w stands for the controllable part ofBw .

Note that the second condition is equivalent (in the 1D case) to K being regularly
implementable by full interconnection fromBw. It was shown in [13, 15] that these
two conditions were neither necessary nor sufficient in the nD case. Next we inves-
tigate when similar conditions hold in terms of the associated hidden behaviors. We
say that a behavior is regular if admits a full row rank representation.

Theorem 8.11 Let K ⊂ U w and B(w,c) ⊂ U w+c be given. Assume that K is
implementable by partial interconnection and that the hidden behavior B(w,0) is
regular. If K is regularly implementable by full interconnection (from Bw) then it
is regularly implementable by partial interconnection.

Proof Let [R̄ M] be such that B(w,c) = ker [R̄ M]. Since B(w,0) = ker R̄ is

regular we can assume without loss of generality that R̄ =
[

R
0

]

with R full row

rank and thereforeB(w,c) = ker

[
R M1
0 M2

]

, for a suitable partition of M . Then,Bw =

πw(B(w,c)) = ker XR, where [X Y ] is anMLA of

[
M1
M2

]

. Let C̄ = ker C ⊂ U w be

the controller that implements K by full interconnection. As K is implementable
by partial interconnection, B(w,0) ⊂ K ⊂ C̄ it follows that there exists a matrix
L such that C = LR. Take C = ker LM1 ⊂ U c. Next we show that C regularly
implementsK by partial interconnection. It is easy to check that C implementsK .
To show that the interconnection is regular suppose that the row vector m belongs

to RM([0 LM1]) ∩ RM(

[
R M1
0 M2

]

). This means that there exist row vectors s, and

t = [t1 t2] such that m = s
[
0 L M1

] = [t1 t2]
[

R M1
0 M2

]

. As R is full row rank

t1 = 0. This implies that [sL − t2]
[

M1
M2

]

= 0, and hence [sL − t2] = v[X Y ]
for some row vector v. In turn, this implies that sLR = vXR. As, by assumption, the
interconnection of Bw = ker XR and C̄ = ker LR is regular, sLR = (vXR =) 0,
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and, since R has full row rank, sL = 0. Therefore m = s[0 LM1] = 0, which
concludes the proof. �

Using part 3 of Lemma 8.10, and applying the same type of reasoning as in the
proof of Theorem 8.11, one can derive the following corollary.

Corollary 8.12 Let K ⊂ U w and B(w,c) ⊂ U w+c be given. Assume that K
is implementable by partial interconnection and that the hidden behavior B(0,c)
is regular. If K is regularly implementable by partial interconnection then it is
regularly implementable by full interconnection (from Bw).

Remark 8.13 Note that rectifiable behaviors admit a full row rank representation,
i.e., are regular, and therefore Theorem 8.11 and Corollary 8.12 are still valid if
we assume that B(w,0) and B(0,c) respectively are rectifiable. Moreover, in the 2D
case one can assume controllability instead of rectifiability as controllable behaviors
always have a full row rank representation.

8.3.3 Controllers

In this section, we look at a special behavior that has also been introduced in [2, 16,
19] under the name of canonical controller. In particular, we study its effectiveness
in solving partial control problems—a question which has also been considered in
[3, 19] for the 1D case—and generalize the corresponding 1D results to the nD case.
We conclude the section by analyzing the performance of regular controllers in this
context. The results of this section (except for Theorem 8.20) were first presented in
[13] although somecan also be found in [15] in amoremodule-theoretical framework.

It is immediately apparent that the study of partial control problems requires
additional tools with respect to full control problems. For this reason, it is desirable
to translate partial control problems into full control ones. In the 1D case, it is
possible to make this translation in terms of full control problems for behaviors
involving only the to-be-controlled variable w. Unfortunately this is no longer true
in the higher dimensional (nD) case. Therefore, we shall try to characterize regular
implementation (by partial control) in terms of conditions on the control variable
behavior, rather than by means of conditions on the behavior of the variables to be
controlled. To this end we introduce the notion of canonical controller associated
to a given control problem. For a given control objective K ⊂ U w, the canonical
controller associate withK is defined as follows:

C can(K ) := {c | ∃ w such that (w, c) ∈ B(w,c) and w ∈ K }.

For simplicity we use C can for C can(K ). Thus, the canonical controller consists
of all the control variable trajectories compatible with the desired behavior for the
variables to be controlled.

We start by relating the implementation of K from B(w,c) (by partial control)
with the implementation of the corresponding canonical controller from Bc. First,
we treat the implementation problem and then the regular implementation.
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Theorem 8.14 Given a plant behavior B(w,c) and an implementable control objec-
tive K , the following holds.

1. If the controller C implements C can from Bc by full control, then it implements
K from B(w,c).

2. If the controller C̃ implements K from B(w,c), then the controller C̃ + B(0,c)
implements C can from Bc by full control.

Proof Let Rw = Mc be a representation of B(w,c). Then, Bc = ker NM, where N
be an nD polynomial matrix which is an minimal left annihilator (MLA) of R. To
prove the first statement assume that the controller C = ker K implements C can

and apply this controller to the plant. This yields the (w, c)-behavior described by
the equations: {

Rw = Mc
0 = K c.

(8.4)

We next show that the corresponding w-behavior coincides with K , which clearly
implies that C implements K from B(w,c).

Suppose then that w∗ belongs to the w-behavior induced by equations (8.4), i.e.,
that there exists c∗ such that the pair (w∗, c∗) satisfies these equations. This implies
that c∗ ∈ Bc ∩ C = C can and hence, by the definition of the canonical controller,
there exists w̄ ∈ K such that (w̄, c) ∈ B(w,c). Thus, by linearity, (w∗ − w̄, 0) ∈
B(w,c), meaning that w∗ − w̄ ∈ B(w,0). Since K is by assumption implementable,
B(w,0) ⊂ K and w∗ − w̄ ∈ K . Consequently also w∗ ∈ K and therefore the
w-behavior induced by equations (8.4) is contained inK .

Conversely, suppose that w∗ ∈ K . Then obviously w∗ ∈ Bw and hence there
exists c∗ such that (w∗, c∗) ∈ B(w,c), i.e., such that

Rw∗ = Mc∗.

By the definition of the canonical controller, this means that c∗ ∈ C can . Since C can

is assumed to be implementable by C , C can ⊂ C and therefore c∗ ∈ C , i.e.,

Kc∗ = 0.

Thus, the pair (w∗, c∗) satisfies Eq. (8.4), which means that w∗ is in the w-behavior
induced by these equations. So, K is contained in that behavior. As mentioned
before, this shows that C implements K fromB(w,c).

As for the second statement assume now that the controller C̃ = ker K imple-
ments K from B(w,c). Let c∗ ∈ C can . This means that there exists w∗ such that
(w∗, c∗) ∈ B(w,c) and w∗ ∈ K . This last condition implies that there exists c̄ ∈ C̃
such that (w∗, c̄) ∈ B(w,c). Note that by the linearity ofB(w,c), (0, c∗ − c̄) ∈ B(w,c);
hence c∗ − c̄ ∈ B(0,c) and therefore (taking into account that c̄ ∈ C̃ ) we have
that c∗ ∈ B(0,c) + C̃ . Thus, C can ⊂ B(0,c) + C̃ and, since also C can ⊂ Bc,
C can ⊂ (B(0,c) + C̃ ) ∩ Bc.
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Conversely, assume that c∗ ∈ (B(0,c) + C̃ ) ∩ Bc. Then, there exist w∗ and
c̄ ∈ C̃ such that (w∗, c∗) ∈ B(w,c), c̄ ∈ C̃ and c∗ − c̄ ∈ B(0,c). This implies that
(w∗, c̄) ∈ B(w,c) and, since C̃ implementsK fromB(w,c), w∗ ∈ K . Together with
the fact that (w∗, c∗) ∈ B(w,c), taking the definition ofC can into account, this allows
to conclude that c∗ ∈ C can . Therefore (B(0,c)+C̃ )∩Bc ⊂ C can . This finally proves
that C can = (B(0,c) + C̃ ) ∩Bc, which amounts to say thatB(0,c) + C̃ implements
C can fromBc by full control. �

Note that, as a consequence of this theorem, if the hidden behaviorB(0,c) = {0},
then C implements K from B(w,c) if and only if it implements C can from Bc by
full control.

Next we extend Theorem 8.14 for regular interconnections.

Theorem 8.15 Given a plant behavior B(w,c) and an implementable control objec-
tive K , the following holds.

1. If the controller C implements C can from Bc by regular full control, then C
implements K regularly from B(w,c).

2. If the controller C̃ implements K regularly from B(w,c), then the controller
C̃ + B(0,c) implements C can from Bc by regular full control.

Proof Since the statements about implementation have already been proven in The-
orem 8.14 it now suffices to prove the statements concerning regularity.

To show the first statement let r = [0 r̄ ] ∈ Mod(B(w,c)) ∩ Mod(C ∗
(w,c)) (note

that since w is free in C ∗
(w,c), the first components of r must be zero). Then, clearly,

r̄ ∈ Mod(C ). Moreover, Bc ⊂ ker r̄ , and hence r̄ ∈ Mod(Bc). Therefore r̄ ∈
Mod(Bc) ∩ Mod(C ). In this way, if Mod(B(w,c)) ∩ Mod(C ∗

(w,c)) has a nonzero
element r = [0 r̄ ] with r̄ �= 0 then also Mod(Bc) ∩ Mod(C ) has a nonzero
element r̄ , proving the desired implication. Statement 2. can be proved using similar
arguments. �

Againwe remark that Theorem8.15 implies that, in caseB(0,c) = {0},C regularly
implements K from B(w,c) if and only if it implements C can from Bc by regular
full control.

Theorem8.15 yields necessary and sufficient conditions for the problemof regular
implementation by partial interconnections.

Corollary 8.16 Let B(w,c) be a given plant behavior and K a control objective.
Assume further that K is implementable from B(w,c). Then K is regularly imple-
mentable from B(w,c) if and only if C can is regularly implementable from Bc by full
control.

In the previous considerations, the canonical controller associated to a given con-
trol problem has been considered as a control objective itself, whose ability to be
implemented provides information on the possibility of implementing the true control
objective. We now take a different perspective and consider the canonical controller
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in its most natural role, i.e., as being itself a controller. In this context, two questions
obviously arise: Does the canonical controller implement the control objective? If
so, is this implementation regular? The answers to these questions are given below.

Theorem 8.17 Given a plant behavior B(w,c), a control objective K , let C can be
the associated canonical controller. Then, C can implements K if and only of K is
implementable.

Proof The “only if” part of the statement is trivial. As for the “if” part, suppose
that K is implementable, and let C̃ = ker K be a controller that implements this
behavior. Then, by Theorem 8.14, the controller C̃ +B(0,c) implements C can from
Bc. If Rw = Mc is a representation ofB(w,c) and N is a MLA of R,B(0,c) = ker M
and Bc = ker NM. Therefore, the fact that C̃ + B(0,c) implements C can from Bc

means that C can is the c-behavior induced by the following equations:

⎧
⎪⎪⎨

⎪⎪⎩

N Mc = 0
c = c1 + c2
K c1 = 0
Mc2 = 0.

(8.5)

Consequently, applying the canonical controller to the plantB(w,c) yields the restric-
tions: ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Rw = Mc
N Mc = 0
c = c1 + c2
K c1 = 0
Mc2 = 0,

(8.6)

that can easily be shown to have the same w-behavior as

{
Rw = Mc1
K c1 = 0.

(8.7)

But this w-behavior is preciselyK , which proves that C can indeed implementsK .
�

Our last results concerns regular implementation by means of the canonical con-
troller.

Theorem 8.18 Given a plant behaviorB(w,c), a control objectiveK , letC can be the
associated canonical controller. Then, C can regularly implements K if and only of
Bc coincides with the whole c-trajectory universe, i.e., if and only ifMod(Bc) = {0}.
Proof Assume that C can regularly implementsK . Then, by Corollary 8.16, C can +
B(0,c) regularly implementsC can fromBc. This implies that Mod(C can +B(0,c))∩
Mod(Bc) = {0}. But, Mod(C can +B(0,c))∩Mod(Bc) = Mod(C can)∩Mod(Bc).
As Mod(Bc) ⊂ Mod(C can) (because C can ⊂ Bc), we obtain that Mod(Bc) = {0}.
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Conversely, if Mod(Bc) = {0} then the canonical controller regularly imple-
ments itself fromBc. By Corollary 8.16 this implies that C can also implementsK
regularly. �

Corollary 8.19 The canonical controller is regular if and only if every controller is
regular.

Proof The if part is obvious. As for the only if part, we start by noting that, given
a controller C , Mod(B(w,c)) ∩ Mod(C ∗

(w,c)) = {r | r = [0 r̄ ], r̄ ∈ mod (C ) ∩
Mod(Bc)}.Assumenow that the canonical controller is regular. Then, by the previous
theorem, Mod(Bc) = {0} and consequently also Mod(B(w,c))∩Mod(C ∗

(w,c)) = {0}
for any given controller C , which precisely means that the controller C is regular.
This proves the desired result. �

Theorems 8.17, 8.18 and Corollary 8.19 generalize the corresponding 1D results
obtained in [3, 19] to the nD case.

Finally, we study another class of controllers that are of interest in the context
of regular partial interconnections, namely, controllers that admit full row rank
representations, called regular controllers. The regular implementation by means
of a regular controller implies the regular implementation by full interconnection
(fromBw).

Theorem 8.20 ([4, Theorem 10]) Let B(w,c) = ker [R M] be a behavior. If a
desired behavior K is implementable by regular partial interconnection with a
regular controller C = ker [0 LM] then K = Bw ∩reg ker (LR), i.e., K can also
be implementable by regular (full) interconnection from Bw.

Proof Without loss of generality we supposed that the matrix LM is full row rank
since C is a regular behavior. Further,

[
I 0
L −I

]

·
[

R M
0 L M

]

=
[

R M
L R 0

]

.

Let X be the MLA of M . Hence �w(B(w,c) ∩ C ) = �w(ker

[
R M

L R 0

]

) =

ker

[
X R
L R

]

= B(w,c) ∩ ker LR. To see that the interconnection betweenB(w,c) and

ker LR is regular we prove that the interconnection between ker [R M]∩ker [LR 0]
is regular, i.e., v[R M] = z[LR 0] for some row vectors v and z, implies
v[R M] = 0 = z[LR 0]. Suppose that v[R M] = z[LR 0]. Note that z[LR 0] =
z[0 −LM]+[LR LM] and then v[R M]−z[LR LM] = (v−zL)[R M] = z[0 −LM].
By assumption that the interconnection of B(w,c) and C is regular one has that
(v − zL)[R M] = z[0 − LM] = 0 and since LM is full row rank one obtains that
z = 0 and therefore v[R M] = z[LR 0] = 0 which proves that the interconnection
is regular. �
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Chapter 9
Synchronization of Linear Multi-Agent
Systems with Input Nonlinearities via
Dynamic Protocols

Kiyotsugu Takaba

Abstract This paper is concerned with the local synchronization of linear agents
subject to sector-bounded input nonlinearities over an undirected communication
graph via dynamic output feedback protocol.We first derive a sufficient condition for
achieving the local synchronization for any nonlinearities satisfying a given sector
condition with a given dynamic protocol in terms of LMIs. Based on this analy-
sis, we present a sufficient BMI synthesis condition of a dynamic protocol which
locally synchronizes the linear agents with arbitrary sector-bounded input nonlinear-
ities. Though the present BMI condition is non-convex, the condition is numerically
tractable because it does not depend on the size of the communication graph except
for computation of the Laplacian eigenvalues.

9.1 Introduction

It is a great pleasure to contribute this paper to the festschrift of Prof. Trentelman on
the occasion of his 60th birthday.

Over the last decade, distributed cooperative control of multi-agent systems has
been attracting a great interest in the control theory community (see [1, 2] and the
references therein). The key feature of a multi-agent system is that it achieves a
certain cooperative task such as synchronization, consensus, and formation, through
distributed control of individual agents based on local interactions with their neigh-
boring agents. Trentelman and his co-workers have reported several important results
in this research area in recent years [3–6].

Early works on distributed cooperative control of linear multi-agent systems
focused mainly on consensus and formation problems with homogeneous agent
dynamicswithoutmodel uncertainties [2, 7–10].Oneof the recent research directions
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of multi-agent control systems has been the robustness to cope with heterogeneity
and/or model uncertainties of the agent dynamics [3, 11, 12].

Many control systems are subject to input nonlinearities due to physical char-
acteristics of actuators and/or safety requirements. Of course, this situation is also
true for multi-agent systems. In this paper, we will consider the synchronization of
linear agents subject to sector-bounded nonlinearities in their input channels. There
have been several related works in the literature. Zhang, Trentelman, and Scherpen
considered the design of a dynamic protocol that robustly synchronizes a network of
Lur’e systems with incrementally passive nonlinearities [5, 6].

As a typical input nonlinearity, several works considered synchronization of linear
agents with input saturations [13–18]. Among them, Takaba [17, 18] derived LMI
synthesis conditions of relative state feedback laws that achieve the global/local
synchronization of linear agents in the presence of input saturations. Although the
previous works of [13–18] dealt with only a particular type of nonlinearities, it is
important from a robustness viewpoint to guarantee the synchronizability of the
multi-agent systems against uncertainties of input nonlinearities, and such an uncer-
tain nonlinearity is often modeled in terms of sector-bounds.

Therefore, we consider the synchronization of linear agents with sector-bounded
nonlinearities in their input channels. In line with the philosophy of robustness, we
wish to design a dynamic feedback protocol that achieves the local synchronization
for arbitrary sector-bounded input nonlinearities.

9.2 Problem Statement

9.2.1 Agent Dynamics

Throughout this article, we consider the synchronization of amulti-agent system con-
sisting of N agents. Since many control systems have input nonlinearities such as
saturations and dead-zones due to characteristics of actuators and/or safety require-
ments, we model the dynamics of the individual agents by

ẋi = Axi + B0ψi (ui , t), yi = Cxi , i = 1, . . . , N , (9.1)

where xi : R+ → R
n , ui : R+ → R, and yi : R+ → R are the state, input, and

output of the i th agent, respectively. The memoryless functions ψi : R×R+ → R,
i = 1, . . . , N represent the input nonlinearities . We assume that ui and yi are
scalar-valued variables. The results presented in this paper can be generalized to the
case of multi-input multi-output agent dynamics in a straightforward manner.

The nonlinearities ψi , i = 1, . . . , N satisfy the local sector condition

αui ≤ ψi (ui , t) ≤ βui ∀ui ∈ [−μ, μ], ∀t ≥ 0, (9.2)

where α, β, and μ are given constants such that β > α ≥ 0 and μ > 0.
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For some input nonlinearities such as saturations, it is impossible to globally
synchronize or stabilize linear systems with exponentially unstable poles. Therefore,
we consider the local synchronization problem under the assumption that the sector
condition is satisfied only within the finite interval [−μ, μ], μ < ∞.

We define ϕi : R × R+ → R by

ϕi (ui , t) = ui − 1

β
ψi (ui , t). (9.3)

It is easily verified that ϕi , i = 1, . . . , N satisfy another sector condition

0 ≤ ϕi (ui , t) ≤ γ ui ∀ui ∈ [−μ, μ], ∀t ≥ 0,

or equivalently,

ϕi (ui , t)
[
ϕi (ui , t) − γ ui

] ≤ 0 ∀ui ∈ [−μ, μ], ∀t ≥ 0, (9.4)

where γ = (β − α)/β > 0. The sector-bounded nonlinearities are illustrated in
Fig. 9.1.

We can re-write the agent dynamics as

ẋi = Axi + Bui − Bϕi (ui , t), yi = Cxi , i = 1, 2, . . . , N , (9.5)

where B = B0β. The nonlinearity ϕi can be viewed as sector-bounded uncertainty
to the linear time-invariant nominal system. Hereafter, we will discuss the synchro-
nization of the multi-agent system based on the state-space model of (9.5) and the
local sector condition (9.4).

Assumption 9.1 (A, B) is stabilizable, and (C, A) is detectable.

Fig. 9.1 Sector-bounded nonlinearities. a sector bound (α, β). b sector bound (0, γ )
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9.2.2 Communication Graph

Communications among agents are well described in terms of mathematical
graphs [19]. A graph G is defined as a pair G = (V , E ), where V = {1, . . . , N } is
the index set of the nodes, E ⊂ V ×V is the edge set. Each element of V represents
an agent. Also, communication links between two agents are defined by edges of
the graph, namely, (i, j) ∈ E means that there is a communication link between the
agents i and j . The set of the neighbors to the node i is defined by (Fig. 9.2)

Ni = { j ∈ V | (i, j) ∈ E , j 	= i}.

Throughout this paper,we assume that the communication between any two agents
is bi-directional, i.e., (i, j) ∈ E ⇔ ( j, i) ∈ E . In this case, the graphG is identified
with an undirected graph. Moreover, if (i, j) ∈ E , then the agents i and j exchanges
their output values yi and y j .

Assumption 9.2

(i) The topology of the graph G = (V , E ) is time-invariant.
(ii) The graph G is connected, namely, there exists at least one path from any node

to another.

The Laplacian L ∈ R
N×N of the graph G is a square matrix defined by

L = (
�i j

)
, �i j =

⎧
⎨

⎩

|Ni |, if i = j,
−1, if (i, j) ∈ E ,

0, otherwise

The Laplacian L of an undirected graph is symmetric and nonnegative definite.
Moreover, L has a zero eigenvalue whose eigenvector is 1 := [1, 1, . . . , 1]� ∈ R

N .
For later discussion, we define the eigenvalues of L as λi , i = 1, . . . , N in the

ascending order:

0 = λ1 ≤ λ2 ≤ · · · ≤ λN−1 ≤ λN .

It is well known that G is a connected graph if and only if λ2 > 0, or equivalently
rank L = N − 1.

Fig. 9.2 Communication
graph
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9.2.3 Problem Statement

Since the states xi , i = 1, . . . , N of the individual agents cannot be used for syn-
chronization, we employ the following dynamic protocol, i.e., a dynamic feedback
law, to achieve synchronization:

ẋc,i = Acxc,i + Bc

∑

j∈Ni

(yi − y j ), (9.6a)

ui = Ccxc,i + Dc

∑

j∈Ni

(yi − y j ), i = 1, 2, . . . , N , (9.6b)

where xc,i : R+ → R
nc is the state of the protocol for the agent i .

Assumption 9.3 xc,i (0) = 0, i = 1, . . . , N.

The local synchronization problem considered in this paper is to design a dynamic
protocol of the form (9.6) which satisfies

lim
t→∞

∥
∥xi (t) − x j (t)

∥
∥ = 0 ∀i, j ∈ V (9.7)

lim
t→∞

∥
∥xc,i (t) − xc, j (t)

∥
∥ = 0 ∀i, j ∈ V (9.8)

for any state trajectories ( x1, . . . , xN ) starting from the inside of some closed region
R ∈ R

nN , and for any input nonlinearities ψ1, . . . , ψN satisfying (9.2).
Define

x =

⎡

⎢
⎢
⎢
⎣

x1
x2
...

xN

⎤

⎥
⎥
⎥
⎦

, u =

⎡

⎢
⎢
⎢
⎣

u1
u2
...

uN

⎤

⎥
⎥
⎥
⎦

, y =

⎡

⎢
⎢
⎢
⎣

y1
y2
...

yN

⎤

⎥
⎥
⎥
⎦

, xc =

⎡

⎢
⎢
⎢
⎣

xc1
xc2
...

xcN

⎤

⎥
⎥
⎥
⎦

, Φ(u, t) =

⎡

⎢
⎢
⎢
⎣

ϕ1(u1, t)
ϕ2(u2, t)

...

ϕN (uN , t)

⎤

⎥
⎥
⎥
⎦

.

Then, the closed-loop system of (9.5), (9.6) equivalently reduces to

[
ẋ
ẋc

]

=
[

IN ⊗ A + L ⊗ B DcC IN ⊗ BCc

L ⊗ BcC IN ⊗ Ac

] [
x
xc

]

−
[

IN ⊗ B
0

]

w, (9.9a)

u = [
L ⊗ DcC IN ⊗ Cc

]
[

x
xc

]

, (9.9b)

w =Φ(u, t), (9.9c)

where L is the Laplacian of the communication graph, ⊗ denotes the Kronecker
product, and Ip denotes the p × p identity matrix.

It follows from (9.4) and the definition of Φ that

w�(w − γ u) ≤ 0 (9.10)
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holds for w = Φ(u, t), u ∈ [−μ, μ]N , t ≥ 0. Moreover, we define the diagonal
matrix Λ and the orthogonal matrix U by

ULU� = Λ, Λ = diag{0, λ2, . . . , λN }, (9.11)

and perform the change of variables as

ξ =
⎡

⎢
⎣

ξ1
...

ξN

⎤

⎥
⎦ = (U ⊗ In)x, ξc =

⎡

⎢
⎣

ξc1
...

ξc,N

⎤

⎥
⎦ = (U ⊗ Inc )xc. (9.12)

Notice the first column of U� is the eigenvector associated with the smallest eigen-
value λ1 = 0. Hence, the first row of U is equal to 1�/

√
N , and we obtain

ξ1 = 1√
N

∑N
i=1 xi . It then follows from (9.12) that, if lim

t→∞ ‖ξi (t)‖ = 0 is satis-

fied for i = 2, . . . , N , we get

x(t) → (U� ⊗ In)

⎡

⎢
⎢
⎢
⎣

ξ1(t)
0
...

0

⎤

⎥
⎥
⎥
⎦

= 1√
N

1 ⊗ ξ1(t) (t → ∞).

The same discussion also applies to xc and ξc. From the above observation, the local
synchronization of the states (xi , xc,i ), i = 1, . . . , N , reduces to the asymptotic
stabilization of (ξi , ξc,i ), i = 2, . . . , N to the origin.

9.3 Synchronization Condition

Since U is an orthogonal matrix, application of the coordinate transformation (9.12)
to (9.9) yields

[
ξ̇

ξ̇c

]

=
[

IN ⊗ A + Λ ⊗ B DcC IN ⊗ BCc

Λ ⊗ BcC IN ⊗ Ac

] [
ξ

ξc

]

−
[

IN ⊗ B
0

]

w̃ (9.13a)

ũ =Uu = [
Λ ⊗ DcC IN ⊗ Cc

]
[

ξ

ξc

]

(9.13b)

w̃ =Uw = UΦ(U�ũ, t) (9.13c)

Moreover, since Λ is a diagonal matrix, (9.13) can be equivalently rewritten as
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ż =

⎡

⎢
⎢
⎢
⎣

A1
A2

. . .

AN

⎤

⎥
⎥
⎥
⎦

z −

⎡

⎢
⎢
⎢
⎣

B1
B2

. . .

BN

⎤

⎥
⎥
⎥
⎦

w̃ (9.14a)

ũ =

⎡

⎢
⎢
⎢
⎣

C1
C2

. . .

CN

⎤

⎥
⎥
⎥
⎦

z (9.14b)

w̃ =UΦ(U�ũ, t) (9.14c)

where

z =
⎡

⎢
⎣

z1
...

zN

⎤

⎥
⎦ , zi =

[
ξi

ξc,i

]

, i = 1, . . . , N

and

Ai =
[

A + λi B DcC BCc

λi BcC Ac

]

, Bi =
[

B
0

]

, Ci = [
λi DcC Cc

]
.

Lemma 9.4 The inequality

w̃�(w̃ − γ ũ) ≤ 0

holds for w̃ = UΦ(U�ũ, t) and t ≥ 0, where ũ ∈ R
N is an arbitrary vector such

that ũ = Uu, u ∈ [−μ, μ]N .

Theorem 9.5 follows from Lemma 9.4 and the block diagonal structure of (9.14).

Theorem 9.5 Under Assumptions 9.1–9.3, let a dynamic protocol of (9.6) be given.
Assume that there exists a positive definite matrix P ∈ R

(n+nc)×(n+nc) satisfying

[
A�

i P + P Ai γ C�
i − P Bi

γ Ci − B�
i P −2

]

< 0, (9.15)

[
P C�

i
Ci μ2

]

≥ 0 (9.16)

for i = 2, . . . , N. Then, the multi-agent system (9.5) with the dynamic protocol
achieves the local synchronization for arbitrary nonlinearities ϕ1, . . . , ϕN satisfying
the sector condition (9.4), or equivalently, the multi-agent system (9.1) with the
same dynamic protocol achieves the local synchronization for arbitrary ψ1, . . . , ψN

satisfying (9.2).
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Proof Based on the discussion in the previous section, we have only to show the
convergence of zi , i = 2, . . . , N to the origin.

Suppose that (9.15) and (9.16) are satisfied. Then,

[
A�

i P + P Ai + ε In+nc γ C�
i − P Bi

γ Ci − B�
i P −2

]

≤ 0, i = 2, . . . , N (9.17)

holds for some ε > 0. It follows from (9.14) and (9.17) that

d

dt
(z�

i Pzi ) = 2z�
i P(Ai zi − Bi w̃i ) ≤ −ε‖zi‖2 + 2w̃i (w̃i − γ ũi )

holds for i = 2, . . . , N . Thus, by defining

V (z) =
N∑

i=2

z�
i Pzi ,

we obtain

V̇ (z) + ε

N∑

i=2

‖zi‖2 ≤ 2
N∑

i=2

w̃i (w̃i − γ ũi ). (9.18)

On the other hand, we see from λ1 = 0 and (9.14) that

ξ̇1 = Aξ1 + BCcξc1 − Bw̃1, ξ̇c1 = Acξc1, ũ1 = Ccξc1.

Since ξc1(0) = 1√
N

∑N
i=1 xc,i (0) = 0 under Assumption 9.3, the above equation

imply ũ1(t) = 0 ∀t ≥ 0. It thus follows that

w̃1(w̃1 − γ ũ1) = w̃2
1 ≥ 0. (9.19)

Putting (9.18) and (9.19) together yields

V̇ (z) + ε

N∑

i=2

‖zi‖2 ≤ 2w̃�(w̃ − γ ũ). (9.20)

Define the cylindrical region

C (P) =
{

z ∈ R
(n+nc)N

∣
∣
∣ V (z) ≤ 1

}
.

By the Schur complement formula, (9.16) is equivalent to P ≥ μ−2C�
i Ci . Since

ũi = Ci zi , the following inequality holds for z ∈ C (P).
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N∑

i=1

|ui |2 =
N∑

i=1

|ũi |2 =
N∑

i=2

|ũi |2 =
N∑

i=2

z�
i C�

i Ci zi ≤ μ2
N∑

i=2

z�
i Pzi = μ2V (z).

Thus, we get u ∈ [−μ,μ]N . As a result, from Lemma 9.4, z ∈ C (P) implies

w̃�(w̃ − γ ũ) ≤ 0. (9.21)

We thus conclude from (9.20) and (9.21) that

V̇ (z) ≤ −ε

N∑

i=2

‖zi‖2 ≤ 0 (9.22)

holds for any z ∈ C (P). This inequality implies that C (P) is a positively invariant
set for the system of (9.14). Namely, any trajectory of z starting from the inside of
C (P) is confined in C (P), and satisfies ui ∈ [−μ,μ], i = 1, . . . , N all the time.
Moreover, by La Salle’s invariant principle, z converges to the maximal invariant
subset of {z ∈ R

(n+nc)N | V̇ (z) = 0}. Thus, we have ‖zi (t)‖ → 0 (t → ∞),
i = 2, . . . , N by the Eq. (9.22). This implies that the local synchronization (9.7),
(9.8) is achieved. � �

The matrix inequalities (9.15), (9.16) are affine with respect to λi , and λi ’s are
ordered in the ascending order. Therefore, to check the synchronization, it suffice to
solve the matrix inequalities in Theorem 9.5 only for i = 2 and N .

Corollary 9.6 Under Assumptions 9.1–9.3, let a dynamic protocol of (9.6) be given.
Assume that there exists a positive definite matrix P ∈ R

(n+nc)×(n+nc) satisfying
(9.15) and (9.16) for i = 2, N. Then, the multi-agent system (9.5) with the dynamic
protocol achieves the local synchronization for arbitrary nonlinearities ϕ1, . . . , ϕN

satisfying the sector condition (9.4), or equivalently, the multi-agent system (9.1)
with the same protocol achieves the local synchronization for arbitrary ψ1, . . . , ψN

satisfying (9.2).

Remark 9.7 Theorem 9.5 provides an inner approximation of the region of attraction
R to the synchronized states as

Ω(P) =
{

x ∈ R
nN

∣
∣
∣
∣z ∈ C (P), z = T

[
x
0

]}

,

where T is defined by T =
[

U ⊗
[

In

0

]

U ⊗
[
0

Inc

]]

, which maps (x, xc) to z.

Remark 9.8 In view of the well-known circle criterion, Theorem 9.5 implies that the
local synchronization problem is reduced to the stabilization problem of finding an
output feedback controller
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ẋc = Acxc + Bc y, u = Ccxc + Dc y

that asymptotically stabilizes

ẋ = Ax + Bu − Bϕ(u, t), y = λi Cx

for i = 2, . . . , N , and for every ϕ : R × R+ → R satisfying the sector condition

ϕ(u, t)[ϕ(u, t) − γ u] ≤ 0 ∀u ∈ [−μ, μ], ∀t ≥ 0.

9.4 Dynamic Protocol Synthesis

On the basis of Theorem 9.5, we shall present a synthesis method of a dynamic
protocol which achieves the local synchronization, with the aid of the change of
variables technique in [20]. We make the following assumption for simplicity.

Assumption 9.9 The order of the dynamic protocol (9.6) is equal to that of the agent
dynamics (9.5), namely, nc = n.

We partition P and P−1 as

P =
[

Y V
V � ∗

]

, P−1 =
[

X W
W � ∗

]

, (9.23)

where ∗ denotes irrelevant terms. Note that W V � = In − XY for the sub-matrices
X , Y , W , and V . We also define

Π1 =
[

X In

W � 0

]

, Π2 =
[

In Y
0 V �

]

. (9.24)

Since PΠ1 = Π2, application of the congruence transform with diag(Π1, 1) to
(9.15) and (9.16) yields

He

⎡

⎢
⎣

AX + BĈ + λi B D̂C X A + λi B D̂C −B
Â + λi B̂C X Y A + λi B̂C −Y B

γ Ĉ + γ λi D̂C X γ λi D̂C −1

⎤

⎥
⎦<0 (9.25)

⎡

⎣
X In ∗
In Y ∗

Ĉ + λi D̂C X λi D̂C μ2

⎤

⎦ ≥ 0, (9.26)

where we have defined He ( • ) := ( • ) + ( • )�, and
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Â = VAcW � + YAX + YBcC X, B̂ = VBc+YBDc, Ĉ = CcW �, D̂ = Dc.

(9.27)

Similarly, it follows from PΠ1 = Π2 that P > 0 is equivalent to

[
X In

In Y

]

> 0. (9.28)

As a result, a dynamic protocol achieving the synchronization can be designed by
solving the matrix inequalities (9.25), (9.26) and (9.28) for i = 2, N .

Theorem 9.10 Under Assumptions 9.1–9.9, assume that there exist symmetric
matrices X, Y , and matrices Â, B̂, Ĉ , D̂ satisfying the matrix inequalities (9.25),
(9.26), and (9.28) for i = 2, N. Then, there exists a dynamic protocol which
locally synchronizes the multi-agent system (9.1) for arbitrary input nonlinearities
ψ1, . . . , ψN satisfying the sector condition (9.2). One of such dynamic protocols is
given by

Ac = V −1( Â − Y AX − Y BcC X)W −�,

Bc = V −1(B̂ − Y B Dc),

Cc = ĈW −�,

Dc = D̂,

where W and V are constant matrices such that W V � = In − XY .

According to Theorem 9.10, the design of a dynamic protocol which achieves
the synchronization reduces to the mathematical programming problem of finding a
solution to (9.25), (9.26), and (9.28) for i = 2, N . In particular, it is often desirable to
maximize the size of the approximated region of attraction Ω(P) (see Remark 9.7).
In view of the Eq. (9.23), this can be done by solving the following optimization
problem.

(OP) minimize
(X,Y, Â,B̂,Ĉ,D̂)

trace Y subject to (9.25), (9.26), (9.28), i = 2, N

This problem is non-convex, because (9.25) and (9.26) contain the bilinear terms
between (B̂, D̂) and X . However, it is possible to find a solution to the optimization
problem (OP), since several techniques to efficiently solve bilinear matrix inequali-
ties (BMI) have been reported for the last two decades (see ,e.g., [21, 22]).

Remark 9.11 The size of the matrix inequalities in Corollary 9.6 and Theorem 9.10
are independent of the size of the communication graph, i.e., the number of agents,
except for computation of the eigenvalues of L . This implies that thematrix inequality
conditions are scalable as long as λ2 and λN are available to the designers.
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9.5 Concluding Remarks

We have studied the local state synchronization of linear agents subject to input non-
linearities over a fixed undirected communication graph.We have derived a sufficient
condition for achieving the local synchronization for arbitrary nonlinearities satis-
fying a given sector bounds. Then, we have shown that the synthesis condition of a
synchronizing dynamic protocol based on the above analysis becomes a non-convex
condition in terms of BMIs. In view of Remark 9.11, the advantage of the present
BMI condition is that the condition is scalable as long as the Laplacian eigenvalues
of the communication graph are available to the designers. It remains as a future
topic to extend the present results to more general situations such as heterogeneous
agent dynamics and/or directed communication graphs.We will also need to develop
a more efficient method to design a synchronizing dynamic protocol.
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Chapter 10
Strong Structural Controllability
of Networks

Nima Monshizadeh

Abstract In this chapter, we discuss strong structural controllability and strong
targeted controllability of networks from a unified viewpoint. The problem of strong
structural controllability accounts for controllability of the whole family of matri-
ces carrying the structure of an underlying graph. By looking into a certain infec-
tion process identified by a coloring rule, topological characterizations for strong
structural properties of the network is provided. In particular, the strong structurally
reachable subspace is translated into the derived set of a given leader set. Moreover,
the set of leaders rendering the network strongly structurally controllable are charac-
terized by zero forcing sets. Then, the minimum number of leaders to achieve strong
structural controllability is given by the zero forcing number of the graph. Motivated
by the fact that network controllability is neither always feasible nor necessary, we
discuss the problem of (strong) targeted controllability where controllability is only
required for a subset of the nodes in the network. We illustrate graph theoretic suffi-
cient conditions guaranteeing strong targeted controllability of the network.

10.1 Preliminaries

For a given simple directed graph G, the vertex set of G is a nonempty set and is
denoted by V . The arc set of G, denoted by E , is a subset of V × V , and (i, i) /∈ E
for all i ∈ V . The cardinality of a given set V is denoted by |V |. Also we sometimes
use |G| to denote in short the cardinality of V . We call vertex j an out-neighbor of
vertex i if (i, j) ∈ E .

For V = {1, 2, . . . , n} and V ′ = {v1, v2, . . . , vr } ⊆ V , we define the n ×r matrix
P(V ; V ′) = [Pi j ] by:
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Pi j =
{
1 if i = v j

0 otherwise.
(10.1)

10.2 Problem Formulation

We consider the following dynamics evolving on a directed graph G = (V, E):

ẋ = X x + Uu (10.2)

where x ∈ R
|G| is the state, u ∈ R

m is the input, and U = P(V ; VL) for some given
leader set VL ⊆ V . Note that the matrix X represents the coupling in accordance
with G, and reveals how information is exchanged throughout the network.

Recall that controllability is the ability of an external input to steer a system
from any initial state to any other final state in a finite time. Here, we are primarily
interested in “strong structural controllability” of systems of the form (10.2). Roughly
speaking, by “structural” we refer to properties which are identified by the graph G
rather than a particular realization of the system (10.2). To formalize this, we define
the qualitative class of G as the family of matrices compatible with the structure
of G:

Q(G) = {X ∈ R
|G|×|G| : for i �= j, Xi j �= 0 ⇔ ( j, i) ∈ E}

Then, for a given leader set VL , we call the system (10.2) strongly structurally
controllable if the pair (X, U ) is controllable for all X ∈ Q(G). In that case, we
write G; VL) is controllable. Note that the term “strong” is used to distinguish with
the case of “weak structural controllability” which amounts to the existence of a
controllable pair (X, U ), X ∈ Q(G).

Another problem of interest is “minimal leader selection” the goal of which is
to choose a leader set VL with minimum cardinality such that the pair (X, U ) is
controllable. A strong structural variation of this problem is to select a leader set VL

with minimum cardinality such that (X, U ) is controllable for all X ∈ Q(G). We
denote the cardinality of such minimal leader set by �min(G), i.e.,

�min(G) = min
VL⊆V (G)

{|VL | : (G; VL) is controllable}. (10.3)

For simplicity, we use calligraphic notation in this chapter to denote the image
of a matrix induced by a subset V ′ ⊆ V . More precisely, V ′ denotes, in short, the
subspace im P(V ; V ′).

In the next section, we briefly review the state of the art in controllability as well
as structural controllability of systems of the form (10.2).
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10.3 Review: Controllability of Networks

One main line of research within the context of controllability of networks has been
devoted to the case where X = L in (10.2) with L being the Laplacian matrix of
an undirected graph G. This line of research has been initiated by [15] and further
developed by [14]. Motivated by the fact that algebraic conditions do not provide
much insight into network controllability, topological translation of controllability
properties in terms of certain graph partitions has been pursued by some authors
[8, 17]. These partitions in fact provide a partial characterization of the reachable
subspace associated with the pair (L , U ). An extension to the controlled invariant
subspace has also been reported in [10]. Characterization of controllability of the
pair (L , U ) in terms of graph automorphisms is provided in [1].

In addition, a (minimum) leader selection for rendering the pair (L , U ) control-
lable has been investigated for particular classes of undirected graphs [12, 13, 17].

Another instance of systems that has been studied in the context of controllability
corresponds to the case where X = A in (10.2) with A being the adjacency matrix
of an undirected graph, see, e.g., [4].

In complex networks, theweights of the communications are typically unknownor
partially known.Hence, it is interesting to investigate a controllability propertywhich
depends on the structure of the graph/network rather than a particular realization. In
fact, this property, known as structural controllability deals with a family of pairs
(X, U ) rather than a particular instance and asks whether the family contains a
controllable pair (weak structural controllability [7]) or all members of the family
are controllable (strong structural controllability [11]). The latter is also the main
focus of the present chapter. For a more general look at controllability of structured
systems see, e.g., [2, 6, 9].

10.4 Strong Structural Controllability

First, we recap the notion of the reachability subspace in time-invariant linear
systems.

10.4.1 Reachability Subspace

Consider, the system

ẋ(t) = Ax(t) + Bu(t) (10.4)

with state space R
n . For a given initial state x0 and input function u, we denote

the resulting state trajectory of the system by xu(t, x0). The smallest A-invariant
subspace containing the image of the input matrix U is denoted by 〈A | im B〉. This
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subspace, called the reachable subspace, consists of all points in the state space
that can be reached from the origin in finite time by choosing an appropriate input
function, i.e., all points x1 ∈ R

n for which there exists T > 0 and u such that
x1 = xu(T, 0). It is well known that the system is controllable if and only if the
reachable subspace 〈A | im B〉 is equal to the entire state space Rn . In turn, this is
equivalent to the condition

rank
[
B AB · · · An−1B

] = n.

10.4.2 Strong Structurally Reachable Subspace

Recall that we are interested in structural controllability properties of systems of the
form (10.2). To incorporate these structural properties, we consider all the points
in the state space which can be reached by applying appropriate input signals to
the nodes in the leader set VL , irrespective of the choice of X ∈ Q(G). These
points constitute a subspace which we call strong structurally reachable subspace.
By definition, this subspace is equal to

⋂

X∈Q(G)

〈X | VL〉.

Moreover, it is easy to observe that the strong structurally reachable subspace pro-
vides a geometric characterization for strong structural controllability, i.e.,

(G; VL) is controllable ⇔
⋂

X∈Q(G)

〈X | VL〉 = R
|G| (10.5)

Note that the geometric characterization (10.5) by itself does not provide much
insight to the strong structural controllability property. In particular, we would like to
“visualize” a network enjoying this property in comparison with the one which lacks
such a property. Ultimately, we would like to draw some conclusions on possible
minimal leader selections guaranteeingsss strong structural controllability. To this
end, we use the notion of zero forcing sets.

10.4.3 Zero Forcing Sets

In this section, we recap the notion of zero forcing sets together with the terminology
that will be used later in this chapter. For more details see, e.g., [5].

Let G be a graph, and suppose that each vertex is colored either white or black.
Consider the following coloring rule:
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��: If u is a black vertex and exactly one out-neighbor v of u is white, then change
the color of v to black.

The following terminology will be used when we apply the color-change rule
above to a graph G:

• If the color-change rule is applied to u ∈ V to change the color of v ∈ V , we say
u forces or infects v, and write u → v.

• Given a coloring set C ⊆ V , i.e., C indexes the initially black vertices of G, the
derived set of C is denoted by D(C), and is the set of black vertices obtained by
applying the color-change rule until no more changes are possible.

• The set Z(G) ⊆ V is a zero forcing set (ZFS) for G if D(Z(G)) = V .
• The zero forcing number Z(G) is the minimum of |Z | over all zero forcing sets

Z(G) ⊆ V .

Figure10.1 illustrates the coloring rule, where vertices 1, 2, and 5 are initially
colored black. As vertex 1 has only one white out-neighbor, 1 → 3. Similarly,
5 → 7. Consequently, 2 → 4, and then 3 → 9. Therefore, the derived set of {1, 2, 5}
is equal to {1, 2, 3, 4, 5, 7, 9}, and clearly {1, 2, 5} is not a zero forcing set. It is easy
to observe that the set {1, 2, 5, 6} constitutes a minimal zero forcing set, and thus the
zero forcing number is equal to 4 in this case.

Fig. 10.1 An example of the coloring rule
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10.4.4 Topological Characterization

The coloring rule and zero forcing sets discussed in the previous subsection generate a
chain of forces/infections in the graph, starting from a leader set VL . Next, we investi-
gate how controllability properties of the network is affected by this forcing/infection
process. More precisely, let v ∈ VL , w /∈ VL and suppose that v → w. Then, we
examine the effect of this infection on the reachable subspace, on the strong struc-
turally reachable subspace, and ultimately we draw conclusions on strong structural
controllability of (10.2).

First, we look into the reachability subspace, i.e., 〈X | VL〉 for any given VL ⊆ V
and X ∈ Q(G). We claim that

im P(V ; V ′
L) ⊆ 〈X | VL〉. (10.6)

where V ′
L = VL ∪ {w} and P is given by (10.1). Without loss of generality, assume

that VL = {1, 2, . . . , m}, v = m, and w = m + 1. Then, the matrix X can be
partitioned as

X =

⎡

⎢
⎢
⎣

X11 X12 X13 X14
X21 X22 X23 X24
X31 X32 X33 X34
X41 X42 X43 X44

⎤

⎥
⎥
⎦ (10.7)

where the diagonal blocks/elements X11, X22, X33, and X44 correspond to the vertices
in VL\{v}, the vertex v, the vertex w, and the rest of the vertices, respectively.

Let ξ ∈ R
n be a vector in 〈X | VL〉⊥. Clearly, we have ξ T Xk−1P(V ; VL) = 0

for each k ∈ N. We write ξ = col(ξ1, ξ2, ξ3, ξ4) compatible with the partitioning of
X . Note that P(V ; V ′

L) now reads as

P(V ; V ′
L) =

⎡

⎢
⎢
⎣

Im−1 0 0
0 1 0
0 0 1
0 0 0

⎤

⎥
⎥
⎦

From the equality ξ T P(V ; VL) = 0, we obtain that ξ1 = 0 and ξ2 = 0. Then, the
equality ξ T X P(V ; VL) = 0 yields

[
ξ T
3 ξ T

4

]
[

X31 X32 X33
X41 X42 X43

]

= 0 (10.8)

Observe that, since v → w, the vertex v has exactly one out-neighbor in V \VL ,
and thus we have X32 �= 0 and X42 = 0. Therefore, by (10.8), we obtain that the
scalar ξ3 is equal to zero. Clearly, ξ = col(0, 0, 0, ξ4) is orthogonal to the subspace
im P(V ; V ′

L). Hence, the subspace inclusion (10.6) holds.
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Now, by repeating the argument above, we conclude that

D(VL) ⊆ 〈X | VL〉 (10.9)

where D(VL) = im P(V ; D(VL)). This yields

〈X | D(VL)〉 ⊆ 〈X | VL〉 (10.10)

On the other hand, noting that VL ⊆ D(VL), we obtain that

〈X | VL〉 ⊆ 〈X | D(VL)〉.

This together with (10.10) yields

〈X | VL〉 = 〈X | D(VL)〉 (10.11)

for any given leader set VL . The equality above reveals the fact that the reachable sub-
space is invariant under the infection process. Consequently, the strong structurally
reachable subspace enjoys this invariance property as well, i.e.

⋂

X∈Q(G)

〈X | VL〉 =
⋂

X∈Q(G)

〈X | D(VL)〉 (10.12)

The aforementioned invariance properties can be used to provide a topological
translation of the strong structurally reachable subspace. In particular, observe that

D(VL) ⊆
⋂

X∈Q(G)

〈X | D(VL)〉 =
⋂

X∈Q(G)

〈X | VL〉 (10.13)

Now, we show that D(VL) is indeed equal to the strong structurally reachable sub-
space. Clearly, by (10.13), it remains to show that

⋂

X∈Q(G)

〈X | D(VL)〉 ⊆ D(VL) (10.14)

We define the set Δ as

Δ = {δ ∈ R
n : δi = 0 ⇔ i ∈ D(VL)} (10.15)

Let δ be a vector in Δ. Without loss of generality, let D(VL) = {1, 2, . . . , d}. Then,
δ can be written as col(0d , δ2) where each element of δ2 ∈ R

n−d is nonzero. Let the
matrix X be partitioned accordingly as

X =
[

X11 X12
X21 X22

]
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Clearly, we have

δT X = δT
2

[
X21 X22

]

Observe that nonzero elements of X21 correspond to the arcs from the vertices in
D(VL) to the vertices in V \D(VL). Hence, by the coloring rule, each column of X21
is either identically zero or contains at least two nonzero elements. We choose these
nonzero elements, if any, such that δT

2 X21 = 0. Noting that the diagonal elements
of X22 are free parameters, we conclude that, for any vector δ ∈ Δ, there exists a
matrix X ∈ Q(G) such that δT X = 0. Therefore, we obtain that

δ ∈ 〈X | D(VL)〉⊥

for some matrix X ∈ Q(G). Now, let ξ ∈ R
n be a vector in

⋂
X∈Q(G)〈X | D(VL)〉.

Clearly, we have δT ξ = 0 which yields δT
2 ξ2 = 0, by writing ξ = col(ξ1, ξ2). As

this conclusion holds for an arbitrary choice of δ ∈ Δ, we obtain that ξ2 = 0, and
thus ξ ∈ D(VL) which proves (10.14). Hence, we conclude that

⋂

X∈Q(G)

〈X | VL〉 = D(VL). (10.16)

By (10.16), the strong structurally reachable subspace is topologically equivalent
to the subspace induced by the derived set of VL , i.e., D(VL). An important special
case of (10.16) is obtained for D(VL) = R

|G|, or equivalently VL = V . This results
in an exact topological translation of strong structural controllability:

(G; VL) is controllable ⇐⇒ VL is a zero forcing set of G (10.17)

In addition, by a simple cardinality argument, we obtain that

�min(G) = Z(G). (10.18)

Note that the equalities (10.16)–(10.18) provide a topological characterization of
structural controllability properties of systems of the form (10.2). In particular, the
derived set of VL determines the strong structurally reachable subspace, there is a
one-to-one correspondence between zero forcing sets and sets of leaders rendering
the network strongly structurally controllable, and the minimum number of leaders
required is given by the zero forcing number of the graph.

10.4.5 Leader Selection

An important question in the context of controllability of dynamical networks is
minimal leader selection, i.e., to choose a leader set, with minimum cardinality, such
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that the network is controllable. The research effort in this direction has been devoted
mostly to the case where X is equal to the Laplacian matrix of an undirected graph,
in particular undirected path, cycle, complete, and circulant graphs [12, 14, 17].
Minimum leader selections rendering the network weakly structurally controllable
is also discussed in [7].

The equality (10.18) reveals the fact that our knowledge about minimal leader
selection for strong structural controllability of networks is closely related to the
knowledge we have on the zero forcing number of graphs. In fact, for any graph
whose zero forcing number is known or can be computed, we immediately obtain
theminimumnumber of leaders for controllability, and, in principle, aminimal leader
selection scheme. To illustrate this, we mention next few examples.

Note that an undirected graph can be identified by a corresponding directed graph
whose arc set is symmetric, see [11] for more details. Then, clearly, either of the
two boundary vertices in an undirected path graph P forms a zero forcing set, and
thus �min(P) = 1. For an undirected cycle graph C , any two neighboring vertices
constitute a minimal zero forcing set and hence �min(C) = 2. Similarly, for an
undirected complete graph K with n vertices, we have �min(K ) = n − 1. For a
directed cycle graph, merely one vertex suffices for strong structural controllability.

The path cover number of G, denoted by P(G), is the minimum number of vertex
disjoint paths occurring as induced subgraphs of G that cover all the vertices of G;
such a set of paths realizing P(G) is called a minimal path cover. For acyclic graphs,
it has been shown that the zero forcing number is equal to the path cover number of
the graph. Moreover, the initial points of the vertex disjoint paths realizing a minimal
path cover form a minimal zero forcing set [5]. Therefore, by selecting those initial
points as leaders, we obtain a minimal leader selection scheme for strong structural
controllability of acyclic networks.

However, computing a minimal zero forcing set for general graphs with cycles
is very difficult. Hence, determining zero forcing number for certain subclasses of
graphs, as well as finding suboptimal (non-minimal) zero forcing sets for general
directed graphs are interesting problems in the context of strong structural control-
lability of dynamical networks.

10.5 Strong Targeted Controllability

Network controllability is not always present in complex networks, or it may ask for
considerable number of nodes to be directly controlled which is not always feasible.
Besides, in certain cases steering the entire network to any arbitrary state may not be
necessary, and instead the interest is to drive a subset of the network to a desired state.
Following [3], we refer to this problem as targeted controllability of networks. By the
results discussed in the previous section, we investigate the targeted controllability
problem in a strong structural sense. Note that targeted controllability is essentially
an “output controllability” problem which is recapped next.
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10.5.1 Output Controllability

Consider again the system (10.4) with an additional output equation

y(t) = Cx(t) (10.19)

where the output y(t) takes its values in the output space R
p. Denote the output

trajectory corresponding to the initial state x0 and input function u by yu(t, x0). The
system (10.4)–(10.19) is then called output controllable if for any x0 ∈ R

n and
y1 ∈ R

p there exists an input function u and a T > 0 such that yu(T, x0) = y1.
We also say that the triple (A, B, C) is output controllable meaning that the system
(10.4), (10.19) is output controllable. It is well known (see ,e.g., [16, Exc. 3.22]) that
(A, B, C) is output controllable if and only if the rank condition

rank
[
CB CAB · · · CAn−1B

] = p.

holds. In turn this is equivalent to the condition

C〈A | im B〉 = R
p,

,i.e., the image under C of the reachable subspace is equal to the output space Rp.
Obviously, this condition is equivalent to ker C + 〈A | im B〉 = R

n . Finally, by
taking orthogonal complements, the latter holds if and only if

im C� ∩ 〈A | im B〉⊥ = {0}.

10.5.2 Topological Characterization

In this subsection, we discuss the “strong targeted controllability” problem for sys-
tems of the form (10.2) with an additional output equation:

ẋ = X x + Uu (10.20a)

y = H x (10.20b)

where X ∈ Q(G), U = P(V ; VL) for some given leader set VL ⊆ V , and H =
PT (V ; VT ) for some given target set VT ⊆ V . For a given leader set VL and a
target set VT , we call the system (10.20) strongly targeted controllable if the triple
(X, U, H) is output controllable for all X ∈ Q(G). In that case, we also write as
(G; VL ; VT ) is targeted controllable.
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Note that strong targeted controllability is basically a strong structural output
controllability property, where the output of the network can be steered to any desired
state in R|VT |, irrespective of the choice of X ∈ Q(G).

Let VT = im P(V ; VT ), |VT | = p, and |V | = n. Then, by Sect. 10.5.1,
(G; VL ; VT ) is targeted controllable if and only if

rank
[
HU HXU HX2U · · · HXn−1U

] = p for all X ∈ Q(G),

which is equivalent to

H 〈X | VL〉 = R
p for all X ∈ Q(G),

and thus to

VT ∩ 〈X | VL〉⊥ = {0} for all X ∈ Q(G). (10.21)

Note that targeted controllability captures the structural controllability as a special
case, namely by setting H = I , or equivalently VT = V . Hence, investigating
targeted controllability of networks is a more general, and thus more challenging
problem. Next, by using the results elaborated in the previous section, we discuss
topological conditions under which the network is strongly targeted controllable.

Observe that (G; VL ; VT ) is targeted controllable if

VT ⊆
⋂

X∈Q(G)

〈X | VL〉 (10.22)

Note that indeed (10.22) implies (10.21), which results in targeted controllability.
Therefore, by (10.16), we conclude that

VT ⊆ D(VL) =⇒ (G; VL ; VT ) is targeted controllable. (10.23)

This means that the state components corresponding to the vertices in the derived
set of VL can be steered to any desired point in R

d with d = |D(VL)|, by applying
appropriate inputs to the vertices in VL .

Consider the graph depicted in Fig. 10.2, and let VL = {1, 2}. It is easy to observe
that by the color-change rule the derived set ofVL is obtained as D(VL) = {1, 2, 3, 4}.
By (10.23), we have that (G; VL ; VT ) is targeted controllable for any

VT ⊆ {1, 2, 3, 4}. (10.24)

However, this is not necessary as one can show that (G; VL ; VT ) is targeted control-
lable with

VT = {1, 2, 3, 4, 5, 6, 7}. (10.25)



194 N. Monshizadeh

Fig. 10.2 The graph G = (V, E)

Next, we discuss how the condition (10.23) can be sharpened. To this end, we
define the subgraph G ′ = (V, E ′) with

E ′ = {(i, j) : i ∈ D(VL) and j ∈ VT }. (10.26)

Hence, the set E ′ captures all the arcs from the vertices in D(VL) to the vertices in
VT . To avoid confusion, let D(VL) be denoted by V ′

L . Then, by D′(V ′
L) we denote

the derived set of V ′
L in the graph G ′. Note that the set D′(V ′

L) is in fact constructed
as a result of the following steps:

1. Compute the set D(VL), that is the derived set of VL in the graph G = (V, E).
This means that the vertices in VL are initially colored black, and we apply the
color-change rule based on the arc set E .

2. Construct the subgraph G ′ = (V, E ′) from G, with E ′ given by (10.26)
3. Compute the set D′(V ′

L), that is derived set of V ′
L in G ′. This means that the

vertices in V ′
L = D(VL) are initially colored black, and we apply the color-

change rule based on the arc set E ′.

Noting that D(VL) ⊆ D′(V ′
L), without loss of generality, assume that D(VL) =

{1, 2, . . . , d} and D′(V ′
L) = {1, 2, . . . , d, d + 1, . . . , d + e}. Consider the condition

(10.21). Let X ∈ Q(G) and let ξ be a vector in the subspace VT ∩〈X | VL〉⊥. Hence,
by (10.11),

ξ ∈ VT ∩ 〈X | D(VL)〉⊥. (10.27)

Note that ξ ∈ R
n can be written as ξ = col(ξ1, ξ2, ξ3), where ξ1 ∈ R

d , ξ2 ∈ R
e, and

ξ3 ∈ R
n−d−e. Compatible with ξ , let the matrix X be partitioned as

X =
⎡

⎣
X11 X12 X13
X21 X22 X23
X31 X32 X33

⎤

⎦ . (10.28)

Now assume that VT = D′(V ′
L), and thus
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VT = D ′(V ′
L)

where D ′(V ′
L) = im P(V ; D′(V ′

L)). Then, clearly ξ ∈ D ′(V ′
L), and hence ξ3 = 0.

By (10.27), we have

ξ T Xk−1P(V ; D(VL)) = 0 (10.29)

for each k ∈ N. The equality ξ T P(V ; D(VL)) = 0 yields ξ1 = 0. Then, by (10.29)
with k = 2, we obtain that

ξ T
2 X21 = 0. (10.30)

Now, observe that the matrix

X ′ =
⎡

⎣
0 0 0

X21 0 0
0 0 0

⎤

⎦

belongs to the qualitative class Q(G ′), where the partitioning is compatible to (10.28).
Therefore, by (10.9), we have

D ′(V ′
L) ⊆ 〈X ′ | V ′

L〉 = 〈X ′ | D(VL)〉 (10.31)

where V ′
L = im P(V ; V ′

L). The subspace inclusion (10.31) yields

D ′(V ′
L) = im

⎡

⎣
I 0
0 I
0 0

⎤

⎦ ⊆ im

⎡

⎣
I 0
0 X21
0 0

⎤

⎦ = 〈X ′ | D(VL)〉

where the partitioning is again compatible to (10.28), and we have used the fact that
(X ′)k = 0 for k > 1. This implies that X21 is full row rank. Hence, the equality
(10.30) results in ξ2 = 0which in turn implies targeted controllability of (G; VL ; VT )

by (10.21). Therefore, we conclude that

VT = D′(V ′
L) =⇒ (G; VL ; VT ) is targeted controllable, (10.32)

which obviously can be restated as

VT ⊆ D′(V ′
L) =⇒ (G; VL ; VT ) is targeted controllable. (10.33)

Noting that D(VL) ⊆ D′(V ′
L), the condition (10.23) can be replaced by the sharper

condition (10.33) to deduce strong targeted controllability of the network.
As an example consider again the graph depicted in Fig. 10.2 with VL = {1, 2}.

Recall that the derived set of VL in G is given by D(VL) = {1, 2, 3, 4} in this case.
Let VT be given by
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Fig. 10.3 The subgraph G ′ = (V, E ′)

VT = {1, 2, 3, 4, 5, 6}

Then, Fig. 10.3 shows the subgraph G ′ = (V, E ′) with E ′ given by (10.26). It is
easy to observe that D′(V ′

L) is obtained as D′(V ′
L) = {1, 2, 3, 4, 5, 6}. Noting that

VT = D′(V ′
L), we conclude that (G; VL ; VT ) is targeted controllable by (10.32). It

is worth mentioning that the sufficient condition (10.33) is not tight, as evident by
(10.25). In fact, the vertices in D(VL) do not infect vertex 7 in G ′.

10.6 Conclusions and Outlook

We have considered the problem of controllability of the network for a family of
matrices carrying the structure of an underlying directed graph. This family of
matrices is called the qualitative class, and as observed, there is a one-to-one cor-
respondence between zero forcing sets and the set of leaders rendering the network
controllable for all matrices in the qualitative class. As illustrated, this provides a
bridge connecting the results available in graph theory for zero forcing sets/number to
(minimal) leader selection schemes for strong structural controllability of dynamical
networks. As minimal zero forcing sets for general graphs with cycles are very diffi-
cult to compute, finding suboptimal (non-minimal) zero forcing sets, or equivalently
suboptimal (non-minimal) leader selection schemes for strong structural controlla-
bility of networks is an interesting problem for future research.

We have also studied the case where the network is not strongly structurally
controllable, yet we are interested in controllability properties in some parts of the
network identified by a target set.We have discussed topological sufficient conditions
guaranteeing strong targeted controllability of the network. There are still important
questions to be addressed in this direction. One notable problem is to establish a
tractable topological necessary and sufficient condition verifying strong targeted
controllability. Then, given a leader set, a problem of interest is to characterize a



10 Strong Structural Controllability of Networks 197

target set, with maximum cardinality, such that the network is strongly targeted
controllable. Another interesting question is the “dual” problem, i.e., to select a set
of leaders, with minimum cardinality, such that the network is strongly targeted
controllable for a given target set.
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Chapter 11
Physical Network Systems and Model
Reduction

Arjan van der Schaft

Abstract The common structure of a number of physical network systems is iden-
tified, based on the incidence structure of the graph, the weights associated to the
edges, and the total stored energy. State variables may not only be associated to the
vertices, but also to the edges of the graph; in clear contrast with multiagent sys-
tems. Structure-preserving model reduction concerns the problem of approximating
a complex physical network system by a system of lesser complexity, but within
the same class of physical network systems. Two approaches, respectively, based on
clustering and on Kron reduction, are explored.

11.1 Introduction

While complexity and large-scale systems have always been important themes in
systems and control theory, the current flowering of network dynamics and control
was not easy to predict. Two main reasons for the enormous research activity are
the ubiquity of large-scale networks in a large number of application areas (from
power networks to systems biology) and the happy marriage between on the one-
hand systems and control theory and algebraic graph theory on the other. Especially,
this last aspect can be clearly witnessed in the recent work by my colleague Harry
Trentelman.

The research paths of Harry and myself have developed in parallel, at a number
of instances tangential, but for some reason never leading to a joint publication.
Needless to say that both our scientific developments were heavily influenced and
shaped by our joint supervisor and promoter Jan C. Willems, with his unique and
inspiring style and taste for doing research.

A. van der Schaft
Jan C. Willems Center for Systems and Control, Johann Bernoulli Institute
for Mathematics and Computer Science, University of Groningen,
Groningen, The Netherlands
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After completing our respective Ph.D. studies with Jan at the Mathematics Insti-
tute in Groningen, our ways parted with Harry leaving for Eindhoven (in 1985) and
myself for Twente (a few years before in 1982). Nevertheless we remained in close
contact, during conferences, activities of the Dutch Institute of Systems and Control,
and foremost simply by being part of the “Groningen school on systems theory”.
Harry returned to his AlmaMater in 1991 as an Associate Professor working closely
together with Jan, while in 2005 I could not resist the temptation to return to Gronin-
gen. After being colleagues now for 10 years it is a special pleasure to contribute
to this Festschrift for Harry’s upcoming 60th birthday, and in this way to honor his
scientific contributions and simply to herald our pleasant collaboration through all
these years. Happy 60th birthday Harry!

11.1.1 Preliminaries from Graph Theory

This paper will be concerned with network dynamics and model reduction, empha-
sizing physical network systems. As preliminaries we recall from [2, 9] the following
standard definitions and facts. A graphG (V ,E ), is defined by a set V of vertices
(nodes) and a set E of edges (links, branches), where E is identified with a set of
unordered pairs {i, j} of vertices i, j ∈ V . We allow for multiple edges between
vertices, but not for self-loops {i, i}. By endowing the graph with an orientation we
obtain a directed graph. A directed graph with n vertices and k edges is specified
by its n × k incidence matrix, denoted by B. Every column of B corresponds to
an edge of the graph, and contains exactly one −1 at the row corresponding to its
tail vertex and one +1 at the row corresponding to its head vertex, while the other
elements are 0. In particular,1T B = 0 where1 is the vector of all ones. Furthermore,
ker BT = span1 if and only if the graph is connected (any point can be reached from
any other point by a sequence of, - undirected -, edges). For any diagonal positive
semi-definite k × k matrix R we define the weighted Laplacian matrix of the graph
as L := B RBT , where the nonnegative diagonal elements r1, . . . , rk of the matrix
R are the weights of the edges. It is well known [2] that L is independent of the
orientation of the graph, and thus is associated with the undirected graph.

11.2 Physical Network Systems

In this section wewill discuss a number of examples of physical network systems and
identify their common structure, based on the incidence structure of the graph, the
weights associated to the edges, and a Hamiltonian function given by the total stored
energy. It will turn out that a distinguishing feature of physical network systems
is the fact that state variables may not only be associated to the vertices of the
graph, but also to the edges. This is in sharp contrast with the standard framework of



11 Physical Network Systems and Model Reduction 201

Fig. 11.1 a Mass–spring–damper system; b the corresponding graph

multiagent systems, where the edges only capture the information exchange structure
of the networked system, and is similar to the passivity setup described in [1], where
dynamical controllers are associated to the edges.

11.2.1 Mass–Spring–Damper Systems

We will start with the paradigmatic example of mass–spring–damper systems. The
basic1 way of modeling mass–spring–damper systems as systems on a graph is to
associate the masses to the vertices, and the springs and dampers to the edges of the
graph; see Fig. 11.1.

For clarity of exposition we will start with the separate treatment of mass–damper
and mass–spring systems, and then combine the two.

A mass–damper system is associated to a graph G with n vertices (masses), k
edges (dampers), and incidence matrix B. Throughout2 we consider the situation
that the masses are located in one-dimensional spaceR. This leads to the total vector
p ∈ R

n of the scalar momenta of all n masses. Assuming that the dampers are linear,
it can be verified that the dynamics is compactly represented as

1See for a further discussion [24].
2The setup can be easily extended (i.e., by using Kronecker products) to the situation that the scalar
variable xi is replaced by a vector in some higher dimensional physical space, e.g., R3; see the
remarks later on.
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ṗ = −B RBT M−1 p + Eu, p ∈ R
n, u ∈ R

m

y = ET M−1 p,
(11.1)

where R is the k × k positive semi-definite diagonal matrix of damper coefficients,
and M is the positive diagonal matrix ofmass parameters. Furthermore, E is an n×m
matrix, with i th column containing exactly one+1 element at the row corresponding
to the boundary vertex where the input (external force) ui takes place; all other
elements being zero. As outputs we have chosen the corresponding velocities of
the boundary vertices. Identifying the kinetic energy H : R

n → R as H(p) =
1
2 pT M−1 p it follows that

d

dt
H(p) = −pT M−1BRBT M−1 p + yT u � yT u,

showing passivity of the mass–damper system, since the Laplacian matrix L :=
BRBT is positive semi-definite.

Remark 11.1 Note that the dynamics of a mass–damper system with unit masses, in
the absence of external forces, is given by ṗ = −Lp, which is the standard symmetric
continuous-time consensus dynamics on an undirected graph.

In case ofmass–spring systemswe associate to the i th spring an elongationqi ∈ R,
leading to the total vector q ∈ R

k of elongations of all k springs. Furthermore, the
definition of the Hamiltonian extends to H : Rk × R

n → R given as the sum of a
potential and kinetic energy

H(q, p) = 1

2
qT K q + 1

2
pT M−1 p, (11.2)

where the kinetic energy 1
2 pT M−1 p is defined as before, and the potential energy

1
2qT K q is equal to the sum of the potential energies of the k springs, with K the
k × k diagonal matrix of spring constants. In the absence of inputs and outputs the
dynamics of the mass–spring system is then described as the Hamiltonian system

[
q̇
ṗ

]

=
[

0 BT

−B 0

] [
∂ H
∂q (q, p)
∂ H
∂p (q, p)

]

(11.3)

defined with respect to the Poisson structure on the state spaceRk ×R
n given by the

skew-symmetric matrix

J :=
[

0 BT

−B 0

]

. (11.4)

Remark 11.2 Note the fundamental difference with the standard setup of multiagent
systems on graphs, in which case state variables are only associated to the vertices of
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the graph. In the above formulation of mass–spring systems part of the state variables
(namely q) are associated to the edges.

The inclusion of boundary vertices, and thereby of external interaction, can be
done in different ways. The first option is to associate boundary masses to the bound-
ary vertices. We are then led to the system

q̇ = BT ∂ H

∂p
(q, p),

ṗ = −B
∂ H

∂q
(q, p) + Eu,

y = ET ∂ H

∂p
(q, p).

(11.5)

Here E is defined as before, while the inputs u are the external forces exerted (by the
environment) on the boundary masses, and the outputs y are the velocities of these
boundary masses.

Another possibility is to regard the boundary vertices as being massless. In this
case we obtain the system (with p now denoting the vector of momenta of the masses
associated to all vertices except for the boundary vertices)

q̇ = BT
i

∂ H

∂p
(q, p) + BT

b u,

ṗ = −Bi
∂ H

∂q
(q, p),

y = Bb
∂ H

∂q
(q, p),

(11.6)

with u the velocities of the massless boundary vertices, and y the forces at the
boundary vertices as experienced by the environment. Here we have split the inci-

dencematrix as B =
[

Bi

Bb

]

, with Bb the rows corresponding to the boundary vertices,

and Bi the rows corresponding to the remaining internal vertices. Note that in this
case the velocities u of the boundary vertices can be considered to be inputs to the
system and the forces y to be outputs; in contrast to the previously considered case
(boundary vertices corresponding to boundary masses), where the forces are inputs
and the velocities the outputs of the system. In both cases we derive the energy
balance d

dt H(p) = yT u, showing that the system is lossless [19, 22].

Remark 11.3 In the above treatmentwe have considered springswith arbitrary elon-
gation vectors q ∈ R

k . Often the vector q of elongations is given as q = BT qc, where
qc ∈ R

n denotes the vector of positions of the masses at the vertices. Hence in this
case q ∈ im BT ⊂ R

k . Note that the subspace im BT ×R
n ⊂ R

k ×R
n is an invariant

subspace, both with regard to the dynamics (11.5) or (11.6). See [24] for the precise
connection between these two formulations, in terms of reduction by symmetry.
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Finally, for a mass–spring–damper system the edges will correspond partly to
springs, and partly to dampers. Thus a mass–spring–damper system is described
by a graph G (V ,Es ∪ Ed), where the vertices in V correspond to the masses, the
edges in Es to the springs, and the edges in Ed to the dampers of the system. This
corresponds to an incidence matrix B = [

Bs Bd
]
, where the columns of Bs reflect

the spring edges and the columns of Bd the damper edges. For the case without
boundary vertices the dynamics of such a mass–spring–damper system with linear
dampers takes the form

[
q̇
ṗ

]

=
[

0 BT
s

−Bs −Bd RBT
d

]
⎡

⎢
⎣

∂ H

∂q
(q, p)

∂ H

∂p
(q, p)

⎤

⎥
⎦ (11.7)

In the presence of boundary vertices wemay distinguish, as above, between massless
boundary vertices, with inputs u being the boundary velocities and outputs y the
boundary (reaction) forces, and boundary masses, in which case the inputs u are the
external forces and the outputs y the velocities of the boundary masses. In both cases
we obtain

d

dt
H(p) = −∂T H

∂p
(q, p)Bd RBT

d
∂ H

∂p
(q, p) + yT u � yT u,

showing passivity.

11.2.2 Abstraction and Port-Hamiltonian Formulation

Before moving on to other examples of physical network system we will first intro-
duce some abstractions which directly lead to a general port-Hamiltonian formula-
tion, and are also important for the model reduction approach taken later.

The state space Rn of a mass–damper system can be more abstractly defined as
follows; cf. [24] for further information. It is given by the linear space Λ0 of all
functions from the vertex set V to R. Obviously, Λ0 can be identified with R

n .
The matrix M−1 defines an inner product on Λ0. As a consequence, any vector
M−1 p, p ∈ Λ0, can be considered to be an element of the dual space of Λ0, which
is denoted by Λ0. For a mass–damper system, v := M−1 p is the vector of velocities
of the n masses. It follows that the system (11.1) can be represented in the state vector
v := M−1 p ∈ Λ0 as

v̇ = −M−1B RBT v + M−1Eu, v ∈ Λ0 = R
n, (11.8)

or equivalently in the gradient system representation (with M defining an inner
product on the space Λ0)
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Mv̇ = −B RBT v + Eu, v ∈ Λ0 = R
n, u ∈ R

m (11.9)

Furthermore, the edge space Rk can be defined more abstractly as the linear space
Λ1 of functions from the edge set E to R, with dual space denoted by Λ1. It follows
that the incidence matrix B defines a linear map (denoted by the same symbol)
B : Λ1 → Λ0 with adjoint map BT : Λ0 → Λ1. Furthermore, R can be considered
to define an inner product on Λ1, or equivalently, a map R : Λ1 → Λ1.

For mass–spring systems we notice that q ∈ Λ1, and that K defines an inner
product on Λ1, or equivalently, a map K : Λ1 → Λ1 mapping the elongation vector
q ∈ Λ1 to the vector of spring forces K q ∈ Λ1

Using these abstractions it is straightforward to extend the mass–spring–damper
dynamics to other spatial domains than just the one-dimensional domain R. Indeed,
for any linear space R we can define Λ0 as the set of functions from V to R, and
Λ1 as the set of functions from E to R. In this case we can identify Λ0 with the
tensor product Rn ⊗ R and Λ1 with the tensor product Rk ⊗ R. Furthermore, the
incidence matrix B defines a linear map B ⊗ I : Λ1 → Λ0, where I is the identity
map onR. In matrix notation B ⊗ I equals the Kronecker product of the incidence
matrix B and the identity matrix I . For R = R

3 this will describe the motion of
mass–spring–damper systems in R3.

An especially interesting generalization are multibody-systems in R
3, in which

case R = se(3) (the Lie algebra corresponding to the special Euclidean group in
R
3); see [24] for further information.
Furthermore, these abstractions naturally lead to a port-Hamiltonian formulation,

see, e.g., [19, 22, 23]. Note that in the case of a mass–spring system the Poisson
structure

J =
[

0 BT

−B 0

]

is naturally defined on the state spaceΛ1×Λ0. In order to include boundary vertices
we may distinguish, as above, between massless boundary vertices and boundary
masses, leading to the definition of two canonical Dirac structures, cf. [24] for details.

11.2.3 Hydraulic Networks

A hydraulic network can be modeled as a directed graph with edges corresponding to
pipes; see, e.g., [6]. The vertices may either correspond to fluid reservoirs (buffers),
or to connection points of the pipes. We concentrate on the first case; the second case
being similar to the case of electrical circuits considered later on. Let xv be the stored
fluid at vertex v and let νe be the fluid flow through edge e. Collecting all stored
fluids xv into a vector x , and all fluid flows νe into a vector ν, the mass-balance is
summarized as

ẋ = Bν, (11.10)



206 A. van der Schaft

with B denoting the incidence matrix of the graph. In the absence of fluid reservoirs
this reduces to Kirchhoff’s current laws Bν = 0.

For incompressible fluids a standard model of the fluid flow νe through pipe e is

Jeν̇e = Pi − Pj − λe(νe), (11.11)

where Pi and Pj are the pressures at the tail, respectively, head, vertices of edge e.
Note that this captures in fact two effects; one corresponding to energy storage and
one corresponding to energy dissipation. Defining the energy variable ϕe := Jeνe

the stored energy in the pipe associated with edge e is given as 1
2Je

ϕ2
e = 1

2 Jeν
2
e .

Secondly, λe(νe) is a damping force corresponding to energy dissipation.
In the case of fluid reservoirs at the vertices the pressures Pv at each vertex v are

functions of xv, and thus, being scalar functions, are always derivable from an energy
function Pv = ∂ Hv

∂xv
(xv), v ∈ V , for some Hamiltonian Hv(xv) (e.g., gravitational

energy). The resulting dynamics (with state variables xv and ϕe) is port-Hamiltonian
with respect to the Poisson structure (11.4). The setup is immediately extended to
boundary vertices (either corresponding to controlled fluid reservoirs or direct in- or
outflows).

11.2.4 Detailed-Balanced Chemical Reaction Networks

Consider an isothermal chemical reaction network (under constant pressure) con-
sisting of r reversible reactions involving m chemical species specified by a vector
of concentrations x ∈ R

m+ := {x ∈ R
m | xi > 0, i = 1, . . . , m}. The general form

of the dynamics of the chemical reaction network (without inflows and outflows) is

ẋ = Sv(x),

with S the stoichiometric matrix, and v(x) = [
v1(x) · · · vr (x)

]T ∈ R
r the

vector of reaction rates. We assume that v(x) is given by mass action kinetics; the
most basic way of modeling reaction rates. Following [25] we will show how, under
the assumption of existence of a thermodynamic equilibrium, the dynamics of the
reaction network can be seen to be very similar to the dynamics of a (nonlinear)
mass–damper system.

In order to do so we first need to introduce some concepts and terminology. The
collection of all the different left- and right-hand sides of the reactions are called the
chemical complexes of the reaction network, or briefly, the complexes. Denoting the
number of complexes by c, the expression of the complexes in terms of the chemical
species concentration vector x ∈ R

m+ is formalized by them×c complex composition
matrix Z , whose ρth column captures the expression of the ρth complex in the m
chemical species. Note that by definition all elements of thematrix Z are nonnegative
integers.
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The complexes can be naturally associated with the vertices of a directed graph,
with edges corresponding to the reversible reactions. The complex on the left-hand
side of each reaction is called the substrate complex, and the one on the right-hand
side the product complex. Formally, the reversible reaction σ � π between the
substrateσ and the productπ defines a directed edgewith tail vertexσ andheadvertex
π . The resulting directed graph is called the complex graph, and is characterized by
its c × r incidence matrix B. It is readily verified that the stoichiometric matrix S of
the chemical reaction network is given as S = Z B.

Mass action kinetics for the reaction rate vector v(x) ∈ R
r is defined as follows.

Consider first, as an example, the single reaction

X1 + 2X2 � X3,

involving the three chemical species X1, X2, X3 with concentrations x1, x2, x3. It is
a combination of the forward reaction X1 + 2X2 ⇀ X3 with forward rate equation
v+
1 (x1, x2) = k+x1x22 and the reverse reaction X1 + 2X2 ↽ X3, with rate equation

v−(x3) = k−x3. The constants k+, k− are called, respectively, the forward and the
reverse reaction constants. The net reaction rate is thus

v(x1, x2, x3) = v+(x1, x2) − v−(x3) = k+x1x22 − k−x3.

In general, the mass action reaction rate of the j th reaction of a chemical reaction
network, from the substrate complex σ j to the product complex π j , is given as

v j (x) = k+
j

m∏

i=1

x
Ziσ j
i − k−

j

m∏

i=1

x
Ziπ j
i , (11.12)

where Ziρ is the (i, ρ)th element of the matrix Z , and k+
j , k−

j � 0 are the for-
ward/reverse reaction constants of the j th reaction, respectively.

Equation (11.12) can be rewritten in the following way. Let us first introduce
some notation. Define the mapping Ln : Rn+ → R

n as the componentwise natural
logarithm. Analogously, define the mapping Exp : Rc → R

c+ as the componentwise
exponential function. Let Zσ j and Zπ j denote the columns of Z corresponding to the
substrate complex σ j and the product complex π j of the j th reaction. Then (11.12)
takes the form

v j (x) = k+
j exp

(
Z T

σ j
Ln(x)

) − k−
j exp

(
Z T

π j
Ln(x)

)
. (11.13)

Avector of concentrations x∗ ∈ R
m+ is called a thermodynamic equilibrium if v(x∗) =

0. A chemical reaction network ẋ = Sv(x) is called detailed-balanced if it admits
a thermodynamic equilibrium x∗ ∈ R

m+. Necessary and sufficient conditions for the
existence of a thermodynamic equilibrium are usually referred to as the Wegscheider
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conditions, generalizing the classical results of [28]; see, e.g., [8, 25]. These imply
that once a thermodynamic equilibrium x∗ is given, the set of all thermodynamic
equilibria is given by

E := {x∗∗ ∈ R
m+ | STLn

(
x∗∗) = STLn

(
x∗)} (11.14)

Let now x∗ ∈ R
m+ be a thermodynamic equilibrium. Define the “conductance”

κ j (x∗) > 0 of the j th reaction as the common value of the forward and reverse
reaction rate at thermodynamic equilibrium x∗, i.e.,

κ j (x∗) := k+
j exp

(
Z T

σ j
Ln (x∗)

)
= k−

j exp
(

Z T
π j
Ln (x∗)

)
, (11.15)

for j = 1, . . . , r . Then the mass action reaction rate (11.13) of the j th reaction can
be rewritten as

v j (x) = κ j (x∗)
[
exp

(
Z T

σ j
Ln

( x

x∗
))

− exp
(

Z T
π j
Ln

( x

x∗
))]

,

where for any vectors x, z ∈ R
m the quotient vector x

z ∈ R
m is defined elementwise.

Defining the r × r diagonal matrix of conductances as

K := diag
(
κ1(x∗), . . . , κr (x∗)

)
, (11.16)

it follows that themass action reaction rate vector v(x) of a balanced reaction network
equals

v(x) = −K BTExp
(

Z TLn
( x

x∗
))

,

and thus the dynamics of a balanced reaction network takes the form

ẋ = −Z BK BTExp
(

Z TLn
( x

x∗
))

, K > 0. (11.17)

The matrix L := BK BT in (11.17) defines a weighted Laplacian matrix for the
complex graph, with weights3 given by the conductances κ1(x∗), . . . , κr (x∗).

The system (11.17) defines a nonlinear version of the mass–damper system con-
sidered before. Indeed, define the Hamiltonian (up to a constant the Gibbs’ free
energy, cf. [25]) as the function

G(x) = xTLn
( x

x∗
)

+ (
x∗ − x

)T
1m, (11.18)

3Note that K , and therefore the Laplacian matrix L = BK BT , is dependent on the choice of
the thermodynamic equilibrium x∗. However, this dependence is minor: for a connected complex
graph the matrix K is, up to a positive multiplicative factor, independent of the choice of x∗ [25].
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where 1m denotes a vector of dimension m with all ones. It is immediately checked
that ∂G

∂x (x) = Ln
( x

x∗
) = μ(x), where μ is (up to a constant) the vector of chemical

potentials. Then by considering the auxiliary port-Hamiltonian system

ẋ = Zu R,

yR = Z T ∂G

∂x
(x),

(11.19)

with inputs u R ∈ R
c and outputs yR ∈ R

c, together with the nonlinear damping
relation

u R = −BK BTExp (yR). (11.20)

we recover the mass action reaction dynamics (11.17). Furthermore, by using the
properties of the Laplacian matrix L = BK BT and the fact that the exponential
function is strictly increasing, it can be shown that [25]

γ T BK BTExp (γ ) � 0 for all γ, (11.21)

with equality if and only if BT γ = 0. Hence (11.20) defines a true energy-dissipating
relation, that is, yT

R u R � 0 for all yR ∈ R
c and u R ∈ R

c satisfying (11.20). Therefore
the mass action kinetics detailed-balanced chemical reaction network is a nonlinear
port-Hamiltonian system,which can be regarded as a nonlinearmass–damper system,
with Laplacian matrix L = BK BT , and with non-quadratic Hamiltonian G and
nonlinear dampers (11.20).

The consequences of thiswayof representing detailed-balancedmass action kinet-
ics reaction networks for their analysis are explored in [25]. In particular, it follows
that all equilibria are in fact thermodynamic equilibria, and a Lyapunov analysis
using the Gibbs’ free energy shows that starting from any initial state in the positive
orthant the system will converge to a unique thermodynamic equilibrium (at least
under the assumption of persistence of the reaction network: the vector of concen-
trations does not approach the boundary of the positive orthant Rm+), cf. [25] for
details.4

11.2.5 Swing Equations for Power Grids

Consider a power grid consisting of n buses corresponding to the vertices of a graph,
and transmission lines corresponding to its edges. A standardmodel for the dynamics
of the i th bus is given by (see, e.g., [4, 12])

4For an extension of these results to complex-balanced mass action kinetics reaction networks we
refer to [15].
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δ̇i = ωb
i − ωr , i = 1, . . . , n,

Mi ω̇i = −ai (ω
b
i − ωr ) −

∑

j �=i

Vi Vj Sij sin(δi − δ j ) + ui ,

where the summation in the last line is over all buses j which are adjacent to bus i ;
that is, all buses j that are directly linked to bus i by a transmission line. Here ωr

is the nominal (reference) frequency for the network, δi denotes the voltage angle,
Vi the voltage amplitude, ωb

i the frequency, ωi := ωb
i − ωr the frequency deviation,

and ui the power generation/consumption; all at bus i . Furthermore, Mi and ai are
inertia and damping constants at bus i , and Sij is the transfer susceptance of the line
between bus i and j .

Define zk := δi − δ j and ck := Ei E j Sij, if the kth edge is pointing from vertex
i to vertex j . Furthermore, define the momenta pi = Miωi , i = 1, . . . , n. Then the
equations can be written in the vector form

ż = BT M−1 p,

ṗ = −AM−1 p − BC Sin z + u,

where z is the m-vector with components zk , M is the diagonal matrix with diagonal
elements Mi , A is the diagonalmatrixwith diagonal elementsai , andC is the diagonal
matrix with elements ck . Furthermore, Sin : Rm → R

m denotes the elementwise
sin function. Defining the Hamiltonian H(z, p) as

H(z, p) = 1

2
pT M−1 p − 1T C Cos z, (11.22)

with Cos : Rm → R
m the elementwise cos function, the equations take the port-

Hamiltonian form

[
ż
ṗ

]

=
[

0 BT

−B −A

]
⎡

⎢
⎣

∂ H

∂z
(z, p)

∂ H

∂p
(z, p)

⎤

⎥
⎦ +

[
0
I

]

u. (11.23)

The Hamiltonian H(z, p) is of the standard “kinetic energy plus potential energy”
form, with potential energy −1T C Cos z = −∑

ck cos zk (similar to the gravi-
tational energy of a pendulum). Note that, as in the mass–spring(–damper) system
example, the potential energy is associated to the edges of the graph, while the kinetic
energy is associated to its vertices. A difference with the mass–spring–damper sys-
tem example considered before is that in the current example the “damping torques”
A ∂ H

∂p (z, p) are associated to the vertices, instead of to the edges.
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11.2.6 Electrical RLC Circuits

In the case of electrical RLC circuits the R, L and C-elements are all attached to the
edges of the circuit graph; there is no energy storage or dissipation associated with
the vertices. This corresponds to Kirchhoff’s current laws, expressed as

BI = 0,

where B is the incidence matrix of the circuit graph, and I ∈ R
k is the vector

of currents through the k edges of the circuit graph. As detailed in [24] an RLC
network again determines a port-Hamiltonian system, but nowwith respect to aDirac
structurewhich takes into account the constraints imposed byKirchhoff’s current and
voltage laws, and is only defined with respect to the currents and voltages through,
respectively, across, the edges of the circuit graph.

On top ofKirchhoff’s laws, the dynamics is defined by the energy storage relations
corresponding to either capacitors or inductors, and dissipative relations correspond-
ing to resistors. The energy-storing relations for a capacitor at edge e are given by

Q̇e = −Ie, Ve = dHCe

dQe
(Qe), (11.24)

with Qe the charge, and HCe(Qe) denoting the electric energy stored in the capacitor.
Alternatively, in the case of an inductor one specifies the magnetic energy HLe(�e),
where �e is the magnetic flux linkage, together with the dynamic relations

�̇e = Ve, −Ie = dHLe

d�e
(�e). (11.25)

Finally, a resistor at edge e corresponds to a static relation between the current Ie

through and the voltage Ve across this edge, such that Ve Ie � 0. In particular, a linear
(ohmic) resistor at edge e is specified by a relation Ve = −Re Ie, with Re � 0. See
[24] for the resulting differential-algebraic description of an RLC circuit.

11.3 Structure-Preserving Model Reduction by Clustering

The problem of structure-preserving model reduction of physical network systems
is as follows. Given a large-scale physical network system of a certain type (e.g.,
a mass–spring–damper system). How to find to a physical network system of the
same type (again a mass–spring–damper system), but of lesser complexity, which
is offering a “suitable” approximation of the system? The approach discussed in
this section is to consider reduction of the physical network system by clustering
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of the vertices, so as to obtain a graph with fewer vertices [21]. This idea is quite
natural, and appears, e.g., in [10, 11, 18], and in the context of symmetric consensus
dynamics in [13].

Consider a partition of the vertex set V of the graph G into n̂ disjoint cells
C1, C2, . . . , Cn̂ , together with a corresponding n × n̂ characteristic matrix P . The
columns of P equal the characteristic vectors of the cells; the characteristic vector of
a cell Ci being defined as the vector with 1 at the place of every vertex contained in
the cellCi , and 0 elsewhere.With some abuse of notation wewill denote the partition
simply by its characteristic matrix P . We will first consider the case of mass–damper
systems.

11.3.1 Mass–Damper Systems

Based on a partition P we reduce the mass–damper system (11.1) to

˙̂p = −(PT B RBT P)(PT M P)−1 p̂ + PT Eu (11.26)

where p̂ := PT p ∈ R
n̂ is the clustered state vector.

We observe that this is again a system of the form (11.1). In fact, the matrix PT B
consists of column vectors containing exactly one +1 and one −1 together with
some zero vectors (corresponding to edges which link vertices within a same cell).
By leaving out the zero column vectors from PT B we thus obtain an n̂ × k̂ matrix
B̂, which is the incidence matrix of the reduced graph Ĝ with vertices being the
cells of the original graph, and with edges the union of all the edges between vertices
in different cells (leaving out edges within cells). Correspondingly, we define R̂ as
the k̂ × k̂ diagonal matrix obtained from R by leaving out the rows and columns
corresponding to edges between vertices in a same cell. Finally, we define the n̂ × n̂
diagonal matrix M̂ := PT M P , and Ê := PT E . It follows that the reduced system
(11.26) is given as ˙̂p = −B̂ R̂ B̂T M̂−1 p̂ + Êu, p̂ ∈ R

n̂ (11.27)

The i th component of p̂ denotes the total momentum of the masses contained in cell
Ci , while the i th diagonal element of M̂ is the total mass of the mass contained in
cell Ci . The velocities of the clustered masses of cells C1, . . . , Cn̂ (all masses within
a cell rigidly interconnected, and leaving out intermediate dampers) will converge to
a common value. Note that the velocity vi of cell Ci is defined as vi = ∑

p j/
∑

m j ,

with the summation ranging over the indices of the vertices in cell Ci .

Remark 11.4 The reduced system (11.27)will easily containmultiple edges between
its vertices, that is, between the cells of the original system (11.1). If desirable,
multiple edges between two vertices can be combined into a single edge with weight
r given by the sum of the weights of the multiple edges.
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The main difference with the reduced model proposed in [13] for symmetric con-
sensus dynamics is that in the latter paper the case M = I (n × n identity matrix)
is considered (corresponding to the standard continuous-time consensus algorithm),
while moreover the reduced system is required to have M̂ = I (n̂ × n̂ identity
matrix). This is done at the expense of having a weighted Laplacian matrix which is
not anymore symmetric, and therefore not anymore of the form B̂ R̂ B̂T .

Remark 11.5 A Petrov–Galerkin interpretation of the reduced model (11.26) can be
given as follows. Recall that a Petrov–Galerkin reduction of a linear set of differential
equations ẋ = Ax is given as ˙̂x = W T AV x̂ , where V and W are matrices of
dimension n × n̂ such that W T V = In̂ . Now the reduced system (11.26) is a Petrov–
Galerkin reduction of (11.1) with W := P , and

V := MPM̂−1 = MP(PT MP)−1 (11.28)

It follows that W T V = In̂ . Note furthermore that the matrix V = MPM̂−1 defined in
(11.28) equals the Moore–Penrose pseudo-inverse of the clustering map x̂ = PT x ,
with respect to the inner products M−1 on the space of full-order state vectors x ∈ R

n

and M̂−1 on the space of reduced state vectors x̂ ∈ R
n̂ . Furthermore, we note that

V T M−1V = M̂−1, while also W T MW = M̂ , implying orthogonality of V and W
with respect to the inner products defined by M−1 and M respectively. Using the
abstractions introduced earlier on we note that the linear maps V and W are actually
defined as maps V : Λ̂0 → Λ0, W : Λ̂0 → Λ0, where Λ̂0 is the vertex space of
the reduced graph, with dual space Λ̂0. Moreover, note that M : Λ0 → Λ0 and
M̂ : Λ̂0 → Λ̂0.

Of course, from a model reduction point of view the most important question is
how to choose the partition P in such a way that the reduced (clustered) physical
network system is a good approximation of the original one, where “good approxi-
mation” very much depends on what needs to be approximated. In [14], continuing
on [13], an explicit H2 error expressionwas derived for a partition P with very special
properties, namely a (generalized) almost equitable partition. From a linear algebraic
point of view such partitions P are characterized (for mass–damper systems) by the
property

BRBT im P ⊂ M im P,

cf. [14] for the graph-theoretic definition. Take as output the velocity differences
across all the edges, i.e.,

y = R
1
2 BT M−1x = R

1
2 BT v (11.29)

Then an explicit expression for the H2 error between the transfer matrix G of the
full-order system and Ĝ of the reduced-order system is
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‖G − Ĝ‖22 = 1

2

∑

i∈Vb

(
1

mi
− 1

Mî

)

, (11.30)

where Vb is the set of boundary vertices, and Mî the sum of the masses belonging
to the same cell as i . In particular, if the cells containing the boundary vertices are
singletons, then Mî = mi , i ∈ Vb, and thus the H2 error is zero. More generally,
if the non-boundary masses in the cells containing the boundary masses are small
compared to the boundary masses, then the error is also small.

The method can be straightforwardly extended from linear systems (11.1) to
nonlinear systems of the form

ṗ = −BR

(

BT ∂ H

∂p
(p)

)

+ Eu, p ∈ R
n, u ∈ R

m, (11.31)

where H : Rn → R is any Hamiltonian function, and R : Rk → R
k is a nonlinear

damping characteristic. Note that (11.1) is a special case of (11.31) with H(p) =
1
2 pT M−1 p, andR given by the linear map R. Examples of (11.31) are mass–damper
systems with nonlinear dampers and nonlinear hydraulic networks (with nonlinear
pressure functions).

Given a partition P of the underlying graph G we reduce the system (11.31) to

˙̂p = −PT BR

(

BT P
∂ Ĥ

∂ p̂
( p̂)

)

+ PT Eu (11.32)

where p̂ := PT p ∈ R
n̂ is the clustered state vector, and where the reduced

Hamiltonian function Ĥ : Rn̂ → R is defined as follows. Consider a Hamiltonian
H : Λ0 = R

n → R for which the Legendre transform H∗ : Λ0 = R
n → R is well

defined. (In particular, if H is convex then H∗ is the convex conjugate H∗(p∗) :=
supp

[
pT p∗ − H(p)

]
.) Then define the reduced function Ĥ∗ : Λ̂0 = R

n̂ → R as

Ĥ∗( p̂∗) = H∗(P p̂∗)

Finally, define Ĥ : Λ̂0 = R
n̂ → R as the Legendre transform of Ĥ∗. It is easily

checked that for H(p) = 1
2 pT M−1 p the function Ĥ defined above is given as

Ĥ( p̂) = 1
2 p̂T (PT M P)−1 p̂, thus generalizing the linear case considered before.

11.3.2 Mass–Spring–Damper Systems

Consider as before the physical network system corresponding to a mass–spring–
damper system



11 Physical Network Systems and Model Reduction 215

[
q̇
ṗ

]

=
[

0 BT
s

−Bs −Bd RBT
d

] [
K q

M−1 p

]

, (11.33)

Where p ∈ R
n is the vector of momenta associated to the vertices of the graph, and

q ∈ R
k is the vector of spring elongations associated to the k edges of the graph.

As before, the matrix M is a positive diagonal matrix and R is a positive semi-
definite diagonal matrix. Similarly, K is a positive semi-definite diagonal matrix.
Furthermore, the total energy is given as H(q, p) = 1

2 pT M−1 p + 1
2qT K q.

Let now P be a partition matrix. Then we define a reduced model for (11.33) as

[ ˙̂q
˙̂p
]

=
[

0 B̂T
s

−B̂s −B̂d R̂ B̂T
d

] [
K̂ q̂

M̂−1 p

]

, (11.34)

where the reduced incidence matrices B̂s and B̂d are defined as PT Bs , respectively,
PT Bd , with zero columns deleted. Furthermore, the elements of q̂ correspond to
the edges which survive in the reduced model. Obviously, (11.34) is again a mass–
spring–damper system (which results from assuming that the masses in each cell
move at the same velocity without dampers and springs to each other).

11.4 Structure-Preserving Model Reduction
by Kron Reduction

Another approach to structure-preserving model reduction, somewhat complemen-
tary to the approach using clustering, is based on Kron reduction [7]. Kron reduction
originates in electrical circuit and power network theory, and in its simplest form
allows to eliminate internal vertices in a resistive electrical network, and to produce
another resistive network which is equivalent to the original network from the point
of view of the remaining vertices [7, 20]. Applied to physical network systems it
means that the time derivatives of the storage variables at a subset of the vertices
are set equal to zero, which amounts to the time-separation assumption that the state
variables corresponding to these vertices will reach their steady state values much
faster than at the other vertices.

11.4.1 Mass–Damper Systems

Consider a mass–damper system as before, cf. (11.1)

ṗ = −B RBT M−1 p + Eu, p ∈ R
n, u ∈ R

m

y = ET M−1 p,
(11.35)
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Suppose one can split the vector of momenta p into a sub-vector ps of slow variables
and a sub-vector pf of fast variables (we will comment on the interpretation of this
later on), i.e.,

p =
[

ps

pf

]

, ps ∈ R
ns , pf ∈ R

n f , ns + n f = n

Denote the corresponding diagonal subblocks of M by Ms and Mf and of E by Es

and Ef , and split the incidence matrix as

B =
[

Bs

B f

]

leading to

[
ṗs

ṗ f

]

= −
[

Bs RBT
s Bs RBT

f
B f RBT

s B f RBT
f

] [
M−1

s 0
0 M−1

f

] [
ps

pf

]

+
[

Es

Ef

]

u

y =
[

ET
s ET

f

] [
M−1

s 0
0 M−1

f

] [
ps

pf

] (11.36)

Now assume that pf will reach its steady state value much faster than ps , in the sense
that in the timescale of the dynamics of the “slow” variables ps the “fast” variables
pf will always be at their steady state value corresponding to

0 = ṗ f = −B f RBT
s M−1

s ps − B f RBT
f M−1

f pf + Efu

Solving for M−1
f pf then leads to the reduced system in the slow variables

ṗs = −
(

Bs RBT
s − Bs RBT

f (B f RBT
f )−1Bs RBT

f

)
M−1

s ps + Êu

y = ÊT M−1
s ps

(11.37)

where Ê := Es + Bs RBT
f (B f RBT

f )−1Ef . (Note that we make here the assumption
that the “fast” vertices do not form a connected component of the graph, implying
that the sub-matrix B f RBT

f of the Laplacian matrix is invertible; see, e.g., [20].)

The matrix Bs RBT
s − Bs RBT

f (B f RBT
f )−1Bs RBT

f is a Schur complement of the

Laplacian matrix B RBT . As such it is again [7, 20] a weighted Laplacian matrix,
that is

Bs RBT
s − Bs RBT

f (B f RBT
f )−1Bs RBT

f = B̂ R̂ B̂T ,

where B̂ is the incidence matrix of a reduced graph with vertex set the set of “slow”
vertices, i.e., the vertices corresponding to the slow state variables xs . The edge set
of this reduced graph may be quite different from the edge set of the original graph;
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in particular, new edges may arise between the slow vertices. Furthermore, R̂ is a
diagonal matrix defining the (new) weights.

Crucial questions from an approximation point of view are how to separate into
slow and fast vertices, and what can be said about the approximation properties of
the reduced system. From an eigenvalue point of view the light masses are candidates
for fast vertices, because the convergence of their momenta to steady state will be
fast compared to the heavy masses (assuming that the variation of damping constants
in the network is not too large).

Another question concerns the extension of the Kron reduction approach tomass–
spring–damper systems, also in connection with related work on model reduction of
power networks known under the name of slow-coherency theory [3, 5, 17].

11.4.2 Detailed-Balanced Chemical Reaction Networks

Structure-preserving model reduction of chemical reaction networks based on Kron
reduction was proposed and explored in [15, 16, 25]. Consider as before, see (11.17),
a detailed-balanced chemical reaction network

ẋ = −Z BK BTExp
(

Z TLn
( x

x∗
))

Similar to the case of mass–damper systems reduction is performed by separating the
complexes into “slow” and “fast” ones. Reorder the complexes in such a way that the
slow complexes come first. Then partition L = BK BT and Z correspondingly as

L =
[
Lss Ls f

L f s L f f

]

, Z = [
Zs Z f

]
, (11.38)

where “s” refers to the “slow” complexes, and “f” to the “fast” ones. Consider then
the auxiliary dynamical system

[
ẏs

ẏ f

]

= −
[
Lss Ls f

L f s L f f

] [
ws

w f

]

and impose the constraint ẏ f = 0. As for mass–damper systems it follows that
w f = −L −1

f f L f sws , which by substitution into the equation for ẏs leads to the
reduced dynamics

ẏs = −
(
Lss − Ls f L

−1
f f L f s

)
ws = −L̂ ws

corresponding to the Schur complement L̂ := Lss − Ls f L
−1
f f L f s = B̂ ˆK B̂T .

Substituting ws = Exp (Z T
s Ln

( x
x∗

)
), and making use of ẋ = Zs ẏs + Z f ẏ f = Zs ẏs ,

we then obtain the reduced network
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ẋ = −Ẑ B̂ ˆK B̂TExp
(

Ẑ TLn
( x

x∗
))

, ˆK > 0, (11.39)

wherewe have denoted Ẑ := Zs . This is again a detailed-balanced chemical reaction
network governed by mass action kinetics, with a reduced number of complexes and
stoichiometric matrix Ŝ := Ẑ B̂; see [16, 25] for further details.

11.5 Outlook

In this paper we have concentrated on physical network systems with symmetric
Laplacian matrices, that is, Laplacian matrices L of the form L = B RBT for some
incidence matrix B and diagonal matrix R of weights. This is often the case, as
has been illustrated on a number of examples. However, not all physical network
systems are like this. For instance, in transportation networks one will typically start
with a Laplacian matrix L which is not symmetric, and satisfies 1T L = 0, but not
L1 = 0. (In fact, for chemical reaction networks this is already the case; the detailed-
balanced form (11.17) arises from rewriting the equations; see [25, 26].) The case
of nonsymmetric Laplacian matrices will be explored in [27].
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Chapter 12
Interconnections of L 2-Behaviors: Lumped
Systems

Shiva Shankar

Abstract J.C. Willems’ fundamental work in electrical circuit theory spawns many
questions regarding energy and its transfer across ports. This paper proposes the
inverse limit of the Sobolev spaces (onR) as the appropriate space of signals in which
to address these questions. Some of the first questions are those of interconnections
of circuits in this signal space, and of the elimination of latent variables. The answers
to these questions in the setting of the Sobolev limit naturally lead to questions on
implementability and on the regularity of implementing controllers in the sense of
H.L. Trentelman and Willems.

AMS classification: 93B05

12.1 Introduction

This article is inspired by Harry Trentelman’s work on the regular implementation of
controllers [1, 2, 4, 10]. It addresses the preliminary questions of interconnections
and of elimination in the Sobolev spaces in order to be able to extend his results to
electrical circuits in the setting of Jan Willems’ paper [12].

In this chapter, Willems makes a fundamental distinction between terminals and
ports—‘terminals are for interconnection, ports are for energy transfer’. While the
trajectory of a circuit is specified by the values at various times of the voltages and
currents at the terminals (which are local objects) and determined by laws described
by differential equations (i.e., by laws local in time), the notions of energy and
its transfer require a global description of signals (i.e., nonlocal in time), and global
objects thatWillems designates as ports. This chapter adopts the classical description
of energy as the integral of a quadratic form, and suggests that the correct signal space
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to study the behavior of circuits are the L 2-Sobolev spaces. Thus, we assume that
the signals, namely the voltages and currents that occur in the circuit, as well as
all their derivatives, are L 2 functions. This assumption locates these signals in the
inverse limit of the Sobolev spaces.

The programme is to now study the behavior of circuits in the Sobolev limit,
i.e., to determine the achievable behavior of circuits, to define interconnections, to
determine whether controllers admit regular implementations, to address issues of
causality and to determine whether a behavior is realizable, etc. in this signal space.
The answers will depend on this choice of signal space, as did the answers when the
choice was the space D of compactly supported smooth functions instead of C∞
[4]. The case of the Sobolev limit is similar to the case of D in many respects, but
there are also differences which are highlighted below.

This chapter confines itself to only a few of the above questions that have been
influenced by the work of Trentelman. It also hopes to extend the general framework
established by Willems in his study of the behavior of electrical circuits.

12.2 Preliminaries

As explained above, energy considerations require the signals in an electric circuit
to be L 2 functions. The space L 2(R) is not a module over the ring of differential
operators, hence to formulate circuit theory in the algebraic language of behaviors,
we need to consider a suitable subspace of it (or a suitable embedding). For the
purposes of this chapter we choose the inverse limit of the Sobolev spaces [8] to
locate signals; this means that the signals and all their derivatives (a priori, in the
distributional sense) are in L 2.

Let A := C[ d
dt ] be the ring of ordinary differential operators. For every s in R,

the Sobolev spaceH s(R) of order s is the space of tempered distributions f whose
Fourier transform f̂ is a measurable function such that

‖ f ‖s = ( 1

2π

∫

R

| f̂ (ξ)|2(1 + |ξ |2)sdξ
) 1
2 < ∞

H s is a Hilbert space with norm ‖ ‖s . When s > t , H s ↪→ H t is a continuous
inclusion. If p( d

dt ) is an element of A of order r , then it maps H s into H s−r .
Consider, the family {H s, s ∈ R} a decreasing family of vector spaces, its inverse

limit
←−
H = lim←−H s is isomorphic to the intersection

⋂
s∈RH s of the Sobolev

spaces, and is an A -module. This intersection contains the Schwartz space S of
rapidly decreasing functions but is strictly larger than it. AsN is cofinal inR, this limit
is also the inverse limit of the countable family {H s, s = 0, 1, 2 . . .}. Further, if
eachH s is given its Hilbert space topology, then the intersection

←−
H with the inverse

limit topology, which is the weakest topology such that each inclusion
←−
H ↪→ H s

is continuous, is a Fréchet space.
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By the Sobolev Embedding Theorem [3], the signals in
←−
H are smooth functions,

and hence, the derivatives of an element in it are derivatives in the classical sense.
Following Willems [11, 12], we consider the signals of interest that do occur -

currents, voltages, energy etc.—to be constrained by the laws governing the circuit,
such asKVL,KCL, aswell as those determined by various circuit elements. These are
laws local in time, given bydifferential operators. Thus,we study systems represented
by kernels of operators defined by differential equations:

P( d
dt ) : ←−

H
k −→ ←−

H
�

f = ( f1, . . . , fk) �→ P( d
dt ) f

(12.1)

where P( d
dt ) is an �×k matrix whose entries pi j (

d
dt ) are from the ringA . This kernel

depends only on the submoduleP ofA k generated by the rows of the matrix P( d
dt ),

it being isomorphic to HomA (A k/P,
←−
H ). It is the behavior of the submoduleP

in
←−
H , and will be denoted B←−

H
(P).

The Fourier transform translates the kernel of (12.1) to the kernel B←̂−
H

(Pξ ) of

the map

P(ξ) : ←̂−
H

k
−→ ←̂−

H
�

f̂ = ( f̂1, . . . , f̂k) �→ P(ξ) f̂

where
←̂−
H , the set of Fourier transforms of elements in

←−
H , has the structure of an

Aξ := C[ξ ]-module given by multiplication pij(ξ) f̂ j (ξ), the translate of differenti-

ation pij(
d
dt ) f j (t) in

←−
H , and where Pξ is the submodule of A k

ξ generated by the

rows of the matrix P(ξ)—it equals P̂ , the polynomials corresponding to all the dif-
ferential operators inP under Fourier transformation. ThusB←̂−

H
(Pξ ) = B̂←−

H
(P).

This is the behavioral framework in which the questions of controllability, real-
izability, interconnections, and of regularity of controllers are best addressed. There
is ,however, a representation issue that must be first answered, namely that different

submodules ofA k determine the same behavior in the Sobolev limit
←−
H . This is the

Nullstellensatz question of [5], and we turn to it next.

Given, a behavior B←−
H

(P) defined by P( d
dt ) : ←−

H
k → ←−

H
�
(where the rows

of P( d
dt ) generate the submodule P of A k), consider the submodule P of A k of

all elements p( d
dt ) such that the kernel of the map p( d

dt ) : ←−
H

k → ←−
H contains

B←−
H

(P). This submodule P , called the (Willems) closure of P with respect to
←−
H , is the largest submodule of A k whose behavior is B←−

H
(P).

Proposition 12.2.1 Let P be a submodule of A k . Its closure P with respect to the

Sobolev limit
←−
H equals {p( d

dt ) ∈ A k | a( d
dt )p( d

dt ) ∈ P, 0 �= a( d
dt ) ∈ A }, so that
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P equals its closure with respect to
←−
H if and only if A k/P is torsion free, and

hence free (as A is a principal ideal domain).

Proof The proof is identical to the proof for the calculation of the closure in S or
in D ; a similar statement and proof is valid also over the ring of partial differential
operators [5]. �

Thus, in the space
←−
H , it suffices to consider behaviors of submodules P such

that A k/P is free.
The above description of the closure implies the following corollary, just as in [7].

Corollary 12.2.1 With respect to the Sobolev limit
←−
H , P1 ∩ P2 = P1 ∩P2 (i.e.

the closure of an intersection is the intersection of the closures). �
We next consider the question of behavioral controllability [11]. It turns out that

the behavior of a lumped system in the Sobolev limit always admits an image rep-

resentation, and hence is always controllable. This is because
←−
H (R) is a flat C[ d

dt ]-
module [8].

Remark The Sobolev limit is however not faithfully flat. In this respect
←−
H (R) is

similar to the space S (R) (but not to D(R) which is also faithfully flat). These
similarities vanish when we consider these spaces on R

n, n � 2. The significant
differences now are reflected in the widely different structure of distributed behaviors
in these two spaces [8].

12.3 Interconnections

We now turn to the main problem addressed in this chapter, namely that of intercon-
nections. The behavioral analogues of the classical series and parallel interconnec-
tions of circuits are the sums and intersections of behaviors. It is always the case that
the intersection of the behaviors of P1 and P2 is the behavior of P1 + P2, but
in the Sobolev limit, the sum of these two behaviors may not be the behavior of the
intersection P1 ∩ P2, indeed it may not be a behavior at all. This is again similar
to the situation inS [7].

Example 1 Let P1 and P2 be cyclic submodules of A 2 generated by (1, 0) and
(1,− d

dt ), respectively. ThenP1 ∩ P2 is the 0 submodule, so thatB←−
H

(P1 ∩ P2)

is all of
←−
H

2
. On the other hand, B←−

H
(P1) = {(0, f ) | f ∈ ←−

H } and B←−
H

(P2) =
{( dg

dt , g) |g ∈ ←−
H }. Thus an element (u, v) in

←−
H

2
is inB←−

H
(P1) +B←−

H
(P2) only

if u = dg
dt , v = f + g, where f and g are arbitrary elements in

←−
H . Let now u

be any smooth function that decays as 1
t as t → ±∞. Then u is in

←−
H , whereas

g(t) = ∫ t
−∞ u dt , which grows as log t , is not. It follows now that (u, 0) is in

B←−
H

(P1 ∩ P2) but is however not inB←−
H

(P1) + B←−
H

(P2). �
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The question remains whether the sum of the two behaviors in the above example
could be the behavior of some nonzero submodule ofA k . That it cannot is the content
of the following proposition, again similar to the case of the signal spaces considered
in [7].

Proposition 12.3.1 Let P1, P2 be submodules of A k . Then B←−
H

(P1 ∩ P2) is
the smallest behavior containing both B←−

H
(P1) and B←−

H
(P2), and hence also the

smallest behavior containing B←−
H

(P1) + B←−
H

(P2).

Proof Suppose B←−
H

(P) contains both B←−
H

(P1) and B←−
H

(P2). Then P is

contained in both P1 and P2, and hence is also contained in P1 ∩P2, which
is by Corollary 12.2.1 equal to P1 ∩ P2. This implies that B←−

H
(P) contains

B←−
H

(P1 ∩ P2), and hence that

B←−
H

(P1 ∩ P2) = B←−
H

(P1 ∩ P2) ⊂ B←−
H

(P) = B←−
H

(P)

Thus any behavior which contains both B←−
H

(P1) and B←−
H

(P2) also contains
B←−

H
(P1 ∩ P2). �

The problem now is to locate the obstruction to the sum of two behaviors in the
Sobolev limit being a behavior, and to determine when this obstruction vanishes.

Consider the following exact sequence

0 → A k/(P1 ∩ P2)
i−→ A k/P1 ⊕ A k/P2

π−→ A k/(P1 + P2) → 0

where i([x]) = ([x], [x]), π([x], [y]) = [x − y] (here [ ] indicates the class of an
element of A k in the various quotients). It follows that

0 → HomA (A k/(P1 + P2),
←−
H ) → HomA (A k/P1,

←−
H ) ⊕ HomA (A k/P2,

←−
H )

d−→ HomA (A k/(P1 ∩ P2),
←−
H )

δ−→ Ext1A (A k/(P1 + P2),
←−
H )

−→ Ext1A (A k/P1,
←−
H ) ⊕ Ext1A (A k/P2,

←−
H ) → · · ·

is also exact, where d( f, g) = f + g. By Proposition 12.2.1, A k/P1 and A k/P2
can be chosen to be free, hence the second set of Ext terms above are 0, and the
sequence becomes the exact sequence

· · · → HomA (A k/P1,
←−
H ) ⊕ HomA (A k/P2,

←−
H )

d−→

HomA (A k/(P1 ∩ P2),
←−
H )

δ−→ Ext1A (A k/(P1 + P2),
←−
H ) → 0
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This implies that the sum of the behaviors ofP1 andP2 is the behavior ofP1∩P2
(which is to say that the morphism d above is surjective) if and only if the connecting
morphism δ is the zero morphism, and the necessary and sufficient condition for this

is that Ext1A (A k/(P1 + P2),
←−
H ) vanish.

To determine when this is so, consider the following free resolution ofA k/(P1+
P2)

0 → (P1 + P2)
i→ A k → A k/(P1 + P2) → 0

(here (P1 + P2) is finitely generated and torsion free, hence free). Applying the

functor HomA (−,
←−
H ) gives the sequence

0 → HomA (A k,
←−
H )

π→ HomA (P1 + P2,
←−
H ) → 0

and thusExt1A (A k/(P1+P2),
←−
H )vanishes exactlywhen the abovemorphismπ is

surjective. In other words, the necessary and sufficient condition now for the solution

of the problem of the sum of behaviors is that everymorphism φ : (P1+P2) → ←−
H

should lift to a morphism φ : A k → ←−
H .

Let (P1+P2)(
d
dt ) be amatrixwhose rows is a basis for the freemodule (P1+P2).

Without loss of generality assume that thismatrix is given in its Smith canonical form,
so that all the diagonal entries, namely its invariant factors, say d1(

d
dt ), . . . , dr (

d
dt ),

are nonzero (here r is the rank of (P1+P2)), and di divides d j if i � j).Amorphism

φ : (P1 +P2) → ←−
H is then given by an r -tuple of maps φi : (di (

d
dt )) → ←−

H , i =
1, . . . , r where (di (

d
dt )) is the principal ideal generated by the i th invariant factor, and

the φi in turn are given by mapping di (
d
dt ) to arbitrary fi in

←−
H (as A is a domain).

Thus, the question now is whether the maps φi lift to maps φi : A → ←−
H .

By Fourier transformation (as in the previous section), this question translates to
the following:

When does every map ψ : (d(ξ)) → ←̂−
H defined on the principal ideal generated

by d(ξ) extend to C[ξ ]?
This is now elementary, for if ψ(d(ξ)) = f̂ (ξ), then necessarily the extension

must map 1 to f̂
d (ξ), which is a priori in the space S ′ of tempered distributions on

R. For it to be in
←̂−
H it is sufficient that d(ξ) not have real zeros, as then 1

d (ξ) is

bounded on R. This condition is also necessary, for if f̂ (ξ) is nonzero at a real zero

of d(ξ), then f̂
d (ξ) is clearly not inL 2(R).

The above discussion thus proves the following theorem:

Theorem 12.3.1 LetP1,P2 be submodules ofA k . ThenB←−
H

(P1)+B←−
H

(P2) is
a behavior, necessarily equal toB←−

H
(P1∩P2), if and only if the nonzero associated

primes of A k/(P1 + P2) do not have real zeros.
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Proof In the notation of the discussion above, A k/(P1 + P2) is isomorphic to
A (k−r)

⊕r
i=1A /(di (

d
dt )); here r is the rank of the free submodule (P1 + P2) of

A k , and the di (
d
dt ) are its invariant factors. The linear factors of these di (

d
dt ) are

precisely the nonzero associated primes of A k/(P1 + P2). �

Remark This theorem provides an explanation to Example 1 above. There P1 and
P2 are cyclic submodules ofA 2 generated by (1, 0) and (1,− d

dt ), so thatA
2/(P1+

P2) is isomorphic to A /( d
dt )  Aξ /(ξ). The ideal (ξ) is an associated prime of

Aξ /(ξ) which has a real zero, namely the point 0!

Remark The set of all behaviors can be topologized as in [9]. Then for behaviors in
a Zariski open set, the sum of any two of them is also a behavior. This is because the
condition that a polynomial with complex coefficients have real zeros is a Zariski
closed condition.

12.4 Elimination

We now consider the problem of elimination of latent variables. This is patterned
after [6], and we omit many of the details.

Consider the split exact sequence

0 → A p

i1
−→
π1

←−
A p+q

π2
−→
i2

←−
A q → 0

Applying the functor HomA (−,
←−
H ) yields the split exact sequence

0 → (
←−
H )p

π1
←−
i1

−→
(
←−
H )p+q

i2
←−
π2

−→
(
←−
H )q → 0

Let P be a submodule of A p+q , so that B←−
H

(P) is a behavior in
←−
H

p+q
.

The question elimination addresses is whether π2(B←−
H

(P)) is also a behavior.

More generally, the following proposition relates theA -submodules i−1
2 (B←−

H
(P)),

π2(B←−
H

(P)), B←−
H

(i−1
2 (P)) and B←−

H
(π2(P)) of

←−
H

q
.

Proposition 12.4.1

i−1
2 (B←−

H
(P)) = B←−

H
(π2(P)) ⊂ π2(B←−

H
(P)) ⊂ B←−

H
(i−1
2 (P))
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Proof The statement is true for every A -submodule of D ′, in particular for
←−
H ;

indeed it is true also for the ring of partial differential operators [6]. �

Example 2 Let P be the cyclic submodule of A 2 generated by ( d
dt ,−1). Then

B←−
H

(P) = {( f, d f
dt ) | f ∈ ←−

H } and it is easy to see that π2(B←−
H

(P)) = { d f
dt | f ∈

←−
H } is not a differential kernel in←−

H —this also follows from the next proposition. �

Proposition 12.4.2 In the above notation, B←−
H

(i−1
2 (P)) is the smallest behavior

containing π2(B←−
H

(P)).

The proof is identical to the proof of Proposition 4.2 in [6]. �
The first split exact sequence above implies that the following sequence

0 → A q/ i−1
2 (P) −→ A p+q/P −→ A p/π1(P) → 0

is exact. Thus

0 → HomA (A p/π1(P),
←−
H )

i1→ HomA (A p+q/P,
←−
H )

π2−→

HomA (A q/ i−1
2 (P),

←−
H )

δ→ Ext1A (A p/π1(P),
←−
H )

i1→ Ext1A (A p+q/P,
←−
H ) → · · ·

is also exact, where themorphismπ2 is just the restriction of theπ2 in the second split

exact sequence above to the A -submodule HomA (A p+q/P,
←−
H )  B←−

H
(P) of

←−
H

p+q
. By Proposition 12.2.1,A p+q/P can be chosen to be free, hence the above

exact sequence becomes the exact sequence

· · · → HomA (A p+q/P,
←−
H )

π2−→ HomA (A q/ i−1
2 (P),

←−
H )

δ−→ Ext1A (A p/π1(P),
←−
H ) → 0

It follows now by the above proposition that π2(B←−
H

(P)) is a behavior if and only
if the morphism δ in the above exact sequence is the zero morphism, and a necessary

and sufficient condition for this is that Ext1A (A p/π1(P),
←−
H ) be equal to 0.

To determinewhen this is so, consider the following free resolution ofA p/π1(P)

0 → π1(P)
i→ A p → A p/π1(P) → 0

where (as in the previous section) π1(P) is finitely generated and torsion free, hence

free (recollect that A = C[ d
dt ]!). Applying HomA (−,

←−
H ) gives the sequence

0 → HomA (A p,
←−
H )

π→ HomA (π1(P),
←−
H ) → 0
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so that the necessary and sufficient condition for the projection π2(B←−
H

(P)) to be a
behavior is that the morphism π above be surjective. Thus, in this notation, we have
the following theorem.

Theorem 12.4.1 The projection π2(B←−
H

(P)) is a behavior, necessarily equal to

B←−
H

(i−1
2 (P)), if and only if the nonzero associated primes of A p/(π1(P)) do not

have real zeros.

The proof is similar to the proof of Theorem 12.3.1. �

Remark This theorem provides an explanation to Example 2. ThereP is the cyclic
submodule ofA 2 generated ( d

dt ,−1), so thatA /(π1(P)) equalsA /( d
dt )  Aξ /(ξ).

The ideal (ξ) is an associated prime of Aξ /(ξ) which has a real zero, namely the
point 0.

We have now established three results in the inverse limit
←−
H (R) of the Sobolev

spaces—namely the Nullstellensatz, the calculation of the obstruction to a sum of
two behaviors being a behavior, as well as the calculation of the obstruction to a
projection of a behavior being a behavior. Just as in [4], these are the basic results
necessary to answer questions regarding the regular implementation of controllers.
These questions, together with applications to electrical circuits in the framework of
[12], will be pursued elsewhere.
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asymptotic functional state observers in the category of linear time-invariant finite-
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13.1 Problem Formulation

Consider the linear time-invariant finite-dimensional system in state-space form
given by

ẋ = Ax + Bu, (13.1)

y = Cx,

z = V x,

where A ∈ R
n×n , B ∈ R

n×m , C ∈ R
p×n and V ∈ R

r×n .
We will be interested in the characterization of asymptotic observers for z given u

and y. In particular, we will be interested in observers of the following type usually
considered in the geometric control literature:

v̇ = K v + Ly + Mu, (13.2)

ẑ = Pv + Qy,

where K ∈ R
s×s , P ∈ R

r×s and the other matrices are real and appropriately sized.
Note that P can be rectangular (tall or wide) and/or not of full rank. The asymptotic
condition for this type of observer is

lim
t→∞[ẑ(t) − z(t)] = 0 (13.3)

for every choice of input u and initial conditions x(0) and v(0). We then say that
system (13.2) is an asymptotic observer for system (13.1).

The problem considered in this paper is to characterize when a given observer of
the form (13.2) is an asymptotic observer for a given observed system (13.1). See [1],
in particular Sect.3.1, for a detailed discussion of the relevant literature.

13.2 Problem Reduction

In the observer characterization problem, both the observed system and the observer
are given and fixed, so we cannot modify them without changing the problem. We
can, however, show results of the type Observer A is an asymptotic observer for
System A if and only if Observer B is an asymptotic observer for System B, where
both Observer A and B as well as System A and B are related by equations (one of
the pairs may even be identical). This then allows to reduce the problem in the case
where Observer B and/or System B are simpler than the A variety.

As a first result of this type, we show that only the observable part of the observer
(13.2) is relevant for the observer characterization problem. Consider the (dual)
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Kalman decomposition for the pair (P, K ): There exists an invertible S ∈ R
s×s

such that

SK S−1 =
[

K11 0
K21 K22

]

and P S−1 = [
P1 0

]
,

where the pair (P1, K11) is observable. Now split

SL =
[

L1
L2

]

, SM =
[

M1
M2

]

and Sv =
[

v1
v2

]

,

and consider the reduced observer

v̇1 = K11v1 + L1y + M1u,

ẑ = P1v1 + Qy. (13.4)

Note that this observer is an observable system, i.e., v1 is observable from ((u, y), ẑ)
in this observer. We call such observers observable asymptotic observers. We now
have the following result, cf. [2, Proposition 3.69].

Proposition 13.1 System (13.2) is an asymptotic observer for system (13.1) if and
only if the reduced system (13.4) is an (observable) asymptotic observer for system
(13.1).

Proof Theproof follows from the observation that, given (u, y), system (13.4) started
with v1(0) produces the same output as system (13.2) started with v(0). �
In order to simplify the notation, we will assume in the next section that (P, K ) itself
is observable. We only need to replace (K , L , M, P, Q) by (K11, L1, M1, P1, Q) in
the resulting characterization to recover the general case.

In a second step, we can simplify the observed system by removing any uncon-
trollable stable modes. The corresponding linear functions of the state go to zero
irrespective of the applied input u and hence do not need to be observed at all.
We can make this discussion more precise as follows. Consider the unstable/stable
Kalman decomposition for the pair (A, B): There exists an invertible T ∈ R

n×n

such that

T AT −1 =
⎡

⎣
A11 A12 A13
0 A22 0
0 0 A33

⎤

⎦ and T B =
⎡

⎣
B1
0
0

⎤

⎦ ,

where (A11, B1) is controllable, A22 is anti-Hurwitz and A33 is Hurwitz. Now split

CT −1 = [
C1 C2 C3

]
, V T −1 = [

V1 V2 V3
]
, and T x =

⎡

⎣
x1
x2
x3

⎤

⎦ .

We now have the following result.
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Proposition 13.2 Let dim(x3) < dim(x). Then system (13.2) is an asymptotic
observer for system (13.1) if and only if it is an asymptotic observer for the reduced
system

[
ẋ1r

ẋ2r

]

=
[

A11 A12
0 A22

] [
x1r

x2r

]

+
[

B1
0

]

ur ,

yr = [
C1 C2

]
[

x1r

x2r

]

, (13.5)

zr = [
V1 V2

]
[

x1r

x2r

]

.

The latter is in the sense that u := ur and y := yr in the observer yields
limt→∞[ẑ(t) − zr (t)] = 0 for all choices of x1r (0), x2r (0), v(0) and ur .

The proof will use the following characterization of output stability, cf. [2, Propo-
sition 3.50]. We prove a slightly extended version.

Lemma 13.3 Consider the linear time-invariant finite-dimensional system in state-
space form given by

ẋ = Ax + Bu,

y = Cx,

where A ∈ R
n×n, B ∈ R

n×m and C ∈ R
p×n. Then limt→∞ y(t) = 0 for all

choices of x(0) and u if and only if C R(A, B) = 0 and the corestriction of A to
the quotient space R

n/N(C, A) is Hurwitz. Here, R(A, B) = [
B AB . . . An−1B

]

is the reachability matrix of the pair (A, B) and N(C, A) ⊂ R
n is the unobservable

subspace of the pair (C, A). If in addition (C, A) is observable then A is Hurwitz
and B = 0.

Proof Assume there exists x0 ∈ R(A, B) := Im R(A, B), the reachable sub-
space of the pair (A, B), with Cx0 �= 0. Since x0 ∈ R(A, B), there exists u
and a corresponding trajectory x that oscillates between 0 and x0, contradicting
limt→∞ y(t) = limt→∞ Cx(t) = 0. Hence C R(A, B) = 0. IfN(C, A) = R

n there
is nothing to prove for the corestriction of A. AssumeN(C, A) �= R

n and assume that
A is not stable on R

n/N(C, A). Then there exists 0 �= x0 ∈ R
n with x0 �∈ N(C, A)

and Ax0 = λx0 for a λ ∈ C with Reλ ≥ 0. It is x0 �∈ Ker C since the span of x0
is A-invariant but N (C, A) is the largest A-invariant subspace of Ker C . Choosing
x(0) = x0 and u = 0 yields a trajectory with limt→∞ y(t) = limt→∞ Cx(t) �= 0, a
contradiction. Hence A is stable on R

n/N(C, A).
Conversely, let C R(A, B) = 0 and A be stable on R

n/N(C, A). Let x(0) = x0 ∈
R

n and u be arbitrary. Then

y(t) = Cx(t) = CeAt x0 + C

t∫

0

eA(t−τ) Bu(τ )dτ,
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where the integral is an element of R(A, B) and hence of Ker C . Let R
n =

N(C, A)⊕W and decompose x0 = n0+w0 with n0 ∈ N(C, A) andw0 ∈ W. Since
N(C, A) is A-invariant and contained in Ker C it follows that y(t) = CeAtw0. But
A is stable on W and hence limt→∞ y(t) = 0.

If in addition (C, A) is observable then N(C, A) = {0} and A is Hurwitz. Fur-
thermore, C

[
B AB . . . An−1B

] = 0 implies

⎛

⎜
⎜
⎜
⎝

C
C A
...

C An−1

⎞

⎟
⎟
⎟
⎠

B = 0

and hence B = 0 by observability. �

Proof of Proposition 13.2 Note that system (13.1) and the Kalman decomposed
system

⎡

⎣
ẋ1
ẋ2
ẋ3

⎤

⎦ =
⎡

⎣
A11 A12 A13
0 A22 0
0 0 A33

⎤

⎦

⎡

⎣
x1
x2
x3

⎤

⎦ +
⎡

⎣
B1
0
0

⎤

⎦ u,

y = [
C1 C2 C3

]
⎡

⎣
x1
x2
x3

⎤

⎦ ,

z = [
V1 V2 V3

]
⎡

⎣
x1
x2
x3

⎤

⎦

have the same external behavior in terms of the variables (u, y, z). In order to enable
a direct comparison of the trajectories of system (13.1) and the reduced system
(13.5), whenever we are given an initial condition x(0) for system (13.1), we will
use x1r (0) := x1(0), x2r (0) := x2(0) in the reduced system (13.5). Then, system
(13.1) and the reduced system (13.5) have the same output, i.e., y = yr and z = zr ,
if x3(0) = 0 and ur = u.

Let system (13.2) be an asymptotic observer for system (13.1), then limt→∞[ẑ(t)−
z(t)] = 0 for every choice of x(0), v(0) and u, in particular for those x(0) with
x3(0) = 0. But in that case x1r (0) := x1(0), x2r (0) := x2(0) and ur := u in system
(13.5) implies y = yr , and hence the observer output is the same for both observed
systems. Moreover, z = zr in this case and hence limt→∞[ẑ(t) − zr (t)] = 0 in the
observer interconnection with the reduced system. It follows that system (13.2) is an
asymptotic observer for the reduced system (13.5).

Conversely, let system (13.2) be an asymptotic observer for the reduced system
(13.5). Fix x1r (0), x2r (0) and v(0) and let
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x(0) := T −1

⎡

⎣
x1r (0)
x2r (0)
x3(0)

⎤

⎦

in system (13.1) where x3(0) is arbitrary but fixed. Then x2 = x2r and
limt→∞ x3(t) = 0 for all choices of ur and u. Define δ := x1 − x1r then

δ̇ = A11δ + B1(u − ur ) + A13x3, δ(0) = 0.

Since (A11, B1) is controllable, there exists a feedbackmatrix F such that A11+ B1F
is Hurwitz. Consider the auxiliary system

δ̇F = (A11 + B1F)δF + A13x3, δF (0) = 0,

then limt→∞ δF (t) = 0 by [3, Corollary 3.22]. Now the choice ur := u − FδF

yields δ = δF and hence limt→∞ δ(t) = limt→∞[x1(t)−x1r (t)] = 0. It follows that
limt→∞[y(t)−yr (t)] = 0, limt→∞[z(t)−zr (t)] = 0 and limt→∞[u(t)−ur (t)] = 0,
i.e., the external behaviors of system (13.1) and system (13.5) are asymptotically
equal under the above correspondence of trajectories.

According to Proposition 13.1, the reduced observer (13.4) is an asymptotic
observer for the reduced system (13.5), and by Lemma 13.3, K11 is Hurwitz: Choose
x(0) = 0 and u = 0 to obtain y = 0 and limt→∞ ẑ(t) = 0 for all choices of v1(0).We
can also connect this reduced observer to system (13.1) instead of to the reduced sys-
tem (13.5), and since the external behaviors of these two systems are asymptotically
equal, another application of [3, Corollary 3.22] shows that the two resulting observer
outputs are asymptotically equal. This implies that the reduced order observer (13.4)
is also an asymptotic observer for system (13.1) (since limt→∞[z(t) − zr (t)] = 0),
and by Proposition 13.1, so is system (13.2). �

Again, we will simplify the notation in the next section by assuming that sys-
tem (13.1) has no stable uncontrollable modes and can recover the general case by
replacing the system matrices (A, B, C, V ) in the resulting characterization with the
reduced system matrices of system (13.5).

We finish this section by treating the remaining case not covered by Proposi-
tion 13.2, namely the case where system (13.1) is completely uncontrollable and
stable, i.e., where A is Hurwitz and B = 0.

Proposition 13.4 Let A be Hurwitz and let B = 0 in system (13.1). Then system
(13.2) is an asymptotic observer for system (13.1) if and only if P R(K , M) = 0
and the corestriction of K to the quotient space R

s/N(P, K ) is Hurwitz. Here,
R(K , M) = [

M K M . . . K s−1M
]

is the reachability matrix of the pair (K , M)

and N(P, K ) ⊂ R
s is the unobservable subspace of the pair (P, K ).

Proof Let system (13.2) be an asymptotic observer for system (13.1) with A Hurwitz
and B = 0. Then limt→∞ z(t) = 0 and hence limt→∞ ẑ(t) = 0 for all choices of
x(0), v(0) and u, in particular for x(0) = 0 (hence y = 0), and all choices of v(0) and
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u. By Lemma 13.3 then P R(K , M) = 0 and the corestriction of K to the quotient
space R

s/N(P, K ) is Hurwitz.
Conversely, assume that P R(K , M) = 0 and that the corestriction of K to the

quotient space R
s/N(P, K ) is Hurwitz. Then P1R(K11, M1) = 0 and K11 is Hur-

witz in the reduced observer (13.4). By Lemma 13.3, limt→∞ ẑ(t) = 0 for all
choices of v1(0) and u and y = 0. Since limt→∞ y(t) = 0 for all choices of
x(0) and u, an application of [3, Corollary 3.22] yields limt→∞ ẑ(t) = 0 for all
choices of v1(0), x(0) and u, and hence the reduced observer (13.4) is an asymp-
totic observer for system (13.1) (since limt→∞ z(t) = 0). By Proposition 13.1,
so is system (13.2). �

13.3 The Main Characterization Result

We are now in a position to state the main characterization result for asymptotic
state observers. We will briefly discuss the error in the previous proof attempt [1,
Theorem 9] after we have given the new proof. The proof references the following
two technical lemmas proved in [1] that we restate here for convenience but without
proof. Consider the linear time-invariant finite-dimensional system in state-space
form given by

ẋ = Ax + Bu,

y = Cx + Du, (13.6)

where A ∈ R
n×n , B ∈ R

n×m , C ∈ R
p×n and D ∈ R

p×m .

Lemma 13.5 ([1, Lemma 3]) Let all uncontrollable modes of system (13.6) be
unstable. Then, for every Q ∈ R

q×n with Q �= 0 there exists an initial condition x0
and an input u such that limt→∞ Qx(t) �= 0.

Lemma 13.6 ([1, Proposition 5]) If limt→∞ y(t) = 0 for all choices of x0 and u
in system (13.6) then its transfer function G(s) = C(s I − A)−1B + D ≡ 0 and
in particular D = 0. If, moreover, all uncontrollable modes of system (13.6) are
unstable then C = 0.

Theorem 13.7 Let all uncontrollable modes of system (13.1) be unstable. Then
system (13.2) is an observable asymptotic observer for z given u and y if and only
if there exists a matrix U ∈ R

s×n such that

U A − KU − LC = 0,

M − U B = 0, (13.7)

V − PU − QC = 0,

K is Hurwitz and (P, K ) is observable.
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Proof Let system (13.2) be an observable asymptotic observer for z given u and y
and define e := ẑ − z. Then

e = Pv + Qy − V x = Pv − (V − QC)x .

Assume, to arrive at a contradiction, that Im(V − QC) �⊂ Im(P). Then there exists
an invertible S ∈ R

r×r such that

S P =
[

P1
0

]

and S(V − QC) =
[

V1
V2

]

with V2 �= 0. Now limt→∞ Se(t) = 0 implies limt→∞ V2x(t) = 0 for all initial
conditions x(0) and all inputs u, a contradiction to Lemma 13.5. We conclude that
Im(V − QC) ⊂ Im(P), and hence there exists a matrix U ∈ R

s×n such that
V − QC = PU . This implies the third equation in (13.7).

Define d := v − U x then

ḋ = v̇ − U ẋ

= K v + Ly + Mu − U Ax − U Bu

= K v − KU x + KU x + LCx + Mu − U Ax − U Bu,

and hence the observation error e = Pv − (V − QC)x = Pv − PU x is governed
by the error system

ḋ = K d − (U A − KU − LC)x + (M − U B)u,

e = Pd. (13.8)

The first two equations in (13.7) now follow immediately from an application of
Proposition 13.8 stated below. Apply Lemma 13.3 to the resulting error system

ḋ = K d,

e = Pd

to see that K must be Hurwitz.
Conversely, assume that the system matrices of systems (13.1) and (13.2) fulfill

Equation (13.7) with K Hurwitz, then limt→∞ e(t) = 0 follows immediately from
the form of the error system (13.8). In its derivation, we have only used the third
equation in (13.7). �

Beforewe state and prove themissingProposition 13.8 below, let us briefly discuss
what is wrong in the proof of [1, Theorem 9]. In that proof, the conclusion after the
derivation of the error system (13.8) uses the argument [...] follows immediately
from [...] the fact that (P, K ) is observable (hence e(t) → 0 implies d(t) → 0).
While this assertion refers only to the error system (13.8), and is hence actually true
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a posteriori, it is not generally true as an a priori assertion about observable systems,
which is how it is being used in the logic of the proof given in [1].

By definition, observability of a linear state-space system means that zero output
and input imply zero state, but the property makes no (direct) statement about limits
or about the case where the input is nonzero.

One could think that the argument can be saved by the fact that it is only used as
an assertion on the totality of all solutions of the error system, as in e(t) → 0 for all
solutions implies d(t) → 0 for all solutions. Indeed, Lemma 13.3 at first seems to
support this. Note, however, that Lemma 13.3 cannot be applied to the error system
(13.8), since the two inputs v = (x, u) are not independent signals. In fact, this is
the reason why Theorem 13.7 is difficult to prove, cf. [1, Remark 8].

Fixing the above error requires the following generalization to [1, Proposition 7].

Proposition 13.8 Consider the composite system

ẋ = Ax + Bu,

ḋ = K d + Rx + Su,

e = Pd,

(13.9)

and assume that limt→∞ e(t) = 0 for all choices of x(0), d(0) and u. If all uncon-
trollable modes of ẋ = Ax + Bu are unstable and (P, K ) is observable then R = 0
and S = 0.

The proof of this proposition will be given with the help of the following technical
lemma.

Lemma 13.9 Let (P, K ) ∈ R
r×s × R

s×s be observable and let A ∈ R
n×n and

R ∈ R
s×n. Then

[
0 P

]
[

A 0
R K

]i [
x
0

]

= 0 (13.10)

for all x ∈ R
n and all i ∈ N implies R = 0.

Proof We have [
A 0
R K

] [
x
0

]

=
[

A
R

]

x

and, using (13.10) with i = 1, also P Rx = 0 for all x ∈ R
n .

Assume that [
A 0
R K

]i [
x
0

]

=
[

Ai
∑i

l=1 K l−1R Ai−l

]

x (13.11)

for all x ∈ R
n and some i ∈ N and

P K l−1Rx = 0 (13.12)
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for all x ∈ R
n and all l = 1, . . . , i . Then

[
A 0
R K

]i+1 [
x
0

]

=
[

A 0
R K

] [
Ai

∑i
l=1 K l−1R Ai−l

]

x

=
[

Ai+1

R Ai + K
∑i+1

l=2 K (l−1)−1R A(i−(l−1))

]

x

=
[

Ai+1
∑i+1

l=1 K l−1R A(i+1)−l

]

x

for all x ∈ R
n , where we have used hypothesis (13.11) in the first line. But then

(13.10) implies that

0 = P

(
i+1∑

l=1

K l−1R A(i+1)−l

)

x = P K i Rx

for all x ∈ R
n , where we have used hypothesis (13.12) in the final conclusion.

By induction, it follows that P K i−1(Rx) = 0 for all i ∈ N and all x ∈ R
n . By

observability of (P, K ) this implies Rx = 0 for all x ∈ R
n and hence R = 0. �

Proof of Proposition 13.8 Apply Lemma 13.6 to system (13.9) to obtain

P(s I − K )−1
[
−R(s I − A)−1B + S

]
≡ 0

and hence −R(s I − A)−1B + S ≡ 0 since (P, K ) is observable. Since S is constant
and R(s I − A)−1B is strictly proper, it follows that S = 0 and R(s I − A)−1B ≡ 0.
If ẋ = Ax + Bu was controllable, we would be done at this point, since then R(s I −
A)−1B ≡ 0 would imply R = 0. With the help of Lemma 13.3 and Lemma 13.9
above we can, however, treat the more general case of this proposition.

Given that all uncontrollable modes of ẋ = Ax + Bu are unstable, there exists
an invertible S ∈ R

n×n such that

S AS−1 =
[

A11 A12
0 A22

]

and SB =
[

B1
0

]

,

where A11 ∈ R
n1×n1 , the pair (A11, B1) is controllable and all eigenvalues of A22 ∈

R
n2×n2 have nonnegative real parts (Kalman decomposition). Define

[
R1 R2

] := RS−1 and

[
x1
x2

]

:= Sx,

where the block sizes are as for the matrix S AS−1 above. Then R(s I − A)−1B ≡
R1(s I − A11)

−1B1 ≡ 0 and hence R1 = 0 because (A11, B1) is controllable. It
follows that
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ẋ2 = A22x2,

ḋ = K d + R2x2,

e = Pd.

x2(0) = x02,

d(0) = d0, (13.13)

By Lemma 13.3, limt→∞ e(t) = 0 for all choices of x02 and d0 in (13.13) implies
that the corestriction of the linear map

[
A22 0
R2 K

]

: R
n2+s → R

n2+s

to the quotient space R
n2+s/N is stable, where

N := N

(
[
0 P

]
,

[
A22 0
R2 K

])

=
⋂

i∈N
Ker

(
[
0 P

]
[

A22 0
R2 K

]i−1
)

denotes the unobservable subspace. A straightforward computation shows that

[
x2
d

]

∈ N implies d ∈ N(P, K ),

i.e., d = 0 since (P, K ) is observable. This shows N ⊂ R
n2 × {0}. On the other

hand, since all eigenvalues of A22 have nonnegative real parts, the corestriction of the
above linear map to any quotient space of the formR

n2+s/SwithS � R
n2 ×{0} can

not be Hurwitz. It follows that N = R
n2 × {0}. By Lemma 13.9 above this implies

R = 0. �

Note that the use of Proposition 13.8 eliminates the need for [1, Lemma 6] and
with it the use of the theory of pole-zero cancelations, making the final proof of
Theorem 13.7 slightly more elementary.

13.4 Conclusion

The overall picture now is as follows. In the case where A is Hurwitz and B = 0 in
system (13.1), the full characterization of asymptotic state observers (13.2) is given
by P R(K , M) = 0 and the corestriction of K to the quotient space R

s/N(P, K )

being Hurwitz (Proposition 13.4). Note that in this case, the characterization is inde-
pendent of the systemmatrices (A, B, C, V ). Otherwise, the characterization is given
by Eq. (13.7) and K Hurwitz (Theorem 13.7), where we may have to replace the
system matrices (A, B, C, V ) with the reduced system matrices of system (13.5) if
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system (13.1) has stable uncontrollable modes (Proposition 13.2), and the observer
matrices (K , L , M, P, Q) by the observer matrices (K11, L1, M1, P1, Q) of the
reduced observer (13.4) if the observer (13.2) is not observable (Proposition 13.1).

Acknowledgments The author wishes to thank Uwe Helmke for pointing out the error in the proof
of [1, Theorem 9].
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Chapter 14
When Is a Linear Complementarity System
Disturbance Decoupled?

A.R.F. Everts and M.K. Camlibel

Abstract In this chapter, we study the disturbance decoupling problem for linear
complementarity systems that form a class of piecewise affine systems. Direct appli-
cation of the existing results for piecewise affine systems to linear complementarity
systems leads to somewhat bulky conditions. By exploiting the compact description
of linear complementarity systems, this chapter provides crisp conditions that are far
more insightful than those for general piecewise affine systems.

14.1 Introduction

The disturbance decoupling problem amounts to finding a feedback law that elimi-
nates the effect of disturbances on the output of a given input/state/output dynamical
system. The investigation of this problem has been the starting point for the devel-
opment of geometric control theory [1–3]. For both linear and (smooth) nonlinear
systems, geometric control theory has been proven to be very efficient in solving
various control problems, including the disturbance decoupling problem (see, e.g.,
[4–8]).
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In the context of hybrid dynamical systems, the results on disturbance decoupling
are limited to switched linear systems [9, 10] and piecewise affine systems [11]. The
major difference between switched linear systems and piecewise affine systems is the
nature of the switching behavior. For piecewise affine systems the switching behavior
is state-dependent whereas it is state-independent for switched linear systems.

For state-independent switching case, the solution of the disturbance decoupling
problem can be obtained by following mainly the footsteps of the (non-switching)
linear case. Indeed, a noteworthy consequence of the state-independent switching is
that the set of reachable states under the influence of disturbances is a subspace. This
allows one to generalize the so-called controlled invariant subspaces of linear systems
to switched linear systems. Such a generalization leads to elegant necessary and
sufficient conditions [9, 10] for a switched linear system to be disturbance decoupled.
In the same papers, disturbance decoupling problems by different feedback schemes
have also been solved based on these necessary and sufficient conditions.

However, a similar approach breaks down in the case of state-dependent switching
as the set of reachable states under the influence of disturbances is not anymore a sub-
space, not even a convex set in general. As such, neither the results nor the approach
adopted for the state-independent case can be applied to state-dependent switching
case.By taking a novel approach that takes into account the state-dependent switching
behavior of piecewise affine systems, the paper [11] provided a set of necessary con-
ditions and a set of sufficient conditions under which a continuous piecewise affine
dynamical system is disturbance decoupled. Although these conditions do not coin-
cide in general, some special cases inwhich they do coincidewere pointed out in [11].
Furthermore, [11] presented conditions for the existence of mode-independent static
feedback controllers that render the closed-loop system disturbance decoupled. All
conditions presented in [11] are geometric in nature and can be easily verified by uti-
lizing extensions of thewell-known subspace algorithms. Yet the conditions obtained
in [11] are somewhat bulky due to the very general description of piecewise affine
systems that was taken as the starting point. In this chapter, we focus on a particular
class of piecewise affine systems, namely linear complementarity systems. It turns out
that the compact description of linear complementarity systems leads to conditions
for disturbance decoupling that are not only easily checkable but also very crisp.

The structure of the chapter is as follows. In Sect. 14.2 we introduce the notational
conventions aswell as the basic concepts of the geometric approach to linear systems.
This will be followed by the formulation of the linear complementarity problem in
Sect. 14.3 where also linear complementarity systems are introduced. In Sect. 14.4
we first define what we mean by a linear complementarity system to be disturbance
decoupled. After providing some technical auxiliary results that are, in a way, of
interest themselves, we present necessary and sufficient conditions that are the main
results of this chapter. Finally, the chapter closes with conclusions in Sect. 14.5.
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14.2 Preliminaries

Consider, the linear system Σ = Σ(A, B, C, D) given by

ẋ(t) = Ax(t) + Bu(t) (14.1a)

y(t) = Cx(t) + Du(t) (14.1b)

where the input u, state x , and output y have dimensions m, n, and p, respectively.
In what follows, we quickly introduce some of the fundamental notions of geometric
control theory of linear systems for the sake of completeness. We refer to [8] for
more details.

The controllable subspace of Σ is the smallest A-invariant subspace containing
im B. We will denote it by

〈A | im B〉 := im B + Aim B + · · · + An−1im B.

Note that
〈A + BK | im B〉 = 〈A | im B〉 (14.2)

for any matrix K ∈ R
m×n .

A subspaceT ⊆ R
n is called an input containing conditioned invariant subspace

of Σ if [
A B

] (
(T × R

m) ∩ ker
[
C D

]) ⊆ T .

It is well known that a subspace T is an input containing conditioned invariant
subspace if and only if there exists a matrix L ∈ R

n×p such that

(A + LC)T ⊆ T and im (B + L D) ⊆ T . (14.3)

The strongly reachable subspace ofΣ is the smallest (with respect to the subspace
inclusion) input containing conditioned invariant subspace and will be denoted by
T ∗(Σ).

It follows from (14.3) with the choice of L = 0 that the controllable subspace is
an input containing conditioned invariant subspace. Hence, we have

T ∗(Σ) ⊆ 〈A | im B〉. (14.4)

Let K and L be m × n and n × p matrices, respectively. Also let ΣK ,L denote the
system Σ(A + BK + LC + L DK , B + L D, C + DK , D). It can easily be verified
that

T ∗(ΣK ,L) = T ∗(Σ). (14.5)

A subspace V ⊆ R
n is called an output nulling controlled invariant subspace of

Σ if
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[
A
C

]

V ⊆ (
V × {0}) + im

[
B
D

]

.

The weakly unobservable subspace of Σ is the largest (with respect to the sub-
space inclusion) output nulling controlled invariant subspace and will be denoted by
V ∗(Σ).

It is well known that the transfer matrix D + C(s I − A)−1B is right-invertible as
a rational matrix if and only if

V ∗(Σ) + T ∗(Σ) = R
n and

[
C D

]
is of full row rank.

Straightforward linear algebra arguments show that these conditions are equivalent to

im D + CT ∗(Σ) = R
p. (14.6)

14.3 Linear Complementarity System

The problem of finding a vector z ∈ R
m such that

z � 0 (14.7a)

q + Mz � 0 (14.7b)

zT (q + Mz) = 0 (14.7c)

for a given vector q ∈ R
m and a matrix M ∈ R

m×m is known as the linear com-
plementarity problem. We denote (14.7) by LCP(q, M). It is well-known [12, Thm.
3.3.7] that the LCP(q, M) admits a unique solution for each q if and only if all prin-
cipal minors of M are positive. Such matrices are called P-matrices in the literature
of mathematical programming.

When M is a P-matrix, the unique solution of the LCP(q, M), say z(q), depends
on q in a Lipschitz continuous way. In particular, for each q there exists an index set
α ⊆ {1, 2, . . . , m} such that the solution z = z(q) is determined by

zα = −(Mαα)−1qα zαc = 0 (14.8a)

and the following inequalities hold

− (Mαα)−1qα � 0 qαc − Mαcα(Mαα)−1qα � 0 (14.8b)

where αc denotes the set {1, 2, . . . , m} \ α.
Linear complementarity systems (LCSs) consist of nonsmooth dynamical sys-

tems that are obtained in the following way. Take a standard linear input/output
system. Select a number of input/output pairs (zi , wi ), and impose for each of these
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pairs a complementarity relation of the type (14.7) at each time instant. A wealth of
examples, from various areas of engineering as well as operations research, of LCSs
can be found in [13–16]. For the work on the analysis of LCSs, we refer to [17–23].

In this chapter, we will focus on the LCSs of the following form:

ẋ(t) = Ax(t) + Bz(t) + Ed(t) (14.9a)

w(t) = Cx(t) + Dz(t) + Fd(t) (14.9b)

0 � z(t) ⊥ w(t) � 0 (14.9c)

y(t) = J x(t). (14.9d)

Here x ∈ R
n is the state, (z, w) ∈ R

m+m are the complementarity variables, d ∈ R
q

is the disturbance, y ∈ R
p is the output, and all the matrices are of appropriate sizes.

In the sequel, we will work under the following blanket assumptions:

1. The matrix D is a P-matrix.
2. The transfer matrix F + C(s I − A)−1E is right-invertible as a rational matrix.

In order not to blur the main message of the chapter, we focus on LCSs that satisfy
these assumptions that are technical in nature. Most of the subsequent results can be
generalized to cases for which these assumptions do not hold.

Since D is a P-matrix, z(t) is a piecewise linear function of Cx(t) + Fd(t)
(see, e.g., [12]). This means that for each initial state x0 and locally integrable dis-
turbance d there exist unique absolutely continuous trajectories (xx0,d , yx0,d) and
locally integrable trajectories (zx0,d , wx0,d) such that xx0,d(0) = x0 and the quadru-
ple (xx0,d , zx0,d , wx0,d , yx0,d) satisfies the relations (14.9) for almost all t � 0.

Even though LCSs are nonsmooth and nonlinear dynamical systems, their local
linear behavior enables elegant characterizations of certain system-theoretic proper-
ties. To give a flavor of such a result, we quote the following theorem from [21] that
states necessary and sufficient conditions for controllability of an LCS.

Theorem 14.1 An LCS of the form (14.9a)–(14.9c) for which d is treated as input
is controllable if and only if the following conditions hold:

1. 〈A | im [
B E

]〉 = R
n.

2. the system of inequalities

η � 0,

[
ξ

η

]T [
A − λI E

C F

]

= 0,

[
ξ

η

]T [
B
D

]

� 0

admits no solution λ ∈ R and 0 	= (ξ, η) ∈ R
n+m.

In this chapter, wewill investigate yet another system-theoretic property for LCSs,
namely disturbance decoupling.
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14.4 Disturbance Decoupled LCSs

We say that an LCS (14.9) is disturbance decoupled if for all initial states x0, locally
integrable disturbances d1 and d2, and t � 0 we have

yx0,d1(t) = yx0,d2(t).

In this section, we will investigate necessary and sufficient conditions for an LCS
(14.9) to be disturbance decoupled. To do so, we first derive an alternative represen-
tation of LCSs that makes the underlying switching behavior more transparent.

Since D is a P-matrix,we can solve theLCPgiven by (14.9c) by employing (14.8).
More precisely, if the quadruple (x, d, z, w) satisfies (14.9a)–(14.9c) for almost all
t � 0 then for almost all t � 0 there exists an index set αt ⊆ {1, 2, . . . , m} such that

ẋ(t) = (
A − B•αt (Dαt αt )

−1Cαt •
)
x(t) + (

E − B•αt (Dαt αt )
−1Fαt •

)
d(t) (14.10a)

whenever
[ −(Dαt αt )

−1Cαt • −(Dαt αt )
−1Fαt •

Cαc
t • − Dαc

t αt (Dαt αt )
−1Cαt • Fαc

t • − Dαc
t αt (Dαt αt )

−1Fαt •

] [
x(t)
d(t)

]

� 0.

(14.10b)
For an index set α ⊆ {1, 2, . . . , m}, define

Aα = A − B•α(Dαα)−1Cα• (14.11)

Eα = E − B•α(Dαα)−1Fα• (14.12)

Gα =
[ −(Dαα)−1Cα•

Cαc• − Dαcα(Dαα)−1Cα•

]

(14.13)

Hα =
[ −(Dαα)−1Fα•

Fαc• − Dαcα(Dαα)−1Fα•

]

. (14.14)

With these definitions (14.10) can be rewritten as follows:

ẋ(t) = Aαt x(t) + Eαt d(t) whenever
[
Gαt Hαt

]
[

x(t)
d(t)

]

� 0. (14.15)

Before turning our attention to conditions for this system to be disturbance de-
coupled, we prove a technical auxiliary result that we will employ later.

Lemma 14.2 For each index set α ⊆ {1, 2, . . . , m}, let Nα ∈ R
n×p be such that

Aα = A + NαC and Eα = E + Nα F.
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Let
S =

∑

γ⊆{1,2,...,m}
〈Aγ | im Eγ 〉.

The following statements hold:

1. im (Nα − Nβ) ⊆ S for any α, β ⊆ {1, 2, . . . , m}.
2. S is invariant under Aα for any α ⊆ {1, 2, . . . , m}.
3. S = 〈A | im [

B E
]〉.

Proof To prove the first statement, letΣγ denote the linear systemΣ(Aγ , Eγ , C, F)

for γ ⊆ {1, 2, . . . , m}. It follows from (14.4) that

T ∗(Σγ ) ⊆ 〈Aγ | im Eγ 〉 ⊆ S .

Then, we have

(A + Nγ C)T ∗(Σγ ) ⊆ (A + Nγ C)〈Aγ | im Eγ 〉 ⊆ 〈Aγ | im Eγ 〉 ⊆ S .

Let Σ̃ denote the linear systemΣ(A, E, C, F). It follows from (14.5) thatT ∗(Σγ ) =
T ∗(Σ̃) and hence that

(A + Nγ C)T ∗(Σ̃) ⊆ S

for any γ ⊆ {1, 2, . . . , m}. This yields

(Nα − Nβ)CT ∗(Σ̃) ⊆ S (14.16)

for any α, β ⊆ {1, 2, . . . , m}. Also we have

im (E + Nγ F) ⊆ 〈Aγ | im Eγ 〉 ⊆ S

for any γ ⊆ {1, 2, . . . , m}. Thus, we get

(Nα − Nβ)im F ⊆ S

for any α, β ⊆ {1, 2, . . . , m}. By combining the last relation with (14.16), we obtain

(Nα − Nβ)
(
im F + CT ∗(Σ̃)

) ⊆ S .

Since the transfer matrix F + C(s I − A)−1E is right-invertible as a rational matrix,
it follows from (14.6) that im F + CT ∗(Σ̃) = R

m . Therefore, we have

im (Nα − Nβ) ⊆ S .

To prove the second statement, let α, γ ⊆ {1, 2, . . . , m}. Note that
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Aα〈Aγ | im Eγ 〉 ⊆ Aγ 〈Aγ | im Eγ 〉 + im (Aα − Aγ )

⊆ 〈Aγ | im Eγ 〉 + im (Nα − Nγ ).

It follows from the definition of S and the first statement that

Aα〈Aγ | im Eγ 〉 ⊆ S .

Hence, we have

AαS ⊆ Aα

( ∑

γ⊆{1,2,...,m}
〈Aγ | im Eγ 〉) ⊆

∑

γ⊆{1,2,...,m}
Aα〈Aγ | im Eγ 〉 ⊆ S .

To prove the third statement, note first that im Nγ ⊆ im B for any γ ⊆
{1, 2, . . . , m}. Hence, we have

im Eγ = im (E + Nγ C) ⊆ im
[
B E

]
.

This results in
〈Aγ | im Eγ 〉 ⊆ 〈Aγ | im [

B E
]〉 (14.17)

for any γ ⊆ {1, 2, . . . , m}. Since Aγ = A + Nγ C and im Nγ ⊆ im B, it follows
from (14.2) that

〈Aγ | im [
B E

]〉 = 〈A | im [
B E

]〉.

In view of (14.17), this means that

〈Aγ | im Eγ 〉 ⊆ 〈A | im [
B E

]〉

for any γ ⊆ {1, 2, . . . , m}. Consequently, we obtain

S =
∑

γ⊆{1,2,...,m}
〈Aγ | im Eγ 〉 ⊆ 〈A | im [

B E
]〉. (14.18)

Since 〈Aγ | im Eγ 〉 ⊆ S for all γ ⊆ {1, 2, . . . , m}, we have

〈A | im E〉 ⊆ S

〈A − B D−1C | im (E − B D−1F)〉 ⊆ S

for the particular choices γ = ∅ and γ = {1, 2, . . . , m}, respectively. We know
from (14.5) that the strongly reachable subspaces of the systemsΣ(A, E, C, F) and
Σ(A− B D−1C, E − B D−1F, C, F) coincide. LetT ∗ denote this common strongly
reachable subspace. It follows from (14.4) that
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T ∗ ⊆ 〈A | im E〉 ⊆ S

T ∗ ⊆ 〈A − B D−1C | im (E − B D−1F)〉 ⊆ S .

These inclusions yield

AT ∗ ⊆ A〈A | im E〉
⊆ 〈A | im E〉 ⊆ S

(A − B D−1C)T ∗ ⊆ (A − B D−1C)〈A − B D−1C | im (E − B D−1F)〉
⊆ 〈A − B D−1C | im (E − B D−1F)〉 ⊆ S ,

from which we obtain
B D−1CT ∗ ⊆ S . (14.19)

On the other hand, we readily have

im E ⊆ 〈A | im E〉 ⊆ S

im (E − B D−1F) ⊆ 〈A − B D−1C | im (E − B D−1F)〉 ⊆ S .

Combining these two inclusions results in

B D−1im F ⊆ S .

Together with (14.19), this implies that

B D−1(im F + CT ∗) ⊆ S .

It follows from the blanket assumption and (14.6) that

im F + CT ∗ = R
m .

Thus, we get
im B ⊆ S .

From the second statement of Lemma 14.2, we know that the subspace S is Aα-
invariant for any α ⊆ {1, 2, . . . , m}. In particular, the choice of α = ∅ implies thatS
is A-invariant. Since 〈A | im B〉 is the smallest A-invariant subspace that contains
im B, we have

〈A | im B〉 ⊆ S . (14.20)
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As we readily have 〈A | im E〉 ⊆ S , the inclusion (14.20) implies that

〈A | im B〉 + 〈A | im E〉 = 〈A | im [
B E

]〉 ⊆ S .

Together with (14.18), this proves thatS = 〈A | im [
B E

]〉. �

Now we are ready to present necessary and sufficient conditions for an LCS to be
disturbance decoupled.

Theorem 14.3 An LCS of the form (14.9) is disturbance decoupled if and only if

〈A | im [
B E

]〉 ⊆ ker J.

Proof To prove the ‘only if’ part, let γ ⊆ {1, 2, . . . , m}. Note that
[
Gγ Hγ

] =
[ −(Dγ γ )−1 0
−Dγ cγ (Dγ γ )−1 I

] [
Cγ • Fγ •
Cγ c• Fγ c•

]

. (14.21)

Since F + C(s I − A)−1E is right-invertible as a rational matrix by the blanket
assumption,

[
C F

]
is of full row rank. So must be the matrix

[
Gγ Hγ

]
due to

(14.21). Then, one can find x0 and d such that

[
Gγ Hγ

]
[

x0
d

]

> 0.

Let e ∈ R
q . Clearly, there exists a sufficiently small μ > 0 such that

[
Gγ Hγ

]
[

x0
d + μe

]

> 0.

Now define
d1(t) = d and d2(t) = d + μe

for all t ≥ 0. Let xi (t) denote the trajectory xx0,di (t) for i = 1, 2. Since xi and di

are continuous, there exists an ε > 0 such that

[
Gγ Hγ

]
[

xi (t)
di (t)

]

> 0

holds for all t ∈ [0, ε). Thus, the trajectories x1 and x2 satisfy

ẋi (t) = Aγ xi (t) + Eγ di (t)

for all t ∈ [0, ε) and i = 1, 2. As the system is disturbance decoupled, we have that

J x1(t) = J x2(t)



14 When Is a Linear Complementarity System Disturbance Decoupled? 253

for all t ∈ [0, ε). Since d1 and d2 are constant, we obtain

J (Aγ x0 + Eγ d) = J
(

Aγ x0 + Eγ (d + μe)
)

by differentiating and evaluating at t = 0. This results in

J Eγ e = 0.

By repeating the differentiation and evaluation at t = 0, we get

J Ak
γ Eγ e = 0

for all k � 0. Since e is arbitrary, we have

J Ak
γ Eγ = 0

for all k � 0. Consequently, one gets

〈Aγ | im Eγ 〉 ⊆ ker J.

Thus, we have ∑

γ⊆{1,2,...,m}
〈Aγ | im Eγ 〉 ⊆ ker J.

It follows from the third statement of Lemma 14.2 that

〈A | im [
B E

]〉 ⊆ ker J.

To prove the ‘if’ part, it is enough to show that

xx0,d1(t) − xx0,d2(t) ∈ 〈A | im [
B E

]〉

for any initial state x0 ∈ R
n , locally-integrable disturbances d1 and d2, and t � 0.

To do so, let V := 〈A | im [
B E

]〉 and let v ∈ V ⊥. From (14.9a), we have

vT (
ẋ x0,d1(t) − ẋ x0,d2(t)

) = vT A
(
xx0,d1(t) − xx0,d2(t)

)
(14.22)

for almost all t ≥ 0. Define

ζ(t) := vT (
xx0,d1(t) − xx0,d2(t)

)
.

From (14.22) and AT -invariance of V ⊥, we get

dkζ

dtk
(t) = vT Ak(xx0,d1(t) − xx0,d2(t)

)
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for k ≥ 0. The Cayley-Hamilton theorem implies that there exist real numbers ci

with i = 0, 1, . . . , n − 1 such that

dnζ

dtn
(t) + cn−1

dn−1ζ

dtn−1 (t) + · · · + c1
dζ

dt
(t) + c0ζ(t) = 0.

Since
dkζ

dtk
(0) = 0

for k � 0, we get ζ(t) = 0 for all t � 0. Consequently, we have

xx0,d1(t) − xx0,d2(t) ∈ (V ⊥)⊥ = V = 〈A | im [
B E

]〉

which completes the proof. �

14.5 Conclusions

This chapter studied a class of non-smooth and nonlinear dynamical systems, namely
linear complementarity systems. These systems belong to the larger family of piece-
wise affine dynamical systems for which the disturbance decoupling problem has
already been solved. In this chapter we have shown that linear subsystems of a lin-
ear complementarity system share certain geometric structure. By exploiting this
geometric structure, we provided necessary and sufficient conditions for a linear
complementarity system to be disturbance decoupled. Compared to already existing
conditions for general piecewise affine systems, the new conditions are much crisper
and more insightful.

Future research possibilities are weakening the technical blanket assumptions and
studying the disturbance decoupling problem under different feedback schemes.
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