
Chapter 8
Modeling Perspectives of Hybrid Systems
and Network Systems

Jun-ichi Imura and Takayuki Ishizaki

Abstract This article presents two topics, i.e., well-posedness of piecewise affine
systems, and model reduction of network systems. The well-posedness problem, i.e.,
the problem of existence and uniqueness of solutions, of hybrid systems is one of
the fundamental research topics, which the first author has collaborated with Prof.
Arjan van der Schaft in 1998. Some results are revisited by focusing on the class of
bimodal piecewise affine systems. The latter discusses the most recent topic that both
Arjan and the first author have common interest in. In particular, the clustering-based
H∞− and H2-model reduction approaches of large-scale network systems, which
have been independently developed by the authors, are represented in a unified way.

8.1 Introduction

I, the first author, has started with research topics on hybrid systems since I stayed in
Twente University for one year from May 1998 as a visiting researcher under Pro-
fessor Arjan van der Schaft. In those days, Arjan tried to publish a book entitled “An
Introduction to Hybrid Dynamical Systems” with van der Schaft and Schumacher
[1]. I had a lucky opportunity to read this first draft with great interest. In particu-
lar, the concept of complementarity systems and its well-posedness problem were
very impressive for me, and started with the well-posedness problem of bimodal
piecewise linear systems together with Arjan [2, 3]. Since then, this topic brought
me various kinds of results on modeling, analysis, and control synthesis of hybrid
systems including feedback well-posedness and stabilizability of piecewise affine
systems [4, 5], controllability analysis of piecewise affine systems [6, 7], discrete
abstraction of nonlinear systems [8], and so on. The first part of this article revisits
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the well-posedness issue of hybrid systems, which I look back with valuable collab-
oration with Arjan.

The second part focuses on more recent topic of model reduction of large-scale net-
work systems, which recently gave common interest to Arjan and myself. Throughout
the study of discrete abstraction of nonlinear systems, which produces a kind of graph
structure for approximately expressing complex system behavior based on bisimi-
larity notation, I and my colleagues also had great interest in model reduction of
large-scale network systems. We thus have developed a clustering-based approach in
the framework of projective model reduction [9–12], which we call clustered model
reduction. This is also a kind of structure-preserving model reduction methods. On
the other hand, for the concept of the port-controlled Hamiltonian systems preserving
the essential property of physical structure, proposed by Arjan and B.M. Maschke
(e.g., [13, 14]), the problem of model reduction preserving such physical structure is
naturally and relevantly induced. Most recently, Arian and his colleagues have solved
this problem by a clustering framework, where the strict H2 norm-approximation-
error evaluation and an extension to the case of second-order systems are provided
[15, 16]. This result is also based on the research works by H. Trentleman and his
colleagues [17]. The second part of this article provides a summary on our pre-
vious results including H2/H∞-norm-error evaluation and extensions to the case
of second-order subsystems in a unified way. We hope this unified approach will
provide any further common framework with the works by Arjan, Harry, and their
colleagues. In addition, as an application of clustered model reduction, we present
our recent result on the design of a projective state observer, which estimates the
average state behavior of large-scale network systems according to the above clus-
tered model reduction [18]. Numerical simulations on power systems show that the
method is effective.

Notation We denote the set of real numbers by R, the n-dimensional identity matrix
by In , the i th column of In by ei , the cardinality of a set I by |I|, the l p-norm of
a vector x by ‖x‖l p , the Frobenius norm of a matrix M by ‖M‖F, the l2-induced
norm of a matrix M by ‖M‖, and the l∞-induced norm of a matrix M ∈ R

n×m is
defined by

‖M‖l∞ := max
i∈{1,...,n}

m∑

j=1

|Mi, j |

where Mi, j denotes the (i, j)-element of M . The positive (negative) definiteness
of a matrix M = MT is denoted by M � 0(M ≺ 0). Furthermore, we denote
the block diagonal matrix having matrices M1, . . . , Mn on its block diagonal by
diag(M1, . . . , MN ). Finally, the H∞-norm and H2-norm of a stable transfer matrix
G are denoted by ‖G(s)‖H∞ and ‖G(s)‖H2 , respectively.
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8.2 Revisit: Well-Posedness of Piecewise Affine Systems

8.2.1 Motivating Example

Consider a 2-tank system in Fig. 8.1, where xi is the deviation of the water level from
the equilibrium state xie, and ui is the volume of water discharged from the tap i . We
assume that ui is an input, i.e., ui = uie, where uie is constant, and the valve at the
tap is open or closed according to the rule shown in Fig. 8.1. Equations of motion of
this system are given by

ẋ =

⎧
⎪⎪⎨

⎪⎪⎩

[−1 0
1 −1

]
x if x2 ≤ 1

[
0 0
0 −1

]
x +

[
u1e

−u1e

]
if x2 > 1

(8.1)

where x = [x1, x2]T . The coefficients are normalized to 1 for brevity, and the
equilibrium state and input satisfy −x1e + u1e = 0, −x2e + x1e + u2e = 0, x1e > 0,
and 0 < x2e < 1. Although this tank system is nonlinear, we here consider the
linearization of the system at the equilibrium since the solution behavior will be
essentially similar to that of the original system.

open   if
closed if

valve

Fig. 8.1 2-tank system with a valve

Fig. 8.2 Trajectories for the system in Fig. 8.1
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Figure 8.2 shows trajectories of the system from six different initial states. There
exists a sliding motion when x(0) = [2 2]T and [2 0.8]T, where, in fact, chattering
phenomena happen due to numerical simulation. Since we consider the Open/Closed
motion of the valve in this case, such phenomena is not desirable. It is important to
specify a condition on discontinuity of the vector field to avoid such phenomena.
The next section gives a solution to this question.

8.2.2 Well-Posedness Condition

Consider the discontinuous system

ẋ = f I (x) if x ∈ XI , I ∈ I, (8.2)

where x ∈ R
n , I = {1, 2, . . . , M}, and XI is a closed subset of Rn satisfying

intXI �= ∅,

M⋃

I=1

XI = R
n, intXI

⋂
intXJ = ∅.

Then a solution of this system is defined as follows:

Definition 8.1 (Extended Carathéodory solution) Suppose that an initial state x(t0)=
x0 ∈ R

n is given. Then if on [t0, t1) for some t1 > t0, x(t) satisfies

x(t) = x0 +
∫ t

t0
f I (τ )(x(τ ))dτ, (8.3)

and there is no left accumulation point of event times, x(t) is said to be a solution of
(8.2) on [t0, t1) in the sense of Carathéodory for x(t0) = x0.

Note that this notion of solutions does not admit sliding motions and left-Zeno
behavior, although the right-Zeno behavior is regarded as a solution. The system
(8.2) is said to be well-posed if for every initial state x(t0) ∈ R

n , there exists a right
unique extended Caratéodory solution of (8.2) on [t0,∞).

The notion of smooth continuation is very important for characterizing the well-
posedness property [19]. Consider a solution of ẋ = f I (x) in (8.2) with a fixed I .
If for an initial state x(t0) = x0 there exists an ε > 0 such that x(t) ∈ XI for all
t ∈ [0, ε], we say that smooth continuation is possible from x0 in XI . Furthermore,
we call the smooth continuation set, denoted by SI , the set of all x0 from which
smooth continuation is possible in XI .

Obviously SI ⊆ XI holds, and the smooth continuation set SI expresses the
region of existence of solutions x(t) of the system, while the difference set XI − SI

expresses all the state from which there exists no solution x(t).
Then we have the following theorem [3]:
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Theorem 8.2 The system (8.2) is well-posed if and only if the following two condi-
tions:

(a)
⋃

I∈I SI = R
n.

(b) For every I1, I2 ∈ I, there exists an ε > 0 such that both solutions x(t) of
ẋ = f I (x), I = I1, I2 are the same on [t0, t0 + ε) for every x0 ∈ SI1

⋂SI2 .

To derive an explicit representation of the above conditions, consider

ẋ =
{

A1x if Cx ≥ 0,

A2x if Cx ≤ 0.
(8.4)

Denote by T1 and T2 the observability matrices of (C, A1) and (C, A2), respec-
tively, and by m1 and m2 their observability indexes. We also letL+ be the set of n×n
lower triangular matrices with all diagonal elements positive. Then, the conditions
(a) and (b) in Theorem 8.2 are reduced into the following conditions [3]:

Theorem 8.3 The system (8.4) is well-posed if and only if the following conditions
hold:

(a) m1 = m2,
(b) T2 = MT1 for some M ∈ L+,
(c) (A1 − A2)x = 0 for all x ∈ KerT1.

The smooth continuation set for X1 := {x ∈ R
n | Cx ≥ 0} is given by S1 = {x ∈

R
n | T1x � 0}, where x � 0 expresses the lexicographic inequality, i.e., for each i ,

x j = 0 ( j = 1, 2, . . . , i − 1) and xi > 0, or x = 0. This comes from the fact that for
sufficiently ε > 0, y(t)(:= Cx(t)) = y(t0)+ ẏ(t0)(t − t0)+ ÿ(t0)(t − t0)2 +· · · ≥ 0
holds for all t ∈ [t0, t0 + ε). Thus S1

⋃S2 = R
n , which corresponds to condition

(a) in Theorem 8.2, implies condition (b) in Theorem 8.3. Conditions (a) and (c) in
Theorem 8.3 come from condition (b) in Theorem 8.2.

Note that the above conditions can be easily checked. A similar but rather compli-
cated necessary and sufficient condition can be obtained for bimodal piecewise affine
systems [4], and a sufficient condition for a multimodel piecewise affine system with
external inputs to be well-posed can be also obtained [5]. In addition, the feedback
well-posedness condition, which implies that the system can be made well-posed by
a feedback controller, can be characterized for bimodal piecewise affine systems [4].

8.3 Clustered Model Reduction of Network Systems

In this section, we briefly summarize our clustered model reduction method for linear
network systems, which belongs to a type of structured model reduction methods.
In this model reduction, toward the preservation of network structure of systems,
clustering of subsystems is performed according to a notion of uncontrollability of
local states, called cluster reducibility. All mathematical proofs of theoretical results
are omitted due to page limitation; see [9–12] for details.
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8.3.1 Clustered Model Reduction Problem

We first deal with a stable linear network system denoted by

Σ : ẋ = Ax + Bu, A ∈ R
n×n, B ∈ R

n, (8.5)

whose network structure is represented by the Boolean structure of A. For simplicity,
we consider only single-input systems while a similar result can be obtained also
for multi-input systems. To formulate a clustered model reduction problem for Σ in
(8.5), we introduce the following notion of network clustering:

Definition 8.4 For L := {1, . . . , L}, the family of an index set, {I[l]}l∈L, is called
a cluster set, each of whose elements is referred to as a cluster, if each element
I[l] ⊆ {1, . . . , n} satisfies

⋃

l∈L
I[l] = {1, . . . , n}, I[l] ∩ I[l ′] = ∅, l �= l ′.

Furthermore, an aggregation matrix compatible with {I[l]}l∈L is defined by

P := Πdiag(p[1], . . . , p[L]) ∈ R
n×L , (8.6)

where p[l] ∈ R
|I[l]| such that ‖p[l]‖ = 1, and the permutation matrix Π is defined as

Π := [eI[1] , . . . , eI[L] ] ∈ R
n×n, eI[l] ∈ R

n×|I[l]|.

In this definition, the aggregation matrix P clearly satisfies PT P = IL , i.e., all
column vectors of P are orthonormal. Using the aggregation matrix P in (8.6), we
define the aggregated model of Σ in (8.5) by

Σ̂ :
{

ξ̇ = PT APξ + PT Bu
x̂ = Pξ.

(8.7)

Note that each state of the aggregated model Σ̂ represents an approximant of the
clustered states, given by eT

I[l] x ∈ R
|I[l]|. The trajectory of each state of Σ̂ aims at

tracing the trajectory of a kind of centroid compatible with the clustered states of Σ .
In this notation, we formulate a clustered model reduction problem as follows:

Probelm 8.5 Let a stable linear system Σ in (8.5) be given. Given a constant ε ≥ 0,
find a stable aggregated model Σ̂ in (8.7) such that

‖G(s) − Ĝ(s)‖H2 ≤ ε or ‖G(s) − Ĝ(s)‖H∞ ≤ ε, (8.8)
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where

G(s) := (s In − A)−1 B, Ĝ(s) := P(s IL − PT AP)−1 PT B (8.9)

denote the transfer matrices of Σ and Σ̂ , respectively.

In traditional model reduction methods, each state of the reduced model is usually
obtained as a linear combination of all states of the original system [20]. This can
be rephrased as that the projection matrix has no specific sparse structure. Note that
the aggregation matrix P in (8.6) is block-diagonally structured. In this sense, our
problem formulation clearly contrasts with the traditional model reduction problems.

8.3.2 Controllability Characterizations for Clustered Model
Reduction

In systems and control theory, Σ in (8.5) is said to be controllable if there exists an
input function u such that the state x is moved from any initial state to any other final
state in a finite time interval. One best-known characterization of controllability is
the Kalman rank condition, i.e., Σ is controllable if and only if [B, AB, . . . , An−1 B]
has full row rank [20]. However, the Kalman rank condition is not necessarily useful
for model reduction because it cannot capture the controllability of systems quan-
titatively. Such a quantitative characterization of controllability plays an important
role in performing an approximation error analysis in model reduction.

In view of this, let us seek some other characterizations of controllability that
have good compatibility with model reduction. One of useful controllability charac-
terizations is given by the controllability Gramian, related to the H2-norm of linear
systems. It is known that a stable linear system Σ in (8.5) is controllable if and only
if the controllability Gramian, defined as

M :=
∫ ∞

0
eAt B(eAt B)Tdt ∈ R

n×n, (8.10)

is nonsingular. It will turn out below that this characterization based on the control-
lability Gramian can be used to evaluate the approximation error of clustered model
reduction in terms of the H2-norm.

To devise a controllability characterization compatible with the H∞-norm, we
provide the following lemma that gives a particular realization of Σ , called the
controller-Hessenberg form:

Lemma 8.6 For any linear system Σ in (8.5), there exists a unitary matrix H ∈
R

n×n such that A := HT AH ∈ R
n×n and B := HT B ∈ R

n are in the form of
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A =

⎡

⎢⎢⎢⎢⎢⎢⎣

α1,1 α1,2 · · · · · · α1,n

α2,1 α2,2 α2,3 · · · α2,n

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 αn,n−1 αn,n

⎤

⎥⎥⎥⎥⎥⎥⎦
, B =

⎡

⎢⎢⎢⎢⎢⎣

β1
0
0
...

0

⎤

⎥⎥⎥⎥⎥⎦
. (8.11)

Furthermore, the dimension of the controllable subspace of Σ is given by

ν :=
{

min
i∈{1,...,n−1}{i : αi+1,i = 0}, if

∏n−1
i=1 αi+1,i = 0,

n, otherwise.
(8.12)

Note that the controller-Hessenberg form of Σ in Lemma 8.6 has the serially
cascaded structure as shown in (8.11). From this particular structure, it follows that
Σ is controllable if and only if αi+1,i �= 0 for all i ∈ {1, . . . , n − 1}. Controlla-
bility characterizations in the following lemma will be used to give a solution to
Problem 8.5:

Lemma 8.7 Let a stable linear system Σ in (8.5) be given. For the controllability
Gramian M in (8.10), define ΦH2 ∈ R

n×n such that M = ΦH2Φ
T
H2

. Furthermore,
for A and B with H in Lemma8.6, define

ΦH∞ := Hdiag(γ1, . . . , γn) ∈ R
n×n, γi :=

∥∥∥eT
i (s In − A)−1B

∥∥∥H∞
. (8.13)

Then, Σ is controllable if and only if ΦHp is nonsingular, where p = 2 or p = ∞.

8.3.3 Clustered Model Reduction Theory

8.3.3.1 Exact Clustered Model Reduction

In this subsection, we first consider the case where no approximation error is caused
by the cluster aggregation. To do this, we introduce the following notion of the
reducibility of clusters:

Definition 8.8 Let a linear system Σ in (8.5) be given. A cluster I[l] is said to be
reducible if there exist a scalar rational function G�[l] and a vector η[l] ∈ R

|I[l]| such
that

eT
I[l] G(s) = η[l]G�[l](s), (8.14)

where G is defined as in (8.9).
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This definition of cluster reducibility represents that the states corresponding to
I[l] have the same trajectories for all input signals. The following theorem shows that
the cluster reducibility can be characterized by a kind of local singularity of ΦHp

defined in Lemma 8.7:

Theorem 8.9 Let a stable linear system Σ in (8.5) be given. With the same notation
as that in Lemma8.7, a cluster I[l] is reducible if and only if there exist φ�[l] ∈ R

1×n

and η[l] ∈ R
|I[l]| such that

eT
I[l]ΦHp = η[l]φ�[l], (8.15)

where p = 2 or p = ∞. In addition, if I[l] is reducible, then η[l] coincides with a
multiple of −eT

I[l] A−1 B. Moreover, if all clusters are reducible, then the aggregated

model Σ̂ in (8.7) given by p[l] = ‖η[l]‖−1η[l] is stable and satisfies

G(s) = Ĝ(s), (8.16)

where G and Ĝ are defined as in (8.9).

Theorem 8.9 shows that the cluster reducibility is characterized by linear depen-
dence among the row vectors of ΦHp . However, the cluster reducibility is generally
restrictive for the reduction of dimensions. This is because it represents a kind of
structured uncontrollability representing that the controllable subspace of eT

I[l] x is
one-dimensional.

8.3.3.2 Approximation Error Evaluation for Clustered Model Reduction

In what follows, aiming at more significant dimension reduction, we consider the
case where a degree of approximation errors is caused by cluster aggregation. In this
situation, even if the original system Σ in (8.5) is stable, the aggregated model Σ̂ in
(8.7) is not necessarily stable. In clustered model reduction, the stability preservation
is to be guaranteed on the basis of the following two facts:

Lemma 8.10 Let a stable linear system Σ in (8.5) be given. If

A + AT ≺ 0, (8.17)

then the aggregated model Σ̂ in (8.7) is stable for any cluster set {I[l]}l∈L.

Lemma 8.11 Let A ∈ R
n×n be such that

DA + AT D ≺ 0 (8.18)
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for a diagonal matrix D � 0. Then

Ã + ÃT ≺ 0, Ã := D
1
2 AD− 1

2 , (8.19)

where D
1
2 � 0 is a diagonal matrix whose diagonal elements are the square roots

of those of D.

Lemma 8.10 shows that, if A is negative definite as in (8.17), the stability of
aggregated models can be guaranteed for any choice of cluster sets. Furthermore,
Lemma 8.11 shows that any stable system having a diagonal Lyapunov function as
in (8.18) is diagonally similar to a system having a negative definite system matrix
as in (8.19). Note that a similarity transformation (coordinate transformation) by a
diagonal matrix does not break the network structure, i.e., the Boolean structure, of
the original system. Thus, by combining Lemmas 8.10 and 8.11, we can theoretically
guarantee the stability preservation in clustered model reduction for the class of
systems having diagonal Lyapunov functions.

In the following, focusing especially on this class of stable network systems,
we analyze the approximation error in clustered model reduction. To this end, we
introduce a weaker notion of cluster reducibility as follows:

Definition 8.12 Let a stable linear systemΣ in (8.5) be given. With the same notation
as that in Lemma 8.7, a cluster I[l] is said to be θ -reducible with respect to the Hp-
norm if there exists φ�[l] ∈ R

1×n such that

⎧
⎪⎨

⎪⎩

∥∥∥eT
I[l]ΦH2 − η[l]φ�[l]

∥∥∥
F

≤ √|I[l]| θ, p = 2,

∥∥∥eT
I[l]ΦH∞ − η[l]φ�[l]

∥∥∥
l∞

≤ θ, p = ∞
(8.20)

for η[l] = −eT
I[l] A−1 B.

In Definition 8.12, the constant θ ≥ 0 represents the degree of cluster reducibility.
In the case of p = 2, the scaling by

√|I[l]| is introduced for technical reasons. It
can be easily verified by Theorem 8.9 that the θ -reducibility with θ = 0 is equivalent
to the cluster reducibility in Definition 8.8. In the following theorem, on the basis
of the θ -reducibility, we perform approximation error evaluation in clustered model
reduction:

Theorem 8.13 Let a stable linear system Σ in (8.5) be given and assume that (8.17)
holds. Furthermore, let γ > 0 be such that

A + AT + γ −1(AAT + In) ≺ 0, (8.21)

and either p = 2 or p = ∞. If all clusters are θ -reducible with respect to the Hp-
norm, then the aggregated model Σ̂ in (8.7) given by p[l] = ‖η[l]‖−1η[l] is stable
and satisfies
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G(0) = Ĝ(0), ‖G(s) − Ĝ(s)‖Hp ≤ γ

√∑L
l=1|I[l]|(|I[l]| − 1) θ, (8.22)

where G and Ĝ are defined as in (8.9).

Theorem 8.13 shows a linear relation between the approximation error caused by
cluster aggregation and the parameter θ expressing the degree of cluster reducibility.
Thus, we can use θ as a criterion to regulate the approximation error of the resultant
aggregated model. In this sense, Theorem 8.13 gives a strategy for reasonable cluster
construction.

On the basis of the premise that θ ≥ 0 is given and ΦHp is calculated in advance,
we propose an algorithm to construct a set of θ -reducible clusters. Assuming that a set
of θ -reducible clusters I[1], . . . , I[l−1] are already formed, we consider determining
a new cluster I[l]. Let

N := {1, . . . , n}\
l−1⋃

i=1

I[i].

When constructing I[l], we first select an index j ∈ N . Then, letting either p = 2
or p = ∞, we find all indices i ∈ N such that

∥∥∥φi − ηiη
−1
j φ j

∥∥∥
l p

≤ θ, (8.23)

where φi ∈ R
1×n denotes the i th row vector of ΦHp and ηi ∈ R denotes the i th

entry of η = −A−1 B. We notice that (8.23) is a sufficient condition for (8.20) with
φ�[l] = η−1

j φ j ; thereby verifying that the new cluster I[l] is θ -reducible.

8.3.3.3 Generalization to Second-Order Networks

As giving an advanced result on clustered model reduction, we generalize the results
in Sect. 8.3.3.2 to those in the case of interconnected second-order systems. More
specifically, we deal with a class of interconnected second-order systems denoted by

Σ : ẍ + Dẋ + K x = Fu, (8.24)

where D = DT ∈ R
n×n and K = K T ∈ R

n×n are assumed to be positive definite,
and F ∈ R

n . The network structure of Σ can be represented as the Boolean structure
of K . Using the aggregation matrix P in (8.6), we define the aggregated model of Σ

in (8.24) by

Σ̂ :
{

ξ̈ + PT D P ξ̇ + PT K Pξ = PT Fu,

x̂ = Pξ.
(8.25)
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Note that the aggregated model Σ̂ is stable for any P because PT D P and PT K P
are also positive definite. In this notation, similarly to Problem 8.5, we address the
following clustered model reduction problem for interconnected second-order sys-
tems:

Probelm 8.14 Let a stable second-order system Σ in (8.24) be given. Given a con-
stant ε ≥ 0, find a stable aggregated model Σ̂ in (8.25) such that (8.8) for

G(s) := (s2 In + s D + K )−1 F, Ĝ(s) := P(s2 IL + s PT D P + PT K P)−1 PT F
(8.26)

denoting the transfer matrices of Σ and Σ̂ , respectively.

To give a solution to this problem, let us represent Σ in (8.24) by the first-order
form as

Σ :
{

Ẋ = AX + Bu,

x = C X,
(8.27)

where X := [xT, ẋT]T ∈ R
2n , and

A :=
[

0 In

−K −D

]
∈ R

2n×2n, B :=
[

0
F

]
∈ R

2n, C := [
In 0

] ∈ R
n×2n .

On the basis of this representation, as a generalization of Definition 8.12, we define
the notion of θ -reducibility for second-order systems as follows:

Definition 8.15 Let a stable second-order system Σ in (8.24) be given. For p = 2
or p = ∞, define ΦHp ∈ R

2n×2n similarly to those in Lemma 8.7. A cluster I[l] is
said to be θ -reducible with respect to the Hp-norm if there exist φ�[l] ∈ R

1×2n and

ψ�[l] ∈ R
1×2n such that

⎧
⎪⎪⎨

⎪⎪⎩

max
{∥∥∥eT

I[l]Φ
(1)

H2
− η[l]φ�[l]

∥∥∥
F
,

∥∥∥eT
I[l]Φ

(2)

H2
− η[l]ψ�[l]

∥∥∥
F

}
≤ √|I[l]|θ, p = 2

max

{∥∥∥eT
I[l]Φ

(1)

H∞ − η[l]φ�[l]
∥∥∥

l∞
,

∥∥∥eT
I[l]Φ

(2)

H∞ − η[l]ψ�[l]
∥∥∥

l∞

}
≤ θ, p = ∞

for η[l] = −eT
I[l] K

−1 F , where Φ
(1)

Hp
∈ R

n×2n and Φ
(2)

Hp
∈ R

n×2n denote the upper
and lower half components of ΦHp , respectively.

In Definition 8.15, Φ(1)

Hp
and Φ

(2)

Hp
correspond to the controllability Gramians with

respect to the position and velocity of states. Then, Theorem 8.13 can be generalized
to second-order systems as follows:

Theorem 8.16 Let a stable second-order system Σ in (8.24) be given. If all clusters
are θ -reducible for the Hp-norm, then the aggregated model Σ̂ in (8.25) given by
p[l] = ‖η[l]‖−1η[l] is stable and satisfies (8.22) for (8.26) with
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γ := √
2

∥∥∥∥PT
(

s2 IL + s PT D P + PT K P
)−1 [

PT K PT D
]

−
[

In 0
]∥∥∥∥H∞

.

Similarly to Theorem 8.13, we can derive an approximation error bound for clus-
tered model reduction of second-order systems. In Theorem 8.16, even though the
value of γ is not computable a priori, i.e., before determining the aggregation matrix
P , the parameter θ can be used to regulate the approximation error of the resultant
aggregated model.

8.3.4 Application to Average State Observer

Based on the results of Sect. 8.3.3, this section presents a design method of reduced-
order observers for average state estimation of large-scale network systems, which
we called here a projective state observer. This has been developed by the authors
and their colleagues [18]. It is remarked that the physical meaning of the average
state variable of the original systems can be preserved in the obtained reduced-order
observer by using a block-diagonal structured projection matrix.

Consider also a stable linear system Σ of (8.5) as a large-scale network system,
where the measurement output y ∈ R

my is given by y = Cx , and u ∈ R
mu (i.e.,

B ∈ R
n×mu ). Motivated by a reduced-order model of Σ given by Σ̂ of (8.7), we

consider the following observer, called here a projective state observer:

O :
{ ˙̂x = PTAPx̂ + PT Bu + H(y − CPx̂)

z = x̂ .
(8.28)

Then the projective state observer problem is to find P and H such that the
estimation error Px − x̂(=: e) is within the specified precision. The dynamics of the
error system is given by

[
ė
ẋ

]
=
[

PTAP − HCP (PT A − HC)(In − PPT)

0 A

] [
e
x

]
+
[

0
B

]
u. (8.29)

Thus the estimation error depends on the external input u and the initial state x0 as
well as the initial estimation error e0, which is denoted by e(t) = e(t; e0, x0, u).
Since the dynamics of the error system is linear, we can independently consider
e(t; e0, 0, 0), e(t; 0, x0, 0), and e(t; 0, 0, u). For simplicity of explanation, we only
consider here the case of e(t; 0, 0, u). See [18] for further details. In this case, owing
to the cascaded structure of the error dynamics, the estimation error with for an
impulse input u is characterized by

‖e(t; 0, 0, u)‖L2 ≤ ‖Γ (s)‖H∞‖(I − P PT)(s I − A)−1 B‖H2 (8.30)
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whereΓ (s) is given by a certain system that includes P and H . Thus for a given ε > 0,
we first consider to determine P such that ‖(I − PPT)(s I − A)−1 B‖H2 ≤ ρ, which
can be solved by the clustered model reduction, and then for a given P , determine
H in solving a kind of H∞ state feedback control problem with ‖Γ (s)‖H∞ ≤ ε/ρ.

Figure 8.3 shows a network of 54 power generators based on the IEEE 118 bus
system, where each generator has two-dimensional system, and its reduced-order
network model of 9 dimension obtained according to the above model reduction pro-
cedure. We also show the average behavior of the state variable (i.e., angular velocity
ωi ) of the original system with solid lines and the corresponding state behavior of the
projective state observer with dotted lines in Fig. 8.4. We can see that both trajectories
are almost the same and the proposed observer works effectively.

sensor

external
input

Original model (108-dim) Reduced-order model (9-dim)

Fig. 8.3 Power network based on IEEE 118 bus system
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Fig. 8.4 Simulation result of a projective state observer
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8.4 Conclusion

This article discussed two topics, i.e., one the revisit of the well-posedness issue of
hybrid systems, and the other is the clustered model reduction of large-scale network
systems. The former treats how to characterize an essential structure of mathematical
models including switching phenomena in a proper way, while the latter deals with
how to extract a strongly controllable network system from a large-scale network
system. In this sense, their research directions are very similar, and the beginning of
them was the first author’s stay at Twente University under Arjan’s host.
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