
Chapter 5
Handling Biological Complexity Using Kron
Reduction

Bayu Jayawardhana, Shodhan Rao, Ward Sikkema and Barbara M. Bakker

Abstract We revisit a model reductionmethod for detailed-balanced chemical reac-
tion networks based on Kron reduction on the graph of complexes. The resulting
reduced model preserves a number of important properties of the original model,
such as, the kinetics law and identity of the chemical species. For determining the
set of chemical complexes for the deletion, we propose two alternative methods to
the computation of error integral which requires numerical integration of the state
equations. The first one is based on the spectral clustering method and the second
one is based on the eigenvalue interlacing property of Kron reduction on the graph.
The efficacy of the proposed methods is evaluated on two biological models.

5.1 Introduction

Since this chapter is dedicated to Prof. Arjan van der Schaft, we first describe his early
work on port-Hamiltonian systems and passivity theory and then describe how his
work on chemical reaction network theory which is one of his most recent ventures,
is connected with these two concepts. Beginning in the early 1990s, van der Schaft
in collaboration with Maschke and Breedveld (see [13–16, 29]), began his work
on port-controlled Hamiltonian systems which are commonly referred to as port-
Hamiltonian systems. The framework of port-Hamiltonian systems combines the
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earlier well-known Hamiltonian systems framework in which the system is modeled
by using its total stored energy or the Hamiltonian, and the network framework
which uses nodes and edges, and is commonly used to model electrical systems. For
a detailed explanation of port-Hamiltonian systems, the reader is referred to [26, 27].
The port-Hamiltonian framework allows mainly modeling of passive electrical and
mechanical systems.Bypassive systems,wemean systems forwhich the derivative of
the Hamiltonian with respect to time is nonpositive due to dissipation. This derivative
is equal to zero for lossless systems and negative for systems with dissipation.

In a first attempt to extend the port-Hamiltonian framework for the modeling of
chemical reaction networks, in collaborationwithMaschke, van der Schaft published
a chapter in Springer lecture notes [28] in 2011. In this work, the Gibbs free energy of
a chemical reaction network is considered as the Hamiltonian for its modeling. This
workwas inspired by the innovative work of Oster, Perelson, andKatchalsky [19, 20]
in the area of chemical reaction networks. Later, he refined this work in collaboration
with Rao and Jayawardhana who are two of the authors of this manuscript.

Deriving inspiration from the work of Horn, Jackson and Feinberg [5, 8, 9], who
can arguably be considered as the founding fathers of chemical reaction network
theory, we made a couple of observations. First an easy way of modeling chemical
reaction networks is to make use of graphs of complexes of chemical reaction net-
works. The complexes of a chemical reaction network are the combination of species
of the various left- and right-hand sides of the different reactions in the network. The
graph of complexes is simply a graph with complexes as nodes and reactions as
edges. The complex composition matrix Z , which captures the expression of the
various complexes in terms of its constitutive species, and the incidence matrix B
corresponding to the graph of complexes can then be used to derive an expression
describing the dynamics of a chemical reaction network, given by ẋ = Z Bv, where x
denotes the vector of concentrations of the different species and v denotes the vector
of the rates of the reactions in the network.

In their seminal papers published in the early 1970s, Horn, Jackson, and Feinberg
[6, 8, 9] mainly considered a special class of chemical reaction networks known as
complex-balanced networks. A complex-balanced network is one for which there
exists a vector of species concentrations at which the combined rate of outgoing
reactions from any complex is equal to the combined rate of incoming reactions
to the complex, i.e., in some sense each complex of the network is balanced. A
detailed-balanced network is a complex-balanced network for which there exists a
vector of species concentrations at which the rate of each of the reactions in the
network is zero, i.e., in addition to each complex being balanced, each reaction in
the network is also balanced. The second observation that we made from [6, 8, 9]
is that it is possible to derive a compact mathematical formulation describing the
dynamics of complex and detailed-balanced networks in terms of a known equi-
librium concentration vector, and a weighted Laplacian matrix corresponding to
the graph of complexes. This weighted Laplacian matrix is symmetric in the case of
detailed-balanced networks, and is balancedmeaning that it has zero row and column
sums in the case of complex-balanced networks. These properties of the weighted
Laplacian matrix allows simple derivation of the previously well-known results
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from [8, 25] regarding equilibria and asymptotic stability of detailed- and
complex-balanced networks (see [23, 30]). It can be shown that our compact mathe-
matical formulation admits a direct port-Hamiltonian interpretation, using the Gibbs
free energy of the network as the Hamiltonian and it can be shown that complex-
balanced networks are passive systems (see [31] for details).

The graph-theoretic approach for the analysis of detailed- and complex-balanced
networks also led to the idea of using the Kron reduction method to reduce models of
such networks. Kron reduction method is a well-known method for model reduction
of electrical networks (see, for example, [12] and an article written by van der Schaft
in [32]) and other complex-networked systems (we refer interested readers to a recent
article in [3]). This method exploits the balancedness of the weighted Laplacian
matrix which we use in our compact mathematical formulation for the network,
in order to perform a meaningful deletion of certain complexes of the network,
thereby rewiring the graph of complexes and reducing the number of variables in the
corresponding model. In collaboration with two system biologists, Bakker (another
author of this chapter) andvanEunen from theCenter for SystemsBiology,University
of Groningen, we generalized this model reduction method so as to be applicable for
reaction networks that are governed by a variety of general enzyme kinetic rate laws,
involving external inflows and outflows and are not necessarily complex balanced
(see [22]). The reader is referred to [21, 22] for the current state of the art in the area
of model reduction of biochemical reaction networks. Below, the main features of
the model reduction method described in [22] are highlighted.

The method described in [22] reduces the number of reactions, species, and para-
meters in such a way that the transient behavior of the species concentrations of the
reduced model under certain predefined conditions are close to those of the origi-
nal model. This method proceeds by a simple stepwise reduction in the number of
complexes, the effect of which is monitored by an error integral that quantifies how
much the transient behavior of the reduced model deviates from that of the original.
This method does not rely on prior knowledge about the dynamic behavior or bio-
logical function of the network. Consequently, it can be automated. Furthermore, the
reduced model largely retains the kinetics and structure of the original model. This
enables a direct biochemical interpretation and yields insight into which parts of the
network have the highest influence on its behavior. It also accelerates computations
and facilitates parameter fitting, especially when we deal with models of huge bio-
chemical reaction networks. One of the drawbacks of this method is that it relies on
the computation of error integral which could be time-expensive and depends on a
number simulations which increases with the size of the model.

The main contribution of this chapter is to propose two alternative methods to
the computation of error integral for determining the best combination of complexes
that should be removed from the original network. We restrict ourselves to the class
of detailed-balanced chemical reaction networks governed by the law of mass action
kinetics. Thermodynamically, the assumption of detailed-balancedness of any reac-
tion network without external fluxes is well-justified as it corresponds to microscopic
reversibility.
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The first method is based on the spectral clustering method on a graph which has
been used to solve the ratio-cut and normalized-cut problems [33]. In graph theory,
they are related to the problem of clustering the vertices in a graph such that the
cost function associated with the weights of the cut-sets1 is minimized. It has been
applied widely for signal and image analyses [24, 33]. In our present context, we
adapt the spectral clustering method to cluster complexes, thereby modifying the
graph of complexes. Based on the clustering, we can pick complexes for the deletion
from weakly coupled clusters since these clusters have minimal influence on the rest
of the network.

The second method is based on the interlacing property of eigenvalues of Lapla-
cianmatrices associated with undirected graphs. From the classical work of Haemers
[7], it is known that Laplacian matrices associated with graphs obey certain eigen-
value interlacing properties. In particular, it is known that the eigenvalues of any
principal sub-matrix of a symmetric matrix interlace with the eigenvalues of the
original matrix. As a direct consequence, for an undirected graph, the eigenvalues
of any Schur complement of the corresponding symmetric Laplacian matrix (which
defines the Kron reduction of a graph as will be explained later) interlace with the
eigenvalues of the original Laplacian matrix. Based on this property, in our second
approach, we look for the best combination of complexes to be deleted by finding
a principal sub-matrix that results in a tight eigenvalue interlacing. This approach
can be interpreted as finding the set of complexes with fast dynamics and a weak
coupling to the rest of the network.

The layout of the chapter is as follows. In Sect. 5.2, we describe the modeling
procedure for detailed-balanced mass action kinetics networks using a weighted
Laplacian matrix corresponding to the graph of complexes. In Sect. 5.3, we review
Kron reduction method for an undirected graph and its application to our chemical
reaction network setting as proposed in [22]. The proposed spectral-based approaches
are discussed in Sect. 5.4 and the efficacy of our proposed methods are evaluated in
Sect. 5.5.
Notation: The space of m-dimensional real vectors is denoted by R

m , the space of
m-dimensional real vectors consisting of all strictly positive entries by R

m+ and the
space of m-dimensional real vectors consisting of all nonnegative entries by R̄

m+.
Given a1, . . . , an ∈ R, diag(a1, . . . , an) denotes the diagonal matrix with diagonal
entries a1, . . . , an . The time-derivative dx

dt (t) of a vector x depending on time t will
be denoted by ẋ(t) or ẋ . The mapping Ln : R

m+ → R
m, x �→ Ln(x), is defined

as the mapping whose i th component is given as (Ln(x))i := ln(xi ). Similarly, the
mapping Exp : Rm → R

m+, x �→ Exp(x), is the mapping whose i th component is
given as (Exp(x))i := exp(xi ). Also, for any vectors x, z ∈ R

m the vector x
z ∈ R

m

is defined as the elementwise quotient
(

x
z

)
i
:= xi

zi
, i = 1, . . . , m.

For n ∈ N, we define the index set In := {1, . . . , n}. For describing sub-matrices,
we will use the following notations throughout the paper. Let a, b ⊂ In be two given
subindices of In . The sub-matrix of a matrix L ∈ R

n×n whose rows are indexed by

1Cut-sets are the edges that connect the vertices of the different clusters.
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a and columns are indexed by b is denoted by L[a, b]. Correspondingly, we define
the complementary sub-matrices L[a, b),L(a, b],L(a, b) as follows:

L[a, b) := L[a, In\b], L(a, b] := L[In\a, b], L(a, b) := L[In\a, In\b].

For a symmetric matrixL ∈ R
c×c, we arrange the eigenvalues in an increasing order

so that
λ1(L) ≤ λ2(L) ≤ · · · ≤ λc(L).

5.2 Detailed-Balanced Chemical Reaction Networks

In this section, we describe the modeling procedure of detailed-balanced mass action
networks as in [30]. Consider a reversible reaction networks with r reversible reac-
tions among m chemical species. Assume that the reaction network has c complexes
whose expression in terms of the species can be described using the complex compo-
sition matrix Z of dimension m × c. The i th column of Z expresses the composition
of the i th complex of the network in terms of its m species. As an example, the
complex composition matrix for the following reversible network:

2X1 + X2 � X3 � X1 + 2X2 (5.1)

is given by

Z =
⎡
⎣
2 0 1
1 0 2
0 1 0

⎤
⎦

The graph of complexes corresponding to a reversible reaction network is a directed
graph with complexes as nodes and one edge corresponding to each reversible reac-
tion with direction of the edge given by that of the forward reaction. Note that the
modeling and model reduction can be carried out irrespective of the direction that is
chosen for the edge corresponding to each of the reversible reactions of the network.
One can associate an incidence matrix B of dimension c × r corresponding to the
graph of complexes for which the j th column refers to the j th reaction of the net-
work. If this reaction has the pth complex as the substrate and the qth complex as the
product, then the j th column of B has −1 as its pth element, +1 as its qth element
and all the remaining elements equal to 0. For example, the incidence matrix of the
reaction network (5.1) is given by

B =
⎡
⎣

−1 0
1 −1
0 1

⎤
⎦
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Now if v ∈ R
r denotes the vector of reaction rates and x denotes the vector of species

concentrations, then the dynamics of the reaction networks can be described using
the equation

ẋ = Z Bv

Note that v as a function of x depends on the governing law of the reaction network.
Here we describe how v can be written as a function of x in case the governing law
is mass action kinetics.

The mass action reaction rate of the j th reaction of a chemical reaction network,
from a substrate complex S j to a product complex P j , is given as

v j (x) = kforwj

m∏
i=1

x
ZiS j
i − krevj

m∏
i=1

x
ZiP j
i , (5.2)

where Ziρ is the (i, ρ)th element of the complex stoichiometric matrix Z , and
kforwj , krevj ≥ 0 are the forward and reverse reaction constants of the j th reaction,
respectively.

Equation (5.2) can be rewritten in the following way. Let ZS j and ZP j denote
the columns of the complex stoichiometry matrix Z corresponding to the substrate
complex S j and the product complex P j of the j th reaction. Using the mapping
Ln : Rc+ → R

c as defined at the end of the Introduction, the mass action reaction
Eq. (5.2) for the j th reaction takes the form

v j (x) = kforwj exp
(
Z T
S j
Ln(x)

) − krevj exp
(
Z T
P j

Ln(x)
)
. (5.3)

At this point, we define a detailed-balanced chemical reaction network. A vector of
concentrations x∗ ∈ R

m+ is called a thermodynamic equilibrium if v(x∗) = 0. Note
that at a thermodynamic equilibrium, the rate of each of the reactions in the network
is zero. A chemical reaction network ẋ = Z Bv(x) is called detailed balanced if
it admits a thermodynamic equilibrium x∗ ∈ R

m+. It can be shown that a detailed-
balanced network is necessarily reversible. Note that x∗ ∈ R

m+ is a thermodynamic
equilibrium, i.e., v(x∗) = 0, if and only if

kforwj exp
(
Z T
S j
Ln(x∗)

) = krevj exp
(
Z T
P j

Ln(x∗)
)
, j = 1, . . . , r

Define the ‘conductance’ κ j (x∗) > 0 of the j th reaction as the common value of the
forward and reverse reaction rates at thermodynamic equilibrium x∗, i.e.,

κ j (x∗) := kforwj exp
(

Z T
S j
Ln(x∗)

)
= krevj exp

(
Z T
P j

Ln(x∗)
)

, j = 1, . . . , r

Then the mass action reaction rate (5.3) of the j th reaction can be rewritten as

v j (x) = κ j (x∗)
[
exp

(
Z T
S j
Ln

( x

x∗
))

− exp
(

Z T
P j

Ln
( x

x∗
))]

,
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where for any vectors x, z ∈ R
m the quotient vector x

z ∈ R
m is defined elementwise

(see the end of the Introduction).
Defining the r × r diagonal matrix of conductances as

K := diag
(
κ1(x∗), . . . , κr (x∗)

)

it follows that the mass action reaction rate vector of a balanced reaction network
can be written as

v(x) = −KBTExp
(

Z TLn
( x

x∗
))

,

and thus the dynamics of a balanced reaction network takes the form

ẋ = −Z BKBTExp
(

Z TLn
( x

x∗
))

, K > 0 (5.4)

ThematrixL := BKBT in (5.4) defines aweighted Laplacian matrix for the complex
graph, with weights given by the conductances κ1(x∗), . . . , κr (x∗). Note that L is
symmetric. Thus Eq. (5.4) can be written as

ẋ = −ZLExp
(

Z TLn
( x

x∗
))

(5.5)

The above equation is the compact mathematical formulation that was referred to in
the Introduction, which is written in terms of a symmetric weighted Laplacian matrix
L and a known equilibrium concentration vector x∗ of the network. In addition to the
system equation in (5.5), we define the output function y that represents measured
or important variables (species concentrations) as follows:

y = Cx (5.6)

where y ∈ R
p is the vector of output variables and C ∈ R

p×m . Note that y is
typically a subset of the set of species, in which case, the matrix C is defined simply
by an indicator matrix. We will use this output function to measure the quality of our
model reduction method.

5.2.1 Detailed-Balanced CRN with General Kinetics

When enzymatic reactions or allosteric regulation are involved in the network, as
commonly found in metabolic pathways, we can generalize (5.5) to take these into
account. For describing such reactions, the mass action reaction rate as in (5.2), for
every j th reaction, can be generalized to
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v j (x) = d j (x)

(
kforwj

m∏
i=1

x
ZiS j
i − krevj

m∏
i=1

x
ZiP j
i

)
, (5.7)

where, d j : Rn → R+ is a positive definite function. In this new formulation, the
function d j models a sigmoidal/Hill function or another nonlinear function that is
associated with an enzymatic reaction or allosteric regulation.

Following similar steps as in the mass action case, the detailed-balanced CRN
with general kinetics2 as in (5.7) can be described by

ẋ = −ZL(x)Exp
(
Z TLn

( x
x∗

))
y = Cx

}
(5.8)

where the state-dependent weighted balanced Laplacian matrix L(x) is defined by

L(x) := B diag
(
d1(x), . . . , dr (x)

)K BT

with K denoting the conductance matrix as before.

5.3 Kron Reduction

Consider again the graph of complexes of a detailed-balanced CRNwith mass action
kinetics as discussed in Sect. 5.2 where a weighted Laplacian matrix L has been
defined to describe the interconnecting complexes and their associated reaction rates
in (5.5). Similar to the Kron reduction method for electrical circuits, we can poten-
tially reduce the dimension of CRN in (5.5) by applying Kron reduction to the graph
of complexes.

The Kron reduction of a detailed-balanced chemical reaction network results in
another detailed-balanced chemical reaction network, the vertices of whose complex
graph is a subset of the vertices of the complex graph corresponding to the original
network. Suppose that Cred ⊂ Ic is the set of vertices (i.e., complexes) that we wish
to remove from the complex graph corresponding to the original network. Then the
Kron reduction of the network results in another detailed-balanced chemical reaction
network, whose corresponding Laplacian matrix Lred is the Schur complement of L
with respect to L[Cred , Cred ], given by

Lred = L(Cred, Cred) − L(Cred, Cred]
(
L[Cred, Cred]

)−1 L[Cred, Cred).

The fact thatLred is again a symmetricLaplacianmatrix has been shown, for instance,
in [3, Lemma 2.1].

2For a detailed exposition on detailed-balanced CRNs with general kinetics, we refer interested
readers to our work in [10].
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The dynamics of the Kron-reduced CRN is then given by

ẋ = −Z [Ic, Cred)LredExp
(

Z [Ic, Cred)TLn
( x

x∗
))

yred = Cx
.

}
(5.9)

Since some of the complexes have been removed from the original state equations,
some species in the image of Z [Ic, Cred] can be constant, in particular, if they are not
in the image of Z [Ic, Cred). These species can therefore be removed from the state
equation, leading to a reduced model. For a detailed-balanced CRN with general
kinetics, the Kron reduction method follows the same procedure as above.

The following lemma establishes the spectrum relation of Lred and its original
Laplacian L, which will be useful for our determination of the complex combination
for the deletion.

Lemma 5.1 Consider a weighted symmetric Laplacian matrixL of a complex graph
and its associated Kron-reduced Laplacian Lred with respect to a set of deleted
complexes Cred. Let k = dim(Cred). Then for every i = 1, . . . , c − k,

λi (L) ≤ λi (Lred) ≤ λi (L(Cred, Cred)) ≤ λi+k(L),

where λi (L) (or λi (Lred)) is the i th eigenvalue of L (or Lred, respectively).

The proof of this lemma follows from [7, Theorem 2.1] or a recent exposition
of Kron reduction on graph in [3, Theorem 3.5]. It follows immediately from this
lemma that if dim(Cred) = 1 then

λ1(L) ≤ λ1(Lred) ≤ λ2(L) ≤ λ2(Lred) ≤ · · · ≤ λc−1(Lred) ≤ λc(L).

In other words, the eigenvalues of Lred interlace those of L.

5.3.1 Error Integral

Although the Kron reduction method as described above involves a fairly straight-
forward computation, it is not obvious how to determine the set of complexes for
removal such that the dynamic behavior of the Kron-reduced CRN remains close to
that of the original one.

One approach to do that, which has been proposed in our previous work [22], is
to perform an iterative Kron reduction method where at each iteration a removal of a
complex thatminimizes a cost function is sought for. Sincewe use the output function
to assess the quality of model reduction method, it is assumed that the complexes
containing the chemical species in y do not belong to Cred. Based on this assumption,
the cost function as given in [22] is a normalized error integral that is defined by
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J (x) =
p∑

i=1

1

T p

∫ t+T

t

∣∣∣∣1 − yi,red(τ )

yi (τ )

∣∣∣∣ dτ , (5.10)

where yi,red and yi are the i th output of the reduced model (5.9) and of the full
model (5.6), respectively. This cost function evaluates the discrepancy of the reduced
model’s transient behavior compared with that of the full model one on the interval of
[t, t +T ]. It is normalized with respect to the total number of output variables and the
length of time interval. Although other type of functions, such as, an L p-norm-based
cost function, can be used instead of (7.10), the normalized error integral as in (7.10)
has been found to be effective in our numerical simulations.

One can show that the Kron reduction with respect to a given set of complexes
to be deleted Cred can be done by an iterative Kron reduction with respect to each
individual complex in Cred (see, for example, [3, Lemma 3.3]) and is invariant to the
order of complex deletion. This fact supports the aforementioned iterative procedure
of finding the combination of complexes for removal.

5.4 Spectral-Based Approaches

In this section, we present two alternative approaches to the iterative procedure of
the previous section, for finding the combination of complexes for removal. These
approaches are based on the spectral property of L (or L(x) for the case of detailed-
balanced CRN with general kinetics) so that they do not depend on the numerical
integration of the state equations as in (7.10). We show the approach assuming that
the complex graph is connected. In case of graphs having more than one connected
component, the same approach can be applied for each connected component. Hence,
in the following we assume that L has eigenvalue 0 with multiplicity 1 so that
λ2(L) > 0.

5.4.1 Spectral Clustering-Based Approach

For our first approach, we will consider clustering vertices of the complex graph
into k clusters such that the combined weight of edges between vertices belonging to
different clusters isminimized.More precisely, let us consider the followingRatioCut
problem [33]

min
C�

�=1,...k

k∑
�=1

W (C�, C�)

dim(C�)
,

where C� denotes the set of vertices (or complexes) in the �th cluster, C� is the
complement of C� defined by C� := Ic\C� and W (C�, C�) is the sum of weights in

http://dx.doi.org/10.1007/978-3-319-20988-3_7
http://dx.doi.org/10.1007/978-3-319-20988-3_7
http://dx.doi.org/10.1007/978-3-319-20988-3_7
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the cut-set of the cut (C�, C�), i.e.,

W (C�, C�) =
∑

i∈C�, j∈C�

−Li, j .

This RatioCut problem can be recasted into another equivalent form by using clus-
tering (or indicator) vectors u� = [

u1,� . . . uc,�
]T , � = 1, . . . , k defined by

u j,� =
{

1√
dim(C�)

if j ∈ C�

0 otherwise,

which are orthonormal vectors. Using u�, the RatioCut clustering problem can be
reformulated as follows:

min
C�

�=1,...k

k∑
�=1

W (C�, C�)

dim(C�)
= min

C�
�=1,...k

k∑
�=1

uT
� Lu� = min

C�
�=1,...k

Tr(U TLU ),

where Tr is the trace of a matrix and U = [
u1 u2 . . . uk

]
satisfies U T U = Ik×k .

Instead of findingminimizing clustering vectors u� which can be NP-hard, we can
look for any orthonormal vectors u� that minimize the following relaxed RatioCut
problem

min
U∈Rc×k

Tr(U TLU ) subject to U T U = Ik×k .

Basedon the solutionU to this relaxedproblem,we cluster the vertices by considering
the rows of U as points in the k-dimensional space and by clustering these c points3

into k clusters using any distance metric. For instance, we can apply the standard
k-means algorithm to cluster these points. The resulting clustering result is known
to approximate the solution to the original RatioCut problem [33].

Finally, we propose the following algorithm to find the candidate Cred for our
Kron reduction:

Spectral clustering-based algorithm:

1. Set k = 2 and calculate L (or L(x) with x be taken as the species concentration
in a given steady state).

2. Obtain k clusters of vertices: C1, . . . , Ck , based on the approximate solution to
the aforementioned RatioCut problem.

3. If y ∩ Ci �= ∅ for every i = 1, . . . , k (i.e., every cluster contains some elements
of y) then increment k by one (i.e., increase the number of cluster) and return to
Step 2. Otherwise define Cred as the union of all sets Ci , i = 1, . . . , k, such that
y ∩ Ci = ∅ and we can choose4 Cred ⊂ Cred .

3For every i = 1, . . . , c, the i th row of U corresponds to the i th vertex.
4One can again perform the interative procedure as in Sect. 5.3 to obtain the best combination of
complexes Cred from Cred .
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5.4.2 Minimal Eigenvalue Interlacing-based Approach

If one considers that the dynamics of CRN can have multiple timescales since the
eigenvalues of L are related to the rate of decay of complexes, then one can consider
removing fast complexes that haveminimal influence on the dynamics of the network.
This can be done by minimizing the eigenvalue interlacing distance. In this regard,
the interlacing property as in Lemma 5.1 can be useful as we demonstrate below.

Suppose thatwe are looking for a combination of k vertices to be removed forKron
reduction. In order to minimize the influence of the to-be-removed complexes on the
rest of the network, we can determine Cred which solves the following minimization
problem:

min
Cred∈(Ic\y

k )

c−k∑
i=2

λi (Lred) − λi (L), (5.11)

where
(Ic\y

k

)
is the set of all k-combination from the admissible set of complexes for

the deletion Ic\y. Note that the cost function as used above is nonnegative according
to the interlacing property in Lemma 5.1.

We summarize our second proposed approach in the following algorithm:

Minimal Eigenvalue Interlacing-based algorithm:

1. Set k = 1, set an (averaged and normalized) interlacing distance threshold ε > 0
and calculate L (or L(x) with x taken as the species concentration in a given
steady state).

2. Solve the minimization problem of eigenvalue interlacing as in (5.11). Denote its
solution by Cred.

3. If
1

c − k − 1

c−k∑
i=2

λi (Lred) − λi (L)

λi (L)
< ε (5.12)

then increment k by one and return to Step 2. Otherwise set Cred from the previous
iteration as the desired set of complexes for removal.

Note that in the summation on the left-hand side of (5.12), last term, i.e., the term
corresponding to i = c − k, contributes much more than the other terms. Therefore,
the left-hand side of (5.12) may not be easily interpreted as the normalized deviation
of eigenvalues, as will be shown later in the simulation results. One way to overcome
this problem is to modify condition (5.12) as

1

N − 1

N∑
i=2

λi (Lred) − λi (L)

λi (L)
< ε (5.13)

where N ≤ c − k is the number of the smallest eigenvalues that are considered to be
important.
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5.5 Numerical Simulation Results

We evaluate the efficacy of our proposed approaches using two different models.
The first one is based on the glycolysis model which has been used in our model
reduction paper [22]. The second one is an arbitrary model that is taken from the
BioModels database on biological models [1]. This is a model of insulin-dependent
glucose metabolism as proposed and studied in [18].

5.5.1 Glycolysis Model

Thismodel describes the glycolysismetabolismbased on thework in [4]. The original
model in [4] consists of 12 species and 12 reactions and it has successfully been
reduced using our Kron reduction approach in [22] to 7 species and 7 reactions. In
Table5.1 below, we reproduce the complexes that are removed at each step of the
iterative reduction procedure as described before in Sect. 5.3.

Using the same numerical values as in [22], we apply the spectral clustering-based
algorithm to obtain 7 clusters of complexes as shown in Fig. 5.1. It can be seen that
four of the complexes in Table5.1 are in clusters C2 and C6 which do not contain
any important variables as marked in red color in Fig. 5.1. Since these clusters have
minimal cut-set with their neighbors, the corresponding vertices/complexes can be
deleted using Kron reduction and it is expected to give us a good reduced model
(cf. Table5.1). Indeed, if we take Cred = {G6P, F6P, P2G, PEP} then the numerical
simulation result gives us an error integral of 0.0701.

We now apply our second proposed approach, i.e., the minimal eigenvalue
interlacing-based algorithm to this model and the results are shown in Tables5.2
and 5.3. From both tables, minimizing the interlacing distance for the first couple
of eigenvalues (where we have considered the second and third eigenvalues for the
results shown in the lower rows of Tables5.2 and 5.3) provides a reasonably good
combination of complexes for Kron reduction. In particular, if we choose ε = 0.1
(i.e., the deviation of eigenvalues of the reducedmodel should deviate less than 10%,
in average, from those of the full one), then the application of (5.13) leads to F6P

Table 5.1 Order of complex
removal using the iterative
procedure for the glycolysis
model as in [22]

Iteration step Complex removed Error integral

1 F6P 0.0002

2 G6P 0.0005

3 P2G 0.0049

4 P3G 0.0147

5 PEP 0.0483
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Fig. 5.1 The clustering of complexes in the glycolysis model as used in [22] into 7 clusters using
the proposed spectral clustering-based algorithm. The clusters are indicated by the dashed-line
boxes and the labels Ck , k = 1, . . . , 7 are given on the top-right corner of each boxes. The model
contains 13 complexes that form a complex graphwith three connected components (see [22] for the
description and an explanation of all the abbreviations of the complexes). The text in red indicates
the species defined in output variable y. The number on top of every edge shows the edge weight
which are taken from the adjacency matrix in the Laplacian matrix L(x) using the nominal values
of x

Table 5.2 Optimal complexes for removal in the first connected sub-graph containing vertices
GLci, G6P, F6P, F16BP and 2TRIO, using the minimal eigenvalue interlacing-based algorithm

Iteration
step

Complexes
removed

Minimal
cost value

λ2 λ3 λ4 λ5 Error
integral

Minimal eigenvalue interlacing-based algorithm with the cost value as in (5.12)

0 None 0 2.09 × 10−4 1.04 4.06 4.6× 105 0

1 F16BP 0.179 2.23 × 10−4 1.46 4.37 0.6423

2 F6P,
F16BP

0.297 2.51 × 10−4 1.456 0.6417

3 G6P, F6P, 0.5998 3.348×10−4 0.64

F16BP

Minimal eigenvalue interlacing-based algorithm with the cost value as in (5.13) and N = 3

1 F6P 0.056 2.23 × 10−4 1.0927 4.6× 105 1.83 ×
10−4

2 F16BP,
F6P

0.297 2.51 × 10−4 1.456 0.6417

and P2G as optimal complexes for reduction. In this case, the error integral value
associated with the removal of both complexes is 0.025.

However, as shown in Table5.2, the algorithm still identifies F16BP as a candidate
for removalwhich leads to a large error integral value (which implies that the transient
behavior of the reduced model deviates significantly from the full one). On the other
hand, our first proposed approach does not identify F16BP as a suitable complex for
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Table 5.3 Optimal complexes for removal in the second connected sub-graph containing vertices
BPG, P3G, P2G, PEP, PYR and Acald, using the minimal eigenvalue interlacing-based algorithm

Iteration
step

Complexes
removed

Minimal
cost value

λ2 λ3 λ4 λ5 λ6 Error
integral

Minimal eigenvalue interlacing-based algorithm with the cost value as in (5.12)

0 None 0 0.068 0.919 4.087 10.856 3.6 ×
103

0

1 P3G 83.59 0.077 1.18 4.094 3.6 ×
103

0.0046

2 P3G, P2G 296.49 0.092 1.243 3.6 ×
103

0.0142

3 P3G, P2G,
PEP

1975.5 0.1237 3.6 ×
103

0.0478

Minimal eigenvalue interlacing-based algorithm with the cost value as in (5.13) and N = 3

1 P2G 0.1177 0.075 1.045 10.544 3.6 ×
103

0.0249

2 P3G, P2G 0.352 0.092 1.243 3.6 ×
103

0.0142

3 P3G, P2G,
PEP

1978.5 0.1237 3.6 ×
103

0.0478

the Kron reduction. This result shows that the spectral-based clustering algorithm
outperforms the eigenvalue interlacing-based algorithm.

5.5.2 Insulin-Signaling-Dependent Glucose Metabolism
Model

The model describes the insulin-signaling-dependent glucose metabolism that
includes glycolysis, gluconeogenesis and glycogenesis pathways, all of which are
regulated by insulin. The full model consists of 39 reactions (where forward and
reverse reactions in a reversible reaction are counted as 2 separate reactions), 23
species, and 23 complexes.5 Figure5.2a shows the complex graph of the full model
and we refer interested readers to [18] for a description and detailed explanation of
the network. The output vector y consists of the concentrations of the species pAkt,
GLCex, PEPCK, Glycogen, p1IRS, and F16P.

The iterative reduction procedure as discussed in Sect. 5.3 is performed based on
the response to a step increase of external insulin concentration from 0 to 100 nM.
For the error integral, we take t = 0 and T = 480 min. Table5.4 gives the value
of the error integral and the complex deleted at each iterative step. The resulting
reduced complex graph is shown in Fig. 5.2b.

5Here the complex composition matrix Z is given by an identity matrix.
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Fig. 5.2 Complex graph of the original and reduced models of the insulin-signaling-dependent
glucose metabolism. The left-hand panel is a schematic representation of the original model used
for model reduction. The full model description and an explanation of all the abbreviations is found
in [18]. The right-hand panel represents the reducedmodel after deleting 9 complexes (LAC, PYRin,
PYRout, p2IRS, p1p2IRS, G1P, Foxo, pFoxo, mRNA). a The complex graph of the full model. b
The complex graph of the reduced model

Table 5.4 Order of complex removal using the iterative procedure for the insulin-signaling-
dependent glucose metabolism model

Iteration step Complex removed Error integral

1 LAC 0.0001

2 PYRin 0.0004

3 PYRout 0.0007

4 p2IRS 0.0014

5 p1p2IRS 0.0026

6 G1P 0.0071

7 Foxo 0.0142

8 pFoxo 0.0142

9 mRNA 0.0329

10 G6P 0.1195
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Fig. 5.3 Comparison of transient behavior of species concentrations in the full model and reduced
models of insulin-signaling-dependent glucose metabolism model. The figures in the left column
are the concentration plots of the full model, the figures in the middle column are concentration
plots of the reduced model with 9 complexes deleted and the figures on the right column are the
concentration plots of the reduced model with 10 complexes deleted

In Fig. 5.3, we compare the transient behaviors of the species concentrations of
the full model with those of the reduced models obtained by deleting 9 and 10
complexes, following the iterative reduction steps as before. It can be observed from
these results that the dynamics of the reduced model with 10 complexes deleted,
whose error integral value exceeds 0.1, deviates significantly from the full model
dynamics. On the other hand, the transient behavior of y of the reduced model with 9
complexes deleted is in close agreement with that of the original model. This reduced
model has 14 complexes and 20 reactions and its complex graph is shown in Fig. 5.2b.

Since this network contains a directed sub-graph (the one that interconnects F16P,
PYRin and OAA), for evaluating our proposed methods, we replace the cyclic sub-
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Fig. 5.4 The clustering of complexes in the insulin-signaling-dependent glucose metabolism into
11 clusters using the proposed spectral clustering-based algorithm. The clusters are indicated by the
dashed-line boxes and the labels Ck , k = 1, . . . , 11 are given on the top-right corner of each boxes.
The text in red indicates the species defined in output variable y. The number on top of every edge
shows the edge weight which are taken from the adjacency matrix in the Laplacian matrix L(x)

using the nominal values of x

graph F16P↔FYRin→OAA→F16P by a reversible reaction F16P↔PYRin. The
equilibrium constant of this reversible reaction is set according to the reaction con-
stants in the original subnetwork. This ad hoc modification gives us an undirected
complex graph for which our two proposed methods can be applied.

We apply our spectral clustering-based algorithm to this modified complex graph
and the result is shown in Fig. 5.4. The subnetwork containing F16P, GLY, and
GLCex is clustered into 5 clusters where three complexes, G1P, LAC, and PYRout
are in clusters that do not contain any elements of y. On the other hand, for
another subnetwork, there are two complexes, p2IRS and p1p2IRS, which is in a
cluster that does not include any element of y. Similar to the result in glycoly-
sis model above, one can observe that these five complexes are also listed in the
Table5.4. Hence removing these complexes via Kron reduction will give us a good
reduced model. Indeed, numerical simulation of the Kron-reduced model where
Cred = {G1P, LAC, PYRout, p2IRS, p1p2IRS} gives us an error integral of 0.0071.
Since the rest of the network consists of simple sub-graphs with two vertices each,
we can delete, for instance the clusters, C9, C10 and C11.

Using the same modified graph of complexes as above, we apply our second
proposed approach to the first connected component of the graph and the result is
given in Table5.5. Our second approach identifies G6P as one of the best candidate
for removal, in contrast to the result obtained in Table5.4 where G6P is shown to
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be the least preferred complex for removal. Hence for this second model, we can
conclude again that the spectral-based clustering approach is a better method than
the eigenvalue interlacing-based one to identify complexes for the Kron reduction.

5.6 Conclusion

In this chapter, we propose two approaches for finding the best set of complexes
to be deleted for the Kron reduction of a chemical reaction network. The proposed
methods are based on the spectral properties of theweightedLaplacian of the complex
graph corresponding to the network. The aim of these methods is to provide an
alternative to the use of error integral that requires a numerical integration which
can be computationally expensive, in particular, if we need to handle a very large
dimensional model. We have applied the two approaches on two biological models.
For both cases, it has been observed that the spectral-based clustering approach
performs better than the eigenvalue interlacing-based approach. The extension of
these methods to directed complex graphs, as commonly found in large dimensional
biological models, is an interesting topic for further research. The result for directed
graphs proposed in [17] can potentially be adapted to modify the spectral-based
clustering approach presented in this chapter so as to make it applicable for directed
graphs.
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17. M. Meilă, W. Pentney, Clustering by Weighted Cuts in Directed Graphs, in Proceedings of
2007 SIAM International Conference on Data Mining (2007)

18. R. Noguchi et al., The selective control of glycolysis, gluconeogenesis and glycogenesis by
temporal insulin patterns. Mol. Syst. Biol. 9, 664 (2013)

19. J.F. Oster, A.S. Perelson, A. Katchalsky, Network dynamics: dynamic modeling of biophysical
systems. Q. Rev. Biophys. 6(1), 1–134 (1973)

20. J.F. Oster, A.S. Perelson, Chemical reaction dynamics, part I: geometrical structure. Arch.
Ration. Mech. Anal. 55, 230–273 (1974)

21. O.Radulescu,A.NGorban,A.Zinovyev,V.Noel, Reduction of dynamical biochemical reaction
networks in computational biology. Front. Genet. 3, 00131 (2012)

22. S. Rao, A.J. van der Schaft, K. van Eunen, B.M. Bakker, B. Jayawardhana, Model reduction
of biochemical reaction networks. BMC Syst. Biol. 8, 52 (2014)

23. S. Rao, A.J. van der Schaft, B. Jayawardhana, A graph-theoretical approach for the analysis
and model reduction of complex-balanced chemical reaction networks. J. Math. Chem 51(9),
2401–2422 (2013)

24. J. Shi, J. Malik, Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach.
Intell. 22(8), 888–905 (2000)

25. D. Siegel, D. MacLean, Global stability of complex balanced mechanisms. J. Math. Chem. 27,
89–110 (2000)

26. A.J. van der Schaft, D. Jeltsema, Port-Hamiltonian systems theory: an introductory overview.
Found. Trends Syst. Control 1(2/3), 173–378 (2014)

27. A.J. van der Schaft, L2-Gain and Passivity Techniques in Nonlinear Control, 2nd revised and
enlarged edn., (Springer, London, 2000)

28. A.J. van der Schaft, B.M. Maschke, A Port-Hamiltonian Formulation of Open Chemical Reac-
tion Networks, Advances in the Theory of Control, Signals and Systems, Lecture Notes in
Control and Information Sciences (Springer, New York, 2011), pp. 339–348

29. A.J. van der Schaft, B.M.Maschke, TheHamiltonian formulation of energy conserving physical
systems with external ports. Arch. Elektron. Übertragungstech 49, 362–371 (1995)
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