
Chapter 4
Time-Varying Phasors and Their Application
to Power Analysis

Dimitri Jeltsema

Abstract The classical complex phasor representation of sinusoidal voltages and
currents is generalized to arbitrary waveforms. The method relies on the so-called
analytic signal using theHilbert transform.This naturally leads to the notion of a time-
varying power triangle and its associated instantaneous power factor. Additionally,
it is shown for linear systems that Budeanu’s reactive power can be related to energy
oscillations, but only in an average sense. Furthermore, Budeanu’s distortion power
is decomposed into a part representing a measure of the fluctuation of power around
the active power and a part that represents the fluctuation of power around Budeanu’s
reactive power. The results are presented for single-phase systems.

4.1 Introduction

I first met Arjan when I was a Ph.D. student during his notorious course on nonlinear
systems. In the last lecture of the course, Arjan treated a relatively new subject: port-
Hamiltonian systems. Port-Hamiltonian systems theory is the result of combining
network theory with classical (Hamiltonian) mechanics and nowadays provides the
basis for many interesting and novel control methodologies. Port-Hamiltonian sys-
tems and related concepts, such as power and energy, remained amongmymain topics
of interest and during the past decade we collaborated on several papers, research
projects, national and international courses, and recently we finalized the book “Port-
Hamiltonian Systems Theory: An Introductory Overview” [23].

Three years ago, I retrieved my interest in power analysis under nonsinusoidal
conditions and during the preparations of our book we had several discussions about
this subject and the possibilities to approach the problem from a port-Hamiltonian
perspective andDirac structures in particular. During these discussions, Arjan always
came up with the same but very important and fundamental questions: what is this
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reactive power, what are its origins, and does it have any physical meaning? With
this contribution, I consider it as an honor, on the occasion of the 60th birthday of
my scientific collaborator, colleague, and dear friend, to dedicate a chapter to our
fruitful quests for interesting and open problems, and to recollect some thoughts and
interpretations of reactive power and related concepts.

Happy birthday Arjan and enjoy reading!

4.1.1 Motivation and Background

The usage of alternative sources of power has caused that the problem of energy
transfer optimization is increasingly involved with nonsinusoidal signals and non-
linear loads. The power factor (PF) is used as a measure of the effectiveness of the
transfer of energy between an electrical source and a load. It is defined as the ratio
between the power consumed by a load (real or active power), denoted as P , and the
power delivered by a source (apparent power), denoted as S, i.e.,

λ := P

S
. (4.1)

The active power is defined as the average of the instantaneous power and apparent
power as the product of the root-mean-square norms of the source current and voltage.
The standard approach to improve the PF is to place a passive compensator, such
as a capacitor or an inductor, parallel to the load. Conceptually, the design of the
compensator typically assumes that the source is ideal, i.e., the internal (Thevenin)
impedance is negligible, producing a fixed sinusoidal voltage.

If the load is linear and time-invariant (LTI) and the source voltage is sinusoidal,
the resulting stationary current generally is a shifted sinusoid, and the PF is the
cosine of the phase-shift angle between the source voltage and current. Classically,
the remaining part of the power is called reactive power, and is denoted as Q. The
relationship between the three types of power is given by

S2 = P2 + Q2. (4.2)

Thus, any improvement of the PF is accomplished by the reduction of the absolute
value of the reactive power, hence reducing the phase shift between the current and
the voltage.

For nonsinusoidal voltages and currents, the problem of decomposing the ap-
parent power into active and reactive components is much more involved. Starting
from the work of Steinmetz [21], Iliovici [14] and Budeanu [2], many authors have
aimed to improve the concept of reactive power in the most general case; see e.g.,
[1, 8, 11], and the references therein. Every year dozens of articles are published
on this subject and most of these contributions aim at decompositions of the load
current into physical meaningful orthogonal quantities. The methods and ways of
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describing the power phenomena and to increase the effectiveness of the energy flow
between the source and the load under nonsinusoidal conditions have not been stan-
dardized so far and the definition of reactive power has been changed several times
[12, 13]. Why is this important? Apart from the economical reasons as electricity is
a commodity, one of the main reasons is to reduce the operating costs of the power
grid and to protect its reliability.

4.1.2 Contribution and Outline

In this chapter, a different approach is presented that generalizes the classical com-
plex phasor representation of the port voltages and currents. The method relies on the
so-called analytic signal using the Hilbert transform. This enables one to translate
the power flows proposed in [9, 16] for three-phase systems to single-phase systems
and naturally leads to the notion of a time-varying power triangle and its associated
instantaneous PF. From an instrumentation and measurement perspective, the intro-
duction of the time-varying power triangle offers interesting properties as it reveals
an instantaneous view into the power flows in the system.

A major advantage of the proposed framework is that it is applicable to general
loads (e.g., nonlinear and time-varying) as well as to general voltage and current
waveforms (e.g., nonsinusoidal, non-periodical, interharmonics, etc.). Additionally,
it is shown for LTI systems that Budeanu’s reactive power can be related to energy
oscillations, but only in an average sense. Furthermore, Budeanu’s distortion power
is decomposed into a part representing a measure of the fluctuation of power around
the active power and a part that represents the fluctuation of power around Budeanu’s
reactive power. This relaxes some of the assertions in [5].

The remainder of the chapter is organized as follows. In Sect. 4.2, the classical
power model for systems operating under sinusoidal conditions is reviewed and an
interpretation of the associated active and reactive power is provided fromboth a time-
and frequency-domain perspective. The extension of the classical phasor approach
is generalized to time-varying phasors in Sect. 4.3. Section4.4 revisits the infamous
Budeanu power model and provides some novel insights using the time-varying
phasor approach. Finally, in Sect. 4.5, some examples are provided to illustrate the
theory.

4.1.3 Notation

Given two square integrable T -periodic signals u(t) and i(t), we define the inner
product as

〈u, i〉 := 1

T

T∫

0

u(t)i(t)dt, (4.3)
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and by ||u|| := √〈u, u〉 the rms (root-mean-square) value. Time differentiation is
denoted by u′(t) = du

dt (t). Voltages are represented in volts [V] and currents are
represented in Ampère [A]. However, these units will be omitted in the text.

To simplify the presentation, all voltage and current waveforms are assumed to
have zero mean values.

4.2 The Classical Sinusoidal Power Model

Consider the well-known classical case of a single-phase sinusoidal source (power
system) transmitting power to a LTI load; see Fig. 4.1. Let the voltage at the load
terminals be given by

u(t) = U
√
2 cos(ωt + α), (4.4)

where ω = 2π/T . Under the assumption that the voltage at the terminals does not
depend on the transmitted current (infinitely strong power system), the associated
current reads

i(t) = I
√
2 cos(ωt + β). (4.5)

The instantaneous power delivered to the load is given by

p(t) = u(t)i(t) = P
[
1 + cos(2ωt + 2α)

]
︸ ︷︷ ︸

pa(t)

+ Q sin(2ωt + 2α)︸ ︷︷ ︸
pr (t)

, (4.6)

where P and Q represent the active power and the reactive power defined by

P := U I cos(ϕ),

Q := U I sin(ϕ),
(4.7)

respectively, with ϕ := α − β representing the phase shift between u(t) and i(t).

Fig. 4.1 The classical
scenario of a single-phase
power system transmitting
power to a LTI load
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4.2.1 On the Meaning of Active and Reactive Power

The term pa(t) in (4.6) describes the nonnegative component of the instantaneous
power, with an average value equal to load’s active power P , i.e.,

P = 1

T

T∫

0

p(t)dt = 1

T

T∫

0

pa(t)dt = U I cos(ϕ), (4.8)

and represents the one-directional flow of energy from the source to the load.
The alternating term pr (t) in (4.6) is characterized by an amplitude equal to load’s

reactive power Q and average value equal to zero. This component characterizes the
bidirectional flow of the transmitted energy from the source to the load. It is not
present if load phase angle is equal to zero. Therefore, in case of a purely resistive
load or if the load exhibits phase resonance, bidirectional oscillations in the energy
flow between source and load do not exist. For example, if the load in Fig. 4.1 solely
consists of a resistor, with resistance R, and is driven by a sinusoidal voltage of the
form (4.4), then the associated current reads as in (4.5), with β = α. Hence, there is
no phase shift as ϕ = 0, and, according to (4.7), the active power equals PR = RI 2,
whereas the reactive power equals Q R = 0.

The alternating component pr (t) may thus be interpreted as the measure of the
backward flow of energy between load’s reactance elements and the source. Indeed,
if the load in Fig. 4.1 solely consists of an inductor, with inductance L , and is driven
by a sinusoidal voltage of the form (4.4), with α = 0, then the associated current
reads

i(t) = 1

L

t∫

0

u(τ )dτ = U

ωL

√
2 sin(ωt) = I

√
2 cos

(
ωt − π

2

)
. (4.9)

Hence, the inductor causes a phase shift ϕ = π
2 and stores a magnetic (co-)energy

eL(t) = 1

2
Li2(t) = Emax

L sin2(ωt), (4.10)

where Emax
L = L I 2. This suggests that the (inductive) reactive power equals

QL = U I sin
(

π
2

) = U I = ωL I 2 = ωEmax
L . (4.11)

Alternatively, the (inductive) reactive power can also be expressed in terms of the
average stored magnetic (co-)energy as

QL = 2ωEL , (4.12)

with EL = 1
2 L I 2. Obviously, the active power of an inductor equals PL = 0.
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Similarly, if the load in Fig. 4.1 solely consists of a capacitor, with capacitance
C , and is driven by a sinusoidal current of the form (4.5), with β = 0, then the
associated voltage reads

u(t) = 1

C

t∫

0

i(τ )dτ = I

ωC

√
2 sin(ωt) = U

√
2 cos

(
ωt − π

2

)
. (4.13)

Hence, the capacitor causes a phase shift ϕ = −π
2 and stores an electric (co-)energy

eC (t) = 1

2
Cu2(t) = Emax

C sin2(ωt), (4.14)

where Emax
C = CU 2. This suggests that the (capacitive) reactive power equals

QC = U I sin
(−π

2

) = −U I = −ωCU 2 = −ωEmax
C . (4.15)

Alternatively, the (capacitive) reactive power can also be expressed in terms of the
average stored electric (co-)energy as

QC = −2ωEC , (4.16)

with EC = 1
2CU 2. Again, note that PC = 0.

Generally, in case of a load network consisting of LTI resistors, inductors and ca-
pacitors, the active power associated to each branch of the network may be expressed
as

Pb = PRb , (4.17)

where PRb represents the active power associated to the resistance in the bth branch.
Note that PLb = PCb = 0. The reactive power for each branch is then expressed as

Qb = QLb + QCb = ω
(
Emax

Lb
− Emax

Cb

) = 2ω
(
ELb − ECb

)
. (4.18)

Then, by Boucherot’s theorem [4], the total active power and the total reactive power
are obtained by summing over all the branches, i.e.,

P =
∑

b

Pb,

Q =
∑

b

Qb.
(4.19)

Remark 4.1 Note that compensation (reduction) of the reactive power naturally boils
down to minimizing the difference between the total (average) magnetic and electric
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energies stored in the load network. Such perspective on reactive power compensation
is known as energy equalization [11].

Remark 4.2 It is important to emphasize that the previous interpretations of reac-
tive only apply to LTI systems driven by a purely sinusoidal voltage. If the load is
nonlinear and/or time-varying, then it may be proven that reactive power does not
uniquely relate to energy accumulation and it may be present in a purely resistive
load. This will be exemplified in Sect. 4.5.

4.2.2 The Classical Phasor Representation

Alternatively, a standard method in electrical engineering is to represent the sinu-
soidal time functions of the voltages and currents by their complex phasor represen-
tation [7]

U = U
√
2e jα, I = I

√
2e jβ, (4.20)

where j := √−1. This enables one to define the complex power

S := 1

2
U I ∗ = U I e jϕ = U I cos(ϕ) + jU I sin(ϕ) = P + j Q, (4.21)

the well-known power triangle (see Fig. 4.2), the PF as λ = cos(ϕ), and the notion
of complex impedance [7]

Z = U

I
= U

I
e jϕ = P + 2 jω (EL − EC )

1
2 I I ∗ , (4.22)

where EL and EC now represent the total mean magnetic and electric energies,
respectively. In the same way, the complex admittance reads

Y = I

U
= I

U
e− jϕ = P + 2 jω (EC − EL)

1
2U U∗ . (4.23)

The underlying mathematical principle behind the transition from the sinusoidal
time functions of the voltages and currents to their complex phasor representation is
the so-called analytical signal widely used in telecommunication applications [22].

Fig. 4.2 The classical power
triangle with S = |S|
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The analytic signal corresponding to the voltage (4.4) is given by

u(t) = U
√
2 cos(ωt + α) + jU

√
2 sin(ωt + α) = U

√
2e j (ωt+α), (4.24)

and, similarly, the analytic signal corresponding to (4.5) is given by

i(t) = I
√
2 cos(ωt + β) + j I

√
2 sin(ωt + β) = I

√
2e j (ωt+β). (4.25)

Hence, the transition from the analytical signal representations (4.24)–(4.25) to the
phasors (4.20) is accomplished by multiplying the latter with e− jωt , which defines
a linear (coordinate) transformation.

Furthermore, a straightforward computation shows that

1

T

T∫

0

u(t)i∗(t)dt = U I ∗.

Thus, the correspondence between sinusoidal signals and their phasor representation
is power-preserving once the real voltage and current signals are extended toward
their analytic signal representations. This demonstrates that both P and Q are, in
fact, average quantities.

4.2.3 RL Circuit Example

Consider the uncompensated RL circuit shown in Fig. 4.3 driven by a sinusoidal
voltage

u(t) = 10
√
2 cos (t) ⇒ U = 10

√
2.

The load admittance is given by

Y = 1

1 + 2 j
= 1

5

√
5e− j arctan(2) ⇒ I = Y U = 2

√
10e− j arctan(2).

The complex power is then easily computed as S = 20 + j40. Hence, the active
power is P = 20 [W], the reactive power Q = 40 [VAr], and the apparent power

Fig. 4.3 Series RL circuit
driven by a sinusoidal
voltage: uncompensated
(C = 0) and compensated
(C > 0)
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S = |S| = 20
√
5 [VA]. The results in a PF λ = 0.447. If a shunt capacitor is placed

to compensate Q, then it is clear that a capacitance of C = 0.4 [F] is necessary to
compensate the effect of the inductance and to drive the PF to unity.

4.3 Time-Varying Phasors

Note that the relationship between the real voltage and current signals and their
imaginary counterparts in (4.24)–(4.25) is a 90◦ backshift operation. For arbitrary
waveforms this operation is generalized by the Hilbert transform [22]. Indeed, de-
noting by û(t) := H{u(t)} the Hilbert transform

H{u(t)} = PV

π

∞∫

−∞

u(τ )

t − τ
dτ, (4.26)

with PV the Cauchy principal value, of the real voltage u(t), then from standard
complex analysis we know that

u(t) = U (t)
√
2e jα(t), (4.27)

where

U (t) =
√

u2(t) + û2(t)

2
= |u(t)|,

α(t) = arctan

{
û(t)

u(t)

}
= Im{ln u(t)} = arg{u(t)},

ωα(t) = α′(t) = û′(t)u(t) − u′(t)û(t)

u2(t) + û2(t)
= Im

{
u′(t)
u(t)

}
,

represent the instantaneous amplitude, phase, and frequency, respectively. In a similar
fashion, the complex port current can be written as

i(t) = I (t)
√
2e jβ(t). (4.28)

Remark 4.3 It is important to emphasize that in spite of both being measured in
radians per second, harmonic and instantaneous radial frequencies are different con-
cepts, which only coincide in the sinusoidal case. Indeed, for a voltage of the form
(4.4), we have u(t) = U and α(t) = ωt + α, and thus ωα(t) = ω. See, e.g., [22] for
further information. In [16], the representation (4.27) was justified based on Fourier
transform. However, as argued in [22], the only way to unambiguously associate
U (t) and α(t) with amplitude, phase, and frequency is via the Hilbert transform.
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Additionally, note that (4.27) allows to removing the fundamental phase ωt , i.e.,
U (t) = U (t)

√
2e j α̃(t), where α̃(t) := α(t) − ωt .

Remark 4.4 The use of analytic signals, or the voltage and current representations
(4.27) and (4.28), is not new in power systems analyses and control. See, for instance,
the work of [15]. The Hilbert transform is also successfully used in [19] to derive a
single-phase version of the well-known instantaneous p-q theory [8].

4.3.1 Kirchhoff Operators and Tellegen’s Theorem

In the time domain, starting from the instantaneous power delivered at the port, i.e.,
p(t) = u(t)i(t), Tellegen’s theorem in generalized form can be stated as [18]

A{u(t)}B{i(t)} =
∑

b

A{ub(t)}B{ib(t)}, (4.29)

where A and B are so-called Kirchhoff voltage and current operators, respectively.
A Kirchhoff voltage (current) operator is defined as an operation that if applied to
a set of voltages (currents) that satisfy KVL (KCL) generates a new set of numbers
or functions that also satisfy KVL (KCL). These quantities need not have the units
of voltages (currents) and may depend on other parameters or variables introduced
by the operator. All linear operations that operate in the same way on all branches
and ports of the network are Kirchhoff operators. Well-known examples of linear
operators are: differentiation, integration, averaging, complex conjugation, and time-
shifting.

Since the Hilbert transform is also a linear operator, i.e.,

H
{∑

n

cn fn

}
=

∑
n

cnH { fn} , (4.30)

where cn are arbitrary numbers and fn are arbitrary functions for which the Hilbert
transform is defined, we may select the Kirchhoff operators in (4.29) asA = I+ jH
and B = I − jH, where I is the identity operator, i.e., I{ fn} = fn . This yields the
complex power balance

(
u(t) + j û(t)

)(
i(t) − j î(t)

) =
∑

b

(
ub(t) + j ûb(t)

)(
ib(t) − j îb(t)

)
. (4.31)

This motivates and justifies the developments in the next section.
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4.3.2 Time-Varying Complex Power

Starting from the analytical port voltage and current, (4.27) and (4.28), the time-
domain nonsinusoidal equivalent of the complex power is defined by the time-varying
complex power (compare with (4.31))

S(t) := 1

2
u(t)i∗(t) = U (t)I (t)e jϕ(t) = P(t) + j Q(t), (4.32)

where ϕ(t) := α(t) − β(t) denotes the instantaneous phase shift between u(t) and
i(t), and

P(t) := 1

2

(
u(t)i(t) + û(t)î(t)

)
, (4.33)

Q(t) := 1

2

(
û(t)i(t) − u(t)î(t)

)
, (4.34)

or, equivalently,

P(t) := 1

2
Re

{
u(t)i∗(t)

}
, Q(t) := 1

2
Im

{
u(t)i∗(t)

}
,

represent the time-varying real and imaginary powers, respectively. Furthermore, the
time-varying apparent power equals

S(t) = |S(t)| = U (t)I (t) =
√

P2(t) + Q2(t), (4.35)

which naturally suggests the definition of a time-varying PF

λ(t) := P(t)

S(t)
= cos

(
ϕ(t)

)
, (4.36)

and a time-varying power triangle as shown in Fig. 4.4.
Another feature of the analytical representation of the port voltage and current

is that the real parts of (4.27) and (4.28) are representing the real port voltage and
current, which, in turn, are expressed in a very familiar form:

Fig. 4.4 The time-varying
power triangle
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u(t) = Re{u(t)} = U (t)
√
2 cos

(
α(t)

)
,

i(t) = Re{i(t)} = I (t)
√
2 cos

(
β(t)

)
.

This means that the instantaneous power (4.6) generalizes to

p(t) = P(t)
[
1 + cos

(
2α(t)

)] + Q(t) sin
(
2α(t)

)
, (4.37)

where P(t) and Q(t) are now rather expressed as

P(t) = U (t)I (t) cos
(
ϕ(t)

)
,

Q(t) = U (t)I (t) sin
(
ϕ(t)

)
.

Expression (4.37) is extremely general and also holds for non-periodic waveforms
(provided (4.26) exists as a principal value). For that reason, we propose to refer to
(4.37) as the ‘universal power template (UPT).’ In Sect. 4.4, one particular application
of the UPT is highlighted.

4.3.3 Resistors, Inductors, and Capacitors

Let us next study the time-varying real and imaginary powers associated to the
resistor, inductor, and capacitor. Interestingly, these powers bear a marked similarity
in form as the powers derived for three-phase systems from the Poynting vector in
[9] (see also [16]).

The Resistor

Consider an LTI resistor R driven by a nonsinusoidal voltage u(t). Using Ohm’s law
u(t) = Ri(t), the associated time-varying real power (4.33) takes the form

PR(t) = 1

2

(
Ri2(t) + Rî2(t)

) = RI 2(t),

whereas the imaginary power (4.34) is zero, i.e., Q R(t) = 0, since H{u(t)} =
R H{i(t)}.
The Inductor

For anLTI inductor u(t) = Li ′(t). Using the time stationarity of theHilbert transform
[22], we have that H{i ′(t)} = (H{i(t)})′. Hence, the real power (4.33) reads

PL(t) = 1

2

(
Li ′(t)i(t) + Lî ′(t)î(t)

)
= L I ′

L(t)IL(t) = E ′
L(t),

where EL(t) = 1
2 L I 2(t) represents the envelope of the oscillation of the inductor’s

magnetic energy storage. The imaginary power (4.34) now takes the form
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QL(t) = 1

2

(
Lî ′(t)i(t) − Li ′(t)î(t)

)
,

which, after multiplication of the numerator and denominator with i2(t) + î2(t),
yields

QL(t) = 1

2
L

î ′(t)i(t) − i ′(t)î(t)
i2(t) + î2(t)

(
i2(t) + î2(t)

) = β ′(t)L I 2(t) = 2ωβ(t)EL(t).

Note that if i(t) is of the form (4.5), we have ωβ(t) = ω and I (t) = I , and thus that
QL = 2ωEL , as established in (4.12).

The Capacitor

In a similar fashion, for an LTI capacitor i(t) = Cu′(t), the real power (4.33) reads

PC (t) = 1

2

(
u(t)Cu′(t) + û(t)Cû′(t)

) = CU (t)U ′(t) = E ′
C (t),

where EC (t) = 1
2CU 2(t) represents the envelope of the oscillation of the capacitor’s

electric energy storage. The imaginary power (4.34) now takes the form

QC (t) = 1

2

(
û(t)Cu′(t) − u(t)Cû′(t)

)
,

which, after multiplication of the numerator and denominator with u2(t) + û2(t),
yields

QC (t) = 1

2
C

û(t)u′(t) − u(t)û′(t)
u2(t) + û2(t)

(
u2(t) + û2(t)

) = −α′(t)CU 2(t)

= −2ωα(t)EC (t).

Under sinusoidal conditions, i.e., if u(t) is of the form (4.4), then ωα(t) = ω and
U (t) = U , and thus QC = −2ωEC , as in (4.16).

4.4 Budeanu’s Concept of Reactive and Distortion Power
Revisited

Consider a single-phase LTI power system with distorted voltage and current wave-
forms of the form

u(t) =
∑

k

Uk
√
2 cos(kωt + αk), (4.38)

i(t) =
∑

k

Ik
√
2 cos(kωt + βk), (4.39)
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with ϕk = αk −βk . It is readily checked that the active power (from here on denoted
by PA) is straightforwardly obtained from the instantaneous power p(t) = u(t)i(t)
after averaging over a period, i.e.,

PA := 1

T

T∫

0

p(t)dt =
∑

k

Uk Ik cos(ϕk). (4.40)

However, how to define and generalize the reactive power?
Inspired by, e.g., Bunet [3] and Boucherot’s theorem [4], Budeanu [2] was among

the first who tried to find an answer to this question and proposed to define reactive
power as

Q B :=
∑

k

Uk Ik sin(ϕk). (4.41)

He also observed that for nonsinusoidal voltages and currents the quadratic sum of
the active and reactive power is not equal to the apparent power S as in the sinusoidal
case, and ended up with S2 = P2

A + Q2
B +(REST)2. To fill in this gap, a new concept

DB :=
√

S2 − P2
A − Q2

B, (4.42)

called distortion (or deformation) power was proposed.
For decades, Budeanu’s power model has enjoyed a lot of support and is set down

in many publications and academic textbooks on power phenomena in systems with
periodical and distorted waveforms, and for a long time has been part of the IEEE
Standard [12]. Nevertheless, from the very beginning it has also been criticized by
various opponents. Apart from the fact that it took almost 50years before the first
instruments where developed to measure Budeanu’s reactive and distortion powers
[10], critical questions where raised due to the apparent lack of physical meaning of
the distortion power as it does not represent a conserved quantity and the (unautho-
rized) summing up of amplitudes of oscillating components of different harmonics
[20], see also [1] and the references therein. Budeanu’s power model was finally vig-
orously challenged byCzarnecki, and, although the arguments in [5] did not convince
adherents of Budeanu’s power model instantaneously [8], it was finally abandoned
from the latest IEEE Standard [13].

In the following subsections it is shown, using the notion of time-varying phasors
and the UPT, that the assertions against Budeanu’s power model are either wrong,
misinterpreted, or overstressed.

4.4.1 Budeanu’s Reactive Power Represents an Average

First of all, we note that Budeanu’s reactive power (4.41) can be expressed in the
time domain using the Hilbert transform as [17]
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Q B := 〈û, i〉 = 1

T

T∫

0

û(t)i(t)dt, (4.43)

where we recall that û(t) = H{u(t)} denotes the Hilbert transform. Interestingly,
using the fact that 〈û, i〉 = −〈u, î〉, it is readily observed that (4.43) is equivalent to
averaging (4.34) over a period, i.e.,

Q B := 1

T

T∫

0

Q(t)dt. (4.44)

Hence, Budeanu’s reactive power Q B does not represent a magnitude or an absolute
quantity, but an average; the average of the imaginary power Q(t) in a fashion
similar to the active power PA which represents the average of the real power P(t).
Furthermore, this means that Budeanu’s reactive power represents the average of
the difference between the envelopes of the oscillation of the magnetic and electric
energies.

4.4.2 Power Fluctuations

It is correctly observed in [5] that Budeanu’s concept of distortion power is not
directly related to waveform distortion of the port voltages and currents itself. It
may, however, be related to the fluctuations of the real and imaginary powers around
their averages, i.e., the active and reactive powers. In this subsection, it is shown that
the norms of these fluctuations can be naturally interpreted as distortion powers.

Let DP (t) := P(t) − PA and DQ(t) := Q(t) − Q B represent the power fluctu-
ations around the active and reactive powers PA and Q B , respectively. Furthermore,
let IP (t) := I (t) cos(ϕ(t)) and IQ(t) := I (t) sin(ϕ(t)), then it is easily shown that
〈IP , IQ〉 = 0, i.e., the currents IP (t) and IQ(t) are mutually orthogonal. Hence, the
‘normed’ apparent power can be decomposed into two components:

||U ||2||I ||2 = ||U ||2||IP ||2 + ||U ||2||IQ ||2,

which, in turn, suggest

||U || ||IP || ≥ |〈U, IP 〉| ≡ |PA|,
||U || ||IQ || ≥ |〈U, IQ〉| ≡ |Q B |.

If ||U || ||IP || > |〈U, IP 〉|, the residual is given by



66 D. Jeltsema

D2
PU

:= ||U ||2||IP ||2 − 〈U, IP 〉2 = 1

2T 2

T∫

0

T∫

0

(
U (s)IP (t) − U (t)IP (s)

)2dsdt.

Similarly, if ||U || ||IQ || > |〈U, IQ〉|, we have

D2
QU

:= ||U ||2||IQ ||2 − 〈U, IQ〉2 = 1

2T 2

T∫

0

T∫

0

(
U (s)IQ(t) − U (t)IQ(s)

)2dsdt.

This naturally suggest the decomposition of distortion power into two components:

D2
B := D2

PU
+ D2

QU
, (4.45)

where DPU and DQU can be considered as a measure of the fluctuation (distortion)
around the active power and Budeanu’s reactive power, respectively, relative to the
voltage amplitude. Hence, we have

S2 = P2
A + Q2

B + D2
B = P2

A + D2
PU

+ Q2
B + D2

QU
. (4.46)

In the sinusoidal case, DPU = DQU = 0, and (4.46) reduces to the well-known
standard (static) power triangle.

On the other hand, an equally valid starting point would be by selecting instead of
IP (t) and IQ(t), the voltagesUP (t) := U (t) cos(ϕ(t)) andUQ(t) := U (t) sin(ϕ(t)).
This suggest to decompose the ‘normed’ apparent power as

||U ||2||I ||2 = ||UP ||2||I ||2 + ||UQ ||2||I ||2,

and, in a similar fashion as before, gives rise to the distortion powers, DPI and DQI ,
relative to the current amplitude, and satisfying

D2
B := D2

PI
+ D2

QI
. (4.47)

Note that, in general, DPU �= DPI and DQU �= DQI .

4.5 Examples

In this section, two examples are provided to illustrate the previous developments.
First, a simple LTI circuit operating under nonsinusoidal conditions is discussed. The
second example consists of a periodically switched resistive (triac) circuit.
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4.5.1 RL Circuit Example (Cont’d)

Consider again the (uncompensated) series RL circuit as shown in Fig. 4.3, but now
supplied by a nonsinusoidal voltage

u(t) = 10
√
2 cos (t) + 5

√
2 cos (5t). (4.48)

In terms of the current amplitude, the complex power reads

S(t) = PR(t) + PL(t) + j QL(t) = RI 2(t) + L I ′(t)I (t) + jωβ(t)L I 2(t).

The waveforms for P(t) = PR(t) + PL(t) and Q(t) = QL(t), and their average
values PA = 20.248 [W] and Q B = 42.475 [VAr] are depicted in Fig. 4.5. Note that
the Budeanu reactive power is clearly related with energy oscillation, but only in an
average sense, i.e.,

Q B = 2

T

T∫

0

ωβ(t)EL(t)dt,

Fig. 4.5 Fluctuation of the time-varying real and imaginary powers around the active power and
Budeanu’s reactive power for the uncompensated circuit of Fig. 4.3 driven by the nonsinusoidal
voltage (4.48)
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Fig. 4.6 The time-varying
power triangle for the
uncompensated circuit of
Fig. 4.3 driven by the
nonsinusoidal voltage (4.48)

with EL(t) = 1
2 L I 2(t) represents the envelope of the magnetic energy. The power

fluctuations DP (t) and DQ(t) are also indicated in Fig. 4.5. Furthermore, Fig. 4.6
shows the time-varying power triangle associated to (4.35), which is expanding and
contracting at the speed ωϕ(t) = ϕ′(t). Since for this particular example the same
current is flowing through both the resistor and the inductor, the ‘normed’ apparent
power can be written as

||U ||2||I ||2 = ||RI + L I ′||2||I ||2 + ||ωβ L I ||2||I ||2.

It seems therefore most natural to consider the distortion power relative to the port
current amplitude. Indeed, the fluctuation around the active power PA = R||I ||2 is
caused by the rate of change of EL (t), i.e., E ′

L(t) = L I ′(t)I (t). This change of stored
energy is due to the variation of the voltage and the current amplitudes andmust come
from real power. This causes the fluctuation of DP (t) for which the distortion power
DPI = ||UP || ||I || applies, with ||UP || = ||L I ′||. The distortion power associated
with the fluctuation DQ(t) equals DQI = ||UQ || ||I ||, with ||UQ || = ||ωβ L I ||. The
values of the distortion power, including the alternative decomposition relative to the
voltage amplitude, are computed (in [VAd]) as follows:

DB DPU DQU DPI DQI

17.799 13.245 11.891 12.664 12.508

The question that remains is how to improve the PF? It is known [5] that the
addition of a shunt capacitor C = 0.189 [F] renders Q B = 0. However, the PF then



4 Time-Varying Phasors and Their Application to Power Analysis 69

becomes even worse than in the uncompensated case (from λ = 0.403 to λ = 0.353)
as the distortion power increases to DB = 53.654 [VAd]. Hence, the compensation
of Budeanu’s reactive power in this way is indeed useless for PF improvement and
this was one of the main motivation behind the assertions in [5] against Budeanu’s
power model.

However, as explained in [24], themain reasonwhy in the above example the com-
pensator current, which renders Budeanu’s reactive power to zero, does not reduce
the source current—and even increases the distortion power—is that this particular
compensator current and the nonactive part of the load current are not mutually or-
thogonal. The appropriate choice of the current that needs to be compensated is the
co-called Budeanu current:

iB(t) := Q B

||û||2 û(t). (4.49)

Consequently, if the compensator is supplying the Budeanu reactive current to the
load, the Budeanu reactive power seen by the source will be zero and the distortion
power remains unaltered. As a result, the apparent power decreases. This shows
that by choosing the appropriate compensation current the PF increases and that the
Budeanu reactive power concept, in general, does lead to a compensation scheme
that reduces the line losses, except for systems in which Q B = 0 already before
compensation.

The compensation results for the RL circuit of Fig. 4.3, supplied with (4.48) and
based on compensation of the Budeanu current (4.49), are shown in Fig. 4.7. It should
be emphasized that, in general, the compensator supplying the Budeanu current
cannot be realized by a single lossless shunt element. In fact, for the given example,
it is composed of the same capacitor C = 0.189 [F] as before, but in series with a
parallel connection of a capacitor Cx = 0.128 [F] and an inductor Lx = 1.805 [H].
This compensator increases the PF to λ = 0.751.

Remark 4.5 Although this example demonstrates that, in spite the fact that compen-
sation based on the Budeanu current (if it exists), always leads to an improvement
of the PF without altering the distortion power, it may not lead to optimal results as
power fluctuations around the average powers may still exist and their compensation
using passive filters seems so far not trivial from a time-domain perspective. On the
other hand, based on the approach of [19], the power fluctuations can be compensated
using an active filter.

Fig. 4.7 Series RL circuit driven by a nonsinusoidal voltage with compensation network to render
Q B = 0 without altering the distortion power
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4.5.2 Triac Circuit

Consider the uncompensated (i.e., C = 0) triac circuit shown in Fig. 4.8 [6]. Under
the assumption that u(t) = 220

√
2 sin(t), R = 1Ω , and a switching angleα = 135◦,

the apparent power equals

S = ‖u‖ ‖i‖ = 14.588 [kVA], (4.50)

whereas the active power PA = 4.397 [kW]. This means that the PF is far less
than unity, i.e., λ ≈ 0.3. The Budeanu reactive power equals Q B = 7.703 [kVAr],
whereas the distortion power and its associated decomposition reads (in [kVAd]):

DB DPU DQU DPI DQI

11.582 8.190 8.190 8.671 7.678

It is important to realize that the uncompensated circuit does not store any energy.
The reason why no energy is accumulated in the circuit becomes apparent when we
consider the Lissajous plot of Fig. 4.8. Here it is observed that, although there is a
phase shift between the current and voltage caused by the moments that the triac is
switching ON, there is no energy accumulation as i(t) ≡ 0 whenever u(t) ≡ 0, and
vice versa. From a frequency-domain perspective, the presence of reactive power can
be explained as follows. The fundamental harmonic of the supply current reads

Fig. 4.8 Triac circuit and its
associated Lissjous plot.
Although there is no energy
storage, the circuit exhibits a
reactive power that is equal
to the sum of the areas
A1 + A2. The reactive power
can be fully compensated
using a capacitor
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i1(t) = 40.317
√
2 sin(t − 0.334π),

which is subsequently decomposed into an active component, i1a (t), that is directly
proportional (collinear) with the supply voltage and a quadrature component i1r (t)
as

i1(t) = i1a (t) + i1r (t) = 19.987
√
2 sin(t) − 35.014

√
2 cos(t).

Now, PA = ‖u‖ ‖i1a ‖ and Q B = ‖u‖ ‖i1r ‖. Thus, the active power is related to the
part of the current that is in-phase with the voltage, whereas the reactive power is
related to the part that is exactly 90◦ out-of-phase. The remaining part of the current,
id(t) = i(t) − i1(t), represents the harmonics that are due to the triac invoked
distortion of the supply voltage and is responsible for the distortion power.

Although there is no energy accumulation, we may conclude that the triac circuit
exhibits an inductive-like character since Q B > 0. Hence, it is natural to compensate
this behavior by placing a shunt capacitor. The value of the capacitor that fully
compensates the reactive power equals C = 0.159 [F]. See [6] for more details.
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