
Chapter 20
Trajectory-Based Theory for Hybrid Systems

A. Agung Julius

Abstract This chapter presents a trajectory-based perspective in solving safety/
reachability analysis and synthesis problems and fault diagnosability analysis in hy-
brid systems. The main tool used in obtaining the results presented in this chapter
is the concept of trajectory robustness, which is derived from the theory of approx-
imate bisimulation. Trajectory robustness essentially provides a guarantee on how
far the system’s state trajectories can deviate (in L∞ norm) as a result of initial state
variations. It further leads to the possibility of approximating the set of the system’s
trajectories, which is infinite, with a finite set of trajectories. This fact, in turns, allows
us to pose the above problems as finitely many finite problems that can be practically
solved. In addition, these finite problems can be solved in parallel.

20.1 Note from the Author

This chapter is dedicated to Arjan van der Schaft in the occasion of his 60th birthday.
The work presented here germinated from seed ideas that I developed while working
as a doctoral student under Arjan’s mentorship. I was a graduate student at the
Department of Applied Mathematics at the University of Twente in the period of
1999–2005. During this period, I had the fortune of being introduced to the (then)
nascent field of hybrid systems, and exposed to the elegance of the behavioral systems
theory. Under Arjan’s guidance, I wrote my doctoral dissertation on essentially the
intersection of these two fields. In later years, while being a postdoctoral researcher
at the University of Pennsylvania, I was introduced to the seminal work of Antoine
Girard and George Pappas on the approximate bisimulation theory. The trajectory-
based perspective of the behavioral systems theory and the notion of invariance and
metrics in the space of trajectories from the approximate bisimulation theory are
largely the impetus of the results presented in this paper.

A.A. Julius (B)

Department of Electrical, Computer, and Systems Engineering,
Rensselaer Polytechnic Institute, 110 Eighth Street, NY, Troy 12180, USA
e-mail: agung@ecse.rpi.edu

© Springer International Publishing Switzerland 2015
M.K. Camlibel et al. (eds.), Mathematical Control Theory I,
Lecture Notes in Control and Information Sciences 461,
DOI 10.1007/978-3-319-20988-3_20

363

364 A.A. Julius

20.2 Introduction

Hybrid systems are dynamical systems with interacting discrete and continuous
dynamics [1]. Intuitively, one way to describe a hybrid system is to think of it as
a multimodal dynamical system, where the dynamics of the continuous states de-
pends on the discrete state of the system,which is also called themode or the location.
Because of their modeling expressivity, hybrid systems have been used in modeling
of embedded systems [2–8], air traffic systems [9–14], automotive systems [15–
17], electronic circuits [18–20], genetic regulatory networks [21–23], computational
morphodynamics [24], and other fields.

In this chapter, we consider two types of hybrid systems, autonomous hybrid
systems and control hybrid systems. More formal definitions of these systems will
follow in Sect. 20.3.1. Intuitively, the autonomous hybrid systems do not admit any
input. They are the hybrid systems analog of ẋ = f (x). Hybrid control systems,
on the other hand, admit both continuous and discrete control inputs. They are the
hybrid systems analog of ẋ = f (x, u). In a sense, for autonomous hybrid systems,
the evolution of the states is completely determined by its initial state.1

Research involving autonomous hybrid systems is typically of the analysis type,
i.e., they are concernedwith provingwhether the systems have certain properties.One
of the most important analysis problems in hybrid systems is the reachability/safety
analysis, where the question of interest is whether the system can enter an undesirable
state during its execution. Reachability/safety analysis has a lot of important practical
applications, for example, in the safety analysis of air traffic systems [11, 12, 14,
25, 26], design verification for electronic circuits [18–20], design verification for
synthetic biology [21, 27], and model analysis for biochemical processes [28].

Another type of analysis problems that is also studied a lot is the observability
analysis (see e.g., the editorial [29]). Here, the question of interest is whether we can
infer certain properties of the state trajectories by observing certain aspects thereof.
An important problem of this type is fault diagnosis. The central question in fault
diagnosis is whether we can infer that the state trajectory is faulty (e.g., it involves a
directly unobservable fault event) from partial observation (e.g., by observing only
the a part of the events in the system). Fault diagnosis for hybrid systems is an active
research area, with applications in embedded control systems [30], process control
[31], and others.

For hybrid control systems, there is a strong research interest involving synthesis.
The synthesis part of the safety/reachability issue deals with the construction of
control laws/algorithms for systems with input and controllable events, in order to
achieve executions with desired properties (e.g., safety) despite uncertainties.

In this chapter, we review some results on reachability/safety analysis and syn-
thesis and fault diagnosis for hybrid systems. The underlying theme of the results is

1For simplicity, in this chapter we do not consider nondeterminism and stochasticity in the hybrid
system dynamics.

20 Trajectory-Based Theory for Hybrid Systems 365

that they are all trajectory based. That is, they make use of trajectories to represent
the systems, and they are based on reasoning at the trajectory level, instead of at the
system representation level.

20.3 Review of the Fundamentals

20.3.1 Hybrid Automata

Following [1], we define hybrid systems as hybrid automata. A hybrid automaton is
expressed as an octuple H = (L ,X , I nit, A,U , E, I nv,Σ), where:

• L is a finite set of discrete states, which are also called modes or locations.
• X is the continuos state space.
• I nit ⊂ X × L is the set of initial states.
• A is a finite set of transition symbols.
• U is the space of continuous input.
• E is the set of transitions.
• I nv : L → 2X defines the invariant sets of each location. For an � ∈ L , I nv(�) is
the set in which the continuous states must remain as long as the discrete state is
�.

• Σ assigns each location to its continuous dynamics. For each location � ∈ L , we
define

Σ(�) : ẋ = F�(x), x ∈ I nv(�), (20.1)

if the hybrid system is autonomous, or

Σ(�) : ẋ = F�(x, u), x ∈ I nv(�), u ∈ U , (20.2)

if the hybrid system admits control inputs. Here we assume that for each loca-
tion F� satisfies some conditions that guarantee well-posedness of the continuous
dynamics.

Each transition in E is a pentuple e = (�, �′, Guard, R, a) ∈ E , where � ∈ L
is the origin of the transition, �′ ∈ L is the target location, Guard ⊂ I nv(�) is the
guard set of the transition, and R : I nv(�) → I nv(�′) is the reset map. The symbol
a ∈ A is the symbol associated with the transition. The semantics of the execution
of a hybrid automaton can be explained as follows: (see illustration in Fig. 20.1a).
An execution trajectory of H is a sequence

(�0, x0, u0, e0,Δ0), (�1, x1, u1, e1,Δ1), . . . , (�N , xN , uN , ∅,ΔN), (20.3)

where for all values of i that appear here Δi ∈ [0,∞), ei ∈ E , and ui : [0,Δi] → U
is the input signal, if the hybrid system admits input. If the system does not admit

366 A.A. Julius

(a) (b)

Fig. 20.1 An illustration of (a) the execution trajectory of a hybrid automaton, b the concept of
trajectory robustness

any input, the execution trajectory is a sequence

(�0, x0, e0,Δ0), (�1, x1, e1,Δ1), . . . , (�N , xN , ∅,ΔN). (20.4)

The initial state (x0, �0) ∈ I nit. Each element of the sequence is essentially an
interval of execution within which the discrete state is constant. These execution
intervals can be characterized recursively as follows. For the ith interval, the value
of the continuous state x(t) is given by ξi(t), which satisfies ξi(0) = xi and the ODE
given by Σ(�i). Within the time interval [0,Δi], ξi(t) ∈ I nv(�i). At time t = Δi,

the transition ei = (�i, �i+1, Guardi, Ri, a) occurs. That means ξi(Δi) ∈ Guardi

and the continuous state is reset for the next interval of execution. That is, for the
(i + 1)-st interval, the continuous state is initialized at ξi+1(0) = xi+1 = Ri(ξi(Δi)).
Further, the symbol a ∈ A is associated to the transition. If the transition is triggered
externally, for example, a can be considered the discrete command that is given to
the system. For the discussion in this chapter, we limit our attention to execution
trajectories with finitely many intervals, and that the last interval does not terminate
with a transition. Physically, the amount of time that elapses during the execution
trajectory above is

∑N
i=0 Δi. Also, we only stipulate that the transitions occur when

the continuous state is in the guard set of the transition. We do not stipulate (yet)
whether the transitions happen spontaneously, i.e., triggered by the system’s own
dynamics (example: a falling object bouncing off the floor), or they are triggered
externally (example: switching gear in manual transmission).

20.3.2 Trajectory Robustness

The key ingredient in our framework is the notion of trajectory robustness. With the
notion of trajectory robustness, we provide a guarantee on how far the system’s state
trajectories candeviate (in L∞ norm) as a result of initial state variations.This concept

20 Trajectory-Based Theory for Hybrid Systems 367

is easily extensible to treat system parameter variation, for example, by embedding
the parameters as static states in the system. Therefore, although not explicitly stated,
the following discussion also applies to variations in system parameter.

We construct trajectory robustness using the theory of approximate bisimulation,
which was developed by Girard and Pappas [32–34]. This theory was subsequently
extended to stochastic hybrid systems and trajectory-based analysis of hybrid systems
[35–39]. In the following, we review the application of approximate bisimulation in
establishing state trajectory robustness with respect to initial condition variation for
a nonlinear dynamical system

Σ : ẋ = F(x), x ∈ X , (20.5)

where x is the state of the system, and X is the state space. Suppose that we can
construct a differentiable function φ : X × X → R such that

φ(x, x′) ≥ ∥
∥x − x′∥∥ ,∀x, x′ ∈ X , (20.6a)

dφ

dt
= ∂φ

∂x
F(x) + ∂φ

∂x′ F(x′) ≤ 0,∀x, x′ ∈ X . (20.6b)

Such a function φ(x, x′) is called a autobisimulation function [32–34].

Notation We denote the solution of (20.5) with initial state x0 as ξ(t, x0) and we
define the ball

Bφ(x, r) � {y ∈ X | φ(x, y) ≤ r} , x ∈ X , r > 0. (20.7)

From (20.6b), we can easily conclude that the value of φ is nondecreasing along
any two state trajectories of the system. From (20.6a), we can see that φ(x, x′) is an
upper bound for the Euclidean distance between the two states. Then by combining
these two properties, we can conclude that for all t ≥ 0,

ξ(t, x′
0) ∈ Bφ(ξ(t, x0), φ(x0, x′

0)), (20.8)
∥
∥ξ(t, x0) − ξ(t, x′

0)
∥
∥ ≤ φ(x0, x′

0), (20.9)

for any initial state x′
0 ∈ X . Please refer to Fig. 20.1b for an illustration of this

concept.

Remark 20.1 The concept of trajectory robustness is very related to the concept of
contraction metric developed by Lohmiller and Slotine [40]. In general, there are
some differences between the two concepts. For example, autobisimulation function
can also be defined as a pseudometric if we are only concerned about the divergence
of the state trajectories in a certain subspace. Also, as the name suggests, bisimulation
functions are originally defined to bound the divergence between the state trajectories
of two different systems [33]. However, as defined in this chapter, if we also require
that φ is a metric in X , then it can be considered as a contraction metric.

368 A.A. Julius

The autobisimulation function φ plays an essential role in establishing trajectory
robustness. If (20.5) defines a stable linear affine dynamics

Σ : ẋ = Ax + b, x, b ∈ R
n, A ∈ R

n×n, (20.10)

and A is Hurwitz, then φ can be using a quadratic Lyapunov function as follows
[33, 38].

φ(x, x′) =
√

(x − x′)T P(x − x′), (20.11)

where P is a symmetric positive definite matrix satisfying the Lyapunov Linear
Matrix Inequality

AT P + P A
 0. (20.12)

If (20.5) defines a special class of nonlinear dynamics, the procedure above can
be extended. For example, if F(x) in (20.5) is polynomial, we can search for a
polynomial autobisimulation function. We refer the reader for more details on this
to [39], where sum-of-squares optimization technique [41] is used for this purpose.
For the discussion in this chapter, it suffices to consider the linear affine case above.

20.4 Approximation with Finite Behavior

Trajectory robustness gained from approximate bisimulation theory is a very useful
tool. It allows us to approximate a dynamical system or a hybrid system with a
representation that has finitely many trajectories. The main idea can be explained
as follows. Consider the dynamics given by (20.5), and suppose that the system is
known to have an initial state in a compact set I nit ⊂ X . This means, any trajectory
of the system can be written as ξ(t, x′

0), for some x′
0 ∈ I nit. Suppose that we have a

bisimulation function φ that satisfies (20.6a), (20.6b). See the illustration in Fig. 20.2.

Fig. 20.2 Approximation of
the sytem’s trajectories with
a set of one trajectory (left)
or finitely many trajectories
(right)

20 Trajectory-Based Theory for Hybrid Systems 369

If x0 ∈ X and r > 0 are such that

I nit ⊂ Bφ(x0, r), (20.13)

then for any trajectory of the system ξ(t, x′
0), we have

ξ(t, x′
0) ∈ Bφ(ξ(t, x0), r). (20.14)

Thus, we can think of a single trajectory ξ(t, x0) as an approximation of the entire
set of the system’s trajectories. Equation (20.14) essentially means that the accuracy
of this approximation is given by r.

The idea above can be further generalized and stated as follows.

Theorem 20.2 Consider a family of initial states x0,1, x0,2, . . . , x0,M ∈ X and pos-
itive numbers r1, r2, . . . , rM such that

I nit ⊂
M⋃

k=1

Bφ(x0,k, rk). (20.15)

For any x′
0 ∈ I nit there exists k ∈ {1, . . . , M} such that

ξ(t, x′
0) ∈ Bφ(ξ(t, x0,k), rk),∀t ≥ 0. (20.16)

The main point of this theorem is that the entire set of the system’s trajectories
can be approximated by a finite set of trajectories. Again, the numbers r1, r2, . . . , rM

essentially define the accuracy of this approximation. The smaller they are, the ap-
proximation is more accurate but we can expect to need more balls to cover I nit.

In the remainder of this section, wewill discuss the extension of this idea to hybrid
systems. We limit our discussion in this section to autonomous hybrid systems and
leave control hybrid systems for Sect. 20.7.3. Consider a hybrid automaton H as
defined in Sect. 20.3.1. Suppose that L = {�0, �1, . . . , �|L|} and that for each discrete
state �i ∈ L the continuous state dynamics

Σ(�i) : ẋ = F�i(x)

admits an autobisimulation function φi. Further, we assume that the guard sets of
the transitions define the boundary of the invariant sets of the locations. Also, we
assume the transitions in this system occur as soon as the continuous state hits a
guard of a transition. Consider an execution trajectory of such hybrid automaton,
as exemplified in (20.4). For simplicity of the discussion, let us assume that there
are only two intervals, i.e., the trajectory is (�0, x0, e0,Δ0), (�1, x1, ∅,Δ1). This
is illustrated in Fig. 20.3. The transition e0 = (�0, �1, Guard0, R0, a0). We define
Guard as the union of the guards of all transitions other than e0 that start in �0,

370 A.A. Julius

Fig. 20.3 An illustration of an execution trajectory of a hybrid automaton and the concept of
trajectory robustness

R−1
0

(
Bφ1(x1, r1)

)
�

{
x ∈ Guard0 | R0(x) ∈ Bφ1(x1, r1)

}
,

G0 � Guard0\R−1
0

(
Bφ1(x1, r1)

)
.

We can formulate the following theorem (adapted from [38]).

Theorem 20.3 Suppose that r0, r1, ε0, ε′
0 > 0 are such that the following are true.

Bφ0(x0, r0) ⊂ I nit, (20.17a)

Bφ0(ξ0(t, x0), r0) � ∩(Guard ∪ G0), ∀t ∈ [0,Δ0 + ε0], (20.17b)

Bφ0(ξ0(t, x0), r0) � ∩I nv(�0), (20.17c)

Bφ0(ξ0(t, x0), r0) � ∩Guard0, ∀t ∈ [0,Δ0 − ε′
0] (20.17d)

Then, for any x′
0 ∈ Bφ0(x0, r0) the following are also true:

• The execution trajectory starting from (x′
0, �0) also exits �0 through transition e0.

• The transition occurs at time Δ′
0, where Δ′

0 ∈ [Δ0 − ε′
0,Δ0 + ε0].

• In the first interval, for all t ∈ [0,Δ′
0], ξ0(t, x′

0) ∈ Bφ0(ξ0(t, x0), r0).
• After the transition e0, the continuous state is reset into Bφ1(x1, r1).

This theorem can be generalized to trajectories with more intervals. Essentially,
it shows that the trajectory starting at (�0, x0) is an approximation of those starting
in the location �0 with initial continuous state in the neighborhood of x0 in the sense
that (i) the divergence of the continuous state trajectory is bounded in the sense of
Theorem 20.2, (ii) the sequence of transitions are preserved, and (iii) the divergence
of the transition times is bounded. Following the same idea as in Theorem 20.2, if
the set of initial states is compact, we can use Theorem 20.3 to approximate the set
of trajectories of a hybrid automaton with a finite set of trajectories.

20 Trajectory-Based Theory for Hybrid Systems 371

20.5 Safety/Reachability Analysis

Safety/reachability analysis is concerned with the question whether any of the sys-
tem’s state trajectories enters a predefined set of unsafe states. For a dynamical
system as in (20.5) with a set of initial states I nit, we define a set Unsafe ⊂ X
and ask whether there is an initial state x′

0 ∈ I nit such that ξ(t′, x0) ∈ Unsafe
for some t′ ∈ [0, T]. If such initial state does not exist then the system is safe.2

This is illustrated in Fig. 20.4. The question described above is called bounded-time
safety/reachability analysis, because of the specified upper bound T . If the dynamics
(20.5) admits an autobisimulation function φ, then the following result can be stated.

Proposition 20.4 See the illustration in Fig.20.4. If r > 0 is such that

Bφ(ξ(t, x0), r) � ∩ Unsafe, ∀t ∈ [0, T],

then there exists no initial state x′
0 ∈ Bφ(x0, r) from which the state trajectory enters

Unsafe in the time interval [0, T].
This proposition allows us to generalize the safety property of the trajectory

initialized at x0 to other trajectories initialized at other states in its neighborhood.
Further, the safety of the entire system can be proved by analyzing the safety of
finitely many trajectories, as stated below.

Theorem 20.5 Consider a family of initial states x0,1, x0,2, . . . , x0,M ∈ X and pos-
itive numbers r1, r2, . . . , rM such that

I nit ⊂
M⋃

k=1

Bφ(x0,k, rk). (20.18)

If for each k ∈ {1, . . . , M}

Unsafe

safety is violated

Unsafe

Fig. 20.4 Left An illustration of the safety property. Right How trajectory robustness can be used
in safety/reachability analysis

2We assume that I nit and Unsafe do not intersect. Otherwise, the problem is trivial.

372 A.A. Julius

Bφ(ξ(t, x0,k), rk) � ∩ Unsafe, ∀t ∈ [0, T],

then the system is safe.

For an autonomous hybrid automatonH, safety/reachability analyis can be setup
by defining a set of unsafe states Unsafe ⊂ X × L . Again, the system is deemed
safe if for any state trajectory initialized in I nit ⊂ X × L , the resulting state trajec-
tory does not enter Unsafe. Next, we formulate the analog of Proposition 20.4 for
autonomous hybrid automaton. Consider the hybrid automaton discussed in Sect.
20.4, and its execution trajectory that is discussed in Theorem 20.3. The trajectory
is (�0, x0, e0,Δ0), (�1, x1, ∅,Δ1).

Proposition 20.6 Suppose that r0, r1, ε0, ε′
0 > 0 satisfy the conditions (20.17a),

(20.17d) in Theorem 20.3. In addition, suppose that

Bφ0(ξ0(t, x0), r0) � ∩ Unsafe, ∀t ∈ [0,Δ0 + ε0],
Bφ1(ξ1(t, x1), r1) � ∩ Unsafe, ∀t ∈ [0,Δ1].

Then, for any x′
0 ∈ Bφ0(x0, r0) the following are also true:

• The execution trajectory starting from (x′
0, �0) is safe until transition e0 that hap-

pens at time Δ′
0, i.e.,

ξ0(t, x′
0) /∈ Unsafe, ∀t ∈ [0,Δ′

0].

• Afterwards, in location �1, the execution trajectory is safe for Δ1 time units, i.e.,

ξ1(t, R0
(
ξ0(Δ

′
0, x′

0)
)
) /∈ Unsafe, ∀t ∈ [0,Δ1].

This proposition can be generalized to the case where the execution trajectory has
more intervals. Also, if the set of initial states I nit can be covered by the union of
balls as in Theorem 20.5, then we can prove that the system is safe. More details on
this idea is reported in [38, 42, 43].

20.6 Observability and Fault Diagnosability

Observability analysis can be intuitively explained as follows. Suppose that the set
B contains all trajectories of the system, and π1 : B → P1 and π2 : B → P2
are surjective maps with co-domains P1 and P2 respectively. The map π1 can be
considered as observation map that extracts information from the trajectories in B.
If this map is bijective, then all information from the trajectories in B is retained.
Otherwise, multiple distinct trajectories inB are mapped to the same element inP1,
representing the idea that some information (that distinguishes these trajectories)
is lost in the observation. The map π2 represents another aspect of the trajectories
in B. We say that P2 is observable from P1 if the composite map π−1

1 ◦ π2 is

20 Trajectory-Based Theory for Hybrid Systems 373

injective, where π−1
1 is the set-theoretic inverse map of π1. This means the observed

information from π1 can uniquely determine the output of π2.
In classical linear systems theory, this (behavioral) definition of observability

coincides with the notion of observability for state-space systems [44]. That is, if we
define the state-space system as

Σlin :
{

ẋ = Ax + Bu, x ∈ R
n, u ∈ R

m,

y = Cx + Du, y ∈ R
p,

(20.19)

we defineB to be the set of (x, u, y) trajectories that are compatible with this system
description. The map π1 takes such trajectories and retains only the x components.
The map π2 is the identity map. The characterization of observability as discussed
in the previous paragraph coincides with the well-known Kalman rank condition

rank[CT AT CT . . .
(

AT
)n

CT] = n. (20.20)

For hybrid automata as in Sect. 20.3.1, the notion of observation can be more
general. In particular, in this chapter, we consider the observation that simply re-
tains only the discrete aspect of the trajectories. This can be made precise using the
following definition.

Definition 20.7 For a hybrid automatonH as defined in Sect. 20.3.1, we define the
function Γ : E → A to map any transition e ∈ E to its transition symbol. For an
execution trajectory

ω � (�0, x0, e0,Δ0), (�1, x1, e1,Δ1), . . . , (�N , xN , ∅,ΔN), (20.21)

we define the map

πdiscrete(ω) � (Γ (e0),Δ0) , (Γ (e1),Δ1), . . . , (∅,ΔN). (20.22)

The map πdiscrete essentially takes the execution trajectory and returns only the
symbols of the transitions and the intervals between the occurrence of the symbols.
Note that Γ is not necessarily injective, which implies that the transitions are not
necessarily distinguishable one from another. As an extreme case, A is a singleton.
That means we can only observe when a transition has occurred, but not which tran-
sition. Observability analysis for this kind of observation map has been considered,
for example by Di Benedetto et al. in [45] where the question is whether the discrete
state can be uniquely determined there from.

Fault diagnosability analysis is related to observability analysis. Suppose that
B, the set of trajectories of the system, can be divided into two disjoint partitions,
Bnom and Bfault. Bnom represents the normal behavior of the system, while Bfault
represents the faulty behavior of the system. That is, Bfault consists of trajectories
where a fault occurs. If we again define the observation map π1 : B → P1 as above,
then the system is fault diagnosable from the observation map π1 if for any p ∈ P1,

374 A.A. Julius

System
Model

Abstract
Model

A
pp

r.
ab

st
ra

ct
io

n

normal

normal

faulty

faulty

Obs. space

Obs. space

observation

observation

infinite

infinite

finite

finite

Fig. 20.5 By approximating all the system’s trajectories with a set of finitely many trajectories, we
can reduce fault diagnosability analysis to a finite problem

π−1
1 (p) is either strictly in Bnom or strictly in Bfault. In other words, based on the

observation defined by π1, we can always conclude whether the trajectory is normal
or faulty.

Although the basic concept is easy to understand, in practice verifying fault di-
agnosabilty is difficult because the system typically has infinitely many trajectories.
However, if we can approximate the system with another one with finitely many
trajectories, as explained in Sect. 20.4, then the analysis is much simpler. This is
illustrated in Fig. 20.5.

Suppose that B can be approximated with B′ that only has finitely many trajec-
tories. That is, there exists an injective map α : B → B′ such that for any trajectory
ω ∈ B, α(ω) ∈ B′ is an approximation of ω. Intuitively, ω and α(ω) are close to
each other. To be precise, suppose that P1 is equipped with a metric ‖·‖p and

‖π1(ω) − π1(α(ω))‖p ≤ r, ∀ω ∈ B. (20.23)

Then, if we define

B′
nom � α(Bnom), B′

fault � α(Bfault),

we have the following result.

20 Trajectory-Based Theory for Hybrid Systems 375

Theorem 20.8 If for any ω1 ∈ B′
nom and ω2 ∈ B′

fault

‖π1(ω1) − π1(ω2)‖ > 2r (20.24)

then the system is fault diagnosable.

Note that checking the condition (20.24) in this theorem is practically possible
because both B′

nom and B′
fault have finitely many trajectories.

For an autonomous hybrid automaton, suppose that ω is an execution trajectory
given in (20.21) and α(ω) is the approximate trajectory in the sense of Theorem
20.3. From the theorem, we know that both trajectories have the same sequence of
transitions, and the timing of transitions are close. That is, if the observation map is
πdiscrete and πdiscrete(ω) is as given in (20.22), then

πdiscrete(α(ω)) = (
Γ (e0),Δ

′
0

)
, (Γ (e1),Δ

′
1), . . . , (∅,ΔN), (20.25)

Δ′
k ∈ [Δk − ε,Δk + ε],∀k ∈ {0, 1, . . . , N − 1}, (20.26)

for some ε > 0. The distance between πdiscrete(ω) and πdiscrete(α(ω)) can be defined
in terms of the timing difference, and hence the distance can be bounded as in (20.23).
Therefore, we can use Theorem 20.8 to verify fault diagnosability for autonomous
hybrid automata based on observing the timing of the transitions and the respec-
tive transition symbols. This is the underlying idea behind some recent work on
fault diagnosability of some classes of hybrid systems [46] and probabilistic hybrid
systems [47].

20.7 Controller Synthesis

In this section, we discuss the controller synthesis problem related to safety/ reach-
ability properties. For a dynamical system given by

Σ : ẋ = F(x, u), x ∈ X , u ∈ U , (20.27)

where F is well-posed, the problem can be posed as follows. Given a compact set
of initial condition I nit ⊂ X , and a set of goal states Goal ⊂ X , we want to steer
the state starting from any initial state x0 ∈ I nit such that the state trajectories enter
Goal at time t = T and in the time interval [0, T] the state remains safe (does not
enter a set of states termed Unsafe).

The notion of trajectory robustness discussed in Sect. 20.3.2 can also be used in
trajectory-based controller synthesis. The key concept in this approach is the control
autobisimulation function (CAF) [48, 49]. A continuously differentiable function
ψ : X × X → R is a control autobisimulation function of (20.5) if for any

376 A.A. Julius

x, x′ ∈ X , ψ(x, x′) ≥ ∥
∥x − x′∥∥, and there exists a function k : X → U such that

dψ

dt
= ∂ψ

∂x
f (x, k(x)) + ∂ψ

∂x′ f (x′, k(x′)) ≤ 0. (20.28)

Remark 20.9 The control autobisimulation function is an analog of the control Lya-
punov function (CLF) [50], for trajectory robustness [33, 38]. While control Lya-
punov function has been used to construct control laws that guarantee stability (e.g.,
[51]), we shall use the control autobisimulation function to construct control laws
that guarantee trajectory robustness.

A consequence of the existence of a CAF is the existence of a feedback control
law u = k(x), such that the closed-loop system

ẋ = F(x, k(x)), x ∈ X , (20.29)

has ψ(·, ·) as a autobisimulation function (see Sect. 20.3.2). For a given dynamical
system Σ in (20.27) and a control autobisimulation function ψ , the class of all feed-
back control laws k(·) that satisfy (20.28) is called the class of admissible feedback
laws.

Notation For a given dynamical system Σ in (20.27) and a feedback control law
u = k(x), the closed-loop trajectory with initial condition x(0) = x0 is denoted by
ξk(t, x0). For a control autobisimulation function ψ , x ∈ X , r > 0, we define the
ball

Bψ(x, r) � {y ∈ X | ψ(x, y) ≤ r}.

The trajectory-based controller synthesis paradigm can be stated as follows. We
first construct feedback controllers from the class of feasible feedback laws. By
definition, the closed-loop system will then admit a predefined autobisimulation
function. This means that the trajectory robustness property discussed in Sect. 20.3.2
is guaranteed to hold. Please refer to Fig. 20.6 for an illustration.

Theorem 20.10 Suppose that for a given initial state x0 ∈ I nit, we can design an
admissible feedback law u = k0(x) that results in a closed-loop execution trajectory
ξk0(t, x0) satisfying

Bψ(ξk0(t, x0), r0) � ∩ Unsafe, ∀t ∈ [0, T], (20.30)

Bψ(ξk0(t, x0), r0) ⊂ Goal. (20.31)

Then, for any initial state x′
0 ∈ Bψ(ξk0(t, x0), r0), the closed-loop trajectory ξk0(t, x0)

is also safe for t ∈ [0, T] and is in the Goal set at t = T .

Therefore, the admissible feedback law u = k0(x) is applicable not only for the
initial state x0 but also to other initial states in its neighborhood. The controller
synthesis procedure can be performed in two steps:

20 Trajectory-Based Theory for Hybrid Systems 377

Unsafe

Goal

Init

Fig. 20.6 An illustration for trajectory-based controller synthesis

Step 1 For a given initial state, synthesize an innerloop controller that endows the
system with the trajectory robustness property.

Step 2 Obtain finitely many trajectories resulting from Step 1 that have the desired
qualitative properties to cover I nit. Note that the controller in Step 1 can
depend on the initial state.

Effectively, the trajectory robustness approach allows us to reduce the problem
of finding a control law that works for infinitely many initial states in I nit to a
problem where this has to be done for finitely many initial states. Moreover, the
control law can depend on the initial state, and the control law for each initial state
can be designed independently of the others’. Steering the system from a particular
initial state, is arguably an easier task than finding a control law that works for the
entire I nit set. Thus, we break down a hard problem into a finite number of simpler
and parallelizable problems.

20.7.1 Controller Synthesis for Linear Affine Dynamics

The synthesis of the CAF and the controllers for systems with linear affine dynamics
is discussed below. In this case, F(x, u) in (20.27) takes the form

F(x, u) = Ax + f + Bu, x ∈ R
n, u ∈ R

m, (20.32)

where A ∈ R
n×n, f ∈ R

n, and B ∈ R
n×m. For such systems, we again construct

CAF as quadratic functions [48, 49]. That is, we assume that

ψ(x, x′) =
√

(x − x′)T P(x − x′), (20.33)

where P ∈ R
n×n is a positive definite matrix. In this case, the inequality (20.28)

becomes
(x − x′)T P

(
A(x − x′) + B(k(x) − k(x′))

) ≤ 0. (20.34)

378 A.A. Julius

We then construct a feedback law of the form u(t) = k(x) = K x + v(t), where
K ∈ R

m×n, and v(t) ∈ R
m is a time-varying function, both to be determined later.

With this controller, (20.34) becomes

(x − x′)T P (A + BK) (x − x′) ≤ 0. (20.35)

A well-known result in control theory (see e.g., [52, 53]) states that there exist P and
K such that (20.35) holds if and only if (A, B) is stabilizable. In this case, there are
well-known methods to synthesize the suitable P and K . For example, we can pose
(20.24) as a linearmatrix inequality (LMI) [54], which can be solved efficiently using
existing semidefinite programming software tools, such as SeDuMi or SDPT3. With
some modification, this method can also be used to handle magnitude constraint on
the input signal, ‖u‖L∞ ≤ M, for some M > 0 [48, 49].

Notice that given P and K that satisfy (20.35), we are still free to design v(t).
Whatever v(t) is, the control law is admissible. The remaining task in the controller
design is therefore to find v(t) that steers the trajectories of the closed-loop system
from I nit to the Goal set, without entering the Unsafe set. This corresponds to Step
2 in the previous section. The problem of finding such v(t) for a given initial state is
easier to solve than the original problem, because the control input is only required
to work for that particular initial state. We can use a variety of methods for this, for
example, using path planning methods from robotics [48], or by using human inputs
[49].

In this chapter, we use v(t) as a feedforward control input that depends on the
initial state x(0). It is actually possible to define v(t) through a feedback control law,
i.e., as a function of x(t). Such feedback law can be learned from the feedforward
control input, and is guaranteed to have the same safety property as the feedforward
controller above. For further discussion on this topic, the reader is referred to [55].

20.7.2 Controller Synthesis for Nonlinear Dynamics

The results from the previous section can be generalized to some classes of systems
with nonlinear dynamics [56]. We consider systems of the form:

Σ :
{

dx
dt = f (x) + g(x)u, x ∈ R

n, u ∈ R
m,

y = h(x), y ∈ R
m,

(20.36)

where y is the output of the system. We assume that the safety and goal reaching
properties of the system can be expressed in terms of y (instead of x).

20 Trajectory-Based Theory for Hybrid Systems 379

20.7.2.1 Feedback Linearizable Systems

If (20.36) is feedback linearizable (for a comprehensive discussion, the reader is
referred to standard textbooks on Nonlinear Control Systems such as [57, 58]), there
exists a feedback law

u(t) = κ(x) + λ(x)w(t), w(·) ∈ R
m, (20.37)

such that the closed-loop system, with new input w(t) and output y(t), is a linear
system. The necessary and sufficient conditions for feedback linearizability and the
design procedure for κ(x) and λ(x) are covered in the above-mentioned books. In
the context of our discussion, the linearizing feedback can be implemented as an
inner feedback loop. Once the system is linear, we can apply the results from the
previous section for controller synthesis. This method has been applied in designing
a controller for fully actuated flexible robot arms [59], whose dynamics are feedback
linearizable.

20.7.2.2 Differentially Flat Systems

Differentially flat systems are widely encountered in mechanical and robotics
systems. For examples and comprehensive discussion, the reader is referred to
[60–62]. The system in (20.37) is differentially flat if it has flat outputs. The outputs
y = (y1, . . . , ym) are flat outputs if x and u can be written as functions of y and its
time derivatives,

x = Ξ(y, ẏ, . . . , y(�)), u = Υ (y, ẏ, . . . , y(�+1)), (20.38)

for some integer �, and (y, ẏ, . . . , y(�)) are not constrained to satisfy a differential
equation by themselves. In other words, any sufficiently smooth trajectory y is ad-
missible as an output trajectory of the system.

A differentially flat system is related to a linear system, namely an �th order inte-
grator chain, through the transformation in (20.38). In the context of our discussion,
we can apply the results from the previous section for controller synthesis for the
integrator chain. The controller for the nonlinear system (20.37) can then be obtained
using the transformation in (20.38).

20.7.3 Controller Synthesis for Hybrid Systems

Consider the control hybrid automata defined in Sect. 20.3.1. For simplicity of the
discussion, let us assume that the continuous state dynamics in each location is linear
affine. That is, suppose that L = {�0, �1, . . . , �|L|} and that for each discrete state
�i ∈ L the continuous state dynamics is

Σ(�i) : ẋ = A�i x + f�i + B�i u,

380 A.A. Julius

Guard 1
Guard 2

Fig. 20.7 Illustration of forcing and nonforcing guards of hybrid automata. From different initial
states in location �1, the trajectories can undergo different evolution and transition to different
locations. The set Guard 1 represents a nonforcing transition, while Guard 2 represents a forcing
transition

where A�i , B�i , and f�i are matrices with appropriate dimensions, and the pair
(A�i , B�i) is stabilizable. Therefore, the continuous state dynamics in each location
admits a control autobisimulation function ψi.

We assume there are two types of transitions, forcing and nonforcing. A forcing
transition occurs immediately when the continuous state hits the guard, which is the
case for autonomous hybrid automata in Sect. 20.4. See Fig. 20.7, where the guards
of forcing transitions are illustrated as lines on the boundary of the invariant set of
location �1. A nonforcing transition can happen at any time while the continuous
state is in its guard. In Fig. 20.7, this is illustrated by the transition from location �1
to �2. In this case, the guard set is “thick,” indicating that the transition can happen,
but not necessarily as soon as the guard is hit. The occurrence of a nonforcing tran-
sition can be user-triggered (corresponding to a discrete control input), or externally
triggered. Nonforcing transitions are useful to model events whose occurrence is not
predetermined (uncertain) because it is to be triggered by the user/controller, or it is
triggered externally at an a priori unknown time.

In defining the control specification, we define a set of initial state I nit ⊂ X × L .
We assume that there is a subset Unsafe ⊂ X × L of unsafe states. A trajectory of
the hybrid system corresponds to an unsafe execution if it enters the unsafe set. We
also define the set Goal ⊂ X × L , which must be entered by the state trajectory.
Again, the control problem is defined as finding the feedback control strategy that
is guaranteed to bring any initial state in I nit to the Goal set without entering the
Unsafe set.

Without any loss of generality, we can assume that the set I nit is contained in
(the invariant set of) one location, called �init ∈ L . If this is not the case, we can
divide the problem into several subproblems, each with an I nit set contained in a
specific location. Similarly, we can assume the Goal is also entirely contained in one
location, called �goal ∈ L .

Controller synthesis for hybrid systems can be done using a hierarchical approach,
which can be described in the following steps:

20 Trajectory-Based Theory for Hybrid Systems 381

Step 1: Discrete Synthesis. We compute a discrete trajectory that starts in �init and
ends in �goal. By discrete trajectory, we mean an alternating sequence of locations
and transitions

�init = �0
e0→ �1

e1→ �2
e2→ · · · eN−1→ �N = �goal. (20.39)

Each transition ei, i ∈ {0, . . . , N − 1}, is an element of E , originating in �i, and
targeting �i+1. We require that each transition here is either forcing or user-triggered.
Such a discrete trajectory is not necessarily unique, but at this step we only need one.
The computation of such a discrete trajectory is a standard procedure in formal
verification of discrete event systems [63]. For this purpose, there are many good
algorithms and computational tools that can be used, such as STRIPS and PDLL [64].

Step 2: Continuous Synthesis. In this step, we synthesize the continuous controller
for each of the visited locations (�0,1,...,N) in order to implement the computed
discrete trajectory. In each location �i,, we define an initial set based on how �i is
reached from �i−1.We then formulate the control problem of bringing the continuous
state from this initial set to the interim goal set, which is the guard of transition ei that
will bring the state to location �i+1 without entering the forbidden set. The forbidden
set is defined as the union of Unsafe and the guards of other forcing transitions from
�i. This is thus an instance of the control problem discussed in Sect. 20.7.1. If we are
able to construct a continuous controller that implements the discrete trajectory, then
the hybrid control problem is solved. Otherwise, we go back to Step 1, and compute
another discrete trajectory.

Remark 20.11 The control problem that we discuss in this chapter is only concerned
with the safety/reachability property. In addition, it is possible to formulate an opti-
mal control problem in which a performance objective needs to be optimized while
maintaining the safety/reachability property. For further discussion on the trajectory-
based approach to this problem, the reader is referred to [65].

20.8 Concluding Remarks

We review some results that allow us to use trajectory-level reasoning in solving some
problems in safety/reachability analysis of hybrid systems, controller synthesis for
safety/reachability, and fault diagnosability of hybrid systems. The main feature of
this approach is the possibility to break down a problem involving infinitely many
trajectories of the system into one that only involves finitely many of them.

While we focus solely on safety/reachability property in this chapter, the dis-
cussion is actually generalizable to verification of and controller synthesis for other
properties, such as those that can be described with temporal logics. In addition,
there have also been extension work that consider stochasticity in the dynamics.

382 A.A. Julius

Acknowledgments The author wishes to acknowledge the support from the National Science
Foundation through the CAREER grant CNS-0953976 and the grant CNS-1218109 for the research
leading to results presented here. The results are summarized from the author’s earlier work in
collaboration with George Pappas, Antoine Girard, Georgios Fainekos, Alessandro D’Innocenzo,
and graduate students Sina Afshari, Andrew Winn, and Yi Deng.

References

1. A.J. van der Schaft, J.M. Schumacher,An Introduction to Hybrid Dynamical Systems (Springer,
London, 2000)

2. P. Tabuada, G.J. Pappas, P. Lima, Compositional abstractions of hybrid control systems. Dis-
crete Event Dyn. Syst. 14(2), 203–238 (2005). April

3. R. Alur, R. Grosu, I. Lee, O. Sokolsky, Compositional modeling for refinement for hierarchical
hybrid systems. J. Logic Algebraic Program. 68(1–2), 105–128 (2006)

4. J. Hu, Application of Stochastic Hybrid Systems in Power Management of Streaming Data, in
Proceedings of American Control Conference, Minneapolis, USA (2006)

5. C. Kossentini, P. Caspi, Approximation, Sampling and Voting in Hybrid Computing Systems,
inHSCC 2006, vol. 3927, LNCS, ed. by J.P. Hespanha, A. Tiwari (Springer, Heidelberg, 2006),
pp. 363–376

6. J. Kapinski, A. Donzé, F. Lerda, H. Maka, S. Wagner, B.H. Krogh, Control Software Model
Checking Using Bisimulation Functions for Nonlinear Systems, in Proceedings of IEEE Con-
ference Decision and Control, Cancun, Mexico (2008)

7. R. Alur, G. Weiss, Regular Specifications of Resource Requirements for Embedded Control
Software, in Proceedings of 14th IEEE Real-Time and Embedded Technology and Applications
Symposium, pp. 159–168 (2008)

8. R. Alur, A. D’Innocenzo, K. Johansson, G. Pappas, G.Weiss, Modeling and Analysis of Multi-
hop Control Networks, in Proceedings of 15th IEEE Real-Time and Embedded Technology and
Applications Symposium (2009)

9. C. Tomlin, G.J. Pappas, S. Sastry, Conflict resolution for air traffic management: a study in
multi-agent hybrid systems. IEEE Trans. Autom. Control 43(4), 509–521 (1998)

10. N. Lynch, High-level Modeling Andanalysis of An Air-traffic Management System, in Hybrid
Systems: Computation and Control, ser. LNCS, vol. 1589. Springer, p. 3 (1999)

11. M. Prandini, J. Hu, J. Lygeros, S. Sastry, A probabilistic approach to aircraft conflict detection.
IEEE Trans. Intell. Transp. Syst. 1(4), 199–220 (2000)

12. J. Hu, M. Prandini, S. Sastry, Probabilistic Safety Analysis in Three Dimensional Aircraft
Flight, in Proceedings of 42nd IEEE Conference Decision and Control, Maui, USA, pp. 5335–
5340 (2003)

13. A. Bayen, P. Grieder, G.Meyer, C. Tomlin, Lagrangian delay predictive model for sector-based
air traffic flow. AIAA J. Guidance Control. Dyn. 28(5), 1015–1026 (2005)

14. H.A.P. Blom, J. Krystul, G.J. Bakker, A Particle System for Safety Verification of Free Flight
in Air Traffic, in Proceedings of IEEE Conference Decision and Control, San Diego, USA
(2006)

15. J. Lygeros, N. Lynch, Strings of Vehicles: Modeling and Safety Conditions, in Hybrid Systems:
Computation and Control, ser. LNCS, vol. 1386. Springer, pp. 273–288 (1998)

16. A. Fehnker, Automotive Control Revisited: Linear Inequalities as Approximation of Reachable
Sets, in Hybrid Systems: Computation and Control, ser. LNCS, vol. 1386. Springer, pp. 110–
125, (1998)

17. A. Balluchi, F.D. Natale, A.L. Sangiovanni-Vincentelli, J.H. van Schuppen, Synthesis for Idle
Speed Control of an Automotive Engine, in HSCC 2004, vol. 2993, LNCS, ed. by R. Alur, G.J.
Pappas (Springer, Heidelberg, 2004), pp. 80–94

20 Trajectory-Based Theory for Hybrid Systems 383

18. T. Dang, A. Donzé, O. Maler, Verification of Analog and Mixed-Signal Circuits Using Hybrid
System Techniques, in FMCAD 2004, vol. 3312, LNCS, ed. by A.J. Hu, A.K.Martin (Springer,
Heidelberg, 2004), pp. 21–36

19. G. Frehse, PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech, in HSCC 2005,
vol. 3414, LNCS, ed. by M. Morari, L. Thiele (Springer, Heidelberg, 2005), pp. 258–273

20. G. Frehse, B.H. Krogh, R.A. Rutenbar, O. Maler, Time domain verification of oscillator circuit
properties. Electron. Notes Theoret. Comput. Sci. 153(3), 9–22 (2006)

21. G. Batt, B. Yordanov, R. Weiss, C. Belta, Robustness analysis and tuning of synthetic gene
networks. Bioinformatics 23(18), 2415–2422 (2007)

22. S. Drulhe, G. Ferrari-Trecate, H. de Jong, The switching threshold reconstruction problem for
piecewise affine models of genetic regulatory networks. IEEE Trans. Autom. Control 53(1),
153–165 (2008)

23. E. Cinquemani, A. Milias-Argeitis, S. Summers, J. Lygeros, Local Identification of Piece-
wise Deterministic Models of Genetic Networks, in HSCC 2009, vol. 5469, LNCS, ed. by
R. Majumdar, P. Tabuada (Springer, Heidelberg, 2009), pp. 105–119

24. K. Amonlirdviman, N.A. Khare, D.R.P. Tree, W.-S. Chen, J.D. Axelrod, C.J. Tomlin, Math-
ematical modeling of planar cell polarity to understand domineering nonautonomy. Science
307(5708), 423–426 (2005)

25. M.L. Bujorianu, J. Lygeros, Reachability Questions in Piecewise Deterministic Markov
Processes, in HSCC 2003, vol. 2623, LNCS, ed. by O. Maler, A. Pnueli (Springer, Heidel-
berg, 2003), pp. 126–140

26. A. Abate, S. Amin, M. Prandini, J. Lygeros, S.S. Sastry, Computational Approaches to Reach-
ability Analysis of Stochastic Hybrid Systems, in HSCC 2007, vol. 4416, LNCS, ed. by
A. Bemporad, A. Bicchi, G. Buttazzo (Springer, Heidelberg, 2007), pp. 4–17

27. G. Batt, C. Belta, R. Weiss, Temporal logic analysis of gene networks under parameter uncer-
tainty. IEEE Trans. Autom. Control 53(1), 215–229 (2008)

28. D. Riley, X. Koutsoukos, K. Riley, Modeling and analysis of the sugar cataract development
process using stochastic hybrid systems. IET Syst. Biol. 3(3), 137–154 (2009)

29. E. De Santis, M.D. Di Benedetto, Editorial: observability and observer-based control of hybrid
systems. Int. J. Robust. Nonlinear Control 19, 1519–1520 (2009)

30. F. Zhao, X. Koutsoukos, H. Haussecker, J. Reich, P. Cheung, Monitoring and fault diagnosis
of hybrid systems. IEEE Trans. Syst. Man Cybern. Part B 35(6), 1225–1240 (2005)

31. N. Olivier-Maget, G. Hetreux, J.M. Le Lann, M.V. Le Lann, Model-based fault diagnosis for
hybrid systems: application on chemical processes. Comput. Chem. Eng. 33(10), 1617–1630
(2009)

32. A. Girard, G.J. Pappas, Approximate Bisimulation for Constrained Linear Systems, in Pro-
ceedings of the IEEE Conference Decision and Control, Seville, Spain (2005)

33. A. Girard, G.J. Pappas, Approximation metrics for discrete and continuous systems. IEEE
Trans. Autom. Control 52(5), 782–798 (2007)

34. A. Girard, A.A. Julius, G.J. Pappas, Approximate simulation relations for hybrid systems. Int.
J. Discrete Event Dyn. Syst. 18, 163–179 (2008)

35. A.A. Julius, Approximate Abstraction of Stochastic Hybrid Automata, in HSCC 2006, vol.
3927, LNCS, ed. by J.P. Hespanha, A. Tiwari (Springer, Heidelberg, 2006), pp. 318–332

36. A.A. Julius, A. Girard, G.J. Pappas, Approximate Bisimulation for a Class of Stochastic Hybrid
Systems, in Proceedings of American Control Conference, Minneapolis, USA (2006)

37. A.A. Julius, G.J. Pappas, Approximate abstraction of stochastic hybrid systems. IEEE Trans.
Autom. Control 54(6), 1193–1203 (2009)

38. A.A. Julius, G.E. Fainekos, M. Anand, I. Lee, G.J. Pappas, Robust Test Generation and Cov-
erage for Hybrid Systems, in HSCC 2007, vol. 4416, LNCS, ed. by A. Bemporad, A. Bicchi,
G. Buttazzo (Springer, Heidelberg, 2007), pp. 329–342

39. A.A. Julius, G.J. Pappas, Trajectory Based Verification Using Local Finite-Time Invariance, in
HSCC 2009, vol. 5469, LNCS, ed. by R. Majumdar, P. Tabuada (Springer, Heidelberg, 2009),
pp. 223–236

384 A.A. Julius

40. W. Lohmiller, J.J.E. Slotine, On contraction analysis for nonlinear systems. Automatica 34(6),
683–696 (1998)

41. S. Prajna,A. Papachristodoulou, P. Seiler, P.A. Parillo, SOSTOOLSand itsControlApplication,
in Positive Polynomials In Control. Springer (2005)

42. Y. Deng, A. Rajhans, A.A. Julius, STRONG: A Trajectory-Based Verification Toolbox for
Hybrid Systems, in QEST 2013, vol. 8054, LNCS, ed. by K. Joshi, M. Siegle, M. Stoelinga,
P.R. D’Argenio (Springer, Heidelberg, 2013), pp. 165–168

43. Y. Deng, A.A. Julius, Safe Neighborhood Computation for Hybrid System Verification, in
Proceedings of 4th Workshop on Hybrid Autonomous Systems, ser. Electronic Proceedings in
Theoretical Computer Science, vol. 174. Springer, pp. 1–12 (2014)

44. J.W. Polderman, J.C. Willems, Introduction to Mathematical Systems Theory: a Behavioral
Approach (Springer, New York, 1998)

45. M.D. Di Benedetto, S. Di Gennaro, A. D’Innocenzo, Discrete state observability of hybrid
systems. Int. J. Robust. Nonlinear Control 19, 1564–1580 (2009)

46. Y. Deng, A.D’Innocenzo, S. Di Gennaro, M.D. Di Benedetto, A.A. Julius, Verification of
hybrid automata diagnosability with measurement uncertainty, provisionally accepted to the
IEEE Trans. Autom. Control (2015)

47. Y. Deng, A. D’Innocenzo, A.A. Julius, Probabilistic Diagnosability of Hybrid Systems, in
Proceedings of ACM 18th International Conference Hybrid Systems: Computation and Control,
Seattle, WA, pp. 88–97 (2015)

48. A.A. Julius, Trajectory-based Controller Design for Hybrid Systems with Affine Continuous
Dynamics, in Proceedings of IEEE Conference Automation Science and Engineering, Toronto,
Canada, pp. 1007–1012 (2010)

49. A.A. Julius, S. Afshari, Using Computer Games for Hybrid Systems Controller Synthesis, in
Proceedings of 49th IEEE Conference Decision and Control. Atlanta, Georgia, pp. 5887–5892
(2010)

50. Z. Artstein, Stabilization with relaxed controls. Nonlinear Anal. 15(11), 1163–1170 (1983)
51. E.D. Sontag, A ‘universal’ construction of Artstein’s theorem on nonlinear stabilization. Syst.

Control Lett. 13(2), 117–123 (1989)
52. W.L. Brogan, Modern Control Theory (Prentice Hall International, New Jersey, 1991)
53. B. Friedland, Control System Design: an Introduction to State-Space Methods. Dover (2005)
54. S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in Systems and

Control Theory (SIAM, Philadelphia, 1994)
55. A.K. Winn, A.A. Julius, Feedback Control Law Generation for Safety Controller Synthesis, in

Proceedings of IEEE Conference Decision and Control, Florence, Italy, pp. 3912–3917 (2013)
56. A.A. Julius, A.K. Winn, Safety Controller Synthesis Using Human Generated Trajectories:

Nonlinear Dynamics with Feedback Linearization and Differential Flatness, in Proceedings of
American Control Conference, Montreal, Canada, pp. 709–714 (2012)

57. H. Nijmeijer, A.J. van der Schaft, Nonlinear Dynamical Control Systems (Springer Verlag,
New York, 1990)

58. H.K. Khalil, Nonlinear Systems, 3rd edn. (Prentice Hall, 2002)
59. S. Saha, A.A. Julius, Trajectory-based Formal Controller Synthesis for Multi-link Robots with

Elastic Joints, in Proceedings of IEEE Conference Decision and Control, Los Angeles, CA,
pp. 830–835 (2014)

60. M.J. van Nieuwstadt, R.M. Murray, Real-time trajectory generation for differentially flat sys-
tems. Int. J. Robust Nonlinear Control 8(11), 995–1020 (1998)

61. J. Levine, Analysis and Control of Nonlinear Systems: a Flatness Based Approach. (Springer,
2009)

62. H. Sira-Ramirez, S. Agrawal, Differentially Flat Systems. (Marcel Dekker Inc., New york,
2004)

63. E.M. Clarke, O. Grumberg, D.A. Peled, Model Checking. (MIT Press, 1999)
64. S.J. Russell, P. Norvig, Artificial Intelligence: A Modern Approach. (Prentice Hall, 2003)
65. A.K. Winn, A.A. Julius, Optimization of Human Generated Trajectories for Safety Controller

Synthesis, in Proceedings of American Control Conference, Washington DC, pp. 4374–4379
(2013)

	20 Trajectory-Based Theory for Hybrid Systems
	20.1 Note from the Author
	20.2 Introduction
	20.3 Review of the Fundamentals
	20.3.1 Hybrid Automata
	20.3.2 Trajectory Robustness

	20.4 Approximation with Finite Behavior
	20.5 Safety/Reachability Analysis
	20.6 Observability and Fault Diagnosability
	20.7 Controller Synthesis
	20.7.1 Controller Synthesis for Linear Affine Dynamics
	20.7.2 Controller Synthesis for Nonlinear Dynamics
	20.7.3 Controller Synthesis for Hybrid Systems

	20.8 Concluding Remarks
	References

