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Port-Hamiltonian Systems

Alessandro Macchelli

Abstract The aim of this work is to show how the Dirac structure properties can be
exploited in the development of energy-based boundary control laws for distributed
port-Hamiltonian systems. Stabilisation of non-zero equilibria has been achieved by
looking at, or generating, a set of structural invariants, namely Casimir functions, in
closed-loop, and geometric conditions for the problem to be solved are determined.
However, it is well known that this method fails when an infinite amount of energy is
required at the equilibrium (dissipation obstacle). So, a novel approach that enlarges
the class of stabilising controllers within the control by interconnection paradigm is
also discussed. In this respect, it is shown how to determine a different control port
that is instrumental for removing the intrinsic constraints imposed by the dissipative
structure of the system. The general theory is illustrated with the help of two related
examples, namely the boundary stabilisation of the shallow water equation with and
without distributed dissipation.

2.1 Introduction

Port-Hamiltonian systems have been introduced about 20 years ago to describe
lumped parameter physical systems in a unified manner, [4, 25, 26]. For these sys-
tems, the dynamic results from the power conserving interconnection of a limited set
of components, each characterised by a particular “energetic behaviour,” i.e. storage,
dissipation, generation and conversion. The generalisation to the infinite dimensional
scenario leads to the definition of distributed port-Hamiltonian systems [13, 27], that
have proved to represent a powerful framework for modelling, simulation and con-
trol physical systems described byPDEs.Distributed port-Hamiltonian systems share
analogous geometric properties with their finite dimensional counterpart, and also
the control development follows the same rationale.
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This first paragraph well summarises the scientific scenario at the time I had
the luck to meet Arjan, and to start collaborating with him. It was in 2001, I have
to say a life ago for me, from a scientific and personal point of view. I had been
staying for 6 months at the Mathematical Department of the University of Twente as
a visiting Ph.D. student, with the initial idea of working on some fancy connection
between sliding-mode control and port-Hamiltonian systems. After some time spent
discussing with Arjan, I completely changed the topic, and I started to look at these
distributed port-Hamiltonian systems, a new line of research that Arjan and Bernhard
Maschke were starting to develop at those times. Everything was so intriguing to me
that I continued to work on it during a second period in Twente for a Post-Doc in
2003, and until now. What I actually am professionally, I owe it also to Arjan, to
his patience and clearness in teaching, and to his support and precious suggestions.
The motivating idea behind this chapter is then to frame some new results on the
control of distributed port-Hamiltonian systems within the classical theory and core
properties of port-Hamiltonian systems, topics that Arjan thought to me and to many
other PhD students during these years, and on which he is still contributing a lot. In
fact, some of the results presented here are based on some recent results by him and
his students for lumped parameter systems.

Since the first time I heard about distributed port-Hamiltonian systems, the general
theory has been developed a lot, and most of the current research on control and
stabilisation deals with the development of boundary controllers. For example, in
[14, 15, 20, 23, 24], this task has been accomplished by generating a set of Casimir
functions in closed-loop that independently from theHamiltonian function relates the
state of the plantwith the state of the controller, a finite dimensional port-Hamiltonian
system interconnected to the boundary of the distributed parameter one. The shape
of the closed-loop energy function is changed by acting on the Hamiltonian of the
controller. This procedure is the generalisation of the control by interconnection
via Casimir generation (energy-Casimir method) developed for finite dimensional
systems [19, 25], and the result is an energy-balancing passivity-based controller
that is not able to deal with equilibria that require an infinite amount of supplied
energy in steady state, i.e. with the so-called “dissipation obstacle.”

In finite dimensions, the dissipation obstacle has been solved within the control by
interconnection paradigm by defining a new passive output for the original system in
such a way that, in closed-loop, a new set of Casimir functions that can be employed
with success in the energy-shaping procedure is present, [8, 18, 28]. More precisely,
in [28], a constructive way to modify the Dirac structure of the system in order to
obtain a new interconnection structure that is associated to the same state evolution,
but with potentially different Casimir functions is provided. Among such larger set
of structural invariants, it is then possible to find the “right” Casimir functions to be
employed in the control by interconnection synthesis.

Even if inspired by [28], the approach proposed here is quite different. Starting
from the geometrical properties of those energy-shaping control techniques that are
not limited by the dissipation obstacle [11, 12], the conditions that the Casimir func-
tions should respect to obtain the same results within the control by interconnection
paradigm are deduced. Then, for the given plant, new Dirac and resistive structures
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that allow to have not only the same state evolution, but also the previously deter-
mined Casimir functions in closed-loop are computed. At the end, the result is a new
control port and, similarly to [28], the final closed-loop system is characterised by
the desired set of invariants, and the limits of the “classical” control by intercon-
nection are clearly removed. It is worth noting that, for distributed port-Hamiltonian
systems, the key point is the formulation of the interconnection structure in infinite
dimensions in terms of a Dirac structure on a Hilbert space, [6, 7].

This chapter is organised as follows. In Sect. 2.2, a short background on Dirac
structures on Hilbert spaces and infinite dimensional port-Hamiltonian systems is
given. In Sect. 2.3, the control by interconnection and the control by energy-shaping
are discussed from a geometrical point, i.e. the applicability of the methods is related
to the properties of the Dirac structure of the system that has to be stabilised. Then,
in Sect. 2.4, the problem of defining a new control port that allows to overcome
the dissipation obstacle within the control by interconnection paradigm is discussed.
Then, in Sect. 2.5, the general methodology is illustrated with the help of an example,
namely the shallow water equation with and without dissipation. Conclusions and
ideas about future research activities are reported in Sect. 2.6.

2.2 Background

2.2.1 Dirac Structures

A Dirac structure is a linear space which describes internal power flows, and the
power exchange between the system and the environment. Denote by F × E the
space of power variables, with F an n-dimensional linear space, the space of flows
(e.g., velocities and currents) and E ≡ F∗ its dual, the space of efforts (e.g., forces
and voltages), and by 〈e, f 〉 the power associated to the port ( f, e) ∈ F × E , where
〈·, ·〉 is the dual product between f and e.

Definition 2.1 Consider the space of power variables F × E . A (constant) Dirac
structure on F is a linear subspace D ⊂ F × E such that dimD = dimF , and
〈e, f 〉 = 0, ∀( f, e) ∈ D.

ADirac structure, then, defines a power conserving relation onF×E . As discussed
in the next Proposition, different representations are possible, [3].

Proposition 2.2 Assume that F = E = R
n, which implies that 〈e, f 〉 = eT f . Then,

for any Dirac structure D ⊂ F × E , with there exists a pair of n × n matrices F and
E satisfying the conditions

E FT + F ET = 0 rank
(
F | E

) = n (2.1)
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such that D can be given in kernel representation as

D =
{
( f, e) ∈ F × E | F f + Ee = 0

}
(2.2)

or in image representation as

D =
{
( f, e) ∈ F × E | f = ETλ, e = FTλ, λ ∈ R

n
}

(2.3)

The definition of Dirac structure can be generalised to deal with distributed para-
meter systems. A possible way is to assume that the space of power variables is an
Hilbert space. In this respect, Dirac structures onHilbert spaces have been introduced
in [7], while their kernel and image representations in [6]. Here, we assume that the
space of flows F is an Hilbert space, and that the space of efforts is E ≡ F . Instead
of providing their formal definition, which follows the same rationale of the finite
dimensional case, their kernel and image representations is directly presented in the
next Proposition, [6].

Proposition 2.3 For any Dirac structure D ⊂ F × E on an Hilbert space F ≡ E ,
there exists linear maps F : F → Λ and E : E → Λ satisfying the conditions

F E∗ + E F∗ = 0 ran
(
F E

) = Λ

being Λ an Hilbert space isometrically isomorphic to F , such that

D =
{
( f, e) ∈ F × E | F f + Ee = 0

}
(2.4)

or, equivalently, such that

D =
{
( f, e) ∈ F × E | f = E∗λ, e = F∗λ, ∀λ ∈ Λ

}
(2.5)

Here, · and ·∗ denote the closure and the adjoint of an operator, respectively, [2].

2.2.2 Port-Hamiltonian Systems

Either in the case of lumped and distributed parameter port-Hamiltonian systems,
once the Dirac structure is given, the dynamics follows when the resistive structure
and the port behaviour of the energy-storage elements are given. Generally speaking,
theDirac structure defines a power conserving relation between several port variables,
e.g. two internal ports ( fS, eS) ∈ FS×ES and ( fR, eR) ∈ FR×ER , which correspond
to energy-storage and dissipation respectively, and an external port ( fC , eC ) ∈ FC ×
EC which is devoted to an exchange of energywith a controller.As far as the behaviour



2 Dirac Structures and Control by Interconnection … 25

at the resistive port is concerned, let us assume that the following linear resistive
relationR holds

R f fR + ReeR = 0 (2.6)

where R f and Re are nR × nR matrices such that

R f RT
e = Re RT

f > 0 rank(R f | Re) = nR (2.7)

Even if most of the results presented here can be applied to a more general class of
systems, in this paper we refer to the family of distributed port-Hamiltonian systems
that have been studied in [9, 29], i.e. to systems described by

∂x

∂t
(t, z) = P1

∂

∂z

(L(z)x(t, z)
) + (P0 − G0)L(z)x(t, z) (2.8)

with x ∈ X and z ∈ [a, b]. Moreover, P1 = PT
1 > 0, P0 = −PT

0 , G0 = GT
0 ≥ 0,

and L(·) is a bounded and continuously differentiable matrix-valued function such
that L(z) = LT(z) and L(z) ≥ κ I , with κ > 0, for all z ∈ [a, b]. For simplicity,
L(z)x(t, z) ≡ (Lx)(t, z). The state space isX = L2(a, b;Rn), and is endowed with
the inner product 〈x1 | x2〉L = 〈x1 | Lx2〉 and norm ‖x1‖2L = 〈x1 | x1〉L, where
〈· | ·〉 denotes the natural L2-inner product. The selection of this space for the state
variable is motivated by the fact that H(·) = 1

2 ‖·‖2L is the energy function.
To define a distributed port-Hamiltonian system, the PDE (2.8) has to be “com-

pleted” by a well-defined boundary port. More precisely, given Lx ∈ H1(a, b;Rn),
the boundary port variables are the vectors fC , eC ∈ R

n given by

(
eC

fC

)
= 1√

2

(
W
W̃

)(
P1 −P1
I I

) (
(Lx)(b)

(Lx)(a)

)
(2.9)

where W and W̃ are full rank n × 2n matrices such that WΣWT = W̃ΣW̃T = 0,
and WΣW̃T = I , being

Σ =
(
0 I
I 0

)

As discussed in [9, 11], it is possible to verify that Ḣ(x(t, ·)) ≤ eTC (t) fC (t), and
that (2.8) is characterised by a Dirac structure on the space of flows FS ×FR ×FC ,
with FS = L2(a, b;Rn), FR = L2(a, b;Rr ), and FC = R

n , being r = rankG0.
The couple of operators F : F → Λ and E : E → Λ introduced in Proposition 2.3
are given by

F = (
FS FR FC

)
E = (

ES ER EC
)

(2.10)



26 A. Macchelli

where

Λ = L2(a, b;Rn) × L2(a, b;Rr ) × {0} × R
n (2.11)

being {0} ⊂ R
n the set containing only the origin of Rn . Moreover, we have that

FS =

⎛

⎜
⎜
⎝

I
0
0
0

⎞

⎟
⎟
⎠ FR =

⎛

⎜
⎜
⎝

0
I
0
0

⎞

⎟
⎟
⎠ FC =

⎛

⎜
⎜
⎝

0
0
0
I

⎞

⎟
⎟
⎠

ES =

⎛

⎜⎜
⎝

P1
∂
∂z + P0

−GT
R−W RBJ

−W̃ RBJ

⎞

⎟⎟
⎠ ER =

⎛

⎜⎜
⎝

G R

0
0
0

⎞

⎟⎟
⎠ EC =

⎛

⎜⎜
⎝

0
0
I
0

⎞

⎟⎟
⎠

(2.12)

where BJ (e) =
(

e(b)

e(a)

)
, with e ∈ L2(a, b;Rn), and

dom
(
F E

) =
{
( f, e) ∈ F × E | eS abs. continuous,

∂eS

∂z
∈ L2(a, b;Rn), and eC = W RBJ (eS)

}

(2.13)

It is easy to verify that the port-Hamiltonian system (2.8) is a consequence of the
following port behaviour at the storage and resistive ports:

fS = −∂x

∂t
eS = δH

δx
(x) = Lx eR = −Ḡ fR (2.14)

where δ denotes the variational derivative, and G R in (2.12) and Ḡ are such that
G0 = G RḠGT

R , [27].Note that the resistive relation is in the form (2.6)with R f = Ḡ,
Re = I and nR = r . Finally, simple calculations show that F∗

S = FT
S , F∗

R = FT
R ,

F∗
C = FT

C , E∗
R = ET

R , and

E∗
S = (−P1

∂
∂z − P0 −G R 0 0

)
E∗

C = (
W̃ RBJ 0 0 0

)

with λ = (λS, λR, 0, λu), and

dom

(
F∗
E∗

)
=

{
λ ∈ Λ | λu = W RBJ (λS)

}
(2.15)
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2.3 Control by Interconnection and Energy-Shaping

If a port-Hamiltonian control systemwithHamiltonian HC is interconnected in power
conserving way to the control port ( fC , eC ) of (2.8), the closed-loop system is again
in port-Hamiltonian form, and with Hamiltonian given by the sum of the two, i.e.
by Hcl(x, xC ) = H(x) + HC (xC ), being xC the state variable of the controller. To
use this closed-loop Hamiltonian as Lyapunov function, one has first to guarantee
that this function has a minimum at the desired equilibrium with a proper choice of
HC . In both the final and infinite dimensional cases, if it is possible to find structural
invariants (i.e., that do not depend on theHamiltonian, but only on theDirac structure)
named Casimir functions of the form

C(x, xC ) = xC − Ξ(x) (2.16)

with Ξ(x) some smooth well-defined functional of x , then on every invariant mani-
fold defined by xC − Ξ(x) = κ , with κ ∈ R a constant which depends on the initial
plant and controller state, the closed-loop Hamiltonian may be written as, [19, 25]:

Hcl(x) = H(x) + HC (Ξ(x) + κ) (2.17)

Hence, the closed-loop equilibrium now depends on the choice of HC , and on the
invariant manifold defined by the Casimir functions the Hamiltonian Hcl depends on
the state variable x of the plant only.

Definition 2.4 Consider a closed-loop system obtained from the power conserving
interconnection at ( fC , eC ) between a couple of port-Hamiltonian systems, namely
a plant with state space X , and a (finite dimensional) controller with state space
XC ≡ R

mC for some mC . Then, a function C : X ×R
mC → R is a Casimir function

if Ċ = 0 along the trajectories of the closed-loop system for every possible choice
of H(·) and HC (·).

The applicability of the control by interconnection methodology relies then on
the existence of a proper set of Casimir functions. Such property is fundamental
to be able to properly shape the open-loop Hamiltonian function H , and achieve
desired stability properties in closed-loop. Unfortunately, the dissipative structure of
the plant may limit the number or even the existence of such structural invariants.
It is well known, in fact, that a Casimir function cannot depend on the coordinates
on which dissipation is present, and this implies that it is not possible to shape the
closed-loop energy function along these directions. This limitation is also known as
dissipation obstacle, [19].

In [1, 28], an effective way to determine the achievable Casimir functions for the
closed-loop system when the plant is finite dimensional and without knowing the
controller and by relying only on the Dirac and resistive structures of the plant is
proposed. Such result can be generalised to infinite dimensions, [11].
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Proposition 2.5 Denote by x ∈ X the state of the plant, and by xC ∈ R
nC the state

of the to-be-designed controller. Then, the achievable Casimir functions C(x, xC )

associated to the Dirac structure on Hilbert space with kernel representation (2.4)
and operators F and E given as in (2.12) for any kind of power conserving inter-
connection with the controller are such that

(
0 0 f TC

δTC
δx (x, xC ) 0 eTC

)T ∈ D (2.18)

for some ( fC , eC ) ∈ FC × EC .

Corollary 2.6 Condition (2.18) with C(x, xC ) given as in (2.16) is equivalent to

−

⎛

⎜⎜
⎝

0
0

δC
δx (x, xC )

0

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

0
0

δΞ
δx (x)

0

⎞

⎟⎟
⎠ ∈ ran

⎛

⎜⎜
⎝

E∗
S

E∗
R

F∗
S

F∗
R

⎞

⎟⎟
⎠ (2.19)

Proof The result follows from the image representation of a Dirac structure (2.5).

The constraints imposed at the resistive port ( fR, eR) in (2.18) or, equivalently,
(2.19) imply that if C is a Casimir for a specific resistive relation (2.6) that satisfies
(2.7), then C is a Casimir for all the possible resistive relations, i.e. it is independent
from the behaviour at the dissipative port. Thanks to this property, the dissipation
obstacle is fully characterised from a geometrical point of view both in the finite and
infinite dimensional cases, [4, 10–12, 25, 26]. The intrinsic limitations of the control
by interconnection paradigm can be removed if the control action is explicitly thought
in terms of a state-feedback law that is able to map the initial system into a new one.
The target dynamics is characterised by desired Dirac structure, resistive relation,
and Hamiltonian Hd(x) = H(x) + Ξ(x), where now Ξ is not necessarily related
to some Casimir function in the form (2.16). In the simplest case, i.e. when only the
Hamiltonian function is shaped, in [11] it has been proved that all the admissible
functions Ξ are solution of

⎛

⎝
0

δΞ
δx (x)

0

⎞

⎠ ∈ ran

⎛

⎝
E∗

S
F∗

S
R f E∗

R + Re F∗
R

⎞

⎠ (2.20)

It is easy to check that if Ξ satisfies (2.19), then also (2.20) holds, [10–12].
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2.4 Overcoming the Dissipation Obstacle with a New
Control Port

Themotivating idea of this Section is to determine if there exists a newDirac structure
on Hilbert space D̄ with operators F and E given as in (2.12), and a resistive relation
R̄ in the form (2.6) such that with the given Hamiltonian H(x):

• The dynamics of the new system is the same of the original one;
• The new system is characterised by a set of Casimir functions that satisfies (2.20).

With (2.17) in mind, the second requirement implies that, for the new system, there
exists a set of Casimir functions that can be employed in the control by interconnec-
tion procedure and allow to solve the dissipation obstacle. On the other hand, since
the dynamics of the new system is the same of the initial one, the only difference
between the twos is the behaviour at the control port. This means that a new control
port ( f̄C , ēC ) has been determined, and when the interconnection between plant and
controller takes place at ( f̄C , ēC ), the resulting closed-loop system is characterised
by a new set of Casimir functions, that has been previously determined among the
ones that allow to overcome the dissipation obstacle. With the next Proposition, a
general expression for the desired Dirac structures D̄ is provided.

Proposition 2.7 Let us consider a Dirac structure D on Hilbert space with kernel
representation given in Proposition 2.3, where F and E are given as in (2.10). The
set D̄ ⊂ F × E defined as

D̄ =
{
( f̄ , ē) ∈ F × E | F̄ f̄ + Ē ē = 0

}
(2.21)

with F̄ : Λ → F and Ē : Λ → E a couple of linear operators such that F̄ =(
F̄S F̄R F̄C

)
and Ē = (

ĒS ĒR ĒC
)
, with dom

(
F E

) = dom
(
F̄ Ē

)
, and where

F̄S = FS F̄R = FR + F̃R F̄C = FC

ĒS = ES + ẼS ĒR = ER + ẼR ĒC = EC + ẼC

is a Dirac structure iff ran
(
F̄ | Ē

) = Λ and

ẼS F∗
S + FS Ẽ∗

S + ER F̃∗
R + ẼR

(
F∗

R + F̃∗
R

)
+ FR Ẽ∗

R

+ F̃R

(
E∗

R + Ẽ∗
R

)
+ ẼC F∗

C + FC Ẽ∗
C = 0

(2.22)

Proof This result follows from Proposition 2.3.

The next Proposition provides necessary and sufficient conditions for the Dirac
structure D̄ to have Casimir functions that satisfy (2.20).
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Proposition 2.8 Let us consider the Dirac structures D and D̄ presented in Propo-
sition 2.7. A function C(x, xC ) is a Casimir associated to D̄ that satisfies (2.20)
iff

ran

⎛

⎝
Ẽ∗

SΦ

(E∗
R + Ẽ∗

R)Φ

(F∗
R + F̃∗

R)Φ

⎞

⎠ ⊆ ran

⎛

⎝
(E∗

S + Ẽ∗
S)Ψ

(E∗
R + Ẽ∗

R)Ψ

(F∗
R + F̃∗

R)Ψ

⎞

⎠ (2.23)

where Φ : ΛΦ → Λ and Ψ : ΛΨ → Λ are a couple of linear operators such that

ranΦ = KerE∗
S ∩ Ker

(
R f E∗

R + Re F∗
R

)
ranΨ = KerF∗

S (2.24)

Proof Since C satisfies (2.20), there must exists λ ∈ Λ such that λ = ΦλΦ , with
λΦ ∈ ΛΦ , and that δC

δx = F∗
S λ. On the other hand, C is required to be a Casimir for

D̄, so from (2.19) in Corollary 2.6, there must exists λ̄ ∈ Λ such that

Ē∗
S λ̄ = 0 Ē∗

R λ̄ = 0 F̄∗
R λ̄ = 0 (2.25)

and δC
δx (x) = F∗

S λ̄. This latter requirement implies that λ̄ = ΦλΦ + Ψ λΨ , with
λΨ ∈ ΛΨ . The statement is proved once it is verified that for all λΦ there exists at
least one λΨ such that (2.25) holds, which is equivalent to require that (2.23) holds.

The next Proposition provides necessary and sufficient conditions for the port-
Hamiltonian system associated to the Dirac structure D̄, with resistive structure R̄
defined later on, and Hamiltonian H to have the same state evolution of the port-
Hamiltonian system with Dirac structure D and resistive structureR.

Proposition 2.9 Let us consider the Dirac structures D and D̄ presented in Propo-
sition 2.7, and suppose that the resistive structure R̄ defined by

R̄ f f̄R + R̄eēR = 0 (2.26)

is interconnected at the resistive port ( f̄ R, ēR) of D̄, where R̄ f and R̄e are square
matrices that satisfy conditions similar to (2.7). If the behaviour at the energy-storage
port ( f̄S, ēS) is as in (2.14), then the resulting state evolution is the same of the system
associated to D iff

ran

(
Ẽ∗

SΦ̄[
R̄ f (E∗

R + Ẽ∗
R) + R̄e(F∗

R + F̃∗
R)

]
Φ̄

)

⊆ ran

(
(E∗

S + Ẽ∗
S)Ψ̄[

R̄ f (E∗
R + Ẽ∗

R) + R̄e(F∗
R + F̃∗

R)
]
Ψ̄

)

(2.27)
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where Φ̄ : ΛΦ̄ → Λ and Ψ̄ : ΛΨ̄ → Λ are a couple of linear operators such that

ranΦ̄ = Ker
(
R f E∗

R + Re F∗
R

)
ranΨ̄ = KerF∗

S ∩ KerF∗
C (2.28)

Proof Without loss of generality, assume an effort-in causality at the control ports
( fC , eC ) and ( f̄C , ēC ). Then, from the image representation (2.3) of aDirac structure,
and the behaviours (2.14) and (2.26) imposed at the resistive ports of D and D̄,
respectively, we have that there must exists λ = Φ̄λΦ̄ , with λΦ̄ ∈ ΛΦ̄ , and

λ̄ ∈ Ker
(
R̄ f Ē∗

R + R̄e F̄∗
R

)
, λ̄ ∈ Λ (2.29)

such that

− ∂x

∂t
= E∗

Sλ = Ē∗
S λ̄ (2.30)

and δH
δx (x) = F∗

S λ = F∗
S λ̄, and eC = F∗

Cλ = F∗
C λ̄. These last two conditions are

equivalent to λ̄ = Φ̄λΦ̄ + Ψ̄ λΨ̄ , with λΨ̄ ∈ ΛΨ̄ . The statement is proved once it is
verified that for all λΦ̄ there exists at least one λΨ̄ such that (2.29) and (2.30) hold,
which is equivalent to require that (2.27) holds.

If it is possible to determine a Dirac structure D̄ and a dissipative structure R̄
such that the conditions of Propositions 2.7, 2.8 and 2.9 hold, we have determined
a new control port ( fC , eC ) for the original system such that for some controller in
port-Hamiltonian form the closed-loop system is characterised by a set of Casimir
functions that are able to overcome the dissipation obstacle. In the next Corollary,
a sufficient condition to be checked in order to have (2.23) and (2.23) satisfied is
given.

Corollary 2.10 Under the hypothesis of Propositions 2.8 and 2.9, with the further
requirement that R̄ f = R f and R̄e = Re, conditions (2.23) and (2.27) hold if

ran

⎛

⎝
Ẽ∗

SΦ

(E∗
R + Ẽ∗

R)Φ

(F∗
R + F̃∗

R)Φ

⎞

⎠ ⊆ ran

⎛

⎝
(E∗

S + Ẽ∗
S)Ψ̄

(E∗
R + Ẽ∗

R)Ψ̄

(F∗
R + F̃∗

R)Ψ̄

⎞

⎠ (2.31)

where Φ and Ψ̄ are defined in (2.24) and in (2.28), respectively.

2.5 Example: Boundary Stabilisation of the Shallow Water
Equation

Let us consider a rectangular open channel with a single flat reach, of length L and
unitary width, which is delimited by upstream and downstream gates, and terminated
by an hydraulic outfall. Moreover, it is assumed that the fluid has a unitary density;
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we are in fact considering a simplified model of [5], even if all the results discussed
here can be easily extended to more general cases. The dynamics is described by the
shallow water equations, whose port-Hamiltonian formulation has been extensively
discussed e.g. in [5, 21].

Denote by [0, L] the spatial domain, and by q(t, z) > 0 and p(t, z) the infinitesi-
mal volume and kinetic momentum density, respectively. These are the state (energy)
variables. Note that, due to the unitary width and fluid density assumptions, these
quantities are numerically equal to the height of the fluid in the channel and to its
velocity. Under the hypothesis of linearity in the internal friction forces (if present),
the port-Hamiltonian formulation of the shallow water equations is in the form (2.8)

∂

∂t

(
q
p

)
=

[(
0 −1

−1 0

)
∂

∂z
−

(
0 0
0 D

)]
δH

δx
(q, p) (2.32)

where x = (q, p), D ≥ 0 models the dissipative effects, H(q, p) = 1
2

∫ L
0 (qp2 +

gq2)dz is the total energy of the fluid, and g is the gravity acceleration. Note that the
co-energy variables are

δH

δq
(q, p) = 1

2
p2 + gq =: P(q, p)

δH

δp
(q, p) = qp =: Q(q, p)

which equal the hydrodynamic pressure, P , and water flow, Q, respectively. It is
assumed that the controller is acting on the boundary port ( fC , eC ) defined as

eC (t) =
(

Q(t, 0)
P(t, L)

)
fC (t) =

(
P(t, 0)

−Q(t, L)

)

The input is eC . The associated Dirac structure can be written in the kernel repre-
sentation (2.4), with operators F and E given in (2.10), and space Λ given in (2.11),
with n = 2 and r = 1. Finally, the behaviour at the energy-storage and dissipative
ports is (2.14), with Ḡ = D ≥ 0.

If dissipation is not present, i.e. if D = 0, it is possible to prove that the closed-
loop system is characterised by a couple of Casimir functions in the form (2.16) that
satisfy (2.18) or, equivalently, (2.19). More precisely, with the controller

⎧
⎪⎪⎨

⎪⎪⎩

ẋC =
(

0 1
−1 0

)
∂ HC

∂xC
(xC ) + f ′

C

e′
C = ∂ HC

∂xC
(xC )

, xC ∈ R
2 (2.33)

that is interconnected to the system through ( fC , eC ), i.e. f ′
C = fC and eC = −e′

C ,
the resulting closed-loop system is characterised by the following Casimir functions

C1(xC , q, p) = xC1 −
∫ L

0
p dz C2(xC , q, p) = xC2 −

∫ L

0
q dz
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Such Casimir functions are useful to select HC to properly shape the Hamiltonian of
the closed-loop system, [11, 17].

On the other hand, when dissipation is present, i.e. when D > 0, no useful
Casimir functions in closed-loop exist. But, it has been illustrated in [16, 17] that
there exists a boundary state-feedback law thanks to which it is possible to overcome
the dissipation obstacle and obtain an energy function H(q, p) + Ξ(q, p) with the
desired stability properties. The function Ξ satisfies (2.20), that now becomes

∂

∂z

δΞ

δp
(q, p) = 0

∂

∂z

δΞ

δq
(q, p) + D

δΞ

δp
(q, p) = 0 (2.34)

The same result can be obtained with the methodology discussed in this paper by
relying on Corollary 2.10. In this respect, the operators Φ and Ψ̄ are given by

Φ(λq , λp) =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

D(L − z)λp + λq

λp

−Dλp

0
0
λp

λq

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

Ψ̄ (λR) =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

0
0
λR

0
0
0
0

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

with domΦ = R
2 and dom Ψ̄ = L2(0, �; R). Then, it is possible to prove that

conditions (2.23) and (2.27) can be satisfied by selecting ẼR = 0 and

Ẽ∗
S =

(
0 0 0 0 0 0 0
0 0 0 0 0 D 0

)
F̃∗

R = (
0 0 0 0 0 −1 0

)
Ẽ∗

C =
(
0 D 1 0 0 0 0
0 0 0 0 0 0 0

)

which is equivalent to have

ĒS =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

0 − ∂
∂z

− ∂
∂z 0
0 −1
0 −· |0

−· |L 0
−· |0 D

∫ L
0 ·

0 · |L

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

F̄R =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

0
1
0
0
0

− ∫ L
0 ·
0

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

ĒC =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

0 0
D 0
1 0
1 0
0 1
0 0
0 0

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

where · |0 and · |L denote the value of a function in z = 0 and in z = L . With this
choice, a new control port ( f̄C , ēC ) is defined, in which ēC = (ēC1, ēC2) = eC and

f̄C =
(

δH
δq (0) − 2D

∫ L
0

δH
δp (·, z) dz + D L ēC1

− δH
δp (L)

)



34 A. Macchelli

is the new passive output that can be used in the control by interconnection strategy
to have a closed-loop system characterised by a set of Casimir functions that satisfies
(2.23). In this respect, with the controller (2.33) now interconnected to the plant
through the new control port, i.e. f ′

C = f̄C and ēC = −e′
C , the resulting closed-loop

system is characterised by the following Casimir functions that clearly satisfy (2.34):

C1(xC , q, p) = xC1 −
∫ L

0

[
D(L − z)q + p

]
dz C2(xC , q, p) = xC2 −

∫ L

0
q dz

Thanks to these Casimir functions, HC can be selected to shape the Hamiltonian of
the closed-loop system in the desired manner. It is possible to verify that the same
control law obtained by relying on as energy-shaping approach based on trajectory
matching between the open-loop system and a target one discussed e.g. in [16, 17]
can be obtained within the control by interconnection paradigm.

2.6 Conclusions and Future Work

Themotivating idea of the paper has been the development of a general methodology
for the definition of a new control port for distributed parameter port-Hamiltonian
systems with dissipation that is instrumental for the synthesis of stabilising boundary
control laws able to overcome the dissipation obstacle within the control by intercon-
nection via Casimir generation paradigm. When the interconnection between plant
and controller takes place at this new control port, the same results provided by the
control by energy-shaping, where the control action is explicitly determined as a
state-feedback law able to shape the energy function in an appropriate manner, are
recovered. Beside having established a link between these two controlmethodologies
(i.e., between the control by interconnection via Casimir generation, and the control
by energy-shaping), this result is interesting because it allows to study the properties
of the closed-loop system in terms of the “interconnection of sub-systems” paradigm.
This is useful, in particular, in the distributed parameter case, because it paves the
way for the extension to a wider class of problems the methodologies presented e.g.
in [22] that deal with the proof of the existence of solutions of systems of PDEs,
and of the asymptotic/exponential stability of interconnected systems. This topic is
currently under investigation.
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