
Chapter 19
Model Reduction by Generalized Differential
Balancing

Yu Kawano and Jacquelien M.A. Scherpen

Abstract In this chapter, we give a generalization of differential balancing method
for model reduction of nonlinear systems in the direction to computation. We gen-
eralize concepts of differential controllability and observability functions, then use
them for model reduction. We show some stability properties are preserved under
the model reduction and estimate the error bound by the model reduction.

19.1 Introduction

For the second author, the work in this paper finds its roots in early work, [15], which
I did as a Ph.D. student under the supervision of Arjan at the University of Twenty.
It is my pleasure to write in the book of my teacher and mentor at the occasion of his
60th birthday. During my Ph.D. research Arjan was an inspiring researcher, teacher,
and supervisor, allowing me to pursue a research direction different from the original
plan. Even though I was impressed by his knowledge and ideas, I felt he was always
available for questions and open discussions, with or without the many (international)
visitors who came to spent time in the group in Twenty. Being one of the leaders in
the field of nonlinear control, Arjan contributed significantly to the bustling scientific
atmosphere in the group, greatly influencing my perspective on scientific life. After
years at different universities, we are now colleagues in Groningen. Ever since I
started in Groningen, we have been collaborating again, we share ideas and have
jointly supervised a few Ph.D. students. I very much appreciate these encounters,
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and I am honored to organize the workshop, edit the book, and contribute a chapter for
Arjan’s Festschrift with a topic that finds its roots in my Ph.D. work. Congratulations
Arjan!

Model order reduction problems have been widely studied because the reduced
order models are useful for analysis, design, control, and simulation. In both linear
and nonlinear control theory, a balanced realization is a useful state-space representa-
tion when studying model reduction problems [2, 7, 8, 15, 19], measuring importance
of state variables based on how much energy is minimally needed to reach that state
variable, and how much energy is obtained starting in that state variable. Besides
balancing, also moment matching [2] is a useful tool for model reduction for control,
in general computationally stronger than balanced order reduction, but not having a
priori error bound, and less intuition. For nonlinear systems, this method has only
been recently developed, see [3, 9]. Balancing for nonlinear systems has a longer
history [15], but there are still many recent developments, i.e., there are various other
types of nonlinear balancing such as a flow balancing [17, 18], incremental balancing
[4], and dynamic balancing [14]. These methods are developed to take into account
different properties of importance, such as incremental stability, for example [4]. In
general, it depends on the system analysis and the control goal which method is best.
In this paper we focus on balancing.

Recently, the authors presented a new balancing method based on contraction
theory [10]. Contraction theory has been studied in recent decades, and deals with
trajectories of nonlinear systems with respect to one another. One of the interesting
ideas of contraction theory is considering the infinitesimal metric instead of a feasible
distance function. In this setting, for instance, stability [1, 6, 11], optimal and H∞
control [12, 13], and dissipativity [5, 16] have been studied. However, if the system
order becomes large, the analysis and control becomes difficult, which motivates
the study of balancing in the contraction framework, called differential balancing
theory. Differential balancing theory is based on two energy functions, the so-called
differential controllability and observability functions. In [10], it is shown that these
two energy functions have close relationships with solutions to types of Lyapunov
equations in contraction theory. That is, well-known results on controllability and
observability Gramians in linear systems and control theory have partly been gener-
alized. Moreover, a new model reduction method has been established based on the
differential balancing, and this model reduction method is demonstrated for a system
for which we cannot apply the incremental balancing method of [4].

As with most of the nonlinear balancing methods, computation of the differential
energy functions is still not straightforward. Therefore, in this chapter, we general-
ize differential balancing into a direction that facilitates computations for obtaining
a reduced order model based on generalized differential balancing. This general-
ized method relies on so-called generalized differential energy functions, which give
bounds on the original differential energy functions, following similar principles
as in [4, 14]. The existence of these generalized differential functions guarantees
boundedness of trajectories of the variational system of the nonlinear system, which
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property is preserved under model reduction based on generalized differential bal-
ancing. In addition, generalized differential balancing has several advantages over
other computationally feasible methods as in [4, 14]. First, generalized differential
balancing does not require that the vector field of the system is an odd function in con-
trast to the generalized incremental balancing [4]. Second, an error bound for model
reduction is estimated differently from the dynamic balancing in [14]. Moreover,
generalized differential balancing can be directly applied to time-varying systems.

The remainder of this paper is organized as follows. In Sect. 19.2, we review
results on differential balancing such as the differential energy functions and the
differential balanced realization. In Sect. 19.3, we develop generalized differential
balancing and present a model reduction method based on generalized differential
balancing, which is illustrated by a system composed of 100 mass-spring-damper
systems with nonlinear springs. Finally in Sect. 19.4 we conclude the paper.

Notations Let R be the field of real numbers. Denote R≥0 := [0,∞) ⊂ R. It is

said that u : [a, b] → R
m is in Lm

2 [a, b] if ||u(t)||Lm
2 [a,b] :=

√∫ b
a ||u(t)||2dt < ∞,

where ||u(t)|| := √
uT(t)u(t). A curve γ on R

n is a class C2 mapping γ : R ⊃
[0, 1] → R

n . For matrix A(x, t) = (ai j ), denote δ f (A) := (∂ai j/∂t + (∂ai j/∂x) f ).
If A is invertible, we use the notation A−T to denote (A−1)T. For the vector valued
function F : Rn ×R → R

m , denote ∂ F(x, t)/∂x := [∂ F(x, t)/∂x1, . . . , ∂ F(x, t)/
∂xn], and ∂T F(x, t)/∂x := (∂ F(x, t)/∂x)T.

19.2 The Differential Balanced Realization

In this section, we review results on differential balancing [10] for nonlinear systems.
Consider the nonlinear time-varying system and its associated system of differ-

ential dynamics

ΣBC :
{

ẋ(t) := dx(t)/dt = f (x(t), t) + B(t)u(t),
y(t) = C(t)x(t),

dΣBC :
{

δ ẋ(t) := d

dt
δx(t) = ∂( f (x(t), t) + B(t)u(t))

∂x
δx(t) + B(t)δu(t),

δy(t) = C(t)δx(t),

where x(t) ∈ R
n , u(t) ∈ R

m and y(t) ∈ R
p are, respectively, the state, input and

output of ΣBC ; δx(t) ∈ R
n , δu(t) ∈ R

m and δy(t) ∈ R
p are, respectively, the state,

input, and output of dΣBC ; f : Rn ×R → R
n , B : R → R

n×m and C : R → R
p×n

are class C2. When u(t) ≡ 0 and δu(t) ≡ 0, we denote ΣBC and dΣBC by ΣC and
dΣC , respectively.

Remark 19.1 For each s ∈ [0, 1], let curve γ (s) be an initial condition for ΣBC

and u(·, s) be an input signal. If u(·, ·) is class C2, then x(·, s) is a solution to the
system ΣBC . Define δx(t) := ∂x(t, s)/∂s and δu(t) := ∂u(t, s)/∂s. Then, δx(·, s)
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is a solution to dΣBC from the initial condition ∂γ (s)/∂s. Also, the output signal is
given by δy(t, s).

For differential balancing, the following two energy functions play important roles
[10].

Definition 19.2 The differential controllability function of the system ΣBC is
defined as

LC(x0, δx0, t0) := infδu∈Lm
2 (−∞,t0]

1

2

∫ t0

−∞
||δu(t)||2dt,

for all feasible trajectories (x(t), u(t)) of ΣBC , where x(t0) = x0 ∈ R
n , δx(t0) =

δx0 ∈ R
n and δx(−∞) = 0.

Definition 19.3 The differential observability function of the systemΣC is defined as

LO(x0, δx0, t0) := 1

2

∫ ∞

t0
||δy(t)||2dt,

for all feasible trajectories x(t) of ΣC , where x(t0) = x0 ∈ R
n , δx(t0) = δx0 ∈ R

n ,
δx(∞) = 0.

It is not guaranteed that these two differential energy functions always exist. Note that
these energy functions are the controllability and observability functions for dΣBC

and dΣC , respectively. In the linear case, these two functions are nothing but the
controllability and observability functions, respectively. Similar to the linear case,
differential controllability and observability functions are characterized by Lyapunov
type of equations (note that hereafter we leave out arguments when clear from the
context for ease of notation) [10].

Theorem 19.4 Suppose that there exists a nonsingular, real symmetric, and class
C1 solution −∞ < P(x, t) < ∞ (∀x ∈ R

n,∀t ∈ R) to

− δ f (P(x, t)) + ∂ f (x, t)

∂x
P(x, t) + P(x, t)

∂T f (x, t)

∂x
= −B(t)BT(t), (19.1)

− δB(P(x, t)) = 0. (19.2)

Also, suppose that for all feasible trajectories (x̂(t), û(t)) of ˙̂x(t) = − f (x̂(t)) −
g(x̂(t))û(t), the trajectory δ x̂(t) of the following system is bounded for all t ≥ t0
and limt→∞ δ x̂(t) = 0.

d

dt
δ x̂(t) = −∂ f (x̂(t), t)

∂x
δ x̂(t) − B(t)BT(t)P−1(x̂(t), t)δ x̂(t). (19.3)

Then, LC(x0, δx0, t0) = 1
2δxT

0 P−1(x0, t0)δx0. �
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Theorem 19.5 Suppose that for all feasible trajectories x(t) of ΣC , the trajectory
δx(t) of dΣC is bounded for all t ≥ 0 and limt→∞ δx(t) = 0. If there exists a real
symmetric and class C1 solution −∞ < Q(x, t) < ∞ (∀x ∈ R

n,∀t ∈ R) to

δ f (Q(x, t)) + ∂T f (x, t)

∂x
Q(x, t) + Q(x, t)

∂ f (x, t)

∂x
= −CT(t)C(t), (19.4)

then LO(x0, δx0, t0) = 1
2δxT

0 Q(x0, t0)δx0. �

In terms of the differential controllability and observability functions, we define a
differentially balanced realization for the system ΣBC [10].

Definition 19.6 A realization of the associated system dΣBC is said to be a differ-
entially balanced realization on an open subset D ⊂ R

n ×R if there exists a diagonal
matrix

Λ(x, t) = diag{σ1(x, t), σ2(x, t), . . . , σn(x, t)}, (19.5)

where σ1(x, t) ≥ σ2(x, t) ≥ · · · ≥ σn(x, t) > 0 holds on D, and P(x, t) = Λ(x, t)
and Q(x, t) = Λ(x, t), respectively, satisfy (19.1), (19.2) and (19.4).

Theorem 19.7 Let P(x, t) and Q(x, t) be, respectively, real symmetric and class C1

solutions to (19.1), (19.2) and (19.4), where 0 < P(x, t) < ∞ and 0 < Q(x, t) < ∞
for all (x, t) ∈ R

n × R. The system dΣBC can be transformed into a differentially
balanced realization on an open subset D ⊂ R

n × R by a differential coordinate
transformation δz = T (x, t)δx. Moreover, σ 2

i (x, t) (i = 1, . . . , n) in (19.5) are the
eigenvalues of the product P(x, t)Q(x, t). �

19.3 Generalized Differential Balancing

19.3.1 Generalized Differential Energy Functions

In the previous section, balancing theory based on the contraction framework is
presented, which is a natural extension of linear balancing theory. From an application
perspective, it is worth constructing a computationally more feasible method. Here,
we present generalized differential balancing, inspired by generalized incremental
balancing as in [4].

We generalize concepts of differential energy functions as follows:

Definition 19.8 If there exists a uniformly positive definite matrix P̄(t) = P̄T(t)
such that

− d P̄(t)

dt
+ ∂ f (x, t)

∂x
P̄(t) + P̄(t)

∂T f (x, t)

∂x
≤ −B(t)BT(t) (19.6)
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for all x ∈ R
n, t ∈ R then the function LC(δx0, t0) := 1

2δxT
0 P̄−1(t0)δx0, is said to

be a generalized differential controllability function.

Definition 19.9 If there exists a uniformly positive definite matrix Q̄(t) = Q̄T(t)
such that

d Q̄(t)

dt
+ Q̄(t)

∂ f (x, t)

∂x
+ ∂T f (x, t)

∂x
Q̄(t) ≤ −CT(t)C(t) (19.7)

for all x ∈ R
n, t ∈ R then the function LO(δx0, t0) := 1

2δxT
0 Q̄(t0)δx0, is said to be

a generalized differential observability function.

Remark 19.10 If we compare (19.1) and (19.4) with (19.6) and (19.7), respectively,
we notice that equalities are relaxed into inequalities.

Note that these energy functions are the generalized controllability and observability
functions for dΣBC , respectively. Also, in the linear case, these two functions are
nothing but the generalized controllability and observability functions, respectively.
Similar to the linear case, generalized controllability and observability functions are
not unique, but they provide a lower bound for the differential controllability function
and an upper bound for the differential observability function.

Theorem 19.11 Suppose that the differential controllability function LC(x0, δx0, t0)
and a generalized differential controllability function L̄C(δx0, t0) exist. Then,

L̄C(δx0, t0) ≤ LC(x0, δx0, t0)

for all x0 ∈ R
n, δx0 ∈ R

n, t0 ∈ R. �

Theorem 19.12 Suppose that the differential observability function LO(x0, δx0, t0)
and a generalized differential observability function L̄O(δx0, t0) exist. Then,

L̄O(δx0, t0) ≥ LO(x0, δx0, t0)

for all x0 ∈ R
n, δx0 ∈ R

n, t0 ∈ R. �

19.3.2 Boundedness of Trajectories

Existence of the differential controllability and observability functions is not directly
related to controllability and observability, which is the case for linear systems.
However, existence of these differential energy functions implies boundedness of
trajectories of dΣBC .

Theorem 19.13 If there exists a generalized differential controllability function,
then δx(t) of the system dΣBC is bounded for any x0, δx0 ∈ R

n, u, δu ∈ Lm
2 [0,∞).
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Proof By differentiating the generalized differential controllability function L̄C
(δx, t) with respect to t , we have

d L̄C(δx(t), t)

dt

= 1

2

d

dt

(
δxT(t)P̄−1(t)δxT(t)

)

= 1

2
δxT(t)

d P̄−1(t)

dt
δx(t) + 1

2

(
δTx(t)

∂T f (x(t), t)

∂x
+ δTu(t)BT(t)

)
P̄−1(t)δx(t)

+ 1

2
δTx(t)P̄−1(t)

(
∂ f (x(t), t)

∂x
δx(t) + B(t)δu(t)

)

From (19.6) and d P̄−1(t)/dt = −P̄−1(t)(d P̄(t)/dt)P̄−1(t), we obtain

d L̄C(δx(t), t)

dt

≤ −1

2
δxT(t)P̄−1(t)B(t)BT(t)P̄−1(t)δx(t) + 1

2
δTu(t)BT(t)P̄−1(t)δx(t)

+ 1

2
δTx(t)P̄−1(t)B(t)δu(t)

= 1

2
||δu(t)||2 − 1

2
||δu(t) − B(t)P̄−1(t)δx(t)||2 ≤ 1

2
||δu(t)||2.

By integrating this inequality, we have

L̄C(δx(t), t) ≤ L̄C(δx0, t0) + 1

2

∫ t

t0
||δu(τ )||2dτ. (19.8)

Since the right-hand side is bounded, the left-hand side is also bounded. Moreover,
P̄(t) is uniformly positive definite, which implies that δx(t) is bounded. �

Theorem 19.14 If there exists a generalized differential observability function, then
there exists a positive real number α such that ||δx(t)||2 ≤ α||δx0||2 for system dΣC .
Moreover, limt→∞ ||δy(t)||2 = 0 holds.

Proof By differentiating differential observability function L̄O(δx(t), t)with respect
to t , from its definition, we have

d L̄O(δx(t), t)

dt
= 1

2

d

dt

(
δxT(t)Q̄(t)δxT(t)

)

= 1

2
δxT(t)

d Q̄(t)

dt
δx(t) + 1

2
δTx(t)

∂T f (x(t), t)

∂x
Q̄(t)δx(t)

+ 1

2
δTx(t)Q̄(t)

∂ f (x(t), t)

∂x
δx(t)

≤ −1

2
||δy(t)||2 ≤ 0.
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By integrating this inequality,

L̄O(δx(t), t) ≤ L̄O(δx0, t0) − 1

2

∫ t

t0
||δy(τ )||2dτ ≤ L̄O(δx0, t0). (19.9)

The uniform positive definiteness of Q̄(t) implies that there exist α2 ≥ α1 > 0 such
that

α1||δx(t)||2 ≤ L̄O(δx(t), t) ≤ L̄O(δx0, t0) ≤ α2||δx0||2,

and consequently ||δx(t)||2 ≤ α2
α1

||δx0||2.
On the other hand, (19.9) implies

1

2

∫ ∞

t0
||δy(τ )||2dτ ≤ L̄O(δx0, t0) − lim

t→∞ L̄O(δx(t), t) ≤ L̄O(δx0, t0). (19.10)

Since L̄O(δx0, t0) is bounded, from Barbalat’s lemma limt→∞ ||δy(t)||2 = 0. �
Remark 19.15 For a generalized controllability or observability function, if there
exists a positive real number α such that

−d P̄(t)

dt
+ ∂ f (x, t)

∂x
P̄(t) + P̄(t)

∂T f (x, t)

∂x
≤ −α In

or

d Q̄(t)

dt
+ Q̄(t)

∂ f (x, t)

∂x
+ ∂T f (x, t)

∂x
Q̄(t) ≤ −α In, (19.11)

then R
n is a contraction region [11] with respect to the uniformly positive definite

metric P̄(t) or Q̄(t), respectively. That is, any trajectory of the system ΣBC is
bounded.

19.3.3 The Generalized Differentially Balanced Realization

We are now ready to define a generalized differentially balanced realization in terms
of the generalized differential controllability and observability functions.

Definition 19.16 A realization of dΣBC is said to be a generalized differentially
balanced realization on an open subset D ⊂ R if there exists a diagonal matrix

Λ̄(t) = diag{σ̄1(t), σ̄2(t), . . . , σ̄n(t)}, (19.12)

where σ̄1(t) ≥ σ̄2(t) ≥ · · · ≥ σ̄n(t) > 0 on D holds, and P̄(t) = Λ̄(t) and
Q̄(t) = Λ̄(t).
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Theorem 19.17 Let L̄C(δx0, t0)and L̄O(δx0, t0)be generalized differential control-
lability and observability functions, respectively. For every system ΣBC , there exists
a coordinate transformation z = T (t)x which transforms dΣBC into a generalized
differentially balanced realization on a domain D ⊂ R. Also σ̄ 2

i (t) (i = 1, . . . , n)

in (19.12) are the eigenvalues of P̄(t)Q̄(t).

Proof In a similar manner as for the linear case, it can be shown that there exists a class
C1 and invertible matrix T (t) : R → R

n×n which achieves T (t)P̄(t)T T(t) = Λ̄(t)
and T −T(t)Q̄(t)T −1(t) = Λ̄(t), where Λ̄(t) = diag{σ̄1(t), . . . , σ̄n(t)}, and σ̄i (t) >

0 (i = 1, . . . , n). Moreover, T (t) can be chosen such that σ̄1(t) ≥ · · · ≥ σ̄n(t)
in a sufficiently small open subset D ⊂ R. Finally, P̄(t)Q̄(t) = T −1(t)Λ̄2(t)T (t)
implies that σ̄ 2

i (t) (i = 1, . . . , n) are eigenvalues of P̄(t)Q̄(t). �

19.3.4 Model Reduction and Error Bound

Now we can provide a model reduction procedure based on the generalized differen-
tially balanced realization. Moreover, we establish and estimate of the error bound
for the model reduction procedure.

In (19.12), suppose that σ̄k(t) > σ̄k+1(t) for k < n, which implies that zk is more
important than zk+1 in the sense of generalized differential energy. Hence, z1 until
zk are more important than zk+1 until zn . A possibility to reduce the number of states
is by truncation, i.e., to put zk+1 = 0, . . . , zn = 0. We partition the system in the
z-coordinates correspondingly as follows:

f̄ (z, t) =
[

f̄a(za, zb, t)
f̄b(za, zb, t)

]
:= T (t) f (T −1(t)z(t), t), B̄(t) =

[
B̄a(t)
B̄b(t)

]
:= T (t)B(t),

C̄(t) = [
C̄a(t) C̄b(t)

] := C(t)T −1(t),

where za := [z1, . . . , zk]T and zb := [zk+1, . . . , zn]T.
The reduced order system is obtained by simply substituting za = z̄a and zb = 0.

Σr
{ ˙̄za(t) = f̄a(z̄a(t), 0, t) + B̄a(t)u(t)

ȳa(t) = C̄a(t)z̄a(t)
.

Theorem 19.18 The state-space realization of reduced order system Σr
BC is a gen-

eralized differential balanced realization with singular value functions σ̄1(t) ≥ · · · ≥
σ̄k(t).

Proof Equations (19.6) and (19.7) in the z-coordinates are
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− d

dt
Λ̄(t) + Λ̄(t)

⎡
⎣

∂ f̄a
∂za

∂ f̄a
∂zb

∂ f̄b
∂za

∂ f̄b
∂zb

⎤
⎦

T

(za, zb, t) +
⎡
⎣

∂ f̄a
∂za

∂ f̄a
∂zb

∂ f̄b
∂za

∂ f̄b
∂zb

⎤
⎦ (za, zb, t)Λ̄(t)

≤ −
[

B̄a B̄T
a B̄a B̄T

b

B̄a B̄T
b B̄b B̄T

b

]
(t),

d

dt
Λ̄(t) +

⎡
⎣

∂ f̄a
∂za

∂ f̄a
∂zb

∂ f̄b
∂za

∂ f̄b
∂zb

⎤
⎦

T

(za, zb, t)Λ̄(t) + Λ̄(t)

⎡
⎣

∂ f̄a
∂za

∂ f̄a
∂zb

∂ f̄b
∂za

∂ f̄b
∂zb

⎤
⎦ (za, zb, t)

≤ −
[

C̄T
a C̄a C̄T

b C̄a

C̄T
b C̄a C̄T

b C̄b

]
(t).

Let Λ̄k(t) := diag{σ̄1(t), . . . , σ̄k(t)}. For za = z̄a and zb = 0, the upper left k × k
matrix equations become

− d

dt
Λ̄k(t) + Λ̄k(t)

∂T f̄a(z̄a, 0, t)

∂za
+ ∂ f̄a(z̄a, 0, t)

∂za
Λ̄k(t) ≤ −B̄a(t)B̄T

a (t),

d

dt
Λ̄k(t) + ∂T f̄a(z̄a, 0, t)

∂za
Λ̄k(t) + Λ̄k(t)

∂ f̄a(z̄a, 0, t)

∂za
≤ −C̄T

a (t)C̄a(t).

Thus, (1/2)dz̄T
a (t0)Λ̄

−1
k (t0)dz̄a(t0) and (1/2)dz̄T

a (t0)Λ̄k(t0)dz̄a(t0) are a generalized
differential controllability and observability functions for Σr

BC , respectively. �

Remark 19.19 For the reduced order system Σr
BC , Theorems 19.13 and 19.14 hold.

Next, we estimate an error bound of the trajectories of the original and reduced
system. Consider the dynamics of the error ξ := z − z̄,

⎧
⎨
⎩

ξ̇a(t) = f̄a(ξa(t) + z̄a(t), ξb(t), t) − f̄a(z̄a(t), 0, t),
ξ̇b(t) = f̄b(ξa(t) + z̄a(t), ξb(t), t) + B̄b(t)u(t),
yξ (t) = C̄(t)ξ(t),

(19.13)

where ξb ≡ zb. Since z̄a(t) ∈ R
k can be seen as an external function of time, the

associated system of differential dynamics is

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δξ̇a(t) = ∂ f̄a(ξa(t) + z̄a(t), ξb(t), t)

∂ξa(t)
δξa(t) + ∂ f̄a(ξa(t) + z̄a(t), ξb(t), t)

∂ξb(t)
δξb(t),

δξ̇b(t) = ∂ f̄b(ξa(t) + z̄a(t), ξb(t), t)

∂ξa(t)
δξa(t) + ∂ f̄b(ξa(t) + z̄a(t), ξb(t), t)

∂ξb(t)
δξb(t)

+B̄b(t)δu(t),
δyξ (t) = C̄(t)δξ(t),

where δξb ≡ δzb. We can upper bound the effect of δu on δyξ as follows:
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Theorem 19.20 Consider the error dynamics (19.13). Suppose that σ̄1(t) ≥ · · · ≥
σ̄k(t) > σ̄k+1(t) ≥ · · · ≥ σ̄n(t) > 0 for all t ≥ t0 ∈ R

n; δz(t0) = δz̄(t0) = 0. Then,
for all t ∈ [t0,∞),

||δyξ (τ )||L p
2 [t0,t] ≤ 2

n∑

i=k+1

||σ̄i (τ )δu(τ )||Lm
2 [t0,t]. (19.14)

Proof Suppose that k = n − 1. Consider the dynamics of η := z + z̄:

⎧
⎨
⎩

η̇a(t) = f̄a(ηa(t) − z̄a(t), ηb(t), t) + f̄a(z̄a(t), 0, t) + 2B̄a(t)u(t),
η̇b(t) = f̄b(ηa(t) − z̄a(t), ηb(t), t) + B̄b(t)u(t),
yη(t) = C̄(t)η(t),

where zb ≡ ηb, and its associated system of differential dynamics is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

δη̇a(t) = ∂ f̄a(ηa(t) − z̄a(t), ηb(t), t)

∂ηa(t)
δηa(t) + ∂ f̄a(ηa(t) − z̄a(t), ηb(t), t)

∂ηb(t)
δηb(t)

+2B̄a(t)δu(t),

δη̇b(t) = ∂ f̄b(ηa(t) − z̄a(t), ηb(t), t)

∂ηa(t)
δηa(t) + ∂ f̄b(ηa(t) − z̄a(t), ηb(t), t)

∂ηb(t)
δηb(t)

+B̄b(t)δu(t),
δyη(t) = C(t)δη(t).

By using Λ̄(t) in (19.12), denote two differential energy functions.

2L̄C(η(t), δη(t), t) := δηT(t)Λ̄−1(t)δη(t),

2L̄O(ξ(t), δξ(t), t) := δξT(t)Λ̄(t)δξ(t).

Since Λ̄ satisfies (19.6) and (19.7), we obtain

2 ˙̄LC(η(t), δη(t), t) ≤ −δηTΛ̄−1 B̄ B̄TΛ̄−1δη + 2δuT B̄T
a Λ̄−1

n−1δηa

+2δηT
a Λ̄−1

n−1 B̄aδu + δuTσ̄−1
n B̄T

b δηb

+ δηT
b B̄bσ̄

−1
n δu,

2 ˙̄LO(ξ(t), δξ(t), t) ≤ −δξTC̄C̄Tδξ + δuTσ̄n B̄T
b δξb + δξT

b B̄bσ̄nδu.

Because of δξb ≡ δηb ≡ δxb, we have

2 ˙̄LO(ξ(t), δξ(t), t) + 2σ̄ 2
n (t) ˙̄LC(η(t), δη(t), t)

≤ −δξTC̄C̄Tδξ − σ̄ 2
n δηTΛ̄−1 B̄ B̄TΛ̄−1δη

+ 2σ̄ 2
n δuT B̄T

a Λ̄−1
n−1δηa + 2σ̄ 2

n δηT
a Λ̄−1

n−1 B̄aδu

+ 2σ̄ 2
n δuTσ̄−1

n B̄T
b δηb + 2σ̄ 2

n δηT
b B̄bσ̄

−1
n δu

≤ −||δyξ ||2 + 4σ̄ 2
n ||δu||2 − σ̄ 2

n ||2δu − B̄TΛ̄−1δη||2.
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Integrating over time we obtain

2L̄O(ξ(t), δξ(t), t) + 2σ̄ 2
n (t)L̄C(η(t), δη(t), t) − 2L̄O(ξ(t0), δξ(t0), t0)

− 2σ̄ 2
n (t0)L̄C(η(t0), δη(t0), t0)

≤
∫ t

t0

(
−||δyξ ||2 + 4σ̄ 2

n ||δu||2 − σ̄ 2
n ||2δu − B̄TΛ̄−1δη||2

)
dt.

From δz(t0) = δz̄(t0) = 0, we obtain δη(t0) = δξ(t0) = 0 and thus

L̄O(ξ(t0), δξ(t0), t0) = 0,

L̄C(η(t0), δη(t0), t0) = 0.

Because of L̄O(ξ(t), δξ(t), t) > 0, L̄C(η(t), δη(t), t) > 0 and σ̄n ||2δu− B̄TΛ̄−1δη||
≥ 0, we have

||δyξ (τ )||L2
p[t0,t] ≤ 2||σ̄n(τ )δu(τ )||L2

m [t0,t].

By repeating this procedure for i = n, . . . , k, we obtain (19.14). �

19.3.5 Example

We apply model reduction based on generalized differential balancing on a system
composed by 100 mass-spring-damper systems with nonlinear springs, see Fig.19.1,
where kl and kn are, respectively, spring constants of linear and nonlinear springs,
and m = kl = d = 1 and kn = 2. The characteristic of the nonlinear springs is
provided in the state-space description. The original state-space representation has
200 states, f , B and C are given by

f2i−1 = x2i (i = 1, . . . , 100),

f2 = −x2i−1 + x2i+1 − 2(x2i−1 − x2i+1)3 − x2i + x2i+2,

f2i = −x2i−1 + x2i−3 − 2(x2i−1 − x2i−3)3 − x2i−1 + x2i+1 − 2(x2i−1 − x2i+1)3

− x2i + x2i−2 − x2i + x2i+2 (i = 2, . . . , 99),

f200 = −x199 + x197 − 2(x199 − x197)3 − x200 + x198,

B = [
0 · · · 0 1

]T
, C = [

0 · · · 0 1 0
]
,

Fig. 19.1 Mass-spring-
damper systems with
nonlinear springs

m

d

kl kn

m

d

kl kn

m

d

kl kn
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Fig. 19.2 Error bound
versus order of reduced
model

order of reduced models
er

ro
r 

bo
un

ds

Fig. 19.3 Output trajectories
of 200-dimensional original
system and 20-dimensional
reduced order model

time

ou
tp
ut

s

where x2i−1 and x2i (i = 1, . . . , 100) are, respectively, position and velocity of the
i th mass-spring-damper subsystems. By solving both (19.6) and (19.7), we obtain
positive definite matrices, and consequently the system can be transformed into a
generalized differential balanced realization. Thus, we can provide an error bound
for model reduction using Theorem 19.20, which is shown in Fig. 19.2. For example,
it can be seen that the error bound is less than 2.24 × 10−2 for the 20-dimensional
reduced order model. Figure 19.3 shows output trajectories of the original system
and reduced order model starting from zero initial states and input u(t) = sin t .

19.4 Conclusion

In this chapter, we have presented results on generalized differential balancing for
nonlinear systems, which provides an approximation method for balanced truncation
with differential balancing constructed in the contraction framework. Generalized
differential balancing is based on two energy functions called generalized differen-
tial controllability and observability functions. The existences of these generalized
differential energy functions guarantee boundedness of trajectories of variational
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systems of the nonlinear systems, which is preserved under model reduction. We
also provide error bounds for model reduction based on generalized differential bal-
ancing. The simulation results for a 20-dimensional reduced order model from a
system composed of 100 mass-spring-damper systems show a good approximation
of the original 200 order model to a sinusoidal input signal.
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