
Chapter 17
Network Topology and Synchronization
of Systems with Linear Time-Delayed
Coupling

Erik Steur and Henk Nijmeijer

Abstract We consider networks of square input–output systems that interact via
linear, time-delayed coupling functions. For given system dynamics, we give con-
ditions for the construction of a (local, global) synchronization diagram. We show
that a condition for (local, global) synchronization is that the coupling strength and
time-delay are contained in the intersection of scaled copies of the (local, global)
synchronization diagram, where the scaling factors are the nonzero eigenvalues of
the symmetric Laplacian matrix.

17.1 Introduction

There are many examples of networks of interacting dynamical systems that exhibit
collective behavior: Fireflies emit their light pulses at the same instants in time; crick-
ets chirp in unison for extended periods of time; and the electrons move coherently in
(arrays of) superconductive Josephson junctions, cf. [22, 30]. The most unambigu-
ous form of collective behavior is that of synchronization, which refers to the state
in which all systems in the network behave identically. Whether or not a network of
systems will synchronize depends on, besides the specific systems’ dynamics and
coupling functions, the network topology. In this chapter, we consider networks of
systems that interact via linear time-delay coupling functions of the form

ui (t) = σ
∑

j

ai j [y j (t − τ) − yi (t − τ)] (17.1)
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and we relate conditions for synchronization of the systems to the topology of the
network. In (17.1) ui (t) is the input of system i , yi (t − τ) and y j (t − τ) are the time-
delayed outputs of systems i and j , respectively, positive constant σ is the coupling
strength, and positive constants ai j are defined by the network. The time-delay τ

accounts for sensor and actuator dynamics, in particular, sensor and actuator delays.
Such coupling functions appear in, e.g., car-following models [26], where the time-
delay, which correlates with the reaction time of the driver, typically takes values
between 0.6 and 2 s.

In the delay-free case, i.e., τ = 0, the influence of network topology on syn-
chronization has been studied in [2, 3, 21, 33]. In [33] a conjecture was posed that
states that systems in network G1 synchronize for coupling strength σ1 if and only
if systems in network G2 synchronize for coupling strength σ2 and the following
relation holds:

σ1λ2(G1) = σ2λ2(G2),

where constant λ2(G) is the algebraic connectivity of network G (i.e., the Fiedler
eigenvalue of the Laplacian matrix of G) [9]. Although this conjecture was shown to
be wrong [20], there is a rich class of systems for which the conjecture seems to hold
true, i.e., for those systems that do not show a desynchronizing bifurcation as the
coupling strength is increased. A somewhat similar method was proposed in [21],
in which the concept of a Master Stability Function (MSF) was introduced. In this
approach, the coupling parameters (i.e., coupling strength and network topology) are
lumped into a single (possibly complex) parameterκ , and subsequently the stability of
a linear time-varying system that describes the local dynamics around a synchronous
solution is assessed as function of this parameter κ . Then if there exists a nonempty
setK such that for κ ∈ K the zero solution of this linear system is stable, the condition
for synchronization of a network G is that σλ j (G) ∈ K for all nonzero eigenvalues
λ j of the Laplacian matrix of G. However, it is shown in [15] that the MSF approach
might fail if the isolated system (i.e., a single system without coupling) does not
have an attractor. Assuming the isolated system to have an attractor might even not
be sufficient to conclude that the systems synchronize; It is known that with negative
Lyapunov exponents, the criteria used for stability of the MSF, a linear time-varying
system may be unstable [14]. In particular, it is shown in [1, 31] that the dynamics
of coupled chaotic systems might produce a specific type of intermittent behavior
associated with a temporal loss of synchrony; This phenomenon, called attractor
bubbling, may occur despite the Lyapunov exponents of the MSF all being negative.

In this chapter we develop a MSF-like approach, which allows the construction
of a local synchronization diagram S; This local synchronization diagram is the set
of coupling strengths σ and time-delays τ for which the zero solution of a particular
linear time-varying system is uniformly asymptotically stable. Under the assumption
that the isolated systemhas an attractorwith a neighborhoodwith inflowingboundary,
we show that the condition for local synchronization, that is, synchronization of
systems whose mutual distance in initial data is small, is that the coupling strength σ

and time-delay τ are in the intersection of scaled copies of S. Here the scaling factors
are the nonzero eigenvalues of the Laplacian matrix of the network G. See Fig. 17.1
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Fig. 17.1 a Synchronization diagram S. b Two scaled copies of S, denoted by S2 and S3, and their
intersection

for a graphical example for a network of three systems, where we have assumed the
network to be connected and the eigenvalues of the Laplacian matrix of that network
to be real. (Under the assumption that a network is connected its Laplacian matrix
has a simple zero eigenvalue.) In addition, we present a class of systems for which
we are able to construct a global synchronization diagram. The intersection of scaled
copies of this global synchronization diagram gives the conditions on σ and τ for
which a network of systems synchronizes without requiring the mutual distances in
initial data to be small.

The results we present in this chapter are, in part, reported in [27].

Notation We let R = (−∞,∞) denote the real numbers, R+ := {x ∈ R | x > 0}
and R+ := R+ ∪ {0}. For a positive integer n, Rn is the n-fold Cartesian product
R×R× · · · ×R. We let | · | be the Euclidean norm in Rn : for x ∈ R

n , |x | = √
x�x

where � denotes transposition. We denote by ⊗ the Kronecker (tensor) product of
two matrices (cf. [13]). We let In be the n × n identity matrix, and 1n (respectively,
0n) the n-dimensional vector with all entries equal to 1 (respectively, 0). For an n×n-
dimensional matrix A we let ‖A‖ := max|x |=1 |Ax | be the matrix norm induced by
| · |. Given two sets X and Y , C(X ,Y) denotes the set of continuous functions that
map X into Y .

17.2 Problem Setting

Let G = (V, E, A) be an undirected weighted graph with V = {1, 2, . . . , N } the set
of vertices and E ⊂ V × V the set of edges. Recall that G being an undirected graph
means that E is unordered. A = (

ai j
)
is the N × N weighted adjacency matrix:

ai j =
{

wi j if (i, j) ∈ E
0 otherwise
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where wi j is the weight of edge (i, j) ∈ E . We suppose that wi j = w ji such that A
is symmetric. We shall assume that G contains no self-loops (i.e., G has no edges of
the form (i, i)) and thus G is a simple graph. In addition, we shall assume that G is
connected, that is, for every two vertices i, j ∈ V there exists a path between i and j .

Letting

D =

⎛

⎜⎜⎜⎝

d1
d2

. . .

dN

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

∑
j a1 j ∑

j a2 j

. . . ∑
j aN j

⎞

⎟⎟⎟⎠

we define
L = D − A

to be the Laplacian matrix of G. It is well-known that the Laplacian matrix of a
connected graph has a simple zero eigenvalue, cf. [4]. Gerschgorin’s Disc Theorem
[13] implies that all other eigenvalues (which are real as L is symmetric) are positive.
We always order the eigenvalues λ1, λ2, . . . , λN of L nondecreasingly

0 = λ1 < λ2 ≤ · · · ≤ λN .

We assign each vertex i ∈ V the dynamics

{
ẋi (t) = f (xi (t)) + Bui (t)
yi (t) = Cxi (t)

(17.2)

with state xi (t) ∈ R
n , input ui (t) ∈ R

m and output yi (t) ∈ R
m , 1 ≤ m ≤ n,

(sufficiently) smooth vectorfield f : Rn → R
n , and matrices B and C of appropriate

dimensionswithC B similar to a positive definitematrix. Systems (17.2) onG interact
via the following linear time-delay coupling law

ui (t) = σ
∑

j∈Ni

ai j [y j (t − τ) − yi (t − τ)], (17.3)

where positive constant σ is the coupling strength, nonnegative constant τ is a time-
delay, and

Ni = { j ∈ V | (i, j) ∈ E}

is the set of neighbors of system i . Then the dynamics of the coupled systems (17.2)
and (17.3) are given by the following delay-differential equation

ẋ(t) = F(x(t)) − σ(L ⊗ BC)x(t − τ) (17.4)
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where

x(t) =

⎛

⎜⎜⎜⎝

x1(t)
x2(t)

...

xN (t)

⎞

⎟⎟⎟⎠ , F(x(t)) =

⎛

⎜⎜⎜⎝

f (x1(t))
f (x2(t))

...

f (xN (t))

⎞

⎟⎟⎟⎠ .

The state-space of (17.4) is C = C ([−τ, 0],RNn
)
, the space of continuous functions

that map the interval [−τ, 0] into RNn . For φ ∈ C we let ‖φ‖ := sup−τ≤θ≤0 |φ(θ)|.
We remark that we also use the notation ‖ · ‖ for the induced matrix norm, however,
no confusion should arise. Given t ≥ 0, for xt ∈ C we let xt (θ) := x(t + θ),
−τ ≤ θ ≤ 0. For given initial data φ ∈ C and a constant T > 0, a solution of (17.4)
is a function xt = xt (·) = xt (·;φ) ∈ C such that x0 = φ and xt satisfies (17.4) for
all t ∈ [0, T ). We assume that the solutions of our coupled systems are uniformly
(ultimately) bounded (see [5] for a definition) such that T = ∞. Conditions for
(ultimate) boundedness expressed at the level of the systems’ dynamics can be found
in [27, 28]. We shall write x(t;φ) instead of xt (0;φ).

A solution xt of the coupled systems (17.4) is a synchronous solution if and only if

xt (θ) = IN ⊗ st (θ), ∀θ ∈ [−τ, 0], ∀t ≥ 0,

where st ∈ C ([−τ, 0],Rn). Note that, because coupling (17.3) is noninvasive, the
asymptotic synchronous solution st satisfies the ordinary differential equation

ṡ(t) = f (s(t)).

The coupled systems (17.4) are said to synchronize if its solutions converge asymp-
totically to a synchronous solution:

lim
t→∞ ‖xt − IN ⊗ st‖ = 0.

17.3 Conditions for Local Synchronization

Weaddressfirst the problemof local synchronization, i.e., synchronizationof systems
with initial data that satisfy

‖φi − φ j‖ < δ, φi , φ j ∈ C ([−τ, 0],Rn)

with δ some small positive constant. We consider the case that the isolated system

ṡ(t) = f (s(t))
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has an attractorAwith basin of attractionB. We suppose that there is a neighborhood
U of A contained in B, and we let U and ∂U be the closure of U , respectively, the
boundary of U . We remark that in general such a neighborhood U does not need to
exist, i.e.,whenA is aweak attractor [16]. Furthermore,we assume that U is inflowing
invariant with respect to the vectorfield f [8, 32]; That is, there is a positive constant
μ such that

〈N (s), f (s)〉 ≤ −μ, ∀s ∈ ∂U ,

where N (s) is the outward normal of ∂U at point s and 〈·, ·〉 is the innerproduct in
R

n . We denote

CU = {
φ ∈ C | φ(θ) = col(φ1(θ), φ2(θ), . . . , φN (θ)),

φi (θ) ∈ U , i = 1, 2, . . . , N , −τ ≤ θ ≤ 0
}
.

Theorem 17.1 Suppose that the isolated system (17.2) has an attractor A with an
inflowing invariant neighborhood U contained in B. Let there exists a nonempty set
S ⊂ R+ × R+ such that for any (σ, τ ) ∈ S the zero solution of the linear system

η̇(t) = J (t)η(t) − σ BCη(t − τ) (17.5)

with

J (t) := ∂ f

∂xi
(ξ(t))

is uniformly asymptotically stable for all ξ ∈ C(R,U). Let

S j :=
{
(σ, τ ) ∈ R+ × R+ | (σλ j , τ ) ∈ S

}

be a scaled copy of S with nonzero eigenvalue λ j of L as scaling factor. If

(σ, τ ) ∈ ∩N
j=2S j ,

then there is a constant δ = δ(σ, τ ) > 0 such that solutions of the coupled systems
(17.2) and (17.3), with initial data φ ∈ CU for which ‖φi − φ j‖ < δ for all i, j =
1, 2, . . . , N, are contained in CU . Moreover, the coupled systems (17.2) and (17.3)
locally synchronize.

Proof Since L is symmetric there exists a nonsingular (N −1)×(N −1)-dimensional
matrix U such that
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U

⎛

⎜⎝
λ2

. . .

λN

⎞

⎟⎠ U−1 = L2,

(
1 0�

N−1
1N−1 −IN−1

)
L

(
1 0�

N−1
1N−1 −IN−1

)
=

(
0 L�

1
0N−1 L2

)

with L1 a (N − 1)-dimensional vector. See [24] for details. We remark that L1 has
at least one nonzero entry; If not the network would not be connected. Let the zero
solution of the system

⎛

⎜⎝
η̇2(t)

...

η̇N (t)

⎞

⎟⎠ = (IN−1 ⊗ J (t))

⎛

⎜⎝
η2(t)

...

ηN (t)

⎞

⎟⎠ − σ

⎛

⎜⎝

⎛

⎜⎝
λ2

. . .

λN

⎞

⎟⎠ ⊗ BC

⎞

⎟⎠

⎛

⎜⎝
η2(t − τ)

...

ηN (t − τ)

⎞

⎟⎠

be uniformly asymptotically stable for (σ, τ ) ∈ ∩N
j=2S j such that, for

⎛

⎜⎝
ζ2(t)

...

ζN (t)

⎞

⎟⎠ = (U ⊗ In)

⎛

⎜⎝
η2(t)

...

ηN (t)

⎞

⎟⎠

the zero solution of the system

⎛

⎜⎝
ζ̇2(t)

...

ζ̇N (t)

⎞

⎟⎠ = (IN−1 ⊗ J (t))

⎛

⎜⎝
ζ2(t)

...

ζN (t)

⎞

⎟⎠ − σ (L2 ⊗ BC)

⎛

⎜⎝
ζ2(t − τ)

...

ζN (t − τ)

⎞

⎟⎠ (17.6)

is uniformly asymptotically stable.We remark that the zero solution of a linear system
being uniformly asymptotically stable implies the zero solution of that system to be
exponentially stable, cf. Theorem 4.5 of [11]. Thus there exist positive constants α, β

such that for any solution ζ(·;ψ) of (17.6) through ψ ∈ C ([−τ, 0],R(N−1)n
)
the

following estimate holds:

|ζ(t;ψ)| ≤ βe−αt‖ψ‖, ∀t ≥ 0.

Denote ⎛

⎜⎜⎜⎝

x̃1(t)
x̃2(t)

...

x̃N (t)

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

x1(t)
x1(t) − x2(t)

...

x1(t) − xN (t)

⎞

⎟⎟⎟⎠ ,
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such that

˙̃x1(t) = f (x̃1(t)) − σ
(

L�
1 ⊗ BC

)
⎛

⎜⎝
x̃2(t − τ)

...

x̃N (t − τ)

⎞

⎟⎠ (17.7)

and ⎛

⎜⎝

˙̃x2(t)
...

˙̃xN (t)

⎞

⎟⎠ =
⎛

⎜⎝
f̃ (t, x̃2(t))

...

f̃ (t, x̃N (t))

⎞

⎟⎠ − σ (L2 ⊗ BC)

⎛

⎜⎝
x̃2(t − τ)

...

x̃N (t − τ)

⎞

⎟⎠ (17.8)

with f̃ (t, x̃i (t)) := f (x̃1(t)) − f (x̃1(t) − x̃i (t)). It now follows that if x̃1(t) ∈ U
for all t ≥ 0, then the zero solution of (17.8) is locally exponentially stable, cf.
Theorem 4.6 of [11]. In particular, for φ ∈ C with ‖φi − φ j‖ < δ1, where δ1 is
small enough to ensure that the linear part of (17.8) dominates the nonlinearities,
and K = (

1 + 1
2α

)
β2e2ατ , there is a positive constant γ such that

∣∣∣∣∣∣∣

⎛

⎜⎝
x̃2(t;φ)

...

x̃N (t;φ)

⎞

⎟⎠

∣∣∣∣∣∣∣
≤ K e−γ t‖φ‖ ≤ K δ1, ∀t ≥ 0.

To prove the theorem we are left to show that x̃1(t) ∈ U for all t ≥ 0. Pick

δ2 <
μ

σ K |L1|‖BC‖
and

δ = min (δ1, δ2) .

Suppose that there is a positive constant t1 such that x̃1(t1) ∈ ∂U and x̃1(t) /∈ U
for some t > t1. Because f is inflowing invariant with constant μ, the x̃1-dynamics
(17.7) can only cross the boundary ∂U at t = t1 if

∣∣∣∣∣∣∣
σ

(
L�
1 ⊗ BC

)
⎛

⎜⎝
x̃2(t − τ)

...

x̃N (t − τ)

⎞

⎟⎠

∣∣∣∣∣∣∣
≥ μ.

But
∣∣∣∣∣∣∣
σ

(
L�
1 ⊗ BC

)
⎛

⎜⎝
x̃2(t − τ)

...

x̃N (t − τ)

⎞

⎟⎠

∣∣∣∣∣∣∣
≤ σ |L1|‖BC‖K

∣∣∣∣∣∣∣

⎛

⎜⎝
x̃2(t − τ)

...

x̃N (t − τ)

⎞

⎟⎠

∣∣∣∣∣∣∣

≤ σ |L1|‖BC‖K < δμ.
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hence t1 = ∞. �

Equation (17.5) is a MSF for the time-delay coupled systems (17.2) and (17.3).
However, contrary to the MSF approach for the delay-free case presented in [21], we
do assume that the isolated system has an attractorAwith inflowing invariant neigh-
borhood U . In addition, we evaluate (17.5) along all possible solutions in U instead
of a single solution onA. However, to verify uniform asymptotic stability of the zero
solution (17.5) for all possible solutions in U , one usually has to construct a Lya-
punov functional on U . See [27] for an example. We remark that a synchronization
diagram computed using the Lyapunov functional approach tends to be conservative
in the sense that it is contained, but not equal to the true synchronization diagram. In
case the isolated system has a fixed point or periodic orbit as attractor, we can obtain
a better estimate of the true synchronization diagram S.
Corollary 17.2 Assume that the attractor A defined in Theorem 17.1 is an asymp-
totically stable fixed point or an orbitally stable period orbit. Let ξ(·) be a solution of
ξ̇ (t) = f (ξ(t)) with ξ(−τ) ∈ A, i.e., ξ(·) is a solution of the isolated system on A.
Suppose that there exists a nonempty set S ⊂ R+ ×R+ such that for any (σ, τ ) ∈ S
the zero solution of the linear system

η̇(t) = J (t)η(t) − σ BCη(t − τ)

with

J (t) := ∂ f

∂xi
(ξ(t))

is uniformly asymptotically stable. If

(σ, τ ) ∈ ∩N
j=2S j ,

then the conclusions of Theorem 17.1 hold.

Proof Consider the linearization of (17.7) and (17.8) around the synchronous solu-
tion on A:

ζ̇ (t) = (IN ⊗ J (t))ζ(t) −
((

0 L�
1

0N−1 L2

)
⊗ BC

)
ζ(t − τ).

As shown in the proof of Theorem 17.1, one can find new coordinates such that the
matrix L2 is the matrix above becomes diagonal. Denote this diagonal matrix by�2.
Thus in these new coordinates the system has a block-triangular structure. IfA is an
equilibrium, then J (t) = J is a stable matrix, and it is easy to see that the conditions
of the corollary imply that the characteristic equation

Δ(ρ; σ, τ) = det

(
ρ INn − (IN ⊗ J ) − σ

((
0 L�

1
0N−1 �2

)
⊗ BC

)
exp(−ρτ)

)
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has no roots in the closed right half of the complex plane. If A is a periodic orbit,
then J (t) = J (t + T ) for some nonzero constant T , i.e., J (t) is T -periodic. We
now use Floquet theory (cf. [12]) to conclude the proof. First, we observe that the
monodromy matrix of the block-triangular system has a block-triangular structure.
Then our conditions imply that all Floquet multiplier except one are contained in
the open unit disk in the complex plane. Moreover, as the Floquet multipliers are
independent of t (cf. [12], Sect. 8.1, Lemma 1.3) it suffices to linearize around a
single periodic synchronous solution. �

17.4 Example: Local Synchronization
of FitzHugh-Nagumo Neurons

We consider the network shown in Fig. 17.2 with dynamics

f (xi (t)) =
( 2

25

(
xi,2(t) − 4

5 xi,1(t)
)

xi,2(t) − 1
3 x3i,2(t) − xi,1(t)

)
, B =

(
0
1

)
, C = (

0 1
)
.

The system above is the FitzHugh-Nagumo (FHN) neuron [10, 17], which is a model
of the excitable membrane dynamics of a neuron.

Let us first show that the isolated FHN neuron has a periodic attractor. Consider
the function V : Rn → R+

V (xi (t)) = 25
4 x2i,1(t) + 1

2 x2i,2(t).

Then
V̇ (xi (t)) = − 4

5 x2i,1(t) −
(
1
3 x2i,2(t) − 1

)
x2i,2(t),

Fig. 17.2 Example network.
Each edge has weight 1



17 Network Topology and Synchronization of Systems … 331

and it follows that the set

Ω =
{

xi (t) ∈ R
2 | V (xi (t)) ≤ 75

4

}

is positively invariant with respect to the dynamics of the isolated FHN neuron.
One easily verifies that this system has a single equilibrium in Ω , the origin, which
is unstable. Hence by the Poincaré-Bendixson theorem (cf. [29]) the isolated FHN
neuron has a periodic orbit. In fact, applying Liénard’s theorem (cf. [29]) to the
system obtained after the well-defined change of coordinates

xi (t) �→
(

vi (t)
wi (t)

)
=

(
xi,2(t)

x2,i (t) − 1
3 x32,i (t) − xi,1(t)

)
,

i.e., (
v̇i (t)
ẇi (t)

)
=

(
wi (t)

− (
v2i (t) − 27

25

)
wi (t) − 2

25

( 4
15v3i (t) + 1

5vi (t)
)
)

,

we conclude thatΩ contains a unique and orbitally stable period attractor with period
time T .

By Corollary 17.2, we may then determine the synchronization diagram S by
computing the Floquet multipliers of the linear T -periodic system

(
η̇1(t)
η̇2(t)

)
=

(− 8
125

2
25−1 1 − ξ22 (t)

) (
η1(t)
η2(t)

)
− σ

(
0 0
0 1

)(
η1(t − τ)

η2(t − τ)

)
,

where ξ2(t) = ξ2(t + T ) satisfies

(
ξ̇1(t)
ξ̇2(t)

)
=

( 2
25

(
ξ2(t) − 4

5ξ1(t)
)

ξ2(t) − 1
3ξ2(t) − ξ1(t)

)

with initial conditions on the unique periodic attractor. The synchronization diagram,
which we computed with the numerical software package DDE-Biftool [7, 25], is
shown in Fig. 17.3a. The Laplacian matrix of the network shown in Fig. 17.2 is

L =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 0 −1 −1 −1 −1 −1 0
0 4 −1 −1 0 0 −1 −1

−1 −1 4 −1 0 0 −1 0
−1 −1 −1 5 −1 0 −1 0
−1 0 0 −1 3 0 0 −1
−1 0 0 0 0 2 −1 0
−1 −1 −1 −1 0 −1 5 0
0 −1 0 0 −1 0 0 2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Fig. 17.3 a Synchronization diagram S for the FHN neuron. b Zoom of the left of (a). c Seven
scaled copies of S and their intersection. d Zoom of the left of (c)

and has eigenvalues (approximated using Matlab®)

λ1 = 0, λ2 = 1.3643, λ3 = 2.3083, λ4 = 2.9266,

λ5 = 4.9626, λ6 = 5.7110, λ7 = 6.2899, λ8 = 6.4374.

The seven scaled copies of S and their intersection are shown in Fig. 17.3c. By
Corollary 17.2, for any values of the coupling strength and time-delay belonging to
this intersection, the network of FHN neurons locally synchronizes.

17.5 Conditions for Global Synchronization

In this section,we introduce a class of systems forwhich there exists a global synchro-
nization diagram. This global synchronization diagram allows for the construction
of a set of values of the coupling strength and time-delay for which a network of



17 Network Topology and Synchronization of Systems … 333

systems globally synchronizes. First, since we have assumed the matrix C B to be
similar to a positive definite matrix, it is possible to find new coordinates

xi (t) �→
(

zi (t)
yi (t)

)

with zi (t) ∈ R
n−m . See [6, 23] for details about this transformation. In these new

coordinates the systems’ dynamics read as

żi (t) = q(zi (t), yi (t)) (17.9a)

ẏi (t) = a(zi (t), yi (t)) + C Bui (t) (17.9b)

where q : R
n−m × R

m → R
n−m and a : R

n−m × R
m → R

m are (sufficiently)
smooth vectorfields.

We shall assume that

A1. There exists a nonempty set SB ∈ R+ × R+ such that for (σ, τ ) ∈ SB the
solutions of the coupled systems are uniformly bounded with bound B that is
independent of N .

In addition we assume that

A2. There exists a positive definite matrix P = P� and a positive constant κ such
that [

∂q

∂zi
(zi , yi )

]T

P + P

[
∂q

∂zi
(zi , yi )

]
≤ −κ In−m

for all zi ∈ R
n−m and yi ∈ R

m .

The latter assumption implies that the system

żi (t) = q(zi (t), yi (t))

is an exponentially convergent systemwith respect to input yi (t) [18, 19]. Interesting
is that such an exponentially convergent system has an exponentially stable steady-
state solution that is solely determined by the vectorfield q and input signal yi (·). It
then follows that for any two input signals yi (·), y j (·) that satisfy

lim
t→∞ |yi (t) − y j (t)| = 0,

the solutions of the systems

żi (t) = q(zi (t), yi (t))

and
ż j (t) = q(z j (t), y j (t))



334 E. Steur and H. Nijmeijer

satisfy
lim

t→∞ |zi (t) − z j (t)| = 0,

independent of the initial conditions of those systems.
We first give a result about global synchronization of two coupled systems.

Lemma 17.3 Consider two coupled systems (17.9a) and (17.3) and let a12 = a21 =
1. Suppose that assumptions A1 and A2 hold. Then there exist two positive constants
σ̄ and γ̄ such that if

(σ, τ ) ∈ S∗ ∩ SB,

where
S∗ :=

{
(σ, τ ) ∈ R+ × R+ | σ ≥ σ̄ and στ ≤ γ̄

}
,

then the two coupled systems globally synchronize.

The set S∗ is shown in Fig. 17.4. The proof of the lemma follows from the proof
of the next theorem.

Theorem 17.4 Consider a network of coupled systems (17.9a) and (17.3) and sup-
pose that assumptions A1 and A2 hold. If

(σ, τ ) ∈ S∗
2 ∩ S∗

N ∩ SB,

where

S∗
j :=

{
(σ, τ ) ∈ R+ × R+

∣∣∣
(

λ j

2
σ, τ

)
∈ S∗

}
, j = 2, N ,

withS∗ as in Lemma 17.3, then the network of coupled systems globally synchronizes.

Proof Let

ỹ j (t) = y1(t) − y j (t), z̃ j (t) = zi (t) − z j (t), j = 2, . . . , N ,

Fig. 17.4 The global
synchronization diagram S∗
for two coupled systems with
its shape predicted by
Lemma 17.3



17 Network Topology and Synchronization of Systems … 335

z̃(t) = col(z̃2(t), . . . , z̃N (t)) and ỹ(t) = col(ỹ2(t), . . . , ỹN (t)), to obtain

˙̃z(t) = q̃(z1(t), y1(t), z̃(t), ỹ(t)) (17.10a)

˙̃y(t) = ã(z1(t), y1(t), z̃(t), ỹ(t)) − σ(L2 ⊗ C B)ỹ(t − τ) (17.10b)

with

q̃(z1(t), y1(t), z̃(t), ỹ(t)) :=
⎛

⎜⎝
q(z1(t), y1(t)) − q(z1 − z̃2(t), y1(t))

...

q(z1(t), y1(t)) − q(z1 − z̃N (t), y1(t))

⎞

⎟⎠ ,

ã(z1(t), y1(t), z̃(t), ỹ(t)) :=
⎛

⎜⎝
a(z1(t), y1(t)) − a(z1 − z̃2(t), y1(t))

...

a(z1(t), y1(t)) − a(z1 − z̃N (t), y1(t))

⎞

⎟⎠ ,

and the (N − 1) × (N − 1)-dimensional matrix L2 defined in the proof of Theorem
17.1. Recall that there is a matrix U such that

U−1L2U =
⎛

⎜⎝
λ2

. . .

λN

⎞

⎟⎠ .

We assume without loss of generality that ‖U−1‖ = 1. Using the equality

ỹ(t − τ) = ỹ(t) −
∫ 0

−τ

˙̃y(t + s)ds

we obtain

˙̃y(t) = ã(z1(t), y1(t), z̃(t), ỹ(t)) − σ(L2 ⊗ C B)ỹ(t)

+ σ(L2 ⊗ C B)

∫ 0

−τ

[ã(z1(t + s), y1(t + s), z̃(t + s), ỹ(t + s))

− σ(L2 ⊗ C B)ỹ(t + s − τ)]ds.
(17.11)

We now show that the conditions of the theorem imply that the function

V (z̃(t), ỹ(t)) = z̃�(t)(IN−1 ⊗ P)z̃(t) + 1
2 ỹ�(t)(U−�U−1 ⊗ Im)ỹ(t)

is a Lyapunov–Razumikhin function [12], that proves uniform asymptotic stability
of the origin of (17.10a) and (17.11), hence synchronization of the coupled systems.
Assumption A2 implies that there exists a positive constant c1 such that
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[q(z1(t), y1(t)) − q(z1 − z̃ j (t), y1(t))]� P

+ P[q(z1(t), y1(t)) − q(z1 − z̃ j (t), y1(t))] ≤ −c1|z̃ j (t)|2.

See [24] for details.Moreover, since the solutions of the coupled systems are assumed
to be bounded and the functions a and q are sufficiently smooth, there exist positive
constants c2, c3 and c4 such that

|2P[q(z1(t) − z̃ j (t), y1(t)) − q(z1(t) − z̃ j (t), y1(t) − ỹ j (t))]| ≤ c2|ỹ j (t)|,

and

|a(z1(t), y1(t)) − a(z1(t) − z̃ j (t), y1(t) − ỹ j (t))|
≤ |a(z1(t), y1(t)) − a(z1(t) − z̃ j (t), y1(t))|

+ |a(z1(t) − z̃ j (t), y1(t)) − a(z1(t) − z̃ j (t), y1(t) − ỹ j (t))|
≤ c3|z̃ j (t)| + c4|ỹ j (t)|.

Choose constant ν > 1 such that if

ν|ỹ(t)| ≥ |ỹ(t + θ)|

and
ν2V (z̃(t), ỹ(t)) ≥ (z̃(t + θ), ỹ(t + θ))

for −2τ ≤ θ ≤ 0, then

V̇ ≤ − W (z̃(t), ỹ(t))

= −
(

z̃(t)
ỹ(t)

)� (
c1 − c2+c4+γ c4

2
− c2+c4+γ c4

2 β1σλ2 − c3 − γ (c3 + β2σλN )

)(
z̃(t)
ỹ(t)

)
,

where γ = νβ2στλN , with positive constants β1 and β2 being the smallest, respec-
tively, largest eigenvalue ofC B. For a network of N = 2 systemswith a12 = a21 = 1
we have λ2 = λN = 2. It follows that whenever σ is sufficiently large and γ suffi-
ciently small, i.e., σ ≥ σ̄ and γ ≤ γ̄ for some positive constants σ̄ and γ̄ , then the
function W is negative definite. This proves Lemma 17.3. Then we conclude that for
any other network the function W negative definite if (σ, τ ) ∈ S∗

2 ∩ S∗
N . �

17.6 Example: Global Synchronization of
FitzHugh–Nagumo neurons

Let us show that the FHN neurons introduced in Sect. 17.4 satisfy the conditions of
Lemma 17.3. Let
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xi (t) =
(

xi,1(t)
xi,2(t)

)
=

(
zi (t)
yi (t)

)

and

f (xi (t)) =
(

q(zi (t), yi (t))
a(zi (t), yi (t))

)
=

( 2
25

(
yi (t) − 4

5 zi (t)
)

yi (t) − 1
3 y3i (t) − zi (t)

)
.

Then one easily verifies that assumption A2 holds with P = 1. We will now show
that assumption A1 is satisfied as well.

Proposition 17.5 Consider N time-delay coupled FHN neurons and suppose that

• maxi
∑

j∈Ni
ai j = 1;

• στ
(
6σ + 39

4

) ≤ 9
4 ;

• for each i = 1, . . . , N, φi ∈ C([−τ, 0],Rn), the initial data for the i th FHN
neuron, is Lipschitz continuous on [−τ, 0] with Lipschitz constant K ≤ 12.

Then the set Ω N := Ω × Ω × · · · × Ω with

Ω :=
{
(zi , yi ) ∈ R

2 | |zi | ≤ 15
4 and |yi | ≤ 3

}

is a positively invariant set for the coupled FHN neurons.

Proof Let us consider first an isolated FHN neuron. The nulclines of this isolated
neuron and the set Ω are shown in Fig. 17.5. From this picture it is clear that the
coupling (17.3) can drive the solution xi (t) = col(zi (t), yi (t)) outside of Ω though
the boundaries yi = ȳ or yi = −ȳ with ȳ = 3. Consider an arbitrary solution of
the coupled systems and let t1 ≤ 0 be such that this solution is contained in Ω N for
t ≤ t1. Suppose that at t1 the solution of the i th is at the boundary ȳ, i.e. yi (t1) = ȳ.
Write

Fig. 17.5 The set Ω (in
cyan) and nulclines of the
isolated (ui = 0) FHN
neuron. Thick black line
represents ẏi = 0, dashed
black line represents żi = 0

x

y

a

b

dc
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ui (t) = σ
∑

j∈Ni

ai j [y j (t − τ) − yi (t − τ)]

= σ
∑

j∈Ni

ai j [(y j (t − τ) − yi (t)) + (yi (t) − yi (t − τ))],

hence,

ui (t1) = σ
∑

j∈Ni

ai j [(y j (t1 − τ) − ȳ) + (ȳ − yi (t1 − τ))] ≤ σ(ȳ − yi (t1 − τ))

as |y j (t1 − τ)| ≤ ȳ for all j and
∑

j∈Ni
ai j ≤ 1. It then follows that yi (t) > ȳ for

some t > t1 requires

0 < ẏi (t1) ≤ a(zi , ȳ) + σ(ȳ − yi (t1 − τ)) ≤ −ν + σ(ȳ − yi (t1 − τ)),

where

ν = max
− 15

4 ≤zi ≤ 15
4

−a(zi , ȳ) = min
− 15

4 ≤zi ≤ 15
4

a(zi ,−ȳ) = 9

4
.

As |yi (t1 − τ)| ≤ ȳ we have

ẏi (t1) ≤ −ν + 2σ B1,

where B1 := ȳ = 3, hence to escape from Ω it is required that σ > ν
2B1

. Thus let
σ > ν

2B1
. For t1 > 0 we have

yi (t1) − yi (t1 − τ) =
∫ t1

t1−τ

⎡

⎣a(zi (s), yi (s)) − σ
∑

j∈Ni

ai j [y j (s − τ) − yi (s − τ)]
⎤

⎦ ds

≤ τ(B2 + 2σ B1),

where B2 := max(zi ,yi )∈Ω |a(zi , yi )| = 39
4 . Hence

ẏ(t1) ≤ −ν + στ(B2 + 2σ B1).

By assumption, στ(B2 + 2σ B1) = στ( 394 + 6σ) ≤ 9
4 = ν, which gives ẏ(t1) ≤ 0

for t1 > 0. Thus we can only have a crossing of ȳ at t1 = 0. If t1 = 0, i.e. φ1(0) = ȳ,
then we have

φi (0) − φi (−τ) ≤ K τ.

But K ≤ B2 + ν = 39
4 + 9

4 = 12 such that, as σ > ν
2B1

hence

K ≤ B2 + ν < B2 + 2B1σ,
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we have
στ K ≤ στ(B2 + 2B1σ) ≤ ν,

which implies ẏ(0) ≤ 0. The same reasoning gives that, if yi (t3) = −ȳ for some
t3 ≥ 0, then ẏ(t3) ≥ 0, hence solutions cannot escape from Ω N . ��

By Proposition 17.5, assuming the Lipschitz condition on the initial data, we
conclude that assumption A1 is satisfied for all

(σ, τ ) ∈ SB :=
{
(σ, τ ) ∈ R+ × R+ | στ

(
6σ + 39

4

) ≤ 9
4

}
.

Then Lemma 17.3 implies the existence of a non-empty set S∗ ∩ SB such that for
(σ, τ ) ∈ S∗ ∩ SB two time-delay coupled FHN neurons globally synchronize (in
Ω × Ω). Invoking Theorem 17.4 we derive conditions for global synchronization
(in Ω N ) of any network of N time-delay coupled FHN neurons.

17.7 Discussion

We have constructed a (local, global) synchronization diagram for time-delay cou-
pled systems and we have shown that a condition for (local, global) synchronization
of a network is that the coupling strength and time-delay belong to the intersection
of scaled copies of that (local, global) synchronization diagram. The scaling fac-
tors are the nonzero eigenvalues of the Laplacian matrix of the undirected, simple,
and connected network. We have demonstrated our results with a network of FHN
neurons.

We have assumed the network Laplacian matrix to be symmetric to ensure that the
eigenvalues (and thus the scaling factors) are real valued. A natural extension of this
work would be to allow for networks with asymmetric network Laplacian matrices,
e.g., in case of directed networks.

An other important extension would be to consider coupling functions of the form

ui (t) = σ
∑

j∈Ni

ai j [y j (t − τ) − yi (t)]. (17.12)

There is an important difference between this type of coupling and the coupling
functions considered in this chapter, i.e., coupling (17.3); coupling (17.12) is inva-
sive whereas the coupling (17.3) is not. For invasive coupling functions, the syn-
chronized dynamics depend on the values of the coupling strength and time-delay.
Thus for coupling (17.12), one has to impose additional conditions to ensure that
the synchronization manifold exists. A sufficient condition for existence of the syn-
chronization manifold is that the network adjacency matrix A = (

ai j
)
has constant

row-sums, e.g.,
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∑

j∈Ni

ai j = 1 ∀i = 1, . . . , N ,

cf. [28]. Under the assumption above, one can easily derive that the synchronization
diagram depends on σ , τ and σλ j (A), with λ j (A) being any eigenvalue of the
network adjacency matrix other than 1. (We remark that in case the network is
connected and all rows of A sum up to 1, the matrix A has a simple eigenvalue
equal to 1.) Thus for invasive coupling (17.12), the synchronization diagram and its
intersections need to be drawn in a three-dimensional space.

Finally, (for both types of coupling functions) it would be valuable to extend our
results to the multiple delay case.

17.8 Epilogue

This chapter is a tribute to the 60th birthday of Arjan van der Schaft. Over a period
of more than 35years, the second author has shared many ideas, papers, thoughts,
running miles, cigars, and much more with Arjan. It is my expectation that this will
continue for the next 35years; I look forward to that.
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