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Abstract In this chapter we aim to extend the Brayton Moser (BM) framework for
modeling infinite-dimensional systems. Starting with an infinite-dimensional port-
Hamiltonian system we derive a BM equivalent which can be defined with respect
to a non-canonical Dirac structure. Based on this model we derive stability and new
passivity properties for the system. The state variables in this case are the “effort”
variables and the storage function is a “power-like” function called the mixed poten-
tial. The new property is derived by “differentiating” one of the port variables. We
present our results with the Maxwell’s equations, and the transmission line with
non-zero boundary conditions as examples.
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Energy-based methods for modeling and control of complex physical systems
has been an active area of research for the past two decades. In particular, the
Hamiltonian-based formulation has proven to be an effective tool in modeling and
control of complex physical systems from several physical domains, both finite
and infinite-dimensional cases [7]. These systems are inherently passive with the
Hamiltonian when bounded from below, serving as the storage function and the
input and output pair are power conjugate. This resulted in development of so-called
“Energy-Shaping” methods for control of physical systems. In some cases the nat-
ural power conjugate port variables do not necessarily help in achieving the control
objectives due to the dissipation obstacle [13], motivating the search for alternate
passive maps. One possible alternative which has been explored extensively in the
finite-dimensional case is the “Brayton–Moser” (BM) framework for modeling of
electrical networks [2, 5, 6], which has been successfully adapted towards analyzing
passivity of RLC circuits [8] and for control of physical systems by “power shaping”
[7]. For further details on various energy and power-based modeling techniques we
refer to [9].

Most of the literature for control on the BM framework restricts to finite-
dimensional case only. One of the first results, in the infinite dimensional case,
appeared in [4], in which the authors present a stability theory in the BM framework
for a transmission line connected to the non-linear load. However, the proposed
Lyapunov functional does not preserve the pseudogradient-like structure of the sys-
tem, which is essential for boundary control, and to derive passive maps is not very
obvious. Later, in [10] the authors describe a electromagnetic fields analogue of the
Brayton Moser formulation of Maxwell equations, again mostly for zero boundary
conditions. In an earlier work [12], we have presented results on control by intercon-
nection of a transmission line by “power shaping” in the BM framework.

In this chapter we present a BM analogue of an infinite-dimensional port-
Hamiltonian systems, defined with respect to a constant Stokes Dirac structure [16].
The main results are deriving a new passivity property for mixed finite and infinite-
dimensional systems by “differentiating” one of the port variables (possibly the
boundary port) and a storage function directly related to the power of the system,
while preserving the structure of the system. This new storage function is instru-
mental in analyzing the stability of the system. We present our results for a general
Hamiltonian system, with Maxwell’s equations and the transmission line with non-
zero boundary conditions, as examples.

This chapter is organized as follows. In Sect. 15.2, we defined the Stokes Dirac
structure and its Brayton Moser formulation. In Sect. 15.3, we use Brayton Moser
framework to analyze stability and give admissible pairs for Maxwell’s equation
of electromagnetic fields and telegraphers equations of transmission line with zero
energy flow trough boundary. In Sect. 15.4, we present the admissible pairs and
stability for transmission line with non-zero energy flows through the boundary and
derive new passivity properties. Finally in Sect. 15.5, we derive conservation laws
and Casimirs in the BM framework.

Part of the results presented here have appeared in [11].
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Notations and Math Preliminaries

Let Z be an n dimensional Riemannian manifold with a smooth (n −1) dimensional
boundary ∂ Z . Ωk(Z), k = 0, 1, . . . , n denotes the space of all exterior k− forms on
Z . The dual space

(
Ωk(Z)

)∗
of Ωk(Z) can be identified with space of n − k forms

Ωn−k(Z) , the space of (n − k) forms on Z . There exists a natural pairing between
α ∈ Ωk(Z) and β ∈ (

Ωk(Z)
)∗

given by 〈β|α〉 = ∫
Z β ∧ α, were ∧ is the usual

wedge product of differential forms, resulting in the n form β ∧ α. Similar pairing
can be established between the boundary variables.

d denotes the exterior derivative and maps k forms on Z to k + 1 forms on Z.
The Hodge star operator ∗ (corresponding to Riemannian metric on Z ) converts p
forms to (n − p) forms. Given α, β ∈ Ωk(Z) and γ ∈ Ω l(Z), the wedge product
α ∧ γ ∈ Ωk+l(Z). We additionally have the following properties (for details on
theory of differential forms we refer to [1]).

α ∧ γ = (−1)klγ ∧ α , ∗ ∗α = (−1)k(n−k)α (15.1)
∫

z
α ∧ ∗β =

∫

z
β ∧ ∗α (15.2)

d (α ∧ γ ) = dα ∧ γ + (−1)kα ∧ dγ (15.3)

Given a functional H(αp, αq), we compute its variation as

δH = H(αp + ∂αp, αq + ∂αq) − H(αp, αq)

=
∫

z

[
δp H ∧ ∂αp + δq H ∧ ∂αq

]
, (15.4)

where αp, ∂αp ∈ Ω p(Z) and αq , ∂αq ∈ Ωq(Z) and δp H ∈ Ωn−p(Z) and
δq H ∈ Ωn−q(Z) are variational derivatives of H(αp, αq) with respective to αp and
αq . Further, the time derivative of H(αp, αq) is

d H

dt
=

∫

z

(
δp H ∧ ∂αp

∂t
+ δq H ∧ ∂αq

∂t

)
.

Let G : Ωn−p(Z) → Ωn−p(Z) and R : Ωn−q(Z) → Ωn−q(Z), we call G ≥ 0, if
and only if ∀αp ∈ Ω p(Z)

∫

Z

(
αp ∧ ∗Gαp

) ≥ 0

G is said to be symmetric if 〈αp|Gαp〉 = 〈Gαp|αp〉.
Lastly, for Z ⊂ R

n , given f (z, t) : Z ×R → R, we denote
∂ f

∂t
(z, t) as ft , similarly

∂ f

∂z
(z, t) as fz .
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15.2 From Port-Hamiltonian to Brayton Moser Equations

The basic concept needed in the formulation of a port-Hamiltonian system is that of
a Dirac structure, which is a geometric object formalizing general power conserving
interconnections [15].

Definition 15.1 Let V be a an infinite-dimensional linear space. There exists on
V × V ∗ a canonically defined symmetric bilinear form

� ( f1, e1), ( f2, e2) �:=< e1 | f2 > + < e2 | f1 > (15.5)

with fi ∈ V, ei ∈ V ∗, i = 1, 2 and <|> denoting the duality product between
V and its dual subspace V ∗. A constant Dirac structure on V is a linear subspace
D ⊂ V × V ∗ such that

D = D⊥, (15.6)

where⊥ denotes the orthogonal complement with respect to the bilinear form�,�.

Let now ( f, e) ∈ D = D⊥. Then as an immediate consequence of (15.5)

0 =� ( f, e), ( f, e) �= 2 < e | f > .

Thus for all ( f, e) ∈ D we have < e | f >= 0, expressing power conservation with
respect to the dual power variables f ∈ V and e ∈ V ∗
The Stokes Dirac Structure [16]: Define the linear spaceFp,q = Ω p(Z)×Ωq(Z)×
Ωn−p(∂ Z) called the space of flows and Ep,q = Ωn−p(Z)×Ωn−q(Z)×Ωn−q(∂ Z),
the space of efforts, with integers p, q satisfying p + q = n + 1. Then, the linear
subspace D ⊂ Fp,q × Ep,q

D = {(
f p, fq , fb, ep, eq , eb

) ∈ Fp,q × Ep,q |
[

f p

fq

]
=

[∗G (−1)rd
d ∗R

] [
ep

eq

]
,

[
fb

eb

]
=

[
1 0
0 −(−1)n−q

] [
ep|∂ Z

eq |∂ Z

]}

where r = pq + 1, is Stokes Dirac structure with dissipation, [16] with respect to
the bilinear form

�
(

f 1p , f 1q , f 1b , e1p, e1q , e1b

)
,
(

f 2p , f 2q , f 2b , e2p, e2q , e2b

)
�

=
∫

Z
(e2p ∧ f 1p + e1p ∧ f 2p + e2q ∧ f 1q + e1q ∧ f 2q ) +

∫

∂ Z
(e2b ∧ f 1b + e1b ∧ f 2b ).

Consider a distributed parameter port Hamiltonian system on Ω p(Z) × Ωq(Z) ×
Ωn−p(∂ Z), with energy variables

(
αp, αq

) ∈ Ω p(Z) × Ωq(Z) representing two
different physical energy domains interacting with each other. The Hamiltonian H =∫

Z H, where H is the Hamiltonian density. Then the below system of equations
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represent an infinite-dimensional port-Hamiltonian system, with f p = − ∂αp
∂t , fq =

− ∂αq
∂t and the efforts as the co-energy variables, i.e. ep = δp H, eq = δq H .

− ∂

∂t

[
αp

αq

]
=

[∗G (−1)rd
d ∗R

] [
δp H
δq H

]
;
[

fb

eb

]
=

[
1 0
0 −(−1)n−q

] [
δp H |∂ Z

δq H |∂ Z

]

(15.7)

The time derivative of the Hamiltonian is computed as

d H

dt
≤

∫

Z
eb ∧ fb

This means that the increase in energy in the spatial domain is less than or equal to
power supplied to the system through its boundary. This implies that the system is
passive, with respect to the boundary variables, with the Hamiltonian H , which is
assumed to be bounded from below serving as the storage function.

15.2.1 The Brayton Moser Mixed Potential

Brayton and Moser in the early 1960s [5, 6] showed that the dynamics of a class
(topologically complete) of non-linear RLC-circuits can be written as

A(iL , vc)

[
diL
dt

dvc
dt

]

=
[

∂ P
∂iL
∂ P
∂vC

]

+
[

B�
Ec

Ec

−B�
Jc

JC

]

(15.8)

where A(iL , vC ) = diag{L(iL),−C(vC )} and iL the vector of currents through
inductors, vC vector of capacitor voltages, L(iL) the inductance matrix, C(vC ) the
capacitancematrix, BEc , BJc thematrices containing the elements {−1, 0, 1} decided
byKirchoff’s voltage and current laws. EC , JC are respectively the controlled voltage
and current sources. P is called the mixed potential function defined by

P(iL , vC ) = F(iL) − G(vC ) + i�L γ vc

where x = (iL , vC ) the system states. Here F is the content of all the current
controlled resistors, G is the co-content of all voltage controlled resistors. Matrix
γ contains elements {−1, 0, 1} depending on the network topology. Computing the
time derivative of P along the trajectories of (15.8) we have

Ṗ = ẋ� (
A(x) + A�(x)

)
ẋ + uT y,

where, u = (Ec, Jc)
� and y =

(
−BEc

diL
dt , BJc

dvC
dt

)�
.
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From the above expression we can conclude that the system is passive if (A(x) +
A�(x)) ≤ 0, with P the storage functions and u�y as the supply rate.

In case (A(x)+ A�(x)) ≤ 0 is not satisfied, then it is possible to find new ( Ã, P̃)

called an “admissible pair,” (refer [3, 13]) satisfying ( Ã(x) + Ã�(x)) ≤ 0. The
dynamics can then be equivalently be written as

Ã

[ diL
dt

dvc
dt

]
=

[
∂ P̃
∂iL
∂ P̃
∂vC

]

+
[

B�
Ec

Ec

−B�
Jc

JC

]
(15.9)

Remark 15.2 Contrast to the case where the total energy of the system serves as the
storage function and passivity is derived with respect to input–output variables which
are power conjugate, for example, the voltage and currents [15]. In this case, making
use of the mixed potential function as the storage function we derive passivity either
with respect to controlled voltages and the derivatives of currents, or the controlled
currents and the derivatives of the voltages.

The Infinite-Dimensional BM Formulation

We aim to write the infinite-dimensional port-Hamiltonian system, defined with
respect to a Stokes Dirac structure (15.7) in an equivalent BM form. To begin
with, we assume that the mapping from the energy variables (αp, αq) to the
co-energy variables (ep, eq) = (δp H, δq H) is invertible. This means the inverse
transformation from the co-energy variables to the energy variables can be written
as (αp, αq) = (δep H∗, δeq H∗). H∗ is the co-energy of H obtained by H∗(ep, eq) =∫

Z

(
(ep ∧ αp + eq ∧ αq) − H(αp, αq)

)
. Further, assume that the Hamiltonian H

splits as H(αp, αq) = Hp(αp) + Hq(αq), with the co-energy variables given by
ep = δp Hp, eq = δq Hq . Consequently the co-Hamiltonian can also be split as
H∗(ep, eq) = H∗

p(ep) + H∗
q (eq). We can now rewrite the spatial dynamics of the

infinite-dimensional port-Hamiltonian system, in terms of the co-energy variable as

[
δ2p H∗ 0
0 δ2p H∗

] [
− ∂ep

∂t

− ∂eq
∂t

]

=
[∗G (−1)rd
d ∗R

] [
δp H
δq H

]
(15.10)

To begin with, we consider the case of a system which is lossless, that is when R
and G are identically equal to zero in (15.7). Define P to be a functional of the form∫

Z eq ∧ dep. Its variation is given as

δP = P(ep + ∂ep, eq + ∂eq) − P = eq ∧ d∂ep + ∂eq ∧ dep + · · ·

Using the relation eq ∧ d∂ep = (−1)pq∂ep ∧ deq + (−1)n−qd
(
eq ∧ ∂ep

)
, and the

identity (15.4), we have

δeq P = dep(−1)(n−q)×q , δep P = (−1)pqdeq(−1)(n−p)×p.
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We can rewrite (15.10) in the following way

[
δ2p H∗ 0
0 δ2p H∗

][
∂ep
∂t
∂eq
∂t

]

=
[∗δeq P
∗δep P

]
(15.11)

Note that theHodge star operator in right hand side is necessary, because (δeq P, δep P) ∈
Ωq(Z) × Ω p(Z) , and (ėq , ėp) ∈ Ωn−q(Z) × Ωn−p(Z).

In order to incorporate dissipation we proceed as follows: Consider instead a
functional P defined as

P(ep, eq) =
∫

Z

(
eq ∧ dep + 1

2
Req ∧ ∗eq − 1

2
Gep ∧ ∗ep

)
(15.12)

The variation in P is computed as

P = eq ∧ d∂ep + ∂eq ∧ dep + 1

2
(eq ∧ R ∗ ∂eq + ∂eq ∧ ∗eq)

−1

2
(ep ∧ G ∗ ∂ep + ∂ep ∧ ∗ep)

=
∫

Z
∂eq ∧ dep + ∂ep ∧ (−1)pqdeq + 1

2
(eq ∧ R ∗ ∂eq + ∂eq ∧ ∗eq)

−1

2
(ep ∧ G ∗ ∂ep + ∂ep ∧ ∗ep)

=
∫

Z
∂eq ∧ (

dep + R ∗ eq
) + ∂ep ∧ (

(−1)pqdeq − G ∗ ep
)

where we have used the relation eq ∧ d∂ep = (−1)pq∂ep ∧ deq + (−1)n−qd(
eq ∧ ∂ep

)
, together with properties of the wedge form and the star operator defined

in (15.2) and (15.3). Lastly by making use of (15.4) we can write

[
δeq P
δep P

]
=

[
(dep + R ∗ eq)(−1)(n−q)×q

(
(−1)pqdeq − G ∗ ep

)
(−1)(n−p)×p

]
, (15.13)

The dynamics (15.10) can now be written as

[
δ2p H∗ 0
0 δ2p H∗

] [
∂ep
∂t
∂eq
∂t

]

=
[∗δeq P
∗δep P

]

(15.14)

The dynamics are written as partial differential equations in the co-energy variables
(ep, eq). The above equations together with the mixed potential functional as defined
in (15.12) correspond to system of equations which are usually referred to as the
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Brayton Moser equations, [4]. The above system of equations can be written in a
concise way as follows,

Aut = ∗δu P. (15.15)

where u = (ep, eq)� and A =
[
δ2p H∗ 0
0 δ2p H∗

]
.

Boundary dynamics: The system (15.15) can be interconnected to other systems
via the boundary of the infinite-dimensional system, which can either be finite or
infinite-dimensional in nature. To include the dynamics arising due to the boundary
we need to append the Eq. (15.15) in order to incorporate the boundary dynamics.

[
A 0
0 Ab

] [
ut

ub
t

]
=

[ ∗δu P
∗δub Pb + (−1)(n−p)×peq |∂ Z

]
(15.16)

with a new mixed potential function

P(ep, eq) =
∫

Z
P(ep, eq) +

∫

∂ Z
Pb(ep, eq)

with Pb taking into account themixedpotential function arising through the boundary
dynamics. ub represents the states of the systems interconnected at the boundary. The
variation in Pd id given by,

δP =
∫

Z

(
δeq P ∧ ∂eq + δep P ∧ ∂ep

)

+
∫

∂ Z

(
δeq Pb ∧ ∂ep +

(
δep Pb + (−1)(n−p)×peq

)
∧ ∂ep

)

Now with U = (u, ub)� and

δUP =

⎡

⎢⎢
⎣

δeq P
δep P

δeq Pb|∂ Z(
δep Pb + (−1)(n−p)×peq

) |∂ Z

⎤

⎥⎥
⎦ (15.17)

the Brayton Moser equations incorporating boundary dynamics can be written as

AUt = ∗δUP,

where A = diag(A, Ab).
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15.2.2 The Dirac Formulation

In this section we aim to find an equivalent Dirac structure formalism of the Brayton
Moser equations of infinite-dimensional system. As we shall see such a formulation
would result in a non-canonical Dirac structure. For the finite-dimensional version
of the Dirac formalism of BM equations we refer to [7]. Denote by fs = −ut as
the space of flows within the spatial domain and es = δu P , as the space of effort
variables again in the spatial domain. Further denote by fb = −ub as the space
of boundary flows and eb = δub P as the space of boundary efforts. Consider the
following subspace

D = (( fs, es, fb, eb) ∈ Fs × Es × Fb × Eb : −A fs = ∗es, − Ab fb = ∗eb)

It can easily be shown that the above defined subspace constitutes a non-canonical
Dirac structure, with respect to the bilinear form

� ( f 1s , e1s , f 1b , e1b), ( f 2s , e2s , f 2b , e2b) �
=

∫

Z

(
e1s ∧ f 2s + e2s ∧ f 1s + f 1s ∧ ∗(A + A�) f 2s

)

+
∫

∂Z

(
e1b ∧ f 2b + e2b ∧ f 1b + f 1b ∧ ∗(Ab + A�

b ) f 2b

)

The above Dirac structure satisfies the power balance equation

0 =
∫

Z
δu P ∧ut +

∫

∂ Z
δub Pb ∧ub

t +
∫

Z
ut ∧∗(A+ A�)ut +

∫

∂ Z
ub

t ∧∗(A+ A�)ub
t

Remark 15.3 In the above Dirac structure formalism, we have assumed the case
where ∗∗ = 1, where ∗ is the hodge star operator. This is at least true for the case
when the spatial domain is of dimension n = 1 and n = 3, which include respectively
the case of the transmission line and the Maxwell’s equations, which will be the two
examples we will use in the rest of the chapter.

15.3 Admissible Pairs and Stability

Once we have written down the equations in the BM framework (sometimes also
referred to as the pseudogradient form) we can pose the following question; does
the mixed potential function serve as a storage function (or a Lyaunov function) to
infer passivity (or equivalently stability) properties of the system? Below we aim to
answer these questions with the aid of two examples.
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15.3.1 Example: Maxwell Equations

The spatial domain Z ⊂ R
3 is a three-dimensional boundary with a smooth two-

dimensional boundary ∂ Z . The energy variables are the electric field inductionD and
magnetic field induction B. D = 1

2Di j zi ∧ z j and B = 1
2Bi j zi ∧ z j are 2−forms on

Z . The co-energy variables are electric field intensity E and Magnetic field intensity
H, their relationship with energy variables are given by,

∗ D = εE , ∗ B = μH, (15.18)

where ε(t, z) denotes the electric permittivity and μ(t, z) the magnetic permeability.
The co-energy variables are one-forms, linearly related to energy variables. The
Hamiltonian H is written as

H(D,B) =
∫

Z

1

2
(E ∧ D + H ∧ B) =

∫

Z

(
1

2ε
∗ D ∧ D + 1

2μ
∗ B ∧ B

)

(15.19)

Therefore δDH = E and δBH = H. Taking into account dissipation term in the
system, the dynamics can be written in the port-Hamiltonian form as

− ∂

∂t

[D
B

]
=

[
0 −d
d 0

] [
δDH
δBH

]
+

[
Jd

0

]
=

[∗σ −d
d 0

] [
δDH
δBH

]
. (15.20)

where ∗Jd = σE , Jd denotes the current density and σ(z, t) is the specific conduc-
tivity of the material. In addition we define the boundary variables as fb=δD H |∂ Z ,

eb = δB H |∂ Z . The rate of the Hamiltonian is given as

d

dt
H ≤

∫

∂ Z
H ∧ E

The Brayton Moser form of Maxwell’s equations:
In order to write the Maxwell’s equations in the BM form, we proceed as follows:
The aim is to rewrite the equations in terms of the co-energy variables, i.e.H and E .

Define themixedpotential functional corresponding to theMaxwell’s equations as

P =
∫

Z

(
H ∧ dE − 1

2
σE ∧ ∗E

)
, (15.21)
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which gives us the following form of Maxwell’s equations in terms of the mixed
potential

[−μI3 0
0 ε I3

] [Ht

Et

]
=

[ ∗dE
−σE + ∗dH

]
=

[∗δHP
∗δE P

]
(15.22)

15.3.1.1 Stability Analysis

To infer stability properties of the system (15.22) let us begin with the case of zero
energyflow through the boundary of the system.Themixed potential function (15.21)
obtained via (15.12) is not positive definite. Hence we cannot use it as Lyapunov/
storage functional. Moreover, the rate of this function is computed as

∂ P

∂t
=

∫

Z
(−μHt ∧ ∗Ht + εEt ∧ ∗Et )

It can be easily seen that the right-hand side of the above equation is not sign definite,
and hence P does not serve as a Lyapunov functional to infer any kind of stability
(or for that matter passivity) properties of the system. We thus need to look for other
possible Lyapunov functionals P̃ , or in other words admissible pairs Ã, P̃ as in
the case of finite-dimensional systems [8] which can prove stability of the system.
Moreover, in order to conclude stability, the admissible pair should be such that the
symmetric part of Ã is negative semidefinite. This can be achieved in the following
way, [4, 10]. Let

P̃ = λP + 1

2

∫

Z
(δHP ∧ M1 ∗ δHP + δE P ∧ M2 ∗ δE P)

with λ be a arbitrary constant and symmetric M1 and M2 mapping from Ω2(Z) →
Ω2(Z). Here the aim is to find λ, M1 and M2 such that

∂

∂t
P̃ = u�

t Ãut ≤ −K ||ut ||2 ≤ 0 (15.23)

where K ≥ 0 is a constant determined by the Ã. If we can find such a (P̃, Ã),
which satisfies the above condition, then we can conclude stability of the system, by
invoking the stability theorem in [4].

Below we present a constructive process to obtain new admissible pairs. The
variation in P̃ defined in (15.23) is computed as

[
δH P̃
δE P̃

]
=

[
λI M2d∗

M1d∗ (λI − σ M2)

] [
δHP
δE P

]
,
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applying Hodge star on both sides and using (15.22) we get

∗
[
δH P̃
δE P̃

]
=

[ −μλI εM2 ∗ d
−μM1 ∗ d ε (λI − σ M2)

] [Ht

Et

]
.

Further, if we let

Ã =
[ −μλI εM2 ∗ d
−μM1 ∗ d ε (λI − σ M2)

]

we arrive at the following relationship

Ãut = ∗δu P̃. (15.24)

Next we show that P̃ and Ã are admissible pairs if λ, M1 and M2 satisfy εM2 =
μM1

�= θ and 0 ≤ λ ≤ σ‖M2‖s , where ‖ · ‖s is spectral norm. Some calculations
show that the symmetric part of Ã = diag(−μλI,−ε (σ M2 − λI )) is negative
definite.

We note that P can be simplified to

P =
∫

z
H ∧ dE − 1

2
σE ∧ ∗E

=
∫

z
− 1

2σ
[δEP ∧ ∗δEP] + 1

2σ
dH ∧ ∗dH,

resulting in

P̃ =
∫

z
δE P ∧ σ M2 − λI

2σ
∗ δE P + 1

2σ
dH ∧ ∗dH

+1

2
(δHP ∧ M1 ∗ δHP) ≥ 0 (15.25)

Lastly, we choose M1 > 0 and M2 > 0 such that εM2 = μM1. The time derivative
of P̃ is

˙̃P = −
∫

Z
(μλHt ∧ ∗Ht + Et ∧ ∗(λI − σ M2)Et ) ≤ 0

thus implying stability.



15 Power-Based Methods for Infinite-Dimensional Systems 289

15.3.2 Example: The Transmission Line

In this section we first derive the Brayton Moser equivalent of the dynamics of
a transmission line modeled by the telegraphers equations. Similar to the case of
Maxwell’s equations we find the admissible pairs under zero boundary energy flow
conditions and infer stability of the system.

The spatial domain in case of the transmission is Z = [0, 1] ⊂ R with boundary
∂ Z = {0, 1}. The charge q(z, t) and flux densities φ(z, t) ∈ Ω1(Z) constitute the
energy variables,whereas the co-energy variable are voltage v(z, t) and current i(z, t)
∈ Ω0(Z). For simplicity, the relation between the energy and co-energy variables is
assumed to be linear, and is given by

∗ q = Cv, ∗ φ = Li (15.26)

where C and L are, respectively, the spatial capacitance and inductance per unit
length, which are assumed to be independent of z. The Hamiltonian H , which is the
total energy of the system, is written as

H = 1

2

∫

Z
(v ∧ q + i ∧ φ) (15.27)

Taking the dissipation term into account, the telegraphers equations written in port-
Hamiltonian form as [16]

− ∂

∂t

[
q
φ

]
=

[∗G d
d ∗R

] [
δq H
δφ H

]
(15.28)

where δq H = v, δφ H = i (using (15.26) and (15.27)). R, G, respectively, denote
the distributed resistance and conductance per unit length of the transmission line.
Further, we define the boundary variables as fb = δq H |∂ Z and eb = δφ H |∂ Z . The
rate of Hamiltonian is given by

d

dt
H = (v.i)|10

The Brayton Moser form:
The dynamics of the transmission line (15.27) can bewritten in an equivalent Brayton
Moser form as follows: Define a functional P as

P =
∫

Z

(
−v ∧ di + 1

2
Ri ∧ ∗i − 1

2
Gv ∧ ∗v

)
, (15.29)
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which will serve as the mixed potential function. Using the line voltage and current
as the state variables, we can rewrite the dynamics as follows:

[−L 0
0 C

] [
it

vt

]
=

[∗δi P
∗δv P

]
=

[
Gv + ∗di

−Ri − ∗dv

]
. (15.30)

with A
�= diag(−L , C) and u = (i(z, t) v(z, t))�.

15.3.2.1 Admissible Pairs and Stability

Similar to the case of Maxwell equations, we cannot use P and A directly to infer
stability. We, therefore, need to generate new admissible pairs P̃ and Ã satisfying
(15.23) and (15.24) such that P̃ > 0 and symmetric part of Ã < 0, resulting in
stability. As in the case of Maxwell’s equations, we propose a P̃ of the form

P̃ = λP + 1

2
δu P ∧ M ∗ δu P (15.31)

We choose M =
⎡

⎣

α

R
m2

m2
β

G

⎤

⎦ where α, β, m2 are positive constants satisfying α
L

R
=

β
C

G
and λ is a dimensionless constant. Such a choice will be clear in the following

discussions, which will eventually lead to a stability criterion. It is easy to check that
P̃ has units of power. To simplify the calculations we define new positive constants
θ , γ and ζ as follows:

θ
�= α

L

R
= β

C

G
, m2

�= 2γ

C R + LG

ζ
�= 2γ√

LC(α + β)
=⇒ m2 = ζθ√

LC
. (15.32)

To show that P̃ ≥ 0 we start with simplifying the right hand side of (15.31) in the
following way. Define

Δ1
�=

(

ζ

√
L

2
(Gv + iz) −

√
C

2
(Ri + vz)

)

Δ2
�=

(

ζ

√
C

2
(Ri + vz) −

√
L

2
(Gv + iz)

)

.

(15.33)
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Using (15.32), (15.33), and after some calculations, we can show that

1

2
〈δu P, Mδu P〉 = Δ2

1 + β

2G
(1 − ζ 2)(Gv + iz)

2

= Δ2
2 + α

2R
(1 − ζ 2)(Ri + vz)

2

P̃ as defined in (15.31) can then be written as follows

P̃ = α(1 − ζ 2) − λ

2R
(Ri + vz)

2 + Δ2
2 + λ

2R
v2z + λ

2
Gv2 (15.34)

= β(1 − ζ 2) + λ

2G
(Gv + iz)

2 + Δ2
1 − λ

2G
i2z − λ

2
Ri2 (15.35)

which implies that P̃ ≥ 0 as long as the following conditions are satisfied

0 ≤ λ ≤ α(1 − ζ 2), 0 ≤ ζ ≤ 1

− β(1 − ζ 2) ≤ λ ≤ 0 or equilvalently

− β(1 − ζ 2) ≤ λ ≤ α(1 − ζ 2), 0 ≤ ζ ≤ 1 (15.36)

Further the variational derivative of P̃ with respect to u is calculated as

δu P̃ =
[
(−λ + α)(vz + Ri) − m2R(Gv + iz)

(λ + β)(Gv + iz) − m2G(Ri + vz)

]

− ∂

∂z

[
β
G (Gv + iz) − m2(vz + Ri)
α
R (vz + Ri) − m2(Gv + iz)

]

=
[

L(λ − α − m2
∂
∂z ) C(Rm2 + β

G
∂
∂z )

L(Gm2 + α
R

∂
∂z ) −C(λ + β + m2

∂
∂z )

][
it

vt

]
.

Therefore

Ã =
[

L(λ − α − m2
∂
∂z ) C(Rm2 + β

G
∂
∂z )

L(Gm2 + α
R

∂
∂z ) −C(λ + β + m2

∂
∂z )

]

(15.37)

satisfies the gradient form (15.24).

Noting that conjugate of
∂

∂z
is − ∂

∂z
and using α

L

R
= β

C

G
from (15.32), the

symmetric part of Ã (15.37) is simplified to be

Ã + Ã∗

2
=

[
L(λ − α) γ

γ −C(λ + β)

]
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The symmetric part of Ã is negative semidefinite as long as the following conditions
are satisfied,

− β ≤ λ ≤ α, and (λ − α)(λ + β) + (α + β)2

4
ζ 2 ≤ 0. (15.38)

We now present the following result:

Proposition 15.4 If there exist non-zero α, β, λ and ζ satisfying (15.32), (15.36),
and (15.38) then P̃ defined in (15.31) and Ã defined in (15.37)with M are admissible
pairs for the transmission line dynamics. Additionally if the symmetric part of Ã is
negative semidefinite, i.e. (15.38) holds true, them the system of equations (15.30) is
stable.

Proof From (15.32) we define τ
�= α

β
= RC

LG
. Given a transmission line R, C, L , G

are fixed, therefore τ ≥ 0 is related to system parameters and thus can be treated as

one. Let λ
′ = λ

β
. Using this in (15.36) and (15.38) we get

− (1 − ζ 2) ≤ λ
′ ≤ τ(1 − ζ 2) (15.39)

(λ
′ − τ)(λ

′ + 1) + (τ + 1)2

4
ζ 2 ≤ 0 (15.40)

Now we have to show that for all τ ≥ 0 there exists a pair of λ
′
and ζ that satisfies

both the above equations. Given a ζ ∈ (0, 1) from (15.39) λ
′
lies between a positive

value and a negative value ∀τ ≥ 0. If we can show that (15.40) has a positive and
negative roots, then we can conclude the proof. The roots of (15.40) are

r1 = 1

2

(
τ − 1 + (τ + 1)

√
1 − ζ 2

)

r2 = 1

2

(
τ − 1 − (τ + 1)

√
1 − ζ 2

)

The aim is to find a condition on ζ such that r1 and r2 have a different signs, for
all τ > 0. For 0 < τ < 1 we have r2 < 0. In order to make r1 > 0 we need
ζ 2 < 4τ/(1 + τ)2. Further for τ > 1 we have r1 > 0, in which case we require
r2 < 0 which leads to the same condition on ζ that is ζ 2 < 4τ/(1 + τ)2. Note that

this is a valid condition on ζ since ∀τ ,
4τ

(1 + τ)2
≤ 1. Which implies ζ is bounded,

0 ≤ ζ 2 ≤ 4LC RG

(LG + RC)2
. (15.41)
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Therefore ∀ζ ∈ [0, 4τ

(1 + τ)2
] there exists a λ

′
which satisfies (15.39) and (15.40).

Finally for any β ∈ R
+, α = τβ, λ = λ

′
β and ζ ∈ [0, 4τ

(1 + τ)2
] satisfies (15.32),

(15.36) and (15.38).

15.4 Admissible Pairs and Stability for Non-zero Energy
Flow Through Boundary

In this section we derive the Brayton Moser formulation of infinite-dimensional
systems with non-zero energy flows through boundary. For simplicity, we limit our
discussion for systems evolving on spatial domain Z = (0, 1) of dimension n = 1
with point boundaries, ∂ Z = {0, 1}. For z ∈ Z , let u(z, t) be the states evolving on
the spatial domain Z , further let u0(t) and u1(t) denote the states evolving at the
boundary z = 0 and z = 1. Now consider the mixed potential function of the form

P(U ) = P(u) + P0(u0) + P1(u1) (15.42)

where u0 = u(0, t), u1 = u(1, t) and U = [u, u0, u1] with P(u) of the form
(15.29). P0 and P1 are the contributions to the mixed potential function arising
form the boundary dynamics. Similar to infinite-dimensional case, we represent the
overall dynamics of finite and infinite-dimensional system in Brayton Moser form.
Dynamics evolving on the spatial domain (15.30) are given by (i.e. for 0 < z < 1)

Aut = δu P,

dynamics at boundary z = 0 are represented by

A0u0t =
(

∂ P0

∂u0
− Puz

)∣∣∣
∣
z=0

+ B0E0

with B0, E0 representing input matrix and source at z = 0 respectively. Further

Puz = ∂ P

∂uz
.

The dynamics at boundary z = 1 are represented using

A1u1t =
(

∂ P1

∂u0
+ Puz

)∣∣∣∣
z=1

+ B1E1

where B1 and E1 are input matrix and source at z = 1. Together they can be written
compactly in Brayton Moser form as

AUt = δUP + B E (15.43)



294 K.C. Kosaraju and R. Pasumarthy

where A = diag{A, A0, A1}, A, A0 and A1 ∈ R
2×2. B = [B0, B1] is the input

matrix and E = [E0 E1]� are the inputs to the system. The variational derivative of
P (15.42) with respect to U is

δUP =

⎡

⎢⎢⎢⎢
⎣

δu P(
∂ P0

∂u0
− Puz

)∣∣∣
∣
z=0(

∂ P1

∂u1
+ Puz

)∣∣∣∣
z=1

⎤

⎥⎥⎥⎥
⎦

.

Further the time derivative of mixed potential function (15.42) is

d

dt
P =

∫ 1

0
(δu P · ut ) dz +

(
∂ P0

∂u0
− Puz

)∣∣∣∣
z=0

· u0t +
(

∂ P1

∂u1
+ Puz

)∣∣∣∣
z=1

· u1t

(15.44)

where ut = ∂u

∂t
, u0t = ∂u0

∂t
, u1t = ∂u1

∂t
. Using the Brayton Moser form (15.43), Ṗ

can be written as

d

dt
P =

∫ 1

0
(Aut · ut ) dz + A0u0t · u0t + A1u1t · u1t − E� B�Ut

=
∫ 1

0

(
u�

t
A + A�

2
ut

)
dz + u�

0t
A0 + A�

0

2
u0t + u1t

A1 + A�
1

2
u1t + E�y

(15.45)

where y = −B�Ut . It can be seen that for a positive definiteP , and negative definite
A the system is passive with input E and output y. In general P andA do not satisfy
these conditions. This motivates us to search for new admissible pairs P ≥ 0 and
A ≤ 0 which enables us derive cerain passivity/stability properties.

Definition 15.5 Admissible Pairs: We denote P̃ = P̃ + P̃0 + P̃1 and Ã =
diag{ Ã, Ã0,

Ã1} Admissible pairs if they satisfy the following:

(a) P̃ ≥ 0 and Ã ≤ 0 such that

Ãut = δu P̃ (15.46)

(b) P̃0 ≥ 0 and Ã0 ≤ 0 such that

Ã0u0t =
(

∂ P̃

∂u0
− P̃uz

)∣∣∣∣∣
z=0

+ B0E0 (15.47)
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(c) P̃1 ≥ 0 and Ã1 ≤ 0 such that

Ã1u1t =
(

∂ P̃

∂u1
+ P̃uz

)∣∣
∣∣∣
z=1

+ B1E1 (15.48)

(d) Together we can write them as P̃ ≥ 0 and Ã ≤ 0 such that

ÃUt = δU P̃ + B Eb

yb = −B�Ut . (15.49)

Finally time derivative of P̃ is

˙̃P ≤ E�
b yb.

Which implies that the system is passivewith storage function P̃ and ports Eb and yb.
We next show how to derive these with the help of an example.

15.4.1 Example: Transmission Line with Circuit Elements
at the Boundary

Consider a transmission line, whose boundary is interconnected to certain circuit
elements as shown in Fig. 15.1. At z = 0 is a resistor R0 in series with inductor L0
connected to a voltage source E0. The other end of the transmission line z = 1 is
terminated with a resistor R1.

This gives us the following dynamics at the boundary

v0 + R0i0 + L0
di0
dt

= E0 z = 0

v1 = R1i1 z = 1
(15.50)

Transmission line

L R
0

R
1

0

E
0

z=0 z=1

i
0 i1

+

_

v

+

_

v1
0

Fig. 15.1 Transmission line with boundary
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where v0 = v(0, t), i0 = i(0, t) and v1 = v(1, t), i1 = i(1, t), let U =
[i, v, i0, v0, i1, v1]�.

Let u = [i, v]�, u0 = [i0, v0]�, u1 = [i1, v1]� and Puz = ∂ P

∂uz
, uz = ∂u

∂z .

Next we define the mixed potential functionP = P + P0+ P1 andA as follows:

P =
∫ 1

0

(
−1

2
Ri2 + 1

2
Gv2 + viz

)
dz

P0 = −1

2
R0i20 P1 = −1

2
R1i21

A = diag

{[
L −C
0 0

]
,

[
L0 0
0 0

]
,

[
0 0
0 0

]}

where P and A are defined in (15.29) and (15.30), respectively. The input matrices
B0 = [

0 0 1 0 0 0
]�, B1 = 0 and E1 = 0. The transmission line dynamics governed

by Eq. (15.28) together with the boundary dynamics given by (15.50) can be written
in a compact form as

⎡

⎢⎢⎢⎢⎢
⎢
⎣

L 0 0 0 0 0
0 −C 0 0 0 0
0 0 L0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥
⎥
⎦

⎡

⎢⎢⎢⎢⎢
⎢
⎣

it

vt

i0t

v0t

i1t

v1t

⎤

⎥⎥⎥⎥⎥
⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢
⎢
⎣

−Ri − ∂v
∂z

−Gv − ∂i
∂z

v0 + R0i0
−v0 − R0i0
−v1 + R1i1
v1 − R1i1

⎤

⎥⎥⎥⎥⎥⎥
⎥
⎦

+

⎡

⎢⎢⎢⎢⎢
⎢
⎣

0
0
1
0
0
0

⎤

⎥⎥⎥⎥⎥
⎥
⎦

E0.

It can easily be checked that usingP as a storage function does not result in anykind of
passivity properties of the system. Therefore, we find new admissible pairs satisfying
Definition 15.5. The admissible pairs for spatial domain, found in Sect. 15.3.2.1
for zero energy flow through boundary will satisfy (15.46). Therefore P̃ and Ã
remains same for transmission line with zero or with non-zero energy flow through
the boundary. For the rest of the example we choose that λ = −1, and input matrix
B0 = [

0 0 −1 0 0 0
]�. Next we aim to find Ã0 and P̃0 which satisfy (15.47). At

z = 0 we have

(
∂ P̃0

∂u0
− P̃uz

)∣∣∣∣
∣
z=0

+ B0E0 =
⎡

⎣
−m2Li0t + θv0t + v0 + ∂ P̃0

∂i0
− E0

θ i0t − m2Cv0t + ∂ P̃0

∂v0

⎤

⎦

Let us consider P̃0 of the form
1

2
R0i20 ,
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(
∂ P̃0

∂u0
− P̃uz

)∣∣
∣∣∣
z=0

+ B0E0 =
[−m2Li0t + θv0t + v0 + R0i0 − E0

θ i0t − m2Cv0t

]

=
[−m2Li0t + θv0t − L0i0t

θ i0t − m2Cv0t

]
.

In the last stepwe used the boundary condition at z = 0, i.e. v0+R0i0−E0 = −L0i0t ,

further assuming that ∃ζ, θ satisfying
1

m2C
(1 − ζ 2)θ2 = L0,

(
∂ P̃0

∂u0
− P̃uz

)∣∣
∣∣∣
z=0

+ B0E0 =
⎡

⎣−m2Li0t + θv0t −
(

1

m2C
(1 − ζ 2)θ2

)
i0t

θ i0t − m2Cv0t

⎤

⎦

=
⎡

⎣θv0t −
(

m2L + 1

m2C
(1 − ζ 2)θ2

)
i0t

θ i0t − m2Cv0t

⎤

⎦

=
⎡

⎣θv0t − θ2

m2C
i0t

θ i0t − m2Cv0t

⎤

⎦ =
⎡

⎣− θ2

m2C
θ

θ −m2C

⎤

⎦
[

i0t

v0t

]

in the last step we used m2 = ζθ√
LC

(15.32). Finally, we denote

Ã0 =
⎡

⎣− θ2

m2C
θ

θ −m2C

⎤

⎦ ≤ 0, (15.51)

u�
0t Ã0u0t ≤ 0.

Hence P̃0 = 1

2
R0i20 and Ã0 (15.52) satisfy (15.47), under the assumption that ζ and

θ are chosen such that, L0 = 1

m2C
(1 − ζ 2)θ2. Similarly under the assumption that

θ

m2
= R1, we can show that for Ã1 = − Ã0 and P̃1 = 1

2
R1i21 will satisfy (15.48).

But for all (i1t , v1t ) satisfying v1t = R1i1t = θ

m2C
i1t we have

Ã1u1t =
⎡

⎣
θ2

m2C
−θ

−θ m2C

⎤

⎦
[

i1t

v1t

]

=
⎡

⎣
θ2

m2C
−θ

−θ m2C

⎤

⎦
[

i1t

R1i1t

]
=

⎡

⎣
θ2

m2C
−θ

−θ m2C

⎤

⎦

⎡

⎣
i1t
θ

m2C
i1t

⎤

⎦ = 0



298 K.C. Kosaraju and R. Pasumarthy

That is we choose θ and m2 such that u1t is always in the nullspace of Ã1. Which
implies

u�
1t Ã1u1t = 0 ∀(i1t , v1t ).

Finally for Bb = [
0 0 −1 0 0 0

]� and Eb = E0 we get yb = di0
dt

. The time

derivative P̃ = P̃ + P̃0 + P̃1 is computed as

d

dt
P̃ ≤ E0

di0
dt

,

which implies that the system is passive with respect to input E0 and output
di0
dt

.

Remark 15.6 Note that in Hamiltonian case the storage function is

H = 1

2

∫ 1

0

(
Li2 + Gv2

)
+ 1

2
L0i20

and its time derivative is calculated to be
d

dt
H ≤ E0i0. The system is passive with

port variable E0 and i0.

15.5 Casimirs and Conservation Laws

Weobtain conservation lawswhich are independent from themixedpotential function
as follows [14, 16]: For simplicity, we consider the case of systems without dissipa-
tion. We further assume that the energy and the co-energy variables are related via a
linear relation, given by

αp = ∗ε ep and αq = ∗μ eq . (15.52)

We can write (15.10) in the following way:

[−μ 0
0 ε

] [
ėq

ėp

]
=

[∗δeq P
∗δep P

]
(15.53)

Consider a function C : Ωn−p(Z) × Ωn−q(Z) × Z → R, which satisfies

d(∗δepC) = 0, d(∗δeqC) = 0

d

dt
C(eq , ep) =

∫

Z

(
δeq C ∧ ėq + δep C ∧ ėp

)
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=
∫

Z

(
−δeq C ∧ ∗ 1

μ
dep(−1)(n−q)×q + δep C ∧ ∗1

ε
(−1)pqdeq (−1)(n−p)×p

)

=
∫

Z

(
−(−1)(n−q)×q 1

μ
dep ∧ ∗δeq C + (−1)p 1

ε
deq ∧ ∗δep C

)

=
∫

Z

(
−(−1)(n−q)×q 1

μ
[d(ep ∧ ∗δeq C) + (−1)q ep ∧ d(∗δeq C)]

+ (−1)p 1

ε
[d(eq ∧ ∗δep C) + (−1)pep ∧ d(∗δep C)]

)

=
∫

∂ Z

(
eq ∧ ∗δep C) |∂ Z +(ep ∧ ∗δeq C) |∂ Z

)

In the particular case when ∗δep C |∂ Z= ∗δeq C |∂ Z= 0, then dC
dt = 0, along the

system trajectories. Such a function is called a Casimir function.

15.5.1 Example: Transmission Line

In case of the lossless transmission line, the total current

CI =
∫ 1

0
i(t, z)dz

and the line voltage

Cv =
∫ 1

0
v(t, z)dz

are the systems conservation laws. This can easily be inferred by the following

d

dt
CI = −

∫ 1

0

1

l

∂v

∂z
= v

L
|0 − v

L
|1

d

dt
Cv = −

∫ 1

0

1

C

∂i

∂z
= i

C
|0 − i

C
|1

15.5.2 Example: Maxwell’s Equations

In case of Maxwell’s equations with no dissipation terms, it can easily be checked
that the magnetic field intensity

∫
Z H and the electric field intensity

∫
Z B constitute

the conserved quantities. This can be seen via the following expressions:
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∫

Z

d

dt
Ht = −

∫

∂ Z

1

μ
E

∫

Z

d

dt
Et =

∫

∂ Z

1

ε
H

Another class of conserved quantities can be identified in the following way:
Using (15.11), the system of equations (15.53) can be rewritten as

[−μ 0
0 ε

] [∗ėq

∗ėp

]
=

[ ∗dep(−1)(n−q)×q

∗(−1)pqdeq(−1)(n−p)×p

]
(15.54)

Note that

−d
(
μ ∗ ėq

) = d(dep(−1)(n−q)×q) = 0

d
(
μ ∗ ėp

) = d((−1)pqdeq(−1)(n−p)×p) = 0

This means that d(μ ∗ eq), d(ε ∗ ep) are differential forms which do not vary with
time.

In terms ofMaxwell’s Equations thiswouldmean d(μ∗H) is a constant three-form
representing the charge density and d(ε∗E) is actually zero. In standard electromag-
netic texts these would mean ∇ · D = J , and ∇ · B = 0, representing respectively
the Gauss’ electric and magnetic law.

15.6 Conclusions

The main results in this chapter deal with the Brayton Moser formulation of
infinite-dimensional systems, starting from the Hamiltonian formulation of infinite-
dimensional systems, defined with respect to a Stokes’ Dirac structure. This formula-
tion provides ameans to generate new passivemaps for infinite-dimensional systems,
while preserving the pseudogradient-like structure of the Brayton Moser formula-
tion. The preserving of the structure is key for boundary control by interconnection
of infinite-dimensional systems.
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