
Chapter 14
Online Frequency Estimation of Periodic
Signals

Riccardo Marino and Patrizio Tomei

Abstract The problem of estimating online the unknown period of a periodic signal
is considered, with no a priori information on the period: this is a crucial problem
in the design of learning and synchronizing controls, in fault detection, and for
the attenuation of periodic disturbances. Given a measurable continuous, bounded
periodic signal, with nonzero first harmonic in its Fourier series expansion, a dynamic
algorithm is proposed which provides an online globally exponentially convergent
estimate of the unknown period. The period estimate converges from any initial
condition to a neighborhood of the true period whose size is explicitly characterized
in terms of the higher order harmonics contained in the signal. The accuracy of the
frequency estimation can be arbitrarily improved by increasing the order of a prefilter
which is incorporated in the estimation algorithm, at the expense of reducing the rate
of the exponential convergence. This online frequency estimation algorithm can be
used to design hybrid disturbance attenuation controllers for periodic disturbances
with unknown period.

14.1 Introduction

Arjan van der Schaft visited the University of Rome Tor Vergata during the summer
1990.Wehad the pleasure of collaboratingwith himandWitoldRespondekon several
aspects of almost disturbance decoupling for nonlinear systems [19] and on more
theoretical issues involving transformations of nonlinear systems into prime forms
[20]. Our collaboration started in 1986 during a summer visit of the first author at
Twente University: at that time, high-gain feedback was investigated to solve almost
input-output decoupling and almost disturbance decoupling problems [17, 18]. The
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first author first met Arjan at a conference on Differential Geometric Control Theory
in Michigan in 1982 and still remembers with pleasure an adventurous car trip from
northern Michigan to St. Louis, Missouri, where he was completing his Ph.D.

This paper is related to the design of feedback controls to attenuate the influence
of disturbances. While the strategy in [18, 19] is to reduce the L2-gain from the
disturbance to the output possibly by high-gain feedback since the disturbance is
totally unknown, in this paper we explore what can be done if the disturbance is
known to be periodic even though its period is unknown. The key step is clearly the
online estimation of the unknown period, according to the internal model principle.

Online frequency estimation of a periodic signal is a fundamental problem in
several engineering and scientific disciplines. The classical Fourier analysis estimates
the frequencies and the amplitudes of a periodic signal provided that the signal can be
stored and processed off-line. As far as feedback control is concerned, learning [32]
and synchronizing [27] control design and the attenuation of unmeasured periodic
disturbances require online frequency estimation. If the period is known, learning
controls can track periodic references for classes of linear and nonlinear systems
[14, 32]. According to the internal model principle, which was formulated in [6]
for linear systems, an error feedback control which is capable of tracking and/or
rejecting unknown sinusoidal signals must necessarily be able to reproduce such
signals: hence it should estimate their frequencies online. Fault detectors which are
based on frequency estimators require online algorithms as well.

Online frequency estimation algorithms can be divided into two classes: the local
ones, which converge for sufficiently close initial frequency estimates and the global
ones, which converge for any initial frequency estimate. Their convergence may be
either exponential or only asymptotic [10] and their domain of attraction may be
either global or only local. In addition, the convergence may occur for a suitable
tuning of the algorithm parameters or for any parameter value. These differences are
apparent in the comparison of several algorithms which are now available for the
online frequency estimation of a single sinusoidal signal with no a priori information
on the frequency. In [3] a continuous time version of the discrete-time notch filter
proposed by [28], which was inspired by commonly used Phase Locked Loop (PLL)
algorithms in signal processing, is shown to be locally asymptotically convergent.
The adaptation strategy for the frequency estimator presented in [3] was normalized
in [9] in order to obtain a globally asymptotically convergent algorithm, provided
that the adaptation gain is chosen to be sufficiently small depending on a known
bound on the amplitude of the sinusoidal signal. The adaptive notch filter proposed
in [9] was extensively analyzed in [4] andwas furthermodified in [24, 25] to show, by
means of averaging theory (see for instance [10, 30]) that the frequency estimate will
asymptotically converge to a neighborhood of the fundamental frequency even when
the signal is periodic but not purely sinusoidal, provided that the adaptation gain
and the higher order harmonics are sufficiently small. A similar result was presented
in [33] using a different algorithm based on gradient descent methods. Globally
exponentially convergent frequency estimation algorithms were obtained both for a
single sinusoid and for biased multiple sinusoids in 2002 by [22, 26, 31] without
any restriction on the algorithm design parameters. The key techniques are adaptive
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observers (see [21]) in [22, 26] and adaptive identifiers (see [29]) in [31], while the
state space representation of the measured signal allows for a linear parameterization
of the unknown frequencies; amplitudes and phases can be recovered as well (see
[7, 8] for a detailed analysis) from the estimation of the state variables. Different
frequency estimation techniques for sinusoidal signals are still actively studied with
the aim of exploring the robustness with respect to unaccounted disturbances (see
[1, 2, 5]).

We will follow the adaptive observer approach introduced in [22] in order to
address the global frequency estimation of periodic signals. Only local asymptotic
frequency estimators for periodic signals have been so far obtained by using an
adaptive notch filter with sufficiently small adaptation gain in [24, 25]: the stability
analysis has been carried out interpreting the adaptation gain as a small parameter
and applying the averaging theorems [10, 30].

In this paper, given a measurable continuous, bounded periodic signal, with
nonzero first harmonic in its Fourier series expansion, a dynamic adaptive algorithm
is proposed which provides an online globally exponentially convergent estimate of
the unknown frequency for any tuning of its parameters, including the adaptation
gain. No a priori information on the period is required. The frequency estimate con-
verges from any initial condition to a neighborhood of the true frequency whose
size is explicitly characterized in terms of the higher order harmonics contained in
the periodic signal. By increasing the order of a prefilter which is incorporated in
the estimation algorithm, the accuracy of the frequency estimation can be arbitrarily
improved, at the expense of reducing the rate of the exponential convergence. The
global stability analysis is carried out using Lyapunov functions and the property
of persistency of excitation which lead to a robust exponential convergence of the
estimation algorithm. When the periodic signal is a biased sinusoid, the unknown
frequency is exactly estimated from any initial condition and for any value of the
prefilter order, thus recovering a well-known result with improved robustness. Two
examples are carried out and simulated. In the first one, the proposedmethod is tested
on a complex signal and compared to the adaptive notch filter in [25]. In the sec-
ond one, the frequency estimator is used in conjunction with a disturbance rejection
compensator to attenuate a periodic disturbances with unknown frequency. Since
the frequency of the disturbance compensator is updated at every predefined time
interval, the overall disturbance compensator is of hybrid type. Preliminary results
have been presented in [15, 16] for robust compensation of periodic disturbances.

14.2 Main Results

Consider the bounded periodic signal y(t), y ∈ R, of unknown period T , which
is available for measurements. Assume that y(t) is continuous so that it can be
represented by its Fourier series expansion
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y(t) = a0
2

+
∞∑

k=1

[
ak cos

(
2πkt

T

)
+ bk sin

(
2πkt

T

)]

�= a0
2

+ a1 cos

(
2π t

T

)
+ b1 sin

(
2π t

T

)
+ ry(t) (14.1)

in which ry(t) contains the higher order harmonics of y(t); the first harmonic of
unknown frequency 1/T is assumed to be different from zero, i.e., (a2

1 + b21) > 0.
Let us consider the signal y f l(t) obtained by filtering y(t) through the stable linear
filter of order l ≥ 0

ẏ f 1 = −λ f y f 1 + λ f y, y f 1 ∈ R

ẏ f k = −λ f y f k + λ f y f,k−1, y f k ∈ R, 2 ≤ k ≤ l (14.2)

in which λ f is an arbitrary positive real. Let y f p be the steady-state periodic com-
ponent of y f l(t) in (14.2) which is obtained as the solution of

ẏ f p1 = −λ f y f p1 + λ f y, y f p1 ∈ R

ẏ f pk = −λ f y f pk + λ f y f p,k−1, y f pk ∈ R, 2 ≤ k ≤ l

y f p = y f pl (14.3)

with suitable initial conditions. The signal y f p may be rewritten as

y f p(t) = η1(t) + r(t) (14.4)

where η1(t) is the sum of the bias (if any) and of the first harmonic component of
frequency ω (which is different from zero by assumption) while r(t) contains all
remaining harmonics at higher frequencies kω, k ≥ 2. The differences

ỹ f i = y f i − y f pi , 1 ≤ i ≤ l

ỹ f = ỹ f l (14.5)

converge exponentially to zero. The signal η1(t) may be equivalently generated by
the exogenous system (exosystem)

η̇1 = η2

η̇2 = −θη1 + η3

η̇3 = 0 (14.6)

with suitable initial conditions, inwhich the parameter θ = (2π/T )2 = ω2 is defined
and η = [η1, η2, η3]T ∈ R

3. Let us introduce the unitary gain first-order stable filter

χ̇ = −λχ + λy f l , χ ∈ R (14.7)
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in which λ is an arbitrary positive real and y f l is generated by (14.2). From (14.4),
(14.6), (14.2) and (14.7), in the new state coordinates ηE = [χ, ληT ]T ∈ R

4, we
have

η̇E = AcηE − E1λχ + rλ(E1 + θ E3)

+λE1 ỹ f − λy f pθ E3

χ = CcηE (14.8)

in which Ei denotes the i th column of an identity matrix of suitable dimension and

Ac =

⎡

⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤

⎥⎥⎦ .

Note that the unknown parameter θ = ω2 now appears linearly in the dynamic
equations (14.8). Make the time-varying change of coordinates (which is called
‘filtered transformation’ in [21])

z = ηE −
[

0
θξ(t)

]

ξ̇ = Dξ − λE2y f l , ξ ∈ R
3

μ = Ccξ, μ ∈ R (14.9)

in which

D =
⎡

⎣
−d2 1 0
−d3 0 1
−d4 0 0

⎤

⎦ (14.10)

is an arbitrary Hurwitz matrix, and

dA =
⎡

⎣
d3 − d2

2 + d2λ
d4 − d2d3 + d3λ

−d2d4 + d4λ

⎤

⎦ , Cc = [
1 0 0

]
.

From (14.8) and (14.9), we obtain

ż = Acz − E1λχ + rλ(E1 + θ E3)

+dμθ + λ(E1 + θ E3)ỹ f

χ = Ccz. (14.11)

The further change of coordinates



262 R. Marino and P. Tomei

wi = zi+1 − di+1z1, 1 ≤ i ≤ 3 (14.12)

transforms (14.11) into (w = [w1, w2, w3]T )

ẇ = Dw + dAχ + dBr + rλθ E2 + (dB + λθ E2)ỹ f

χ̇ = w1 + (d2 − λ)χ + rλ + θμ + λỹ f (14.13)

inwhich dB = [d2, d3, d4]T . Note that in (14.13) the unknownparameter θ appears in
the dynamics of the known signal χ multiplied by the known signalμ. The parameter
θ also appears in thew-dynamics where it is multiplied by the exponentially decaying
term ỹ f and by r(t), which is viewed as a disturbance. Let us introduce the adaptive
observer for (w, χ, θ) in (14.13)

˙̂w = Dŵ + dAχ, ŵ ∈ R
3

˙̂χ = Ccŵ + (d2 − λ)χ + θ̂μ + ko(χ − χ̂ ), χ̂ ∈ R

˙̂
θ = γμ(χ − χ̂), θ ∈ R (14.14)

in which γ is the positive adaptation gain and ko is the positive observer gain. The
dynamics for the estimate θ̂ of the parameter θ = ω2 is defined (see Fig. 14.1) in
terms of the signal μ generated by the linear filters (14.2) and (14.9) and of the error
χ − χ̂ generated by (14.2), (14.7) and (14.14). Defining the error signals χ̃ = χ − χ̂ ,
w̃ = w − ŵ, θ̃ = θ − θ̂ , from (14.5), (14.6), (14.9), (14.13) and (14.14), we obtain
the error dynamics

˙̃w = Dw̃ + d̄Br + d̄B ỹ f

˙̃χ = −koχ̃ + rλ + w̃1 + θ̃μ + λỹ f

˙̃
θ = −γμχ̃

ξ̇ = Dξ − λE2 ỹ f − λE2y f p = Dξ − λE2y f l

μ = Ccξ (14.15)

in which d̄B = dB + λθ E2. Since (14.9) is a linear dynamic system driven by y f l ,
the signal μ in (14.9) may be decomposed as

μ = μp + μ̃ (14.16)

in which μp is the periodic output of the system

ξ̇p = Dξp − λE2y f p

μp = Ccξp (14.17)

with proper initial condition ξp(0). Now, we are able to state and prove the following
theorem which characterizes the convergence properties of the estimation error θ̃ .
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Fig. 14.1 Block diagram for
the frequency estimator
(14.18)

Theorem 14.1 Let y(t) be a measurable continuous, bounded periodic signal of
unknown period T , with a2

1 + b21 > 0 in its Fourier series expansion (14.1). The
following online frequency estimator of order l + 9 in which ω̂ denotes the estimate
of ω = 2π/T (see the block diagram in Fig.14.1):

ẏ f 1 = −λ f y f 1 + λ f y, y f 1 ∈ R

ẏ f k = −λ f y f k + λ f y f,k−1, y f k ∈ R, 2 ≤ k ≤ l

χ̇ = −λχ + λy f l , χ ∈ R

ξ̇ = Dξ − λE2y f l , ξ ∈ R
3

μ = Ccξ, μ ∈ R

˙̂w = Dŵ + dAχ, ŵ ∈ R
3

˙̂χ = Ccŵ + (d2 − λ)χ + θ̂μ + ko(χ − χ̂ ), χ̂ ∈ R

˙̂
θ = γμ(χ − χ̂), θ ∈ R

ω̂ =
{√

θ̂ if θ̂ > 0
0 otherwise

(14.18)

is such that for any initial condition y f 1(0), . . ., y f l(0), χ(0), ξ(0), ŵ(0), χ̂(0), θ̂ (0),
for any integer l ≥ 0, for any λ f > 0, λ > 0, ko > 3, γ > 0 and for any Hurwitz
matrix D:

(i) all signals are bounded for any t ≥ 0;
(ii)

|θ̃ (t)| ≤ f (‖x̃(0)‖)e−β1t + β2

[
1

T

∫ T

0
r2y (τ )dτ

]1/2
, ∀t ≥ 0

in which f is a class-k function [10] of x̃ = [w̃T , χ̃ , θ̃ , ξ T − ξ T
p , ỹ f 1, . . . , ỹ f l ]T

and β1, β2 are positive reals which tend to zero as l tends to infinity with

β1 = O

⎡

⎣
(

λ2f

λ2f + ω2

)l
⎤

⎦

β2 = O

⎡

⎣
(

λ2f + ω2

λ2f + 4ω2

)l/2
⎤

⎦ .



264 R. Marino and P. Tomei

Proof The signalμp(t) in (14.17) is unbiased since the transfer function of the linear
system in (14.17) has a zero in the origin, while the signal μ̃(t) is exponentially
decaying and given by (ξ̃ = ξ − ξp)

˙̃
ξ = Dξ̃ − λE2 ỹ f , ξ̃ (0) = ξ(0) − ξp(0)

μ̃ = Cc ξ̃ . (14.19)

Note that (see [12], p. 494 and Abel’s Lemma [11])

supτ∈[0,T ]|μp(τ )| ≤ c1
λl

f

(λ2f + ω2)l/2
yM

supτ∈[0,T ]|μ̇p(τ )| ≤ c2
λl

f

(λ2f + ω2)l/2
yM (14.20)

where

yM = supτ∈[0,T ]|y(τ )|

and c1, c2 are positive constants independent on the filter parameters l and λ f . The
signal μp(t) may, in turn, be decomposed as

μp(t) = μp1(t) + μpr (t) (14.21)

where μp1 is the first unbiased harmonic at frequency ω and μpr contains all other
higher order harmonics. We can write

μp1(t) = |H1( jω)| λl
f

(λ2f + ω2)l/2

· · · (a2
1 + b21)

1/2 cos(ωt + ϕ0) (14.22)

in which H1(s) = Cc(s I − D)−1E2λ and ϕ0 is a suitable angle. From (14.21) and
(14.22), we have

∫ t+T

t
μ2

p(τ )dτ =
∫ T

0
[μ2

p1(τ ) + μ2
pr (τ )]dτ

≥
∫ T

0
μ2

p1(τ )dτ = |H1( jω)|2

×(a2
1 + b21)

T

2

λ2l
f

(λ2f + ω2)l
. (14.23)
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Define

μ̄p = μp/α, α = λl
f

(λ2f + ω2)l/2
. (14.24)

From (14.20), we have

supτ∈[0,T ]|μ̄p(τ )| ≤ c1yM
�= μ̄pM

supτ∈[0,T ]| ˙̄μp(τ )| ≤ c2yM
�= ˙̄μpM . (14.25)

Since by assumption a2
1 + b21 > 0, from (14.23) and (14.24) we have

∫ t+T

t
μ̄2

p(τ )dτ ≥ |H1( jω)|2(a2
1 + b21)

T

2
�= kp > 0, ∀t ≥ 0. (14.26)

Define q(t) as the solution of the scalar differential equation

q̇ = −q + μ̄2
p, q(0) = e−T kp (14.27)

so that, by construction,

supτ∈[0,T ]μ̄2
p(τ ) ≥ q(t) ≥ kpe−2T , ∀t ≥ 0. (14.28)

With reference to the first three equations in the error system (14.15), consider the
Lyapunov function

V = 1

2

[
χ̃2 + θ̃2

γ
+ w̃T Pw̃ + γ0(αq θ̃ − μ̄pχ̃ )2

]
(14.29)

where γ0, γ are positive reals and P > 0 satisfies the Lyapunov matrix equation
DT P + P D = −2I , in which D given by (14.10) is a Hurwitz matrix. From (14.29)
and (14.15), differentiating V with respect to time along the solutions of (14.15), we
obtain

V̇ = −koχ̃
2 + rλχ̃ + w̃1χ̃ + χ̃ θ̃μ + λỹ f χ̃

−θ̃μχ̃ − w̃T w̃ + w̃T Pd̄Br + w̃T Pd̄B ỹ f

+γ0(αq θ̃ − μ̄pχ̃)[−αq θ̃ + αθ̃μ̄2
p − α2qγ μ̄pχ̃

−αqγ μ̃χ̃ − ˙̄μpχ̃ − μ̄p(−koχ̃ + rλ + w̃1

+αθ̃μ̄p + θ̃ μ̃ + λỹ f )]
= −koχ̃

2 − w̃T w̃ − γ0α
2q2θ̃2
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+w̃1χ̃ + γ0αq θ̃ (−α2qγ μ̄p − ˙̄μp + μ̄pko)χ̃

+γ0χ̃
2(α2qμ̄2

pγ + μ̄p ˙̄μp − μ̄2
pko) − γ0αqμ̄p θ̃ w̃1

+γ0μ̄
2
pχ̃ w̃1 + γ0(αq θ̃ − μ̄pχ̃)(−αqγ χ̃ − μ̄p θ̃ )μ̃

+[γ0(αq θ̃ − μ̄pχ̃ )(−μ̄pλ) + λχ̃ + w̃T Pd̄B]ỹ f

+r [λχ̃ + w̃T Pd̄B − γ0(αq θ̃ − μ̄pχ̃)μ̄pλ]. (14.30)

By using Young’s inequality (2ab ≤ a2/k2 + k2b2), we can write

V̇ ≤ −φT Q(t)φ + ‖φ‖2ρ1(t) + ρ2(t) + r2ρ3(t) (14.31)

in which

φ = [ |χ̃ | |θ̃ | ‖w̃‖ ]T

ρ1 = γ0

∥∥∥∥

[
αqγ |μ̄p| (μ̄2

p + α2q2γ )/2
(μ̄2

p + α2q2γ )/2 |μ̄p|αq

]∥∥∥∥ |μ̃|

ρ2 = [α2q2λ2μ̄2
p + (γ0μ̄pλ + λ)2 + 4‖Pd̄B‖2]ỹ2f

ρ3 = 1

2
(λ2 + μ̄4

pλ
2 + q2μ̄2

pλ
2 + 2‖Pd̄B‖2) (14.32)

and Q(t) is a (3 × 3) symmetric matrix whose elements qi j are given by

q11 = ko(1 + γ0μ̄
2
p) − γ0α

2γ qμ̄2
p − γ0|μ̄p ˙̄μp| − 1

2
− γ 2

0

2
− 1

4

q22 = γ0α
2q2 − γ 2

0 α2

2
− γ 2

0

4

q33 = 1 − 1

4
− 1

16

q12 = −1

2
γ0αq(α2qγ |μ̄p| + | ˙̄μp| + ko|μ̄p|)

q13 = −1

2
(1 + γ0μ̄

2
p)

q23 = −1

2
γ0αq|μ̄p|.

By using again Young’s inequality, we can write

infτ∈[0,T ]λmin[Q(τ )] ≥ min
1≤k≤3

q̄kk
�= Qm (14.33)
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with

q̄11 = ko − 5

4
− γ0

(
α2γ μ̄4

pM + μ̄pM ˙̄μpM + γ0

2

)

q̄22 = γ0α
2{e−2T k2p − γ0[1

2
+ μ̄4

pM (α2μ̄3
pMγ + ˙̄μpM

+koμ̄pM )2 + μ̄6
pM ]} − γ 2

0

4

q̄33 = 3

16
− γ 2

0 μ̄4
pM .

Since by definition (14.24) 0 < α < 1, by choosing

ko ≥ 3

γ0 ≤ min

{
1,

√
3

4μ̄2
pM

, c1, c2

}

with

c1 = e−2T k2p
0.5 + μ̄4

pM (α2μ̄3
pMγ + ˙̄μpM + kobμ̄pM )2 + μ̄6

pM + 0.25α−2

c2 = 7

4[α2γ μ̄4
pM + μ̄pM ˙̄μpM + 0.5]

it follows that Q(t) is positive definite with

Qm = O(α2). (14.34)

Now, note that we can write for V (t)

V ≤ 1

2
φT

⎡

⎣
1 + 2γ0μ̄2

p 0 0
0 1

γ
+ γ0α

2q2 0
0 0 ‖P‖

⎤

⎦φ

≤ 1

2
‖φ‖2cV M (14.35)

with (recall that 0 < α < 1)

cV M = max

{
1 + 2γ0μ̄

2
pM ,

1

γ
+ γ0μ̄

2
pM , ‖P‖

}
. (14.36)

Since, from (14.29)
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V ≥ 1

2
cV m‖φ‖2 (14.37)

in which cV m = min
{
1, 1

γ
, λmin(P)

}
, from (14.31) and (14.35) we can write

V̇ ≤ −2
Qm

cV M
V + 2cV m Vρ1(t) + ρ2(t) + r2ρ3(t)

�= −cV + ρ̄1(t)V + ρ2(t) + r2ρ̄3 (14.38)

where

c = 2
Qm

cV M

ρ̄1(t) = 2cV mρ1(t)

ρ̄3 = 1

2
(λ2 + μ̄6

pMλ2 + μ̄4
pMλ2 + 2‖Pd̄B‖2). (14.39)

Recalling (14.2), (14.3), (14.5), (14.19), (14.32) and (14.39), we can write for any
t ≥ 0

ρ2(t) ≤ ρ20(‖[ỹ f 1(0), . . . , ỹ f l(0)]‖)e−2λ f t

ρ̄1(t) ≤ ρ̄10(‖[ỹ f 1(0), . . . , ỹ f l(0), ξ̃
T (0)]‖)e−λm t (14.40)

in which ρ20, ρ̄10 are class-k functions and

λm = min
1≤i≤3

{−Re[λi (D)]}

with λi being the i th eigenvalue of matrix D. By applying the comparison principle
and the variation of constants formula (see [13, 23]), from (14.38) we can write
(recall that ρ̄1 is exponentially decaying)

V (t) ≤ e‖ρ̄1‖1
[

V (0)e−ct +
∫ t

0
e−c(t−τ)ρ2(τ )dτ

+ρ̄3

∫ t

0
e−c(t−τ)r2(τ )dτ

]

≤ e‖ρ̄1‖1
[

V (0)e−ct +
∫ t

0
e−c(t−τ)ρ2(τ )dτ

+ρ̄3

N∑

k=0

e−ckT
∫ T

0
r2(τ )dτ

]
(14.41)
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with ‖ρ̄1‖1 = ∫ ∞
0 |ρ̄1(τ )|dτ and N such that 0 ≤ t − N T < T and ‖ρ̄1‖1 =∫ ∞

0 ρ̄1(τ )dτ . Since ρ2(t) is exponentially decaying, from (14.41) we can conclude
that all signals are bounded. Recalling (14.40) and (14.29), from (14.41) we have

θ̃2(t) ≤ 2γ e‖ρ̄1‖1
[
V (0)e−ct + ρ20

c
e−2λ f t

]

+2γ e‖ρ̄1‖1 ρ̄3
1

1 − e−cT

∫ T

0
r2(τ )dτ. (14.42)

Now, note that by defining

β =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

a2
b2
...

ak

bk
...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

Φ(t) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(2ωt)
sin(2ωt)

...

cos(kωt)
sin(kωt)

...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

R = block diag
[

R2 · · · Rk · · · ]

Rk = Mk

[
cosψk − sinψk

sinψk cosψk

]

Mk = λl
f

(λ2f + k2ω2)l/2
, ψk = l arctan

−kω

λ f

we can write for ry(t) in (14.1) and r(t) in (14.4),

ry(t) = ΦT (t)β

r(t) = ΦT (t)Rβ. (14.43)

Since

‖R‖ = (λM AX (RT R))1/2 = λl
f

(λ2f + 4ω2)l/2

and, by Parseval Theorem,

1

T

∫ T

0
r2(τ )dτ = 1

2
βT RT Rβ ≤ 1

2

λ2l
f

(λ2f + 4ω2)l
βT β

= λ2l
f

(λ2f + 4ω2)l

1

T

∫ T

0
r2y (τ )dτ (14.44)
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from (14.44) and (14.42), we obtain statement (ii) with

f (‖x(0)‖) =
{
2γ e‖ρ̄1‖1

[
V (0) + ρ20

c

]}1/2

β1 = min
{ c

2
, λ f

}

β2 =
[
2γ ρ̄3e‖ρ̄1‖1 1

1 − e−cT

]1/2 λl
f

(λ2f + 4ω2)l/2
. (14.45)

Since by (14.39) and (14.34), c is O(α2), for sufficiently small α (and, consequently,
for sufficiently high order l) we can write

1

1 − e−cT

 1

cT
(14.46)

which implies that

β2 = O

⎡

⎣
(

λ2f + ω2

λ2f + 4ω2

)l/2
⎤

⎦ (14.47)

and

β1 = O

⎡

⎣
(

λ2f

λ2f + ω2

)l
⎤

⎦ .

The case l = 0 can be simply treated by considering y(t) in place of y f l(t) and
adjusting, accordingly, the various steps of the proof. �

Corollary 14.2 If y(t) is a biased sinusoidal signal with no higher order harmonics,
then the estimate ω̂(t) provided by the frequency estimator (14.18) in Theorem 14.1
is such that, for any integer l ≥ 0, |θ̃ (t)| ≤ f (‖x(0)‖)e−β1t , ∀t ≥ 0, in which f is
a class-k function.

Proof It follows directly from statement (ii) in Theorem 14.1, since ry(t) = 0 in
(14.1). �

Remark 14.3 If in Theorem 14.1, the hypothesis a2
1 + b21 > 0 is not satisfied but the

signal y(t) is not constant, then the algorithm (14.18) guarantees properties similar
to (i) and (ii) for the first nonzero harmonic in the signal y(t).

Remark 14.4 The frequency estimator (14.18) may be compared to the adaptive
notch filter proposed in [25] in the special case in which a0 = 0 in (14.1):
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ẋ1 = x2
ẋ2 = −ω̂2x1 − 2ζ ω̂x2 + 2ζ ω̂2y
˙̂ω = −γ x1(ω̂

2y − ω̂x2). (14.48)

They are both adaptive linear filters whose input is the periodic signal y(t) andwhose
output is the estimate ω̂: while (14.18) is a (l +9)-order adaptive linear filter in which
ω̂2 is the adapted filter parameter, the algorithm (14.48) is a third-order filter in which
ω̂ is the adapted filter parameter. They both guarantee the convergence of the estimate
ω̂ into a neighborhood of the true value ω = 2π/T : while (14.48) guarantees an
asymptotic convergence for sufficiently small initial errors, higher order harmonics
and adaptation gain γ , the algorithm (14.18) guarantees exponential convergence for
any initial condition and any parameters choice. For both algorithms ω̂ converges to
the true value ω if there are no higher order harmonics in (14.1).

Remark 14.5 From (14.4) and (14.6), an estimate of the amplitude and phase of the
first biased harmonic term can also be obtained. If we write η1(t) as

η1(t) = θ1 sin(ωt) + θ2 cosωt + θ3

the parameters θi may be estimated using the gradient method (see [29]) as

⎡

⎢⎣

˙̂
θ1˙̂
θ2˙̂
θ3

⎤

⎥⎦ = γ1(η1 − ηI )

⎡

⎣
sinωt
cosωt

1

⎤

⎦

ηI = θ̂1 sin(ωt) + θ̂2 cos(ωt) + θ̂3. (14.49)

in which γ1 > 0. Since, however, η1 and ω are not known, their estimates provided
by the frequency estimator (14.18) are used, so that in place of (14.49) we use

⎡

⎢⎣

˙̂
θ1˙̂
θ2˙̂
θ3

⎤

⎥⎦ = γ1(η̂1 − η̂I )

⎡

⎣
sin ω̂t
cos ω̂t

1

⎤

⎦

η̂I = θ̂1 sin(ω̂t) + θ̂2 cos(ω̂t) + θ̂3.

The recursive least square method could be also used [29].

14.3 Examples

As a first example, we consider the problem of estimating the period of the periodic
signal y(t) of frequency ω = 3 given by (see Fig. 14.2)
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Fig. 14.2 Periodic signals: left curve, y(t) in (14.50); right curve, y(t) in (14.51)

Fig. 14.3 Frequency estimator (14.18): upper curves, l = 2; lower curves, l = 1

y(t) =
21∑

k=1

sin(3kt + 0.3k) (14.50)

by means of the frequency estimator (14.18). The results are illustrated in Fig. 14.3
in which the following time histories are reported: the value of θ̂ (t) as obtained
by the algorithm (14.18), the relative error 1 − θ̂ (t)/θ between the true and the
estimated square of the frequency. The following parameters and initial conditions
have been adopted: γ = 30000, d2 = 4, d3 = 5, d4 = 2, λ f = 1, λ = 1, ko = 1,
θ̂ (0) = 0.1 and all other initial conditions set to zero. The upper curves refer to
the case in which a second-order filter is adopted (l = 2) while the lower curves
report the results obtained with l = 1. Figure14.3 shows that in the case l = 1 the
rate of convergence is increased while the accuracy is worse with respect to the case
l = 2. The previous results may be compared to those obtained by the adaptive notch
filter (14.48) illustrated in Remark 14.4 which are reported in Fig. 14.4. As suggested
by the authors in [25], the parameters used in the algorithm (14.48) are: γ = 0.1,
ζ = 0.35 while the initial value for ω̂ was ω̂(0) = 2.8 (10% less than the true value)
and null initial conditions. The upper curves in Fig. 14.4 report the time histories of
the square of the frequency estimate ω̂2(t) and of the relative error [ω2 − ω̂2(t)]/ω2
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Fig. 14.4 Adaptive notch filter (14.48): upper curves, y(t) as in (14.51), lower curves, y(t) as in
(14.50)

in the case in which the higher order harmonics in (14.50) are reduced by 90%, i.e.,
the following signal is applied (see Fig. 14.2)

y(t) = sin(3t + 0.3) + 0.1
21∑

k=2

sin(3kt + 0.3k). (14.51)

The lower curves illustrates the performance achieved when the complete signal
(14.50) was used. Figure14.4 shows that while the adaptive notch filter has good
performance when both the higher order harmonics and the initial estimate error are
small, a divergent behavior occurs when the complete signal (14.50) is applied. Note
that the initial frequency estimate error for the adaptive notch filter is much smaller
than the corresponding initial error for the frequency estimator (14.18).

As a second example, we consider the problem of attenuating a periodic distur-
bance assuming that it is the output of an unknown stable system D(s) whose input
y(t) is measurable (see Fig. 14.5)

Fig. 14.5 Block diagram for
the disturbance compensator
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y(t) =
5∑

k=1

1

k
sin(3kt + 0.3k). (14.52)

Note that the scheme in Fig. 14.5 applies to active noise cancelation if D(s) is the
transfer function between the source of noise and the listener. First of all, assuming
that the frequency of the periodic signal is known and given by θ̂D , the following
disturbance compensator is designed

ẋ1 = x2 − kc yatt

ẋ2 = −θ̂Dx1
ẋ3 = x4 − kc yatt

ẋ4 = −4θ̂Dx3
ẋ5 = x6 − kc yatt

ẋ6 = −9θ̂Dx5
yatt = y + x1 + x3 + x5 (14.53)

which is capable of cutting the first three harmonics in the periodic signal D(s)y(s)
when θ̂D = 3. We select D(s) = 1 for the simulation set-up. Then, the frequency
estimator (14.18) is used,with l = 2 and the sameparameters used in thefirst example
(with the exception of γ = 3000), to update every time interval T = 4 s the value of
θ̂D in (14.53), so that the overall disturbance compensator is hybrid. The results of the
simulation are illustrated by Fig. 14.6 in which are reported the time histories of the
disturbance y(t), the attenuated disturbance yatt (t), the discrete-time estimate θ̂D(t)

Fig. 14.6 Hybrid disturbance compensator
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and the continuous-time estimate θ̂ (t). It can be noted that, even though there is a
nonzero error in the frequency estimate, the attenuated signal yatt (t) is much smaller
than the original disturbance y(t). The residual error is due to two different causes:
the mismatch between the true and estimated period, and the remaining fourth and
fifth harmonics which are not blocked in (14.53).

14.4 Conclusions

The adaptive (l +9)-order frequency estimator (14.18) has been proposed to estimate
the period of a measured bounded continuous periodic signal: l denotes the order of
the linear prefilter. No a priori information on the period is required. Theorem 14.1
establishes that for any initial condition, the parameter estimation error converges
exponentially into a closed intervalwhose size depends on the higher order harmonics
in (14.1). By increasing the order l of the prefilter, the accuracy of the frequency
estimation can be arbitrarily improved, at the expense of reducing the rate of the
exponential convergence. If there are no higher order harmonics in (14.1), that is
(14.1) is a biased sinusoidal signal, then the frequency estimation error converges
exponentially to zero for any value of l, including l = 0. This result improves the
widely studied [3, 4, 9, 24, 25, 28] adaptive notch filter (14.48) whose frequency
estimate convergence into a neighborhood of the true value is proved to be asymptotic
and local in [25], provided that the adaptation gain is sufficiently small.Moreover, the
frequency estimator may be also used to provide, at each predefined time interval,
updated frequency estimates to disturbance compensators operating with constant
frequency, as it is shown in the included example.
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