
Chapter 11
Modeling and Analysis of Energy
Distribution Networks Using Switched
Differential Systems

Jonathan C. Mayo-Maldonado and Paolo Rapisarda

Abstract It is a pleasure to dedicate this contribution to Prof. Arjan van der Schaft
on the occasion of his 60th birthday. We study the dynamics of energy distribution
networks consisting of switching power converters and multiple (dis-)connectable
modules. We use parsimonious models that deal effectively with the variant com-
plexity of the network and the inherent switching phenomena induced by power
converters. We also present the solution to instability problems caused by devices
with negative impedance characteristics such as constant power loads. Elements of
the behavioral system theory such as linear differential behaviors and quadratic dif-
ferential forms are crucial in our analysis.

11.1 Introduction

In recent years, the development of a new paradigm of energy generation and dis-
tribution systems has become a pressing research question. Issues such as the urge
to reduce CO2 emissions, the compelling advantages of renewable energy genera-
tion, and the undesirable power losses in complex transmission lines, have motivated
the development of distributed energy generation systems based on renewable ener-
gies [31]. However, the intermittent nature of renewable energies is reflected in the
characteristics of the voltages/currents (e.g., amplitude and frequency) provided by
transducers, prompting to regulate such variables to satisfy the nominal requirements
of the the loads.

In order to achieve voltage/current/frequency regulation and distribution of elec-
tricity, interconnections of power converters are implemented; however, their inter-
action can display unstable behaviors (see [3, 30, 32]). A common example of this
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issue is the negative impedance instability produced by current/voltage controlled
converters behaving as constant power loads (see [17]). In order to address instability
problems, we first need to choose a modeling framework that is suitable to describe
the network characteristics. We consider the network as a complex switched system
whose dynamic modes with variant state space dimension are induced by switching
power converters and the arbitrary (dis-)connection of loads.

There exist traditional approaches to switched systems based on state space- (see
e.g., [7]) and descriptor form- (see e.g., [23]) representations, where the dynamic
modes share a global state space. However, the fact that the dynamicmodes of energy
distribution networks do not necessarily share the same state space engenders three
main disadvantages in current approaches:

(1) Loss of parsimony. The complexity of “lower order modes” needs to be incre-
ased by adding fictitious variables and equations, only to satisfy a predefined
global structure, see [11, 12].

(2) State representations are not given a priori. The modeling of elements of the
network as impedances offer considerable computational advantages when deal-
ing with complex scenarios (see e.g., [6]). Such approach leads directly to higher
order descriptions and not state space representations. Consequently, additional
computations must be performed to derive state space models.

(3) Loss of modularity. The incremental modeling of the dynamic modes in the bank
is not permitted, i.e., new dynamicmodes cannot be added to the underlying bank
without altering the existing ones. The need to allow for incremental modeling
arises naturally in an energy distribution network when new loads are connected
to the network, see [11].

These issuesmotivated the development of the switched linear differential systems
framework (SLDS) in [9–12, 18, 19], which is not representation-oriented, and thus
permits the use of the type of models that are most natural for each application (e.g.,
the modeling of impedances). This approach is based on the concepts of behavioral
system theory, and allows themodeling of dynamicmodes expressed by sets of linear
differential equations that do not necessarily share the same state space, as well as the
introduction to new dynamic modes to the bank without altering the existing ones. In
this chapter, we study the notion of passivity in the SLDS framework, using quadratic
differential forms (see [27]) as a tool to model energy functions of the network. We
also derive a systematic procedure to design passive stabilizing filters in terms of
standard bilinear- and linear matrix inequalities, that can be easily constructed from
the higher order models.

11.2 Notation

We use the following notation. The space of n dimensional real vectors is denoted
by R

n, and that of m × n real matrices by R
m×n. R•×m denotes the space of real

matrices with m columns and an unspecified finite number of rows. Given matrices
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A, B ∈ R
•×m, col(A, B) denotes the matrix obtained by stacking A over B. The ring

of polynomials with real coefficients in the indeterminate s is denoted by R[s]; the
ring of two-variable polynomials with real coefficients in the indeterminates ζ and η

is denoted by R[ζ, η]. Rr×w[s] denotes the set of all r× w matrices with entries in
s, and R

n×m[ζ, η] that of n× m polynomial matrices in ζ and η. The set of rational
m× n matrices is denoted by Rm×n(s). The set of infinitely differentiable functions
from R to R

w is denoted by C∞(R,Rw). D(R,Rw) is the subset of C∞(R,Rw)

consisting of compact support functions. For a function f : [t − ε, t) → R
• we set

the notation f (t−) := limτ↗t f (τ ); and similarly for f : (t, t + ε] → R
• we set

f (t+) := limτ↘t f (τ ), provided that these limits exist.
We also use standard concepts and notation of the behavioral setting, in particular

those of linear differential behaviors, state maps and quadratic differential forms.
A simplified collection of the theory that is relevant for the presented results can be
found in Appendix A, p. 2046 of [12].

11.3 Modeling of Energy Distribution Networks

Consider the energy distribution network in Fig. 11.1, consisting of a switching power
converter feeding three types of loads represented by impedances. Z N represents a
nominal load, i.e., the load that is considered during the design stage of the converter
and which remains connected in the implementation. Zk , k = 1, . . . , L , represents
a switched impedance, i.e., a finite amount of loads that can be connected or dis-
connected arbitrarily and which are not necessarily known during the design stage,
e.g., domestic/commercial (dis-)connectable loads, (dis-)connectable electric vehi-
cles, etc. Finally, ZC P L represents the negative impedance of a switching power
converter behaving as a constant power load (CPL), which is a potential destibi-
lizer of the network (see [8]). The CPL is modeled according to [17] as a negative
impedance in parallel with a constant current source.

Fig. 11.1 Energy
distribution network
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Note that the complexity of the network is neither initially bounded nor fixed,
i.e., the McMillan degree associated to each impedance depends on their constitutive
reactive elements which in the case of Zk , k = 1, . . . , L , may change depending
on the loads that are connected during certain intervals of time. In the following
sections, we discuss a natural modeling approach that deals effectively with this type
of network.

11.3.1 Modeling of Loads as Impedances

When we study systems consisting of interconnections of port-driven electrical net-
works, e.g., transmission lines with points of common coupling, filters, loads, etc.,
we are compelled to adopt the calculus of m-port impedances for simplification
of computations, see, e.g., [6, 14, 15, 21, 29]. In the case of energy distribu-
tion networks, this is also a common approach for the study of stability, see, e.g.,
[8, 20, 25, 30].

Models based on impedance matrices describe the “input–output dynamics” of
the network in terms of the variables V := col(v1, . . . , vm) and I := col(i1, . . . , im),
corresponding, respectively, to the voltages across and currents through each port.
Let P

( d
dt

)
V = Q

( d
dt

)
I , with P, Q ∈ R

m×m[s], be an input–output representation
(see [16]) of the network obtained by applying current and voltage laws. Adopting
C∞ as the solution space, the external behavior of the network is defined as

B :=
{
col(V, I ) ∈ C∞(R,R2m)

∣∣
∣∣ P

(
d

dt

)
V = Q

(
d

dt

)
I

}
. (11.1)

The impedance Z ∈ R
m×m(s) associated to the external behavior is defined as

Z(s) := P(s)−1Q(s). If the behavior B is controllable (see Chap. 5 of [16]), i.e.,
R(s) := [

Q(s) −P(s)
]
is such that rank R(s) is equal to rank R(λ) for all λ ∈ C,

then it admits an image representation

[
I
V

]
=

[
U
( d
dt

)

Y
( d
dt

)
]

z (11.2)

where z ∈ C∞(R,Rz) corresponds to a latent variable and U, Y ∈ R
m×m[s] are

such that Z(s) = Y (s)U (s)−1. Moreover, if M(λ) is of full column rank for all
λ ∈ C, we conclude that the latent variable z is observable from w := col(V, I )
and its number of components corresponds to the number of inputs, i.e., z = m. A
controllable behavior always admits an observable image representation (see [28],
Sect. VI-A).

Assuming controllability, the dynamic model of a network described as (11.2)
can be obtained in a simple way by series- and parallel computations, since any
complex m-port impedance matrix Z consists of the interconnection of impedances
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Fig. 11.2 Series/parallel
interconnection of
impedances/admittances

Fig. 11.3 Port-driven
electrical circuit

of lower complexity. The simplest components are 1-port impedances corresponding
to inductors, resistors, and capacitors, i.e., ZL(s) = Ls, Z R(s) = R, Zc(s) = 1

Cs .
The inverse of an impedance, if exists, is equal to an admittance denoted by Y , i.e.,
Y = Z−1.

Consider for instance the n-port networks in Fig. 11.2, whose terminals represent
an m number of terminal pairs. The resultant m-port impedance/admittance due to
series (Fig. 11.2a) and parallel (Fig. 11.2b) interconnections is computed as Z =
Z1 + Z2 and Y = Y1 + Y2, respectively.

Example 11.1 Consider the 1-port electrical circuit in Fig. 11.3. The 1-port
impedance of the circuit can be computed by series and parallel operations as

Z(s) = L1s+
(L2s + R)

(
1

C1s

)

(L2s + R) +
(

1
C1s

) = L1L2C1s3 + RL1C1s2 + (L1 + L2)s + R

L2C1s2 + RC1s + 1
,

(11.3)
which corresponds to the input–output description

L1L2C1
d3

dt3
I + RL1C1

d2

dt2
I +(L1+ L2)

d

dt
I + RI = L2C1

d2

dt2
V + RC1

d

dt
V +V .

Let for simplicity R = 1 Ω , L1 = L2 = 1 H and C = 1 F , then

[
V
I

]

︸︷︷︸
=:w

=
[

d3

dt3
+ d2

dt2
+ 2 d

dt + 1
d2

dt2
+ d

dt + 1

]

︸ ︷︷ ︸
=:M

(
d
dt

)

z ,
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Fig. 11.4 Simplification of the energy distribution network in Fig. 11.1

where z is a latent variable corresponding to the current through the inductor L2.
Since M(λ) is of full column rank for all λ ∈ C, we conclude that the latent variable
z is observable from w. ��

The calculus of impedances facilitates our analysis, for instance the energy dis-
tribution network in Fig. 11.1 can be simplified by computing ZTk , k = 1, . . . , L ,
as

1

ZTk (s)
= 1

Zk(s)
+ 1

Z N (s)
+ 1

ZC P L(s)
; k = 1, . . . , L .

The simplified network is depicted in Fig. 11.4.

Remark 11.2 It is important to emphasize that ZC P L , and consequently ZTk , k =
1, . . . , L , do not necessarily correspond to impedances of passive networks as in
traditional circuit theory, since ZC P L corresponds to the local approximation of a
constant power load which is by definition nonpassive (i.e., it is not positive-real in
the sense of [14]), tipically modeled as a negative resistor [17].

We have illustrated the modeling of loads as impedances, that gives rise in a
natural way to higher order descriptions. In the following section, we discuss a
modeling approach that permits the study of switching dynamics induced by the
DC–DC converter and the switched impedance ZTk , k = 1, . . . , L , directly in higher
order terms.

11.3.2 Switched Linear Differential Systems Framework

We now introduce the SLDS framework. We illustrate the main concepts of this
approach by modeling a switching power converter.

Definition 11.3 ([10])A switched linear differential system (SLDS) Σ is a quadruple
Σ = {P,F ,S,G} where
• P = {1, . . . , N } ⊂ N, is the set of indices;
• F = {B1, . . . ,BN }, withBi a linear differential behavior and i ∈ P , is the bank

of behaviors;
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• S = {s : R → P}, with s piecewise constant and right-continuous, is the set of
admissible switching signals; and

• G = {
(G−

k→ j (s), G+
k→ j (s)) ∈ R

•×w[s] × R
•×w[s] | 1 ≤ k, j ≤ N , k �= j

}
, is

the set of gluing conditions.

The set of switching instants associated with s ∈ S is defined by Ts := {t ∈
R | s(t−) �= s(t+)} = {t1, t2, . . . }, where ti < ti+1.

The set of all admissible trajectories satisfying the laws of the mode behaviors
and the gluing conditions is the switched behavior, and is the central object of study
in our framework.

Definition 11.4 ([10]) Let Σ = {P,F ,S,G} be a SLDS, and let s ∈ S. The s
-switched linear differential behavior Bs is the set of trajectories w : R → R

w that
satisfy the following two conditions:

1. for all ti , ti+1 ∈ Ts , w |[ti ,ti+1)∈ Bs(ti ) |[ti ,ti+1);
2. w satisfies the gluing conditions G at the switching instants for each ti ∈ Ts , i.e.,

G+
s(ti−1)→s(ti )

(
d

dt

)
w(t+i ) = G−

s(ti−1)→s(ti )

(
d

dt

)
w(t−i ) . (11.4)

The switched linear differential behavior (SLDB) BΣ of Σ is defined by BΣ :=⋃
s∈S Bs .

The trajectories inBΣ are piecewise infinitely differentiable functions from R to Rw

denoted by C∞
p (R,Rw), i.e., smooth when a mode is active and possibly discontin-

uous at switching instants.

Example 11.5 Consider the high-voltage switching power converter presented in
[2] and depicted in Fig. 11.5a. For practical purposes such as voltage/current/power
regulation, we are particularly interested in the dynamics at the input/output termi-
nals. Consequently, we define the external variable (the set of variables of interest)
as w := col(E, iL , v2, io).

By means of a switching signal, we can arbitrarily induce two possible electrical
configurations that occur when the transistor is in either closed (see Fig. 11.5b)
or open (see Fig. 11.5c) operation. Considering a standard modeling of two-port
impedances for each case, we can derive the following physical laws describing the
dynamics of the power converter.

Mode 1 :
{

L d
dt iL + RLiL − E = 0

(C1 + C2)
d
dt v2 + 1

R v2 − io = 0
.

Mode 2 :
{

LC1
d2

dt2
iL + RLC1

d
dt iL − C1

d
dt E + iL = 0

C2
d
dt v2 + 1

R v2 − io = 0
.

The mode behaviors are defined asB j := ker R j
( d
dt

)
, j = 1, 2, where
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Fig. 11.5 a High-voltage switching power converter, b electrical configuration when the transistor
is closed, c electrical configuration when the transistor is open

R1

(
d

dt

)
:=

[−1 L d
dt + RL 0 0

0 0 (C1 + C2)
d
dt + 1

R −1

]
;

R2

(
d

dt

)
:=

[
−C1

d
dt LC1

d2

dt2
+ RLC1

d
dt + 1 0 0

0 0 C2
d
dt + 1

R −1

]

.

As we show later, the physical constraints imposed by physics at switching instants
can be modeled using gluing conditions. ��

According to Definition 11.3 gluing conditions are algebraic constraints on the
trajectories of the dynamical modes at switching instants and in real-life situations
their selection is motivated by physical laws. For instance, at switching instants
conservation principles forbid instantaneous changes in conserved quantities (see
[13]) such as charge, flux,momentum,molarmass, volume, etc. Another well-known
example of this type of constraints is the case of state reset maps in multicontroller
systems that re-initialize a bank of switched controllers interconnected to a plant.

Example 11.6 (Cont’d from Example 11.5) At switching instants, the physical laws
of the circuit impose constraints to the trajectories of the external variable at switching
instants. By inspecting the circuits in Fig. 11.5 and using the principle of conservation
of charge (see [13], Sect. 3.3.3),wefind the following conditions at switching instants.
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When switching fromB1 toB2 at ti :

iL(t+i ) = iL(t−i ),

E(t+i ) − RLiL(t+i ) − L
d

dt
iL(t+i )

︸ ︷︷ ︸
v1(t

+
i )

= v2(t
−
i ),

v2(t
+
i ) = v2(t

−
i ). (11.5)

When switching fromB2 toB1 at ti :

iL(t+i ) = iL(t−i ),

(C1 + C2)v2(t
+
i ) = C1E(t−i ) − C1RLiL(t−i ) − LC1

d

dt
iL(t−i )

︸ ︷︷ ︸
C1v1(t

−
i )

+C2v2(t
−
i ). (11.6)

Consequently, the gluing conditions can be defined as

G+
1→2

(
d

dt

)
:=

⎡

⎣
0 0 1 0
1 0 (−RL − L d

dt ) 0
0 0 0 1

⎤

⎦ ; G−
1→2

(
d

dt

)
:=

⎡

⎣
0 0 1 0
0 0 0 1
0 0 0 1

⎤

⎦ ;

G+
2→1

(
d

dt

)
:=

[
0 0 1 0
0 0 0 (C1 + C2)

]
; G−

2→1

(
d

dt

)
:=

[
0 0 1 0

C1 0 (−C1RL − LC1
d
dt ) C2

]
.

Equations (11.5) and (11.6) can be compactly written as

G+
1→2

(
d

dt

)
w(t+i ) = G−

1→2

(
d

dt

)
w(t−i ) ;

G+
2→1

(
d

dt

)
w(t+i ) = G−

2→1

(
d

dt

)
w(t−i ) .

��
A realistic set of gluing conditions are well-defined and well-posed. In order to

introduce these concepts, we use the notion of state maps.

Definition 11.7 Let Σ be a SLDS and let X j ∈ R
n(Bj )×w[s], induce minimal

state maps for B j , j = 1, . . . , N . The gluing conditions are well-defined if there
exist constant matrices F−

j→k and F+
j→k , with j, k = 1, . . . , N , j �= k, such that

G−
j→k(s) = F−

j→k X j (s) and G+
j→k(s) = F+

j→k Xk(s), with j, k = 1, . . . , N , j �= k.

IfG := {(F−
j→k X j (s), F+

j→k Xk(s))} j,k=1,...,N , j �=k. arewell-defined,we call them

well-posed if for all k, j = 1, . . . , N with k �= j , there exists a re-initialisation map
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Fig. 11.6 Example: Switching between dynamical modes with different state space and well-posed
gluing conditions

L j→k : R
n(Bj ) → R

n(Bk ) such that given a switching signal s ∈ S such that
s(ti−1) = j and s(ti ) = k; for all ti ∈ Ts and all admissible w ∈ BΣ with associated
latent variable trajectories, it holds that X j

( d
dt

)
w(t+i ) = Lk→ j Xk

( d
dt

)
w(t−i ).

Well-defined and well-posed gluing conditions imply that if a transition occurs
between B j and Bk at ti , and if an admissible trajectory ends at a “final state”
v j := X j

( d
dt

)
w(t−i ), then there exists at most one “initial state” forBk , defined by

Xk
( d
dt

)
w(t+i ) =: vk , compatible with the gluing conditions. Moreover, the matrix

L j→k determines the reinitialization of the state space of Bk as a linear function of
that of B j , as illustrated in Fig. 11.6.

Example 11.8 (Cont’d Example 11.5) Consider the following state maps forB1 and
B2 respectively.

X1

(
d

dt

)
:=

[
0 0 1 0
0 0 0 1

]
; X2

(
d

dt

)
:=

⎡

⎣
0 0 1 0
1 0 (−RL − L d

dt ) 0
0 0 0 1

⎤

⎦ ;

inducing the states X1
( d
dt

)
w = col(iL , v2) and X2

( d
dt

)
w = col(iL , v1, v2). The

gluing conditions can be written as
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G+
1→2

(
d

dt

)
:= I3X2

(
d

dt

)
; G−

1→2

(
d

dt

)
:=

⎡

⎣
1 0
0 1
0 1

⎤

⎦ X1

(
d

dt

)
;

G+
2→1

(
d

dt

)
:=

[
1 0
0 (C1 + C2)

]
X1

(
d

dt

)
; G−

2→1

(
d

dt

)
:=

[
1 0 0
0 C1 C2

]
X2

(
d

dt

)
.

It is thus amatter of straightforwardverification to conclude that the gluing conditions
are well-defined and well-posed according to Definition 11.7. ��

The properties of well-definedness and well-posedness are in general satisfied for
common implementations of energy networks, consider for example the following
proposition.

Proposition 11.9 Assume that switching among the dynamical modes of a switched
electrical network does not involve short-circuiting of voltage sources or open-
circuiting of current sources. Then the gluing conditions are well-defined.

Proof If switching betweenmodes does not involve short- or open-circuiting sources,
no constraints on the input variables of the system are imposed at the switching
instants. Consequently, the gluing conditions only impose constraints on the output
variables of the modes, which are linear functions of the state variables. The claim
follows. ��

Well-posed gluing conditions (seeDefinition 11.7) guarantee that after a switching
instant, only one initial state for the new dynamical regime is specified from the final
state of the previous one. Such property holds since the switching cannot cause
any increase in the total amount of charge or flux stored in the system. On this
issue, see [13] where the analysis of a wide variety of physical systems exhibiting
discontinuities is presented, and [4, 5, 22]. In the rest of this paper, we assume that
the gluing conditions are well-posed.

11.3.3 Latent Variables

As discussed in the previous section, controllable mode behaviors can be described
using observable image representations w = M j

( d
dt

)
z j , j = 1, . . . N . It follows

that every trajectory of the latent variable z j corresponds to a unique trajectory of the
external variable w when the jth mode is active. In the rest of this chapter we adopt
the use of image representations, where w := (u, y) has m inputs and m outputs,
denoted by u and y, respectively, and corresponding to port-voltages and currents,
as discussed in Sect. 11.3.1.

Example 11.10 (Cont’d from Example 11.5) Recall that w := col(E, iL , v2, io). It
can be verified that the mode behaviors B j , i = 1, 2, are controllable and thus can
be described by w = M j

( d
dt

)
z j , j = 1, 2, where
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M1

(
d

dt

)
:=

⎡

⎢⎢
⎣

L d
dt + RL 0
0 (C1 + C2)

d
dt + 1

R
1 0
0 1

⎤

⎥⎥
⎦ ;

M2

(
d

dt

)
:=

⎡

⎢⎢
⎣

LC1
d2

dt2
+ RLC1

d
dt + 1 0

0 C2
d
dt + 1

R
C1

d
dt 0
0 1

⎤

⎥⎥
⎦ ;

and z1 := col(iL , v2), z2 := col(v1, v2). Moreover, since M j (λ), j = 1, 2, are full
column rank for all λ ∈ C we conclude that the latent variables z j , j = 1, 2 are
observable from w. ��

According to Definitions 11.3 and 11.4, the gluing conditions are algebraic con-
straints acting on the external variables at switching instants; however, they can be
rewritten in terms of latent variables z j , j = 1, . . . N , in the following manner.
Define

G
+
s(ti−1)→s(ti )

(
d

dt

)
:=

(
G+

s(ti−1)→s(ti )
Ms(ti )

)( d

dt

)
,

G
−
s(ti−1)→s(ti )

(
d

dt

)
:=

(
G−

s(ti−1)→s(ti )
Ms(ti −1)

)( d

dt

)
,

with s ∈ S. Consequently, if w and z j are related by an observable image represen-
tation w = M j

( d
dt

)
z j , the gluing conditions in (11.4) can be equivalently written

as

G
+
s(ti−1)→s(ti )

(
d

dt

)
zs(ti )(t

+
i ) = G

−
s(ti−1)→s(ti )

(
d

dt

)
zs(ti −1)(t

−
i ) .

Example 11.11 (Cont’d from Example 11.10) Given the gluing conditions in Exam-
ple 11.8, we can reformulate them in terms of latent variables using M1

( d
dt

)
and

M2
( d
dt

)
as follows.

G
−
1→2

(
d

dt

)
:= (

G−
1→2M1

) ( d

dt

)
=

⎡

⎣
1 0
0 1
0 1

⎤

⎦ ,

G
+
1→2

(
d

dt

)
:= (

G+
1→2M2

)
(
d

dt

)
=

⎡

⎣
C1

d
dt 0
1 0
0 1

⎤

⎦

�

,

G
−
2→1

(
d

dt

)
:= (

G−
2→1M2

) ( d

dt

)
=

[
C1

d
dt 0

C1 C2

]
,



11 Modeling and Analysis of Energy Distribution Networks … 211

G
+
2→1

(
d

dt

)
:= (

G+
2→1M1

) ( d

dt

)
=

[
1 0
0 C1 + C2

]
.

��

11.4 Modularity

One of the main features of this framework is its modularity; every time a dynamic
mode is added to the underlying bank, there is no need to modify the mathematical
description of the existing modes. In the case of the energy distribution network in
Fig. 11.4, the dynamic modes of the converter and the loads can be individually mod-
eled and linked in a single model by the elimination of auxiliary variable. Consider
the following proposition.

Proposition 11.12 Consider the energy distribution network in Fig.11.4. Assume
that the dynamical modes of the switching power converter can be described in image
form w = M j

( d
dt

)
z j , where M j ∈ R

4×2[s]; z j = col(z1, j , z2, j ) ∈ C∞
p (R,R2);

j = 1, 2; and w := [
V I i v

]�
. Let zk ∈ C∞

p (R,R), k = 1, . . . , L, then there

exist M̂ j,k ∈ R
4×2[s] such that the mode behaviors can be described by image

representations ⎡

⎢⎢
⎣

V
I
i
v

⎤

⎥⎥
⎦ = M̂ j,k

(
d

dt

)[
z1, j

z′
k

]
, (11.7)

with j = 1, 2, and k = 1, . . . , L.

Proof The impedance ZTk , k = 1, . . . , L , is described by a one-port, and conse-
quently can also be represented in observable image representation by M ′ ∈ R

2×1[s]
with external variables w′ := [

I ′ v
]� and a one-dimensional latent variable denoted

by z′
k . It follows from the elimination theorem (see Sect. 6 of [16]) that after the

elimination of the latent variable z2, j , j = 1, 2, the interconnection of this one-port
with the switching power converter has a number 2L of dynamic modes that can be
described as two-ports, corresponding to the image representations (11.7). ��
Example 11.13 Consider the energy distribution network in Fig. 11.4, where the
DC-DC converter is that of Fig. 11.5. Let pk, qk ∈ R[s], k = 1, . . . , L , define
Zk(s) := nk(s)

dk(s)
, k = 1, . . . , L . The mode dynamics with w := col(E, I, iL , v)

are described by w = M j,k
( d
dt

)
zk , where z1 := col(i1, z′

k), z2 := col(v1, z′
k),

k = 1, . . . , L , and j = 1, 2.
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M1,k

(
d

dt

)
:=

⎡

⎢⎢
⎣

RL + L d
dt 0

0 dk
( d
dt

) + (C1 + C2)
d
dt nk

( d
dt

)

1 0
0 nk

( d
dt

)

⎤

⎥⎥
⎦ ;

M2,k

(
d

dt

)
:=

⎡

⎢
⎢⎢
⎣

LC1
d2

dt2
+ RLC1

d
dt + 1 0

0 dk
( d
dt

) + C2
d
dt nk

( d
dt

)

C1
d
dt 0
0 nk

( d
dt

)

⎤

⎥
⎥⎥
⎦

;

with k = 1, . . . , L . The gluing conditions can be obtained bydefining the impedances
Zk , k = 1, . . . , L and following the procedure exemplified in Examples 11.5 and
11.11. ��

As illustrated inExample 11.13, eachmode can bemodeled independently, i.e., we
compute the laws of each two-port network that depends on the mode of operation of
the converter and the model of the switched impedance Zk , 1, . . . , L . It can be easily
verified that the McMillan degree of each mode behavior is not fixed and depends
on the degree of the denominator of Zk , 1, . . . , L . However each mode exhibits only
the required level of complexity to describe each dynamic mode. This is in sharp
contrast with the traditional approach where the dynamic modes are represented by
d
dt x = Ai x , with Ai ∈ R

n×n , i.e., considering a global state space and where n is
the highest possible McMillan degree. The latter approach results in more complex
dynamic models (with more variables andmore equations), which has an impact also
on the complexity of stability analysis, simulation, control, etc. Moreover, there is
no compelling reason to resort to such non-parsimonious approach if we can study
the dynamic properties of the network directly in higher order terms, as shown in the
following section.

11.5 Passivity

The concept of passivity will be crucial for the development of stability conditions
and stabilization methods discussed in this chapter. To define passive SLDS, we
first introduce the following notation. Since we require the integration of functionals
acting on w ∈ BΣ , we assume that they involve piecewise infinitely differentiable
trajectories of compact support whose set is denoted byDp(R,Rw). Thus the trajec-
tories which we will be considering in the following belong toBΣ ∩ Dp(R,Rw).

Let s ∈ S be a fixed switching signal, with associated set of switching instants
Ts := {t1, t2, . . . , tn, . . .}. We denote by |Ts | the total number of switching instants,
possibly infinite, in Ts . Let

Φ := 1

2

[
0m×m Im

Im 0m×m

]
, (11.8)
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and let w ∈ BΣ ∩ Dp(R,Rw). If |Ts | = ∞, define

∫
QΦ(w) :=

∫ t−1

−∞
QΦ(w) dt +

∫ t−2

t+1
QΦ(w) dt + · · · +

∫ t−n+1

t+n
QΦ(w) dt + · · · .

If 0 < |Ts | < ∞, then define

∫
QΦ(w) :=

∫ t−1

−∞
QΦ(w) dt +

|Ts |∑

k=2

∫ t−k

t+k−1

QΦ(w) dt +
∫ ∞

t+|Ts |
QΦ(w) dt.

If |Ts | = 0, i.e., no switching takes place, then

∫
QΦ(w) :=

∫ +∞

−∞
QΦ(w) dt.

The definition of passive SLDS is as follows.

Definition 11.14 Let Σ be a SLDS and define Φ as in (11.8). Σ is passive if∫
QΦ(w) ≥ 0 for all w ∈ BΣ ∩ Dp(R,Rw).

In the previous definition, the quadratic differential form QΦ can be interpreted
as the power that is oriented into the system, and consequently its integral over the
real line measures the energy that is being supplied to, or flows out from the SLDS.
If the net flow of energy is nonnegative, then we call the SLDS passive. Passivity
implies input–output stability (see e.g., [26]), in the sense that unbounded output
trajectories cannot occur as a consequence of bounded input trajectories (see also
Sect. V of [10] for further elaboration).

In the SLDS framework, the concept of storage function arises in a natural way,
describing the energy stored in each individual dynamical mode.

Definition 11.15 Let Σ be a SLDS and let s ∈ S. An N -tuple
(
QΨ1 , . . . , QΨN

)
is

a multiple storage function for Σ with respect to QΦ if

(1) d
dt QΨi

Bi≤ QΦ , i = 1, . . . , N .
(2) ∀ w ∈ BΣ and ∀ tk ∈ Ts , it holds QΨs(tk−1)

(w)(t−k ) − QΨs(tk )
(w)(t+k ) ≥ 0 .

We now prove that the existence of a multiple storage function implies that the
SLDS is passive.

Theorem 11.16 Let Σ be a SLDS and let Φ := 1
2

[
0m×m Im

Im 0m×m

]
. Assume that there

exists a multiple storage function as in Definition 11.15. Then Σ is passive.

Proof Let t0 := −∞ and let sw ∈ S denote the switching signal that corresponds to
a given trajectory w ∈ BΣ . We consider the three possible cases, i.e., (1) |Ts | = ∞,
(2) 0 < |Ts | < ∞ and (3) |Ts | = 0. It follows from Theorem 4.3 of [24], that since
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there exists QΨi such that d
dt QΨi

Bi≤ QΦ , i = 1, . . . , N , then Bi , i = 1, . . . , N , is
passive (i.e., dissipative with respect to QΦ ).

Let a < b, then for all w ∈ BΣ with sw(t) = i for t ∈ [a, b], it holds that∫ b
a QΦ(w) dt ≥ QΨi (w)(b) − QΨi (w)(a), corresponding to the integration over

t ∈ [a, b] of QΨi ≤ QΦ , for w ∈ Bi ∈ Dp(R,Rw).
Since limt→±∞ w(t) = 0 for all w ∈ BΣ ∩ Dp(R,Rw) we obtain the following

expressions for cases (1) and (2), where s = sw:

(1)
∫

QΦ(w) ≥ (QΨs(t0)
(w)(t−1 ) − QΨs(t1)

(w)(t+1 )) + · · ·
+ (QΨs(tn−1) (w)(t−n ) − QΨs(tn )

(w)(t+n )) + · · · .

(2)
∫

QΦ(w) ≥ (QΨs(t0)
(w)(t−1 ) − QΨs(t1)

(w)(t+1 ))

+ Σ
|Ts |−1
k=2 (QΨs(tk−1)

(w)(t−k ) − QΨs(tk )
(w)(t+k ))

+ (QΨs(|Ts |−1) (w)(t−|Ts |) − QΨs(|Ts |) (w)(t+|Ts |)).

Since QΨs(tk−1)
(w)(t−k ) − QΨs(tk )

(w)(t+k ) ≥ 0, ∀ tk ∈ Ts , we conclude that in both

cases
∫

QΦ(w) ≥ 0.
Finally the claim for (3) when no switching takes place, i.e., sw(t) = i for all

t , follows readily from the existence of a storage function QΨi and Theorem 4.3
of [24]. ��

The conditions for the existence of a multiple storage function can be expressed
in terms of linear matrix inequalities according to the following result (see Theorem
4 of [10]) providing an LMI-based test for passivity of SLDS. In the following, the
coefficient matrix of F(s) = ∑N

i=0 Fi si ∈ R
q1×q2 [s] is defined by

F̃ := [
F0 F1 . . . FN

]
. (11.9)

Note that F(s) = F̃
[
Iq2 s Iq2 . . . Iq2s N

]�
.

Theorem 11.17 Let Σ be a SLDS with G well-defined and well-posed. Let Xk ∈
R
n(Bk )×z[s] be a minimal state map for Bk , acting on the latent variable zk ,

k = 1, . . . , N, and let Li→ j ∈ R
n(Bj )×n(Bi ) for all i, j ∈ P , i �= j , be the

re-initialisations maps of Σ . Denote the coefficient matrix of Mk(s) by M̃k :=[
Mk,0 . . . Mk,Lk

]
; then there exist Xk, j ∈ R

n(Bk )×m, k = 1, . . . , N, j = 1, . . . , Lk−
1 such that Xk(s) can be written as X̃k := [

Xk,0 . . . Xk,Lk−1
]
.

If there exist Kk = K �
k ∈ R

n(Bk )×n(Bk), k = 1 . . . , N, such that

M̃�
k Φ M̃k −

[
0m×n(Bk)

X̃�
k

]
Kk

[
X̃k 0n(Bk)×m

]−
[

X̃�
k

0m×n(Bk)

]
Kk

[
0n(Bk )×m X̃k

] ≥ 0 ,

(11.10)
and moreover, if for k, j = 1, . . . , N, k �= j , it holds that
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Kk − L�
k→ j K j Lk→ j ≥ 0 , (11.11)

then Σ is passive.

Based on this result, in the following section we develop a stabilization technique
for energy distribution networks.

11.6 Energy-Based Stabilization

To deal with instability of energy distribution networks, we use passive damping
(see, e.g., [1]), where a passive load (filter) is interconnected to the system in order
to guarantee stability.

We consider the case where the energy distribution network is unstable due to
the presence of constant power loads (see [17]). We proceed to design a filter that
guarantees stability when interconnected to the converter, see Fig. 11.7.

For ease of exposition, we consider only one impedance ZT (s) and the filter as
an additional load in the array depicted in Fig. 11.7. The impedance function of the
filter is given by

Z f (s) = p(s)

q(s)
; (11.12)

with an associated image form representation

[
i f

v

]
=

[
p( d

dt )

q( d
dt )

]
z′ , (11.13)

andwhose parameters need be computed. The interconnection of impedances (11.12)
and ZT (s) in Fig. 11.7 yields

Zint (s) := ZT (s)Z f (s)

ZT (s) + Z f (s)
= n(s)

d(s)
. (11.14)

Fig. 11.7 Energy
distribution network with a
stabilizing filter
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The first step in our procedure is to obtain image representations w = Mk
( d
dt

)
zk ,

i = 1, . . . , N , describing each mode as in Proposition 11.12, and exemplified in
Example 11.13. Similarly, we model the corresponding gluing conditions and com-
pute reinitialization maps as in Definition 11.7.

The second step in our procedure is the setting up of a system of matrix inequal-
ities corresponding to the conditions of Theorem 11.17. To make explicit the linear
dependence on the parameters of Zint , in the following we write Mk(s) and their
corresponding state maps Xk(s), respectively, as Mk ,̃n,d̃(s), and Xk ,̃n,d̃(s), where ñ,
d̃ are the coefficient matrices of the numerator and denominator of Zint , that also
involve the coefficients of the passive filter:

M̃�
k ,̃n,d̃

Φ M̃k ,̃n,d̃ −
[
0m×n(Bk )

X̃�
k ,̃n,d̃

]
Kk

[
X̃k ,̃n,d̃ 0n(Bk)×m

]

−
[

X̃�
k ,̃n,d̃

0m×n(Bk )

]
Kk

[
0n(Bk )×m X̃k ,̃n,d̃

] ≥ 0 , k = 1, . . . , N ,

Kk − L�
k→ j K j Lk→ j ≥ 0 , k, j = 1, . . . , N , k �= j . (11.15)

The third step is to formalize the requirement that the filter is passive. Define

Φ ′ := 1

2

[
0 1
1 0

]
, M ′(s) :=

[
p(s)
q(s)

]
, X ′(s) :=

⎡

⎢
⎢⎢
⎣

1
s
...

sdeg(p)−1

⎤

⎥
⎥⎥
⎦

, (11.16)

and denote the coefficient matrices of M ′ and X ′ by M̃ ′
p̃,̃q and X̃ ′, respectively. With

these positions, it follows from the positive-real lemma that q
p is positive-real if and

only if there exists K ′ = K ′� ∈ R
deg(p)×deg(p) such that

M̃ ′�̃
p,̃qΦ ′M̃ ′̃

p,̃q −
[
01×deg(p)

X̃ ′�
]

K ′ [X̃ ′ 0deg(p)×1
]

−
[

X̃ ′�
01×deg(p)

]
K ′ [0deg(p)×1 X̃ ′] ≥ 0 . (11.17)

If values of the parameters p̃ and q̃ exist such that the matrix inequalities (11.15),
(11.17) are satisfied for some Kk , k = 1, . . . , N and K ′, then the interconnection
of Fig. 11.7 is passive, and consequently i/o stable. Moreover, the filter q

p can be
implemented using only resistors, capacitors, inductors, and transformers (see [14]).

We close this section with a numerical example.

Example 11.18 (Cont’d from Example 11.13) We consider the implementation in
Fig. 11.8, with RL = 0.1Ω; L = 880µH; C1 = C2 = 220µF; R = 500Ω .
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According to (11.12), we define the impedance of the filter Z f (s) := p(s)
q(s) with

p(s) = a0s + a1 and q(s) = 1, for which the a-parameters will be computed.
We consider the total impedance as a constant power load, i.e., ZT (s) = −RC P

with −RC P = −300Ω . Considering (11.14), we obtain n(s) = 300(a0 + a1s) and
d(s) = 300− a0 − a1s. We thus substitute n

( d
dt

)
and d

( d
dt

)
in the dynamic models

computed in Example 11.13. Define state maps for each dynamical mode acting,
respectively, on the latent variables z1 and z2 as

X1

(
d

dt

)
:=

⎡

⎣
1 0
0 n

( d
dt

)

0 d
( d
dt

)

⎤

⎦ , X2 :=
⎡

⎣
C1

d
dt 0
1 0
0 n

( d
dt

)

⎤

⎦ ,

then for every tk ∈ Ts , the gluing conditions can be expressed as X2
( d
dt

)
z2(t

+
k ) =

L1→2X1
( d
dt

)
z1(t

−
k ) and X1

( d
dt

)
z1(t

+
k ) = L2→1X2

( d
dt

)
z2(t

−
k ), where

L1→2 :=

⎡

⎢⎢
⎣

1 0 0
0 1 0
0 1 0
0 0 1

⎤

⎥⎥
⎦ , L2→1 :=

⎡

⎣
1 0 0 0
0 C1

C1+C2

C2
C1+C2

0
0 0 0 1

⎤

⎦ .

We now solve simultaneously the bilinear matrix inequalities (11.15) and (11.17)
using standard solvers such as Yalmip. We thus obtain a solution a0 = 377, a1 =
293× 10−6, b2 = 377. Finally, the realization of the filter with impedance Z f (s) =
293 × 10−6s + 377 is shown in Fig. 11.9. ��

Fig. 11.8 Stable interconnection of a DC–DC converter with a passive filter and a constant power
load

Fig. 11.9 Realization of the
stabilizing filter
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11.7 Conclusions

We introduced a modeling approach for energy distribution networks based on the
switched linear differential framework in [12]. We also introduce the concept of
passive SLDS and we study its relevance in the study of networks, deriving a stabi-
lization method for switching power converters feeding potential destabilizers such
as constant power loads. We have shown that elements of behavioral system theory
such as linear differential behaviors and quadratic differential forms provide suitable
tools to study the network using higher order differential models obtained directly
from first principles.
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