
Chapter 1
A Port-Hamiltonian Formulation
of a Wireless Communication System

Viswanath Talasila and Ramkrishna Pasumarthy

Abstract In this chapter we model the traffic dynamics in a wireless communi-
cation system (characterized by a set of routers exchanging data with each other)
in the port-Hamiltonian framework. Communication systems are characterized by
elements which produce significant time delays (by design) in their response, unlike
(say) an idealized circuit or mechanical element. Furthermore, the communication
between two routers (compositionality) involves losses due to the characteristics of
radio signal propagation. In this paper we study the type of Dirac structure used to
model a communication element (a router), we analyze the stability properties of a
router and finally we study the compositionality properties that evolve under lossy
interconnections.

1.1 Introduction

This chapter is dedicated to Arjan’s 60th birthday. We were both extremely fortunate
to be his Ph.D. students and have admired him, over the years, for his deep technical
insights and fundamental contributions to systems and control theory. His work has
influenced our own professional interests and growth in many ways.

Arjan’s discussions and work about compositions of mathematical structures over
the years have been an important contribution to systems (and control) theory. This
has led to some really interesting results in various allied disciplines. For example,
the use of the compositionality property in spatial discretization was a wonderful
concept of his. Recently, when working with wireless communication systems the
first author was studying if there was an elegant way to describe the interconnec-
tion structures in wireless networks. This motivated the authors to model wireless
communication systems in a port-Hamiltonian setting. It is indeed impressive that
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the port-Hamiltonian theory of Arjan and Bernhard Maschke can be used across so
many engineering disciplines.

On a personal level, Arjan’s influence is deep. His generosity, patience and kind-
ness are attributes that we have tried to emulate over the years. From both the authors:
Arjan, thank you for some beautiful memories. And of course, happy birthday!

The design and deployment of a wireless communication system involves mul-
tiple aspects: modeling the radio signal propagation characteristics, router design,
network layer routing protocols, the design of the antenna, and so on. There is a
standard for describing these multiple subsystems and their interconnections, and
this is the OSI (open systems interconnection) model, [11]. The OSI model parti-
tions the functions of a communication systems into seven abstraction layers. These
include, among others, the data link layer, the physical layer, and the network layer.
The workings of each of these seven layers, and their interactions completely define
a wireless communication system. For example, the physical layer may use a full
duplex transmission mode, the MAC layer in the data link layer controls the per-
missions to transmit data; and the network layer implements various protocols to
decide on message routing. The internal functioning of the OSI architecture is not of
clear relevance (at least not directly) from a dynamical systems viewpoint, which is
one of the themes of this book. What is more relevant is the traffic flow dynamics in
communication systems, the way that congestion occurs in a network, the analysis of
network latencies, and of course stability issues. The MAC layer and network layer
protocols can be considered to be more relevant from a control viewpoint, and as
such is not the focus of this chapter—which focuses entirely on modeling the traffic
dynamics in a specific component—the wireless router.

Network traffic is usually considered as a sequence of arrival of data packets
in a time interval, called a point process, [3], which is characterized by a set of
packet arrival times {t1, t2, . . .}. Some traffic models rely on the use of stochastic
processes to represent, for example, the packet arrival times {t1, t2, . . .}. The most
well-known stochastic process is based on assuming that the packet arrival data is
independent and the packets are exponentially distributed—this is the (memoryless)
Poisson process traffic model. An important drawback of the Poisson model is that
it cannot capture traffic burstines, [5], as the Poisson process assumes that the arrival
rate is constant. One approach to handle this is to consider the basic process as a
Poisson process and modulate the arrival rate—this leads to a Markov modulated
Poisson process, [7]. Another modeling approach that considers inter-arrival times
is the Markov model, which models the events in a traffic network by a finite number
of states, [7]. A general problem with models which are based on inter-arrival times
is that since they consider the arrival of each data packet as a separate event, there is
a significant overhead. This has motivated the use of fluid flow models to describe
network traffic, which characterizes traffic flow by the flow rate. Since flow rate
changes much less frequently than individual packet arrival times, the computational
burden is reduced [1]. The assumption is that the changes in flow rates capture
the different events that occur in the network [7]. The use of graph theoretic tools to
model large-scale communications network is, to the best of the authors’ knowledge,
surprisingly limited, except some works such as [2, 12].
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There are related issues surrounding network traffic modeling, such as congestion
handling, optimal router buffer sizing, channel capacity [13], channel/link utilization,
network latency, etc. Network congestion can occur due to a variety of reasons—
e.g., by improper sizing of buffers in network routers [14], traffic flow exceeding
actual network capacity, etc. Buffers are used to prevent packet drops and to maintain
link/channel utilization.1 The sizing of router buffers is an important area of research
in network communications, [14, 23]. Too large a buffer size and network latency
can be significantly degraded, too small a buffer size and we can expect channel/link
utilization to be poor and even lead to buffer instability.

Existing network traffic modeling techniques do not capture the inherent physi-
cal nature of the interconnection in the data flow. The design of various advanced
network protocols rely primarily on the type of traffic flow (e.g., Poisson process),
[9], or the type of MAC protocols used, [4], but not on the interconnection struc-
ture itself. There is need for a network-based modeling technique which can capture
the interconnection structure of each node in a communication network, as well
as to model the interconnection structure of the entire network, while capturing the
underlying fundamental physical laws. The framework of port-Hamiltonian systems,
[19–21] and energy based modeling, [17] is very well suited to this task. The con-
cept here is that systems from different domains (mechanical, electrical, chemical,
etc.) can be interconnected to form a network, and this networked system can then
be modeled (and controlled) by using energy as the unifying theme, [16–19, 21]. A
complex physical system can be viewed as an interconnection of simpler subsystems.
The interconnection, in this framework, then results in the total energy being equal
to the sum of energies of individual subsystems. A fundamental result is that any
(power conserving) interconnection of (multiple) port-Hamiltonian systems results
in another port-Hamiltonian system, [8, 19]. Recently, the port Hamiltonian frame-
work has been extended to modeling dynamics on graphs, [22]; an extension of this
to communication networks may provide interesting results in stability and control.

1.2 Models of Wireless Communication Systems

Our objective in this work is to model the traffic flow in communication systems,
from an energy viewpoint, more specifically in a Hamiltonian setting.We abstract the
working methodology of the router to a set of simple differential equations—from a
traffic flow viewpoint. Note that data flow in a communication network is typically
considered in time slots or intervals. In this paper we make the assumption that the
data flow can be described by differential equations, and thus we model the traffic
flow as continuous linear time invariant systems.We focus on the data inflow/outflow,
the influence of the buffer on traffic dynamics, and the analogy of dissipation in such

1A routers link is utilized as long as the router is sending data on that link. Link utilization is
important, for, e.g., if a particular router is given a certain channel bandwidth and it is unable to use
that, it would be a significant waste of expensive resource.
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systems. While our focus is on router traffic, the same (or similar) dynamics can also
be used for other communication devices which have buffering capability.

Let ω(t) denote the number of buffered packets in a router at time t . Let ωξ

denote the size of the buffered packets in the router at time t . Next, let μ denote
the number of transmitted packets by the router at time t , and finally μξ denotes the
size of transmitted packets by the router at time t . We note the following constitutive
relationships:

ωξ = ω

q
, μξ = μ

s
(1.1)

with q and s being unit-less scaling constants.

1.2.1 Router Configuration—Transmitted Data Fed Back
to Receiver

First we consider the simplest possible router configuration, where the transmitted
data is directly fed back to the receiver side. Further we make the following assump-
tions:

• transmission is instantaneous and takes place at a fixed rate
• reception (through the looping back) is also instantaneous (i.e., no delays)
• no buffer overflows (infinite buffer assumed)
• no transmission or reception losses

Then we obtain the two differential equations governing the router dynamics as

dω

dt
= −μ,

dμξ

dt
= ωξ

The first differential equation, dωdt = −μ expresses that the rate of change in the num-
ber of buffered packets, ω(t) is a function of the number of packets that have been
transmitted (out of the buffer). The second differential equation, dμξ

dt = ωξ expresses
that the rate of change in the size of the transmitted packets is equal to the size of the
buffered packets—in other words, all the buffered packets are instanteneously trans-
mitted each time. In a Hamiltonian formulation we can rewrite the above equations
as follows. First, let (ω,μξ ) be the energy states and (ωξ , μ) be the energy co-states.

Then we define the Hamiltonian as H(ω,μ) = 1
2

(
ω2(t)

q + μ2
ξ (t)s

)
. Then we have

[
ω̇

μ̇ξ

]
=

[
0 −1
1 0

] [
∂ H
∂ω

= ωξ
∂ H
∂μξ

= μ

]
(1.2)

In fact, these are equations of a harmonic oscillator, and in this case we can compute
the time rate of the Hamiltonian as
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dH

dt
= ωξ (−μ) + μωξ = 0

which is indeedwhatwe expect froma harmonic oscillator system. Themain assump-
tion made in the set of Eq. (1.2) is that buffering and data transmission are instanta-
neous. In actual practice (always occurs during network congestion), usually only a
part of the buffered data is transmitted, and the router continues buffering the remain-
der of the data. Clearly, the assumptions we made above are unrealistic for wireless
systems. The following subsections will incorporate additional criteria to make the
models more realistic.

1.2.2 Router Configuration—No Reception, Only
Transmission

In the second case we assume the router is only transmitting data and is not receiving
any data. We assume that the router has some data already buffered, and this data is
being transmitted.

The dynamics then has the following form:

dω

dt
= −c1μ,

dμξ

dt
= c2ωξ

The interpretation of dμξ

dt = c2ωξ is simply that the buffer does not empty its contents
instantaneously, and in each time slot it can empty only c2ωξ amount of data. Simi-
larly, the interpretation of dω

dt = −c1μ is that the rate of change of buffered packets
is always a fraction (bounded from above by 1) of the total number of transmitted

packets. If we consider the Hamiltonian, as before, H(ω,μ) = 1
2

(
ω2(t)

q + μ2
ξ (t)s

)
,

we obtain the Hamiltonian dynamics as

[
ω̇

μ̇ξ

]
=

[
0 −c1
c2 0

][
∂ H
∂ω

= ωξ
∂ H
∂μξ

= μ

]
(1.3)

These dynamics are the same as the dynamics of a harmonic oscillator only when
c1 = c2 = 1. The resulting time rate of change of the Hamiltonian is

dH

dt
= ωξ (−c1μ) + μc2ωξ = (c2 − c1) μωξ (1.4)

The sign of dH
dt then depends on the relative values of c1 and c2. As an illustra-

tive simulation, we consider a router with 1000kb of buffered data; and a 10kbps
transmission rate; the router does not receive any data. In this example, when data
transmission just starts, c1 = 1 and then it keeps decreasing. c2 = 0 at the beginning
and and converges to 0.5 (toward the end of the data transmission). The left plot in
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Fig. 1.1 Simulation response for a system with buffered data and only data transmissions. a
Buffered (decreasing curve) and transmitted (increasing curve) packets; starting with 1000 buffered
packets and 0 transmitted packets. The buffer is empty after 12 time units. b Rate of change of the
Hamiltonian; also shown is the quadratic Hamiltonian function itself (the Hamiltonian values are
scaled for easy comparison). Minimum energy corresponds to c2 = c1

Fig. 1.1 shows the buffered and transmitted packets; after about 12 time units the
buffer is emptied. The right plot of Fig. 1.1 plots the time rate change of the Hamil-
tonian from Eq.1.4; the total energy (Hamiltonian) is also shown in this plot (the
quadratic curve). The interpretation of dH

dt being negative (i.e., c2 < c1) is that there
aremore buffered packets than transmitted packets,2 when dH

dt becomes positive (i.e.,
c2 > c1) there are more transmitted packets than buffered packets.3

1.2.3 Router Configuration—No Transmission, Only
Reception

In the third case we assume that the router is only receiving data with no data
transmissions. The dynamics then has the following form:

dω

dt
= 0 + η,

dμξ

dt
= 0

where η is the number of data packets being received by the router at time t . If we

consider the Hamiltonian, as before, H(ω,μ) = 1
2

(
ω2(t)

q + μ2
ξ (t)s

)
, we obtain the

Hamiltonian dynamics as

2We will see in Sect. 1.3 that this implies that the buffer utilization is improving, whereby buffer
utilization can be defined as simply the amount of buffer space that is being utilized.
3In Sect. 1.3 we will see that this implies that the buffer utilization is becoming poorer, and is not a
desirable condition in wireless communication.



1 A Port-Hamiltonian Formulation of a Wireless Communication System 7

[
ω̇

μ̇ξ

]
=

[
0 0
0 0

] [
∂ H
∂ω

= ωξ
∂ H
∂μξ

= μ

]
+

[
1
0

]
η

Then
dH

dt
= ωξη > 0, if η > 0

In reality, the energy cannot indefinitely increase. A router does not have an infi-
nite buffer size, and once the routers buffer capacity limit is reached it begins to
discard data packets. This phenomena shall be modeled in a dissipation framework
in Sect. 1.2.6. In any case, we have the implication that H(ω,μξ ) is bounded from
above.

1.2.4 Router Configuration—Both Transmission
and Reception Enabled

In the last case, we assume the router is both receiving and transmitting data. The
dynamics then has the following form:

dω

dt
= −c1μ + η,

dμξ

dt
= c2ωξ

where η is the number of data packets being received by the router at time t . If we

consider the Hamiltonian, as before, H(ω,μ) = 1
2

(
ω2(t)

q + μ2
ξ (t)s

)
, we obtain the

Hamiltonian dynamics as

[
ω̇

μ̇ξ

]
=

[
0 −c1
c2 0

] [
∂ H
∂ω

= ωξ
∂ H
∂μξ

= μ

]
+

[
1
0

]
η (1.5)

Then
dH

dt
= (c2 − c1) μωξ + ωξη

In Fig. 1.2 we simulate the traffic of a router with varying input data rates and fixed
transmission rates.Note that theminimumenergy corresponds to c2 = c1. In Fig. 1.2c
the number of buffered packets, ω(t), remains constant since input data rate is equal
to transmission rate. The buffer utilization (which means the amount of buffer space
utilized, ideally this should be fairly high) for the two cases when η is greater than
or equal to the transmission rate is very good. In the first case when η is smaller than
the transmission rate, the buffer utilization is poor. However, when η is much greater
than the transmission rate, the buffer will quickly fill up, see Fig. 1.2e and this can
lead to router instability; this will be studied in Sect. 1.3.
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Fig. 1.2 Simulation response for a system with varying input data rates and fixed transmission
rates. a Input data rate = 50kbps, Transmission rate = 100kbps. Buffered data (decreasing) and
transmitted data (increasing). b Rate of change of the Hamiltonian and the quadratic Hamiltonian. c
Input data rate = 100kbps, Transmission rate = 100kbps. Buffered data (constant) and transmitted
data (increasing). d Rate of change of the Hamiltonian and the quadratic Hamiltonian. e Input
data rate = 150kbps, Transmission rate = 100kbps. Buffered data (increasing, smaller slope) and
transmitted data (increasing). f Rate of change of the Hamiltonian and the quadratic Hamiltonian



1 A Port-Hamiltonian Formulation of a Wireless Communication System 9

1.2.5 Dirac Structures

We have claimed that Eq. (1.5) is a port-Hamiltonian model. In this section we will
prove this claim by showing that the space of flows and efforts corresponding to the

interconnection structure

[
0 −c1
c2 0

]
is a Dirac structure. We consider the dynamics

as in Eq.1.5 and rewrite it as

[
ω̇

μ̇ξ

]
=

[
0 −1
1 0

]

︸ ︷︷ ︸
J

[
∂ H
∂ω

= ωξ
∂ H
∂μξ

= μ

]
+

[
0 1 − c1

c2 − 1 0

]

︸ ︷︷ ︸
B

[
∂ H
∂ω

= ωξ
∂ H
∂μξ

= μ

]
+

[
1
0

]
η

The matrix J :=
[
0 −1
1 0

]
is the standard skew-symmetric Poisson structure (and

hence Dirac). We denote the new matrix

[
0 1 − c1

c2 − 1 0

]
by B and call this the

Buffer structure. The resulting energy balance equation will have three terms, as
follows:

dH

dt
= 0 + (c2 − c1) μωξ + ωξη

The 0 power contribution is due to the skew-symmetric Poisson structure. The ωξη

power contribution is the supply rate. Finally, the (c2−c1)μωξ is thebuffered power in
the system. Note that this is not the dissipated power; there is no loss of energy/power
in the system. Instead, because the router is unable to transmit the entire received
data in a single time slot, some data are left buffered in the router. This is given by
(c2 − c1)μωξ .

Recall the definition of a Dirac structure from [21].

Definition 1.1 A constant Dirac structure on an l-dimensional linear space, F is a
linear subspaceD ⊂ F × F∗ such thatD = D⊥, where ⊥ is defined with respect to
a bilinear form on F × F∗.

It follows that 〈e| f 〉 = 0,∀(e, f ) ∈ D, [21].

Set fs :=
[

ω̇

μ̇ξ

]
, es :=

[
∂ H
∂ω
∂ H
∂μξ

]
, e := ∂ H

∂ω
and f := η. Denote x = [

ω,μξ

]T .

Then we have the energy balance

dH(x)

dt
= ∂ H

∂x
ẋ = − eT

s fs =
[

∂ H
∂ω

∂ H
∂μξ

] [
ω̇

μ̇ξ

]

⇒ eT
s fs + (c2 − c1)ωξμ + ∂ H

∂ω
η = 0

⇒ eT
s fs︸︷︷︸

stored power

+ (c2 − c1)ωξμ︸ ︷︷ ︸
buffered power

+ e f︸︷︷︸
supplied power

= 0
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Fig. 1.3 The
port-Hamiltonian structure
which includes a buffer
element; note that dissipation
has not yet been considered

Thus 〈〈·, ·〉〉 = 0 and this bilinear form defines a Dirac structure for the matrix
operator J + B on the space F × F∗. There is an additional term, (c2 − c1)ωξμ,
which is not seen in the usual energy balance equations for standard physical systems.
Denote (c2 − c1) by c̃, so we have c̃ωξμ, which corresponds to the buffered energy
in the system. This motivates a modified port-Hamiltonian interconnection structure,
e.g., see p. 14 of [21] for the standard port-Hamiltonian interconnection structure, as
follows (Fig. 1.3).

1.2.6 Including Dissipation

The analogy of electrical ormechanical dissipation for a communication system (e.g.,
a single router) is related to congestion control. Wireless technologies have become
very popular in the past decade. This has led to a proliferation of devices connected
over a WiFi channel (such as 802.11). Inevitably, this has led to network congestion.
Even in wired communication systems congestion is a commonly observed problem.

Consider Fig. 1.4 where there are six routers, each modeled as a port-Hamiltonian
system as in Eq.1.5. Router 1, denoted by

∑
1, is transmitting to router 3,

∑
3; and

router 2,
∑

2, is transmitting to router 4,
∑

4. This example is stronglymotivated from
the example presented in [6]; we present the same example in a port-Hamiltonian
context. Denote, as in [6], λi to be the sending rate of router i , and λ̃i to be the

Fig. 1.4 Six routers, modeled as PH systems Σi , with channel capacities indicated
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Fig. 1.5 Simulation of network inefficiency when upstream routers do not have feedback from
downstream routers. a Router1 Without feedback (light), with feedback (dark). Both buffered and
transmitted packets are shown. b Router2 Without feedback (light), with feedback (dark). Both
buffered and transmitted packets are shown. c Energy rate change for router 1, with (dark) and
without (light) feedback. d Energy rate change for router 2, with (dark) andwithout (light) feedback

actual outgoing rate of router i . Assuming there is no feedback from the network
the total throughput is just 20kbps. This is because source 2 is limited to 10kbps
because of link 5. And because source 1 is competing with source 2 (which is trying
to transmit at 1000kbps) on link 3, source 1 can only transmit at 10kbps. Thus the
total throughput is 20kbps. However, if source 2 knew (via feedback) that it cannot
exceed 10kbps, it would not attempt to transmit at 1000kbps, and it would simply
transmit at 10kbps. Then source 1 could have transmitted at 100kbps. This is a form
of network inefficiency and it can lead to the phenomena of congestion collapse,
[6, 10]—which simply means that the achieved throughput → 0 as the offered load
→ ∞.

In Fig. 1.5 we perform simulations to model the effect of feedback on the router
traffic dynamics. In Fig. 1.5a we see the buffered and transmitted packets of router
1 under conditions of no feedback and when feedback is present. Note that when
feedback is not present (router 1 operates at 10kbps throughput); when feedback
is present (router 1 operates at 100kbps) and Fig. 1.5a shows a significantly faster
response time in emptying the buffer (the two dark curves until t = 150. When feed-
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back is absent, Fig. 1.5a shows a much slower response time in emptying the buffer
(takes about 1000 time units). Router 2, in Fig. 1.5b has the same response times
since it continues to operate at 10kbps throughout with or without feedback. We
observe in Fig. 1.5c that the slope for dH

dt is much sharper with feedback and with the
sign changing very quickly, indicating that buffer utilization is reducing faster and
leading to reduced buffer stability; we will study this formally in Sect. 1.3. To imple-
ment congestion control each node (router) requires feedback from the downstream
network. Feedback may be in the form of missing packets (downstream); if missing
packets are detected the sources reduce their transmission rate. In congestion, con-
trol dropping packets (often deliberately) is a form of feedback control, whereby the
upstream nodes detect the dropped packets and react by reducing their transmission
rates. Note that a router may also drop packets if the buffer is filled up. In this paper
we model the dropping of packets in the dissipation framework of port-Hamiltonian
systems. This dissipation is not always present in the system dynamics; and is usually
observed only during congestion and occurs at discrete time intervals. To model this
we first have the following dynamics for the buffered packets:

dω

dt
= −c1μ − Rωω + η

where the parameter Rω(t)ω(t) models the number of dropped packets (from the
buffer) at time t . We then have the corresponding port-Hamiltonian dynamics:

[
ω̇

μ̇ξ

]
=

[
0 −1
1 0

]

︸ ︷︷ ︸
J

[
∂ H
∂ω

= ωξ
∂ H
∂μξ

= μ

]
+

[
0 1 − c1

c2 − 1 0

]

︸ ︷︷ ︸
B

[
∂ H
∂ω
∂ H
∂μξ

]
−

[
Rω 0
0 0

]

︸ ︷︷ ︸
R

[
∂ H
∂ω
∂ H
∂μξ

]
+

[
1
0

]
η

(1.6)
This corresponds to the standard port-Hamiltonian input-output model with dissipa-

tion, with J − R =
[−Rω −1

1 0

]
. Denote: e := ∂ H

∂ω
, f := η. We then have the energy

balance as

dH

dt
= eT

s fs︸︷︷︸
stored power

+ c̃μωx i︸ ︷︷ ︸
buffered power

+ e f︸︷︷︸
supplied power

− Rωω2
ξ︸ ︷︷ ︸

dissipated power

= 0 (1.7)

With dissipation included we obtain the complete structure of the port-Hamiltonian
system for the class of communication systems considered in this paper and is as
shown below (Fig. 1.6).
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Fig. 1.6 The
port-Hamiltonian structure
which includes a buffer
element; note that dissipation
has not yet been considered

1.3 Formal Characterization of Stability, Buffer Utilization,
and System Latency

A fundamental problem in wireless communication networks is that of designing
a scheduling policy that is guaranteed to stabilize the node buffers (i.e., a router
in a network) for a given arrival process with some specified arrival rate. Related
problems involve guaranteed maximum latency (i.e. delay) and buffer utilization
(discussed below). While we do not discuss scheduling policies in this chapter, the
concept of stability, latency, and buffer utilization will be analyzed below. A typical
definition of stability for wireless networks is as follows, see [15].

Definition 1.2 (Buffer/Router Stability) Let ω(t) be the number of packets in a
routers buffer at time t . The buffer is called stable if

lim
B→∞ lim

t→∞ sup Pr{ω(t) > B} = 0

The above definition simply says that a queue is stable if its asymptotic buffer over-
flow probability goes to zero as the buffer size, B, goes infinitely large, [15]. In other
words the queue length (in the buffer) should not go to infinity! The network is called
stable if all node buffers are stable.

Scheduling algorithms should also consider end-to-end delays (latency). Network
delay is characterized as acceptable if,

Pr

(
X agg(t)

λ

)
> τd = 0

where X agg(t) denotes the aggregated queue length, λ denotes the arrival rate, and τd

denotes the service time allowed to a particular task. (Assuming packets are arriving
at a constant rate and all queues are First In First Out), [23]. The above definition is
simply saying that the delay in the network is considered acceptable if the probability
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that the latency exceeds a delay threshold is zero. Another way tomeasure the latency
is, related to the definition in [3], as follows:

Definition 1.3 (Latency) The packet latency can be defined as the ratio of the buffer
size to the channel/link capacity, i.e.,

τ = B

C
and τcurrent = ω(t)

μ(t)/s

where B is the buffer sizing required to keep the link fully utilized (see Definition
1.4 and the discussion following that), μ/s is the number of packets transmitted in
a unit interval of time, and C is the channel/link capacity (in bits per sec). Note that
τ is the maximum latency possible when the buffer is full, and τcurrent is the current
latency experienced by a user.

Buffers add queuing delay, and this increases packet latency. Thus as the requirement
on the current buffer size increases, the queuing delay (latency) proportionately
increases.

A different problem exists in the utilization of the buffer.

Definition 1.4 (Buffer Utilization) (optimal) Buffer utilization is defined as the
amount of buffer sizing required in order to keep the link fully utilized while ensuring
latencies satisfy service times, during congestion.

While buffer utilization may be simply defined as the amount of buffer space occu-
pied; buffer utilization is strongly linked to the channel/link utilization. The link or
channel utilization must remain high always, especially during congestion. This in
turn implies that a router’s buffer must never be empty, or else the link utilization can
go down. Thus during congestion we can expect that the desired relation between the
buffer size and channel capacity to be as follows: c(t) → C ⇒ ω(t) → B̃, where
c(t) is the current channel utilization and C is the maximum channel capacity, ω(t)
captures the current buffer usage, and B̃ is the congestion buffer threshold (B̃ < B).
Note that B is the buffer size which is calculated via a standard rule set forth in [23]
and is theoretically high enough to ensure complete link utilization during conges-
tion, see the footnote below. For example, advanced congestion control mechanisms
prefer the buffer size, B̃, to be as high as possible (during congestion) so that link
utilization remains high—but below4 the typical buffer size B obtained via the [23]
rule, so as to keep latencies under control.

Definition 1.5 (Link Utilization) Link utilization can be defined as the ratio of the
current data transfer rate to the link capacity, i.e.,

4How much below is a complicated question. One standard buffer sizing rule used is based on the
round trip time of a flow and channel capacity, and is given by B = RT T × C , [23]. Studies
have shown that this rule leads to large buffer sizing, and can lead to unacceptable latencies; and
these studies, [3] have provided new mechanisms for router buffer sizing (with B̃ < B), which can
provide acceptable latencies while ensuring link utilization is high.
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LU = μ(t)/s

C

where μ/s is the number of packets transmitted in a unit interval of time.

Ideally, during congestion, we require LU = 1.
To summarize, the four parameters—buffer utilization, link utilization, latency,

and stability—are strongly linked with each other; in the following subsection we
analyze these parameters in relation to our port-Hamiltonian model, Eq. 1.5. Note
that while we ignore the port Hamiltonian model with dissipation below, the same
result can be easily extended to the case with dissipation.

1.3.1 Analysis of Stability, Buffer Utilization, Link Utilization,
and System Latency in a Port-Hamiltonian Setting

In this section we analyze stability, latency, and buffer utilization in a port-
Hamiltonian setting. Specifically, we will study the time rate of change of the Hamil-
tonian, dH

dt and analyze these properties. The analysis below studies how the energy
balance equation directly influences these four crucial performance parameters of a
communication system:

Remark 1.6 Consider the system dynamics as in Eq.1.5 and the associated energy
balance equation dH

dt = (c2 − c1) μωξ + ωξη. Assuming that the input η(t) is con-
stant, we then have the following:

(1) c2 = 0 ⇒ dH(t)
dt > 0 if η(t) > μ(t), and leads to decreasing buffer stability,

optimal link utilization, and poor latency
(2) c2 = 0 ⇒ dH(t)

dt ≤ 0 if η(t) ≤ μ(t), and leads to increasing buffer stability,
low link utilization, and low latency

(3) c1 = 0 and η(t) > 0 ⇒ dH
dt > 0 leads to buffer instability and zero link

utilization
(4) c2 = c1 ⇒ d H

dt > 0, leads to increasing buffer stability, reduced buffer utiliza-
tion

(5) For 0 < c2 < c1, a large negative dH
dt leads to improved buffer utilization but

reduced buffer stability, whereas a smaller negative dH
dt leads to reduced buffer

utilization and increased buffer stability.
(6) For 0 < c1 < c2, a large positive dH

dt leads to reduced buffer utilization but
increased buffer stability, whereas a smaller positive dH

dt leads to increased
buffer utilization and reduced buffer stability.

We now analyze the statementsmade inRemark 1.6. The time rate of theHamiltonian
is dH

dt = (c2 − c1) μωξ + ωξη.

• c2 = 0 and η(t) > μ(t): Clearly, we have that dH
dt is an increasing function. This

has the implication that the number of packets in the buffer, ω(t), will eventually
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exceed the buffer capacity and will lead to instability, i.e., lim
t→∞ω(t) > B; where

B is the buffer capacity threshold. The link utilization, LU = μ(t)/s
C → 1 only

if sufficient buffered data is always available. In the current case we have that
ω(t) > μ(t) (at least after a finite time) implying that the requirement for buffered
space is continuously increasing (and in finite time ω(t) → B̃)—indicating high
buffer utilization and thereby LU → 1.

• c2 = 0 and η(t) < μ(t): Clearly we have that dH
dt is a decreasing function. This

has the implication that μ(t) > ω(t). Thus ω(t) < B,∀t and the router queue
will be stable. Further, the link utilization LU < 1, since ω(t) is a decreasing
function. Thus, though μ(t) > ω(t) we observe that μ(t) is either a constant or a
decreasing function and hence LU < 1. Further, we have ω(t)/μ(t) < 1, which
will lead to poor buffer utilization.

• c2 = c1 = 1: This corresponds to the situation where the router does not buffer
any incoming packets, it instantaneously transmits any incoming data. Then dH

dt =
ηωξ . This is an ideal situation from a user perspective, since the user will not
experience any delays in receiving the data. The problem with this is that the
buffer remains underutilized and link utilization will be poor.

• c2 − c1 < 1: Denoting c̃ for (c − 1) we have: dH
dt = c̃μωξ + ηωξ ,with c̃ < 0.

Assume that η(t) is a (nonzero) constant. The larger c̃ is, the more negative is
dh
dt , the smaller c̃ is, the less negative dH

dt is. The interpretation of a large c̃ is
that c is fairly small, thus the number of transmitted packets at time t , is small.
This can cause issues from a QoS perspective, where the user may experience
significant latencies; however, the buffer utilization improves—and the system
dynamics moves closer to instability. The interpretation of a smaller c̃ is exactly
the opposite: decreased latency (and increased QoS) and poor buffer utilization—
but system dynamics has improved stability.

1.4 Compositionality Results in Communication Systems

A fundamental result in the area of port-Hamiltonian systems is that the compo-
sition of two Dirac structures is again a Dirac structure [19, 21]. If we consider
the total energy to be the sum of the energies of individual physical system, then
the power conserving interconnection of two port-Hamiltonian systems is again a
port-Hamiltonian system [19, 21]. In this section we study the interconnection of
two port-Hamiltonian systems, each representing a communication system equipped
with a buffer.

In a wireless networkwithmultiple nodes (e.g., routers), often the nodes enter into
contention for channel access.When this happens, collisions occur and this can result
in lost data. Further, there are other reasons for data loss—related to the physical
medium—e.g., path loss, which describes the radio signal attenuation caused by
free space propagation, scattering, reflection, etc. Thus, data loss in communication
systems will occur in general, and especially during congestion. From a systems
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viewpoint we can consider the data loss (due to any of these reasons) as being a
result of interconnection loss (and could be looked upon as a dissipation in the
interconnection, i.e., lossy interconnection). Indeed, the following result formally
captures this in the sense that when we interconnect two Dirac structures, the data
loss can be captured through a lossy interconnection. The following theorem is an
extension of the compositionality proof in [8].

Theorem 1.7 Let DA denote the Dirac structure which represents router A, and let
DB denote the Dirac structure representing router B. We have DA ⊂ F1×F∗

1×F2×
F∗
2, and defined w.r.t. their bilinear forms. Then DA||DB is also a Dirac structure

w.r.t. the bilinear form on F1 × F∗
1 × F3 × F∗

3, with a lossy interconnection.

Proof This proof follows the same spirit as that of Cervera et al. If DA and DB are
Dirac structures, then they admit the following image representations:

DA = [E1 F1 E2A F2A 0 0]T

DB = [0 0 E2B F2B E3 F3]T

Furthermore, for the composition of the two Dirac structures we place the following
constraint:

e2A = e2B, f2A = −k f2B

Then ( f1, e1, f3, e3) ∈ DA||DB ⇐⇒ ∃λA, λB s.t.

[ f1 e1 0 0 f3 e3]T =
[

E1 F1 E2A F2A 0 0
0 0 E2B −k F2B E3 F3

]T [
λA

λB

]
⇐⇒

∀ (β1, α1, β2, α2, β3, α3) s.t.

[
β1 α1 β2 α2 β3 α3

] [
E1 F1 E2A F2A 0 0
0 0 E2B −k F2B E3 F3

]T

= 0

This gives

βT
1 f1 + αT

1 e1 + βT
2 f2A − kβT

2 f2A + αT
2 e2A − αT

2 e2B + βT
3 f3 + αT

3 e3 = 0

⇒ βT
1 f1 + αT

1 e1 + βT
3 f3 + αT

3 e3 + βT
2 f2A (1 − k) = 0

⇐⇒
∀ (α1, β1, α2, β2, α3, β3) s.t.
[

F1 E1 F2A E2A 0 0
0 0 −k F2B E2B F3 E3

]T [
β1 α1 β2 α2 β3 α3

] = 0

⇐⇒ ∀ (α1, β1, α3, β3) ∈ DA||DB

βT
1 f1 + αT

1 e1 + βT
3 f3 + αT

3 e3 = βT
2 f2A (k − 1)
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ThusDA||DB = (DA||DB)⊥diss and is a Dirac structure with interconnection losses
characterized by βT

2 f2A (k − 1). �

Theorem 1.7 shows that, in communication networks, the interconnection of two
communication systems (such as routers) is lossy. We proved that the resulting
interconnection is again a Dirac structure with interconnection losses. Consider a
network of N routers, each router being modeled as a port-Hamiltonian system.
We have the corresponding Dirac structures Di , i = 1, . . . , N . Assume that D1 is
a source sending packets, at a constant rate η(t), to the destination DN . Further,
assume that each Di , i = 2, . . . , N − 1 also receive traffic from other sources. Let
us denote the interconnection losses, captured by βT

2 f2A (k − 1) in Theorem 1.7, by
Li j , i �= j, i = 1 : N − 1, j = 2 : N . Then we have that the total interconnection

losses in the network is the sumof each interconnection loss, i.e.,L =
i=N , j=N−1∑

i=1, j=2
Li j .

Let Lthresh be the total packet losses a network can tolerate (in terms of Quality of
Service, fairness, and stability measures). Then if L > Lthresh,∀t the network will
experience any (or all) of these issues: degraded latency, buffer instability, and poor
link utilization. In fact it is possible to show, though not in this work, that there is a
cascading effect on the entire network which can lead to severe traffic congestion or
even network failure.

1.5 Conclusions

In this chapter we provide a port-Hamiltonian formulation of wireless network traffic
flow, under the assumption of deterministic flows. The resulting Dirac structure for
such systems indicates an additional term in the power balance equation, which we
term as the buffered power. The loss of packets, from the buffer, is modeled as a dissi-
pation term in the dynamics.We analyze buffer stability, channel/link utilization, and
latencies using the energy balance equation. Finally we prove that the composition
of two Dirac structures, each representing a communication system with buffering
capability, is again a Dirac structure but with lossy interconnection.

The work here opens interesting possibilities. One is a study of the various con-
servation laws and symmetries inherent in such systems. Another is the development
of novel routing protocols, for e.g., using Casimirs. Another possibility can be the
study of communication networks on graphs, in a port-Hamiltonian setting—where
stability and performance of large-scale communication networks can be analyzed
in the well-established energy modeling framework of port-Hamiltonian systems.
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