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Foreword

This volume is offered to Prof. Dr. Arjan van der Schaft in celebration of his
birthday. It contains papers by his collaborators, including a number of former
Ph.D. students and postdoctoral fellows.

This is the first of a series of two books, appearing in connection with the
workshop “Mathematical systems theory: from behaviors to nonlinear control”
dedicated to the 60th birthdays of Arjan van der Schaft and Harry Trentelman, both
at the Johann Bernoulli Institute for Mathematics and Computer Science, and at the
Jan C. Willems Center for Systems and Control at the University of Groningen.
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Preface

It is our great pleasure to present this book in celebration of the 60th birthday of
Arjan van der Schaft. Arjan received his M.Sc. degree in Mathematics with honors
in 1979 from the University of Groningen. Subsequently, he pursued his doctoral
degree, also in Mathematics at the University of Groningen, under the tutelage
of the late Jan C. Willems. His doctoral thesis, System Theoretic Descriptions of
Physical Systems, was completed in 1983. Quite remarkably, he started his aca-
demic career as an Assistant Professor in Applied Mathematics at the University of
Twente in 1982, before his doctoral thesis was written. We have to note, however,
that at this point, Arjan had already published seven journal papers on control
theory. At Twente, Arjan’s academic career went all the way up to Full Professor at
the Chair of Mathematical Systems and Control Theory. In 2005, Arjan’s academic
career came to a full circle, when he returned to the University of Groningen as Full
Professor.

Over the past 30 years, Arjan’s footprint in the field of systems and control
theory has been deep and extensive. The books “Nonlinear Dynamical Control
Systems (with Henk Nijmeijer), “L2-gain and Passivity in Nonlinear Control”,
sole-authored by Arjan, and “An Introduction to Hybrid Dynamical Systems” (with
Hans Schumacher), all had great impact in the field. Arjan’s impact on H∞ control
for nonlinear systems is witnessed by his paper “L2-gain Analysis of Nonlinear
Systems and Nonlinear State-Feedback H∞ Control”, which was recognized as the
Dutch research paper in international technical sciences journals with the largest
number of citations during the period 1994–1998. Furthermore, Arjan is one of the
founders (with Bernhard Maschke) of port-Hamiltonian systems theory; a com-
prehensive and influential theory for mathematical modelling, analysis, simulation
and control of complex multiphysics systems. This theory offers new paradigms for
control (energy-shaping, interconnection-shaping, control by interconnection), and
has been applied to many areas: from robotics, mechatronics, power systems, to
chemical reaction networks. The systems and control community recognizes
Arjan’s excellence in research and academic leadership. He was inaugurated as a
Fellow of the IEEE in 2002, invited as a keynote speaker at the International
Congress of Mathematicians in 2006, was rewarded with the SICE Takeda Best
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Paper Prize (with Noboru Sakamoto) in 2008, and was awarded the three-yearly
Certificate of Excellent Achievements from the IFAC Technical Committee on
Nonlinear Systems in 2013.

Looking back, we recognize that Arjan’s scientific legacy is not only his hun-
dreds of peer-reviewed papers and half a dozen technical books, but also around
three dozen young researchers (Ph.D. students and post-doctoral researchers) whose
careers benefitted from his tutelage and collaboration. To celebrate this milestone in
Arjan’s academic life, we present this book to our colleague and teacher, Arjan van
der Schaft, with affection and admiration and our best wishes for several decades
more of top-level scientific productivity.

Groningen, The Netherlands M. Kanat Camlibel
New York, USA A. Agung Julius
Chennai, India Ramkrishna Pasumarthy
Groningen, The Netherlands Jacquelien M.A. Scherpen
May 2015
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Chapter 1
A Port-Hamiltonian Formulation
of a Wireless Communication System

Viswanath Talasila and Ramkrishna Pasumarthy

Abstract In this chapter we model the traffic dynamics in a wireless communi-
cation system (characterized by a set of routers exchanging data with each other)
in the port-Hamiltonian framework. Communication systems are characterized by
elements which produce significant time delays (by design) in their response, unlike
(say) an idealized circuit or mechanical element. Furthermore, the communication
between two routers (compositionality) involves losses due to the characteristics of
radio signal propagation. In this paper we study the type of Dirac structure used to
model a communication element (a router), we analyze the stability properties of a
router and finally we study the compositionality properties that evolve under lossy
interconnections.

1.1 Introduction

This chapter is dedicated to Arjan’s 60th birthday. We were both extremely fortunate
to be his Ph.D. students and have admired him, over the years, for his deep technical
insights and fundamental contributions to systems and control theory. His work has
influenced our own professional interests and growth in many ways.

Arjan’s discussions and work about compositions of mathematical structures over
the years have been an important contribution to systems (and control) theory. This
has led to some really interesting results in various allied disciplines. For example,
the use of the compositionality property in spatial discretization was a wonderful
concept of his. Recently, when working with wireless communication systems the
first author was studying if there was an elegant way to describe the interconnec-
tion structures in wireless networks. This motivated the authors to model wireless
communication systems in a port-Hamiltonian setting. It is indeed impressive that

V. Talasila (B)

MSRIT, MSR Nagar, Bangalore, India
e-mail: viswanath.talasila@msrit.edu

R. Pasumarthy
Department of Electrical Engineering, Indian Institute of Technology, Chennai, India
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2 V. Talasila and R. Pasumarthy

the port-Hamiltonian theory of Arjan and Bernhard Maschke can be used across so
many engineering disciplines.

On a personal level, Arjan’s influence is deep. His generosity, patience and kind-
ness are attributes that we have tried to emulate over the years. From both the authors:
Arjan, thank you for some beautiful memories. And of course, happy birthday!

The design and deployment of a wireless communication system involves mul-
tiple aspects: modeling the radio signal propagation characteristics, router design,
network layer routing protocols, the design of the antenna, and so on. There is a
standard for describing these multiple subsystems and their interconnections, and
this is the OSI (open systems interconnection) model, [11]. The OSI model parti-
tions the functions of a communication systems into seven abstraction layers. These
include, among others, the data link layer, the physical layer, and the network layer.
The workings of each of these seven layers, and their interactions completely define
a wireless communication system. For example, the physical layer may use a full
duplex transmission mode, the MAC layer in the data link layer controls the per-
missions to transmit data; and the network layer implements various protocols to
decide on message routing. The internal functioning of the OSI architecture is not of
clear relevance (at least not directly) from a dynamical systems viewpoint, which is
one of the themes of this book. What is more relevant is the traffic flow dynamics in
communication systems, the way that congestion occurs in a network, the analysis of
network latencies, and of course stability issues. The MAC layer and network layer
protocols can be considered to be more relevant from a control viewpoint, and as
such is not the focus of this chapter—which focuses entirely on modeling the traffic
dynamics in a specific component—the wireless router.

Network traffic is usually considered as a sequence of arrival of data packets
in a time interval, called a point process, [3], which is characterized by a set of
packet arrival times {t1, t2, . . .}. Some traffic models rely on the use of stochastic
processes to represent, for example, the packet arrival times {t1, t2, . . .}. The most
well-known stochastic process is based on assuming that the packet arrival data is
independent and the packets are exponentially distributed—this is the (memoryless)
Poisson process traffic model. An important drawback of the Poisson model is that
it cannot capture traffic burstines, [5], as the Poisson process assumes that the arrival
rate is constant. One approach to handle this is to consider the basic process as a
Poisson process and modulate the arrival rate—this leads to a Markov modulated
Poisson process, [7]. Another modeling approach that considers inter-arrival times
is the Markov model, which models the events in a traffic network by a finite number
of states, [7]. A general problem with models which are based on inter-arrival times
is that since they consider the arrival of each data packet as a separate event, there is
a significant overhead. This has motivated the use of fluid flow models to describe
network traffic, which characterizes traffic flow by the flow rate. Since flow rate
changes much less frequently than individual packet arrival times, the computational
burden is reduced [1]. The assumption is that the changes in flow rates capture
the different events that occur in the network [7]. The use of graph theoretic tools to
model large-scale communications network is, to the best of the authors’ knowledge,
surprisingly limited, except some works such as [2, 12].
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There are related issues surrounding network traffic modeling, such as congestion
handling, optimal router buffer sizing, channel capacity [13], channel/link utilization,
network latency, etc. Network congestion can occur due to a variety of reasons—
e.g., by improper sizing of buffers in network routers [14], traffic flow exceeding
actual network capacity, etc. Buffers are used to prevent packet drops and to maintain
link/channel utilization.1 The sizing of router buffers is an important area of research
in network communications, [14, 23]. Too large a buffer size and network latency
can be significantly degraded, too small a buffer size and we can expect channel/link
utilization to be poor and even lead to buffer instability.

Existing network traffic modeling techniques do not capture the inherent physi-
cal nature of the interconnection in the data flow. The design of various advanced
network protocols rely primarily on the type of traffic flow (e.g., Poisson process),
[9], or the type of MAC protocols used, [4], but not on the interconnection struc-
ture itself. There is need for a network-based modeling technique which can capture
the interconnection structure of each node in a communication network, as well
as to model the interconnection structure of the entire network, while capturing the
underlying fundamental physical laws. The framework of port-Hamiltonian systems,
[19–21] and energy based modeling, [17] is very well suited to this task. The con-
cept here is that systems from different domains (mechanical, electrical, chemical,
etc.) can be interconnected to form a network, and this networked system can then
be modeled (and controlled) by using energy as the unifying theme, [16–19, 21]. A
complex physical system can be viewed as an interconnection of simpler subsystems.
The interconnection, in this framework, then results in the total energy being equal
to the sum of energies of individual subsystems. A fundamental result is that any
(power conserving) interconnection of (multiple) port-Hamiltonian systems results
in another port-Hamiltonian system, [8, 19]. Recently, the port Hamiltonian frame-
work has been extended to modeling dynamics on graphs, [22]; an extension of this
to communication networks may provide interesting results in stability and control.

1.2 Models of Wireless Communication Systems

Our objective in this work is to model the traffic flow in communication systems,
from an energy viewpoint, more specifically in a Hamiltonian setting.We abstract the
working methodology of the router to a set of simple differential equations—from a
traffic flow viewpoint. Note that data flow in a communication network is typically
considered in time slots or intervals. In this paper we make the assumption that the
data flow can be described by differential equations, and thus we model the traffic
flow as continuous linear time invariant systems.We focus on the data inflow/outflow,
the influence of the buffer on traffic dynamics, and the analogy of dissipation in such

1A routers link is utilized as long as the router is sending data on that link. Link utilization is
important, for, e.g., if a particular router is given a certain channel bandwidth and it is unable to use
that, it would be a significant waste of expensive resource.
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systems. While our focus is on router traffic, the same (or similar) dynamics can also
be used for other communication devices which have buffering capability.

Let ω(t) denote the number of buffered packets in a router at time t . Let ωξ

denote the size of the buffered packets in the router at time t . Next, let μ denote
the number of transmitted packets by the router at time t , and finally μξ denotes the
size of transmitted packets by the router at time t . We note the following constitutive
relationships:

ωξ = ω

q
, μξ = μ

s
(1.1)

with q and s being unit-less scaling constants.

1.2.1 Router Configuration—Transmitted Data Fed Back
to Receiver

First we consider the simplest possible router configuration, where the transmitted
data is directly fed back to the receiver side. Further we make the following assump-
tions:

• transmission is instantaneous and takes place at a fixed rate
• reception (through the looping back) is also instantaneous (i.e., no delays)
• no buffer overflows (infinite buffer assumed)
• no transmission or reception losses

Then we obtain the two differential equations governing the router dynamics as

dω

dt
= −μ,

dμξ

dt
= ωξ

The first differential equation, dωdt = −μ expresses that the rate of change in the num-
ber of buffered packets, ω(t) is a function of the number of packets that have been
transmitted (out of the buffer). The second differential equation, dμξ

dt = ωξ expresses
that the rate of change in the size of the transmitted packets is equal to the size of the
buffered packets—in other words, all the buffered packets are instanteneously trans-
mitted each time. In a Hamiltonian formulation we can rewrite the above equations
as follows. First, let (ω,μξ ) be the energy states and (ωξ , μ) be the energy co-states.

Then we define the Hamiltonian as H(ω,μ) = 1
2

(
ω2(t)

q + μ2
ξ (t)s

)
. Then we have

[
ω̇

μ̇ξ

]
=

[
0 −1
1 0

] [
∂ H
∂ω

= ωξ
∂ H
∂μξ

= μ

]
(1.2)

In fact, these are equations of a harmonic oscillator, and in this case we can compute
the time rate of the Hamiltonian as
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dH

dt
= ωξ (−μ) + μωξ = 0

which is indeedwhatwe expect froma harmonic oscillator system. Themain assump-
tion made in the set of Eq. (1.2) is that buffering and data transmission are instanta-
neous. In actual practice (always occurs during network congestion), usually only a
part of the buffered data is transmitted, and the router continues buffering the remain-
der of the data. Clearly, the assumptions we made above are unrealistic for wireless
systems. The following subsections will incorporate additional criteria to make the
models more realistic.

1.2.2 Router Configuration—No Reception, Only
Transmission

In the second case we assume the router is only transmitting data and is not receiving
any data. We assume that the router has some data already buffered, and this data is
being transmitted.

The dynamics then has the following form:

dω

dt
= −c1μ,

dμξ

dt
= c2ωξ

The interpretation of dμξ

dt = c2ωξ is simply that the buffer does not empty its contents
instantaneously, and in each time slot it can empty only c2ωξ amount of data. Simi-
larly, the interpretation of dω

dt = −c1μ is that the rate of change of buffered packets
is always a fraction (bounded from above by 1) of the total number of transmitted

packets. If we consider the Hamiltonian, as before, H(ω,μ) = 1
2

(
ω2(t)

q + μ2
ξ (t)s

)
,

we obtain the Hamiltonian dynamics as

[
ω̇

μ̇ξ

]
=

[
0 −c1
c2 0

][
∂ H
∂ω

= ωξ
∂ H
∂μξ

= μ

]
(1.3)

These dynamics are the same as the dynamics of a harmonic oscillator only when
c1 = c2 = 1. The resulting time rate of change of the Hamiltonian is

dH

dt
= ωξ (−c1μ) + μc2ωξ = (c2 − c1) μωξ (1.4)

The sign of dH
dt then depends on the relative values of c1 and c2. As an illustra-

tive simulation, we consider a router with 1000kb of buffered data; and a 10kbps
transmission rate; the router does not receive any data. In this example, when data
transmission just starts, c1 = 1 and then it keeps decreasing. c2 = 0 at the beginning
and and converges to 0.5 (toward the end of the data transmission). The left plot in
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Fig. 1.1 Simulation response for a system with buffered data and only data transmissions. a
Buffered (decreasing curve) and transmitted (increasing curve) packets; starting with 1000 buffered
packets and 0 transmitted packets. The buffer is empty after 12 time units. b Rate of change of the
Hamiltonian; also shown is the quadratic Hamiltonian function itself (the Hamiltonian values are
scaled for easy comparison). Minimum energy corresponds to c2 = c1

Fig. 1.1 shows the buffered and transmitted packets; after about 12 time units the
buffer is emptied. The right plot of Fig. 1.1 plots the time rate change of the Hamil-
tonian from Eq.1.4; the total energy (Hamiltonian) is also shown in this plot (the
quadratic curve). The interpretation of dH

dt being negative (i.e., c2 < c1) is that there
aremore buffered packets than transmitted packets,2 when dH

dt becomes positive (i.e.,
c2 > c1) there are more transmitted packets than buffered packets.3

1.2.3 Router Configuration—No Transmission, Only
Reception

In the third case we assume that the router is only receiving data with no data
transmissions. The dynamics then has the following form:

dω

dt
= 0 + η,

dμξ

dt
= 0

where η is the number of data packets being received by the router at time t . If we

consider the Hamiltonian, as before, H(ω,μ) = 1
2

(
ω2(t)

q + μ2
ξ (t)s

)
, we obtain the

Hamiltonian dynamics as

2We will see in Sect. 1.3 that this implies that the buffer utilization is improving, whereby buffer
utilization can be defined as simply the amount of buffer space that is being utilized.
3In Sect. 1.3 we will see that this implies that the buffer utilization is becoming poorer, and is not a
desirable condition in wireless communication.
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[
ω̇

μ̇ξ

]
=

[
0 0
0 0

] [
∂ H
∂ω

= ωξ
∂ H
∂μξ

= μ

]
+

[
1
0

]
η

Then
dH

dt
= ωξη > 0, if η > 0

In reality, the energy cannot indefinitely increase. A router does not have an infi-
nite buffer size, and once the routers buffer capacity limit is reached it begins to
discard data packets. This phenomena shall be modeled in a dissipation framework
in Sect. 1.2.6. In any case, we have the implication that H(ω,μξ ) is bounded from
above.

1.2.4 Router Configuration—Both Transmission
and Reception Enabled

In the last case, we assume the router is both receiving and transmitting data. The
dynamics then has the following form:

dω

dt
= −c1μ + η,

dμξ

dt
= c2ωξ

where η is the number of data packets being received by the router at time t . If we

consider the Hamiltonian, as before, H(ω,μ) = 1
2

(
ω2(t)

q + μ2
ξ (t)s

)
, we obtain the

Hamiltonian dynamics as

[
ω̇

μ̇ξ

]
=

[
0 −c1
c2 0

] [
∂ H
∂ω

= ωξ
∂ H
∂μξ

= μ

]
+

[
1
0

]
η (1.5)

Then
dH

dt
= (c2 − c1) μωξ + ωξη

In Fig. 1.2 we simulate the traffic of a router with varying input data rates and fixed
transmission rates.Note that theminimumenergy corresponds to c2 = c1. In Fig. 1.2c
the number of buffered packets, ω(t), remains constant since input data rate is equal
to transmission rate. The buffer utilization (which means the amount of buffer space
utilized, ideally this should be fairly high) for the two cases when η is greater than
or equal to the transmission rate is very good. In the first case when η is smaller than
the transmission rate, the buffer utilization is poor. However, when η is much greater
than the transmission rate, the buffer will quickly fill up, see Fig. 1.2e and this can
lead to router instability; this will be studied in Sect. 1.3.
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Fig. 1.2 Simulation response for a system with varying input data rates and fixed transmission
rates. a Input data rate = 50kbps, Transmission rate = 100kbps. Buffered data (decreasing) and
transmitted data (increasing). b Rate of change of the Hamiltonian and the quadratic Hamiltonian. c
Input data rate = 100kbps, Transmission rate = 100kbps. Buffered data (constant) and transmitted
data (increasing). d Rate of change of the Hamiltonian and the quadratic Hamiltonian. e Input
data rate = 150kbps, Transmission rate = 100kbps. Buffered data (increasing, smaller slope) and
transmitted data (increasing). f Rate of change of the Hamiltonian and the quadratic Hamiltonian



1 A Port-Hamiltonian Formulation of a Wireless Communication System 9

1.2.5 Dirac Structures

We have claimed that Eq. (1.5) is a port-Hamiltonian model. In this section we will
prove this claim by showing that the space of flows and efforts corresponding to the

interconnection structure

[
0 −c1
c2 0

]
is a Dirac structure. We consider the dynamics

as in Eq.1.5 and rewrite it as

[
ω̇

μ̇ξ

]
=

[
0 −1
1 0

]

︸ ︷︷ ︸
J

[
∂ H
∂ω

= ωξ
∂ H
∂μξ

= μ

]
+

[
0 1 − c1

c2 − 1 0

]

︸ ︷︷ ︸
B

[
∂ H
∂ω

= ωξ
∂ H
∂μξ

= μ

]
+

[
1
0

]
η

The matrix J :=
[
0 −1
1 0

]
is the standard skew-symmetric Poisson structure (and

hence Dirac). We denote the new matrix

[
0 1 − c1

c2 − 1 0

]
by B and call this the

Buffer structure. The resulting energy balance equation will have three terms, as
follows:

dH

dt
= 0 + (c2 − c1) μωξ + ωξη

The 0 power contribution is due to the skew-symmetric Poisson structure. The ωξη

power contribution is the supply rate. Finally, the (c2−c1)μωξ is thebuffered power in
the system. Note that this is not the dissipated power; there is no loss of energy/power
in the system. Instead, because the router is unable to transmit the entire received
data in a single time slot, some data are left buffered in the router. This is given by
(c2 − c1)μωξ .

Recall the definition of a Dirac structure from [21].

Definition 1.1 A constant Dirac structure on an l-dimensional linear space, F is a
linear subspaceD ⊂ F × F∗ such thatD = D⊥, where ⊥ is defined with respect to
a bilinear form on F × F∗.

It follows that 〈e| f 〉 = 0,∀(e, f ) ∈ D, [21].

Set fs :=
[

ω̇

μ̇ξ

]
, es :=

[
∂ H
∂ω
∂ H
∂μξ

]
, e := ∂ H

∂ω
and f := η. Denote x = [

ω,μξ

]T .

Then we have the energy balance

dH(x)

dt
= ∂ H

∂x
ẋ = − eT

s fs =
[

∂ H
∂ω

∂ H
∂μξ

] [
ω̇

μ̇ξ

]

⇒ eT
s fs + (c2 − c1)ωξμ + ∂ H

∂ω
η = 0

⇒ eT
s fs︸︷︷︸

stored power

+ (c2 − c1)ωξμ︸ ︷︷ ︸
buffered power

+ e f︸︷︷︸
supplied power

= 0
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Fig. 1.3 The
port-Hamiltonian structure
which includes a buffer
element; note that dissipation
has not yet been considered

Thus 〈〈·, ·〉〉 = 0 and this bilinear form defines a Dirac structure for the matrix
operator J + B on the space F × F∗. There is an additional term, (c2 − c1)ωξμ,
which is not seen in the usual energy balance equations for standard physical systems.
Denote (c2 − c1) by c̃, so we have c̃ωξμ, which corresponds to the buffered energy
in the system. This motivates a modified port-Hamiltonian interconnection structure,
e.g., see p. 14 of [21] for the standard port-Hamiltonian interconnection structure, as
follows (Fig. 1.3).

1.2.6 Including Dissipation

The analogy of electrical ormechanical dissipation for a communication system (e.g.,
a single router) is related to congestion control. Wireless technologies have become
very popular in the past decade. This has led to a proliferation of devices connected
over a WiFi channel (such as 802.11). Inevitably, this has led to network congestion.
Even in wired communication systems congestion is a commonly observed problem.

Consider Fig. 1.4 where there are six routers, each modeled as a port-Hamiltonian
system as in Eq.1.5. Router 1, denoted by

∑
1, is transmitting to router 3,

∑
3; and

router 2,
∑

2, is transmitting to router 4,
∑

4. This example is stronglymotivated from
the example presented in [6]; we present the same example in a port-Hamiltonian
context. Denote, as in [6], λi to be the sending rate of router i , and λ̃i to be the

Fig. 1.4 Six routers, modeled as PH systems Σi , with channel capacities indicated
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Fig. 1.5 Simulation of network inefficiency when upstream routers do not have feedback from
downstream routers. a Router1 Without feedback (light), with feedback (dark). Both buffered and
transmitted packets are shown. b Router2 Without feedback (light), with feedback (dark). Both
buffered and transmitted packets are shown. c Energy rate change for router 1, with (dark) and
without (light) feedback. d Energy rate change for router 2, with (dark) andwithout (light) feedback

actual outgoing rate of router i . Assuming there is no feedback from the network
the total throughput is just 20kbps. This is because source 2 is limited to 10kbps
because of link 5. And because source 1 is competing with source 2 (which is trying
to transmit at 1000kbps) on link 3, source 1 can only transmit at 10kbps. Thus the
total throughput is 20kbps. However, if source 2 knew (via feedback) that it cannot
exceed 10kbps, it would not attempt to transmit at 1000kbps, and it would simply
transmit at 10kbps. Then source 1 could have transmitted at 100kbps. This is a form
of network inefficiency and it can lead to the phenomena of congestion collapse,
[6, 10]—which simply means that the achieved throughput → 0 as the offered load
→ ∞.

In Fig. 1.5 we perform simulations to model the effect of feedback on the router
traffic dynamics. In Fig. 1.5a we see the buffered and transmitted packets of router
1 under conditions of no feedback and when feedback is present. Note that when
feedback is not present (router 1 operates at 10kbps throughput); when feedback
is present (router 1 operates at 100kbps) and Fig. 1.5a shows a significantly faster
response time in emptying the buffer (the two dark curves until t = 150. When feed-
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back is absent, Fig. 1.5a shows a much slower response time in emptying the buffer
(takes about 1000 time units). Router 2, in Fig. 1.5b has the same response times
since it continues to operate at 10kbps throughout with or without feedback. We
observe in Fig. 1.5c that the slope for dH

dt is much sharper with feedback and with the
sign changing very quickly, indicating that buffer utilization is reducing faster and
leading to reduced buffer stability; we will study this formally in Sect. 1.3. To imple-
ment congestion control each node (router) requires feedback from the downstream
network. Feedback may be in the form of missing packets (downstream); if missing
packets are detected the sources reduce their transmission rate. In congestion, con-
trol dropping packets (often deliberately) is a form of feedback control, whereby the
upstream nodes detect the dropped packets and react by reducing their transmission
rates. Note that a router may also drop packets if the buffer is filled up. In this paper
we model the dropping of packets in the dissipation framework of port-Hamiltonian
systems. This dissipation is not always present in the system dynamics; and is usually
observed only during congestion and occurs at discrete time intervals. To model this
we first have the following dynamics for the buffered packets:

dω

dt
= −c1μ − Rωω + η

where the parameter Rω(t)ω(t) models the number of dropped packets (from the
buffer) at time t . We then have the corresponding port-Hamiltonian dynamics:

[
ω̇

μ̇ξ

]
=

[
0 −1
1 0

]

︸ ︷︷ ︸
J

[
∂ H
∂ω

= ωξ
∂ H
∂μξ

= μ

]
+

[
0 1 − c1

c2 − 1 0

]

︸ ︷︷ ︸
B

[
∂ H
∂ω
∂ H
∂μξ

]
−

[
Rω 0
0 0

]

︸ ︷︷ ︸
R

[
∂ H
∂ω
∂ H
∂μξ

]
+

[
1
0

]
η

(1.6)
This corresponds to the standard port-Hamiltonian input-output model with dissipa-

tion, with J − R =
[−Rω −1

1 0

]
. Denote: e := ∂ H

∂ω
, f := η. We then have the energy

balance as

dH

dt
= eT

s fs︸︷︷︸
stored power

+ c̃μωx i︸ ︷︷ ︸
buffered power

+ e f︸︷︷︸
supplied power

− Rωω2
ξ︸ ︷︷ ︸

dissipated power

= 0 (1.7)

With dissipation included we obtain the complete structure of the port-Hamiltonian
system for the class of communication systems considered in this paper and is as
shown below (Fig. 1.6).
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Fig. 1.6 The
port-Hamiltonian structure
which includes a buffer
element; note that dissipation
has not yet been considered

1.3 Formal Characterization of Stability, Buffer Utilization,
and System Latency

A fundamental problem in wireless communication networks is that of designing
a scheduling policy that is guaranteed to stabilize the node buffers (i.e., a router
in a network) for a given arrival process with some specified arrival rate. Related
problems involve guaranteed maximum latency (i.e. delay) and buffer utilization
(discussed below). While we do not discuss scheduling policies in this chapter, the
concept of stability, latency, and buffer utilization will be analyzed below. A typical
definition of stability for wireless networks is as follows, see [15].

Definition 1.2 (Buffer/Router Stability) Let ω(t) be the number of packets in a
routers buffer at time t . The buffer is called stable if

lim
B→∞ lim

t→∞ sup Pr{ω(t) > B} = 0

The above definition simply says that a queue is stable if its asymptotic buffer over-
flow probability goes to zero as the buffer size, B, goes infinitely large, [15]. In other
words the queue length (in the buffer) should not go to infinity! The network is called
stable if all node buffers are stable.

Scheduling algorithms should also consider end-to-end delays (latency). Network
delay is characterized as acceptable if,

Pr

(
X agg(t)

λ

)
> τd = 0

where X agg(t) denotes the aggregated queue length, λ denotes the arrival rate, and τd

denotes the service time allowed to a particular task. (Assuming packets are arriving
at a constant rate and all queues are First In First Out), [23]. The above definition is
simply saying that the delay in the network is considered acceptable if the probability
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that the latency exceeds a delay threshold is zero. Another way tomeasure the latency
is, related to the definition in [3], as follows:

Definition 1.3 (Latency) The packet latency can be defined as the ratio of the buffer
size to the channel/link capacity, i.e.,

τ = B

C
and τcurrent = ω(t)

μ(t)/s

where B is the buffer sizing required to keep the link fully utilized (see Definition
1.4 and the discussion following that), μ/s is the number of packets transmitted in
a unit interval of time, and C is the channel/link capacity (in bits per sec). Note that
τ is the maximum latency possible when the buffer is full, and τcurrent is the current
latency experienced by a user.

Buffers add queuing delay, and this increases packet latency. Thus as the requirement
on the current buffer size increases, the queuing delay (latency) proportionately
increases.

A different problem exists in the utilization of the buffer.

Definition 1.4 (Buffer Utilization) (optimal) Buffer utilization is defined as the
amount of buffer sizing required in order to keep the link fully utilized while ensuring
latencies satisfy service times, during congestion.

While buffer utilization may be simply defined as the amount of buffer space occu-
pied; buffer utilization is strongly linked to the channel/link utilization. The link or
channel utilization must remain high always, especially during congestion. This in
turn implies that a router’s buffer must never be empty, or else the link utilization can
go down. Thus during congestion we can expect that the desired relation between the
buffer size and channel capacity to be as follows: c(t) → C ⇒ ω(t) → B̃, where
c(t) is the current channel utilization and C is the maximum channel capacity, ω(t)
captures the current buffer usage, and B̃ is the congestion buffer threshold (B̃ < B).
Note that B is the buffer size which is calculated via a standard rule set forth in [23]
and is theoretically high enough to ensure complete link utilization during conges-
tion, see the footnote below. For example, advanced congestion control mechanisms
prefer the buffer size, B̃, to be as high as possible (during congestion) so that link
utilization remains high—but below4 the typical buffer size B obtained via the [23]
rule, so as to keep latencies under control.

Definition 1.5 (Link Utilization) Link utilization can be defined as the ratio of the
current data transfer rate to the link capacity, i.e.,

4How much below is a complicated question. One standard buffer sizing rule used is based on the
round trip time of a flow and channel capacity, and is given by B = RT T × C , [23]. Studies
have shown that this rule leads to large buffer sizing, and can lead to unacceptable latencies; and
these studies, [3] have provided new mechanisms for router buffer sizing (with B̃ < B), which can
provide acceptable latencies while ensuring link utilization is high.
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LU = μ(t)/s

C

where μ/s is the number of packets transmitted in a unit interval of time.

Ideally, during congestion, we require LU = 1.
To summarize, the four parameters—buffer utilization, link utilization, latency,

and stability—are strongly linked with each other; in the following subsection we
analyze these parameters in relation to our port-Hamiltonian model, Eq. 1.5. Note
that while we ignore the port Hamiltonian model with dissipation below, the same
result can be easily extended to the case with dissipation.

1.3.1 Analysis of Stability, Buffer Utilization, Link Utilization,
and System Latency in a Port-Hamiltonian Setting

In this section we analyze stability, latency, and buffer utilization in a port-
Hamiltonian setting. Specifically, we will study the time rate of change of the Hamil-
tonian, dH

dt and analyze these properties. The analysis below studies how the energy
balance equation directly influences these four crucial performance parameters of a
communication system:

Remark 1.6 Consider the system dynamics as in Eq.1.5 and the associated energy
balance equation dH

dt = (c2 − c1) μωξ + ωξη. Assuming that the input η(t) is con-
stant, we then have the following:

(1) c2 = 0 ⇒ dH(t)
dt > 0 if η(t) > μ(t), and leads to decreasing buffer stability,

optimal link utilization, and poor latency
(2) c2 = 0 ⇒ dH(t)

dt ≤ 0 if η(t) ≤ μ(t), and leads to increasing buffer stability,
low link utilization, and low latency

(3) c1 = 0 and η(t) > 0 ⇒ dH
dt > 0 leads to buffer instability and zero link

utilization
(4) c2 = c1 ⇒ d H

dt > 0, leads to increasing buffer stability, reduced buffer utiliza-
tion

(5) For 0 < c2 < c1, a large negative dH
dt leads to improved buffer utilization but

reduced buffer stability, whereas a smaller negative dH
dt leads to reduced buffer

utilization and increased buffer stability.
(6) For 0 < c1 < c2, a large positive dH

dt leads to reduced buffer utilization but
increased buffer stability, whereas a smaller positive dH

dt leads to increased
buffer utilization and reduced buffer stability.

We now analyze the statementsmade inRemark 1.6. The time rate of theHamiltonian
is dH

dt = (c2 − c1) μωξ + ωξη.

• c2 = 0 and η(t) > μ(t): Clearly, we have that dH
dt is an increasing function. This

has the implication that the number of packets in the buffer, ω(t), will eventually
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exceed the buffer capacity and will lead to instability, i.e., lim
t→∞ω(t) > B; where

B is the buffer capacity threshold. The link utilization, LU = μ(t)/s
C → 1 only

if sufficient buffered data is always available. In the current case we have that
ω(t) > μ(t) (at least after a finite time) implying that the requirement for buffered
space is continuously increasing (and in finite time ω(t) → B̃)—indicating high
buffer utilization and thereby LU → 1.

• c2 = 0 and η(t) < μ(t): Clearly we have that dH
dt is a decreasing function. This

has the implication that μ(t) > ω(t). Thus ω(t) < B,∀t and the router queue
will be stable. Further, the link utilization LU < 1, since ω(t) is a decreasing
function. Thus, though μ(t) > ω(t) we observe that μ(t) is either a constant or a
decreasing function and hence LU < 1. Further, we have ω(t)/μ(t) < 1, which
will lead to poor buffer utilization.

• c2 = c1 = 1: This corresponds to the situation where the router does not buffer
any incoming packets, it instantaneously transmits any incoming data. Then dH

dt =
ηωξ . This is an ideal situation from a user perspective, since the user will not
experience any delays in receiving the data. The problem with this is that the
buffer remains underutilized and link utilization will be poor.

• c2 − c1 < 1: Denoting c̃ for (c − 1) we have: dH
dt = c̃μωξ + ηωξ ,with c̃ < 0.

Assume that η(t) is a (nonzero) constant. The larger c̃ is, the more negative is
dh
dt , the smaller c̃ is, the less negative dH

dt is. The interpretation of a large c̃ is
that c is fairly small, thus the number of transmitted packets at time t , is small.
This can cause issues from a QoS perspective, where the user may experience
significant latencies; however, the buffer utilization improves—and the system
dynamics moves closer to instability. The interpretation of a smaller c̃ is exactly
the opposite: decreased latency (and increased QoS) and poor buffer utilization—
but system dynamics has improved stability.

1.4 Compositionality Results in Communication Systems

A fundamental result in the area of port-Hamiltonian systems is that the compo-
sition of two Dirac structures is again a Dirac structure [19, 21]. If we consider
the total energy to be the sum of the energies of individual physical system, then
the power conserving interconnection of two port-Hamiltonian systems is again a
port-Hamiltonian system [19, 21]. In this section we study the interconnection of
two port-Hamiltonian systems, each representing a communication system equipped
with a buffer.

In a wireless networkwithmultiple nodes (e.g., routers), often the nodes enter into
contention for channel access.When this happens, collisions occur and this can result
in lost data. Further, there are other reasons for data loss—related to the physical
medium—e.g., path loss, which describes the radio signal attenuation caused by
free space propagation, scattering, reflection, etc. Thus, data loss in communication
systems will occur in general, and especially during congestion. From a systems
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viewpoint we can consider the data loss (due to any of these reasons) as being a
result of interconnection loss (and could be looked upon as a dissipation in the
interconnection, i.e., lossy interconnection). Indeed, the following result formally
captures this in the sense that when we interconnect two Dirac structures, the data
loss can be captured through a lossy interconnection. The following theorem is an
extension of the compositionality proof in [8].

Theorem 1.7 Let DA denote the Dirac structure which represents router A, and let
DB denote the Dirac structure representing router B. We have DA ⊂ F1×F∗

1×F2×
F∗
2, and defined w.r.t. their bilinear forms. Then DA||DB is also a Dirac structure

w.r.t. the bilinear form on F1 × F∗
1 × F3 × F∗

3, with a lossy interconnection.

Proof This proof follows the same spirit as that of Cervera et al. If DA and DB are
Dirac structures, then they admit the following image representations:

DA = [E1 F1 E2A F2A 0 0]T

DB = [0 0 E2B F2B E3 F3]T

Furthermore, for the composition of the two Dirac structures we place the following
constraint:

e2A = e2B, f2A = −k f2B

Then ( f1, e1, f3, e3) ∈ DA||DB ⇐⇒ ∃λA, λB s.t.

[ f1 e1 0 0 f3 e3]T =
[

E1 F1 E2A F2A 0 0
0 0 E2B −k F2B E3 F3

]T [
λA

λB

]
⇐⇒

∀ (β1, α1, β2, α2, β3, α3) s.t.

[
β1 α1 β2 α2 β3 α3

] [
E1 F1 E2A F2A 0 0
0 0 E2B −k F2B E3 F3

]T

= 0

This gives

βT
1 f1 + αT

1 e1 + βT
2 f2A − kβT

2 f2A + αT
2 e2A − αT

2 e2B + βT
3 f3 + αT

3 e3 = 0

⇒ βT
1 f1 + αT

1 e1 + βT
3 f3 + αT

3 e3 + βT
2 f2A (1 − k) = 0

⇐⇒
∀ (α1, β1, α2, β2, α3, β3) s.t.
[

F1 E1 F2A E2A 0 0
0 0 −k F2B E2B F3 E3

]T [
β1 α1 β2 α2 β3 α3

] = 0

⇐⇒ ∀ (α1, β1, α3, β3) ∈ DA||DB

βT
1 f1 + αT

1 e1 + βT
3 f3 + αT

3 e3 = βT
2 f2A (k − 1)
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ThusDA||DB = (DA||DB)⊥diss and is a Dirac structure with interconnection losses
characterized by βT

2 f2A (k − 1). �

Theorem 1.7 shows that, in communication networks, the interconnection of two
communication systems (such as routers) is lossy. We proved that the resulting
interconnection is again a Dirac structure with interconnection losses. Consider a
network of N routers, each router being modeled as a port-Hamiltonian system.
We have the corresponding Dirac structures Di , i = 1, . . . , N . Assume that D1 is
a source sending packets, at a constant rate η(t), to the destination DN . Further,
assume that each Di , i = 2, . . . , N − 1 also receive traffic from other sources. Let
us denote the interconnection losses, captured by βT

2 f2A (k − 1) in Theorem 1.7, by
Li j , i �= j, i = 1 : N − 1, j = 2 : N . Then we have that the total interconnection

losses in the network is the sumof each interconnection loss, i.e.,L =
i=N , j=N−1∑

i=1, j=2
Li j .

Let Lthresh be the total packet losses a network can tolerate (in terms of Quality of
Service, fairness, and stability measures). Then if L > Lthresh,∀t the network will
experience any (or all) of these issues: degraded latency, buffer instability, and poor
link utilization. In fact it is possible to show, though not in this work, that there is a
cascading effect on the entire network which can lead to severe traffic congestion or
even network failure.

1.5 Conclusions

In this chapter we provide a port-Hamiltonian formulation of wireless network traffic
flow, under the assumption of deterministic flows. The resulting Dirac structure for
such systems indicates an additional term in the power balance equation, which we
term as the buffered power. The loss of packets, from the buffer, is modeled as a dissi-
pation term in the dynamics.We analyze buffer stability, channel/link utilization, and
latencies using the energy balance equation. Finally we prove that the composition
of two Dirac structures, each representing a communication system with buffering
capability, is again a Dirac structure but with lossy interconnection.

The work here opens interesting possibilities. One is a study of the various con-
servation laws and symmetries inherent in such systems. Another is the development
of novel routing protocols, for e.g., using Casimirs. Another possibility can be the
study of communication networks on graphs, in a port-Hamiltonian setting—where
stability and performance of large-scale communication networks can be analyzed
in the well-established energy modeling framework of port-Hamiltonian systems.
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Chapter 2
Dirac Structures and Control
by Interconnection for Distributed
Port-Hamiltonian Systems

Alessandro Macchelli

Abstract The aim of this work is to show how the Dirac structure properties can be
exploited in the development of energy-based boundary control laws for distributed
port-Hamiltonian systems. Stabilisation of non-zero equilibria has been achieved by
looking at, or generating, a set of structural invariants, namely Casimir functions, in
closed-loop, and geometric conditions for the problem to be solved are determined.
However, it is well known that this method fails when an infinite amount of energy is
required at the equilibrium (dissipation obstacle). So, a novel approach that enlarges
the class of stabilising controllers within the control by interconnection paradigm is
also discussed. In this respect, it is shown how to determine a different control port
that is instrumental for removing the intrinsic constraints imposed by the dissipative
structure of the system. The general theory is illustrated with the help of two related
examples, namely the boundary stabilisation of the shallow water equation with and
without distributed dissipation.

2.1 Introduction

Port-Hamiltonian systems have been introduced about 20 years ago to describe
lumped parameter physical systems in a unified manner, [4, 25, 26]. For these sys-
tems, the dynamic results from the power conserving interconnection of a limited set
of components, each characterised by a particular “energetic behaviour,” i.e. storage,
dissipation, generation and conversion. The generalisation to the infinite dimensional
scenario leads to the definition of distributed port-Hamiltonian systems [13, 27], that
have proved to represent a powerful framework for modelling, simulation and con-
trol physical systems described byPDEs.Distributed port-Hamiltonian systems share
analogous geometric properties with their finite dimensional counterpart, and also
the control development follows the same rationale.
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This first paragraph well summarises the scientific scenario at the time I had
the luck to meet Arjan, and to start collaborating with him. It was in 2001, I have
to say a life ago for me, from a scientific and personal point of view. I had been
staying for 6 months at the Mathematical Department of the University of Twente as
a visiting Ph.D. student, with the initial idea of working on some fancy connection
between sliding-mode control and port-Hamiltonian systems. After some time spent
discussing with Arjan, I completely changed the topic, and I started to look at these
distributed port-Hamiltonian systems, a new line of research that Arjan and Bernhard
Maschke were starting to develop at those times. Everything was so intriguing to me
that I continued to work on it during a second period in Twente for a Post-Doc in
2003, and until now. What I actually am professionally, I owe it also to Arjan, to
his patience and clearness in teaching, and to his support and precious suggestions.
The motivating idea behind this chapter is then to frame some new results on the
control of distributed port-Hamiltonian systems within the classical theory and core
properties of port-Hamiltonian systems, topics that Arjan thought to me and to many
other PhD students during these years, and on which he is still contributing a lot. In
fact, some of the results presented here are based on some recent results by him and
his students for lumped parameter systems.

Since the first time I heard about distributed port-Hamiltonian systems, the general
theory has been developed a lot, and most of the current research on control and
stabilisation deals with the development of boundary controllers. For example, in
[14, 15, 20, 23, 24], this task has been accomplished by generating a set of Casimir
functions in closed-loop that independently from theHamiltonian function relates the
state of the plantwith the state of the controller, a finite dimensional port-Hamiltonian
system interconnected to the boundary of the distributed parameter one. The shape
of the closed-loop energy function is changed by acting on the Hamiltonian of the
controller. This procedure is the generalisation of the control by interconnection
via Casimir generation (energy-Casimir method) developed for finite dimensional
systems [19, 25], and the result is an energy-balancing passivity-based controller
that is not able to deal with equilibria that require an infinite amount of supplied
energy in steady state, i.e. with the so-called “dissipation obstacle.”

In finite dimensions, the dissipation obstacle has been solved within the control by
interconnection paradigm by defining a new passive output for the original system in
such a way that, in closed-loop, a new set of Casimir functions that can be employed
with success in the energy-shaping procedure is present, [8, 18, 28]. More precisely,
in [28], a constructive way to modify the Dirac structure of the system in order to
obtain a new interconnection structure that is associated to the same state evolution,
but with potentially different Casimir functions is provided. Among such larger set
of structural invariants, it is then possible to find the “right” Casimir functions to be
employed in the control by interconnection synthesis.

Even if inspired by [28], the approach proposed here is quite different. Starting
from the geometrical properties of those energy-shaping control techniques that are
not limited by the dissipation obstacle [11, 12], the conditions that the Casimir func-
tions should respect to obtain the same results within the control by interconnection
paradigm are deduced. Then, for the given plant, new Dirac and resistive structures
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that allow to have not only the same state evolution, but also the previously deter-
mined Casimir functions in closed-loop are computed. At the end, the result is a new
control port and, similarly to [28], the final closed-loop system is characterised by
the desired set of invariants, and the limits of the “classical” control by intercon-
nection are clearly removed. It is worth noting that, for distributed port-Hamiltonian
systems, the key point is the formulation of the interconnection structure in infinite
dimensions in terms of a Dirac structure on a Hilbert space, [6, 7].

This chapter is organised as follows. In Sect. 2.2, a short background on Dirac
structures on Hilbert spaces and infinite dimensional port-Hamiltonian systems is
given. In Sect. 2.3, the control by interconnection and the control by energy-shaping
are discussed from a geometrical point, i.e. the applicability of the methods is related
to the properties of the Dirac structure of the system that has to be stabilised. Then,
in Sect. 2.4, the problem of defining a new control port that allows to overcome
the dissipation obstacle within the control by interconnection paradigm is discussed.
Then, in Sect. 2.5, the general methodology is illustrated with the help of an example,
namely the shallow water equation with and without dissipation. Conclusions and
ideas about future research activities are reported in Sect. 2.6.

2.2 Background

2.2.1 Dirac Structures

A Dirac structure is a linear space which describes internal power flows, and the
power exchange between the system and the environment. Denote by F × E the
space of power variables, with F an n-dimensional linear space, the space of flows
(e.g., velocities and currents) and E ≡ F∗ its dual, the space of efforts (e.g., forces
and voltages), and by 〈e, f 〉 the power associated to the port ( f, e) ∈ F × E , where
〈·, ·〉 is the dual product between f and e.

Definition 2.1 Consider the space of power variables F × E . A (constant) Dirac
structure on F is a linear subspace D ⊂ F × E such that dimD = dimF , and
〈e, f 〉 = 0, ∀( f, e) ∈ D.

ADirac structure, then, defines a power conserving relation onF×E . As discussed
in the next Proposition, different representations are possible, [3].

Proposition 2.2 Assume that F = E = R
n, which implies that 〈e, f 〉 = eT f . Then,

for any Dirac structure D ⊂ F × E , with there exists a pair of n × n matrices F and
E satisfying the conditions

E FT + F ET = 0 rank
(
F | E

) = n (2.1)
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such that D can be given in kernel representation as

D =
{
( f, e) ∈ F × E | F f + Ee = 0

}
(2.2)

or in image representation as

D =
{
( f, e) ∈ F × E | f = ETλ, e = FTλ, λ ∈ R

n
}

(2.3)

The definition of Dirac structure can be generalised to deal with distributed para-
meter systems. A possible way is to assume that the space of power variables is an
Hilbert space. In this respect, Dirac structures onHilbert spaces have been introduced
in [7], while their kernel and image representations in [6]. Here, we assume that the
space of flows F is an Hilbert space, and that the space of efforts is E ≡ F . Instead
of providing their formal definition, which follows the same rationale of the finite
dimensional case, their kernel and image representations is directly presented in the
next Proposition, [6].

Proposition 2.3 For any Dirac structure D ⊂ F × E on an Hilbert space F ≡ E ,
there exists linear maps F : F → Λ and E : E → Λ satisfying the conditions

F E∗ + E F∗ = 0 ran
(
F E

) = Λ

being Λ an Hilbert space isometrically isomorphic to F , such that

D =
{
( f, e) ∈ F × E | F f + Ee = 0

}
(2.4)

or, equivalently, such that

D =
{
( f, e) ∈ F × E | f = E∗λ, e = F∗λ, ∀λ ∈ Λ

}
(2.5)

Here, · and ·∗ denote the closure and the adjoint of an operator, respectively, [2].

2.2.2 Port-Hamiltonian Systems

Either in the case of lumped and distributed parameter port-Hamiltonian systems,
once the Dirac structure is given, the dynamics follows when the resistive structure
and the port behaviour of the energy-storage elements are given. Generally speaking,
theDirac structure defines a power conserving relation between several port variables,
e.g. two internal ports ( fS, eS) ∈ FS×ES and ( fR, eR) ∈ FR×ER , which correspond
to energy-storage and dissipation respectively, and an external port ( fC , eC ) ∈ FC ×
EC which is devoted to an exchange of energywith a controller.As far as the behaviour
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at the resistive port is concerned, let us assume that the following linear resistive
relationR holds

R f fR + ReeR = 0 (2.6)

where R f and Re are nR × nR matrices such that

R f RT
e = Re RT

f > 0 rank(R f | Re) = nR (2.7)

Even if most of the results presented here can be applied to a more general class of
systems, in this paper we refer to the family of distributed port-Hamiltonian systems
that have been studied in [9, 29], i.e. to systems described by

∂x

∂t
(t, z) = P1

∂

∂z

(L(z)x(t, z)
) + (P0 − G0)L(z)x(t, z) (2.8)

with x ∈ X and z ∈ [a, b]. Moreover, P1 = PT
1 > 0, P0 = −PT

0 , G0 = GT
0 ≥ 0,

and L(·) is a bounded and continuously differentiable matrix-valued function such
that L(z) = LT(z) and L(z) ≥ κ I , with κ > 0, for all z ∈ [a, b]. For simplicity,
L(z)x(t, z) ≡ (Lx)(t, z). The state space isX = L2(a, b;Rn), and is endowed with
the inner product 〈x1 | x2〉L = 〈x1 | Lx2〉 and norm ‖x1‖2L = 〈x1 | x1〉L, where
〈· | ·〉 denotes the natural L2-inner product. The selection of this space for the state
variable is motivated by the fact that H(·) = 1

2 ‖·‖2L is the energy function.
To define a distributed port-Hamiltonian system, the PDE (2.8) has to be “com-

pleted” by a well-defined boundary port. More precisely, given Lx ∈ H1(a, b;Rn),
the boundary port variables are the vectors fC , eC ∈ R

n given by

(
eC

fC

)
= 1√

2

(
W
W̃

)(
P1 −P1
I I

) (
(Lx)(b)

(Lx)(a)

)
(2.9)

where W and W̃ are full rank n × 2n matrices such that WΣWT = W̃ΣW̃T = 0,
and WΣW̃T = I , being

Σ =
(
0 I
I 0

)

As discussed in [9, 11], it is possible to verify that Ḣ(x(t, ·)) ≤ eTC (t) fC (t), and
that (2.8) is characterised by a Dirac structure on the space of flows FS ×FR ×FC ,
with FS = L2(a, b;Rn), FR = L2(a, b;Rr ), and FC = R

n , being r = rankG0.
The couple of operators F : F → Λ and E : E → Λ introduced in Proposition 2.3
are given by

F = (
FS FR FC

)
E = (

ES ER EC
)

(2.10)
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where

Λ = L2(a, b;Rn) × L2(a, b;Rr ) × {0} × R
n (2.11)

being {0} ⊂ R
n the set containing only the origin of Rn . Moreover, we have that

FS =

⎛
⎜⎜⎝

I
0
0
0

⎞
⎟⎟⎠ FR =

⎛
⎜⎜⎝
0
I
0
0

⎞
⎟⎟⎠ FC =

⎛
⎜⎜⎝
0
0
0
I

⎞
⎟⎟⎠

ES =

⎛
⎜⎜⎝

P1
∂
∂z + P0

−GT
R−W RBJ

−W̃ RBJ

⎞
⎟⎟⎠ ER =

⎛
⎜⎜⎝

G R

0
0
0

⎞
⎟⎟⎠ EC =

⎛
⎜⎜⎝
0
0
I
0

⎞
⎟⎟⎠

(2.12)

where BJ (e) =
(

e(b)

e(a)

)
, with e ∈ L2(a, b;Rn), and

dom
(
F E

) =
{
( f, e) ∈ F × E | eS abs. continuous,

∂eS

∂z
∈ L2(a, b;Rn), and eC = W RBJ (eS)

}

(2.13)

It is easy to verify that the port-Hamiltonian system (2.8) is a consequence of the
following port behaviour at the storage and resistive ports:

fS = −∂x

∂t
eS = δH

δx
(x) = Lx eR = −Ḡ fR (2.14)

where δ denotes the variational derivative, and G R in (2.12) and Ḡ are such that
G0 = G RḠGT

R , [27].Note that the resistive relation is in the form (2.6)with R f = Ḡ,
Re = I and nR = r . Finally, simple calculations show that F∗

S = FT
S , F∗

R = FT
R ,

F∗
C = FT

C , E∗
R = ET

R , and

E∗
S = (−P1

∂
∂z − P0 −G R 0 0

)
E∗

C = (
W̃ RBJ 0 0 0

)

with λ = (λS, λR, 0, λu), and

dom

(
F∗
E∗

)
=

{
λ ∈ Λ | λu = W RBJ (λS)

}
(2.15)
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2.3 Control by Interconnection and Energy-Shaping

If a port-Hamiltonian control systemwithHamiltonian HC is interconnected in power
conserving way to the control port ( fC , eC ) of (2.8), the closed-loop system is again
in port-Hamiltonian form, and with Hamiltonian given by the sum of the two, i.e.
by Hcl(x, xC ) = H(x) + HC (xC ), being xC the state variable of the controller. To
use this closed-loop Hamiltonian as Lyapunov function, one has first to guarantee
that this function has a minimum at the desired equilibrium with a proper choice of
HC . In both the final and infinite dimensional cases, if it is possible to find structural
invariants (i.e., that do not depend on theHamiltonian, but only on theDirac structure)
named Casimir functions of the form

C(x, xC ) = xC − Ξ(x) (2.16)

with Ξ(x) some smooth well-defined functional of x , then on every invariant mani-
fold defined by xC − Ξ(x) = κ , with κ ∈ R a constant which depends on the initial
plant and controller state, the closed-loop Hamiltonian may be written as, [19, 25]:

Hcl(x) = H(x) + HC (Ξ(x) + κ) (2.17)

Hence, the closed-loop equilibrium now depends on the choice of HC , and on the
invariant manifold defined by the Casimir functions the Hamiltonian Hcl depends on
the state variable x of the plant only.

Definition 2.4 Consider a closed-loop system obtained from the power conserving
interconnection at ( fC , eC ) between a couple of port-Hamiltonian systems, namely
a plant with state space X , and a (finite dimensional) controller with state space
XC ≡ R

mC for some mC . Then, a function C : X ×R
mC → R is a Casimir function

if Ċ = 0 along the trajectories of the closed-loop system for every possible choice
of H(·) and HC (·).

The applicability of the control by interconnection methodology relies then on
the existence of a proper set of Casimir functions. Such property is fundamental
to be able to properly shape the open-loop Hamiltonian function H , and achieve
desired stability properties in closed-loop. Unfortunately, the dissipative structure of
the plant may limit the number or even the existence of such structural invariants.
It is well known, in fact, that a Casimir function cannot depend on the coordinates
on which dissipation is present, and this implies that it is not possible to shape the
closed-loop energy function along these directions. This limitation is also known as
dissipation obstacle, [19].

In [1, 28], an effective way to determine the achievable Casimir functions for the
closed-loop system when the plant is finite dimensional and without knowing the
controller and by relying only on the Dirac and resistive structures of the plant is
proposed. Such result can be generalised to infinite dimensions, [11].
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Proposition 2.5 Denote by x ∈ X the state of the plant, and by xC ∈ R
nC the state

of the to-be-designed controller. Then, the achievable Casimir functions C(x, xC )

associated to the Dirac structure on Hilbert space with kernel representation (2.4)
and operators F and E given as in (2.12) for any kind of power conserving inter-
connection with the controller are such that

(
0 0 f TC

δTC
δx (x, xC ) 0 eTC

)T ∈ D (2.18)

for some ( fC , eC ) ∈ FC × EC .

Corollary 2.6 Condition (2.18) with C(x, xC ) given as in (2.16) is equivalent to

−

⎛
⎜⎜⎝

0
0

δC
δx (x, xC )

0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0

δΞ
δx (x)

0

⎞
⎟⎟⎠ ∈ ran

⎛
⎜⎜⎝

E∗
S

E∗
R

F∗
S

F∗
R

⎞
⎟⎟⎠ (2.19)

Proof The result follows from the image representation of a Dirac structure (2.5).

The constraints imposed at the resistive port ( fR, eR) in (2.18) or, equivalently,
(2.19) imply that if C is a Casimir for a specific resistive relation (2.6) that satisfies
(2.7), then C is a Casimir for all the possible resistive relations, i.e. it is independent
from the behaviour at the dissipative port. Thanks to this property, the dissipation
obstacle is fully characterised from a geometrical point of view both in the finite and
infinite dimensional cases, [4, 10–12, 25, 26]. The intrinsic limitations of the control
by interconnection paradigm can be removed if the control action is explicitly thought
in terms of a state-feedback law that is able to map the initial system into a new one.
The target dynamics is characterised by desired Dirac structure, resistive relation,
and Hamiltonian Hd(x) = H(x) + Ξ(x), where now Ξ is not necessarily related
to some Casimir function in the form (2.16). In the simplest case, i.e. when only the
Hamiltonian function is shaped, in [11] it has been proved that all the admissible
functions Ξ are solution of

⎛
⎝

0
δΞ
δx (x)

0

⎞
⎠ ∈ ran

⎛
⎝

E∗
S

F∗
S

R f E∗
R + Re F∗

R

⎞
⎠ (2.20)

It is easy to check that if Ξ satisfies (2.19), then also (2.20) holds, [10–12].
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2.4 Overcoming the Dissipation Obstacle with a New
Control Port

Themotivating idea of this Section is to determine if there exists a newDirac structure
on Hilbert space D̄ with operators F and E given as in (2.12), and a resistive relation
R̄ in the form (2.6) such that with the given Hamiltonian H(x):

• The dynamics of the new system is the same of the original one;
• The new system is characterised by a set of Casimir functions that satisfies (2.20).

With (2.17) in mind, the second requirement implies that, for the new system, there
exists a set of Casimir functions that can be employed in the control by interconnec-
tion procedure and allow to solve the dissipation obstacle. On the other hand, since
the dynamics of the new system is the same of the initial one, the only difference
between the twos is the behaviour at the control port. This means that a new control
port ( f̄C , ēC ) has been determined, and when the interconnection between plant and
controller takes place at ( f̄C , ēC ), the resulting closed-loop system is characterised
by a new set of Casimir functions, that has been previously determined among the
ones that allow to overcome the dissipation obstacle. With the next Proposition, a
general expression for the desired Dirac structures D̄ is provided.

Proposition 2.7 Let us consider a Dirac structure D on Hilbert space with kernel
representation given in Proposition 2.3, where F and E are given as in (2.10). The
set D̄ ⊂ F × E defined as

D̄ =
{
( f̄ , ē) ∈ F × E | F̄ f̄ + Ē ē = 0

}
(2.21)

with F̄ : Λ → F and Ē : Λ → E a couple of linear operators such that F̄ =(
F̄S F̄R F̄C

)
and Ē = (

ĒS ĒR ĒC
)
, with dom

(
F E

) = dom
(
F̄ Ē

)
, and where

F̄S = FS F̄R = FR + F̃R F̄C = FC

ĒS = ES + ẼS ĒR = ER + ẼR ĒC = EC + ẼC

is a Dirac structure iff ran
(
F̄ | Ē

) = Λ and

ẼS F∗
S + FS Ẽ∗

S + ER F̃∗
R + ẼR

(
F∗

R + F̃∗
R

)
+ FR Ẽ∗

R

+ F̃R

(
E∗

R + Ẽ∗
R

)
+ ẼC F∗

C + FC Ẽ∗
C = 0

(2.22)

Proof This result follows from Proposition 2.3.

The next Proposition provides necessary and sufficient conditions for the Dirac
structure D̄ to have Casimir functions that satisfy (2.20).
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Proposition 2.8 Let us consider the Dirac structures D and D̄ presented in Propo-
sition 2.7. A function C(x, xC ) is a Casimir associated to D̄ that satisfies (2.20)
iff

ran

⎛
⎝

Ẽ∗
SΦ

(E∗
R + Ẽ∗

R)Φ

(F∗
R + F̃∗

R)Φ

⎞
⎠ ⊆ ran

⎛
⎝

(E∗
S + Ẽ∗

S)Ψ

(E∗
R + Ẽ∗

R)Ψ

(F∗
R + F̃∗

R)Ψ

⎞
⎠ (2.23)

where Φ : ΛΦ → Λ and Ψ : ΛΨ → Λ are a couple of linear operators such that

ranΦ = KerE∗
S ∩ Ker

(
R f E∗

R + Re F∗
R

)
ranΨ = KerF∗

S (2.24)

Proof Since C satisfies (2.20), there must exists λ ∈ Λ such that λ = ΦλΦ , with
λΦ ∈ ΛΦ , and that δC

δx = F∗
S λ. On the other hand, C is required to be a Casimir for

D̄, so from (2.19) in Corollary 2.6, there must exists λ̄ ∈ Λ such that

Ē∗
S λ̄ = 0 Ē∗

R λ̄ = 0 F̄∗
R λ̄ = 0 (2.25)

and δC
δx (x) = F∗

S λ̄. This latter requirement implies that λ̄ = ΦλΦ + Ψ λΨ , with
λΨ ∈ ΛΨ . The statement is proved once it is verified that for all λΦ there exists at
least one λΨ such that (2.25) holds, which is equivalent to require that (2.23) holds.

The next Proposition provides necessary and sufficient conditions for the port-
Hamiltonian system associated to the Dirac structure D̄, with resistive structure R̄
defined later on, and Hamiltonian H to have the same state evolution of the port-
Hamiltonian system with Dirac structure D and resistive structureR.

Proposition 2.9 Let us consider the Dirac structures D and D̄ presented in Propo-
sition 2.7, and suppose that the resistive structure R̄ defined by

R̄ f f̄R + R̄eēR = 0 (2.26)

is interconnected at the resistive port ( f̄ R, ēR) of D̄, where R̄ f and R̄e are square
matrices that satisfy conditions similar to (2.7). If the behaviour at the energy-storage
port ( f̄S, ēS) is as in (2.14), then the resulting state evolution is the same of the system
associated to D iff

ran

(
Ẽ∗

SΦ̄[
R̄ f (E∗

R + Ẽ∗
R) + R̄e(F∗

R + F̃∗
R)

]
Φ̄

)

⊆ ran

(
(E∗

S + Ẽ∗
S)Ψ̄[

R̄ f (E∗
R + Ẽ∗

R) + R̄e(F∗
R + F̃∗

R)
]
Ψ̄

)

(2.27)
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where Φ̄ : ΛΦ̄ → Λ and Ψ̄ : ΛΨ̄ → Λ are a couple of linear operators such that

ranΦ̄ = Ker
(
R f E∗

R + Re F∗
R

)
ranΨ̄ = KerF∗

S ∩ KerF∗
C (2.28)

Proof Without loss of generality, assume an effort-in causality at the control ports
( fC , eC ) and ( f̄C , ēC ). Then, from the image representation (2.3) of aDirac structure,
and the behaviours (2.14) and (2.26) imposed at the resistive ports of D and D̄,
respectively, we have that there must exists λ = Φ̄λΦ̄ , with λΦ̄ ∈ ΛΦ̄ , and

λ̄ ∈ Ker
(
R̄ f Ē∗

R + R̄e F̄∗
R

)
, λ̄ ∈ Λ (2.29)

such that

− ∂x

∂t
= E∗

Sλ = Ē∗
S λ̄ (2.30)

and δH
δx (x) = F∗

S λ = F∗
S λ̄, and eC = F∗

Cλ = F∗
C λ̄. These last two conditions are

equivalent to λ̄ = Φ̄λΦ̄ + Ψ̄ λΨ̄ , with λΨ̄ ∈ ΛΨ̄ . The statement is proved once it is
verified that for all λΦ̄ there exists at least one λΨ̄ such that (2.29) and (2.30) hold,
which is equivalent to require that (2.27) holds.

If it is possible to determine a Dirac structure D̄ and a dissipative structure R̄
such that the conditions of Propositions 2.7, 2.8 and 2.9 hold, we have determined
a new control port ( fC , eC ) for the original system such that for some controller in
port-Hamiltonian form the closed-loop system is characterised by a set of Casimir
functions that are able to overcome the dissipation obstacle. In the next Corollary,
a sufficient condition to be checked in order to have (2.23) and (2.23) satisfied is
given.

Corollary 2.10 Under the hypothesis of Propositions 2.8 and 2.9, with the further
requirement that R̄ f = R f and R̄e = Re, conditions (2.23) and (2.27) hold if

ran

⎛
⎝

Ẽ∗
SΦ

(E∗
R + Ẽ∗

R)Φ

(F∗
R + F̃∗

R)Φ

⎞
⎠ ⊆ ran

⎛
⎝

(E∗
S + Ẽ∗

S)Ψ̄

(E∗
R + Ẽ∗

R)Ψ̄

(F∗
R + F̃∗

R)Ψ̄

⎞
⎠ (2.31)

where Φ and Ψ̄ are defined in (2.24) and in (2.28), respectively.

2.5 Example: Boundary Stabilisation of the Shallow Water
Equation

Let us consider a rectangular open channel with a single flat reach, of length L and
unitary width, which is delimited by upstream and downstream gates, and terminated
by an hydraulic outfall. Moreover, it is assumed that the fluid has a unitary density;
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we are in fact considering a simplified model of [5], even if all the results discussed
here can be easily extended to more general cases. The dynamics is described by the
shallow water equations, whose port-Hamiltonian formulation has been extensively
discussed e.g. in [5, 21].

Denote by [0, L] the spatial domain, and by q(t, z) > 0 and p(t, z) the infinitesi-
mal volume and kinetic momentum density, respectively. These are the state (energy)
variables. Note that, due to the unitary width and fluid density assumptions, these
quantities are numerically equal to the height of the fluid in the channel and to its
velocity. Under the hypothesis of linearity in the internal friction forces (if present),
the port-Hamiltonian formulation of the shallow water equations is in the form (2.8)

∂

∂t

(
q
p

)
=

[(
0 −1

−1 0

)
∂

∂z
−

(
0 0
0 D

)]
δH

δx
(q, p) (2.32)

where x = (q, p), D ≥ 0 models the dissipative effects, H(q, p) = 1
2

∫ L
0 (qp2 +

gq2)dz is the total energy of the fluid, and g is the gravity acceleration. Note that the
co-energy variables are

δH

δq
(q, p) = 1

2
p2 + gq =: P(q, p)

δH

δp
(q, p) = qp =: Q(q, p)

which equal the hydrodynamic pressure, P , and water flow, Q, respectively. It is
assumed that the controller is acting on the boundary port ( fC , eC ) defined as

eC (t) =
(

Q(t, 0)
P(t, L)

)
fC (t) =

(
P(t, 0)

−Q(t, L)

)

The input is eC . The associated Dirac structure can be written in the kernel repre-
sentation (2.4), with operators F and E given in (2.10), and space Λ given in (2.11),
with n = 2 and r = 1. Finally, the behaviour at the energy-storage and dissipative
ports is (2.14), with Ḡ = D ≥ 0.

If dissipation is not present, i.e. if D = 0, it is possible to prove that the closed-
loop system is characterised by a couple of Casimir functions in the form (2.16) that
satisfy (2.18) or, equivalently, (2.19). More precisely, with the controller

⎧⎪⎪⎨
⎪⎪⎩

ẋC =
(

0 1
−1 0

)
∂ HC

∂xC
(xC ) + f ′

C

e′
C = ∂ HC

∂xC
(xC )

, xC ∈ R
2 (2.33)

that is interconnected to the system through ( fC , eC ), i.e. f ′
C = fC and eC = −e′

C ,
the resulting closed-loop system is characterised by the following Casimir functions

C1(xC , q, p) = xC1 −
∫ L

0
p dz C2(xC , q, p) = xC2 −

∫ L

0
q dz
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Such Casimir functions are useful to select HC to properly shape the Hamiltonian of
the closed-loop system, [11, 17].

On the other hand, when dissipation is present, i.e. when D > 0, no useful
Casimir functions in closed-loop exist. But, it has been illustrated in [16, 17] that
there exists a boundary state-feedback law thanks to which it is possible to overcome
the dissipation obstacle and obtain an energy function H(q, p) + Ξ(q, p) with the
desired stability properties. The function Ξ satisfies (2.20), that now becomes

∂

∂z

δΞ

δp
(q, p) = 0

∂

∂z

δΞ

δq
(q, p) + D

δΞ

δp
(q, p) = 0 (2.34)

The same result can be obtained with the methodology discussed in this paper by
relying on Corollary 2.10. In this respect, the operators Φ and Ψ̄ are given by

Φ(λq , λp) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

D(L − z)λp + λq

λp

−Dλp

0
0
λp

λq

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Ψ̄ (λR) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
λR

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

with domΦ = R
2 and dom Ψ̄ = L2(0, �; R). Then, it is possible to prove that

conditions (2.23) and (2.27) can be satisfied by selecting ẼR = 0 and

Ẽ∗
S =

(
0 0 0 0 0 0 0
0 0 0 0 0 D 0

)
F̃∗

R = (
0 0 0 0 0 −1 0

)
Ẽ∗

C =
(
0 D 1 0 0 0 0
0 0 0 0 0 0 0

)

which is equivalent to have

ĒS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − ∂
∂z

− ∂
∂z 0
0 −1
0 −· |0

−· |L 0
−· |0 D

∫ L
0 ·

0 · |L

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

F̄R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0

− ∫ L
0 ·
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

ĒC =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
D 0
1 0
1 0
0 1
0 0
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where · |0 and · |L denote the value of a function in z = 0 and in z = L . With this
choice, a new control port ( f̄C , ēC ) is defined, in which ēC = (ēC1, ēC2) = eC and

f̄C =
(

δH
δq (0) − 2D

∫ L
0

δH
δp (·, z) dz + D L ēC1

− δH
δp (L)

)
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is the new passive output that can be used in the control by interconnection strategy
to have a closed-loop system characterised by a set of Casimir functions that satisfies
(2.23). In this respect, with the controller (2.33) now interconnected to the plant
through the new control port, i.e. f ′

C = f̄C and ēC = −e′
C , the resulting closed-loop

system is characterised by the following Casimir functions that clearly satisfy (2.34):

C1(xC , q, p) = xC1 −
∫ L

0

[
D(L − z)q + p

]
dz C2(xC , q, p) = xC2 −

∫ L

0
q dz

Thanks to these Casimir functions, HC can be selected to shape the Hamiltonian of
the closed-loop system in the desired manner. It is possible to verify that the same
control law obtained by relying on as energy-shaping approach based on trajectory
matching between the open-loop system and a target one discussed e.g. in [16, 17]
can be obtained within the control by interconnection paradigm.

2.6 Conclusions and Future Work

Themotivating idea of the paper has been the development of a general methodology
for the definition of a new control port for distributed parameter port-Hamiltonian
systems with dissipation that is instrumental for the synthesis of stabilising boundary
control laws able to overcome the dissipation obstacle within the control by intercon-
nection via Casimir generation paradigm. When the interconnection between plant
and controller takes place at this new control port, the same results provided by the
control by energy-shaping, where the control action is explicitly determined as a
state-feedback law able to shape the energy function in an appropriate manner, are
recovered. Beside having established a link between these two controlmethodologies
(i.e., between the control by interconnection via Casimir generation, and the control
by energy-shaping), this result is interesting because it allows to study the properties
of the closed-loop system in terms of the “interconnection of sub-systems” paradigm.
This is useful, in particular, in the distributed parameter case, because it paves the
way for the extension to a wider class of problems the methodologies presented e.g.
in [22] that deal with the proof of the existence of solutions of systems of PDEs,
and of the asymptotic/exponential stability of interconnected systems. This topic is
currently under investigation.
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Chapter 3
Energy-Aware Robotics

Stefano Stramigioli

Abstract This chapter has a tutorial nature in introducing a number of useful
concepts which resulted by reasoning with power ports rather than with signals,
as people usually do in control. Arjan is one of the Godfathers in this way of thinking
and he has been a pioneer in bringing these concepts to a new level, introducing
proper geometry, a sound system theoretic basis and divulgating these issues. This
chapter shows how, by using these concepts, it is possible to address or solve certain
problems in robotics, control and passivity in a simple and straightforward way. It
also presents a formal proof of a claim which is often used as a conjecture and which
gives theoretical arguments to counteract the statement which is often used against
passivity and saying that passivity is too restrictive and stability is what should be
looked for. Many of the concepts reported in the chapter have been the results of
discussions with Arjan or are still issues that I amworking on with Arjan. It is a great
pleasure and honour to have the opportunity to contribute in this way to a recognition
of the incredible career of a college and friend for which I have incredible respect
from an intellectual and personal point of view.

3.1 Introduction

In many applications of robotics, a controlled robot does interact mechanically with
the environment. This interaction means, in system theoretic terms, that the dynam-
ics of the controlled system changes. This change is completely unknown in general
and it is, in the opinion of the author, not meaningful in any sense to make hypoth-
esis of linearity, structure or whatsoever of the environment and therefore of this
possible change. Furthermore, this change can be discontinuous considering that for
example, due to dynamic interaction, bouncing could occur and a consecutive and
unpredictable contact/no-contact situation could occur. On the other hand, the robot
will physically interact with the environment and the interaction will follow physical
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laws, like action and reaction and the first principle of thermodynamics of energy
conservation. The first one to specifically address this issue in robotics was Neville
Hogan in his famous trilogy [3]. Unfortunately, in the opinion of the author, the core
message of Hogan has been often misinterpreted in the robotic literature [14]. From
a more systematic and geometrical point of view, the modelling of interaction and
behaviour has been presented in [10] and more extensively in [8].

This interaction can be effectively modelled with the concept of a power port
known in network theory. The concept of power ports was the basis and essential
element used by Paynter in the introduction of Bond Graphs [6]. In Bond Graphs the
topology of energetic flows is given the main importance rather than the topology of
the physical elements composing the system to be modelled.

A fundamental analysis of methods explaining the basis of bond graphs and their
thermodynamical importance has been done by Breedveld [1]. The work of Arjan
and Bernhard Maschke on port-Hamiltonian systems together with the deep insight
of Peter Breedveld, have started in [5] a new line of research called port-Hamiltonian
system theory, which gives a sound system theoretic basis to the use of port concepts
in modelling and control. Arjan and Bernard Maschke have been the pioneers in this
line of research and have extended these concepts very elegantly also to distributed
parameter systems [13].

The implication of this theory and approach in robotics is unfortunately under-
estimated, but in the opinion of the author it is the only proper paradigm which can
be used to control physical systems which, by their very existence, interact with a
physical world where physical energy transfers dictate the way such interaction takes
place. The title specifically names “energy awareness” rather than passivity, because
the paradigm and ideas presented do not limit in any way the design space of control,
but do give methods in order to keep track of the energy flows as a consequence of
certain actions in control of robotic systems.

3.2 Why Bother About Power Ports and Energy?

Aportmodels themeanbymeans ofwhich energy canbe exchangedbetween systems
or parts of a system. It can be also used to properly model the interaction between a
robot and the environment. Ports can be also used to model the interaction between
the actuators of the robot and the robot itself. We can therefore model in this context,
any robotic mechanism as a physical system having two multidimentional ports:
one modelling the interaction and energy exchange of the robot with the (unknown)
environment and onemodelling the interaction and energy exchange of the robot with
the actuators via which we can modify and shape the robot behaviour via control.

A port is model mathematically with the direct product of a vector space and its
dual as

P := V × V∗ (3.1)
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Fig. 3.1 Representation of a
power-port to interconnect
two systems A and B

e

f

Σ1 Σ2

in which we can call V the space of flows and V∗ the space of efforts or the other
way around by dualisation.

Depending on the situation, V van be a scalar, a finite or an infinite dimensional
vector space. In the last case, n-forms and Poincaré duality can be used as intro-
duced in [13]. Considering that a port is the interface between two “independent”
systems, the mathematical formulation describing the port should not be dependent
on the states of the two systems and at the same time should be representable at the
“input/output” structure of the two system. In multibody dynamics, this is achieved
using the structure of Lie groups, in which the port vector space V is modeled with
a Lie algebra, which is not dependent on any element of the group.

A port should also have an orientation indicating the positive direction of power.
In bong-graphs, the direction of a port is indicated with a half arrow as shown in
Fig. 3.1. Due to the structure of the port, it is then possible in each instant of time to
calculate the power flowing in the positive direction as

P = e( f ). (3.2)

Alternatively, by using scattering, the interaction could be represented by wave vari-
ables, also known as scattering variables, which can be geometrically defined for
finite [9] and infinite dimensional systems [4] in a geometric way. The difference
with this formulation is that the power transfer can be then expressed as an algebraic
sum of quantities related to the scattering variables rather than a dual-pairing/product
of efforts and flows. This approach has some great advantages in certain situations
where the energy transport between the two systems is subjected to physical delay.
This has brought to novel insight in geometrical telemanipulation [9].

3.3 The Intrinsically Passive Control (IPC) Framework

In [8], the author has introduced a paradigm called Intrinsically Passive Control.
The proposed architecture for a controlled robot interacting with the environment is
represented in Fig. 3.2. The basic idea is that, as indicated previously, a robot can be
modeled as a physical system having two ports, one with the environment and one
with the actuators controlled by the control system. The suggested paradigm is that
the control should be conceived as a system which will be coupled using the port
structure of the actuators to the control robot. The controller, which is implemented
in discrete time, is composed of an Intrinsically Passive Controller (IPC) part and a
Supervisor part which can inject energy and control the Robot via the IPC controller.
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Fig. 3.2 IPC Supervision architecture

This structure has this form because in this way, if the supervisor will not inject
energy via the IPC, the energy which can enter the Robot–IPC pair, can only come
from the environment. The IPC can be designed on the basis of a model of the
Environment, but due to its passive nature, if the Environment will not be as expected,
if the supervisor does not inject energy, the interaction will be always passive. This
follows the paradigm of what is called Control by Interconnection [12].

As it will be formally proved in the next section, if the controlled robot would not
be passive seen from the environment side, there exist possible passive environments
which would destabilise the system when connected to it.

3.4 Passivity as a Must

But why is the concept of port in robotics so important? In robotics the control
of robots which interact with an unknown environment should happen stably in
interaction with any kind of environment for clear reasons of performance, but more
important safety. As said before, once a robot is interconnectedwith the environment,
the stability analysis is onlymeaningful if the environment is considered as part of the
system. Unfortunately, very simplistic and unrealistic models of the environment are
used like elastic, purely linear, unilateral or variations of it. The value of such stability
proofs is highly discussable considering they only prove stability for a very specific
environment. The author argues that in control of systems coupled or interacting with
unknown systems, a different paradigm and analysis is necessary as introduced in
the previous section.

In this context, the following claims are made:

NP Anecessary condition for having stable interactionwith an unknownenvironment
is that the controlled robot should result in a passive behaviour seen from the port
which interacts with the environment

IPC A necessary condition for achieving the previous point is that, for a physical
robot, which is clearly passive as seen composed of a physical system with an
interconnection port and a control port, where the controller can supply and drain
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energy via actuators, the control should be done via interconnection and should
be passive by itself following the IPC paradigm.

The previous claims are at this point conjectures which can be specified more
clearly in the following problems statements:

Passivity Control Robot (PCR) If a controlled robot is not passive seen from the
environment port, there is always a (passive) environment which can destabilise
the interconnected system.

Not Passive State FeedBack (NPSF) For any passive robot, a general control which
does not specifically address passivity as a port interconnection (IPC), there is
always an environmentwhich could result in an unstable interconnected behaviour
as described in PCR.

Characterisation of Stable Active Environment (CSAE) Given a Robot controlled
passively via interconnection (IPC), we can characterise the active environments
which would result in a stable interconnected behaviour.

The argument PCR is important because it proves NP. The argument NPSF could
formally prove that the only proper and safe way to control interactive systems
should use the IPC methodology for robustness and that any other state feedback
cannot ensure stable behaviour under uncertainty of the plant. Last but not least,
CSAE would give a method to characterise and relax hypothesis on the passivity of
the environment or humans, as often criticised in the haptic literature. In this work
PCRwill be formally proven. NPSF and CSAE are conjectures at this stage and work
is in process to see if they can be formally proved, maybe with extra conditions.

3.4.1 The PCR Problem

The following theorem is a formal proof of PCR.

Theorem 3.1 Given a non-passive system Σ with input output pair (u, y), there
always exist a passive system Σ̄ which connected to Σ will give rise to an unstable
behaviour of the interconnection of Σ and Σ̄ .

Proof Non-passiveness of Σ implies that ∃ ū(t) such that the integral of minus
the supply rate is unbounded, which means we can extract infinite energy from the
system. Indicate with ȳ(t) the output corresponding to the input ū(t). This means
that we can define the extracted energy function Ho(t) as

Ho(t) =
∫ t

0
〈ū(s)|ȳ(s)〉ds (3.3)

By construction limt→∞ Ho(t) = ∞. This implies that due to the continuity of
Ho(t), ∃ a bounded Hmin := mint Ho(t).
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We will now constructively define a passive system Σ̄ which will generate the
input ū(t).

ẋ = n(t)ỹ (3.4)

ũ = n(t)
∂ H

∂x
(3.5)

with H(x) = 1
2 x2 and n(t) = ū(t)

∂ H
∂x

. It is easy to see that the previous system is passive

(even conservative) with storage function H(x). By initialising x(0) = √
2Hmin + Δ

for any Δ > 0, it can be seen that by construction ∂ H
∂x (t) > 0 ∀t > 0 and it is

therefore always possible to calculate ū(t). By setting as interconnection ũ = ū and
ỹ = ȳ, we by construction have that

lim
t→∞ H0(x) = lim

t→∞ H(x) = ∞ ⇒ x → ∞

which proves instability of the coupled system having a state diverging.

The previous proof is simple and reasonably straightforward, but the theorem’s impli-
cations are far reaching. First of all, the theorem is general and nonlinear. This means
that, if a controlled robot is not passive, it is possible to construct an environment,
maybe by a second controlled robot, which would be passive and if connected to the
original robot would result in an unstable system. This clearly gives a strong reason
to create a passive behaviour for any robot which would potentially interact with an
unknown environment in order to ensure stable and safe behaviour.

3.5 Connecting to the Discrete World

Everything done so far is treated in continuous time. One important issue in practical
applications is that clearly, the controller will be implemented digitally. In order for
this framework to be solid, we therefore need a way to couple the continuous and
discrete world which will not violate the energy balance and therefore which will not
create or distroy energy in the coupling between the continuous and discrete world.
This has been introduced in [11] and will be recalled hereafter.

Consider the port interconnection of a continuous time Hamiltonian system HC

and a discrete Hamiltonian system HD through a sampler and zero-order hold. Sup-
pose that HC has an admittance causality (effort in/flow out) and therefore HD has
an impedance causality (flow in/effort out).

During the dynamic evolution of the two systems between time kT and (k +1)T ,
where T is the sampling time and k is a positive integer, the effort supplied to HC

by HD will be constant due to the zero-order hold assumption. We will indicate this
value as ed(k). If we indicate the power port at the continuous side with (e(t), f (t)),
we clearly have
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e(t) = ed(k) t ∈ [kT, (k + 1)T ]

By looking at the energy flow towards the continuous system, we can see that if
we indicate withΔH in

C (k) the energy which flows through the input power port from
time kT up to time (k + 1)T , we obtain

ΔH in
C (k) =

∫ (k+1)T

kT
eT

d (k) f (s)ds

= eT
d (k)

∫ (k+1)T

kT
f (s)ds

= eT
d (k) (x((k + 1)T ) − x(kT ))

(3.6)

where we indicated with x() the integral of the continuous time flow f (t).

Remark 3.2 It is important to realise that, inmost usefulmechanical applications like
haptics, ed(k) will correspond to forces/moments that a controller would apply to an
inertial element. In this case, x() would be nothing else than a position measurement
of the masses the controller pushes on.

It is now straightforward to state the following theorem:

Theorem 3.3 (Sample Data passivity) If in the situation sketched before, we define
for the interconnection port of HD

fd(k) := x(kT ) − x((k + 1)T )

T
, (3.7)

we obtain an equivalence between the continuous time and discrete time energy flow
in the sense that for each n:

n∑
i=1

eT
d (i) fd(i) = −

∫ nT

0
eT (s) f (s)ds (3.8)

Remark 3.4 It is important to notice that the exact equivalence is achieved only by
the definition of Eq.3.7 in which x() is usually the easiest variable to measure in real
applications. The negative sign appearing in Eq.3.8 is consistent with the fact that
the power flowing into the continuous system is minus the power flowing into the
discrete side.
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Fig. 3.3 Representation of a
power-port to interconnect
two systems Σ1 and Σ2

Σ1Σ2 MFT

u1

u2

y2

y1

n
..

3.6 Energy Routing

An important techniquewhich has been originally introduced byDuidam and Strami-
gioli in [2] and called by Ortega DSER in [7] (Duindam Stramigioli Energy Router)
allows to direct energy flows without compromising passivity.

3.6.1 Controlling the Energy Directions and Magnitude
Among (Sub)systems

To introduce this, with reference to Fig. 3.3 let us start from the situation in which
only two ports are considered connecting two systems Σ1 and Σ2 and indicated
with (u1, y1) ∈ V1 × V∗

1 and (u2, y2) ∈ V2 × V∗
2 and for which we indicated

inputs and outputs of the two systems with ui and yi , respectively, for i = 1, 2. For
simplicity of exposition, let us consider V1 = Rn and V2 = Rn . A power continuous
interconnection of the two systems is implemented by using the following relations
which correspond in bond graphs to a multidimensional transformer or gyrator

u1 = n y2 (3.9)

u2 = nT y1 (3.10)

where n and nT is any linear map and its dual. Clearly, we have that

uT
1 y1 = yT

2 nT y1 = yT
2 u2 (3.11)

which proves energy continuity. In the previous relation, n can be changed contin-
uously or discontinuously and independently of its value the power continuity will
hold by construction. We can therefore vary n also as function of the port variables,
creating effectively a system which allows energy flow only in a specific direction.
Suppose for example we want to force energy flowing from Σ2 to Σ1. This can be
achieved simply by enforcing the direction of the power. Considering the positive
power of Fig. 3.3 goes from Σ2 to Σ1, we want to achieve yT

1 u1 > 0 indicating
positive power flow toward Σ1. Using Eqs. (3.9) and (3.10) this can be done by
choosing

n = αy1yT
2 (3.12)
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for a positive α. It is easy to see that by this construction a negative α will force a
flow of energy in the opposite direction and its magnitude will control the amount
of energy transfer. At all effects, α can be used to control the amount and direction
of energy flow. It is also important to notice that energy will follow in the direction
controlled iff energy is available which will result in values of yi �= 0.

This construction can be easily generalised to the situation in which instead of a
two port, we consider a multidimensional Dirac structure connecting n systems Σi

for i = 1, . . . , n. Suppose that by convention, all positive orientations are chosen
towards the systems that the Dirac structure connects. In this case, using the same
kind of notation, we would have by power continuity that

yT
1 u1 + · · · + yT

n yn = 0 (3.13)

and this will have to be realised by a relation of the form

⎛
⎜⎝

u1
...

un

⎞
⎟⎠ = S

⎛
⎜⎝

y1
...

yn

⎞
⎟⎠ (3.14)

where S can be a skew symmetric matrix of proper dimension: ST = −S. Suppose
it is the goal to control the flow direction and magnitude of energy to the first system
yT
1 u1. We have that

yT
1 u1 = yT

1 S1

⎛
⎜⎝

y2
...

yn

⎞
⎟⎠ (3.15)

where (0 S1) is the first row of the sknew symmetric matrix S. By clearly choosing

S1 := α1y1
(
y2 · · · yn

)
(3.16)

we can by choosing α1 choose the direction and magnitude of power flow towards
system Σ1 and this will fix the first row, and for the skew symmetric constraint
column, of the matrix S. By proceeding in a similar way, it would be possible to
use the extra degrees of freedom still available in the choice of the matrix S in
order to select other energy flows to the remaining systems. A similar analysis could
also be carried out by using scattering which would directly represent positive and
negative energy flows towards the systems and from the systems attached to the Dirac
structure.
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3.6.2 Energy Tanks and Tracking

Another way to use energy routing is to keep track of the energy which is used to
perform a certain operation. This can be used to prevent instability of certain control
actions. Suppose for example to control a robot which interacts with an unknown
environment, a general control law which would not specifically monitor the amount
of energy injected to the system, could potentially destabilise an interaction with an
unknown environment as proven previously, if the energy would not be bounded by
a passive behaviour. It is therefore useful to have a strategy which is able to allocate
a certain energy budget to perform a specific operation and take proper actions if
this amount of energy has been used. This action may be to adapt the control to
prevent instability, or to analyse the situation and possibly adapt the control strategy
providing extra energy. This is why the author talks about energy awareness rather
than passivity which could seem restricting the applicability of the paradigm.

Consider the energy tank to have an associated positive definite energy function
H(s) = 1/2s2 with s a scalar. The energy budget can be initialised by a proper initial
value of s. Assume to have n subsystems as in the previous section which need to
be controlled and assume to have a control law u = f (x, y) where u represents
the column vector of all inputs, x the vector of states of the systems and y the dual
outputs of u. To have power continuity we can consider the following interconnection
between the energy tank and the systems:

⎛
⎜⎜⎜⎝

ṡ
u1
...

un

⎞
⎟⎟⎟⎠ = S

⎛
⎜⎜⎜⎝

∂ H
∂s
y1
...

yn

⎞
⎟⎟⎟⎠ (3.17)

again with a skew symmetric matrix S and also considering that Ḣ = ∂ H
∂s ṡ.

It is possible to show that, under the condition that ∂ H
∂s �= 0, it is possible to

calculate a skew symmetric matrix S which satisfies the control relation u = f (x, y)

and at the same time monitors the energy necessary for that action by the value of the
energy function H . By only monitoring the scalar s is therefore possible to see when
the available budget of energy has expired. This simple idea, paradoxically can be
used to “passivise” any control law, but building a safety mechanism which would
prevent to inject indiscriminate energy into a control system leading to instability. In
other words, we can implement the control law u = f (x, y) until the energy set in
the beginning is finished and then switch to a different control action to prevent loss
of passivity and ensure stable interaction with any passive environment as proved in
Theorem 3.1.
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3.6.3 Projections

In many robotic applications it is useful to use projectors operators in order to imple-
ment certain control strategies. For example, in case of under-actuation, it is not
possible to servo a complete force which would be desired, but that should be first
projected on the subspace of forces which are implementable. If this projection is
done naively, it can result in loss of passivity. By using the method shown in the
previous section it is possible to monitor the energy consequence of such actions, but
for the sake of clarity and with a didactical goal, hereafter, the example of projections
will be further constructed.

Consider a control law which would calculate the applied force F to an under-
actuated robot. Assume the motion of the robot can be measured and let us indicate
with ẋ its velocity. From a port point of view, the controlling port of this robot would
then be (ẋ, F) and FT ẋ would be the power supplied to the robot. Suppose that, for
reasons which are not going to be discussed here, we want to apply to the robot an
elastic force with some specific geometrical properties. We can create consistently
an elastic force by defining an elastic energy function H(x) which, after integrating
the velocity of the robot ẋ could calculate the force to be applied as F = ∂ H

∂x .
Unfortunately, due to the under-actuation of the robot, we first need to project the
gradient of H to the subspace of applicable forces. If we indicate with P such a
projection, we could indicate the control law with:

F = P
∂ H

∂x
. (3.18)

Unfortunately, such an operation alone would break passivity considering that this
operator is acting only on the force and not dually on the velocity. The passivity
could be recovered by integrating for the state of the spring PT ẋ rather than ẋ , but
this would drastically change the control law because the state of the spring would
not be anymore representing the configuration of the robot. This paradox is showing
that such a projection on the force only, will inject or extract energy from the system
and if we are able to exactly monitor this, we can prevent that the projection action
would result in loss of passivity and possibly an unstable behaviour. What we can
do is therefore specifically to model the energy which is necessary to recover this
passive behaviour. This can be clearly done by framing the control operation of the
projection as a general control law u = f (x, y) as explained in Sect. 3.6.2 but we
will do it constructively hereafter, in order to give better insight.

Let us indicate with v = ẋ the real velocity of the robot and with v̄ := PT v. If
we want to conserve the integration of v rather than v̄ for the state of the controller,
we can model this by adding a new power port and using what in bond graphs is
called a 0-junction (representing one ofKirchhoff’s laws), which is an elementwhose
connected bonds all have the same effort F and forwhich the flows sumalgebraically:
v = Δv + v̄. We can now model the energy used for “balancing” the projection, with
a new storage element (energy tank) which we can represent with an energy function
H̄(s) = 1

2 s2. By then setting
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Δv = C
∂ H̄

s
(3.19)

ṡ = CT F (3.20)

and choosing

C = (v − v̄)/
∂ H̄

∂s
(3.21)

we can easily check that, as long as s > 0, and there is energy available in the tank,
the projection operator will achieve the original goal without the shortcoming of
losing information about the pose of the robot in the elastic control and by having an
exact quantification of the energy which such an action requires. If we furthermore
slightly modify Eq. (3.21) to be

C =
{

(v − v̄)/ ∂ H̄
∂s s > ε or ΔvF ≥ 0

0 s ≤ ε and ΔvF < 0
(3.22)

where ΔvF > 0 indicates power flow towards the storage tank H̄(s), we can also
handle the singularity. This system will implement the desired compensation as long
as energy will be available. Further modifications could for example inject energy to
the tank H̄(s) by redirecting energy from possible damping actions as presented in
the next section.

3.6.4 What About Damping?

Very often, especially for the control ofmechanical systems, damping plays an impor-
tant role. The effect of damping is clearly to irreversibly extract energy from the
system. On the other hand, it may be useful to extract energy without necessarily
getting rid of it, but rather store it somewhere else, very much in a similar fashion
as introduced in the previous section. From a thermodynamical point of view, dis-
sipation is an irreversible transformation of energy from any domain to the thermal
domain leading to an increase of entropy. We can use this metaphor, but from a con-
trol point of view, we can buffer this energy and use it for other possible means. This
operation does not create energy and it is therefore passive and perfectly consistent
with the framework. A small modification of what is presented in Sect. 3.6.2 allows
to implement this. If for example we increase the dimension of u and y of 1, we can
add a relation:

un+1 = Byn+1 (3.23)
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where B could be a varying, but positive damping coefficient. The effect of such an
action is that any energy which would be extracted via the port (un+1, yn+1) would
automatically be used to increase the energy buffer H(s) to be used as previously
described. The possibility of time varying the damping B allows, from the point of
view of control, to shape the dynamics of the system in a desirable way and the
presented framework will ‘automatically’ take care that the energy balance will be
accounted for.

3.7 Conclusions

In this chapter some basic concepts of what the author calls energy-aware robotics
have been presented. It has been shown that the passive behaviour of a robot which
can interact with an unknown environment is a must to ensure stable interaction
with any passive environment. Different methodologies have been presented which
give an idea on how, thanks to the use of port concepts, it is possible to structure
control loops in such a way that all energy flows can be made explicit and passivity
ensured. These techniques can also be used in telemanipulation andmany other fields
of robotics successfully to ensure a stable behaviour.
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Chapter 4
Time-Varying Phasors and Their Application
to Power Analysis

Dimitri Jeltsema

Abstract The classical complex phasor representation of sinusoidal voltages and
currents is generalized to arbitrary waveforms. The method relies on the so-called
analytic signal using theHilbert transform.This naturally leads to the notion of a time-
varying power triangle and its associated instantaneous power factor. Additionally,
it is shown for linear systems that Budeanu’s reactive power can be related to energy
oscillations, but only in an average sense. Furthermore, Budeanu’s distortion power
is decomposed into a part representing a measure of the fluctuation of power around
the active power and a part that represents the fluctuation of power around Budeanu’s
reactive power. The results are presented for single-phase systems.

4.1 Introduction

I first met Arjan when I was a Ph.D. student during his notorious course on nonlinear
systems. In the last lecture of the course, Arjan treated a relatively new subject: port-
Hamiltonian systems. Port-Hamiltonian systems theory is the result of combining
network theory with classical (Hamiltonian) mechanics and nowadays provides the
basis for many interesting and novel control methodologies. Port-Hamiltonian sys-
tems and related concepts, such as power and energy, remained amongmymain topics
of interest and during the past decade we collaborated on several papers, research
projects, national and international courses, and recently we finalized the book “Port-
Hamiltonian Systems Theory: An Introductory Overview” [23].

Three years ago, I retrieved my interest in power analysis under nonsinusoidal
conditions and during the preparations of our book we had several discussions about
this subject and the possibilities to approach the problem from a port-Hamiltonian
perspective andDirac structures in particular. During these discussions, Arjan always
came up with the same but very important and fundamental questions: what is this
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reactive power, what are its origins, and does it have any physical meaning? With
this contribution, I consider it as an honor, on the occasion of the 60th birthday of
my scientific collaborator, colleague, and dear friend, to dedicate a chapter to our
fruitful quests for interesting and open problems, and to recollect some thoughts and
interpretations of reactive power and related concepts.

Happy birthday Arjan and enjoy reading!

4.1.1 Motivation and Background

The usage of alternative sources of power has caused that the problem of energy
transfer optimization is increasingly involved with nonsinusoidal signals and non-
linear loads. The power factor (PF) is used as a measure of the effectiveness of the
transfer of energy between an electrical source and a load. It is defined as the ratio
between the power consumed by a load (real or active power), denoted as P , and the
power delivered by a source (apparent power), denoted as S, i.e.,

λ := P

S
. (4.1)

The active power is defined as the average of the instantaneous power and apparent
power as the product of the root-mean-square norms of the source current and voltage.
The standard approach to improve the PF is to place a passive compensator, such
as a capacitor or an inductor, parallel to the load. Conceptually, the design of the
compensator typically assumes that the source is ideal, i.e., the internal (Thevenin)
impedance is negligible, producing a fixed sinusoidal voltage.

If the load is linear and time-invariant (LTI) and the source voltage is sinusoidal,
the resulting stationary current generally is a shifted sinusoid, and the PF is the
cosine of the phase-shift angle between the source voltage and current. Classically,
the remaining part of the power is called reactive power, and is denoted as Q. The
relationship between the three types of power is given by

S2 = P2 + Q2. (4.2)

Thus, any improvement of the PF is accomplished by the reduction of the absolute
value of the reactive power, hence reducing the phase shift between the current and
the voltage.

For nonsinusoidal voltages and currents, the problem of decomposing the ap-
parent power into active and reactive components is much more involved. Starting
from the work of Steinmetz [21], Iliovici [14] and Budeanu [2], many authors have
aimed to improve the concept of reactive power in the most general case; see e.g.,
[1, 8, 11], and the references therein. Every year dozens of articles are published
on this subject and most of these contributions aim at decompositions of the load
current into physical meaningful orthogonal quantities. The methods and ways of
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describing the power phenomena and to increase the effectiveness of the energy flow
between the source and the load under nonsinusoidal conditions have not been stan-
dardized so far and the definition of reactive power has been changed several times
[12, 13]. Why is this important? Apart from the economical reasons as electricity is
a commodity, one of the main reasons is to reduce the operating costs of the power
grid and to protect its reliability.

4.1.2 Contribution and Outline

In this chapter, a different approach is presented that generalizes the classical com-
plex phasor representation of the port voltages and currents. The method relies on the
so-called analytic signal using the Hilbert transform. This enables one to translate
the power flows proposed in [9, 16] for three-phase systems to single-phase systems
and naturally leads to the notion of a time-varying power triangle and its associated
instantaneous PF. From an instrumentation and measurement perspective, the intro-
duction of the time-varying power triangle offers interesting properties as it reveals
an instantaneous view into the power flows in the system.

A major advantage of the proposed framework is that it is applicable to general
loads (e.g., nonlinear and time-varying) as well as to general voltage and current
waveforms (e.g., nonsinusoidal, non-periodical, interharmonics, etc.). Additionally,
it is shown for LTI systems that Budeanu’s reactive power can be related to energy
oscillations, but only in an average sense. Furthermore, Budeanu’s distortion power
is decomposed into a part representing a measure of the fluctuation of power around
the active power and a part that represents the fluctuation of power around Budeanu’s
reactive power. This relaxes some of the assertions in [5].

The remainder of the chapter is organized as follows. In Sect. 4.2, the classical
power model for systems operating under sinusoidal conditions is reviewed and an
interpretation of the associated active and reactive power is provided fromboth a time-
and frequency-domain perspective. The extension of the classical phasor approach
is generalized to time-varying phasors in Sect. 4.3. Section4.4 revisits the infamous
Budeanu power model and provides some novel insights using the time-varying
phasor approach. Finally, in Sect. 4.5, some examples are provided to illustrate the
theory.

4.1.3 Notation

Given two square integrable T -periodic signals u(t) and i(t), we define the inner
product as

〈u, i〉 := 1

T

T∫

0

u(t)i(t)dt, (4.3)
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and by ||u|| := √〈u, u〉 the rms (root-mean-square) value. Time differentiation is
denoted by u′(t) = du

dt (t). Voltages are represented in volts [V] and currents are
represented in Ampère [A]. However, these units will be omitted in the text.

To simplify the presentation, all voltage and current waveforms are assumed to
have zero mean values.

4.2 The Classical Sinusoidal Power Model

Consider the well-known classical case of a single-phase sinusoidal source (power
system) transmitting power to a LTI load; see Fig. 4.1. Let the voltage at the load
terminals be given by

u(t) = U
√
2 cos(ωt + α), (4.4)

where ω = 2π/T . Under the assumption that the voltage at the terminals does not
depend on the transmitted current (infinitely strong power system), the associated
current reads

i(t) = I
√
2 cos(ωt + β). (4.5)

The instantaneous power delivered to the load is given by

p(t) = u(t)i(t) = P
[
1 + cos(2ωt + 2α)

]
︸ ︷︷ ︸

pa(t)

+ Q sin(2ωt + 2α)︸ ︷︷ ︸
pr (t)

, (4.6)

where P and Q represent the active power and the reactive power defined by

P := U I cos(ϕ),

Q := U I sin(ϕ),
(4.7)

respectively, with ϕ := α − β representing the phase shift between u(t) and i(t).

Fig. 4.1 The classical
scenario of a single-phase
power system transmitting
power to a LTI load
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4.2.1 On the Meaning of Active and Reactive Power

The term pa(t) in (4.6) describes the nonnegative component of the instantaneous
power, with an average value equal to load’s active power P , i.e.,

P = 1

T

T∫

0

p(t)dt = 1

T

T∫

0

pa(t)dt = U I cos(ϕ), (4.8)

and represents the one-directional flow of energy from the source to the load.
The alternating term pr (t) in (4.6) is characterized by an amplitude equal to load’s

reactive power Q and average value equal to zero. This component characterizes the
bidirectional flow of the transmitted energy from the source to the load. It is not
present if load phase angle is equal to zero. Therefore, in case of a purely resistive
load or if the load exhibits phase resonance, bidirectional oscillations in the energy
flow between source and load do not exist. For example, if the load in Fig. 4.1 solely
consists of a resistor, with resistance R, and is driven by a sinusoidal voltage of the
form (4.4), then the associated current reads as in (4.5), with β = α. Hence, there is
no phase shift as ϕ = 0, and, according to (4.7), the active power equals PR = RI 2,
whereas the reactive power equals Q R = 0.

The alternating component pr (t) may thus be interpreted as the measure of the
backward flow of energy between load’s reactance elements and the source. Indeed,
if the load in Fig. 4.1 solely consists of an inductor, with inductance L , and is driven
by a sinusoidal voltage of the form (4.4), with α = 0, then the associated current
reads

i(t) = 1

L

t∫

0

u(τ )dτ = U

ωL

√
2 sin(ωt) = I

√
2 cos

(
ωt − π

2

)
. (4.9)

Hence, the inductor causes a phase shift ϕ = π
2 and stores a magnetic (co-)energy

eL(t) = 1

2
Li2(t) = Emax

L sin2(ωt), (4.10)

where Emax
L = L I 2. This suggests that the (inductive) reactive power equals

QL = U I sin
(

π
2

) = U I = ωL I 2 = ωEmax
L . (4.11)

Alternatively, the (inductive) reactive power can also be expressed in terms of the
average stored magnetic (co-)energy as

QL = 2ωEL , (4.12)

with EL = 1
2 L I 2. Obviously, the active power of an inductor equals PL = 0.
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Similarly, if the load in Fig. 4.1 solely consists of a capacitor, with capacitance
C , and is driven by a sinusoidal current of the form (4.5), with β = 0, then the
associated voltage reads

u(t) = 1

C

t∫

0

i(τ )dτ = I

ωC

√
2 sin(ωt) = U

√
2 cos

(
ωt − π

2

)
. (4.13)

Hence, the capacitor causes a phase shift ϕ = −π
2 and stores an electric (co-)energy

eC (t) = 1

2
Cu2(t) = Emax

C sin2(ωt), (4.14)

where Emax
C = CU 2. This suggests that the (capacitive) reactive power equals

QC = U I sin
(−π

2

) = −U I = −ωCU 2 = −ωEmax
C . (4.15)

Alternatively, the (capacitive) reactive power can also be expressed in terms of the
average stored electric (co-)energy as

QC = −2ωEC , (4.16)

with EC = 1
2CU 2. Again, note that PC = 0.

Generally, in case of a load network consisting of LTI resistors, inductors and ca-
pacitors, the active power associated to each branch of the network may be expressed
as

Pb = PRb , (4.17)

where PRb represents the active power associated to the resistance in the bth branch.
Note that PLb = PCb = 0. The reactive power for each branch is then expressed as

Qb = QLb + QCb = ω
(
Emax

Lb
− Emax

Cb

) = 2ω
(
ELb − ECb

)
. (4.18)

Then, by Boucherot’s theorem [4], the total active power and the total reactive power
are obtained by summing over all the branches, i.e.,

P =
∑

b

Pb,

Q =
∑

b

Qb.
(4.19)

Remark 4.1 Note that compensation (reduction) of the reactive power naturally boils
down to minimizing the difference between the total (average) magnetic and electric
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energies stored in the load network. Such perspective on reactive power compensation
is known as energy equalization [11].

Remark 4.2 It is important to emphasize that the previous interpretations of reac-
tive only apply to LTI systems driven by a purely sinusoidal voltage. If the load is
nonlinear and/or time-varying, then it may be proven that reactive power does not
uniquely relate to energy accumulation and it may be present in a purely resistive
load. This will be exemplified in Sect. 4.5.

4.2.2 The Classical Phasor Representation

Alternatively, a standard method in electrical engineering is to represent the sinu-
soidal time functions of the voltages and currents by their complex phasor represen-
tation [7]

U = U
√
2e jα, I = I

√
2e jβ, (4.20)

where j := √−1. This enables one to define the complex power

S := 1

2
U I ∗ = U I e jϕ = U I cos(ϕ) + jU I sin(ϕ) = P + j Q, (4.21)

the well-known power triangle (see Fig. 4.2), the PF as λ = cos(ϕ), and the notion
of complex impedance [7]

Z = U

I
= U

I
e jϕ = P + 2 jω (EL − EC )

1
2 I I ∗ , (4.22)

where EL and EC now represent the total mean magnetic and electric energies,
respectively. In the same way, the complex admittance reads

Y = I

U
= I

U
e− jϕ = P + 2 jω (EC − EL)

1
2U U∗ . (4.23)

The underlying mathematical principle behind the transition from the sinusoidal
time functions of the voltages and currents to their complex phasor representation is
the so-called analytical signal widely used in telecommunication applications [22].

Fig. 4.2 The classical power
triangle with S = |S|
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The analytic signal corresponding to the voltage (4.4) is given by

u(t) = U
√
2 cos(ωt + α) + jU

√
2 sin(ωt + α) = U

√
2e j (ωt+α), (4.24)

and, similarly, the analytic signal corresponding to (4.5) is given by

i(t) = I
√
2 cos(ωt + β) + j I

√
2 sin(ωt + β) = I

√
2e j (ωt+β). (4.25)

Hence, the transition from the analytical signal representations (4.24)–(4.25) to the
phasors (4.20) is accomplished by multiplying the latter with e− jωt , which defines
a linear (coordinate) transformation.

Furthermore, a straightforward computation shows that

1

T

T∫

0

u(t)i∗(t)dt = U I ∗.

Thus, the correspondence between sinusoidal signals and their phasor representation
is power-preserving once the real voltage and current signals are extended toward
their analytic signal representations. This demonstrates that both P and Q are, in
fact, average quantities.

4.2.3 RL Circuit Example

Consider the uncompensated RL circuit shown in Fig. 4.3 driven by a sinusoidal
voltage

u(t) = 10
√
2 cos (t) ⇒ U = 10

√
2.

The load admittance is given by

Y = 1

1 + 2 j
= 1

5

√
5e− j arctan(2) ⇒ I = Y U = 2

√
10e− j arctan(2).

The complex power is then easily computed as S = 20 + j40. Hence, the active
power is P = 20 [W], the reactive power Q = 40 [VAr], and the apparent power

Fig. 4.3 Series RL circuit
driven by a sinusoidal
voltage: uncompensated
(C = 0) and compensated
(C > 0)
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S = |S| = 20
√
5 [VA]. The results in a PF λ = 0.447. If a shunt capacitor is placed

to compensate Q, then it is clear that a capacitance of C = 0.4 [F] is necessary to
compensate the effect of the inductance and to drive the PF to unity.

4.3 Time-Varying Phasors

Note that the relationship between the real voltage and current signals and their
imaginary counterparts in (4.24)–(4.25) is a 90◦ backshift operation. For arbitrary
waveforms this operation is generalized by the Hilbert transform [22]. Indeed, de-
noting by û(t) := H{u(t)} the Hilbert transform

H{u(t)} = PV

π

∞∫

−∞

u(τ )

t − τ
dτ, (4.26)

with PV the Cauchy principal value, of the real voltage u(t), then from standard
complex analysis we know that

u(t) = U (t)
√
2e jα(t), (4.27)

where

U (t) =
√

u2(t) + û2(t)

2
= |u(t)|,

α(t) = arctan

{
û(t)

u(t)

}
= Im{ln u(t)} = arg{u(t)},

ωα(t) = α′(t) = û′(t)u(t) − u′(t)û(t)

u2(t) + û2(t)
= Im

{
u′(t)
u(t)

}
,

represent the instantaneous amplitude, phase, and frequency, respectively. In a similar
fashion, the complex port current can be written as

i(t) = I (t)
√
2e jβ(t). (4.28)

Remark 4.3 It is important to emphasize that in spite of both being measured in
radians per second, harmonic and instantaneous radial frequencies are different con-
cepts, which only coincide in the sinusoidal case. Indeed, for a voltage of the form
(4.4), we have u(t) = U and α(t) = ωt + α, and thus ωα(t) = ω. See, e.g., [22] for
further information. In [16], the representation (4.27) was justified based on Fourier
transform. However, as argued in [22], the only way to unambiguously associate
U (t) and α(t) with amplitude, phase, and frequency is via the Hilbert transform.
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Additionally, note that (4.27) allows to removing the fundamental phase ωt , i.e.,
U (t) = U (t)

√
2e j α̃(t), where α̃(t) := α(t) − ωt .

Remark 4.4 The use of analytic signals, or the voltage and current representations
(4.27) and (4.28), is not new in power systems analyses and control. See, for instance,
the work of [15]. The Hilbert transform is also successfully used in [19] to derive a
single-phase version of the well-known instantaneous p-q theory [8].

4.3.1 Kirchhoff Operators and Tellegen’s Theorem

In the time domain, starting from the instantaneous power delivered at the port, i.e.,
p(t) = u(t)i(t), Tellegen’s theorem in generalized form can be stated as [18]

A{u(t)}B{i(t)} =
∑

b

A{ub(t)}B{ib(t)}, (4.29)

where A and B are so-called Kirchhoff voltage and current operators, respectively.
A Kirchhoff voltage (current) operator is defined as an operation that if applied to
a set of voltages (currents) that satisfy KVL (KCL) generates a new set of numbers
or functions that also satisfy KVL (KCL). These quantities need not have the units
of voltages (currents) and may depend on other parameters or variables introduced
by the operator. All linear operations that operate in the same way on all branches
and ports of the network are Kirchhoff operators. Well-known examples of linear
operators are: differentiation, integration, averaging, complex conjugation, and time-
shifting.

Since the Hilbert transform is also a linear operator, i.e.,

H
{∑

n

cn fn

}
=

∑
n

cnH { fn} , (4.30)

where cn are arbitrary numbers and fn are arbitrary functions for which the Hilbert
transform is defined, we may select the Kirchhoff operators in (4.29) asA = I+ jH
and B = I − jH, where I is the identity operator, i.e., I{ fn} = fn . This yields the
complex power balance

(
u(t) + j û(t)

)(
i(t) − j î(t)

) =
∑

b

(
ub(t) + j ûb(t)

)(
ib(t) − j îb(t)

)
. (4.31)

This motivates and justifies the developments in the next section.
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4.3.2 Time-Varying Complex Power

Starting from the analytical port voltage and current, (4.27) and (4.28), the time-
domain nonsinusoidal equivalent of the complex power is defined by the time-varying
complex power (compare with (4.31))

S(t) := 1

2
u(t)i∗(t) = U (t)I (t)e jϕ(t) = P(t) + j Q(t), (4.32)

where ϕ(t) := α(t) − β(t) denotes the instantaneous phase shift between u(t) and
i(t), and

P(t) := 1

2

(
u(t)i(t) + û(t)î(t)

)
, (4.33)

Q(t) := 1

2

(
û(t)i(t) − u(t)î(t)

)
, (4.34)

or, equivalently,

P(t) := 1

2
Re

{
u(t)i∗(t)

}
, Q(t) := 1

2
Im

{
u(t)i∗(t)

}
,

represent the time-varying real and imaginary powers, respectively. Furthermore, the
time-varying apparent power equals

S(t) = |S(t)| = U (t)I (t) =
√

P2(t) + Q2(t), (4.35)

which naturally suggests the definition of a time-varying PF

λ(t) := P(t)

S(t)
= cos

(
ϕ(t)

)
, (4.36)

and a time-varying power triangle as shown in Fig. 4.4.
Another feature of the analytical representation of the port voltage and current

is that the real parts of (4.27) and (4.28) are representing the real port voltage and
current, which, in turn, are expressed in a very familiar form:

Fig. 4.4 The time-varying
power triangle
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u(t) = Re{u(t)} = U (t)
√
2 cos

(
α(t)

)
,

i(t) = Re{i(t)} = I (t)
√
2 cos

(
β(t)

)
.

This means that the instantaneous power (4.6) generalizes to

p(t) = P(t)
[
1 + cos

(
2α(t)

)] + Q(t) sin
(
2α(t)

)
, (4.37)

where P(t) and Q(t) are now rather expressed as

P(t) = U (t)I (t) cos
(
ϕ(t)

)
,

Q(t) = U (t)I (t) sin
(
ϕ(t)

)
.

Expression (4.37) is extremely general and also holds for non-periodic waveforms
(provided (4.26) exists as a principal value). For that reason, we propose to refer to
(4.37) as the ‘universal power template (UPT).’ In Sect. 4.4, one particular application
of the UPT is highlighted.

4.3.3 Resistors, Inductors, and Capacitors

Let us next study the time-varying real and imaginary powers associated to the
resistor, inductor, and capacitor. Interestingly, these powers bear a marked similarity
in form as the powers derived for three-phase systems from the Poynting vector in
[9] (see also [16]).

The Resistor

Consider an LTI resistor R driven by a nonsinusoidal voltage u(t). Using Ohm’s law
u(t) = Ri(t), the associated time-varying real power (4.33) takes the form

PR(t) = 1

2

(
Ri2(t) + Rî2(t)

) = RI 2(t),

whereas the imaginary power (4.34) is zero, i.e., Q R(t) = 0, since H{u(t)} =
R H{i(t)}.
The Inductor

For anLTI inductor u(t) = Li ′(t). Using the time stationarity of theHilbert transform
[22], we have that H{i ′(t)} = (H{i(t)})′. Hence, the real power (4.33) reads

PL(t) = 1

2

(
Li ′(t)i(t) + Lî ′(t)î(t)

)
= L I ′

L(t)IL(t) = E ′
L(t),

where EL(t) = 1
2 L I 2(t) represents the envelope of the oscillation of the inductor’s

magnetic energy storage. The imaginary power (4.34) now takes the form
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QL(t) = 1

2

(
Lî ′(t)i(t) − Li ′(t)î(t)

)
,

which, after multiplication of the numerator and denominator with i2(t) + î2(t),
yields

QL(t) = 1

2
L

î ′(t)i(t) − i ′(t)î(t)
i2(t) + î2(t)

(
i2(t) + î2(t)

) = β ′(t)L I 2(t) = 2ωβ(t)EL(t).

Note that if i(t) is of the form (4.5), we have ωβ(t) = ω and I (t) = I , and thus that
QL = 2ωEL , as established in (4.12).

The Capacitor

In a similar fashion, for an LTI capacitor i(t) = Cu′(t), the real power (4.33) reads

PC (t) = 1

2

(
u(t)Cu′(t) + û(t)Cû′(t)

) = CU (t)U ′(t) = E ′
C (t),

where EC (t) = 1
2CU 2(t) represents the envelope of the oscillation of the capacitor’s

electric energy storage. The imaginary power (4.34) now takes the form

QC (t) = 1

2

(
û(t)Cu′(t) − u(t)Cû′(t)

)
,

which, after multiplication of the numerator and denominator with u2(t) + û2(t),
yields

QC (t) = 1

2
C

û(t)u′(t) − u(t)û′(t)
u2(t) + û2(t)

(
u2(t) + û2(t)

) = −α′(t)CU 2(t)

= −2ωα(t)EC (t).

Under sinusoidal conditions, i.e., if u(t) is of the form (4.4), then ωα(t) = ω and
U (t) = U , and thus QC = −2ωEC , as in (4.16).

4.4 Budeanu’s Concept of Reactive and Distortion Power
Revisited

Consider a single-phase LTI power system with distorted voltage and current wave-
forms of the form

u(t) =
∑

k

Uk
√
2 cos(kωt + αk), (4.38)

i(t) =
∑

k

Ik
√
2 cos(kωt + βk), (4.39)
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with ϕk = αk −βk . It is readily checked that the active power (from here on denoted
by PA) is straightforwardly obtained from the instantaneous power p(t) = u(t)i(t)
after averaging over a period, i.e.,

PA := 1

T

T∫

0

p(t)dt =
∑

k

Uk Ik cos(ϕk). (4.40)

However, how to define and generalize the reactive power?
Inspired by, e.g., Bunet [3] and Boucherot’s theorem [4], Budeanu [2] was among

the first who tried to find an answer to this question and proposed to define reactive
power as

Q B :=
∑

k

Uk Ik sin(ϕk). (4.41)

He also observed that for nonsinusoidal voltages and currents the quadratic sum of
the active and reactive power is not equal to the apparent power S as in the sinusoidal
case, and ended up with S2 = P2

A + Q2
B +(REST)2. To fill in this gap, a new concept

DB :=
√

S2 − P2
A − Q2

B, (4.42)

called distortion (or deformation) power was proposed.
For decades, Budeanu’s power model has enjoyed a lot of support and is set down

in many publications and academic textbooks on power phenomena in systems with
periodical and distorted waveforms, and for a long time has been part of the IEEE
Standard [12]. Nevertheless, from the very beginning it has also been criticized by
various opponents. Apart from the fact that it took almost 50years before the first
instruments where developed to measure Budeanu’s reactive and distortion powers
[10], critical questions where raised due to the apparent lack of physical meaning of
the distortion power as it does not represent a conserved quantity and the (unautho-
rized) summing up of amplitudes of oscillating components of different harmonics
[20], see also [1] and the references therein. Budeanu’s power model was finally vig-
orously challenged byCzarnecki, and, although the arguments in [5] did not convince
adherents of Budeanu’s power model instantaneously [8], it was finally abandoned
from the latest IEEE Standard [13].

In the following subsections it is shown, using the notion of time-varying phasors
and the UPT, that the assertions against Budeanu’s power model are either wrong,
misinterpreted, or overstressed.

4.4.1 Budeanu’s Reactive Power Represents an Average

First of all, we note that Budeanu’s reactive power (4.41) can be expressed in the
time domain using the Hilbert transform as [17]
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Q B := 〈û, i〉 = 1

T

T∫

0

û(t)i(t)dt, (4.43)

where we recall that û(t) = H{u(t)} denotes the Hilbert transform. Interestingly,
using the fact that 〈û, i〉 = −〈u, î〉, it is readily observed that (4.43) is equivalent to
averaging (4.34) over a period, i.e.,

Q B := 1

T

T∫

0

Q(t)dt. (4.44)

Hence, Budeanu’s reactive power Q B does not represent a magnitude or an absolute
quantity, but an average; the average of the imaginary power Q(t) in a fashion
similar to the active power PA which represents the average of the real power P(t).
Furthermore, this means that Budeanu’s reactive power represents the average of
the difference between the envelopes of the oscillation of the magnetic and electric
energies.

4.4.2 Power Fluctuations

It is correctly observed in [5] that Budeanu’s concept of distortion power is not
directly related to waveform distortion of the port voltages and currents itself. It
may, however, be related to the fluctuations of the real and imaginary powers around
their averages, i.e., the active and reactive powers. In this subsection, it is shown that
the norms of these fluctuations can be naturally interpreted as distortion powers.

Let DP (t) := P(t) − PA and DQ(t) := Q(t) − Q B represent the power fluctu-
ations around the active and reactive powers PA and Q B , respectively. Furthermore,
let IP (t) := I (t) cos(ϕ(t)) and IQ(t) := I (t) sin(ϕ(t)), then it is easily shown that
〈IP , IQ〉 = 0, i.e., the currents IP (t) and IQ(t) are mutually orthogonal. Hence, the
‘normed’ apparent power can be decomposed into two components:

||U ||2||I ||2 = ||U ||2||IP ||2 + ||U ||2||IQ ||2,

which, in turn, suggest

||U || ||IP || ≥ |〈U, IP 〉| ≡ |PA|,
||U || ||IQ || ≥ |〈U, IQ〉| ≡ |Q B |.

If ||U || ||IP || > |〈U, IP 〉|, the residual is given by



66 D. Jeltsema

D2
PU

:= ||U ||2||IP ||2 − 〈U, IP 〉2 = 1

2T 2

T∫

0

T∫

0

(
U (s)IP (t) − U (t)IP (s)

)2dsdt.

Similarly, if ||U || ||IQ || > |〈U, IQ〉|, we have

D2
QU

:= ||U ||2||IQ ||2 − 〈U, IQ〉2 = 1

2T 2

T∫

0

T∫

0

(
U (s)IQ(t) − U (t)IQ(s)

)2dsdt.

This naturally suggest the decomposition of distortion power into two components:

D2
B := D2

PU
+ D2

QU
, (4.45)

where DPU and DQU can be considered as a measure of the fluctuation (distortion)
around the active power and Budeanu’s reactive power, respectively, relative to the
voltage amplitude. Hence, we have

S2 = P2
A + Q2

B + D2
B = P2

A + D2
PU

+ Q2
B + D2

QU
. (4.46)

In the sinusoidal case, DPU = DQU = 0, and (4.46) reduces to the well-known
standard (static) power triangle.

On the other hand, an equally valid starting point would be by selecting instead of
IP (t) and IQ(t), the voltagesUP (t) := U (t) cos(ϕ(t)) andUQ(t) := U (t) sin(ϕ(t)).
This suggest to decompose the ‘normed’ apparent power as

||U ||2||I ||2 = ||UP ||2||I ||2 + ||UQ ||2||I ||2,

and, in a similar fashion as before, gives rise to the distortion powers, DPI and DQI ,
relative to the current amplitude, and satisfying

D2
B := D2

PI
+ D2

QI
. (4.47)

Note that, in general, DPU �= DPI and DQU �= DQI .

4.5 Examples

In this section, two examples are provided to illustrate the previous developments.
First, a simple LTI circuit operating under nonsinusoidal conditions is discussed. The
second example consists of a periodically switched resistive (triac) circuit.
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4.5.1 RL Circuit Example (Cont’d)

Consider again the (uncompensated) series RL circuit as shown in Fig. 4.3, but now
supplied by a nonsinusoidal voltage

u(t) = 10
√
2 cos (t) + 5

√
2 cos (5t). (4.48)

In terms of the current amplitude, the complex power reads

S(t) = PR(t) + PL(t) + j QL(t) = RI 2(t) + L I ′(t)I (t) + jωβ(t)L I 2(t).

The waveforms for P(t) = PR(t) + PL(t) and Q(t) = QL(t), and their average
values PA = 20.248 [W] and Q B = 42.475 [VAr] are depicted in Fig. 4.5. Note that
the Budeanu reactive power is clearly related with energy oscillation, but only in an
average sense, i.e.,

Q B = 2

T

T∫

0

ωβ(t)EL(t)dt,

Fig. 4.5 Fluctuation of the time-varying real and imaginary powers around the active power and
Budeanu’s reactive power for the uncompensated circuit of Fig. 4.3 driven by the nonsinusoidal
voltage (4.48)
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Fig. 4.6 The time-varying
power triangle for the
uncompensated circuit of
Fig. 4.3 driven by the
nonsinusoidal voltage (4.48)

with EL(t) = 1
2 L I 2(t) represents the envelope of the magnetic energy. The power

fluctuations DP (t) and DQ(t) are also indicated in Fig. 4.5. Furthermore, Fig. 4.6
shows the time-varying power triangle associated to (4.35), which is expanding and
contracting at the speed ωϕ(t) = ϕ′(t). Since for this particular example the same
current is flowing through both the resistor and the inductor, the ‘normed’ apparent
power can be written as

||U ||2||I ||2 = ||RI + L I ′||2||I ||2 + ||ωβ L I ||2||I ||2.

It seems therefore most natural to consider the distortion power relative to the port
current amplitude. Indeed, the fluctuation around the active power PA = R||I ||2 is
caused by the rate of change of EL (t), i.e., E ′

L(t) = L I ′(t)I (t). This change of stored
energy is due to the variation of the voltage and the current amplitudes andmust come
from real power. This causes the fluctuation of DP (t) for which the distortion power
DPI = ||UP || ||I || applies, with ||UP || = ||L I ′||. The distortion power associated
with the fluctuation DQ(t) equals DQI = ||UQ || ||I ||, with ||UQ || = ||ωβ L I ||. The
values of the distortion power, including the alternative decomposition relative to the
voltage amplitude, are computed (in [VAd]) as follows:

DB DPU DQU DPI DQI

17.799 13.245 11.891 12.664 12.508

The question that remains is how to improve the PF? It is known [5] that the
addition of a shunt capacitor C = 0.189 [F] renders Q B = 0. However, the PF then
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becomes even worse than in the uncompensated case (from λ = 0.403 to λ = 0.353)
as the distortion power increases to DB = 53.654 [VAd]. Hence, the compensation
of Budeanu’s reactive power in this way is indeed useless for PF improvement and
this was one of the main motivation behind the assertions in [5] against Budeanu’s
power model.

However, as explained in [24], themain reasonwhy in the above example the com-
pensator current, which renders Budeanu’s reactive power to zero, does not reduce
the source current—and even increases the distortion power—is that this particular
compensator current and the nonactive part of the load current are not mutually or-
thogonal. The appropriate choice of the current that needs to be compensated is the
co-called Budeanu current:

iB(t) := Q B

||û||2 û(t). (4.49)

Consequently, if the compensator is supplying the Budeanu reactive current to the
load, the Budeanu reactive power seen by the source will be zero and the distortion
power remains unaltered. As a result, the apparent power decreases. This shows
that by choosing the appropriate compensation current the PF increases and that the
Budeanu reactive power concept, in general, does lead to a compensation scheme
that reduces the line losses, except for systems in which Q B = 0 already before
compensation.

The compensation results for the RL circuit of Fig. 4.3, supplied with (4.48) and
based on compensation of the Budeanu current (4.49), are shown in Fig. 4.7. It should
be emphasized that, in general, the compensator supplying the Budeanu current
cannot be realized by a single lossless shunt element. In fact, for the given example,
it is composed of the same capacitor C = 0.189 [F] as before, but in series with a
parallel connection of a capacitor Cx = 0.128 [F] and an inductor Lx = 1.805 [H].
This compensator increases the PF to λ = 0.751.

Remark 4.5 Although this example demonstrates that, in spite the fact that compen-
sation based on the Budeanu current (if it exists), always leads to an improvement
of the PF without altering the distortion power, it may not lead to optimal results as
power fluctuations around the average powers may still exist and their compensation
using passive filters seems so far not trivial from a time-domain perspective. On the
other hand, based on the approach of [19], the power fluctuations can be compensated
using an active filter.

Fig. 4.7 Series RL circuit driven by a nonsinusoidal voltage with compensation network to render
Q B = 0 without altering the distortion power
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4.5.2 Triac Circuit

Consider the uncompensated (i.e., C = 0) triac circuit shown in Fig. 4.8 [6]. Under
the assumption that u(t) = 220

√
2 sin(t), R = 1Ω , and a switching angleα = 135◦,

the apparent power equals

S = ‖u‖ ‖i‖ = 14.588 [kVA], (4.50)

whereas the active power PA = 4.397 [kW]. This means that the PF is far less
than unity, i.e., λ ≈ 0.3. The Budeanu reactive power equals Q B = 7.703 [kVAr],
whereas the distortion power and its associated decomposition reads (in [kVAd]):

DB DPU DQU DPI DQI

11.582 8.190 8.190 8.671 7.678

It is important to realize that the uncompensated circuit does not store any energy.
The reason why no energy is accumulated in the circuit becomes apparent when we
consider the Lissajous plot of Fig. 4.8. Here it is observed that, although there is a
phase shift between the current and voltage caused by the moments that the triac is
switching ON, there is no energy accumulation as i(t) ≡ 0 whenever u(t) ≡ 0, and
vice versa. From a frequency-domain perspective, the presence of reactive power can
be explained as follows. The fundamental harmonic of the supply current reads

Fig. 4.8 Triac circuit and its
associated Lissjous plot.
Although there is no energy
storage, the circuit exhibits a
reactive power that is equal
to the sum of the areas
A1 + A2. The reactive power
can be fully compensated
using a capacitor
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i1(t) = 40.317
√
2 sin(t − 0.334π),

which is subsequently decomposed into an active component, i1a (t), that is directly
proportional (collinear) with the supply voltage and a quadrature component i1r (t)
as

i1(t) = i1a (t) + i1r (t) = 19.987
√
2 sin(t) − 35.014

√
2 cos(t).

Now, PA = ‖u‖ ‖i1a ‖ and Q B = ‖u‖ ‖i1r ‖. Thus, the active power is related to the
part of the current that is in-phase with the voltage, whereas the reactive power is
related to the part that is exactly 90◦ out-of-phase. The remaining part of the current,
id(t) = i(t) − i1(t), represents the harmonics that are due to the triac invoked
distortion of the supply voltage and is responsible for the distortion power.

Although there is no energy accumulation, we may conclude that the triac circuit
exhibits an inductive-like character since Q B > 0. Hence, it is natural to compensate
this behavior by placing a shunt capacitor. The value of the capacitor that fully
compensates the reactive power equals C = 0.159 [F]. See [6] for more details.

References

1. G. Benysek, M. Pasko (eds.), Power Theories for Improved Power Quality (Springer, London,
2012)

2. C.I. Budeanu, Puissances réactives et fictives (Inst. Romain de l’Energie, Bucharest, 1927)
3. P. Bunet, Puissance réactives et harmonics. R.G.E., 6 Mars (1926)
4. G. Chateigner,M. Boes, J. Chopin, D. Verkindère, Puissances, facteur de puissance et théorème

de Boucherot. Technolgie, 158, Novembre-Décembre 2008
5. L.S. Czarnecki, What is wrong with the Budeanu concept of reactive and distortion power and

why it should be abandoned. IEEE Trans. Instr. Meas. 36(3), 834–837 (1987)
6. L.S. Czarnecki, Physical interpretation of reactive power in terms of the cpc power theory.

Electr. Power Qual. Utilisation J. XIII(1), 89–95 (2007)
7. C.A. Desoer, E.S. Kuh, Basic Circuit Theory (McGraw-Hill Book Company, New York, 1969)
8. A.E. Emanuel, Power Definitions and the Physical Mechanism of Power Flow (Wiley-IEEE

Press, New York, 2010)
9. A. Fererro, S. Leva, A.P. Morando, An approach to the non-active power concept in terms of

the Poynting vector. ETEP 11(5), 291–299 (2001)
10. P. Filipski, The measurement of distortion current and distortion power. IEEE Trans. Instr.

Meas. IM-33(1), 36–40 (1984)
11. E. García-Canseco, R. Grino, R. Ortega, M. Salichis, A.M. Stanković, Power-factor compen-
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Chapter 5
Handling Biological Complexity Using Kron
Reduction

Bayu Jayawardhana, Shodhan Rao, Ward Sikkema and Barbara M. Bakker

Abstract We revisit a model reductionmethod for detailed-balanced chemical reac-
tion networks based on Kron reduction on the graph of complexes. The resulting
reduced model preserves a number of important properties of the original model,
such as, the kinetics law and identity of the chemical species. For determining the
set of chemical complexes for the deletion, we propose two alternative methods to
the computation of error integral which requires numerical integration of the state
equations. The first one is based on the spectral clustering method and the second
one is based on the eigenvalue interlacing property of Kron reduction on the graph.
The efficacy of the proposed methods is evaluated on two biological models.

5.1 Introduction

Since this chapter is dedicated to Prof. Arjan van der Schaft, we first describe his early
work on port-Hamiltonian systems and passivity theory and then describe how his
work on chemical reaction network theory which is one of his most recent ventures,
is connected with these two concepts. Beginning in the early 1990s, van der Schaft
in collaboration with Maschke and Breedveld (see [13–16, 29]), began his work
on port-controlled Hamiltonian systems which are commonly referred to as port-
Hamiltonian systems. The framework of port-Hamiltonian systems combines the
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earlier well-known Hamiltonian systems framework in which the system is modeled
by using its total stored energy or the Hamiltonian, and the network framework
which uses nodes and edges, and is commonly used to model electrical systems. For
a detailed explanation of port-Hamiltonian systems, the reader is referred to [26, 27].
The port-Hamiltonian framework allows mainly modeling of passive electrical and
mechanical systems.Bypassive systems,wemean systems forwhich the derivative of
the Hamiltonian with respect to time is nonpositive due to dissipation. This derivative
is equal to zero for lossless systems and negative for systems with dissipation.

In a first attempt to extend the port-Hamiltonian framework for the modeling of
chemical reaction networks, in collaborationwithMaschke, van der Schaft published
a chapter in Springer lecture notes [28] in 2011. In this work, the Gibbs free energy of
a chemical reaction network is considered as the Hamiltonian for its modeling. This
workwas inspired by the innovative work of Oster, Perelson, andKatchalsky [19, 20]
in the area of chemical reaction networks. Later, he refined this work in collaboration
with Rao and Jayawardhana who are two of the authors of this manuscript.

Deriving inspiration from the work of Horn, Jackson and Feinberg [5, 8, 9], who
can arguably be considered as the founding fathers of chemical reaction network
theory, we made a couple of observations. First an easy way of modeling chemical
reaction networks is to make use of graphs of complexes of chemical reaction net-
works. The complexes of a chemical reaction network are the combination of species
of the various left- and right-hand sides of the different reactions in the network. The
graph of complexes is simply a graph with complexes as nodes and reactions as
edges. The complex composition matrix Z , which captures the expression of the
various complexes in terms of its constitutive species, and the incidence matrix B
corresponding to the graph of complexes can then be used to derive an expression
describing the dynamics of a chemical reaction network, given by ẋ = Z Bv, where x
denotes the vector of concentrations of the different species and v denotes the vector
of the rates of the reactions in the network.

In their seminal papers published in the early 1970s, Horn, Jackson, and Feinberg
[6, 8, 9] mainly considered a special class of chemical reaction networks known as
complex-balanced networks. A complex-balanced network is one for which there
exists a vector of species concentrations at which the combined rate of outgoing
reactions from any complex is equal to the combined rate of incoming reactions
to the complex, i.e., in some sense each complex of the network is balanced. A
detailed-balanced network is a complex-balanced network for which there exists a
vector of species concentrations at which the rate of each of the reactions in the
network is zero, i.e., in addition to each complex being balanced, each reaction in
the network is also balanced. The second observation that we made from [6, 8, 9]
is that it is possible to derive a compact mathematical formulation describing the
dynamics of complex and detailed-balanced networks in terms of a known equi-
librium concentration vector, and a weighted Laplacian matrix corresponding to
the graph of complexes. This weighted Laplacian matrix is symmetric in the case of
detailed-balanced networks, and is balancedmeaning that it has zero row and column
sums in the case of complex-balanced networks. These properties of the weighted
Laplacian matrix allows simple derivation of the previously well-known results



5 Handling Biological Complexity Using Kron Reduction 75

from [8, 25] regarding equilibria and asymptotic stability of detailed- and
complex-balanced networks (see [23, 30]). It can be shown that our compact mathe-
matical formulation admits a direct port-Hamiltonian interpretation, using the Gibbs
free energy of the network as the Hamiltonian and it can be shown that complex-
balanced networks are passive systems (see [31] for details).

The graph-theoretic approach for the analysis of detailed- and complex-balanced
networks also led to the idea of using the Kron reduction method to reduce models of
such networks. Kron reduction method is a well-known method for model reduction
of electrical networks (see, for example, [12] and an article written by van der Schaft
in [32]) and other complex-networked systems (we refer interested readers to a recent
article in [3]). This method exploits the balancedness of the weighted Laplacian
matrix which we use in our compact mathematical formulation for the network,
in order to perform a meaningful deletion of certain complexes of the network,
thereby rewiring the graph of complexes and reducing the number of variables in the
corresponding model. In collaboration with two system biologists, Bakker (another
author of this chapter) andvanEunen from theCenter for SystemsBiology,University
of Groningen, we generalized this model reduction method so as to be applicable for
reaction networks that are governed by a variety of general enzyme kinetic rate laws,
involving external inflows and outflows and are not necessarily complex balanced
(see [22]). The reader is referred to [21, 22] for the current state of the art in the area
of model reduction of biochemical reaction networks. Below, the main features of
the model reduction method described in [22] are highlighted.

The method described in [22] reduces the number of reactions, species, and para-
meters in such a way that the transient behavior of the species concentrations of the
reduced model under certain predefined conditions are close to those of the origi-
nal model. This method proceeds by a simple stepwise reduction in the number of
complexes, the effect of which is monitored by an error integral that quantifies how
much the transient behavior of the reduced model deviates from that of the original.
This method does not rely on prior knowledge about the dynamic behavior or bio-
logical function of the network. Consequently, it can be automated. Furthermore, the
reduced model largely retains the kinetics and structure of the original model. This
enables a direct biochemical interpretation and yields insight into which parts of the
network have the highest influence on its behavior. It also accelerates computations
and facilitates parameter fitting, especially when we deal with models of huge bio-
chemical reaction networks. One of the drawbacks of this method is that it relies on
the computation of error integral which could be time-expensive and depends on a
number simulations which increases with the size of the model.

The main contribution of this chapter is to propose two alternative methods to
the computation of error integral for determining the best combination of complexes
that should be removed from the original network. We restrict ourselves to the class
of detailed-balanced chemical reaction networks governed by the law of mass action
kinetics. Thermodynamically, the assumption of detailed-balancedness of any reac-
tion network without external fluxes is well-justified as it corresponds to microscopic
reversibility.
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The first method is based on the spectral clustering method on a graph which has
been used to solve the ratio-cut and normalized-cut problems [33]. In graph theory,
they are related to the problem of clustering the vertices in a graph such that the
cost function associated with the weights of the cut-sets1 is minimized. It has been
applied widely for signal and image analyses [24, 33]. In our present context, we
adapt the spectral clustering method to cluster complexes, thereby modifying the
graph of complexes. Based on the clustering, we can pick complexes for the deletion
from weakly coupled clusters since these clusters have minimal influence on the rest
of the network.

The second method is based on the interlacing property of eigenvalues of Lapla-
cianmatrices associated with undirected graphs. From the classical work of Haemers
[7], it is known that Laplacian matrices associated with graphs obey certain eigen-
value interlacing properties. In particular, it is known that the eigenvalues of any
principal sub-matrix of a symmetric matrix interlace with the eigenvalues of the
original matrix. As a direct consequence, for an undirected graph, the eigenvalues
of any Schur complement of the corresponding symmetric Laplacian matrix (which
defines the Kron reduction of a graph as will be explained later) interlace with the
eigenvalues of the original Laplacian matrix. Based on this property, in our second
approach, we look for the best combination of complexes to be deleted by finding
a principal sub-matrix that results in a tight eigenvalue interlacing. This approach
can be interpreted as finding the set of complexes with fast dynamics and a weak
coupling to the rest of the network.

The layout of the chapter is as follows. In Sect. 5.2, we describe the modeling
procedure for detailed-balanced mass action kinetics networks using a weighted
Laplacian matrix corresponding to the graph of complexes. In Sect. 5.3, we review
Kron reduction method for an undirected graph and its application to our chemical
reaction network setting as proposed in [22]. The proposed spectral-based approaches
are discussed in Sect. 5.4 and the efficacy of our proposed methods are evaluated in
Sect. 5.5.
Notation: The space of m-dimensional real vectors is denoted by R

m , the space of
m-dimensional real vectors consisting of all strictly positive entries by R

m+ and the
space of m-dimensional real vectors consisting of all nonnegative entries by R̄

m+.
Given a1, . . . , an ∈ R, diag(a1, . . . , an) denotes the diagonal matrix with diagonal
entries a1, . . . , an . The time-derivative dx

dt (t) of a vector x depending on time t will
be denoted by ẋ(t) or ẋ . The mapping Ln : R

m+ → R
m, x �→ Ln(x), is defined

as the mapping whose i th component is given as (Ln(x))i := ln(xi ). Similarly, the
mapping Exp : Rm → R

m+, x �→ Exp(x), is the mapping whose i th component is
given as (Exp(x))i := exp(xi ). Also, for any vectors x, z ∈ R

m the vector x
z ∈ R

m

is defined as the elementwise quotient
(

x
z

)
i
:= xi

zi
, i = 1, . . . , m.

For n ∈ N, we define the index set In := {1, . . . , n}. For describing sub-matrices,
we will use the following notations throughout the paper. Let a, b ⊂ In be two given
subindices of In . The sub-matrix of a matrix L ∈ R

n×n whose rows are indexed by

1Cut-sets are the edges that connect the vertices of the different clusters.
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a and columns are indexed by b is denoted by L[a, b]. Correspondingly, we define
the complementary sub-matrices L[a, b),L(a, b],L(a, b) as follows:

L[a, b) := L[a, In\b], L(a, b] := L[In\a, b], L(a, b) := L[In\a, In\b].

For a symmetric matrixL ∈ R
c×c, we arrange the eigenvalues in an increasing order

so that
λ1(L) ≤ λ2(L) ≤ · · · ≤ λc(L).

5.2 Detailed-Balanced Chemical Reaction Networks

In this section, we describe the modeling procedure of detailed-balanced mass action
networks as in [30]. Consider a reversible reaction networks with r reversible reac-
tions among m chemical species. Assume that the reaction network has c complexes
whose expression in terms of the species can be described using the complex compo-
sition matrix Z of dimension m × c. The i th column of Z expresses the composition
of the i th complex of the network in terms of its m species. As an example, the
complex composition matrix for the following reversible network:

2X1 + X2 � X3 � X1 + 2X2 (5.1)

is given by

Z =
⎡
⎣
2 0 1
1 0 2
0 1 0

⎤
⎦

The graph of complexes corresponding to a reversible reaction network is a directed
graph with complexes as nodes and one edge corresponding to each reversible reac-
tion with direction of the edge given by that of the forward reaction. Note that the
modeling and model reduction can be carried out irrespective of the direction that is
chosen for the edge corresponding to each of the reversible reactions of the network.
One can associate an incidence matrix B of dimension c × r corresponding to the
graph of complexes for which the j th column refers to the j th reaction of the net-
work. If this reaction has the pth complex as the substrate and the qth complex as the
product, then the j th column of B has −1 as its pth element, +1 as its qth element
and all the remaining elements equal to 0. For example, the incidence matrix of the
reaction network (5.1) is given by

B =
⎡
⎣

−1 0
1 −1
0 1

⎤
⎦
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Now if v ∈ R
r denotes the vector of reaction rates and x denotes the vector of species

concentrations, then the dynamics of the reaction networks can be described using
the equation

ẋ = Z Bv

Note that v as a function of x depends on the governing law of the reaction network.
Here we describe how v can be written as a function of x in case the governing law
is mass action kinetics.

The mass action reaction rate of the j th reaction of a chemical reaction network,
from a substrate complex S j to a product complex P j , is given as

v j (x) = kforwj

m∏
i=1

x
ZiS j
i − krevj

m∏
i=1

x
ZiP j
i , (5.2)

where Ziρ is the (i, ρ)th element of the complex stoichiometric matrix Z , and
kforwj , krevj ≥ 0 are the forward and reverse reaction constants of the j th reaction,
respectively.

Equation (5.2) can be rewritten in the following way. Let ZS j and ZP j denote
the columns of the complex stoichiometry matrix Z corresponding to the substrate
complex S j and the product complex P j of the j th reaction. Using the mapping
Ln : Rc+ → R

c as defined at the end of the Introduction, the mass action reaction
Eq. (5.2) for the j th reaction takes the form

v j (x) = kforwj exp
(
Z T
S j
Ln(x)

) − krevj exp
(
Z T
P j

Ln(x)
)
. (5.3)

At this point, we define a detailed-balanced chemical reaction network. A vector of
concentrations x∗ ∈ R

m+ is called a thermodynamic equilibrium if v(x∗) = 0. Note
that at a thermodynamic equilibrium, the rate of each of the reactions in the network
is zero. A chemical reaction network ẋ = Z Bv(x) is called detailed balanced if
it admits a thermodynamic equilibrium x∗ ∈ R

m+. It can be shown that a detailed-
balanced network is necessarily reversible. Note that x∗ ∈ R

m+ is a thermodynamic
equilibrium, i.e., v(x∗) = 0, if and only if

kforwj exp
(
Z T
S j
Ln(x∗)

) = krevj exp
(
Z T
P j

Ln(x∗)
)
, j = 1, . . . , r

Define the ‘conductance’ κ j (x∗) > 0 of the j th reaction as the common value of the
forward and reverse reaction rates at thermodynamic equilibrium x∗, i.e.,

κ j (x∗) := kforwj exp
(

Z T
S j
Ln(x∗)

)
= krevj exp

(
Z T
P j

Ln(x∗)
)

, j = 1, . . . , r

Then the mass action reaction rate (5.3) of the j th reaction can be rewritten as

v j (x) = κ j (x∗)
[
exp

(
Z T
S j
Ln

( x

x∗
))

− exp
(

Z T
P j

Ln
( x

x∗
))]

,



5 Handling Biological Complexity Using Kron Reduction 79

where for any vectors x, z ∈ R
m the quotient vector x

z ∈ R
m is defined elementwise

(see the end of the Introduction).
Defining the r × r diagonal matrix of conductances as

K := diag
(
κ1(x∗), . . . , κr (x∗)

)

it follows that the mass action reaction rate vector of a balanced reaction network
can be written as

v(x) = −KBTExp
(

Z TLn
( x

x∗
))

,

and thus the dynamics of a balanced reaction network takes the form

ẋ = −Z BKBTExp
(

Z TLn
( x

x∗
))

, K > 0 (5.4)

ThematrixL := BKBT in (5.4) defines aweighted Laplacian matrix for the complex
graph, with weights given by the conductances κ1(x∗), . . . , κr (x∗). Note that L is
symmetric. Thus Eq. (5.4) can be written as

ẋ = −ZLExp
(

Z TLn
( x

x∗
))

(5.5)

The above equation is the compact mathematical formulation that was referred to in
the Introduction, which is written in terms of a symmetric weighted Laplacian matrix
L and a known equilibrium concentration vector x∗ of the network. In addition to the
system equation in (5.5), we define the output function y that represents measured
or important variables (species concentrations) as follows:

y = Cx (5.6)

where y ∈ R
p is the vector of output variables and C ∈ R

p×m . Note that y is
typically a subset of the set of species, in which case, the matrix C is defined simply
by an indicator matrix. We will use this output function to measure the quality of our
model reduction method.

5.2.1 Detailed-Balanced CRN with General Kinetics

When enzymatic reactions or allosteric regulation are involved in the network, as
commonly found in metabolic pathways, we can generalize (5.5) to take these into
account. For describing such reactions, the mass action reaction rate as in (5.2), for
every j th reaction, can be generalized to
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v j (x) = d j (x)

(
kforwj

m∏
i=1

x
ZiS j
i − krevj

m∏
i=1

x
ZiP j
i

)
, (5.7)

where, d j : Rn → R+ is a positive definite function. In this new formulation, the
function d j models a sigmoidal/Hill function or another nonlinear function that is
associated with an enzymatic reaction or allosteric regulation.

Following similar steps as in the mass action case, the detailed-balanced CRN
with general kinetics2 as in (5.7) can be described by

ẋ = −ZL(x)Exp
(
Z TLn

( x
x∗

))
y = Cx

}
(5.8)

where the state-dependent weighted balanced Laplacian matrix L(x) is defined by

L(x) := B diag
(
d1(x), . . . , dr (x)

)K BT

with K denoting the conductance matrix as before.

5.3 Kron Reduction

Consider again the graph of complexes of a detailed-balanced CRNwith mass action
kinetics as discussed in Sect. 5.2 where a weighted Laplacian matrix L has been
defined to describe the interconnecting complexes and their associated reaction rates
in (5.5). Similar to the Kron reduction method for electrical circuits, we can poten-
tially reduce the dimension of CRN in (5.5) by applying Kron reduction to the graph
of complexes.

The Kron reduction of a detailed-balanced chemical reaction network results in
another detailed-balanced chemical reaction network, the vertices of whose complex
graph is a subset of the vertices of the complex graph corresponding to the original
network. Suppose that Cred ⊂ Ic is the set of vertices (i.e., complexes) that we wish
to remove from the complex graph corresponding to the original network. Then the
Kron reduction of the network results in another detailed-balanced chemical reaction
network, whose corresponding Laplacian matrix Lred is the Schur complement of L
with respect to L[Cred , Cred ], given by

Lred = L(Cred, Cred) − L(Cred, Cred]
(
L[Cred, Cred]

)−1 L[Cred, Cred).

The fact thatLred is again a symmetricLaplacianmatrix has been shown, for instance,
in [3, Lemma 2.1].

2For a detailed exposition on detailed-balanced CRNs with general kinetics, we refer interested
readers to our work in [10].
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The dynamics of the Kron-reduced CRN is then given by

ẋ = −Z [Ic, Cred)LredExp
(

Z [Ic, Cred)TLn
( x

x∗
))

yred = Cx
.

}
(5.9)

Since some of the complexes have been removed from the original state equations,
some species in the image of Z [Ic, Cred] can be constant, in particular, if they are not
in the image of Z [Ic, Cred). These species can therefore be removed from the state
equation, leading to a reduced model. For a detailed-balanced CRN with general
kinetics, the Kron reduction method follows the same procedure as above.

The following lemma establishes the spectrum relation of Lred and its original
Laplacian L, which will be useful for our determination of the complex combination
for the deletion.

Lemma 5.1 Consider a weighted symmetric Laplacian matrixL of a complex graph
and its associated Kron-reduced Laplacian Lred with respect to a set of deleted
complexes Cred. Let k = dim(Cred). Then for every i = 1, . . . , c − k,

λi (L) ≤ λi (Lred) ≤ λi (L(Cred, Cred)) ≤ λi+k(L),

where λi (L) (or λi (Lred)) is the i th eigenvalue of L (or Lred, respectively).

The proof of this lemma follows from [7, Theorem 2.1] or a recent exposition
of Kron reduction on graph in [3, Theorem 3.5]. It follows immediately from this
lemma that if dim(Cred) = 1 then

λ1(L) ≤ λ1(Lred) ≤ λ2(L) ≤ λ2(Lred) ≤ · · · ≤ λc−1(Lred) ≤ λc(L).

In other words, the eigenvalues of Lred interlace those of L.

5.3.1 Error Integral

Although the Kron reduction method as described above involves a fairly straight-
forward computation, it is not obvious how to determine the set of complexes for
removal such that the dynamic behavior of the Kron-reduced CRN remains close to
that of the original one.

One approach to do that, which has been proposed in our previous work [22], is
to perform an iterative Kron reduction method where at each iteration a removal of a
complex thatminimizes a cost function is sought for. Sincewe use the output function
to assess the quality of model reduction method, it is assumed that the complexes
containing the chemical species in y do not belong to Cred. Based on this assumption,
the cost function as given in [22] is a normalized error integral that is defined by
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J (x) =
p∑

i=1

1

T p

∫ t+T

t

∣∣∣∣1 − yi,red(τ )

yi (τ )

∣∣∣∣ dτ , (5.10)

where yi,red and yi are the i th output of the reduced model (5.9) and of the full
model (5.6), respectively. This cost function evaluates the discrepancy of the reduced
model’s transient behavior compared with that of the full model one on the interval of
[t, t +T ]. It is normalized with respect to the total number of output variables and the
length of time interval. Although other type of functions, such as, an L p-norm-based
cost function, can be used instead of (7.10), the normalized error integral as in (7.10)
has been found to be effective in our numerical simulations.

One can show that the Kron reduction with respect to a given set of complexes
to be deleted Cred can be done by an iterative Kron reduction with respect to each
individual complex in Cred (see, for example, [3, Lemma 3.3]) and is invariant to the
order of complex deletion. This fact supports the aforementioned iterative procedure
of finding the combination of complexes for removal.

5.4 Spectral-Based Approaches

In this section, we present two alternative approaches to the iterative procedure of
the previous section, for finding the combination of complexes for removal. These
approaches are based on the spectral property of L (or L(x) for the case of detailed-
balanced CRN with general kinetics) so that they do not depend on the numerical
integration of the state equations as in (7.10). We show the approach assuming that
the complex graph is connected. In case of graphs having more than one connected
component, the same approach can be applied for each connected component. Hence,
in the following we assume that L has eigenvalue 0 with multiplicity 1 so that
λ2(L) > 0.

5.4.1 Spectral Clustering-Based Approach

For our first approach, we will consider clustering vertices of the complex graph
into k clusters such that the combined weight of edges between vertices belonging to
different clusters isminimized.More precisely, let us consider the followingRatioCut
problem [33]

min
C�

�=1,...k

k∑
�=1

W (C�, C�)

dim(C�)
,

where C� denotes the set of vertices (or complexes) in the �th cluster, C� is the
complement of C� defined by C� := Ic\C� and W (C�, C�) is the sum of weights in

http://dx.doi.org/10.1007/978-3-319-20988-3_7
http://dx.doi.org/10.1007/978-3-319-20988-3_7
http://dx.doi.org/10.1007/978-3-319-20988-3_7
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the cut-set of the cut (C�, C�), i.e.,

W (C�, C�) =
∑

i∈C�, j∈C�

−Li, j .

This RatioCut problem can be recasted into another equivalent form by using clus-
tering (or indicator) vectors u� = [

u1,� . . . uc,�
]T , � = 1, . . . , k defined by

u j,� =
{

1√
dim(C�)

if j ∈ C�

0 otherwise,

which are orthonormal vectors. Using u�, the RatioCut clustering problem can be
reformulated as follows:

min
C�

�=1,...k

k∑
�=1

W (C�, C�)

dim(C�)
= min

C�
�=1,...k

k∑
�=1

uT
� Lu� = min

C�
�=1,...k

Tr(U TLU ),

where Tr is the trace of a matrix and U = [
u1 u2 . . . uk

]
satisfies U T U = Ik×k .

Instead of findingminimizing clustering vectors u� which can be NP-hard, we can
look for any orthonormal vectors u� that minimize the following relaxed RatioCut
problem

min
U∈Rc×k

Tr(U TLU ) subject to U T U = Ik×k .

Basedon the solutionU to this relaxedproblem,we cluster the vertices by considering
the rows of U as points in the k-dimensional space and by clustering these c points3

into k clusters using any distance metric. For instance, we can apply the standard
k-means algorithm to cluster these points. The resulting clustering result is known
to approximate the solution to the original RatioCut problem [33].

Finally, we propose the following algorithm to find the candidate Cred for our
Kron reduction:

Spectral clustering-based algorithm:

1. Set k = 2 and calculate L (or L(x) with x be taken as the species concentration
in a given steady state).

2. Obtain k clusters of vertices: C1, . . . , Ck , based on the approximate solution to
the aforementioned RatioCut problem.

3. If y ∩ Ci �= ∅ for every i = 1, . . . , k (i.e., every cluster contains some elements
of y) then increment k by one (i.e., increase the number of cluster) and return to
Step 2. Otherwise define Cred as the union of all sets Ci , i = 1, . . . , k, such that
y ∩ Ci = ∅ and we can choose4 Cred ⊂ Cred .

3For every i = 1, . . . , c, the i th row of U corresponds to the i th vertex.
4One can again perform the interative procedure as in Sect. 5.3 to obtain the best combination of
complexes Cred from Cred .
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5.4.2 Minimal Eigenvalue Interlacing-based Approach

If one considers that the dynamics of CRN can have multiple timescales since the
eigenvalues of L are related to the rate of decay of complexes, then one can consider
removing fast complexes that haveminimal influence on the dynamics of the network.
This can be done by minimizing the eigenvalue interlacing distance. In this regard,
the interlacing property as in Lemma 5.1 can be useful as we demonstrate below.

Suppose thatwe are looking for a combination of k vertices to be removed forKron
reduction. In order to minimize the influence of the to-be-removed complexes on the
rest of the network, we can determine Cred which solves the following minimization
problem:

min
Cred∈(Ic\y

k )

c−k∑
i=2

λi (Lred) − λi (L), (5.11)

where
(Ic\y

k

)
is the set of all k-combination from the admissible set of complexes for

the deletion Ic\y. Note that the cost function as used above is nonnegative according
to the interlacing property in Lemma 5.1.

We summarize our second proposed approach in the following algorithm:

Minimal Eigenvalue Interlacing-based algorithm:

1. Set k = 1, set an (averaged and normalized) interlacing distance threshold ε > 0
and calculate L (or L(x) with x taken as the species concentration in a given
steady state).

2. Solve the minimization problem of eigenvalue interlacing as in (5.11). Denote its
solution by Cred.

3. If
1

c − k − 1

c−k∑
i=2

λi (Lred) − λi (L)

λi (L)
< ε (5.12)

then increment k by one and return to Step 2. Otherwise set Cred from the previous
iteration as the desired set of complexes for removal.

Note that in the summation on the left-hand side of (5.12), last term, i.e., the term
corresponding to i = c − k, contributes much more than the other terms. Therefore,
the left-hand side of (5.12) may not be easily interpreted as the normalized deviation
of eigenvalues, as will be shown later in the simulation results. One way to overcome
this problem is to modify condition (5.12) as

1

N − 1

N∑
i=2

λi (Lred) − λi (L)

λi (L)
< ε (5.13)

where N ≤ c − k is the number of the smallest eigenvalues that are considered to be
important.
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5.5 Numerical Simulation Results

We evaluate the efficacy of our proposed approaches using two different models.
The first one is based on the glycolysis model which has been used in our model
reduction paper [22]. The second one is an arbitrary model that is taken from the
BioModels database on biological models [1]. This is a model of insulin-dependent
glucose metabolism as proposed and studied in [18].

5.5.1 Glycolysis Model

Thismodel describes the glycolysismetabolismbased on thework in [4]. The original
model in [4] consists of 12 species and 12 reactions and it has successfully been
reduced using our Kron reduction approach in [22] to 7 species and 7 reactions. In
Table5.1 below, we reproduce the complexes that are removed at each step of the
iterative reduction procedure as described before in Sect. 5.3.

Using the same numerical values as in [22], we apply the spectral clustering-based
algorithm to obtain 7 clusters of complexes as shown in Fig. 5.1. It can be seen that
four of the complexes in Table5.1 are in clusters C2 and C6 which do not contain
any important variables as marked in red color in Fig. 5.1. Since these clusters have
minimal cut-set with their neighbors, the corresponding vertices/complexes can be
deleted using Kron reduction and it is expected to give us a good reduced model
(cf. Table5.1). Indeed, if we take Cred = {G6P, F6P, P2G, PEP} then the numerical
simulation result gives us an error integral of 0.0701.

We now apply our second proposed approach, i.e., the minimal eigenvalue
interlacing-based algorithm to this model and the results are shown in Tables5.2
and 5.3. From both tables, minimizing the interlacing distance for the first couple
of eigenvalues (where we have considered the second and third eigenvalues for the
results shown in the lower rows of Tables5.2 and 5.3) provides a reasonably good
combination of complexes for Kron reduction. In particular, if we choose ε = 0.1
(i.e., the deviation of eigenvalues of the reducedmodel should deviate less than 10%,
in average, from those of the full one), then the application of (5.13) leads to F6P

Table 5.1 Order of complex
removal using the iterative
procedure for the glycolysis
model as in [22]

Iteration step Complex removed Error integral

1 F6P 0.0002

2 G6P 0.0005

3 P2G 0.0049

4 P3G 0.0147

5 PEP 0.0483
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Fig. 5.1 The clustering of complexes in the glycolysis model as used in [22] into 7 clusters using
the proposed spectral clustering-based algorithm. The clusters are indicated by the dashed-line
boxes and the labels Ck , k = 1, . . . , 7 are given on the top-right corner of each boxes. The model
contains 13 complexes that form a complex graphwith three connected components (see [22] for the
description and an explanation of all the abbreviations of the complexes). The text in red indicates
the species defined in output variable y. The number on top of every edge shows the edge weight
which are taken from the adjacency matrix in the Laplacian matrix L(x) using the nominal values
of x

Table 5.2 Optimal complexes for removal in the first connected sub-graph containing vertices
GLci, G6P, F6P, F16BP and 2TRIO, using the minimal eigenvalue interlacing-based algorithm

Iteration
step

Complexes
removed

Minimal
cost value

λ2 λ3 λ4 λ5 Error
integral

Minimal eigenvalue interlacing-based algorithm with the cost value as in (5.12)

0 None 0 2.09 × 10−4 1.04 4.06 4.6× 105 0

1 F16BP 0.179 2.23 × 10−4 1.46 4.37 0.6423

2 F6P,
F16BP

0.297 2.51 × 10−4 1.456 0.6417

3 G6P, F6P, 0.5998 3.348×10−4 0.64

F16BP

Minimal eigenvalue interlacing-based algorithm with the cost value as in (5.13) and N = 3

1 F6P 0.056 2.23 × 10−4 1.0927 4.6× 105 1.83 ×
10−4

2 F16BP,
F6P

0.297 2.51 × 10−4 1.456 0.6417

and P2G as optimal complexes for reduction. In this case, the error integral value
associated with the removal of both complexes is 0.025.

However, as shown in Table5.2, the algorithm still identifies F16BP as a candidate
for removalwhich leads to a large error integral value (which implies that the transient
behavior of the reduced model deviates significantly from the full one). On the other
hand, our first proposed approach does not identify F16BP as a suitable complex for
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Table 5.3 Optimal complexes for removal in the second connected sub-graph containing vertices
BPG, P3G, P2G, PEP, PYR and Acald, using the minimal eigenvalue interlacing-based algorithm

Iteration
step

Complexes
removed

Minimal
cost value

λ2 λ3 λ4 λ5 λ6 Error
integral

Minimal eigenvalue interlacing-based algorithm with the cost value as in (5.12)

0 None 0 0.068 0.919 4.087 10.856 3.6 ×
103

0

1 P3G 83.59 0.077 1.18 4.094 3.6 ×
103

0.0046

2 P3G, P2G 296.49 0.092 1.243 3.6 ×
103

0.0142

3 P3G, P2G,
PEP

1975.5 0.1237 3.6 ×
103

0.0478

Minimal eigenvalue interlacing-based algorithm with the cost value as in (5.13) and N = 3

1 P2G 0.1177 0.075 1.045 10.544 3.6 ×
103

0.0249

2 P3G, P2G 0.352 0.092 1.243 3.6 ×
103

0.0142

3 P3G, P2G,
PEP

1978.5 0.1237 3.6 ×
103

0.0478

the Kron reduction. This result shows that the spectral-based clustering algorithm
outperforms the eigenvalue interlacing-based algorithm.

5.5.2 Insulin-Signaling-Dependent Glucose Metabolism
Model

The model describes the insulin-signaling-dependent glucose metabolism that
includes glycolysis, gluconeogenesis and glycogenesis pathways, all of which are
regulated by insulin. The full model consists of 39 reactions (where forward and
reverse reactions in a reversible reaction are counted as 2 separate reactions), 23
species, and 23 complexes.5 Figure5.2a shows the complex graph of the full model
and we refer interested readers to [18] for a description and detailed explanation of
the network. The output vector y consists of the concentrations of the species pAkt,
GLCex, PEPCK, Glycogen, p1IRS, and F16P.

The iterative reduction procedure as discussed in Sect. 5.3 is performed based on
the response to a step increase of external insulin concentration from 0 to 100 nM.
For the error integral, we take t = 0 and T = 480 min. Table5.4 gives the value
of the error integral and the complex deleted at each iterative step. The resulting
reduced complex graph is shown in Fig. 5.2b.

5Here the complex composition matrix Z is given by an identity matrix.
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Fig. 5.2 Complex graph of the original and reduced models of the insulin-signaling-dependent
glucose metabolism. The left-hand panel is a schematic representation of the original model used
for model reduction. The full model description and an explanation of all the abbreviations is found
in [18]. The right-hand panel represents the reducedmodel after deleting 9 complexes (LAC, PYRin,
PYRout, p2IRS, p1p2IRS, G1P, Foxo, pFoxo, mRNA). a The complex graph of the full model. b
The complex graph of the reduced model

Table 5.4 Order of complex removal using the iterative procedure for the insulin-signaling-
dependent glucose metabolism model

Iteration step Complex removed Error integral

1 LAC 0.0001

2 PYRin 0.0004

3 PYRout 0.0007

4 p2IRS 0.0014

5 p1p2IRS 0.0026

6 G1P 0.0071

7 Foxo 0.0142

8 pFoxo 0.0142

9 mRNA 0.0329

10 G6P 0.1195
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Fig. 5.3 Comparison of transient behavior of species concentrations in the full model and reduced
models of insulin-signaling-dependent glucose metabolism model. The figures in the left column
are the concentration plots of the full model, the figures in the middle column are concentration
plots of the reduced model with 9 complexes deleted and the figures on the right column are the
concentration plots of the reduced model with 10 complexes deleted

In Fig. 5.3, we compare the transient behaviors of the species concentrations of
the full model with those of the reduced models obtained by deleting 9 and 10
complexes, following the iterative reduction steps as before. It can be observed from
these results that the dynamics of the reduced model with 10 complexes deleted,
whose error integral value exceeds 0.1, deviates significantly from the full model
dynamics. On the other hand, the transient behavior of y of the reduced model with 9
complexes deleted is in close agreement with that of the original model. This reduced
model has 14 complexes and 20 reactions and its complex graph is shown in Fig. 5.2b.

Since this network contains a directed sub-graph (the one that interconnects F16P,
PYRin and OAA), for evaluating our proposed methods, we replace the cyclic sub-
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Fig. 5.4 The clustering of complexes in the insulin-signaling-dependent glucose metabolism into
11 clusters using the proposed spectral clustering-based algorithm. The clusters are indicated by the
dashed-line boxes and the labels Ck , k = 1, . . . , 11 are given on the top-right corner of each boxes.
The text in red indicates the species defined in output variable y. The number on top of every edge
shows the edge weight which are taken from the adjacency matrix in the Laplacian matrix L(x)

using the nominal values of x

graph F16P↔FYRin→OAA→F16P by a reversible reaction F16P↔PYRin. The
equilibrium constant of this reversible reaction is set according to the reaction con-
stants in the original subnetwork. This ad hoc modification gives us an undirected
complex graph for which our two proposed methods can be applied.

We apply our spectral clustering-based algorithm to this modified complex graph
and the result is shown in Fig. 5.4. The subnetwork containing F16P, GLY, and
GLCex is clustered into 5 clusters where three complexes, G1P, LAC, and PYRout
are in clusters that do not contain any elements of y. On the other hand, for
another subnetwork, there are two complexes, p2IRS and p1p2IRS, which is in a
cluster that does not include any element of y. Similar to the result in glycoly-
sis model above, one can observe that these five complexes are also listed in the
Table5.4. Hence removing these complexes via Kron reduction will give us a good
reduced model. Indeed, numerical simulation of the Kron-reduced model where
Cred = {G1P, LAC, PYRout, p2IRS, p1p2IRS} gives us an error integral of 0.0071.
Since the rest of the network consists of simple sub-graphs with two vertices each,
we can delete, for instance the clusters, C9, C10 and C11.

Using the same modified graph of complexes as above, we apply our second
proposed approach to the first connected component of the graph and the result is
given in Table5.5. Our second approach identifies G6P as one of the best candidate
for removal, in contrast to the result obtained in Table5.4 where G6P is shown to
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be the least preferred complex for removal. Hence for this second model, we can
conclude again that the spectral-based clustering approach is a better method than
the eigenvalue interlacing-based one to identify complexes for the Kron reduction.

5.6 Conclusion

In this chapter, we propose two approaches for finding the best set of complexes
to be deleted for the Kron reduction of a chemical reaction network. The proposed
methods are based on the spectral properties of theweightedLaplacian of the complex
graph corresponding to the network. The aim of these methods is to provide an
alternative to the use of error integral that requires a numerical integration which
can be computationally expensive, in particular, if we need to handle a very large
dimensional model. We have applied the two approaches on two biological models.
For both cases, it has been observed that the spectral-based clustering approach
performs better than the eigenvalue interlacing-based approach. The extension of
these methods to directed complex graphs, as commonly found in large dimensional
biological models, is an interesting topic for further research. The result for directed
graphs proposed in [17] can potentially be adapted to modify the spectral-based
clustering approach presented in this chapter so as to make it applicable for directed
graphs.
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Chapter 6
Distributed Line Search for Multiagent
Convex Optimization

Jorge Cortés and Sonia Martínez

Abstract This note considers multiagent systems seeking to optimize a convex ag-
gregate function.We assume that the gradient of this function is distributed, meaning
that each agent can compute its corresponding partial derivative with information
about its neighbors and itself only. In such scenarios, the discrete-time implemen-
tation of the gradient descent method poses the basic challenge of determining ap-
propriate agent stepsizes that guarantee the monotonic evolution of the objective
function. We provide a distributed algorithmic solution to this problem based on
the aggregation of agent stepsizes via adaptive convex combinations. Simulations
illustrate our results.
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A popular approach to the coordination of multiagent systems consists of de-
signing a distributed algorithm that solves an optimization problem encoding the
coordination task. This top-bottom method has been very useful in a variety of net-
worked multiagent scenarios, including multi-vehicle coordination, network utility
maximization, energy dispatch, and information processing by sensor networks. Due
to a lack of centralized authority, the proposed algorithms are to be executed by em-
ploying local information only, which allows for greater scalability and robustness
to agent failure. In this paper, we consider a particular class of convex optimization
problems for which gradient-descent continuous-time algorithms are naturally dis-
tributed, meaning that each agent can compute the partial derivative of the function
to be optimized with information of its neighbors and itself. While the convergence
analysis of these algorithms in continuous time is facilitated bypowerful concepts and
tools from stability theory, their practical implementation needs to be of discrete-time
nature. This requires the determination of an appropriate stepsize along the descent
direction. A common approach to solve this problem is the a priori, offline deter-
mination of the stepsize using global information. In this manuscript, we instead
take the alternative approach of designing distributed procedures that allow agents
to coordinate the computation of appropriate stepsizes.

Literature review. This manuscript is a contribution to the recent body of research
on distributed optimization by a network of agents subject to intermittent interac-
tions. In these works, the objective function can be expressed as a sum of convex
functions and be subject to different inequality and equality constraints; see for ex-
ample [6, 11, 12, 15, 20]. Building on consensus-based coordination rules [2, 10,
13, 14], the aforementioned efforts lead to discrete-time schemes employing func-
tion subgradients. Continuous-time approaches which are robust to errors due to
communication and initialization include [16] on undirected networks and [5, 9] on
directed networks. With the goal of designing faster algorithms, [17, 18] focus on
Newton schemes. Except for [18], which employs a decentralized backtracking line
search rule to implement the Armijo rule, and an earlier version [4] of the present
work, the aforementioned approaches assume that agents have access to a common
(possibly time-varying) stepsize, determined a priori, to implement the distributed
algorithm. The recent work [7] instead combines continuous-time computation and
discrete-time communication to let individual agents determine autonomously their
stepsizes. Our work connects with the literature on algorithms for gradient-descent
methods [1]. The classical steepest descent method [3] for unconstrained minimiza-
tion converges linearly and can show slow performance. However, the understanding
of these algorithms is central for theory and design of more sophisticated optimiza-
tion algorithms [8]. It is within this simple context that we study how a network of
agents can determine appropriate stepsizes in a distributed way.

Statement of contributions. We introduce a class of algorithms that allows a group
of agents to descend a convex objective function by following an aggregated descent
direction. Each agent employs a stepsize that results from a distributed stepsize
computation subroutine. This strategy takes as inputs the stepsizes computed by each
agent via a line search procedure. By means of a proper initialization, and after only
a finite number of rounds, the strategy outputs a vector of stepsizes, one per agent,
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that agents can readily implement to decrease the function. If let run indefinitely,
the strategy converges to a convex combination of stepsizes that guarantees that the
function decreases via the steepest descent direction or other alternative aggregated
directions of descent.

Organization. Section6.2 introduces basic preliminaries. Section6.3 states for-
mally the problem of interest. Section6.4 introduces several stepsize aggregation
models for distributed line search based on convex combinations and Sect. 6.5
presents a provable distributed linear iteration algorithm to compute them. Section6.6
presents simulations of the resulting algorithms.We gather our conclusions and ideas
for future work in Sect. 6.7.

6.2 Preliminaries

This section presents basic notions from graph theory, optimization via gradient
descent, and line search.

6.2.1 Notation

We employ R
n
>0 (resp. Rn≥0) to denote the positive orthant (resp. the nonnegative

orthant) of Rn . We use the notation 1n ∈ R
n
>0 (resp. 1n−1 ∈ R

n−1
>0 ) for the vector

(1, . . . , 1)T (resp.1n−1 = (1, . . . , 1)T ).Wedenote the eigenvalues of a squarematrix
M ∈ R

n×n as λi (M), i ∈ {1, . . . , n}. We assume that the eigenvalues are indexed so
that Re(λ1(M)) ≤ Re(λ2(M)) ≤ · · · ≤ Re(λn(M)), where Re denotes the real part
of a complex number. We denote by In the identity matrix of dimension n × n. The
spectral radius of M is ρ(M) = maxi∈{1,...,n} |λi (M)|. The essential spectral radius
of a matrix M with ρ(M) = 1 is ρess(M) = maxi∈{1,...,n}{|λi (M)| | λi (M) �= 1}.
The notation M ≥ 0 means that M is positive semidefinite. In particular, M1 ≥ M2
if and only if M1 − M2 ≥ 0. A matrix M ∈ R

n×n is Metzler if all its off-diagonal
elements are nonnegative. A matrix M ∈ R

n×n
≥0 is irreducible if, for any nontrivial

partition J ∪ K of the index set {1, . . . , n}, there exist j ∈ J and k ∈ K such that
m jk �= 0. We let span{w1, . . . , wl} denote the vector space generated by the vectors
w1, . . . , wl ∈ R

n . Given g : R → R and h : R → R, we denote g(r) ∈ O(h(r)) if
and only if there is C > 0 and r0 such that |g(r)| ≤ C |h(r)|, for all r ≥ r0.

6.2.2 Graph-Theoretic Notions

We present some basic notions from algebraic graph theory following the exposition
in [2]. An undirected graph, or simply graph, is a pair G = (V, E), where V is a
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finite set called the vertex set and E is the edge set consisting of unordered pairs
of vertices. For i, j ∈ V and i �= j , the set {i, j} denotes an undirected edge, and
i and j are neighbors. We let NG(i) denote the set of neighbors of ui in G. The
graph G is connected if for any pair of nodes i , j there exists a sequence of edges
{i, i1}, {i1, i2}, . . . , {ik, j} connecting i with j . The adjacency matrix of a graph G
is a nonnegative symmetric matrix A = (ai j ) ∈ R

n×n
≥0 such that ai j �= 0 if and

only if {i, j} is an edge of the graph. Here, we consider ai j = 1, when {i, j} ∈ E .
Consider the diagonal matrix D = diag(A1n). The Laplacian matrix of G is defined
as L = D − A, which is a symmetric and positive semidefinite matrix. Note that
L has an eigenvalue at 0 and 1n is the corresponding eigenvector. A graph G is
connected if and only if L is irreducible and 0 is a simple eigenvalue. Finally, a map
g : Rn → R

n is distributed over G if, for all j ∈ {1, . . . , n}, the component g j

can be expressed as g j (x) = g j (xi1 , . . . , xin j
), whereNG( j) = {i1, . . . , in j }, for all

x ∈ R
n .

6.2.3 Directions of Descent and Line Search

Given a continuously differentiable function f : Rn → R, we let ∇ f : Rn → R
n

denote its gradient

∇ f (x) =
( ∂ f

∂x1
(x), . . . ,

∂ f

∂xn
(x)

)
.

Throughout the paper, we use the notation ∇i f to refer to the i th component of ∇ f .
Given a function f : Rn → R and x ∈ R

n , v ∈ R
n is a direction of descent of f at

x if there exists T > 0 such that

f (x + δv) < f (x), δ ∈ (0, T ).

If f is continuously differentiable at x , this is equivalent to saying that∇ f (x)T v < 0.
The procedure of calculating the actual step δ to be taken in the direction v is called
line search. The choice of a stepsize and a direction that guarantees the reduction of
the function at each iterate leads to various gradient algorithms. In particular, one
could aim to find the best stepsize that optimizes the decrease in the value of f along
a direction v, i.e.,

εv = argminδ∈[0,∞) f (x + δv). (6.1)

Let hv(δ) = f (x + δv). For a continuously differentiable function, it is not difficult
to see that the stepsize (6.1) is characterized by the equation

h′
v(εv) = ∇ f (x + εvv)T v = 0. (6.2)
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The choice v = ∇ f (which corresponds to the direction that instantaneously de-
scends f the most) leads to the steepest descent method,

xk+1 = xk − αk∇ f (xk), k ≥ 0,

which locally converges to the set of minimizers of f .

6.3 Problem Statement

Consider a network of n agents, indexed by i ∈ {1, . . . , n}, with interaction topology
described by a graph G. The network state, denoted x , belongs to R

n . Agent i is
responsible for the i th component xi ∈ R. The results that follow can also be extended
to scenarios where each agent supervises several components of the vector x ∈ R

n ,
but here we keep the exposition simple. Consider a convex function f : Rn → R

whose gradient ∇ f : Rn → R
n distributed over G. Thus, each agent i ∈ {1, . . . , n}

can compute
vi (x) = (0, . . . ,∇i f (x), . . . , 0), (6.3)

with information from its neighbors in G. The next result states that the line search
procedure for f and each direction vi can be carried out in a distributed way.

Lemma 6.1 (Individual agent stepsize computation) Let f : Rn → R be continu-
ously differentiable and assume ∇ f : Rn → R

n is distributed over G. Let x ∈ R
n

and i ∈ {1, . . . , n} with vi (x), as defined in (6.3), be nonvanishing. Then, the optimal
stepsize εvi (x) along vi (x) and the associated decrease Δvi (x) in the value of f can
be computed with knowledge only of {xi } ∪ {x j | j ∈ NG(i)}.
Proof For simplicity, we use the shorthand notation hi , εi , and Δi to denote hvi (x),
εvi (x), and Δvi (x) respectively. Note that (6.2) in this case reduces to

h′
i (εi ) = ∇i f (x + εi vi (x))T ∇i f (x) = 0. (6.4)

The only difference between x + εi vi (x) and x is in the i th component, which agent
i is responsible for. Since the gradient of f is distributed over G, agent i has all the
information required to solve Eq. (6.4). A similar argument holds for the associated
decrease in the value of f ,

Δi = f (x) − f (x + εi vi (x))

= hi (0) − hi (εi ) = −
∫ εi

0
h′

i (δ) dδ

= −
∫ εi

0
∇i f (x + δvi (x))T ∇i f (x) dδ, (6.5)
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which completes the result. �

Note that the line search procedure performed by agent i assumes that all other
agents remain fixed. The problem of interest in this paper is the following:

Distributed line search computation problem. Let x ∈ R
n . Given δi such that

f (x + δi vi (x)) < f (x), where vi (x) is given as in (6.3) for all i ∈ {1, . . . , n},
design a distributed algorithm that allows the group of agents to agree on stepsizes
(ε1, . . . , εn) ∈ R

n≥0 such that

f (x + ε1v1(x) + · · · + εnvn(x)) < f (x).

In particular, a solution such that εi = ε for all i ∈ {1, . . . , n}, solves the distributed
steepest descent line search computation problem.

We make the following considerations regarding the above problem. First, note
that the choice εi = δi , i ∈ {1, . . . , n}, is not a solution in general. In principle,
there are several ways to approach this problem. For instance, one can resort to
parallel algorithms to identify those agents that maximize the function decrease and
coordinate their changes in state accordingly via leader election. Instead, here we
look for solutions that allow all agents to simultaneously contribute to the decrease
of the function.

6.4 Weighted Network-Aggregated Stepsizes

The next result provides guidance as to how the problem stated can be solved.
Lemma 6.2 determines how stepsizes based on a convex combination guarantee
decrease of cost function.

Lemma 6.2 (Network-aggregated stepsize) Let f : Rn → R be convex. For x ∈
R

n, let w1, . . . , wn ∈ R
n be directions of descent of f from x. Let δi ∈ R>0 be a

stepsize such that f (x + δi wi ) < f (x), for each i ∈ {1, . . . , n}. Let μi ∈ [0, 1], for
i ∈ {1, . . . , n}, such that μ1 + · · · + μn = 1. Then μ1δ1w1 + · · · + μnδnwn is an
aggregated direction of descent of f from x, and f

(
x + δ

∑n
i=1 μiδi wi

)
< f (x).

Proof The result follows from the following relations:

f

(
x +

n∑
i=1

μiδi wi

)
= f

(
n∑

i=1

μi (x + δi wi )

)

≤
n∑

i=1

μi f (x + δi wi ) <

n∑
i=1

μi f (x) = f (x),

where we have used the fact that f is convex in the first inequality. �
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Note that the aggregation procedure in Lemma 6.2 reduces the size of the agent
stepsizes, i.e., μiδi < δi , i ∈ {1, . . . , n}. This makes sense as the individual agent
stepsizes have been computedwith the overly optimistic assumption that nobody else
would change its state. This reduction in stepsize is the price that the agents have
to pay to make sure the aggregate function decreases. The following are particular
cases of stepsizes that we consider in the sequel. With the notation of Lemma 6.2, let
wi = vi (x) be given by (6.3). The common network-aggregated stepsize vector is

μi =
1
δi

1
δ1

+ · · · + 1
δn

, i ∈ {1, . . . , n}. (6.6)

By using this stepsize vector, agents decrease the function along ∇ f (x). The
proportional-to-cost network-aggregated stepsize vector is

μi = Δi

Δ1 + · · · + Δn
, i ∈ {1, . . . , n}, (6.7)

where Δi = fi (x) − fi (x + δi vi (x)), for i ∈ {1, . . . , n}. Finally, the proportional-
to-state network-aggregated stepsize vector is

μi = di

d1 + · · · + dn
, i ∈ {1, . . . , n}, (6.8)

where di = δi‖vi (x)‖, for i ∈ {1, . . . , n}. Note that the weights defined in (6.7)
are larger for those agents who offer a larger decrease in the value of the objective
function. Thus, they encode a type of “proportional fairness” in the way that each
agent can decrease the cost function. A similar consideration applies to (6.8). We call
the resulting direction of descent proportional-to-cost (resp. proportional-to-state)
direction of descent.

Lemma 6.2 paves the way for performing line search in a distributed way. Using
this result, the agents in the network can collectively fuse their stepsizes in order
to guarantee that the resulting network state after updates by all agents decreases
the value of the objective function. Remarkably, this is accomplished without the
need to share the individual directions of motion of the agents. In particular, the
aggregated stepsize models (6.6)–(6.8) take into account the current network state in
the determination of the appropriate stepsizes. The challenge is then to perform these
stepsize aggregations in a distributed way. We address this in the following section.

6.5 Adaptive Algorithm for Distributed Stepsize
Computation

One can implement a number of distributed algorithms to compute the step-
sizes (6.6)–(6.8) across the whole network. For instance, average consensus could
be employed to compute the corresponding aggregate sums in the denominators of
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these expressions. This, together with knowledge of the size of the network, would
allow each agent to compute the aggregated stepsize. However, the convergence of
these algorithms is typically asymptotic, and so it may appear impractical to execute
one at each state through the evolution of the network. Instead, we would like to find
distributed algorithms that, for each x ∈ R

n , even if not implementing exactly the
models (6.6)–(6.8), (i) can guarantee that the function decreases and (ii) approach
asymptotically the directions of descent and stepsizes provided in Lemma 6.2.

6.5.1 Distributed Computation of Convex Combinations

We note that the aggregated stepsize models (6.6)–(6.8) have a similar structure that
can be captured as follows: given a vector y ∈ R

n
>0, compute the aggregated vector

(yT 1n)−1y.

Eachmodel corresponds to a different choice of vector y. Specifically, the choice y =
( 1
δ1

, . . . , 1
δn

) corresponds to the common network-aggregated stepsize vector, the
choice y = Δ corresponds to the proportional-to-cost network-aggregated stepsize
vector, and the choice y = ( 1

δ1
, . . . , 1

δn
) corresponds to the proportional-to-state

network-aggregated stepsize vector.
In this section, we propose a continuous-time distributed algorithm that allows

each agent to compute its component of the aggregated vector (yT 1n)−1y. Define
the matrix Q(y) ∈ R

n×n such that

Qi j (y) = −yi y j , for (i, j) ∈ E

Qii (y) =
∑

j∈NG (i)

y2j , for i ∈ {1, . . . , n}.

Three important properties of the matrix Q(y) are that: (i) Q(y) = Q(y)T , (ii)
−Q(y) isMetzler, and (iii) Q(y) is irreducible (becauseG is connected).Consider the
function V : Rn → R, given by V (μ) = 1

2μ
T Q(y)μ. Since the network interaction

graph G is undirected, it is easy to verify that V (μ) = 1
2

∑n
i=1

∑
j∈NG (i)(y jμi −

yiμ j )
2.

Let us now define the quadratic program

minimize
1

2
μT Q(y)μ, (6.9a)

subject to 1T
n μ = 1. (6.9b)

Thenext result shows that the aggregated vector is the unique solution of this program.

Lemma 6.3 The unique solution to (6.9) is given by μ	 = (yT 1n)−1y.
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Proof It is easy to check that μ	 is a solution to the quadratic program (6.9). First, it
holds that (μ	)T 1n = (yT 1n)−1(yT 1n) = 1. Secondly, note that (y jμ

	
i − yiμ

	
j )
2 =

(yT 1n)−1(y j yi − yi y j )
2 = 0, thus μ	 attains the minimum value of V . To see

that μ	 is unique, let us study the critical points of V . Any critical point satisfies
∇V (μ) = Q(y)μ = 0. Let β = mini∈{1,...,n}

∑
j∈NG (i) y2j + 1, and consider the

matrix β In − Q(y). Since −Q(y) is Metzler and irreducible, then β In − Q(y)

is a positive and irreducible matrix. By the Perron–Frobenius theorem [19], there
exists a unique eigenvector of β In − Q(y)with positive entries whose corresponding
eigenvalue is simple. It is easy to see that Q(y)y = 0, and y ∈ R

n
>0, thus y is

the Perron eigenvector of β In − Q(y) and β the corresponding simple eigenvalue.
Therefore, 0 is a simple eigenvalue of Q(y) and any critical point of V is of the
form t y, with t ∈ R. The solutions to (6.9) must additionally satisfy the constraint
(t y)T 1n = t (yT 1n) = 1. Equivalently, t = (yT 1n)−1, and, thus, μ	 = t y =
(yT 1n)−1y is the unique solution to (6.9). �

It is easy to see that Q(y)μ	 = 0. Lemma 6.3 encodes key properties of Q(y)

and leads us to design the following distributed algorithm:

μ̇ = −L Q(y)μ, μ(0) = μ0, (6.10)

where μ0 ∈ R
n
>0 satisfies μT

0 1n = 1. In coordinates, this can be rewritten as

μ̇i = −
∑

j∈NG (i)

ai j (∇ j V (μ) − ∇i V (μ)),

μi (0) = μ0,i ,

where ∇i V (μ) = 2
∑

k∈NG (i)(y2k μi − yi ykμk), leading to a distributed algorithm
over G.

Note that the dynamical system (6.10) leaves μ(t)T 1n = 1 invariant for all
t ∈ R≥0. This can be verified by noting that μ̇(t)T 1n = (μ(t))T QL1n = 0. The
following result holds.

Lemma 6.4 For any μ0 ∈ R
n
>0 such that μT

0 1n = 1, the solution of (6.10) converges
asymptotically to μ	, the solution to the quadratic program (6.9).

Proof The main part of the proof will follow from the application of the LaSalle
Invariance Principle with the Lyapunov function V . First, since V is a sum of squares,
it is positive semidefinite. Second, V̇ = −(∇V )T L Qμ = −μT QL Qμ ≤ 0. Third,
we see next that lim‖μ‖→+∞ V (μ) = +∞ over the line μT 1n = 1. When ‖μ‖ →
+∞, note that either V (μ) → 0 or to V (μ) → +∞. But if V (μ) → 0, then it must
be that yiμ j − y jμi → 0 for all i ∈ {1, . . . , n} and j ∈ NG(i). That is, we converge
to solution of (6.9) with arbitrarily large norm. However, this is a contradiction since
the solution of (6.9) is unique, and there are no solutions with arbitrarily large norm.

We can now apply the LaSalle Invariance Principle over the space μT 1n = 1. It
follows that the trajectories of (6.10) converge to the largest invariant set ofμT 1n = 1
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contained in V̇ (μ) = −μT Q(y)L Q(y)μ = 0. Since L = LT and is positive
semidefinite, there exists a unique square root L1/2 of L such that L = L1/2L1/2

and which is positive semidefinite and symmetric [19, Theorem 3.5]. Therefore, we
have V̇ (μ) = −(L1/2Q(y)μ)T (L1/2Q(y)μ) = 0, which implies L1/2Q(y)μ = 0
and L1/2L1/2Q(y)μ = L Q(y)μ = 0. From the fact that the graph is connected and
undirected, L has a simple eigenvalue at 0 with eigenvector 1n , thus Q(y)μ = α1n ,
for some α ∈ R.

On the other hand, since y is the Perron eigenvector of Q(y), and Q(y) = Q(y)T ,
it holds that 0 = yT Q(y)μ = αyT 1n . From the fact that yT 1n > 0, we have α = 0.
Since 0 is a simple eigenvalue of Q(y), and Q(y)μ = 0, it follows that μ = t y.
Finally, the property μT 1n = 1 implies μ = μ	. �

6.5.2 Discrete-Time Implementation and Rate of Convergence

This section focuses on the discrete-time implementation of the dynamics (6.10)
and, particularly, on the study of its rate of convergence. This is motivated by two
considerations. First, as designed, the algorithm is in continuous time, which requires
a continuous flow of information among the agents. Second, the algorithm does not
leave Rn≥0 invariant because the matrix −L Q is not positive. This means that, even
though μT 1n is conserved, the algorithm cannot be stopped anytime and guarantee
that the output is an appropriate convex combination of stepsizes.

Our approach proceeds by using a first-order Euler discretization of (6.10),

μk+1 = (In − hL Q(y))μk, (6.11)

whereμ0 ∈ R
n
>0 satisfies (μ0)T 1n = 1. It can be seen that (μk+1)T 1n = (μk)T (In −

hQ(y)L)1n = (μk)T 1n = 1. The next result provides a sufficient condition on the
stepsize h that guarantees convergence.

Lemma 6.5 For any μ0 ∈ R
n
>0 such that (μ0)T 1n = 1, the solution of (6.11)

converges asymptotically to μ	 = (yT 1n)−1y under the assumption that

h <
2

λn(L)λn(Q(y))
.

Moreover, the essential spectral radius of In − hL Q(y) is upper bounded by 1 −
hλ2(L)λ2(Q(y)).

Proof Recall that 0 is a simple eigenvalue of Q(y) and y is the corresponding
eigenvector. Thus, 1 is an eigenvalue of In − hL Q(y) with eigenvector y. In or-
der for the discrete-time system to be convergent to span{y}, we need to guarantee
that ‖λi (In − hL Q(y))‖ < 1, for all i ≥ 2. Observe that λn−i (In − hL Q(y)) =
1 − hλi (L Q(y)), i ∈ {1, . . . , n}.
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By [19, Theorem 2.8], λi (AB) = λi (B A) for any two pairs of square matrices
A, B. Since L is symmetric and positive semidefinite, there exists a unique L1/2

such that L = L1/2L1/2, where L1/2 positive semidefinite and symmetric; see [19,
Theorem 3.5]. Thus, λi (L Q(y)) = λi (L1/2L1/2Q(y)) = λi (L1/2Q(y)L1/2),
i ∈ {1, . . . , n}. Since L1/2Q(y)L1/2 is symmetric and positive semidefinite, the
eigenvalues of L Q(y) are real and positive.

Let λ2(Q(y)) > 0 be the second smallest eigenvalue of Q(y). It is easy to see
that Q(y) − λ2(Q(y))In is positive semidefinite. Thus,

L1/2Q(y)L1/2 ≥ L1/2Q(y)L1/2

− L1/2(Q(y) − λ2(Q(y))In)L1/2 = λ2(Q(y))L .

From here we obtain

λi (L Q(y)) = λi (L1/2Q(y)L1/2) ≥ λ2(Q(y))λi (L),

for i ∈ {1, . . . , n}. A similar reasoning leads to the upper bound λi (L Q(y)) ≤
λi (L)λn(Q(y)), i ∈ {1, . . . , n}.

Thus, for convergence, it is sufficient to show that 2 > hλi (L Q(y)) > 0, for i ≥ 2.
From the upper inequality above, the sufficient condition hλn(L)λn(Q(y)) < 2 fol-
lows, leading to the equation stated in the lemma. The above inequalities also guaran-
tees that 0 is a simple eigenvalue of L Q(y), sinceλ2(L Q(y)) ≥ λ2(L)λ2(Q(y)) > 0.
The dynamic system (6.11) will converge to λ = t y for some t ∈ R such that
λT 1n = t yT 1n = 1. Thus, it must be that t = (yT 1n)−1, and that μ = μ	. Fi-
nally, the essential spectral radius of the matrix In − hL Q(y), is its second largest
eigenvalue, that is, ρess(In − hL Q(y)) ≤ 1 − λ2(L)λ2(Q(y)). �

Using the boundon the essential spectral radius of In−hL Q(y),wenext determine
a bound on the rate of convergence of the algorithm as follows:

Lemma 6.6 Let r > 0, and let Tr > 0 be the time it takes (6.11) to reach and remain
in the ball of center μ	 with radius r . Then

Tr ∈ O

(
1

hλ2(L)λ2(Q(y))
log

(‖μ0 − F	μ0‖2
r

))
,

where F	 = yzT

zT y
and z is the right eigenvector of In − hL Q(y) with eigenvalue 1.

Proof Bounding the eigenvalues of the matrix In − hQ(y)L by those of Q(y) and
L as in the proof of Lemma 6.5 one can prove that there exists an eigenvector z such
that zT (In − hQ(y)L) = zT . Thus, the following holds

lim
�→+∞(In − hL Q(y))� = F	 = yzT

zT y
.
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The rate of convergence of the discrete-time system will be determined by the ex-
ponential convergence factor of (In − hL Q(y)) − F	. This factor is equal to the
essential spectral radius of In − hL Q(y), see [2, Lemma 1.75].

Now, given μ	, consider the ball centered at μ	 and radius r . Then, the time Tr it
takes the discrete-time system to reach and remain this ball from the initial condition
μ0 satisfies

Tr ∈ O

(
1

hλ2(L)λ2(Q(y))
log

(‖μ0 − F	μ0‖2
r

))
,

see [2, Lemma 1.74]. �
Remark 6.7 (Extension to y ∈ R

n≥0) In the previous two subsections we have as-
sumed that yi > 0 for all i ∈ {1, . . . , n}. The results can be extended for the case
when yi = 0, for some i ∈ {1, . . . , n}, by assuming that these nodes act as a relay
between any of their neighbors in G = (V, E). To see this, without loss of generality,
suppose y1 = 0 only for i = 1. In this case, the matrix Q(y) will have an additional
eigenvector, e1 = (1, 0, . . . , 0)T ∈ R

n , with zero eigenvalue. Consider the graph
G = (V , E)where V = {2, . . . , n}, and {i, j} ∈ E if and only if {i, j} ∈ E or {1, i},
{1, j} ∈ E . Let L be the associated graph Laplacian. Let Q(y) be the restriction of
Q(y) over Rn \ span{e1}. System (6.11) can be replaced by

μk+1
1 = μk

1,

μk+1 = (In − hL Q(y))μk,

where a similar bound for h as in Lemma 6.5 can be taken, and (μ0)T 1n = 1.
The analysis of the subsystem in μ is similar to the one in μ in (6.11). First, it can
be seen that (μk)T 1n = 1 for all k ≥ 1. More precisely, (μk+1)T 1n = μk+1

1 +
(μk+1)T 1n−1 = μk

1 + (μk)T (In − hL Q(y))T 1n−1 = μk
1 + (μk)T 1n−1 = 1. In

particular, we have that (μ0)T 1n−1 is conserved. The analysis of the system, is similar
to the previous discrete-time implementation, and it can be seen that it converges to
the convex combination μ	 = (μ0

1, μ
	), where

μ	
i = (μ0)T 1n−1

yT 1n
yi , i ∈ {2, . . . , n}. •

6.5.3 Distributed Line Search Computation Algorithm

Building on the results from Sects. 6.5.1 and 6.5.2, we describe here a distributed
algorithm that allows agents to adapt their stepsizes and solve approximately the
distributed (steepest descent) line search computation problem. Agents start from an
initial condition μ0 such that μT

0 1n = 1 (e.g., μ0 = 1
n 1n). Note that the assumption

that agents know n is necessary since it is equal to the dimension of x ∈ R
n . Then,
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agents implement (6.11) for an agreed number of rounds N that guarantees μk
i ≥ 0,

for all i ∈ {1, . . . , n}. The algorithm is formally described in Algorithm 1.
The different aggregated stepsize models (6.6)–(6.8) are captured in the algorithm

via R. In this way, the choice yi = 1
δi

leads to distributed weighted stepsize
(and results in the steepest descent direction). As N grows, this leads to the com-
mon network-aggregated stepsize vector (6.6). The choice yi = Δi , i ∈ {1, . . . , n}
as in (6.7) leads to the distributed weighted stepsize for the proportional-to-
cost descent direction. As N grows, this leads to the proportional-to-cost network-
aggregated stepsize vector (6.7). Finally, the choice yi ( f, x) = di , i ∈ {1, . . . , n}
as in (6.8) leads to the distributed weighted stepsize for the proportional-to-
state descent direction. As N grows, this leads to the proportional-to-state network-
aggregated stepsize vector (6.7).

Algorithm 1: distributed weighted stepsize
Executed by: Each agent i ∈ {1, . . . , n}
Data: the function f , the state x , the number of rounds N ∈ N∪ {0}, and aggregated stepsize

model R
1 set vi (x) = −(0, . . . , 0,∇i f (x), 0, . . . , 0)
2 compute stepsize δi = εi > 0 satisfying ∇i f (x + εi vi (x))T ∇i f (x) = 0
3 set yi corresponding to aggregated stepsize model R, send yi to neighbors, receive

{y j | j ∈ NG(i)}, and compute Qi j (y) for j ∈ NG(i)

4 set μ0
i = 1

n
5 for l ∈ {1, . . . , N } do
6 μl

i = ((In − hL Q(y))μl−1)i

7 send μl
i to neighbors, receive {μl

j | j ∈ NG(i)}
8 end
9 set m0

i = μN
i

10 send m0
i to neighbors, receive {m0

j | j ∈ NG(i)}
11 for l ∈ {1, . . . , N } do
12 ml

i = min{ml−1
i , ml−1

j | j ∈ NG(i)}
13 send ml

i to neighbors, receive {ml
j | j ∈ NG(i)}

14 end
15 while mn

i < 0 do
16 reassign μN

i = ((In − hL Q(y))μN )i

17 reset m0
i = μN

i
18 send m0

i to neighbors, receive {m0
j | j ∈ NG(i)}

19 for l ∈ {1, . . . , N } do
20 ml

i = min{ml−1
i , ml−1

j | j ∈ NG(i)}
21 send ml

i to neighbors, receive {ml
j | j ∈ NG(i)}

22 end
23 end
24 change state from xi to xi + μN

i δi ∇i f (x)
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The distributed weighted stepsize algorithm can be informally described
as follows. In order to implement a step of the gradient-descent algorithm, each
agent outputs first a set of stepsizes μN

i , i ∈ {1, . . . , n}. These stepsizes are obtained
after applying (6.11) during N iterations. After this, if all of the μN

i are positive
or zero, which happens when mn

i = min j{1,...,n} μN
j ≥ 0, for all i ∈ {1, . . . , n},

then the gradient-descent procedure can be safely implemented. Otherwise, agents
iterate (6.11) additional times until the property μN

i ≥ 0, i ∈ {1, . . . , n} holds. The
algorithm assumes that yi > 0, for all i ∈ {1, . . . , n}. When yi = 0, agent i should
relay information from neighbors to other neighbors at any communication round.

6.6 Simulations

In this section, we include some numerical experiments on a simple mathematical
example to illustrate the results. We consider a network of 8 agents subject to a
fixed topology corresponding to the graph G depicted in Fig. 6.1a. The function to
be optimized f : R

8 → R
8 is defined as f (x) = xT (In + L)x + qT x , where

q = (1,−1, 2, 1, 0,−1, 1, 0) ∈ R
8 and L is the graph Laplacian associated with G.

It is straightforward to verify that f is convex and distributed over G.
We implement the algorithm in two scenarios. First, we consider distributed

weighted stepsize for the steepest descent direction. Figure6.1b compares how
the function decreases under the centralized steepest descent method (blue), the
conservative steepest descent method if all agents had the information to compute the
stepsize in (6.6) (red), and the algorithm distributed weighted stepsize for the
steepest descent direction with N = 4 (green) and an appropriate h. After N = 4, all
weights μN

i have become positive. As the plot shows, both the conservative steepest
descent method and its decentralized version are very close even if the number of
rounds (N = 4) used to compute the stepsizes in a distributed way is small. The

(a) (b) (c)

Fig. 6.1 aUndirectedgraphdescribing the interaction topologyof networkof 8 agents and evolution
of various algorithms along b the steepest descent direction and c the proportional-to-cost descent
direction. Centralized steepest descent is shown in blue. In b, the conservative steepest descent
with stepsize (6.6) is shown in red, and the algorithm distributed weighted stepsize for the
steepest descent direction with N = 4 is shown in green. In c, the proportional-to-cost descent
method with stepsize (6.7) is shown in red, and the algorithm distributed weighted stepsize
for proportional-to-cost descent with N = 4 is shown in green
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differences between the centralized steepest descent method and the other two are
to be expected, as the common network-aggregated stepsize vector (6.6) is more
conservative in order to guarantee that the function is still decreased.

Second, we consider distributed weighted stepsize for proportional-to-cost
descent. Figure6.1c compares the evolution of the gradient algorithms following the
steepest descent (blue), the decentralized proportional-to-cost descent method if all
agents had the information to compute the stepsize as in (6.7) (red), and distributed
weighted stepsize for proportional-to-cost descent with N = 4 (green) and an ap-
propriate h. After N = 4, all weights μN

i are already positive. Similarly as before,
and as expected, the function is decreased less rapidly by means of the conservative
proportional-to-cost descent direction method and its decentralized version via dis-
tributed weighted stepsize when compared to the centralized steepest descent
method. However, the previous two are relatively close, even though the number of
rounds N = 4 used in distributed weighted stepsize is low.

6.7 Conclusions

We have considered networked scenarios where a group of agents seeks to optimize
a convex aggregate function using gradient information. We have presented a novel
distributed algorithm for the computation of aggregated stepsizes that guarantee the
decrease of the objective function. We have analyzed the properties of this strategy
when implemented both in continuous and discrete time, and characterized its rate
of convergence. With a proper initialization, the algorithm gives rise to a convex
combination after a finite number of rounds, and can therefore be implemented to
fuse the stepsizes of individual agents. Simulations illustrate the results. Future work
will be devoted to the analytical characterization of the performance of the proposed
strategies, the consideration of scenarios with switching and state-dependent inter-
action graphs, and the design of distributed line search strategies for higher order
(e.g., Newton) schemes.
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Chapter 7
Optimal Management with Hybrid
Dynamics—The Shallow Lake Problem

P.V. Reddy, J.M. Schumacher and J.C. Engwerda

Abstract In this article we analyze an optimal management problem that arises
in ecological economics using hybrid systems modeling. First, we introduce a dis-
counted autonomous infinite horizon hybrid optimal control problem and develop
few tools to analyze the necessary conditions for optimality. Next, using these tools
we study the classical shallow lake problem where the nonlinear lake dynamics is
described by hybrid dynamics. We show that our results agree with earlier studies
on the problem, that is, variation of system parameters induce bifurcations in the
optimal solution.

7.1 Introduction

Most of the optimal decision-making problems studied in economics and ecology
are complex in nature. These complexities generally arise while modeling the in-
herent behavior of the dynamic environment, which includes agents interacting with
the system. Modeling with hybrid systems [5, 22] capture some of these complex
situations. The behavior of hybrid systems is described by the integration of con-
tinuous and discrete dynamics. An abrupt change in the discrete state of the system
is called a switch. If a decision-maker influences a switch then it is said to be con-
trolled/external, whereas an internal switch generally results when the continuous
state variable satisfies some equality constraints. Some examples in this direction are,
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a firm going bankrupt when its equity is negative and regime shifts in ecology [4, 17]
etc. Optimal control of hybrid systems has received considerable interest in control
engineering, see for instance [16, 18, 19, 21]. These works include formulation of
different versions of the necessary conditions.

In this article, we study an optimal management problem that arises in ecological
economics, the so-called shallow lake problem, see [1, 8, 9, 23]. It has been observed
that shallow lakes display nonlinearities and hysteresis in their behavior. Econom-
ically speaking, these systems offer conflicting services as a resource and a waste
sink. As a result, the economic analysis of these systems involves solving a nonstan-
dard optimal control problem, or a nonstandard differential game when seen as a
common property resource. The source of nonlinearity in the shallow lake problem
is due to convex–concave production function. This implies that the optimal solution
associated with the problem displays several interesting qualitative behaviors such as
existence of multiple steady states, Skiba points1 and bifurcations due to parameter
variations; see [7] for a detailed analysis. The inflection point of the convex–concave
production function acts as a ‘threshold,’ meaning that the dynamics of the lake dif-
fers significantly when the state variable takes values below the inflection point and
after crossing it.

In this article, we represent the nonlinear lake dynamics using a simple hybrid
system and study the associated optimal management problem. Some literature in-
corporating threshold effects include [13, 15] and references cited in those papers. In
[13], the author uses necessary conditions, in the line of [18], the objective function is
quadratic and the state variable admits jumps. In [15], the authors consider an optimal
management problem with probabilistic thresholds and use dynamic programming
to derive optimal policies.

In this article we do not attempt to solve the optimal controls or equilibrium strate-
gies for a generic class of (hybrid) differential games. Instead, we study the shallow
lake problem with hybrid representation and highlight the key differences with the
smooth case, i.e., the classical shallow lake problem. This article is organized as
follows. In Sect. 7.2, we introduce a class of discounted autonomous infinite hori-
zon optimal control problems with endogenous switching. We review the necessary
conditions for this class of problems. Further, for one-dimensional problems we de-
velop some methods to analyze the optimality equations. In Sect. 7.3, we introduce
the classical shallow lake problem. Then we represent the nonlinear lake dynamics
using simple hybrid dynamics. Next, we study optimal management and open-loop
Nash equilibrium policies related to the hybrid version of the shallow lake problem.
Finally, Sect. 7.4 concludes.

1Starting from such a point the optimal control problem has more than one optimal solution, and
as a result the decision-maker is indifferent to a particular solution, see [20].
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7.2 Optimal Control of Switched Systems

In this section we review necessary conditions associated with a hybrid optimal
control problem. The hybrid system, which is referred to as a switched system, has
the following description:

Definition 7.1 (Switched System) A switched system is a triple S = (I,F , Φ)

where

• I is a finite set, called the set of discrete states or modes.
• F = { fi : Rn × R

m → R
n, i ∈ I} is a collection of vector fields. We denote

ẋ(t) = fi (x(t), u(t)) to be the vector field associated with the discrete state i ∈ I.
• A transition from mode i to mode j is triggered by events (internal or external)
resulting in an abrupt change in dynamics from fi to f j . In this article we consider
internal switchings, i.e., transitions from discrete state i to j happen when certain
state constraints, say φi j (x(t)) = 0, are satisfied. Let Φi j := {

x ∈ R
n : φi j (x) =

0
}
be the switching surface associated with transition i to j . We denote the joint

switching surface by Φ := ∪Φi j .

Now, we introduce a class of discounted autonomous infinite horizon optimal control
problemswith internal switching dynamics, described byS = (I,F , Φ), as follows.

max J, J =
∫ ∞

0
e−r t g(x(t), u(t)) dt (7.1)

ẋ(t) = fi (x(t), u(t)), i ∈ I, fi ∈ F (7.2)

x(0) = x0 ∈ R
n, u(.) ∈ U . (7.3)

Assumption 7.2 The real-valued functions fi (.), i ∈ I and g(.) are continuous,
∂ fi (.)
∂x and ∂g(.)

∂x exist and are continuous. The control space U consists of piecewise
continuous functions with u(t) ∈ U , where U is a bounded set included in R

m .
We assume the left- and right-hand limits for u(.) exist and x(.) is continuous and
piecewise continuously differentiable, which satisfies (7.2) for all points t where
u(.) is continuous. The initial state satisfies x0 /∈ Φ. Further, we assume that sliding
modes do not occur.

We call a pair (x(.), u(.)) admissible for the problem (7.1)–(7.3) if Assumption 7.2 is
satisfied. Let k(.) represent the switching sequence associated with S, i.e., when the
system is inmode i at time t we have k(t) = i . Since the switchings happen internally
we see that u(.) induces a switching sequence k(.). The necessary condition for a
pair (x∗(.), u∗(.)) to be optimal for the problem (7.1)–(7.3) is given by the following
theorem,2 see Theorem 2.3 of [16] or Theorem 3 of [18] or Theorems 2.2 and 2.3 of
[19] for more details.

2There exist several variations of the theorem in a more general setting, for instance refer [16, 18,
19, 21]. Here, we consider a specific system S where switchings happen internally.
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Theorem 7.3 (Necessary conditions) If (x∗(.), u∗(.)) represent an optimal admis-
sible pair for the problem (7.1)–(7.3), then there exists a piecewise absolutely con-
tinuous function λ(.) and a constant λ0 ≥ 0,

(
λ0, λ(t)

) �= 0 on [0,∞) such that:

(a) let Hamiltonian be defined as

Hk(t, x, u, λ, λ0) := λ0e−r t g(x, u) + λT fk(x, u) (7.4)

then for a given (λ(t), λ0, x∗(t))at a given time t, except at the switching instants,
the following maximum condition holds

Hk∗(t)(x∗(t), u∗(t), λ(t), λ0) ≥ Hk∗(t)(x∗(t), v, λ(t), λ0), ∀ v ∈ U. (7.5)

(b) for all t ≥ 0, except at the switching instants, the costate process λ(t) satisfies
the following relation:

λ̇(t) = −∂ Hk(t)

∂x
(t, x∗(t), u∗(t), λ(t), λ0) (7.6)

(c) if τ is a switching instant then the following conditions hold true:

1. x∗(τ ) ∈ Φ, τ ∈ [0,∞)

2. (costate jump condition)
there exists a β ∈ R such that

λ(τ−) = λ(τ+) + β
(
φk∗(τ−)k∗(τ+)

)
x (x∗(τ )) (7.7)

3. (Hamiltonian continuity)

Hk∗(τ−)(x∗(τ ), u∗(τ−), λ(τ−), λ0) = Hk∗(τ+)(x∗(τ ), u∗(τ+), λ(τ+), λ0).

(7.8)

The above necessary conditions, when solved, usually result inmultiple candidates as
the terminal condition in (7.6) is not specified. The optimal solution is then obtained
by comparing the objective evaluated along the candidate trajectories. The non-
switched analog of the problem (7.1)–(7.3) is the classical discounted autonomous
infinite horizon optimal control problem. For this class of problems an additional
necessary condition called as asymptotic Hamiltonian property is satisfied. More
precisely, if the maximized Hamiltonian associated with the problem is given by
H(t, x∗, u∗, λ, λ0), then limt→∞ H(t, x∗(t), u∗(t), λ(t), λ0) = 0, see [11]. Fur-
thermore, when the associated necessary conditions for optimality hold in normal
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form, i.e., λ0 = 1, then the objective value along a candidate3 trajectory starting at
(x∗(0), u∗(0)) is given by 1

r H
(
0, x∗(0), u∗(0), λ(0), 1

)
, see [6, Proposition3.75]. In

the next lemma we obtain a hybrid counterpart of this result.

Lemma 7.4 (Objective value given by the Hamiltonian) Let (x̃(.), ũ(.)) be an ad-
missible pair that satisfies the necessary conditions (7.4)–(7.8) of Theorem 7.3 with a
finite number of switchings. Further, assume λ0 = 1. Then the objective value along
the trajectory (x̃(.), ũ(.)) is given by 1

r Hk̃(0)(0, x̃(0), ũ(0), λ(0), 1).

Proof As the number of switchings is finite, say M , there exists a sequence of
switching instants associated with k̃(.), which we denote as τ1, τ2, . . . , τ j , · · · τM .
Taking the total derivative of the Hamiltonian Hk̃(.)

(.) in the interval t ∈ (
τ+

j , τ−
j+1

)
we have:

d Hk̃(t)

dt
= ∂ Hk̃(t)

∂t
+ ∂ Hk̃(t)

∂ x̃
˙̃x(t) + ∂ Hk̃(t)

∂λ
λ̇(t) + ∂ Hk̃(t)

∂ ũ
˙̃u(t)

= ∂ Hk̃(t)

∂t
(last three terms vanish due to necessary conditions)

= −re−r t g(x̃(t), ũ(t))

From the last equality we have Hk̃(τ−
j+1)

− Hk̃(τ+
j )

= −r
∫ τ−

j+1

τ+
j

e−r t g(x̃(t), ũ(t)) dt.

Again from the necessary conditions we notice that in the last interval, i.e., t ∈
[τ+

M ,∞), (x̃(.), ũ(.)) maximizes the objective
∫ ∞
τ+

M
e−r t g(x(t), u(t)) dt . The trun-

cated trajectory (x̃(t), ũ(t)), t ∈ [τ+
M ,∞) is an optimal admissible pair for the

classical discounted infinite horizon optimal control problem

max
∫ ∞

τ+
M

e−r t g(x(t), u(t)) dt

ẋ(t) = fk̃
(
τ+

M

)(x(t), u(t)), x(τ+
M ) = x̃(τ+

M )

u(t) ∈ U, t ∈ [τ+
M , ∞).

The truncated candidate in the last interval satisfies an additional necessary condition,
the asymptotic Hamiltonian property, that is, the maximized Hamiltonian tends to
zero when t goes to infinity. As a result, the objective along the truncated trajectory
is given by 1

r Hk̃
(
τ+

M

)(τ+
M , x̃(τ+

M ), ũ(τ+
M ), λ(τ+

M )
)
. The objective along (x̃(.), ũ(.)) is

then given by:

3Here, the candidate trajectory need not be an optimal solution, but only has to satisfy the necessary
conditions.
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∫ ∞

0
e−r t g(x̃(t), ũ(t)) dt =

∫ τ−
1

0
e−r t g(x̃(t), ũ(t)) dt

+
M−1∑
j=1

∫ τ−
j+1

τ+
j

e−r t g(x̃(t), ũ(t)) dt +
∫ ∞

τ+
M

e−r t g(x̃(t), ũ(t)) dt

= 1

r

(
Hk̃(0)(.) − Hk̃(τ−

1 )
(.) + Hk̃(τ+

1 )
(.) · · ·

− Hk̃(τ−
M )

(.) + Hk̃(τ+
M )

(.)
) = 1

r
Hk̃(0)(0, x̃(0), ũ(0), λ(0), 1).

The necessary conditions stated in Theorem 7.3 are stated in the present value
form.Using the transformationμ(t) := ertλ(t) the necessary conditions can be refor-
mulated in the current value form; as a result the time dependence of the Hamiltonian
in (7.4) through the exponential term can be removed.

Next, when the state and control variables are one-dimensional, we show in the
following discussion that it is possible to develop few structural results, in the lines
of [23, Sect. 3]. Toward this end, we make the following assumption:

Assumption 7.5 The necessary conditions stated in Theorem 7.3 hold in normal
form, i.e.,μ0 = 1. The partial derivative of fi with respect to u is strictly positive for
all i ∈ I, i.e., fi u > 0. The current valueHamiltonian defined as Hc

i (.) := ert Hi (t, .)
attains its maximum at u∗ in the interior of U for all i ∈ I. Further, at this point the
second derivative of Hc

i (.) is strictly negative, i.e., Hc
i uu(x(t), u∗(t), μ(t), 1) < 0.

Remark 7.6 Consider a candidate trajectory (x, u). There exists a portion of this
trajectory in the interior of a mode i ∈ I such that Hi

c
u(x, u, μ, 1) = μ fi u(x, u) +

gu(x, u) = 0. Then the current value costate variable μ can be written as a function
of u asμ(u; x) = − gu(x,u)

fi u(x,u)
for every x in the interior of mode i . Using the concavity

condition of the current value Hamiltonian, i.e., Hc
i uu(x, u, μ, 1) = μ fi uu(x, u) +

guu(x, u) < 0, the partial derivative ofμ(u; x)with respect to u for a fixed x is given
as:

μu(u; x) = gu(x, u) fi uu(x, u) − guu(x, u) fi u(x, u)

fi
2
u(x, u)

= − Hc
i uu(x, u, μ(u; x), 1)

fi u(x, u)
.

From Assumption 7.5, the above quantity is nonzero (strictly positive) for all the
candidate trajectories in the interior of mode i . The above observation enables to
transform, locally in the interior of each mode, the optimality equations formulated
in state–costate system to state-input system.

Remark 7.7 Consider a candidate trajectory (x, u) starting at (x0, u0). Follow-
ing Remark 7.6 we define Ψ (x0, u0) := 1

r Hc
k(0)(x0, u0, μ(u0; x0), 1). So, if the

candidate trajectory undergoes a finite number of switchings then Ψ (x0, u0) pro-
vides the objective value along the candidate solution. We analyze the variation
of the function Ψ in u0 for a fixed x0. The partial derivative of Ψ with u0
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is given by Ψu0 = 1
r (Hc

k(0))u0(x0, u0, μ(u0; x0), 1) = 1
r (μ(u0; x0) fi u0(x0, u0)

+μu0(u0; x0) fk(0)(x0, u0) + gu0(x0, u0)) = 1
r μu0(u0; x0) fk(0)(x0, u0). So, for

x0 /∈ Φ, the signs of fk(0) and Ψu0 are the same.

7.3 The Shallow Lake Problem

In this section, we first introduce the classical shallow lake problem and later study
the problem where nonlinear lake dynamics is represented using hybrid dynamics.
Assume a situation where N economic agents, sharing a natural system, take actions
an(t), n = 1, 2, . . . , N at time t , and as a result affect the state x(t) of a natural
system. The economic agents could be societies, dealingwith eutrophication of a lake
that they manage. The stock of pollutant in the lake admits a dynamics described by:

ẋ(t) =
N∑

n=1

an(t) − bx(t) + h(x(t)), x(0) = x0 ≥ 0, h(x) = x2

1 + x2
. (7.9)

The state variable x(t) could be interpreted as the accumulated phosphorus in a lake.
Next, a(t) := ∑

n an(t) represents the total input of phosphorus washed into the lake
due to farming activities at time t . The rate of loss of phosphorus due to sedimen-
tation is denoted by b. The last term captures internal biological processes for the
production of phosphorus. Besides the activity of economic agents, the sources that
promote x(t) are the nonlinear internal dynamics captured by the term h(x(t)). The
second part of themodel deals with economic analysis of the agents. An agent n, with
action an , generates benefits according to a strictly increasing and concave utility
function B(an) := ln(an). The stock of pollutants x(t) causes damage to the natural
system according to a strictly increasing and convex damage function D(x) := cx2,
sometimes referred as disutility of agents. Here, the parameter c > 0 models the
relative cost of pollution. The net profit that an agent n receives at a point of time t
is then given by B(an(t)) − D(x(t)). Each agent uses a strategy an(.) to maximize
the present value of net benefits over an infinite time horizon, i.e.,

max
an(.)

∫ ∞

0
e−r t (B(an(t)) − D(x(t))) dt, n = 1, 2, . . . , N , (7.10)

subject to (7.9), where r > 0 is a discount rate. Here, h(x) is assumed to be a convex–
concave function; that is, for lower stocks of x(t) there is relatively low marginal
return to the system, whereas for the higher stocks this marginal return first increases
and then decreases again. When the maximal feedback rate is greater than the decay
rate, i.e., max(h′(x)) > b, the system (7.9) exhibits three equilibria, for a certain
range of values for a. There will be two stable steady states, one corresponding to
lower value of x (clear state) which is highly valued by concerned users of the natural
system (could be people using a lake for recreation etc.), but also a relatively higher
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value of x (polluted state) which is valued by the agents due to economic interest.
This nonlinear positive feedback effect is a potential source for complex qualitative
behaviors in optimal solutions in the model (7.9) and (7.10). The region of stock
near the inflection point of h(x) acts as a soft threshold distinguishing the clear and
polluted regions.

7.3.1 Hybrid System Representation of the Shallow
Lake Dynamics

In this section we replace the nonlinear production function h(x) in the shallow lake
dynamics (7.9) using a Heaviside function, see Fig. 7.1. The resulting description of
the hybrid system is given by:

S = {I,F , Φ} where

I = {1, 2}, F = { fi (x, a) = a − bx − εi , i = 1, 2, with ε1 = 0 and ε2 = 1}
Φ = x − Δ

ẋ(t) =
{

a(t) − bx(t) + ε1, for x(t) < Δ

a(t) − bx(t) + ε2, for x(t) > Δ
, x(0) = x0 (given). (7.11)

The region x(t) < Δ (>Δ) constitutes mode 1 (mode 2), which qualitatively de-
scribes the lake in clean or oligotrophic (polluted or eutrophic) state. We observe
that for certain range of values for a the system (7.11) exhibits two steady states,

Fig. 7.1 Hybrid
representation of h(x) with a
Heaviside step function
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x

1
h(x)

x
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tupni
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one each in mode 1 and mode 2. If the decay rate, b, is larger than 1
Δ

it is possible
to reach the steady state in mode 1 from mode 2 by lowering the external loading a.
If bΔ < 1 a steady state in mode 1 cannot be reached from mode 2 even by setting
a = 0.

7.3.2 Optimal Management

In this section we study the shallow lake problem where the lake dynamics is de-
scribed by the hybrid system (7.11). First, we study the situation where the economic
agents act cooperatively, also called as the optimal management problem. Next, as-
suming noncooperative behavior, we show that when all the players are identical the
resulting noncooperative game can also be solved as an optimization problem. So,
we study the optimal management problem in detail. The optimal management prob-
lem involves a central authority trying to maximize the joint net profits of economic
agents by prescribing a policy for (individual) phosphorus release into the lake. The
problem is posed as maximizing the objective

max J, J =
N∑

n=1

∫ ∞

0
e−r t (ln(an(t)) − cx2(t)) dt subject to (7.11).

Following Theorem 7.3, the necessary conditions for (x∗(t), a∗
1(t), . . . , a∗

N (t)) to
be optimal for the optimal management problem with simple switching are given as
follows:

For each mode i, i = 1, 2

Hc
i (.) = μ0(∑

n

ln an(t) − Ncx2(t)
) + μ(t)

(∑
n

an(t) − bx(t) + εi
)

∂ Hc
i (.)

∂an
|an=a∗

n
= 0 gives

μ0

a∗
n(t)

+ μ(t) = 0, n = 1, 2, . . . , N

ẋ∗(t) = − Nμ0

μ(t)
− bx∗(t) + εi , x∗(0) = x0

μ̇(t) = rμ(t) − ∂ Hc
i (.)

∂x
|x=x∗ = (r + b)μ(t) + 2cμ0N x∗(t)

(μ0, μ(t)) �= 0,∀t ≥ 0.

Here, x(t) ≥ 0 and an : [0,∞) → (0,∞), i.e., interior solutions are considered.
Next, we see that if μ0 = 0 then μ(t) = 0 for all t ≥ 0. So, necessary conditions
hold in normal form, i.e., μ0 = 1. Notice, in the above state–costate boundary value
equations the terminal condition on the costate variable μ(t) is not specified; as a
result we obtain more than one candidate trajectory for an optimal solution. At the
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switching instant τ > 0, we have x∗(τ ) = Δ and the costate jump condition given by
μ(τ−) = μ(τ+) + β, i �= j, i, j = 1, 2, β ∈ R holds true. Next, the Hamiltonian
continuity property results in the following equations which apply to a switching
instant τ :

(switch from mode i to mode j)

Hc
i (τ−,Δ, a∗

1 (τ−), . . . , a∗
N (τ−), μ(τ−)) = Hc

j (τ
+,Δ, a∗

1 (τ+), . . . , a∗
N (τ+), μ(τ+)).

(7.12)

FollowingRemark7.6 theoptimal dynamics and switching conditions in (x∗(t), μ(t))
space are transformed, in the interior of eachmode, to (x∗(t), a∗

1(t), . . . , a∗
N (t)) space

as follows:

ẋ∗(t) =
{∑

na∗
n(t) − bx∗(t) + ε1, for x(t) < Δ∑

na∗
n(t) − bx∗(t) + ε2, for x(t) > Δ

, x∗(0) = x0 (given)

ȧ∗
n(t) = −(r + b)a∗

n (t) + 2Nca∗
n
2
(t)x∗(t), n = 1, . . . , N .

At the switching instant t = τ , we have x∗(τ ) = Δ and the Hamiltonian continuity
conditions given by (7.12) are satisfied. The above necessary conditions lead to an
N + 1 dimensional optimal vector field. In order to analyze the optimal dynamics
we consider symmetric strategies, i.e., a∗

n(t) = a∗(t)/N . The symmetry assumption
brings on that the optimal vector field reduces to a two-dimensional one which can
be analyzed using the phase plane diagram. The necessary conditions with symmetry
assumption are now given as:

ẋ∗(t) =
{

a∗(t) − bx∗(t) + ε1, for x(t) < Δ

a∗(t) − bx∗(t) + ε2, for x(t) > Δ
, x∗(0) = x0 (given) (7.13)

ȧ∗(t) = −(r + b)a∗(t) + 2ca∗2(t)x∗(t) (except at the switching instants). (7.14)

Again, at the switching instant t = τ the Hamiltonian continuity condition leads to
the following equation:

ln a∗(τ−) + bΔ − εk(τ−)

a∗(τ−)
= ln a∗(τ+) + bΔ − εk(τ+)

a∗(τ+)
, (7.15)

we recall the variable εk(.) is defined by ε1 = 0 and ε2 = 1. Next, we consider the
situation where the economic agents act noncooperatively in realizing their profits.
We have the following lemma.

Lemma 7.8 ((Symmetric) open-loop Nash equilibrium) Let us assume that play-
ers are identical (symmetric), i.e., ai (.) = a j (.). The open-loop Nash equilibrium
problem can be solved as an optimal management problem with c replaced by c

N .
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The proof of the lemma follows directly from the usual Nash equilibrium inequal-
ities. We know that (ā1, . . . , ān, . . . , āN ) constitutes the Nash equilibrium strategy
if ān satisfies Jn(ā1, . . . , an, . . . , āN ) ≤ Jn(ā1, . . . , ān, . . . , āN ), ∀an for player n.
Upon writing the necessary conditions for this maximization problem and with sym-
metry assumption the statement of the lemma follows immediately. So, the open-loop
Nash equilibrium problem with symmetry assumption is a potential game.4 Next,
using Lemma 7.4 the benefit player n receives in cooperation along a candidate
trajectory starting at (x0, a0) can be easily computed as:

J opt
n (x0, a0) = 1

r

(
ln

(a0
N

)
+ bx0 − εk(0) + 1

a0
− cx20 − 1

)
. (7.16)

Similarly, the benefit player i receives, in noncooperation, along a candidate trajec-
tory starting at (x0, a0) can be shown as:

J olne
n (x0, a0) = 1

r

(
ln

(a0
N

)
+ bx0 − εk(0) + 1

a0
N

− cx20 − N

)
. (7.17)

In the following discussion we study the optimal management problem in detail.

7.3.2.1 Phase Plane Analysis

The equilibrium points of the optimal vector field (7.13) and (7.14) are:

mode 1: (xeq , aeq) =
{
(0, 0),

(√
r + b

2cb
,

√
b(r + b)

2c

)
,
(
−

√
r + b

2cb
,−

√
b(r + b)

2c

)}

mode 2: (xeq , aeq) =
{(1

b
, 0

)
,
( 1

2b
+

√
1

4b2
+ r + b

2cb
,

√
1

4
+ b(r + b)

2c
− 1

2

)
,

( 1

2b
−

√
1

4b2
+ r + b

2cb
,−

√
1

4
+ b(r + b)

2c
− 1

2

)}
.

Since a(t) > 0, only the second equilibrium point is chosen for each of the modes.
Let x1eq and x2eq denote these equilibrium points. Then we have, 0 < x1eq < x2eq and

x2eq > 1
b . The eigenvalues of the Jacobian matrix, for the linearized dynamics near

the equilibrium points, are:

mode 1:
r

2
±

√
8b2 + 8br + r2

2

mode 2:
r

2
±

√
r2 + 8b2 + 8br + 4c − 4

√
c2 + 2brc + 2b2c

2
.

4A potential game [12] facilitates to compute Nash equilibria as an optimization problem instead
of a fixed point problem.
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Fig. 7.2 Switching dynamics (7.13)–(7.15) with b = 0.6, c = 0.5, r = 0.03 and Δ = 1.5

The equilibrium point in mode 1 is clearly a saddle point. Next, we have 8b2 +
8br +4c −4

√
c2 + 2bcr + 2b2c = 4

√
c + 2b(r + b)(

√
c + 2b(r + b)−√

c) > 0.
So, the equilibrium point in mode 2 is also a saddle point. Figure7.2 illustrates the
phase portrait of the optimal dynamics (7.13)–(7.15). Any trajectory approaching
the surface at x = Δ undergoes a switching according to the rule (7.15). Next, we
analyze these switching rules in detail.

7.3.2.2 Switching Rules

Before proceeding with the actual switching analysis we discuss solvability of the
equation

s(q, m) = ln(q) + m

q
= p, m, p ∈ R, q > 0. (7.18)

If m = 0 then q = ep. We consider the case m �= 0. After rearranging terms the
above equation can be written as yey = l, y = −m

q , l = −me−p. The solution
of the reformulated equation is given by y = W(l), where W(.) is the Lambert
W function [3]. Here, W(z) is single valued for {z ≥ 0} ∪ {− 1

e }, multiple valued
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(a) (b)

Fig. 7.3 Switching analysis. a Two branches of LambertW function. bAnalysis of jumps in control
action at the switching instant τ

for − 1
e < z < 0, and not defined for z < − 1

e . Figure7.3a shows two branches
of W(z) denoted as W0(z) and W−1(z). Thus, the solution of (7.18) is given by
q = − m

W(−me−p)
.

(1) Switch from mode 1 to mode 2
When the optimal system switches from mode 1 to mode 2, following (7.15), the
jump in the control satisfies

s(a−, bΔ) = s(a+, bΔ − 1).

Here, s(., bΔ) : (0, ∞) → [ln bΔ + 1, ∞). If bΔ = 1, then a+ = e−s(a−,bΔ).
If bΔ �= 1, then a+ = − bΔ−1

W
(
−(bΔ−1)e−s(a−,bΔ)

) . For bΔ < 1, we have −(bΔ −
1)e−s(a−,bΔ) > 0. So, a jump results in a+ in the interval [a12, ∞), a12 =

1−bΔ

W0

((
1

bΔ
−1

)
1
e

) . Here, W(z) increases for z > 0. For bΔ > 1, we have −(bΔ −
1)e−s(a−,bΔ) < 0. So, a jump occurs at a+

l in the interval (0, al
12] and at a+

h in
the interval [ah

12, ∞) where al
12 = 1−bΔ

W0

((
1

bΔ
−1

)
1
e

) and ah
12 = 1−bΔ

W−1

((
1

bΔ
−1

)
1
e

) . Here,

W(z) decreases for z < 0. Superscripts l and h denote the lower and higher values
which are computed at different branches ofW(z) for − 1

e < z < 0.

(2) Switch from mode 2 to mode 1
When the optimal system switches from mode 2 to mode 1, following (7.15), the
jump in the control satisfies

s(a−, bΔ − 1) = s(a+, bΔ).
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Then, a+ = bΔ

W
(
−bΔe−s(a−,bΔ−1)

) which is well defined only if the condition 0 <

bΔe−s(a−,bΔ−1) ≤ 1
e holds true, and this implies s(a−, bΔ − 1) ≥ ln bΔ + 1.

Further, for bΔes(a−,bΔ−1) = 1
e which implies s(a−, bΔ − 1) = ln bΔ + 1. So,

a− should satisfy s(a−, bΔ − 1) ≥ ln bΔ + 1 for a jump to happen from mode 2
to mode 1. In such a case, a jump results in two points, namely a+

l ∈ (0, bΔ] and
a+

h ∈ [bΔ,∞).
A graphical illustration of the switchings is given in Fig. 7.3b. Here, a− is called a

predecessor of a+ (a+ is a successor of a−). Notice, there always exists a successor
during transitions from mode 1 to mode 2, whereas some points on the switching
surface may not have predecessors in mode 1. Further, in some cases there exist
more than one successor or predecessor. These characteristics of the optimal vector
field should be considered while analyzing the candidates for optimal solution. We
discuss these issues in the next section.

7.3.2.3 Analysis of Optimal Vector Field (7.13)–(7.15)

In this subsection we use the results from Sects. 7.3.2.1 and 7.3.2.2 to analyze the
optimal system (7.13)–(7.15) and arrive at conclusions regarding the optimal solution
and control actions. First, we notice that a solution, denoted by γ (t), of the optimal
system (7.13)–(7.15) starting at a point (x0, a0) ∈ R

2+ either

1. converges to one of the equilibrium points as t → ∞, or
2. leads to a control a∗(t) that goes to infinity in a finite time, or
3. converges to a closed orbit.

In the following discussion we analyze the above three scenarios in detail.

(1) Solutions approaching stable equilibrium points
First, we notice that a trajectory γ (t) approaching any equilibrium point admits a
finite number of switchings. As a result, the truncated trajectory in the last interval
satisfies necessary conditions similar to a classical problem. So, the transversality
condition, given by limt→∞ − Ne−r t

a∗(t) = 0, holds true.5 Next, we show that the trajec-

tory γ (t) approaching the stable equilibrium points (0, 0) and
( 1

b , 0
)
fails to satisfy

the transversality condition. First, consider a linearization around stable equilib-
rium point (0, 0). The eigenvectors associated with the eigenvalues are

[
1 0

]T and[
1 −r

]T . Thus, the trajectory γ (t) approaching the stable equilibrium points can be

approximated as γ (t) = [
x∗(t) a∗(t)

]T = c1e−bt
[
1 0

]T + c2e−(r+b)t
[
1 −r

]T +[
o(e−bt ) o(e−(r+b)t )

]T
.We see that the transversality condition is violated for trajec-

tories approaching stable equilibrium points, i.e., limt→∞ − e−r t

−c2re−(r+b)t +o(e−(r+b)t )
=

5The transversality condition limt→∞ e−r tλ(t) = 0 is satisfied if lim inf t→∞ x(t) > 0, see [7].
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limt→∞ ebt

c2r−o(1) �= 0. Following the same reasoning it can be shown that trajectories
approaching the other stable equilibrium point also fail to satisfy the transversality
condition.

(2) Solutions going to infinity
In the following discussion, given in the lines of [23, Sects.A.2 and A.3], we show
two properties for the solutions that grow without bound. First, we show that it is
not possible for solutions going to infinity that a(t) remains bounded. For solutions
going to infinity we have x(t) ≥ δ > 0 for all t . As a result, we have ȧ(t) =
−(r + b)a(t) + 2cx(t)a2(t) ≥ −(r + b)a(t) + 2cδa2(t). Since the solution grows
unbounded there exists a t∗ such that a(t∗) = r+b

cδ . So, we have ȧ(t) ≥ cδa2(t)
for t ≥ t∗. Now, setting v(t∗) = a∗, the equation v̇(t) = cδv2(t) has a solution
v(t) = u∗

1−a∗cδ(t−t∗) for all t ≥ t∗ which goes to infinity in finite time. By Gronwall’s
inequality we have a(t) ≥ v(t) for all t ≥ t∗. So, a(t) goes to infinity in finite time
as well. Next, we show that it is not possible for a trajectory γ (t) to grow unbounded
while x∗(t) remains bounded. If the latter condition holds, then we have x∗(t) < M
for t > 0, which implies ẋ∗ = a∗ − bx∗ > a − bM for dynamics in mode 1 and
ẋ∗ = a∗ − bx∗ + 1 > a∗ − bM + 1 for dynamics in mode 2. However, since
(x∗(t), a∗(t)) → ∞, there exists T0 > 0 such that a∗(t) > bM + 2 for all t > T0.
So, for T = T0 + M , x∗(T ) ≥ M , which contradicts the assumption x∗(t) < M for
all t . The solutions with finite escape time are not admissible, see Assumption 7.2.
So, we are left with candidates that approach saddle equilibria and closed orbits.

(3) Solutions converging to a closed orbit
In this section we recall from the appendix an extension of Bendixson criterion for
hybrid systems, see Theorem 7.11. The state–costate dynamics associated with the

optimal management problem is given by
(
ẋ∗ = ∂ Hc

i
∂μ

, μ̇ = rμ − ∂ Hc
i

∂x∗
)
for mode

i , i = 1, 2. At the switching instant τ there may be a jump in the costate variable
which is described by μ(τ+) = R(μ(τ−)). The mapping R should be such that the
following Hamiltonian continuity property is satisfied:

Hc
i (x∗(τ−), a∗(τ−), μ(τ−)) = Hc

j (x∗(τ+), a∗(τ+), μ(τ+)) (7.19)

with x∗(τ−) = x∗(τ+) = Δ and μ(τ+) = R(μ(τ−)). Next we consider the jump at
the entry point (Δ,μ(τ−)). Differentiating the relation (7.19) with respect to μ(τ−)

we obtain the relation

∂ Hc
i

∂μ(τ−)
= ∂ Hc

j

∂μ(τ+)
R′(μ(τ−)).

Here, the dependence through the control is ignored because we have
∂ Hc

i
∂a = 0 at

the optimum a = a∗ for i = 1, 2. The growth factor at the left hand side of (7.24)
can now be computed as

∣∣∣∣
∂ Hc

j

∂μ(τ+)

∂ Hc
i

∂μ(τ−)

R′(μ(τ−))

∣∣∣∣ = 1.
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Together with the fact that the divergence is positive (equal to r ) away from the
discontinuity line, this proves on the basis of the Theorem 7.11 that there can be
no closed orbits in the hybrid system described in state–costate coordinates. The
dynamics (7.13)–(7.15) is topologically equivalent to the optimal dynamics described
in state–costate coordinates; the former is obtained by the transformation a = − 1

μ
.

So, there are no closed orbits in the planar dynamical system (7.13)–(7.15).

7.3.2.4 Candidates and Objective

Let W u
i and W s

i denote the unstable and stable manifolds in the mode i . If x0 ∈ R+
is the initial state of the lake then the candidates are obtained by first tracing the
trajectories backwards starting at the equilibrium points. Let γ (t) ∈ R

2+ be one
such candidate, then the initial nutrient loading, i.e., a(0) = a0, is obtained as the
intersection of γ (t)with the line x = x0, and as a result multiple candidates, starting
at x0, are possible. Sincewe only consider candidate trajectories that eventually reach
saddle points. Notice, these candidates undergo only a finite number of switchings,
and as a result Lemma 7.4 can be used to compare the objectives along the candidate
trajectories. The optimal vector field of the classical shallow lake problem with
smooth nonlinearities admits complex qualitative behaviors such as multiple steady
states, existence of indifference or Skiba points and bifurcations due to variations in
the parameters b, c and r , refer [7] for a complete analysis. In the present model with
hybrid approximation, we consider bifurcations due to variations in the switching
surface. Further, we make the following assumption:

Assumption 7.9 The switching surface does not coincide with the equilibrium

points, i.e., Δ /∈
{
0, 1

b , x1eq , x2eq

}
.

(D) Bifurcations due to switching surface
The qualitative behavior of the optimal dynamics depends upon the position of the
switching surface. Let Si and Ui be points where the stable and unstable manifolds
in mode i touch the switching surface. We consider the following situations:

bΔ < 1 : First, we notice that a trajectory approaching the switching surface from
mode 1, after entering mode 2 satisfies ẋ = a − bx + 1. Near the switching surface
in mode 2 we have ẋ(τ+) = a − (bΔ − 1) > 0. So, the trajectory never returns to
mode 1, i.e., if the lake switches to turbid state it can never return to clear state.

(a) Consider the case with Δ < x1eq as illustrated in Fig. 7.4a. For any x0 < Δ,
the optimal candidate is the one that switches to the point S2 from mode 1. If
S2 does not have a predecessor in mode 1 then there is no optimal solution.6 If
x0 > Δ, then the optimal candidate is the trajectory starting at (x0, W s

2 (x0)). So,
the admissible candidates converge to the steady state in mode 2.

(b) Consider the case Δ > x1eq as illustrated in Fig. 7.4b. Following the discussion
in Sect. 7.3.2.3.(2) there is a nonempty closed region Ω such that solutions

6Transversality condition allows for trajectories with a(t) going to ∞.
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ΔΔ

τ− τ+
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2
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x0
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2

ȧ = 0
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ẋ = 0

ΔΔ
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τ+
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1
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1

W s
2

x0

S1

a−h

U1

Ω

W u
2

ȧ = 0

ẋ = 0

ẋ = 0

(a) (b)

Fig. 7.4 Bifurcation analysis for bΔ < 1. a Δ < x1eq . b Δ > x1eq

originating in Ω escape to infinity in a finite time. The trajectories can reach the
steady states either in mode 1 or in mode 2. However, starting in mode 2 the
steady state in mode 1 cannot be reached, whereas the steady state in mode 2
can be reached starting in mode 1.

bΔ > 1 : In this case, the economic agents can reverse the lake to mode 1 frommode
2 by lowering the nutrient loading, i.e., ẋ(τ+) = a − (bΔ − 1) < 0. We have the
following three cases:

(c) Consider the case withΔ < x1eq as illustrated in Fig. 7.5a. A trajectory starting in
mode 1 either switches to mode 2 or approaches the origin. Trajectories reaching
the equilibrium point in mode 2 are optimal. The existence of the closed region
Ω2 follows from the discussion in Sect. 7.3.2.3.(1). A detailed analysis includes
tracing the predecessors for the point S2 on the surface x = Δ at τ−.

(d) Consider the case with x1eq < Δ < x2eq as illustrated in Fig. 7.5b. The trajectories
can reach either of the steady states in mode 1 and mode 2 by first reaching the
points S1 and S2. So, the candidates are obtained by finding the predecessors of
these points using the switching rules devised in Sect. 7.3.2.2.

(e) Consider the case with Δ > x2eq as illustrated in Fig. 7.5c. Trajectories reaching
the steady state in mode 1 are obtained by using the switching rules for finding
the predecessors.

Next, we demonstrate the subtleties in finding the candidates for a specific choice
where the parameters satisfy bΔ > 1 and Δ > x2eq . Then we explain in detail
about the candidates for all initial states x0. Toward that end, we have the following
procedure to generate points on the switching surface which eventually reach the
steady state in mode 1.
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ẋ = 0
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ȧ = 0

(a)

(c)

(b)

Fig. 7.5 Bifurcation analysis for bΔ > 1. a Δ < x1eq . b x1eq < Δ < x2eq . c x2eq < Δ

We notice that the above procedure generates sequences that satisfy the following
condition:

g0 < g1 < · · · < gk < · · · < al
12 < bΔ − 1 < ah

12 < · · · < hk < · · · < h1 < h0

and d0 < d1 < · · · < dk < · · · < bΔ < · · · < ek < · · · < e1 < e0.

A graphical illustration of the algorithm is given by Fig. 7.6. Any trajectory starting
at (Δ, dk), (Δ, ek), and (Δ, gk) will spiral out and eventually reach the steady state
in mode 1. Here, in the discrete part of the trajectory, the transition from ek to dk is a
switch (with jump) from mode 1 to mode 1. Notice, also that the point (Δ, bΔ) is an
equilibrium point for the discrete dynamics described by the jump ek to dk . At this
point the vector field in the x direction changes its sign in mode 1. Next, we consider
three situations with variation of x0 and find the candidates for each one of them.



7 Optimal Management with Hybrid Dynamics—The Shallow Lake Problem 129
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Fig. 7.6 Graphical illustration of Algorithm 2

Algorithm 2: Algorithm for generating candidates with bΔ > 1 and Δ > x2eq

Construct sequences dk , ek , gk , hk , k = 1, 2, . . . using the following steps:1
1. For k = 0, set d0 = S1 and obtain e0, g0, h0 by solving the equation (follows from

Sect. 7.3.2.2)

s(d0, bΔ) = s(e0, bΔ) = s(g0, bΔ − 1) = s(h0, bΔ − 1)

such that d0 < bΔ < e0, g0 < al
12 < bΔ − 1 < ah

12 < h0.

2. If e0 < U1 go to step 3 else STOP.
3. For, k ≥ 1, solve the boundary value problem to obtain a(0) (solution exists due to the

property of the region Ω)

ẋ = a − bx, ȧ = −(r + b)a + 2ca2x, x(0) = Δ, x(τ ) = Δ, a(τ ) = ek−1.

Set dk = a(0).
4. Solve s(dk , bΔ) = s(ek , bΔ) = s(gk , bΔ − 1) = s(hk , bΔ − 1), dk < bΔ < ek , gk <

al
12 < bΔ − 1 < ah

12 < hk .
5. Set k = k + 1 and go to step 3.
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• Consider the case with x0 > Δ, i.e., starting in mode 2. Let (x0, ak
0) denote the

initial state of the trajectory which reaches the point (Δ, gk) (shown as dotted lines
in Fig. 7.6). Then a candidate trajectory starting at (x0, ak

0) will undergo k cycles,
that spirals out, before reaching the stable manifold W s

1 starting at d0. So, we have
countably infinite candidates that satisfy the necessary conditions.

• Consider the case with x1eq < x0 < Δ, i.e., starting in mode 1. If e0 > U1, then
there may exist two candidates that approach steady state in mode 1. The first one
is the stable manifold. The other one may lie above the unstable manifold W u

1
which approaches e0, then switches to mode 2 at g0 and switches back to mode
1 at d0. If e0 < U1, then there always exists one candidate that lies on the stable
manifold W s

1 . Further, we observe that trajectories starting at dk−1 and ending at
ek intersect the line x = x0 at two points or at one point (tangential intersection).
So, depending upon the location of x0 we have either 2L or 2L + 1 candidates,
where L represents the number of paths that intersect the section x = x0.

• Consider the case with x0 < x1eq . If e0 < U1, then there exists one candidate that
lies on the stable manifold W s

1 . If e0 > U1, then there may exist an additional
candidate that reaches e0 switches to mode 2 at g0 and returns to mode 1 at d0.

Remark 7.10 The objective along each candidate trajectory is calculated using
Lemma 7.4, and the optimal solution is obtained using Remark 7.7. The qualita-
tive behavior of the optimal vector field alters when bΔ crosses a certain level. The
scenarios discussed above consider all the possibilities that can arise due to parame-
ter variations. These situations can be easily checked once the parameter values are
known. However, for the classical shallow lake problem one has to resort to numer-
ical simulations to analyze the bifurcations, see Fig. 4 of [23]. The situations, where
there exists only one equilibrium point in the phase plane, illustrated in Figs. 7.4a
and 7.5a, c are similar to plots (i), (vii), and (viii) in Fig. 4 of [23]. Similarly, the
situations, where there exist two equilibrium points in the phase plane, illustrated in
Figs. 7.4b and 7.5b are similar to plots (ii)–(vii) in Fig. 4 of [23].

7.3.2.5 Numerical Illustration

Consider the shallow lake system with parameter values b = 1, c = 0.6, r = 0.03,
Δ = 1.6, and N = 4. For this choice of parameters, we have bΔ = 1.6 > 1,
U1 = 5.03493, and e0 = 4.9259. The candidates for optimal solution are obtained
by following the previous discussion. Optimal candidates starting at various initial
states are illustrated, in small roman letters, and the benefit of each player along
these trajectories is calculated according to Eq. (7.16), in cooperation, and (7.17), in
noncooperation. First, we consider the optimal management case and the results are
illustrated in Fig. 7.7a. For initial state x0 = 1.06, we obtain three candidates labeled
as (ii), (iii), and (iv). When following the paths (iii) and (iv), the agents increase the
level of nutrient loading till the lake switches to mode 2 and instantaneously drop
the levels to be able to switch back to mode 1 along the stable manifold W s

1 . We
observe that f1(x0, a0) < 0 for candidates (ii) and (iii). So, from Remark 7.7, we



7 Optimal Management with Hybrid Dynamics—The Shallow Lake Problem 131

Fig. 7.7 Candidates for
various initial states. Thick
gray lines indicate stable and
unstable manifolds, dashed
line indicates the switching
surface. Thick dark lines
indicate the candidates.
a Phase portrait with
b = 1, c = 0.6, r = 0.03
and Δ = 1.6. b Phase
portrait with b = 1,
c = 0.15, r = 0.03 and
Δ = 1.6
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see that following the trajectory (ii) results in higher benefits, see Table7.1. When
the agents start in mode 2, i.e., x0 > 1.6, there exist countably infinite candidates
each undergoing a finite number of cycles before reaching the steady state in mode
1. For instance, on path (vi) the agents can alter the nutrient levels, i.e., a decrease
and increase cycle, 39 times before reaching the steady state in mode 1. We observe
that f2(x0, a0) < 0 for the candidates (v) and (vi). Again, from Remark 7.7 it can
be inferred that following trajectory (v) results in higher benefits, see Table7.1a.

For the (symmetric) open-loop Nash equilibrium, following Lemma 7.8, we ana-
lyze the optimal vector field with c = 0.6 replaced with c

N = 0.15. The phase plane
diagram for the optimal vector field with c = 0.15, ceteris paribus, is illustrated in
Fig. 7.7b. We notice that only steady state in mode 2 can be achieved by the agents.
So, the trajectory (vii) corresponds to the open-loop Nash equilibrium path with
x0 = 2.5 and the welfare parameter set to c = 0.6. We notice that the choice of
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Table 7.1 Performance of the candidate trajectories

(a) With b = 1, c = 0.6, r = 0.03 and Δ = 1.6, see Fig. 7.7a

Initial state Candidate Objective

Starting at (x0, a0) # of cycles Reaches
steady state
in mode #

N = 4
optimal
management

0.50 (0.50, 1.1425) (i) 0 1 −65.5150

1.06 (1.06, 0.8733) (ii) 0 1 −66.0710

(1.06, 0.9420) (iii) 1 1 −66.4980

(1.06, 1.1998) (iv) 1 1 −66.4940

2.50 (2.50, 0.2844) (v) 0 1 −70.6235

(2.50, 0.2851) 1 1 −71.0171

(2.50, 0.2859) 2 1 −71.3826
.
.
.

.

.

.
.
.
.

.

.

.

(2.50, 0.3003) 38 1 −78.1329

(2.50, 0.3005) (vi) 39 1 −78.2385
.
.
.

.

.

.
.
.
.

.

.

.

(b) With b = 1, c = 0.15, r = 0.03 and Δ = 1.6, see Fig. 7.7b

Initial state Candidate Objective

Starting at (x0, a0) # of cycles Reaches
steady state
in mode #

N = 4
optimal
management

N = 4
open-
loop
Nash
equilib-
rium
(c = 0.6)

0.50 (0.50, 3.500000) – – −11.1676∗

1.70 (1.70, 1.635331) 0 2 −63.3300

2.50 (2.50, 1.398072) (vii) 0 2 −63.8598 −150.3192
∗The candidate starting at (0.5, 3.5) switches to mode 2 at time t = 0.4732 and the system (7.13)–
(7.15) has a finite escape time at t = 0.7844. So, the objective is computed in the interval [0, 0.7844).
We discard this candidate as Assumption 7.2 is violated

institutional arrangement also affects the qualitative behavior of the optimal solu-
tion; more clearly, when players play cooperatively steady state in mode 1 is attained,
whereas a noncooperative behavior leads to the steady state in mode 2. Further, it
is clear from Table7.1a, b that each player receives greater benefits in cooperation.
Now, consider the effect of reducing the c from 0.6 to 0.15 on optimal management.
Since, in the latter case the players incur less costs, toward cleaning activities, there
is an incentive for increasing the nutrients and as a result the optimal vector field
results in the steady state in mode 2.
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7.4 Conclusions

In this article we introduce a class of discounted autonomous infinite horizon hybrid
optimal control problems and provide the necessary conditions for optimality. Re-
stricting the state and control variables to dimension onewe obtain additional insights
on the necessary conditions. Using these tools we study the shallow lake problem
where nonlinear lake dynamics are approximated using a simple hybrid system.
Assuming symmetry in agents’ actions, we solve the associated optimal manage-
ment problem using relevant necessary conditions. The hybrid approximation leads
to simple dynamics within each mode and a complex jump rule near the switching
surface. The dynamic behavior of the switched vector field is similar, qualitatively,
to the smooth version. However, there are some differences. The bifurcations in the
present analysis are governed by simple rules, a set of inequalities, which can be
checked/verified once the parameters are given. In the previous works these bifurca-
tion scenarios were established numerically, though their existence was proved using
continuation methods. Further, we provide a bifurcation analysis of the vector field.
We observe that the variation of switching surface induces bifurcations in this vector
field.

There are several open issues that require considerable attention. It was shown in
[23] that existence of Skiba points is closely related to heteroclinic connections7 in
the optimal vector field. A piecewise linear approximation of the convex–concave
production function [20] also results inmultiple steady states, see Figs. 7.4b and 7.5b,
then to see whether Skiba points exist in the optimal switching dynamics would be
interesting. Feedback policies are generally preferred over open-loop policies as they
can quickly adapt to changes in the state variable. However, designing the feedback
policies is difficult due to computational burden; see [2] for some preliminary work.

Appendix

Bendixson Criterion for a System with Jumps

Consider a planar dynamical system that has a discontinuity across the line x = Δ,
and that moreover exhibits jumps when it reaches the line of discontinuity. The
system may be described as follows:

ẋ(t) = P(x(t), y(t)), x(t) �= Δ (7.20)

ẏ(t) = Q(x(t), y(t)), x(t) �= Δ (7.21)

(x(t+), y(t+)) = (x(t−), R(y(t−))), for t such that x(t−) = Δ, (7.22)

7This happens when a branch of an unstable manifold of an equilibrium point coincides with a
branch of a stable manifold of a different equilibrium point.
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where

(P(x, y), Q(x, y)) =
{

(P1(x, y), Q1(x, y)), x < Δ

(P2(x, y), Q2(x, y)), x > Δ

and where all the functions P1, P2, Q1, Q2, and R are smooth. The vector fields are
supposed to be such that solutions are well defined and lead off the discontinuity
line. The following extension of the classical Bendixson criterion is proposed, see
also [10, 14] for different formulations.

Theorem 7.11 (Bendixson criterion) Suppose there is a simply connected region in
the plane in which the following conditions are satisfied:

∂ P

∂x
(x, y) + ∂ Q

∂x
(x, y) > 0, x �= Δ (7.23)

∣∣∣∣
Pk+(Δ, R(y))

Pk−(Δ, y)
R′(y)

∣∣∣∣ ≥ 1 with

{
k+ = mode after jump

k− = mode before jump.
(7.24)

Then in this region there are no closed orbits. A similar statement holds with both
inequalities reversed.

Sketch of the proof Let us assume that there exists a closed orbit in a system described
by (7.20)–(7.22). Then this implies there exists a bounded area that is invariant under
the flow (including jumps) (7.20)–(7.22). Next, we consider volume elements within
this area. The divergence of the vector field at a point (x, y) is the rate of change
of surface area of a volume element that is carried along the flow starting from
(x, y). Since this rate is positive, from (7.23), the volume elements expand during
the continuous part of the flow.

Next,we analyzewhat happens to the volume elementwhen the system reaches the
discontinuity line, experiences a jump, and leaves the discontinuity line again. Imag-
ine a small rectangle with width δx and height δy that is taken by the flow in mode
k− to meet the discontinuity line at the point (Δ, y). We can approximate the vector
field near this point as a constant field with components (Pk−(Δ, y), Qk−(Δ, y));
likewise, the vector field near the exit point (Δ, R(y)) can be approximated as a con-
stant field with components (Pk+(Δ, R(y)), Qk+(Δ, R(y))). The volume element
that enters in a neighborhood of (Δ, y) emerges in a neighborhood of (Δ, R(y)) as
approximately a rectanglewithwidth |Pk+(Δ, R(y))|δt and height R(y+δy)−R(y),
where δt is the time it takes for the flow near the entry point (Δ, y) to move the far
side of the volume element to the discontinuity line. This time δt is approximately
equal to δx

|Pk− (Δ,y)| . The height of the volume element that emerges after the jump is

approximately equal to R′(y)δy. The ratio of change of surface of area of the volume

element before and after experiencing the jump is then given by

∣∣∣∣
Pk+ (Δ,R(y))

Pk− (Δ,y)
R′(y)

∣∣∣∣.
Next, from (7.24) this ratio is greater than or equal to 1; this implies, along with
(7.23), that all volume elements within the region enclosed by the closed orbit are
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expanding during the continuous part of the flow and not contracting during the
discrete (jump) part. Since the area of the region as a whole cannot expand as it is
enclosed by a closed orbit, we have a contradiction.
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Chapter 8
Modeling Perspectives of Hybrid Systems
and Network Systems

Jun-ichi Imura and Takayuki Ishizaki

Abstract This article presents two topics, i.e., well-posedness of piecewise affine
systems, and model reduction of network systems. The well-posedness problem, i.e.,
the problem of existence and uniqueness of solutions, of hybrid systems is one of
the fundamental research topics, which the first author has collaborated with Prof.
Arjan van der Schaft in 1998. Some results are revisited by focusing on the class of
bimodal piecewise affine systems. The latter discusses the most recent topic that both
Arjan and the first author have common interest in. In particular, the clustering-based
H∞− and H2-model reduction approaches of large-scale network systems, which
have been independently developed by the authors, are represented in a unified way.

8.1 Introduction

I, the first author, has started with research topics on hybrid systems since I stayed in
Twente University for one year from May 1998 as a visiting researcher under Pro-
fessor Arjan van der Schaft. In those days, Arjan tried to publish a book entitled “An
Introduction to Hybrid Dynamical Systems” with van der Schaft and Schumacher
[1]. I had a lucky opportunity to read this first draft with great interest. In particu-
lar, the concept of complementarity systems and its well-posedness problem were
very impressive for me, and started with the well-posedness problem of bimodal
piecewise linear systems together with Arjan [2, 3]. Since then, this topic brought
me various kinds of results on modeling, analysis, and control synthesis of hybrid
systems including feedback well-posedness and stabilizability of piecewise affine
systems [4, 5], controllability analysis of piecewise affine systems [6, 7], discrete
abstraction of nonlinear systems [8], and so on. The first part of this article revisits
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the well-posedness issue of hybrid systems, which I look back with valuable collab-
oration with Arjan.

The second part focuses on more recent topic of model reduction of large-scale net-
work systems, which recently gave common interest to Arjan and myself. Throughout
the study of discrete abstraction of nonlinear systems, which produces a kind of graph
structure for approximately expressing complex system behavior based on bisimi-
larity notation, I and my colleagues also had great interest in model reduction of
large-scale network systems. We thus have developed a clustering-based approach in
the framework of projective model reduction [9–12], which we call clustered model
reduction. This is also a kind of structure-preserving model reduction methods. On
the other hand, for the concept of the port-controlled Hamiltonian systems preserving
the essential property of physical structure, proposed by Arjan and B.M. Maschke
(e.g., [13, 14]), the problem of model reduction preserving such physical structure is
naturally and relevantly induced. Most recently, Arian and his colleagues have solved
this problem by a clustering framework, where the strict H2 norm-approximation-
error evaluation and an extension to the case of second-order systems are provided
[15, 16]. This result is also based on the research works by H. Trentleman and his
colleagues [17]. The second part of this article provides a summary on our pre-
vious results including H2/H∞-norm-error evaluation and extensions to the case
of second-order subsystems in a unified way. We hope this unified approach will
provide any further common framework with the works by Arjan, Harry, and their
colleagues. In addition, as an application of clustered model reduction, we present
our recent result on the design of a projective state observer, which estimates the
average state behavior of large-scale network systems according to the above clus-
tered model reduction [18]. Numerical simulations on power systems show that the
method is effective.

Notation We denote the set of real numbers by R, the n-dimensional identity matrix
by In , the i th column of In by ei , the cardinality of a set I by |I|, the l p-norm of
a vector x by ‖x‖l p , the Frobenius norm of a matrix M by ‖M‖F, the l2-induced
norm of a matrix M by ‖M‖, and the l∞-induced norm of a matrix M ∈ R

n×m is
defined by

‖M‖l∞ := max
i∈{1,...,n}

m∑
j=1

|Mi, j |

where Mi, j denotes the (i, j)-element of M . The positive (negative) definiteness
of a matrix M = MT is denoted by M � 0(M ≺ 0). Furthermore, we denote
the block diagonal matrix having matrices M1, . . . , Mn on its block diagonal by
diag(M1, . . . , MN ). Finally, the H∞-norm and H2-norm of a stable transfer matrix
G are denoted by ‖G(s)‖H∞ and ‖G(s)‖H2 , respectively.
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8.2 Revisit: Well-Posedness of Piecewise Affine Systems

8.2.1 Motivating Example

Consider a 2-tank system in Fig. 8.1, where xi is the deviation of the water level from
the equilibrium state xie, and ui is the volume of water discharged from the tap i . We
assume that ui is an input, i.e., ui = uie, where uie is constant, and the valve at the
tap is open or closed according to the rule shown in Fig. 8.1. Equations of motion of
this system are given by

ẋ =

⎧⎪⎪⎨
⎪⎪⎩

[−1 0
1 −1

]
x if x2 ≤ 1

[
0 0
0 −1

]
x +

[
u1e

−u1e

]
if x2 > 1

(8.1)

where x = [x1, x2]T . The coefficients are normalized to 1 for brevity, and the
equilibrium state and input satisfy −x1e + u1e = 0, −x2e + x1e + u2e = 0, x1e > 0,
and 0 < x2e < 1. Although this tank system is nonlinear, we here consider the
linearization of the system at the equilibrium since the solution behavior will be
essentially similar to that of the original system.

open   if
closed if

valve

Fig. 8.1 2-tank system with a valve

Fig. 8.2 Trajectories for the system in Fig. 8.1
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Figure 8.2 shows trajectories of the system from six different initial states. There
exists a sliding motion when x(0) = [2 2]T and [2 0.8]T, where, in fact, chattering
phenomena happen due to numerical simulation. Since we consider the Open/Closed
motion of the valve in this case, such phenomena is not desirable. It is important to
specify a condition on discontinuity of the vector field to avoid such phenomena.
The next section gives a solution to this question.

8.2.2 Well-Posedness Condition

Consider the discontinuous system

ẋ = f I (x) if x ∈ XI , I ∈ I, (8.2)

where x ∈ R
n , I = {1, 2, . . . , M}, and XI is a closed subset of Rn satisfying

intXI �= ∅,

M⋃
I=1

XI = R
n, intXI

⋂
intXJ = ∅.

Then a solution of this system is defined as follows:

Definition 8.1 (Extended Carathéodory solution) Suppose that an initial state x(t0)=
x0 ∈ R

n is given. Then if on [t0, t1) for some t1 > t0, x(t) satisfies

x(t) = x0 +
∫ t

t0
f I (τ )(x(τ ))dτ, (8.3)

and there is no left accumulation point of event times, x(t) is said to be a solution of
(8.2) on [t0, t1) in the sense of Carathéodory for x(t0) = x0.

Note that this notion of solutions does not admit sliding motions and left-Zeno
behavior, although the right-Zeno behavior is regarded as a solution. The system
(8.2) is said to be well-posed if for every initial state x(t0) ∈ R

n , there exists a right
unique extended Caratéodory solution of (8.2) on [t0,∞).

The notion of smooth continuation is very important for characterizing the well-
posedness property [19]. Consider a solution of ẋ = f I (x) in (8.2) with a fixed I .
If for an initial state x(t0) = x0 there exists an ε > 0 such that x(t) ∈ XI for all
t ∈ [0, ε], we say that smooth continuation is possible from x0 in XI . Furthermore,
we call the smooth continuation set, denoted by SI , the set of all x0 from which
smooth continuation is possible in XI .

Obviously SI ⊆ XI holds, and the smooth continuation set SI expresses the
region of existence of solutions x(t) of the system, while the difference set XI − SI

expresses all the state from which there exists no solution x(t).
Then we have the following theorem [3]:
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Theorem 8.2 The system (8.2) is well-posed if and only if the following two condi-
tions:

(a)
⋃

I∈I SI = R
n.

(b) For every I1, I2 ∈ I, there exists an ε > 0 such that both solutions x(t) of
ẋ = f I (x), I = I1, I2 are the same on [t0, t0 + ε) for every x0 ∈ SI1

⋂SI2 .

To derive an explicit representation of the above conditions, consider

ẋ =
{

A1x if Cx ≥ 0,

A2x if Cx ≤ 0.
(8.4)

Denote by T1 and T2 the observability matrices of (C, A1) and (C, A2), respec-
tively, and by m1 and m2 their observability indexes. We also letL+ be the set of n×n
lower triangular matrices with all diagonal elements positive. Then, the conditions
(a) and (b) in Theorem 8.2 are reduced into the following conditions [3]:

Theorem 8.3 The system (8.4) is well-posed if and only if the following conditions
hold:

(a) m1 = m2,
(b) T2 = MT1 for some M ∈ L+,
(c) (A1 − A2)x = 0 for all x ∈ KerT1.

The smooth continuation set for X1 := {x ∈ R
n | Cx ≥ 0} is given by S1 = {x ∈

R
n | T1x � 0}, where x � 0 expresses the lexicographic inequality, i.e., for each i ,

x j = 0 ( j = 1, 2, . . . , i − 1) and xi > 0, or x = 0. This comes from the fact that for
sufficiently ε > 0, y(t)(:= Cx(t)) = y(t0)+ ẏ(t0)(t − t0)+ ÿ(t0)(t − t0)2 +· · · ≥ 0
holds for all t ∈ [t0, t0 + ε). Thus S1

⋃S2 = R
n , which corresponds to condition

(a) in Theorem 8.2, implies condition (b) in Theorem 8.3. Conditions (a) and (c) in
Theorem 8.3 come from condition (b) in Theorem 8.2.

Note that the above conditions can be easily checked. A similar but rather compli-
cated necessary and sufficient condition can be obtained for bimodal piecewise affine
systems [4], and a sufficient condition for a multimodel piecewise affine system with
external inputs to be well-posed can be also obtained [5]. In addition, the feedback
well-posedness condition, which implies that the system can be made well-posed by
a feedback controller, can be characterized for bimodal piecewise affine systems [4].

8.3 Clustered Model Reduction of Network Systems

In this section, we briefly summarize our clustered model reduction method for linear
network systems, which belongs to a type of structured model reduction methods.
In this model reduction, toward the preservation of network structure of systems,
clustering of subsystems is performed according to a notion of uncontrollability of
local states, called cluster reducibility. All mathematical proofs of theoretical results
are omitted due to page limitation; see [9–12] for details.



142 J. Imura and T. Ishizaki

8.3.1 Clustered Model Reduction Problem

We first deal with a stable linear network system denoted by

Σ : ẋ = Ax + Bu, A ∈ R
n×n, B ∈ R

n, (8.5)

whose network structure is represented by the Boolean structure of A. For simplicity,
we consider only single-input systems while a similar result can be obtained also
for multi-input systems. To formulate a clustered model reduction problem for Σ in
(8.5), we introduce the following notion of network clustering:

Definition 8.4 For L := {1, . . . , L}, the family of an index set, {I[l]}l∈L, is called
a cluster set, each of whose elements is referred to as a cluster, if each element
I[l] ⊆ {1, . . . , n} satisfies

⋃
l∈L

I[l] = {1, . . . , n}, I[l] ∩ I[l ′] = ∅, l �= l ′.

Furthermore, an aggregation matrix compatible with {I[l]}l∈L is defined by

P := Πdiag(p[1], . . . , p[L]) ∈ R
n×L , (8.6)

where p[l] ∈ R
|I[l]| such that ‖p[l]‖ = 1, and the permutation matrix Π is defined as

Π := [eI[1] , . . . , eI[L] ] ∈ R
n×n, eI[l] ∈ R

n×|I[l]|.

In this definition, the aggregation matrix P clearly satisfies PT P = IL , i.e., all
column vectors of P are orthonormal. Using the aggregation matrix P in (8.6), we
define the aggregated model of Σ in (8.5) by

Σ̂ :
{

ξ̇ = PT APξ + PT Bu
x̂ = Pξ.

(8.7)

Note that each state of the aggregated model Σ̂ represents an approximant of the
clustered states, given by eT

I[l] x ∈ R
|I[l]|. The trajectory of each state of Σ̂ aims at

tracing the trajectory of a kind of centroid compatible with the clustered states of Σ .
In this notation, we formulate a clustered model reduction problem as follows:

Probelm 8.5 Let a stable linear system Σ in (8.5) be given. Given a constant ε ≥ 0,
find a stable aggregated model Σ̂ in (8.7) such that

‖G(s) − Ĝ(s)‖H2 ≤ ε or ‖G(s) − Ĝ(s)‖H∞ ≤ ε, (8.8)
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where

G(s) := (s In − A)−1 B, Ĝ(s) := P(s IL − PT AP)−1 PT B (8.9)

denote the transfer matrices of Σ and Σ̂ , respectively.

In traditional model reduction methods, each state of the reduced model is usually
obtained as a linear combination of all states of the original system [20]. This can
be rephrased as that the projection matrix has no specific sparse structure. Note that
the aggregation matrix P in (8.6) is block-diagonally structured. In this sense, our
problem formulation clearly contrasts with the traditional model reduction problems.

8.3.2 Controllability Characterizations for Clustered Model
Reduction

In systems and control theory, Σ in (8.5) is said to be controllable if there exists an
input function u such that the state x is moved from any initial state to any other final
state in a finite time interval. One best-known characterization of controllability is
the Kalman rank condition, i.e., Σ is controllable if and only if [B, AB, . . . , An−1 B]
has full row rank [20]. However, the Kalman rank condition is not necessarily useful
for model reduction because it cannot capture the controllability of systems quan-
titatively. Such a quantitative characterization of controllability plays an important
role in performing an approximation error analysis in model reduction.

In view of this, let us seek some other characterizations of controllability that
have good compatibility with model reduction. One of useful controllability charac-
terizations is given by the controllability Gramian, related to the H2-norm of linear
systems. It is known that a stable linear system Σ in (8.5) is controllable if and only
if the controllability Gramian, defined as

M :=
∫ ∞

0
eAt B(eAt B)Tdt ∈ R

n×n, (8.10)

is nonsingular. It will turn out below that this characterization based on the control-
lability Gramian can be used to evaluate the approximation error of clustered model
reduction in terms of the H2-norm.

To devise a controllability characterization compatible with the H∞-norm, we
provide the following lemma that gives a particular realization of Σ , called the
controller-Hessenberg form:

Lemma 8.6 For any linear system Σ in (8.5), there exists a unitary matrix H ∈
R

n×n such that A := HT AH ∈ R
n×n and B := HT B ∈ R

n are in the form of
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A =

⎡
⎢⎢⎢⎢⎢⎢⎣

α1,1 α1,2 · · · · · · α1,n

α2,1 α2,2 α2,3 · · · α2,n

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 αn,n−1 αn,n

⎤
⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎣

β1
0
0
...

0

⎤
⎥⎥⎥⎥⎥⎦

. (8.11)

Furthermore, the dimension of the controllable subspace of Σ is given by

ν :=
{

min
i∈{1,...,n−1}{i : αi+1,i = 0}, if

∏n−1
i=1 αi+1,i = 0,

n, otherwise.
(8.12)

Note that the controller-Hessenberg form of Σ in Lemma 8.6 has the serially
cascaded structure as shown in (8.11). From this particular structure, it follows that
Σ is controllable if and only if αi+1,i �= 0 for all i ∈ {1, . . . , n − 1}. Controlla-
bility characterizations in the following lemma will be used to give a solution to
Problem 8.5:

Lemma 8.7 Let a stable linear system Σ in (8.5) be given. For the controllability
Gramian M in (8.10), define ΦH2 ∈ R

n×n such that M = ΦH2Φ
T
H2

. Furthermore,
for A and B with H in Lemma8.6, define

ΦH∞ := Hdiag(γ1, . . . , γn) ∈ R
n×n, γi :=

∥∥∥eT
i (s In − A)−1B

∥∥∥H∞
. (8.13)

Then, Σ is controllable if and only if ΦHp is nonsingular, where p = 2 or p = ∞.

8.3.3 Clustered Model Reduction Theory

8.3.3.1 Exact Clustered Model Reduction

In this subsection, we first consider the case where no approximation error is caused
by the cluster aggregation. To do this, we introduce the following notion of the
reducibility of clusters:

Definition 8.8 Let a linear system Σ in (8.5) be given. A cluster I[l] is said to be
reducible if there exist a scalar rational function G�[l] and a vector η[l] ∈ R

|I[l]| such
that

eT
I[l] G(s) = η[l]G�[l](s), (8.14)

where G is defined as in (8.9).
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This definition of cluster reducibility represents that the states corresponding to
I[l] have the same trajectories for all input signals. The following theorem shows that
the cluster reducibility can be characterized by a kind of local singularity of ΦHp

defined in Lemma 8.7:

Theorem 8.9 Let a stable linear system Σ in (8.5) be given. With the same notation
as that in Lemma8.7, a cluster I[l] is reducible if and only if there exist φ�[l] ∈ R

1×n

and η[l] ∈ R
|I[l]| such that

eT
I[l]ΦHp = η[l]φ�[l], (8.15)

where p = 2 or p = ∞. In addition, if I[l] is reducible, then η[l] coincides with a
multiple of −eT

I[l] A−1 B. Moreover, if all clusters are reducible, then the aggregated

model Σ̂ in (8.7) given by p[l] = ‖η[l]‖−1η[l] is stable and satisfies

G(s) = Ĝ(s), (8.16)

where G and Ĝ are defined as in (8.9).

Theorem 8.9 shows that the cluster reducibility is characterized by linear depen-
dence among the row vectors of ΦHp . However, the cluster reducibility is generally
restrictive for the reduction of dimensions. This is because it represents a kind of
structured uncontrollability representing that the controllable subspace of eT

I[l] x is
one-dimensional.

8.3.3.2 Approximation Error Evaluation for Clustered Model Reduction

In what follows, aiming at more significant dimension reduction, we consider the
case where a degree of approximation errors is caused by cluster aggregation. In this
situation, even if the original system Σ in (8.5) is stable, the aggregated model Σ̂ in
(8.7) is not necessarily stable. In clustered model reduction, the stability preservation
is to be guaranteed on the basis of the following two facts:

Lemma 8.10 Let a stable linear system Σ in (8.5) be given. If

A + AT ≺ 0, (8.17)

then the aggregated model Σ̂ in (8.7) is stable for any cluster set {I[l]}l∈L.

Lemma 8.11 Let A ∈ R
n×n be such that

DA + AT D ≺ 0 (8.18)
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for a diagonal matrix D � 0. Then

Ã + ÃT ≺ 0, Ã := D
1
2 AD− 1

2 , (8.19)

where D
1
2 � 0 is a diagonal matrix whose diagonal elements are the square roots

of those of D.

Lemma 8.10 shows that, if A is negative definite as in (8.17), the stability of
aggregated models can be guaranteed for any choice of cluster sets. Furthermore,
Lemma 8.11 shows that any stable system having a diagonal Lyapunov function as
in (8.18) is diagonally similar to a system having a negative definite system matrix
as in (8.19). Note that a similarity transformation (coordinate transformation) by a
diagonal matrix does not break the network structure, i.e., the Boolean structure, of
the original system. Thus, by combining Lemmas 8.10 and 8.11, we can theoretically
guarantee the stability preservation in clustered model reduction for the class of
systems having diagonal Lyapunov functions.

In the following, focusing especially on this class of stable network systems,
we analyze the approximation error in clustered model reduction. To this end, we
introduce a weaker notion of cluster reducibility as follows:

Definition 8.12 Let a stable linear systemΣ in (8.5) be given. With the same notation
as that in Lemma 8.7, a cluster I[l] is said to be θ -reducible with respect to the Hp-
norm if there exists φ�[l] ∈ R

1×n such that

⎧⎪⎨
⎪⎩

∥∥∥eT
I[l]ΦH2 − η[l]φ�[l]

∥∥∥
F

≤ √|I[l]| θ, p = 2,

∥∥∥eT
I[l]ΦH∞ − η[l]φ�[l]

∥∥∥
l∞

≤ θ, p = ∞
(8.20)

for η[l] = −eT
I[l] A−1 B.

In Definition 8.12, the constant θ ≥ 0 represents the degree of cluster reducibility.
In the case of p = 2, the scaling by

√|I[l]| is introduced for technical reasons. It
can be easily verified by Theorem 8.9 that the θ -reducibility with θ = 0 is equivalent
to the cluster reducibility in Definition 8.8. In the following theorem, on the basis
of the θ -reducibility, we perform approximation error evaluation in clustered model
reduction:

Theorem 8.13 Let a stable linear system Σ in (8.5) be given and assume that (8.17)
holds. Furthermore, let γ > 0 be such that

A + AT + γ −1(AAT + In) ≺ 0, (8.21)

and either p = 2 or p = ∞. If all clusters are θ -reducible with respect to the Hp-
norm, then the aggregated model Σ̂ in (8.7) given by p[l] = ‖η[l]‖−1η[l] is stable
and satisfies
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G(0) = Ĝ(0), ‖G(s) − Ĝ(s)‖Hp ≤ γ

√∑L
l=1|I[l]|(|I[l]| − 1) θ, (8.22)

where G and Ĝ are defined as in (8.9).

Theorem 8.13 shows a linear relation between the approximation error caused by
cluster aggregation and the parameter θ expressing the degree of cluster reducibility.
Thus, we can use θ as a criterion to regulate the approximation error of the resultant
aggregated model. In this sense, Theorem 8.13 gives a strategy for reasonable cluster
construction.

On the basis of the premise that θ ≥ 0 is given and ΦHp is calculated in advance,
we propose an algorithm to construct a set of θ -reducible clusters. Assuming that a set
of θ -reducible clusters I[1], . . . , I[l−1] are already formed, we consider determining
a new cluster I[l]. Let

N := {1, . . . , n}\
l−1⋃
i=1

I[i].

When constructing I[l], we first select an index j ∈ N . Then, letting either p = 2
or p = ∞, we find all indices i ∈ N such that

∥∥∥φi − ηiη
−1
j φ j

∥∥∥
l p

≤ θ, (8.23)

where φi ∈ R
1×n denotes the i th row vector of ΦHp and ηi ∈ R denotes the i th

entry of η = −A−1 B. We notice that (8.23) is a sufficient condition for (8.20) with
φ�[l] = η−1

j φ j ; thereby verifying that the new cluster I[l] is θ -reducible.

8.3.3.3 Generalization to Second-Order Networks

As giving an advanced result on clustered model reduction, we generalize the results
in Sect. 8.3.3.2 to those in the case of interconnected second-order systems. More
specifically, we deal with a class of interconnected second-order systems denoted by

Σ : ẍ + Dẋ + K x = Fu, (8.24)

where D = DT ∈ R
n×n and K = K T ∈ R

n×n are assumed to be positive definite,
and F ∈ R

n . The network structure of Σ can be represented as the Boolean structure
of K . Using the aggregation matrix P in (8.6), we define the aggregated model of Σ

in (8.24) by

Σ̂ :
{

ξ̈ + PT D P ξ̇ + PT K Pξ = PT Fu,

x̂ = Pξ.
(8.25)
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Note that the aggregated model Σ̂ is stable for any P because PT D P and PT K P
are also positive definite. In this notation, similarly to Problem 8.5, we address the
following clustered model reduction problem for interconnected second-order sys-
tems:

Probelm 8.14 Let a stable second-order system Σ in (8.24) be given. Given a con-
stant ε ≥ 0, find a stable aggregated model Σ̂ in (8.25) such that (8.8) for

G(s) := (s2 In + s D + K )−1 F, Ĝ(s) := P(s2 IL + s PT D P + PT K P)−1 PT F
(8.26)

denoting the transfer matrices of Σ and Σ̂ , respectively.

To give a solution to this problem, let us represent Σ in (8.24) by the first-order
form as

Σ :
{

Ẋ = AX + Bu,

x = C X,
(8.27)

where X := [xT, ẋT]T ∈ R
2n , and

A :=
[

0 In

−K −D

]
∈ R

2n×2n, B :=
[

0
F

]
∈ R

2n, C := [
In 0

] ∈ R
n×2n .

On the basis of this representation, as a generalization of Definition 8.12, we define
the notion of θ -reducibility for second-order systems as follows:

Definition 8.15 Let a stable second-order system Σ in (8.24) be given. For p = 2
or p = ∞, define ΦHp ∈ R

2n×2n similarly to those in Lemma 8.7. A cluster I[l] is
said to be θ -reducible with respect to the Hp-norm if there exist φ�[l] ∈ R

1×2n and

ψ�[l] ∈ R
1×2n such that

⎧⎪⎪⎨
⎪⎪⎩

max
{∥∥∥eT

I[l]Φ
(1)

H2
− η[l]φ�[l]

∥∥∥
F
,

∥∥∥eT
I[l]Φ

(2)

H2
− η[l]ψ�[l]

∥∥∥
F

}
≤ √|I[l]|θ, p = 2

max

{∥∥∥eT
I[l]Φ

(1)

H∞ − η[l]φ�[l]
∥∥∥

l∞
,

∥∥∥eT
I[l]Φ

(2)

H∞ − η[l]ψ�[l]
∥∥∥

l∞

}
≤ θ, p = ∞

for η[l] = −eT
I[l] K

−1 F , where Φ
(1)

Hp
∈ R

n×2n and Φ
(2)

Hp
∈ R

n×2n denote the upper
and lower half components of ΦHp , respectively.

In Definition 8.15, Φ(1)

Hp
and Φ

(2)

Hp
correspond to the controllability Gramians with

respect to the position and velocity of states. Then, Theorem 8.13 can be generalized
to second-order systems as follows:

Theorem 8.16 Let a stable second-order system Σ in (8.24) be given. If all clusters
are θ -reducible for the Hp-norm, then the aggregated model Σ̂ in (8.25) given by
p[l] = ‖η[l]‖−1η[l] is stable and satisfies (8.22) for (8.26) with
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γ := √
2

∥∥∥∥PT
(

s2 IL + s PT D P + PT K P
)−1 [

PT K PT D
]

−
[

In 0
]∥∥∥∥H∞

.

Similarly to Theorem 8.13, we can derive an approximation error bound for clus-
tered model reduction of second-order systems. In Theorem 8.16, even though the
value of γ is not computable a priori, i.e., before determining the aggregation matrix
P , the parameter θ can be used to regulate the approximation error of the resultant
aggregated model.

8.3.4 Application to Average State Observer

Based on the results of Sect. 8.3.3, this section presents a design method of reduced-
order observers for average state estimation of large-scale network systems, which
we called here a projective state observer. This has been developed by the authors
and their colleagues [18]. It is remarked that the physical meaning of the average
state variable of the original systems can be preserved in the obtained reduced-order
observer by using a block-diagonal structured projection matrix.

Consider also a stable linear system Σ of (8.5) as a large-scale network system,
where the measurement output y ∈ R

my is given by y = Cx , and u ∈ R
mu (i.e.,

B ∈ R
n×mu ). Motivated by a reduced-order model of Σ given by Σ̂ of (8.7), we

consider the following observer, called here a projective state observer:

O :
{ ˙̂x = PTAPx̂ + PT Bu + H(y − CPx̂)

z = x̂ .
(8.28)

Then the projective state observer problem is to find P and H such that the
estimation error Px − x̂(=: e) is within the specified precision. The dynamics of the
error system is given by

[
ė
ẋ

]
=
[

PTAP − HCP (PT A − HC)(In − PPT)

0 A

] [
e
x

]
+
[

0
B

]
u. (8.29)

Thus the estimation error depends on the external input u and the initial state x0 as
well as the initial estimation error e0, which is denoted by e(t) = e(t; e0, x0, u).
Since the dynamics of the error system is linear, we can independently consider
e(t; e0, 0, 0), e(t; 0, x0, 0), and e(t; 0, 0, u). For simplicity of explanation, we only
consider here the case of e(t; 0, 0, u). See [18] for further details. In this case, owing
to the cascaded structure of the error dynamics, the estimation error with for an
impulse input u is characterized by

‖e(t; 0, 0, u)‖L2 ≤ ‖Γ (s)‖H∞‖(I − P PT)(s I − A)−1 B‖H2 (8.30)
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whereΓ (s) is given by a certain system that includes P and H . Thus for a given ε > 0,
we first consider to determine P such that ‖(I − PPT)(s I − A)−1 B‖H2 ≤ ρ, which
can be solved by the clustered model reduction, and then for a given P , determine
H in solving a kind of H∞ state feedback control problem with ‖Γ (s)‖H∞ ≤ ε/ρ.

Figure 8.3 shows a network of 54 power generators based on the IEEE 118 bus
system, where each generator has two-dimensional system, and its reduced-order
network model of 9 dimension obtained according to the above model reduction pro-
cedure. We also show the average behavior of the state variable (i.e., angular velocity
ωi ) of the original system with solid lines and the corresponding state behavior of the
projective state observer with dotted lines in Fig. 8.4. We can see that both trajectories
are almost the same and the proposed observer works effectively.

sensor

external
input

Original model (108-dim) Reduced-order model (9-dim)

Fig. 8.3 Power network based on IEEE 118 bus system
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1.5
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Original
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Fig. 8.4 Simulation result of a projective state observer
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8.4 Conclusion

This article discussed two topics, i.e., one the revisit of the well-posedness issue of
hybrid systems, and the other is the clustered model reduction of large-scale network
systems. The former treats how to characterize an essential structure of mathematical
models including switching phenomena in a proper way, while the latter deals with
how to extract a strongly controllable network system from a large-scale network
system. In this sense, their research directions are very similar, and the beginning of
them was the first author’s stay at Twente University under Arjan’s host.
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Chapter 9
Control of HVDC Transmission Systems:
From Theory to Practice and Back

Daniele Zonetti and Romeo Ortega

Abstract The problem of modeling and control of multi-terminal high-voltage
direct-current transmission systems is addressed in this chapter, which contains
three main contributions. First, to propose a unified, physically motivated, model-
ing framework—based on port-Hamiltonian systems representations—of the various
network topologies used in this application. Second, to prove that the system can be
globally asymptotically stabilizedwith a decentralized PI control that exploits its pas-
sivity properties. Close connections between the proposed PI and the popular Akagi’s
PQ instantaneous power method are also established. Third, to reveal the transient
performance limitations of the proposed controller that, interestingly, is shown to be
intrinsic to PI passivity-based control. The performances of the controller are verified
via simulations on a three-terminal benchmark example.

9.1 Introduction

We have witnessed in the last few years an ever widespread utilization of renew-
able energy utilities, mainly based on wind and solar power [6, 17]. Because of its
intermittent nature the integration of this generating units to the existing alternating-
current (AC) distribution network poses a challenging problem [5, 23]. For this,
and other reasons related to reduced losses and problems with reactive power and
voltage stability in AC systems, the option of high-voltage direct-current (HVDC)
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transmission systems is gaining wide popularity, see [6, 19, 21] for additional moti-
vations and details.

The main components of an HVDC system are AC to DC power converters,
transmission lines and voltage bus capacitors. The power converters connect the AC
sources—that are associated to renewable generating units or to AC grids—to an
HVDC grid through voltage bus capacitors. Two notable features distinguish HVDC
systems from standard AC ones: the absence of loads and the central role played by
the power converters, whose dynamics is highly nonlinear.

For its correct operationHVDC systems—like all electrical power systems—must
satisfy a large set of different regulation objectives that are, typically, associated to
the multiple time-scale behavior of the system. One way to deal with this issue,
that prevails in practice, is the use of hierarchical architectures. These are nested
control loops, at different time scales, each one providing references for an inner
controller [20, 35]. In this chapter we focus on the “innermost” control loop for
HVDC transmission systems, that is, the control at the power converter level—in
the sequel we will refer to this level as inner-loop control. The objective of the
inner-loop control is to asymptotically drive the HVDC system towards a desired
steady-state regime determined by the user. Regulation should be achieved selecting
a suitable switching policy for the converters. A major practical constraint is that the
control should be decentralized. That is, the controller of each power converter has
only available for measurement its corresponding coordinates, with no exchange of
information between them.

An essential step in the development of suitable analysis and synthesis tools for
physical systems is the proper selection of the dynamic model describing its behav-
iour. In this respect, port-Hamiltonian models are gaining widespread popularity in
many different engineering applications. This is particularly true for electrical sys-
tems, where they are now the dominating description. The development of these
models is essentially due to the work of Arjan van der Schaft—mainly in collabora-
tion with BernardMaschke—and credit should be given to them for this fundamental
contribution that has helped to bridge the gap between theory and applications.

The chapter is structured as follows. In Sect. 9.2, the mathematical model of the
system is established. Then, to determine the achievable behaviors, a study of the
assignable equilibria is necessary. This analysis is done in Sect. 9.3. Main results are
next developed in Sect. 9.4, with the design of the decentralized passivity-based PI
controller. Slow transients exhibited in simulations motivate the subsequent perfor-
mance analysis, that is carried-out in Sect. 9.5.

NotationAll vectors are columnvectors.Given positive integersn,m weuse 0n ∈ R
n

to denote the vector of all zeros,1n ∈ R
n the vector with all ones, In the n×n identity

matrix, 0n×m the n × m column matrix of all zeros. x := col(x1, . . . , xn) ∈ R
n

denotes a vector with entries xi ∈ R, when clear from the context we simply write
x := col(xi ). diag{ai } is a diagonal matrix with entries ai ∈ R and bdiag{Ai } denotes
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a block diagonal matrix with entries the matrices Ai . For a function f : Rn → R,
∇ f denotes the transpose of its gradient. The subindex i , preceded by a commawhen
necessary, denotes elements corresponding to the i th subsystem.

9.2 Energy-based Port-Hamiltonian Modeling

In [10] it was shown that electrical power systems can be represented by a directed
graph1 where the relevant electrical components correspond to edges and the buses
correspond to nodes. Moreover, to underscore the physical structure of the compo-
nents, they are modeled as pH systems. In this section we apply the same procedure
to describe the dynamics of HVDC transmission systems.

9.2.1 Assumptions

As indicated in the Introduction, in HVDC transmission systems no loads exist
and the relevant components are: VSRs, RL transmission lines and voltage bus
capacitors. Throughout the chapter we make the following assumptions, which are
widely accepted in practice.

(A1) Balanced operation of the three phase line voltages.
(A2) Synchronized operation of the VSRs.2

(A3) Ideal four quadrant operation of the VSRs.

Assumptions A1 and A2 considerably simplify the modeling and control prob-
lems, as they allow the description of the three-phase dynamics of the VSRs in
suitably oriented dq0 reference frames, where the value of the zero-component is
always zero, thus reducing the three AC quantities to two DC quantities. This allows
us to express the regulation objective as a standard equilibrium stabilization prob-
lem of the nonlinear dynamical system describing the behavior of the HVDC system.
Assumption A3 directly follows by assuming HVDC transmission systems based on
VSRs instead of current source rectifiers, which is an alternative converter topol-
ogy used in HVDC systems. As a matter of fact, since the VSRs do not depend on
line-commutations, all the four quadrants of the operating plane are possible, hence
Assumption A3 is automatically satisfied for the system under consideration [1].

1A directed graph is an ordered 3-tuple, G = {V, E,Π}, consisting of a finite set of nodes V , a
finite set of directed edges E and a mapping Π from E to the set of ordered pairs of V , where no
self-loops are allowed.
2Synchronized operation of the VSRs is usually achieved via robust phase-locked-loop detection
of the latching frequencies [35].
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9.2.2 Network Topologies: A Graph Description

We can mainly distinguish two kinds of topologies used in HVDC transmission
systems: radial and meshed topology [4, 11, 13], which are illustrated in Fig. 9.1.
The radial topology is widely used for systems inwhich a certain number of off-shore
stations feeds on-shore stations with no connection between them. This is the case
for example of on-shore stations situated on opposite seacoasts while the off-shore
stations are placed in their middle [4, 21]. However, in a more general setting we
have to consider the situation in which the stations are directly connected with lines,
that corresponds to a meshed topology. In the interest of brevity, we present here
a systematic way to build global pH models only for the meshed topology. For a
radial topology, analogous results can be obtained, for which the interested reader is
referred to [36].

In order to give a formal representation of a topology we adopt the following
definitions. We call a bus a VSR-bus if a VSR is connected to it and we call a bus a
capacitor-bus when only a capacitor is connected to it. Furthermore, we call a bus
a reference-bus when all the voltages of the buses in the network are measured with
respect to it. As the reference-bus is assumed to be at ground potential, it is also
denoted as ground. A general topology is then described by the incidence matrix
M associated to the graph, where the nodes represent the ground, the VSR and the
capacitor-buses; the edges represent the VSRs, the lines and the single capacitors
that are interconnected to the ground or to the voltage buses.

In a meshed topology each VSR is connected to the ground and to a VSR-bus,
while the lines directly connect VSR-buses, according to a determined meshed struc-
ture. The number n of VSRs is the same of voltage buses, ground excluded, and is
lower or equal to the number � of lines. Formally this can be represented by a graph
G := {V, E,Π} constituted by: n +1 ordered nodes, where n nodes are associated to
the VSR-buses and one node to the ground; n + � ordered edges, where n edges are
associated to the VSRs and � edges to the lines. The incidence matrix then, following
the mentioned order, takes the form

M =
[

In M
−1�

n 0�
�

]
∈ R

(n+1)×(n+�), (9.1)

where M is the incidence matrix of the subgraph obtained eliminating the VSRs
edges and the ground node.

Fig. 9.1 Nodal
representation of HVDC
transmission systems with
radial and meshed topologies
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Remark 9.1 In a meshed topology the only relevant components are the VSRs and
the RL transmission lines. As a matter of fact, because a VSR is associated to each
node, the voltage bus capacitors can be represented by an equivalent VSR output
capacitor, that results to be the parallel interconnection of all capacitors attached to
the node.

9.2.3 Port-Hamiltonian Models of the Elements

As explained above the edges of the graph G contain the electrical components of
the HVDC system, namely n VSRs and � RL transmission lines, while the nodes are
the buses. In this section we derive a pH representation of these elements, which are
then interconnected—through power preserving interconnections—via the graph.
Besides its physically appealing nature, the choice of a pH model is motivated by
the fact that—similarly to [15]—this structure is instrumental to derive the passivity
property exploited in the controller design.

9.2.3.1 Voltage Source Rectifiers

In [9, 15, 36] the well-known average model of a single VSR shown in Fig. 9.2,
expressed in dq-coordinates and written in (perturbed) pH form is given.

Similarly, a set of n VSRs can also be represented in pH form as

ẋR = [JR(u) − RR]∇HR + E1V − E3iR

vR = E�
3 ∇HR,

(9.2)

where we use the following definitions.

• State space variables the collection of inductors fluxes (φd,i , φq,i ) and capacitor
chargesqc,i of everyVSR, that is, xR := col(col(φd,i ), col(φq,i ), col(qc,i )) ∈ R

3n .

Fig. 9.2 Schematic diagram of the equivalent circuit of a VSR in dq frame
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• Energy function HR(xR) := 1
2 x�

R Q R xR , with3

Q R := bdiag{L−1
R , L−1

R , C−1
R }, L R := diag{Lr,i }, CR := diag{Cr,i }

where Lr,i , Cr,i are the inductance and capacitance of each VSR, respectively.
• Duty cycles u := col(u Rd , u Rq) ∈ R

2n , where u Rd := col(ud,i ) and u Rq :=
col(uq,i ).

• External voltage sources V := col(vd,i ) ∈ R
n , where vd,i is the d component of

the AC sources. These voltages are assumed constant and positive.
• Port variables the out-going currents iR := col(idc,i ) ∈ R

n and the voltages
vR := col(vdc,i ) ∈ R

n .
• Interconnection matrix

JR(u) :=
n∑

i=1

(JR0,i Lr,iωi + JRd,i ud,i + JRq,i uq,i ) (9.3)

where ωi are the AC sides frequencies and

JR0,i :=

⎧
⎪⎨
⎪⎩

−1 in (i,n+i)

1 in (n+i,i)

0 elsewhere

JRd,i :=

⎧
⎪⎨
⎪⎩

1 in (i,2n+i)

−1 in (2n+i,i)

0 elsewhere

JRq,i :=

⎧
⎪⎨
⎪⎩

−1 in (n+i,2n+i)

1 in (2n+i,n+i)

0 elsewhere

• Dissipation matrix RR := bdiag{RR, RR, G R}, where RR := diag{Rr,i } and
G R := diag{Gr,i } , with Rr,i , Gr,i the resistance and conductance of each VSR.

• Port matrices E1 : [
In 0 0

]�, E3 := [
0 0 In

]� ∈ R
3n×n .

Remark 9.2 Notice that, in view of the skew-symmetry of JR(u), the VSRs satisfy
the power balance equation

ḢR︸︷︷︸
stored power

= − x�
R Q RRR Q R xR︸ ︷︷ ︸
dissipated power

+ x�
R Q R E1V − x�

R Q R E3iR︸ ︷︷ ︸
supplied power

(9.4)

9.2.3.2 Transmission Lines

A set of � RL transmission lines can be represented by the pH system

ẋL = −RL∇HL + vL

iL = −∇HL ,
(9.5)

with the following definitions.

3Unless indicated otherwise all physical parameters of the system are positive constants.
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• State space variables the collection of inductor fluxes xL := col(φ�,i ) ∈ R
� of

every line.
• Energy function

HL(xL) := 1

2
x�

L QL xL , QL := diag{ 1

L�,i
},

where L�,i is the inductance of the line.
• Port variables the voltages at the terminals vL := col(vL ,i ) ∈ R

� and the inductors
currents iL := col(i�,i ) ∈ R

�.
• Dissipation RL = diag{R�,i }, with R�,i the resistance of the line.

9.2.4 Overall Interconnected System

The interconnection laws can be obtained following the approach used in [33], where
the Kirchhoff’s current and voltage laws (KCL and KVL, respectively) are expressed
in relation to the incidence matrix. For a meshed topology we have then

[KCL] MIe = 0n+1
[KVL] M�V = Ve,

(9.6)

where Ie := col(iR, iL),Ve := col(vR, vL) andV := col(v1, . . . , vn), v0 are the edge
currents, the edge voltages, the nodes potentials and the ground potential, respec-
tively. The ground potential v0 = 0 by definition. From (9.6) and (9.1) then follows

iR + MiL = 0n, −1�
n iR = 0,

v = vR, M�v = vL .
(9.7)

Recalling the expression for iL from (9.2) and vR from (9.5) we have

iR = M∇HL , vL = M�E�
3 ∇HR . (9.8)

To obtain the overall pH representation it is sufficient to combine (9.2), (9.5) and
(9.8), thus leading to:

ẋ = [J (u) − R]∇H + EV, (9.9)

with the following definitions.

• State space variables x := col(xR, xL) ∈ R
3n+�.

• Energy function H(x) := HR(x) + HL(x).
• Duty cycles (controls) u := col(u Rd , u Rq) ∈ R

2n .
• Interconnection matrix



160 D. Zonetti and R. Ortega

J (u) :=
[

JR(u) −E3M
M�E�

3 0�×�

]
, (9.10)

• Dissipation matrix
R := bdiag{RR,RL} > 0. (9.11)

• Input matrix E := [
E�
1 0

�
�×n

]�
.

Remark 9.3 To simplify the notation in the pH representation we have selected a
state representation of the system using energy variables, that is, inductor fluxes
and capacitor charges, instead of the more commonly used co-energy variables, i.e.,
inductor currents and capacitor voltages. See (9.22) and [24] for the derivation of the
pH model in the latter coordinates. We recall that they are related by

id = φd

L
, iq = φq

L
, vC = qC

C
, iL = φL

L�

. (9.12)

Remark 9.4 For ease of presentation we have assumed that the state of the system
lives in R

3n+�. Due to physical and technological constraints it is actually only
defined in a subset of R3n+�. In particular, the voltage of the DC link vC is strictly
bounded away from zero.

9.3 Assignable Equilibria

A first step towards the development of a control strategy for the system (9.9) is
the definition of its achievable, steady-state behavior, which is determined by the
assignable equilibria. That is, the (constant) vectors x� ∈ R

3n+� such that

[J (u�) − R]∇H(x�) + EV = 03n+�

for some (constant) vector u� ∈ R
2n . To identify this set we establish the following

lemmata.

Lemma 9.5 The equilibria of the transmission line coordinates are given by

x�
L = (RL QL)−1M�E�

3 Q R x�
R . (9.13)

Proof Setting to zero the left-hand side of (9.5), calculated at x�
L , gives

0� = −RL QL x�
L + v�

L ⇒ x�
L = (RL QL)−1v�

L .

Moreover, from (9.8) we have v�
L = M�E�

3 Q R x�
R , that replaced in the equation

above completes the proof.
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Lemma 9.6 The equilibria of the VSRs coordinates are the solution of the n
quadratic equations, i = 1 . . . n

− Ri

L2
r,i

[
(φ�

d,i )
2 + (φ�

q,i )
2
]

− Gi

C2
r,i

(q�
C,i )

2 + vd,i

Lr,i
φ�

d,i − 1

Cr,i
q�

C,i i
�
dc,i = 0, (9.14)

with col(i�dc,i ) = MR−1
L M�col(q�

C,i ).

Proof In [27] it is shown that the set of admissible equilibria of a VSR is obtained
by setting equal to zero the power balance of the VSR, that for n VSRs is equivalent
to (9.14). It is now sufficient to recall definitions

col(i�dc,i ) = i�R, E�
3 Q R x�

R = col(q�
C,i ),

together with (9.8), (9.13) to complete the proof.

We are now ready to present the main result of the section, whose proof follows
immediately from the lemmata above.

Proposition 9.7 The set of assignable equilibria of the system (9.9) is given by

E := {x� ∈ R
3n+� | (9.13) and (9.14) hold}. (9.15)

From the derivations above it is clear that the equilibria of the network are univo-
cally determined by the equilibria of the VSRs. Moreover, the latter should satisfy
the quadratic equations (9.14), which are the well-known power flow steady-state
equations (PFSSE) of the individual VSR subsystems. A question of interest is how
to select from this set the equilibrium points that correspond to some desired behav-
ior. In the latter definition there are many practical considerations to be taken into
account, see for example [14, 29].

Remark 9.8 It is well-known that for affine systems of the form ẋ = f (x) + g(x)u
the assignable equilibrium set is given by

{x� ∈ R
n | g⊥(x�) f (x�) = 0}

where g⊥(x) is a full-rank left annihilator of g(x). Moreover, given x�, the corre-
sponding equilibrium control u� is univocally determined by

u� = −
[
(g�g)−1g� f

]
(x�).

Since (9.9) is clearly of this form this relations hold true for the HVDC system under
study. See [27] for additional details on this issue.
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Remark 9.9 Differently from the single VSR case, the set of assignable equilibria
does not coincide, but is strictly contained, in the set where the power of the system
is balanced, that is

E ⊂ P, P := {x� ∈ R
3n+� | ḢR = 0}.

This fact is clearly explained in [27], where it is proved that a necessary condition
for E ≡ P , is the system to be of co-dimension one.

9.4 Main Result: Inner Loop Control

As indicated in the Introduction we are mainly interested in the inner-loop control of
HVDC transmission systems, that is, the control at the VSR level. For this problem
we present in this section a decentralized, globally asymptotically stabilizing, PI–
PBC for the HVDC transmission system (9.9). The construction of the controller is
inspired by our previous works on PI–PBC reported in [15, 18], which exploit the
property of passivity of the incremental model. The interested reader is referred to
these references for additional details.

To place the proposed PI–PBC in context, in the last part of this section we briefly
review themost commonly used inner-loop controls for HVDC transmission systems
and establish the connection with the widely popular Akagi’s PQ method.

9.4.1 Passivity of the Incremental Model

Along the lines of Proposition 1 in [15], it is possible to establish passivity of the
incremental model of the overall HVDC transmission system (9.9) with respect to a
suitable defined output. As iswell-known, global regulation of a passive output can be
achievedwith a simple PI controller. Regulation of the state to the desired equilibrium
then follows provided a suitable detectability assumption is satisfied [11].

Proposition 9.10 Consider the HVDC transmission system (9.9). Let x� ∈ E be
the desired equilibrium with corresponding (univocally defined) control u� ∈ R

2n.
Define the error signals

x̃ = x − x�, ũ = u − u� (9.16)

and the output signal

y :=
[
col(yd,i )

col(yq,i )

]
∈ R

2n, (9.17)
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with
yd,i := x∗�

R Q RJRd,i Q R xR, yq,i := x∗�
R Q RJRq,i Q R xR .

The mapping ũ → y is passive. More precisely, the system verifies the dissipation
inequality

Ḣd ≤ y�ũ, (9.18)

with storage function Hd(x̃) = 1
2 x̃�Qx̃ .

Proof The proof mimics the proof of Proposition 1 in [15]. We first notice that

J (u)Qx = J0Qx + g(x)u,

where we defined

J0 :=
[∑n

i=1(JR0,i Lr,iωi ) −E3M
M�E�

3 0�×�

]
, g(x) :=

[
gRd(xR) gRq(xR)

0�×n 0�×n

]
,

with

gRd(xR) : = [JRd,1Q R xR . . . JRd,n Q R xR
]

gRq(xR) : = [JRq,1Q R xR . . . JRq,n Q R xR
]
.

Hence, it is possible to write (9.9) in the alternative form

ẋ = (J0 − R)Qx + EV + g(x)u

= (J0 − R)Q(x̃ + x�) + EV + g(x)(ũ + u�)

= (J0 − R)Qx̃ + g(x)ũ + g(x̃)u�

(9.19)

where we have used (9.16) to get the second equation and the fact that the assignable
equilibria x� and corresponding (constant) control u� satisfy

(J0 − R)Qx� + EV + g(x�)u� = 0,

to obtain the third equation.
The derivative ofHd along the trajectories of the incremental model (9.19) yields

Ḣd = −x̃�QRQx̃ + x̃�Qg(x)ũ = −x̃�QRQx̃ + y�ũ

where skew-symmetry of J0, JRd,i and JRq,i is used in the first equation, and the
fact that the output signal can be rewritten as

y = g�(x�)Qx = g�(x�)Qx̃
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to obtain the second identity. The proof is completed recalling that the dissipation
matrix verifies R > 0 to get the bound (9.18).

9.4.2 PI Passivity-based Control

We are in position to present the first main result.

Proposition 9.11 Consider the HVDC transmission system (9.9), with a desired
steady-state x� ∈ E , in closed-loop with the decentralized PI control

u = −K P y − K I ζ, ζ̇ = y, (9.20)

with y given in (9.17) and gain matrices

K P = bdiag{kP,i } ∈ R
2n×2n, K I = bdiag{kI,i } ∈ R

2n×2n, (9.21)

with kP,i , kI,i ∈ R
2×2 arbitrary positive definite matrices. The equilibrium point

(x�, K −1
I u�) is globally asymptotically stable (GAS).

Proof Define the Lyapunov function candidate

W (x̃, ζ̃ ) := Hd(x̃) + 1

2
ζ̃�K I ζ̃ ,

where ζ̃ := ζ − K −1
I u�. The derivative of W (x, ζ ) along the trajectories of the

closed-loop system (9.19), (9.20) is given by

Ẇ = −x̃�QRQx̃ + y�ũ + ζ̃�K I y

= −x̃�QRQx̃ + y�ũ − y�(K P y + ũ)

= −x̃�QRQx̃ − y�K P y ≤ 0

that proves global stability. Asymptotic stability follows, as done in [15], using
LaSalle’s arguments. Indeed, from the inequality above and the definition of R in
(9.11) it is clear that all components of the error state vector x̃ tend to zero.

Remark 9.12 The proposed PI–PBC is decentralized in the sense that, for its imple-
mentation, each VSR control requires only the measurement of its corresponding
inductor currents and capacitor voltage. Guaranteeing this property motivates our
choice of block diagonal gain matrices (9.21).

Remark 9.13 The PI–PBC requires the selection of the desired values for the induc-
tor currents and capacitor voltages that, clearly, cannot all be chosen arbitrarily.
Instead, they have to be selected from the set of assignable equilibrium points E ,
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that is determined by the PFSSE. This set has a rather simple structure: the quadratic
equation (9.14) defines the VSRs variables from which we univocally determine the
transmission lines coordinates via (9.13).

9.4.3 Other Inner-loop Controllers Reported in the Literature

In this section we review some of the inner-loop controllers for VSRs reported in the
literature. The vast majority of the papers reported on this topic—and, in general,
of control of power converters [20, 25]—uses the description of the dynamics in
co-energy variables. To facilitate the reference to these works, to some of which we
refer here, we give the following model that is immediately obtained from (9.2) and
(9.12) as4

Li̇d = −Rid + Lωiq − vC ud + vd

Li̇q = −Lωid − Riq − vC uq

Cv̇C = idud + iquq − GvC − idc.

(9.22)

The total energy of the VSR is

H(id , iq , vC ) := 1

2

(
Li2d + Li2q + Cv2C

)
,

and the power balance is

Ḣ = −R(i2d + i2q ) − Gv2C + P − Pdc, (9.23)

where we have defined the active and DC powers

P = vdid , Pdc = vCidc. (9.24)

It is also common to define the reactive power as Q = vdiq .
A caveat regarding the subsequent analysis is, however, necessary.When theVSRs

are connected to the transmission lines the currents idc are linked to the currents on
the line via (9.7), which are clearly nonconstant. However, to simplify the analysis,
we exploit the fact that their rate of change is slow (with respect to theVSRdynamics)
and assume that they are constant. Under this assumption the assignable equilibrium
set of (9.22) is given as

E = {x ∈ R
3 | R(i2d + i2q ) − vdid + Gv2C + idcvC = 0}. (9.25)

4For ease of presentation we restrict the discussion here to a single VSR. The extension to multiple
VSRs being straightforward.
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Since vd and idc are constant, it is then clear that the regulation of P , Q and Pdc are
equivalent to the regulation of id , iq and vC , respectively. In practice, because of the
small losses of the VSR, the value of P slightly differs from Pdc, and consequently
there is no interest in regulating the pair id and vC at the same time.

In the literature it is common to distinguish two modes of operation for a VSR:

• PQ control mode, when the VSR is required to control the active and reactive
power. This is achieved regulating to zero the output

yI =
[

id − i refd
iq − i refq

]
, (9.26)

where the superscript (·)ref is used to denote reference values—that do not nec-
essarily belong to the assignable equilibrium set. These kind of schemes are also
called direct current control [30].

• DC voltage control mode, when the VSR is required to control reactive power and
DC voltage. In this case, the regulated output is

yV =
[

vC − vrefC
iq − i refq

]
. (9.27)

These kind of schemes are also called direct output voltage control [30].

To regulate the outputs (9.26) and (9.27) different controllers have been proposed
in the literature, ranging from simple PI control [22, 25] to feedback linearization
[7, 8, 31]. Some of these papers include an (invariably local) stability analysis. In
Sect. 9.5 we prove that yI and yV , used for the PI’s or with respect to which feedback
linearization is performed, have unstable zero dynamics. Consequently, applying
high gains in the PIs will induce instability and the internal behavior of the feedback
linearizing schemes will be unstable.5 Simulations in Sect. 9.5.4 show that instability
indeed arises for these schemes.

For the sake of comparison we write now the passive output (9.17) in co-energy
variables for a single VSR as

y =
[

v�
Cid − i�dvC

v�
Ciq − i�qvC

]
, (9.28)

wherewe recall that (i�d , i�q , v�
C ) ∈ E , that is, they belong to the assignable equilibrium

set.

Remark 9.14 The PI–PBC is universal, in the sense that it can operate either in PQ
or DC voltage control mode, depending on which equilibria are assigned as desired
references, and which one is consequently determined via the PFSSE. One important

5This well-known phenomenon of nonlinear systems [16] is akin to cancellation of unstable zeros
of the plant with the unstable poles of the controller in linear systems.
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advantage of this universal feature is that there is no need to switch between different
controllerswhen theVSRs are requested to change theirmode of operation—this is in
contrast with other inner-loop schemes that require switchings between controllers,
which is clearly undesirable in practice.

9.4.4 Relation of PI–PBC with Akagi’s PQ Method

A dominant approach for the design of controllers for reactive power compensation
using active filters (for three-phase circuits) is the PQ instantaneous power method
proposed by Akagi et al. [2]. It consists in an outer-loop that generates references
for the inner PI loops. The references are selected in order to satisfy a very simple
heuristic: the AC active power P has to be equal to the DC power Pdc, thus ensuring
the maximal power transfer from AC to DC side, and the reactive power should
take a desired value. Now, using (9.24) define the active AC and DC powers at the
equilibrium as

P� = vdi�d , P�
dc = v�

Cidc.

Consider then the following equivalences

P� Pdc = P�
dc P ⇔ v�

Cid = i�dvC ⇔ y1 = 0,

with y1 the first component of the passive output (9.28). Similarly, for the reactive
power

Q� Pdc = P�
dc Q ⇔ v�

Ciq = i�qvC ⇔ y2 = 0,

with y2 the second component of the passive output (9.28). In other words, the
objective of the PI–PBC to drive the passive output y to zero can be reinterpreted as
a power equalization objective identical to the one used in Akagi’s PQ method.

9.5 Performance Limitations of Inner-Loop PIs

Quality assessment of control algorithms is a difficult task—epitomized by the clas-
sical performance versus robustness tradeoff, neatly captured by the stabilitymargins
in linear designs. The situation for nonlinear systems, where the notions of (dom-
inant) poles and frequency response are specious, is far more complicated. In any
case, it is well-known that the achievable performance in control systems is limited
by the presence of minimum phase zeros [12, 26, 28].

In this section an attempt is made to evaluate the performance limitations of the
inner-loop PI controllers discussed in the previous section. Towards this end, we
compute the zero dynamics of the VSR system (9.22) for the outputs y (9.17), yI

(9.26) and yV (9.27). All three outputs have relative degrees {1, 1}, hence their zero
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dynamics is of order one but, while it is exponentially stable for the passive output
y it turns out that—for normal operating regimes of the VSR—it is unstable for
yI and yV . If the zero dynamics is unstable cranking up the controller gains yields
an unstable behavior. This should be contrasted with the passive output y that, as
shown in Proposition 16.3 yields an asymptotically stable closed-loop system for all
positive gains.6

To simplify the derivations we consider only the case of i�q = 0. This assumption
is justified since it corresponds to fixing to zero the desired value of the reactive
power, which is a common operating mode of VSRs. Moreover, this is done without
loss of generality because it is possible to show—alas, with messier calculations—
that the stability of the zero dynamics is the same for the case of i�q = 0. This case
may arise when the VSR is associated to an AC grid and not to a renewable energy
source. In this section we also prove that the (first order) zero dynamics associated
to (9.17), is “extremely slow”—with respect to the overall bandwidth of the VSR.
Since this zero “attracts” one of the poles of the closed-loop system it stymies the
achievement of fast transient responses.

9.5.1 Zero Dynamics Analysis of the Passive Output y

Before presenting the main result of this subsection we make the important obser-
vation that the zero dynamics of the VSR model (9.22) and of its corresponding
incremental version are the same. Indeed, the zero dynamics describes the behavior
of the dynamical system restricted to the set where the output is zero. Since the
incremental model dynamics is the same as the original model dynamics—simply
adding and substracting a constant—their zero dynamics coincide.

Proposition 9.15 Fix (i�d , i�q , v�
C ) ∈ E with i�q = 0. The zero dynamics7 of the VSR

(9.22) with respect to the output (9.28) is exponentially stable and is given by

v̇C = −λvC + λv�
C , λ := R(i�d)2 + G(v�

C )2

L(i�d)2 + C(v�
C )2

. (9.29)

Proof Setting the output (9.28) identically to zero and using the fact that i�q = 0 we
get

id = i�d
v�

C
vC , iq = i�q

v�
C

vC = 0. (9.30)

6This discussion pertains only to the behavior of the adopted mathematical model of the VSR. In
practice, other dynamical phenomena and unmodeled effects may trigger instability even for the
PI–PBC.
7With some abuse of notation, the zero dynamics is represented using the same symbols of the
system dynamics.

http://dx.doi.org/10.1007/978-3-319-20988-3_16
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Replacing (9.30) into (9.22) gives

L
i�d
v�

C
v̇C = −R

i�d
v�

C
vC − vC u1 + vd (9.31)

0 = −Lω
i�d
v�

C
vC − vC u2 (9.32)

Cv̇C = i�d
v�

C
vC u1 − GvC − idc. (9.33)

To eliminate u1 we multiply (9.33) by
v�

C
i�d

and add it to (9.31) yielding

(
Cv�

C

i�d
+ Li�d

v�
C

)
v̇C = −

(
Ri�d
v�

C
+ Gv�

C

i�d

)
vC + vd − v�

C

i�d
idc.

The proof is completed noting from (9.25) that, for (i�d , i�q , v�
C ) ∈ E with i�q = 0, we

have

vd − v�
C

i�d
idc = R(i�d)2 + G(v�

C )2

i�d

and pulling out the common factor 1
i�d v�

C
.

Remark 9.16 The parameters R and G, that represent the losses in the VSR, are
usually small—compared to L and C . Consequently, λ will also be a small value,
placing the pole of the zero dynamics very close to the origin and inducing slow
convergence.

Remark 9.17 It is interesting to note that the rate of exponential convergence of the
zero dynamics can be rewritten

λ = 1

2

P� − P�
dc

H(i�d , i�q , v�
C )

that is half the ratio between the steady-state dissipated power and the steady-state
energy of the system. This relationship holds true also for the case i�q = 0.

Remark 9.18 In [37] it has beenobserved that the additionof anouter-loop controller,
in the form of a voltage droop—that is the de facto standard in the power systems
community [3, 14]—allows to overcome the performance limitations of the PI–
PBC. The droop controller has been originally proposed to robustify inner-loop
controllers with respect to unexpected (large) perturbations. The ability to overcome
the performance limitations of the PI–PBC, further substantiate the interest in this
control scheme. Unfortunately, the addition of the outer loop destroys the passivity
property instrumental for the stability analysis of the PI–PBC. Current research is
under way to establish some stability properties of the PI–PBC plus droop control.
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9.5.2 Zero Dynamics Analysis of yI

Before analyzing the zero dynamics of the PQ andDC voltage control outputs, (9.26)
and (9.27), respectively, we recall that the references do not necessarily belong to
the assignable equilibrium set. However, we make the reasonable assumption that,
for the chosen reference values, the zero dynamics admits an equilibrium—if this
is not the case the zero dynamics is unstable. Moreover, similarly to the case of the
passive output, we will take i refq = 0.

Proposition 9.19 Fix i refd ∈ R, i refq = 0. The zero dynamics of the VSR (9.22) with
respect to the output (9.26) is given by

Cv̇C = −GvC + αI

vC
− i refdc , αI := vdi refd − R(i refd )2 (9.34)

where i refdc is a constant value for idc satisfying

(i refdc )2 > 4GαI . (9.35)

• If αI > 0 the zero dynamics has one equilibrium and it is stable.
• If αI < 0 the zero dynamics has two equilibria one stable and one unstable.
• If αI = 0 the zero dynamics is a linear asymptotically stable system.

Proof Setting the output (9.26) equal to zero with i∗q = 0 and replacing into (9.22)
gives

0 = −Ri refd − vC u1 + vd (9.36)

0 = −Lωi refd − vC u2 (9.37)

Cv̇C = i refd u1 − GvC − i refdc , (9.38)

where we have added the superscript (·)ref to idc. Replacing u1 obtained from (9.36)
into (9.38) yields directly (9.34). Condition (9.35) is then necessary and sufficient
for the existence of a (real) equilibrium of (9.34). If αI = 0 the dynamics reduces to

Cv̇C = −GvC − i refdc .

The proof is completed, recalling that vC > 0 and looking at the plots of the right
hand side of (9.34) for αI positive and negative in Fig. 9.3.

Remark 9.20 From Fig. 9.3, if αI < 0, it is easy to see that the stable equilibrium
point is the largest one. For standard values of the system parameters it turns out
that this equilibrium is located beyond the physical operating regime of the system,
hence it is of no practical interest.



9 Control of HVDC Transmission Systems … 171

(a) (b)

Fig. 9.3 Plot of v̇C versus vC for the cases of a αI > 0 and b αI < 0. The arrows in the horizontal
axis indicate the direction of the flow of the zero dynamics

Remark 9.21 The parameters R and G are usually very small and i refdc can take
positive or negative values in standard operations. Then, condition (9.35) is always
verified while αI can take positive or negative values.

Remark 9.22 The situation αI = 0, when the zero dynamics is linear and asymptot-
ically stable, is unattainable in applications. Indeed, assuming that in steady-state all
signals converge to their reference values, it can be shown that αI = 0 if and only if
GvC + idc = 0 that, given the small values of G is not realistic in practice.

9.5.3 Zero Dynamics Analysis of yV

Proposition 9.23 Fix vrefC ∈ R, i refq = 0. The zero dynamics of the VSR (9.22) with
respect to the output (9.27) is given by

L
did

dt
= −Rid − αV

id
+ vd , αV := i refdc vrefC + G(vrefC )2 (9.39)

where i refdc is a constant value for idc satisfying

v2d > −4RαV . (9.40)

• If αV < 0 the zero dynamics has two equilibria and they are both stable.
• If αV > 0 the zero dynamics has two equilibria one stable and one unstable.
• If αV = 0 the zero dynamics is a linear asymptotically stable system.

Proof Setting the output (9.27) equal to zero with i∗q = 0 and replacing into (9.22)
gives
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L
did

dt
= −Rid − vrefC u1 + vd (9.41)

0 = −Lωid − vrefC u2 (9.42)

0 = idu1 − GvrefC − idc. (9.43)

Replacing u1 obtained from (9.43) into (9.41) yields directly (9.39). Condition (9.40)
is necessary and sufficient for the existence of a (real) equilibrium of (9.39). The
proof is completed invoking the same arguments used in the proof of Proposition
9.19 and are omitted for brevity.

Remark 9.24 Remarks 9.21 and 9.22 apply verbatim to (9.39) and αV of Proposition
9.23.

9.5.4 Simulated Evidence of the Performance Limitations

Although Proposition 9.15 proves that the zero dynamics for the passive output y
is exponentially stable it turns out that, for the components used in standard HVDC
transmission system, the convergence rate is λ ≈ 0.04, which is extremely slow. As
indicated above this dominating dynamics stymies the achievement of fast transient
responses—situation that is shown in the following simulations. Also, we present
simulated evidence of unstable behavior of PI inner-loops using the outputs (9.26)
and (9.27).

We consider a three-terminals HVDC transmission system with a simple meshed
topology, that is illustrated in Fig. 9.4, where the corresponding graph is also given.
The model of the system is given by (9.9), that is a system of dimension 3n +� = 11
with 2n = 6 inputs. Parameters of the VSRs and of the transmission lines are given
in Table9.1.

We define the following control objectives: all the stations are required to regulate
the reactive power to zero; the stations associated to the wind farms (WF1, WF2)

Fig. 9.4 Schematic representation of an HVDC transmission system constituted by three stations,
associated to twowind farms (WFs) and anAC grid, with associated graph. The graph is represented
by filled circles for the VSRs-buses and the unfilled circle for the ground node. Blue and red edges
characterize VSRs and lines, respectively
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Table 9.1 System parameters

Rr,i Gr,i Lr,i Cr,i Vi R�,12 L�,12 R�,23 L�,23 ωi

0.01 
 0 
−1 40 mH 20 µF 130 kV 26 
 3.8 mH 20 
 2.5 mH 50 Hz

Table 9.2 System references i�d,i (A), v�
C,i (kV) associated to the slack bus (SB) and wind farms

(WFs)

SB (A) WF1 (A) WF2 (A) SB (kV) WF1 (kV) WF2 (kV)

0 −1260 900 1000 100 142.595 158.951

T −1588 900 1800 100 153.650 179.691

2T −266 500 −200 100 109.004 104.004

3T 905 −400 −200 100 69.419 60.877

4T −849 1300 −200 100 128.708 124.532

are required to regulate the active power to desired (constant) values; the remaining
station, called slack bus (SB), must regulate the voltage around its nominal value.
In Table9.2, the corresponding references of direct current and DC voltages are
furnished, together with the corresponding assignable equilibria, that are calculated
via the PFSSE defined by (9.7). Changes in references occur every T s over a time
interval of 5T s. It should be noticed that from 0 to 2T the power flow is uniquely
directed from both wind farms stations to the AC grid, while at 2T , and next 3T
the wind farms stations start demanding power to the AC grid, thus reversing the
direction of the power flow. This situation can arise when the power produced by the
wind farms is insufficient to supply local loads.

9.5.4.1 PI–PBC

In this section we present simulations on the three-terminals benchmark example
of the decentralized PI–PBC defined in Sect. 9.4.2, which illustrate the stability
properties and performance limitations discussed in the previous sections. Setting
T = 2000 s the controllers (9.20) are designed with identical parameters and diag-
onal matrices kP,i = diag{1, 1}, kI,i = diag{10, 10}. The behavior of the VSRs are
depicted in Fig. 9.5.

As expected, the direct currents of each station attain the assignable equilibria
defined in Table9.2, while the quadrature currents are always kept to zero after a
very short transient. Moreover, the DC voltage at the slack bus is maintained near
the nominal value of 100 kV, as required, while the DC voltage variation at the
wind farms stations, balances the fluctuation of power demand. Even though the
desired steady-state is attained, for all practical purposes, the convergence time of
direct currents and DC voltages is extremely slow. This poor transient performance
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Fig. 9.5 Responses of VSRs variables under the decentralized PI–PBC

behavior is independent of the controller gains. Indeed, extensive simulations show
that the system maintains the same slow convergence time even with larger gains,
thus validating the performance limitations analysis realized in Sect. 9.5.1.

9.5.4.2 PQ and DC Voltage Controllers

We next analyze the behavior of the system under the standard PQ and DC volt-
age controllers of Sect. 9.4.3. In agreement with the control requirements described
above, two PQ controllers are designed to regulate direct and quadrature currents of
the wind farms stations, and one DC voltage controller is designed to regulate DC
voltage and quadrature current of the slack bus. We consider simple PI controllers
defined over the outputs (9.26), (9.27), designed with identical gains kP,i , kI,i , that
are tuned via simulations. The behavior of the VSRs are depicted in Fig. 9.6, with
T = 4 s. This value should be contrasted with the value (T = 2000 s) used for
the PI–PBC. It is easy to see that the PQ and DC voltage controllers correctly (and
rapidly) regulate the station at the desired references between 0 and 8 s. This good
behavior is not surprising, because PQ controllers applied to VSRs that are injecting
power and a DC voltage controller applied to VSRs that is absorbing power, have
associated globally asymptotically stable zero dynamics, as proved in Sects. 9.5.2,
9.5.3. On the other hand, as shown in the figures, when at stations WF1 andWF2 the
power flow is reversed (respectively at t = 12 s and t = 8 s), the correspondent DC
voltages go unstable, because in these cases the zero dynamics is unstable. Similar
unstable behavior appears also at the slack bus station.
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Fig. 9.6 Responses of VSRs variables under the decentralized PQ and DC voltage controllers

9.6 Conclusions and Future Perspectives

Thework covers different aspects ofmodeling, analysis and control ofmulti-terminal
HVDC transmission system. The main contribution is a decentralized, globally
asymptotically stable, PI control for a very general class of multi-terminal HVDC
transmission systems. For this purpose, starting from a graph description of the net-
work, a pH representation has been obtained, thus revealing the intrinsic passivity
properties of the system. The main result is a direct extension of the previous works
on PI control of VSRs, to a sufficiently general interconnected system, with the
important property that the control is decentralized, a fundamental requirement for
large-scale systems. To provide some connections between the proposed controller
and standard techniques, widely used in literature, a comparative analysis of stability
and performances is provided, shedding some light on limitations and benefits of dif-
ferent approaches. In particular it is proved—and validated via simulations—that the
popular current and voltage control techniques possibly lead to unstable behaviors of
the controlled system, while the proposed PI–PBC, although ensuring convergence,
has clear performance limitations. The theoretical analysis that substantiates these
claims is based on a detailed, nonlinear, zero dynamics analysis of a single VSRwith
respect to the outputs used for all these controllers.

A future research line pertains to the use of more accurate models for the descrip-
tion of the system, that may improve the control quality. For instance, the behavior
of long transmission lines is best described by means of the Telegrapher’s equations,
thus leading to an infinite dimensional pH representation, which can still be han-
dled with existing theory [34]. Because of the addition of standard outer controllers
destroys the passivity property—that is instrumental for the stability analysis of the
PI–PBC—current research is under way to establish some stability properties of the
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PI–PBC plus the commonly employed outer controllers, like for example the ubiq-
uitous droop control. A further possibility is the development of a new provably
stable outer-loop controller that would replace the droop. It would also be of interest
to investigate new strategies for power flow optimization, moving away from the
PFSSE. A final, long term, objective is the experimental validation of the proposed
PI–PBC plus droop scheme.
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Chapter 10
A Complement on Elimination
and Realization in Rational Representations

Harry L. Trentelman, Tjerk W. Stegink and Sasanka V. Gottimukkala

Abstract In this paper we study a number of problems in the context of rational
representations of behaviors. In that context, a given proper real rational matrix can
represent three behaviors. In the first place it can represent an input–output behavior.
Second, it can represent the kernel behavior of the rational ‘differential operator’ as-
sociated with the rational matrix. Third, it can represent the image behavior asociated
with the rational matrix. On the other hand, every proper real rational matrix admits
a realization as a finite-dimensional linear state-space system. Such realization can
represent three system behaviors: an input-state-output behavior, an output nulling
behavior, or a driving variable behavior. In this paper we will study the relation be-
tween the three external behaviors of these state representations, and the behaviors
given by the three rational representations associated with the underlying rational
matrix. Preliminary results from [5] will be complemented to obtain necessary and
sufficient conditions such that the respective external behaviors are equal.

10.1 Introduction

Arjan and I (the first author) met around 35 years ago. Arjan had already been a Ph.D.
student with Jan Willems in Groningen for a longer time, and I had just started. In
those days it was still allowed to smoke inside university buildings, and I recall a par-
ticular instant that I entered Jan’s office, while Arjan was undergoing his supervision
by Jan. Apart from the fact that the blackboard was filled with Hamiltonian systems,
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he and Jan were staring in the direction of this blackboard, with thick clouds of cigar
smoke circling around. I instantly realized that I witnessed real science here: staring
at the board, trying to get somewhere, cigars firmly held in the hand. At that time,
Arjan developed scientifically into one of the leaders in the area of nonlinear control,
in particular working on the differential geometric approach to nonlinear systems.
Together with other Dutch experts in that area he had founded an unofficial society,
called the Dutch Nonlinear Systems Group. I myself worked on the almost version of
the linear geometric approach. One of the major achievements in my research career
is that I was declared an ‘almost’ member of that illustrious society as a present after
my Ph.D. defense.

After a long period at different universities, Arjan and I finally ended up together in
Groningen again, as colleagues in the same research group.While writing this article
on representations of behaviors, a typically Groningen subject indeed, I would like
to congratulate him on the occasion of his 60th birthday.

As is well known, behaviors of linear differential systems admit different kinds
of representations. Although the key idea of the behavioral approach to systems and
control is that a mathematical model of a dynamical system is essentially formed by
its set of trajectories, called the behavior of the system, it also offers the flexibility
that this behavior can be represented in many different ways, as, for example, the
kernel or image of a polynomial differential operator, or as the external behavior of
a polynomial latent variable representation, see [11].

Another class of representations of behaviors consist of several forms of state rep-
resentations, which involve a latent variable having the property of state, see [11].
State representations of behaviors are, for example, the classical input/state/output
(ISO) representations, driving variable representations, and output nulling represen-
tations, see [6, 16].

A more classical concept in modeling linear input–output systems is that of trans-
fer matrix. In the context of causal, linear, finite dimensional, time-invariant systems,
transfer matrices are proper real rational matrices. In an attempt to further bridge the
gap between the behavioral time domain approach and the transfer matrix, frequency
domain, approach, in [17], the concepts of rational kernel and image representation
were elaborated. One of the highlights of this work is that, for the proper real ra-
tional transfer matrix of any given linear input–output system, it gives a sound and
simple time domain interpretation of the representation y(t) = G( d

dt )u(t) as an
alternative for the mathematically unsatisfactory frequency domain representation
ŷ(s) = G(s)û(s).

From classical realization theory, see [2], it is well known that every proper
real rational matrix G(s) admits a realization. In particular, a quadruple of matri-
ces (A, B, C, D) is called a realization of G(s) if G(s) = C(sI − A)−1B + D. This
raises a number of questions on the relationship between rational kernel and image
representations on the one hand, and input-state-output, driving variable, and out-
put nulling representations on the other. In particular, given a proper real rational
matrix G(s) with realization (A, B, C, D), the natural question arises: what is the
relation between the behavior represented by y = G( d

dt )u and the input–output be-
havior of the representation ẋ = Ax + Bu, y = Cx + Du? Under what conditions
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are these behaviors equal? A similar question arises for output nulling representa-
tions: what is the relation between the behavior represented by the rational kernel
representation G( d

dt )w = 0 and the external behavior of the output nulling represen-
tation ẋ = Ax+Bw, 0 = Cx+Dw? For driving variable representations: under what
conditions is the external behavior represented by the rational image representation
w = im G( d

dt )l equal to external behavior of the driving variable representation
ẋ = Ax + Bv, w = Cx + Dv? Partial answers to these questions have been obtained
in [5]. In the present paper we will present new results that complement these earlier
ones, and a complete answer to the questions posed will be given. In order to address
the above questions, we will first review results from [5] on the problem of elimina-
tion of the state variable from input-state-output, driving variable, and output nulling
representations. This problem consists of finding polynomial kernel representations
of the external behaviors associated with these state representations.

The outline of this paper is as follows. In the next section, Sect. 10.2, we will
give some preliminaries and introduce the notation used in this paper. In Sect. 10.3,
we will review various representations of behaviors of linear differential systems. In
Sect. 10.4,wewill review results from [5] on the problemof eliminating the state from
a given input-state-output representation, and, likewise, from a given output nulling
representation. In the case of driving variable representations we will discuss how
to eliminate both the state and the driving variable. Section10.5 contains the main
results of this paper. Here, in three subsequent subsections, we will give complete
answers to the problems posed above. We will conclude this paper with some final
remarks in Sect. 10.6.

10.2 Preliminaries and Notation

In this paper we will use the standard notation R and C for the fields of real and
complex numbers. We use Rn, R

n×m, etc., for the real linear spaces of vectors and
matrices with components in R. The space of all infinitely often differentiable func-
tions fromR toRw will be denoted byC∞(R,Rw). The field of real rational functions
in the indeterminate s will be denoted by R(s). The ring of real polynomials in the
indeterminate s will be denoted byR[s].R(s)p will denote the ring of proper rational
functions in the indeterminate s with real coefficients. We will use R(s)n,R(s)n×m,
R[s]n,R[s]n×m, etc. for the spaces of vectors and matrices with components in R(s)
and R[s], respectively. If the dimensions are clear from the context, we will use the
notation R(s)•×m, R(s)n×•, R[s]•×• or R(s)•×•, etc. A square non-singular polyno-
mial matrix U is called unimodular if it has an inverse which is again a polynomial
matrix. F ∈ R(s)n×n is biproper if det(F) �= 0 and F, F−1 are both proper. A poly-
nomial matrix P ∈ R[s]•×• is called left prime over R[s] if it has a polynomial right
inverse, i.e., if there exists a polynomial matrix Q such that PQ = I , the identity
matrix. Left primeness is equivalent with the condition that P(λ) has full row rank
for all λ ∈ C.
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For a given finite-dimensional linear system ẋ = Ax + Bu, y = Cx + Du, we
will denote its reachable subspace by R. This is the smallest A-invariant subspace
containing im B. The unobservable subspacewill be denotesd byN , and is the largest
A-invariant subspace contained in ker C.

10.3 Representations of Behaviors

In this section we will review the basic material on representations of behaviors
of linear differential systems. A linear differential system is defined as a system
Σ = (R,Rw,B)whose behaviorB is the solution space of given finite set of higher
order constant coefficient linear differential equations. By representing the given
set of linear differential equations in terms of a polynomial matrix, for any linear
differential system Σ = (R,Rw,B) there obviously exists a real polynomial matrix
R with w columns, i.e., R ∈ R[s]•×w, such that

B = {w ∈ C∞(R,Rw) | R(
d

dt
)w = 0}. (10.1)

The representation (10.1) is called a polynomial kernel representation ofB, and we
often writeB = ker R( d

dt ). For a detailed exposition on polynomial representations
of behaviors we refer to [11].

In addition to polynomial representations, behaviors admit rational representa-
tions. Rational representations were formally introduced in [17]. Earlier work on ra-
tional representations for L2-behaviors can be found in [15], and was later extended
in [8, 9]. In order to introduce rational representations, we need the concept of left
coprime factorization of a rational matrix over R[s]. A factorization of G ∈ R(s)•×•
as G = P−1Q with P, Q ∈ R[s]•×• is called a left coprime factorization if

[
P Q

]
is

left prime over R[s] and det(P) �= 0. Following [17], if G = P−1Q is a left coprime
factorization over R[s] then we define w to be a solution of G( d

dt )w = 0 if it is a
solution of the differential equation Q( d

dt )w = 0. Likewise, we define

ker G(
d

dt
) := ker Q(

d

dt
). (10.2)

If G is a rational matrix, we call a representation of B as G( d
dt )w = 0 a rational

kernel representation of B and sometimes write B = ker G( d
dt ). For additional

material on rational representations we refer to [4] and [5].
In addition to kernel representations, which are in terms of the variable w to be

modeled only (called the manifest variable or external variable), behaviors admit
representations in which auxiliary variables may appear. The most general form of
such representation of a behavior B is the so-called latent variable representation,
which has the following form:
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R(
d

dt
)w = M(

d

dt
)l. (10.3)

In the above differential equation, w is the manifest variable and l is called the latent
variable. The (w, l)’s satisfying (10.3) are given by ker

[
R( d

dt ) − M( d
dt )

] =: Bfull,
andBfull is called the full behavior. Themanifest behavior is given by (Bfull)w, which
is the projection of the full behavior onto the behavior of the external variable w. The
matrices R and M can be polynomial matrices or rational matrices. If (10.3) involves
polynomial matrices only then we call it a polynomial latent variable representation.
In general, we call it a rational latent variable representation.

A special class of latent variable representations consists of the so-called state
representations. These are latent variable representations in which the latent variable
has the property of state, see [6, 7, 14, 16]. In the following, we will briefly review
the basics of the three most important kinds of state representations, namely, input-
state-output representations, driving variable representations, and output nulling rep-
resentations.

Let A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m, and consider the equations

d

dt
x = Ax + Bu, y = Cx + Du. (10.4)

The full behavior represented by these equations is given by

BISO(A, B, C, D) := {(u, y, x) ∈ C∞(R,Rm) × C∞(R,Rp) × C∞(R,Rn) | (10.4) holds }.

In (10.4), we interpret (u, y) as manifest variable and x as latent variable. Thus,BISO

is a latent variable representation of its external behavior given by

BISO(A, B, C, D)ext = {(u, y) | ∃x such that (u, y, x) ∈ BISO(A, B, C, D)}.

In fact, in (10.4), x is a state variable, u has the property of input, and y the property
of output, see [11]. Further, ifB = BISO(A, B, C, D)ext then we callBISO an input-
state-output representation of B.

Next, letA ∈ R
n×n,B ∈ R

n×v,C ∈ R
w×n,D ∈ R

w×v, and consider the equations

d

dt
x = Ax + Bv, w = Cx + Dv. (10.5)

The full behavior represented by these equations is given by

BDV (A, B, C, D) := {(w, x, v) ∈ C∞(R,Rw) × C∞(R,Rn) × C∞(R,Rv) | (10.5) holds }.

In (10.5), we interpret w as manifest variable and (x, v) as latent variables. Thus,
BDV is a latent variable representation of its external behavior given by

BDV (A, B, C, D)ext = {w | ∃(x, v) such that (w, x, v) ∈ BDV (A, B, C, D)}.
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In fact, in (10.5), x is a state variable and v is an auxiliary variable, called the driving
variable. Further, if B = BDV (A, B, C, D)ext then we call BDV a driving variable
representation of B.

Finally, let A ∈ R
n×n, B ∈ R

n×w, C ∈ R
p×n, D ∈ R

p×w and consider the
equations

d

dt
x = Ax + Bw, 0 = Cx + Dw. (10.6)

The full behavior represented by these equations is given by

BON (A, B, C, D) := {(w, x) ∈ C∞(R,Rw) × C∞(R,Rn) | (10.6) holds }.

In (10.6), we interpret w as manifest variable and x as a latent variable. Thus, BON

is a latent variable representation of its external behavior given by

BON (A, B, C, D)ext = {w | ∃x such that (w, x) ∈ BON (A, B, C, D)}.

Also in (10.6), x is a state variable. Further, ifB = BON (A, B, C, D)ext then we call
BON an output nulling representation of B.

An important concept in the behavioral approach is the property of controllability.
By now, the definition of controllability of behaviors of linear differential systems
is well known, and for its definition we refer to [11]. It was shown in [11] that con-
trollable behaviors admit, yet another special kind of latent variable representations
called image representations. Consider the differential equation

w = M(
d

dt
)�, (10.7)

where M ∈ R[s]w×l. The w’s that satisfy (10.7) are given by

B = {w ∈ C∞(R,Rw) | ∃� ∈ C∞(R,Rl) such thatw = M(
d

dt
)�}. (10.8)

A representation ofB as in (10.8) is called a polynomial image representation. Like
for polynomial kernel representations previously in this paper, this can be extended to
rational image representations as well, see [17]. Let M ∈ R(s)w×l. Then a meaning
to the equation w = M( d

dt )� can be given by interpreting it as

[
I −M( d

dt )
] [

w
�

]
= 0. (10.9)

Then, if M = P−1Q is a left coprime factorization over R[s], [
I −M

] =
P−1

[
P −Q

]
clearly is a left coprime factorization of

[
I −M

]
, and therefore, by

the definition in (10.2), Eq. (10.9) holds if and only if P( d
dt )w = Q( d

dt )�. Thus
w = M( d

dt )� should be interpreted as P( d
dt )w = Q( d

dt )� and
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B := {w | ∃� such thatw = M(
d

dt
)�} = {w | ∃� such thatP(

d

dt
)w = Q(

d

dt
)�}.
(10.10)

This representation of B is called a rational image representation.

10.4 Elimination from State Representations

In this section we will review results on the elimination problem for state repre-
sentations from [5]. For a given state representation, the elimination problem is to
obtain a polynomial kernel representation of its external behavior, thus ‘eliminating’
the state variable from the original representation. Before addressing this problem,
we will first review some basic material on the general elimination problem in the
polynomial representation context. First, recall the notion of minimal left annihilator
of a polynomial matrix (see [19]).

Definition 10.1 Let M ∈ R[s]m×•. Then X ∈ R[s]•×m is called a minimal left
annihilator of M if :

1. X has full row rank,
2. X is left annihilator of M, i.e. XM = 0, and
3. any left annihilator of M is a multiple of X, i.e. X1M = 0 implies X1 = RX for

some polynomial matrix R.

The following well known result gives a rank characterization of the minimal left
annihilator of a given polynomial matrix. For a proof we refer to [5].

Proposition 10.2 Let M ∈ R[s]p×q. Then X ∈ R[s]n×p is a minimal left annihilator
of M if and only if X is left prime over R[s], XM = 0 and rank(X) = p− rank(M).

Using the above characterization of a minimal left annihilator, we have the following
proposition that plays a crucial role in the rest of this section. The result is well known
and has appeared in various forms in the literature before (see [11], Theorem6.2.6,
[3, 10]).

Proposition 10.3 LetBfull ∈ Lw+l be represented by the polynomial latent variable
representation R( d

dt )w = M( d
dt )�, where R ∈ R[s]p×w, M ∈ R[s]p×l. Then the

manifest behavior (Bfull)w has kernel representation (XR)( d
dt )w = 0, where X is a

minimal left annihilator of M.

An immediate consequence of Proposition 10.2 is the following:

Lemma 10.4 Let G ∈ R(s)p×w. Let G = AB−1 be a factorization such that A ∈
R[s]p×w and B ∈ R[s]w×w. Let L−1

2 L1 be a left coprime factorization of G over R[s].
Then

[
L1 −L2

]
is a minimal left annihilator of

[
B
A

]
.

Also the following easy result will be instrumental in the sequel:
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Lemma 10.5 Let M ∈ R[s]p×q be partitioned as M = [
M1 M2

]
. If X1 is a minimal

left annihilator of M1, and X2 is a minimal left annihilator of X1M2 then X2X1 is a
minimal left annihilator of M.

We will now address the problem of eliminating the state in an input-state-output
representation of a given behavior. This problem was considered before in [11]
for the single input, single output case. Consider the input-state-output represen-
tation d

dt x = Ax + Bu, y = Cx + Du, and as before denote its full behavior by
BISO(A, B, C, D). Our aim is to find a polynomial kernel representation of the exter-
nal behavior BISO(A, B, C, D)ext. Obviously, by choosing a basis of the state space
R
n adapted to the decomposition R

n = X1 ⊕ X2, with X1 := R, we may assume
that the matrices A, B, C are in the form

A =
[

A11 A12
0 A22

]
, B =

[
B1
0

]
, and C = [

C1 C2
]
, (10.11)

such that (A11, B1) is a controllable pair. The dimensions of A11 and A22 are assumed
to be n1 × n1 and n2 × n2 respectively.

Theorem 10.6 LetBISO(A, B, C, D) be the full behavior induced by the input-state-
output representation d

dt x = Ax + Bu, y = Cx + Du. Assume that A, B, C have the

form (10.11). Let L−1
2 L1 = C1(sI − A11)

−1 and K−1
2 K1 = (L1A12 + L2C2)(sI −

A22)
−1 be left coprime factorizations over R[s]. Then

BISO(A, B, C, D)exr = ker[ K2(L1B1 + L2D)(
d

dt
) − (K2L2)(

d

dt
)].

Proof Clearly, the full behavior is represented by R( d
dt )w = M( d

dt )x, where

M = [
M1 M2

] =
⎡
⎣

sI − A11 −A12
0 sI − A22

C1 C2

⎤
⎦ andR =

⎡
⎣

B1 0
0 0

−D I

⎤
⎦ . (10.12)

Note that X1M1 = 0 and X2X1M2 = 0, where X1 =
[

L1 0 −L2
0 I 0

]
and X2 =

[
K2 K1

]
. It follows from Lemma 10.4 that X1 and X2 are minimal left annihilators

of M1 and X1M2, respectively. Using Lemma 10.5, we then have that X2X1 is a
minimal left annihilator ofM. Then, by Proposition 10.3 it is evident that the external
behavior, i.e.,BISO(A, B, C, D)ext, is given by

ker(X2X1R)(
d

dt
) = ker [K2(L1B1 + L2D)(

d

dt
) − (L2K2)(

d

dt
)].

The case of output nulling representations was treated in detail in [5], see also
[13]. We will confine ourselves here to formulating the result. The proof follows the
same limes as the proof of Theorem 10.6.
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Theorem 10.7 Let BON (A, B, C, D) be the full behavior induced by the output
nulling representation d

dt x = Ax + Bw, 0 = Cx + Dw. Assume that A, B, C have the

form (10.11). Let L−1
2 L1 = C1(sI − A11)

−1 and K−1
2 K1 = (L1A12 + L2C2)(sI −

A22)
−1 be left coprime factorizations over R[s]. Then

BON (A, B, C, D)ext = ker K2(L1B1 + L2D)(
d

dt
).

Finally, we turn to elimination in driving variable representations. Here the problem
is to eliminate both the state variable as well as the driving variable, and obtain
a polynomial kernel representation of the external behavior. This problem is dealt
within the following theorem, which was proven in [5].

Theorem 10.8 Let BDV (A, B, C, D) be the full behavior induced by the driving
variable representation d

dt x = Ax +Bv, w = Cx +Dv. Assume that A, B, C are as in

(10.11). Let L−1
2 L1 = C1(sI − A11)

−1 and K−1
2 K1 = (L1A12 + L2C2)(sI − A22)

−1

be left coprime factorizations over R[s]. Then

BDV (A, B, C, D)ext = ker (QK2L2)(
d

dt
),

where Q is any minimal left annihilator of K2(L1B1 + L2D).

10.5 Rational Representations and Realizations

In this section we will formally state and address the problems announced in the
introduction to this paper. The following problems will be considered:

1. Let G(s) be a proper real rational matrix and let (A, B, C, D) be a realization of
G, i.e. G(s) = C(sI − A)−1B + D. Consider the input–output behavior {(u, y) |
y = G( d

dt )u} associated with G, where y = G( d
dt )u should be interpreted as the

rational kernel representation [G( d
dt ) − I]

[
u
y

]
= 0. The problem is to obtain

necessary and sufficient conditions such that

BISO(A, B, C, D)ext = {(u, y) | y = G(
d

dt
)u}. (10.13)

2. Let G(s) be a proper real rational matrix and let (A, B, C, D) be a realization of
G. The problem is to find necessary and sufficient conditions such that

BON (A, B, C, D)ext = ker G(
d

dt
).
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3. Let G(s) be a proper real rational matrix and let (A, B, C, D) be a realization of
G. The problem is to obtain necessary and sufficient conditions such that

BDV (A, B, C, D)ext = im G(
d

dt
).

In the remainder of this section we will subsequently address all three problems
stated here.

We start off with a lemma that will be instrumental in solving the first of these
problems. The result states that condition (10.13) is equivalent with the condition
that a particular rational matrix obtained from the triple (A, B, C) is polynomial.

Lemma 10.9 Let G ∈ R(s)•×•
p . Let (A, B, C, D) be a realization of G such that

(10.11) holds. Let L−1
2 L1 = C1(sI − A11)

−1 be a left coprime factorizations over
R[s]. Then the following statements are equivalent:

1. BISO(A, B, C, D)ext = {(u, y) | y = G( d
dt )u},

2. (L1A12 + L2C2)(sI − A22)
−1 is a polynomial matrix.

Proof (1 ⇒ 2) Assume that condition 1. holds. We know that

ker [G(
d

dt
) − I]

= ker [(C1(sI − A11))B1 + D)(
d

dt
) − I]

= kerL−1
2 [L1B1 + L2D − L2]( d

dt
).

It is easily verified that L−1
2 [L1B1 + L2D − L2]) is also a left coprime factorization

over R[s]. From the definition in (10.2) it then follows that

ker [G(
d

dt
) − I] = ker [L1B1 + L2D − L2]( d

dt
). (10.14)

Let K−1
2 K1 = (L1A12 +L2C2)(sI −A22)

−1 be a left coprime factorization overR[s].
Then, from Theorem 10.6 we have

BISO(A, B, C, D)exr = ker K2[L1B1 + L2D − L2]( d
dt

). (10.15)

Since L2 is nonsingular [L1B1 + L2D − L2] has full row rank. Also, since K2 is
nonsingular, K2[L1B1 + L2D − L2] has full row rank. Since

ker K2[L1B1 + L2D − L2]( d
dt

) = ker [L1B1 + L2D − L2]( d
dt

),

it follows from Theorem3.6.2 in [11] that there exists a unimodular matrix U such
that
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[L1B1 + L2D − L2] = UK2[L1B1 + L2D − L2] (10.16)

We prove now that K2 is unimodular. Rewriting Eq. (10.16) we have

(I − UK2)[L1B1 + L2D − L2] = 0. (10.17)

Since the second factor in this equation has full row rank, it follows that UK2 = I
and hence K2 is unimodular. It follows that K−1

2 K1 = (L1A12 + L2C2)(sI − A22)
−1

is a polynomial matrix.
(2 ⇒ 1) Assume (L1A12 + L2C2)(sI − A22)

−1 is a polynomial matrix. Let K2 = I
andK1 = (L1A12+L2C2)(sI −A22)

−1. ThenK−1
2 K1 = (L1A12+L2C2)(sI −A22)

−1

is a left coprime factorization over R[s]. Then the result follows from Theorem 10.6
and the fact that (10.14) holds.

A similar result as Lemma 10.9 will be instrumental to treat the case of output
nulling representations:

Lemma 10.10 Let G ∈ R(s)•×•
p have full row rank. Let (A, B, C, D) be a realization

of G in the form (10.11). Let L−1
2 L1 = C1(sI −A11)

−1. Then the following statements
are equivalent:

1. BON (A, B, C, D)ext = ker G( d
dt ).

2. (L1A12 + L2C2)(sI − A22)
−1 is a polynomial matrix.

Proof (1 ⇒ 2) Assume that condition 1. holds. We have

ker G(
d

dt
) = ker (C1(sI − A11))B1 + D)(

d

dt
) = ker L−1

2 (L1B1 + L2D)(
d

dt
).

Obviously, L−1
2 (L1B1 + L2D) is also a left coprime factorization over R[s]. By

definition we then have

ker G(
d

dt
) = ker L−1

2 (L1B1 + L2D)(
d

dt
) = ker (L1B1 + L2D)(

d

dt
). (10.18)

On the other hand, after taking left coprime factorisation

K−1
2 K1 = (L1A12 + L2C2)(sI − A22)

−1,

from Theorem 10.7 we obtain

BON (A, B, C, D)ext = ker K2(L1B1 + L2D)(
d

dt
). (10.19)

Since G = L−1
2 (L1B1+L2D) and G has full row rank, we must have that L1B1+L2D

has full row rank. Since ker K2(L1B1 + L2D)( d
dt ) = ker (L1B1 + L2D)( d

dt ) it then
follows from Theorem3.6.2 in [11] that
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L1B1 + L2D = UK2(L1B1 + L2D) (10.20)

for some unimodularmatrixU. Againwe prove now thatK2 is unimodular. Rewriting
equation (10.20) we get

(I − UK2)(L1B1 + L2D) = 0. (10.21)

Since L1B1 + L2D has full row rank we must have UK2 = I , so K2 is unimodular.
Hence K−1

2 K1 = (L1A12 + L2C2)(sI − A22)
−1 is a polynomial matrix.

(2 ⇒ 1) Assume (L1A12 + L2C2)(sI − A22)
−1 is a polynomial matrix. Let K2 = I

andK1 = (L1A12+L2C2)(sI −A22)
−1. ThenK−1

2 K1 = (L1A12+L2C2)(sI −A22)
−1

is a left coprime factorization over R[s]. Then the result follows from Theorem 10.7
together with (10.18).

In order to proceed now, we will need a finer decomposition of the state space
than the one used in (10.11), namely the classical Kalman decomposition of linear
state space systems. This will be reviewed now. For a given triple (A, B, C) with
A ∈ R

n×n, B ∈ R
n×m, and C ∈ R

p×n, let R be the reachable subspace, and N the
unobservable subspace. Now define X1 := R ∩ N , and let X2 be a subspace such
that X1 ⊕ X2 = R. Let X3 be such that X1 ⊕ X3 = N . Finally, let X4 be such that
X1 ⊕ X2 ⊕ X3 ⊕ X4 = R

n.
Then, with respect to a basis adapted to this decomposition, A, B and C have the

form

A =

⎡
⎢⎢⎣

A11 A12 A13 A14
0 A22 0 A24

0 0 A33 A34
0 0 0 A44

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

B1
B2

0
0

⎤
⎥⎥⎦ , and C = [

0 C2 0 C4
]
. (10.22)

The lines in the matrices above indicate that, in fact, the system can be interpreted
to be in the form (10.11). Note that R + N = X1 ⊕ X2 ⊕ X3. It is well known that
the following properties hold:

1. (A22, B2, C2) is controllable and observable.

2.

([
A11 A12
0 A22

]
,

[
B1
B2

]
,
[
0 C2

] )
is controllable.

3.

([
A22 A24
0 A44

]
,

[
B2
0

]
,
[
C2 C4.

]
,

)
is observable.

In the following three subsections, we will now resolve the three problems posed in
the introduction to this section.
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10.5.1 Realization and Input-State-Output Representation

The following theorem is one of main results of this paper. It states that the external
behavior of an input-state-output representation is equal to the input–output behavior
associated with its associated transfer matrix if and only if the sum of the reachable
subspace and the unobservable subspace is equal to the entire state space.

Theorem 10.11 Let G ∈ R(s)p×m
p . Let (A, B, C, D) be a realization of G with A ∈

R
n×n, B ∈ R

n×m, C ∈ R
p×n, D ∈ R

p×m. Then

BISO(A, B, C, D)ext = {(u, y) | y = G(
d

dt
)u}

if and only if R + N = R
n.

Proof (⇐) Assume R + N = R
n. Without loss of generality we can assume that

(A, B, C, D) is of the form

A =
⎡
⎣

A11 A12 A13
0 A22 0
0 0 A33

⎤
⎦ , B =

⎡
⎣

B1
B2

0

⎤
⎦ , C = [

0 C2 0
]
. (10.23)

The idea is now to apply Lemma 10.9 and check that condition 2. in that lemma
holds. As stated in Lemma 10.9 take a left coprime factorization

L−1
2 L1 = [

0 C2
] [

Is − A11 −A12
0 sI − A22

]−1

= [
0 C2(sI − A22)

−1
]
. (10.24)

Since L2 is nonsingular we can split up L1 into blocks of appropriate sizes: L1 =[
0 L12

]
. We now check that

(
[
0 L12

] [
A13
0

]
+ L2 · 0)(sI − A33)

−1 = [
0 0

]
. (10.25)

Since this is a polynomial matrix it follows that condition 2. in Lemma 10.9 holds.
From this the claim follows.
(⇒) AssumeR + N �= R

n. Without loss of generality assume that the system is in
the form (10.22), with A11 ∈ R

n1×n1, A22 ∈ R
n2×n2 , A33 ∈ R

n3×n3, A44 ∈ R
n4×n4

and B, C with appropriate dimensions. Note that by our assumption the matrix A44
is non void, i.e. n4 > 0. Likewise, the corresponding 0-matrix in B and the matrix
C4 are really present. Recall that the subsystem

( [
A22 A24
0 A44

]
,

[
B2
0

]
,
[
C2 C4

]
, D

)
(10.26)
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is observable. Define

O(s) :=
⎡
⎣

A22 − sI A24
0 A44 − sI

C2 C4

⎤
⎦

By observability we have rank(O(λ)) = n2 + n4 for all λ ∈ C.
Note again that the system (10.22) is obviously of the form (10.11). Let

L−1
2 L1 = [

0 C2
] [

sI − A11 −A12
0 sI − A22

]−1

= [
0 C2(sI − A22)

−1
]

(10.27)

be a left coprime factorization overR[s]. LetL1 = [
0 L12

]
be split up into appropriate

sized blocks. Then L−1
2 L12 = C2(sI − A22)

−1 is also a left coprime factorization
over R[s].

Since
[
L12 L2

]
has full row rank for all λ ∈ C, there exist polynomial matrices

M1 ∈ R[s]n2×n2 , M2 ∈ R[s]n2×p such that the matrix

U1 =
⎡
⎣

L12 0 L2
0 I 0

M1 0 M2

⎤
⎦ (10.28)

is unimodular. By premultiplying O(λ) by U1(λ), with λ ∈ C, we obtain

U1(λ)O(λ) =
⎡
⎣

L12 0 L2
0 I 0

M1 0 M2

⎤
⎦

⎡
⎣

A22 − λI A24
0 A44 − λI

C2 C4

⎤
⎦ =

⎡
⎣

0 L12A24 + L2C4
0 A44 − λI

M1A24 + M2C2 M1A24 + M2C4

⎤
⎦

(10.29)

and rank(U1(λ)O(λ)) = n2 + n4 for all λ ∈ C. In this formula we have suppressed
some of the lambda’s. Now consider the rational matrix

R(s) :=
( [

0 L12
] [

A13 A14
0 A24

]
+ L2

[
0 C4

] ) [
sI − A33 −A34

0 sI − A44

]−1

= [
0 L12A24 + L2C4

] [
sI − A33 −A34

0 sI − A44

]−1

= [
0 (L12A24 + L2C4)(sI − A44)

−1
]
. (10.30)

Since, BISO(A, B, C, D)ext = {(u, y) | y = G( d
dt )u}, Lemma 10.9 says that R(s)

given by (10.30) is a polynomial matrix. Define a polynomial matrix K by

K(s) := (L12A24 + L2C4)(sI − A44)
−1.

Since
[−I K(λ)

]
also has full row rank for all λ ∈ C there exist polynomialmatrices

N1 ∈ R[s]n4×p, N2 ∈ R[s]n4×n4 such that the matrix
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U2 =
⎡
⎣

−I K 0
N1 N2 0
0 0 I

⎤
⎦ (10.31)

is unimodular. Now define O1(s) := U2(s)U1(s)O(s). Then

O1(s) =
⎡
⎣

0 0
0 (N1K + N2)(A44 − sI)

M1A24 + M2C2 M1A24 + M2C4

⎤
⎦ . (10.32)

We know that rank(O1(λ)) = rank(O(λ)) = n2 + n4 for all λ and hence

rank

[
0 (N1K + N2)(A44 − λI)

M1A24 + M2C2 M1A24 + M2C4

]
= n2 + n4

for all λ. The latter is, however, equivalent with

det(M1A24 + M2C2) det(N1K + N2) det(A44 − λI) �= 0 for all λ ∈ C.

This leads to a contradiction, so X4 can not be present in the direct sum decomposi-
tion, and hence R + N = R

n.

The above theorem settles the first problem posed in this section. We will now turn
to the second one on driving variable representations.

10.5.2 Realization and Output Nulling Representation

In [5] it was shown that if G is a proper rational matrix and (A, B, C, D) is a realiza-
tion, then controllability of the pair (A, B) is a sufficient condition for the equality
BON (A, B, C, D)ext = ker G( d

dt ) to hold. It was also shown in [5] that the con-
trollability condition is not necessary. The following theorem is the second main
result of this paper. It sharpens the result from [5] and gives necessary and sufficient
conditions:

Theorem 10.12 Let G ∈ R(s)p×m
p . Let (A, B, C, D) be a realization of G. IfR+N =

R
n then BON (A, B, C, D)ext = ker G( d

dt ). Moreover, if G has full row rank then
BON (A, B, C, D)ext = ker G( d

dt ) if and only if R + N = R
n.

Proof (⇐) Assume R + N = R
n. Again we may assume that (A, B, C) has the

form (10.23). As stated in Theorem 10.7, take a left coprime factorization

L−1
2 L1 = [

0 C2
] [

sI − A11 −A12
0 sI − A22

]−1

= [
0 C2(sI − A22)

−1
]
. (10.33)
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Since L2 is nonsingular we can split up L1 into blocks of appropriate sizes: L1 =[
0 L12

]
. We now check that

(
[
0 L12

] [
A13
0

]
+ L2 · 0)(sI − A33)

−1 = [
0 0

]
. (10.34)

Note that

G(s) = L−1
2 (L1

[
B1
B2

]
+ L2D).

Since this is also a left coprime factorization, by definition we have

ker G(
d

dt
) = ker (L1

[
B1
B2

]
+ L2D)(

d

dt
). (10.35)

On the other hand, since (10.34) admits the trivial coprime factorization K−1
2 K1 with

K2 = I and K1 = 0, Theorem 10.7 confirms that (10.35) equals
BON (A, B, C, D)ext.
(⇒) the proof of the second statement follows exacty the same reasoning as the
corresponding part of Theorem 10.11 and uses Lemma 10.10.

10.5.3 Realization and Controllability of Driving Variable
Representations

In this subsection we will resolve the third problem posed in this section, and es-
tablish necessary and sufficient conditions on the matrices A, B and C such that
BDV (A, B, C, D)ext = im G( d

dt ) for a given realization (A, B, C, D) of G.
It is obvious that if BDV (A, B, C, D)ext = im G( d

dt ), then BDV (A, B, C, D)ext
must be controllable, as it is then represented in terms of a (rational) image represen-
tation, which always represents a controllable system. We will now prove a lemma
that states that also the converse holds:

Lemma 10.13 Let G ∈ R(s)•×•
p . Let (A, B, C, D) be a realization of G. Then the

following statements are equivalent.

1. BDV (A, B, C, D)ext is controllable,
2. BDV (A, B, C, D)ext = im G( d

dt ).

Proof (1. ⇒ 2.) Assume BDV (A, B, C, D)ext is controllable. From Theorem 10.8
it follows that BDV (A, B, C, D)ext = ker (Q2K2L2)(

d
dt ), where Q2 is a minimal

left annihilator of K2(L1B1 + L2D). Since the external behaviorBDV (A, B, C, D)ext
is controllable it follows that Q2(λ)K2(λ)L2(λ) has full row rank for all λ ∈ C.
Therefore Q2(λ)K2(λ) has full row rank for all λ ∈ C. Let Q1 be a minimal left
annihilator of L1B1 + L2D. Since obviously Q2K2 is an annihilator as well, we
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must have Q2K2 = XQ1 for some polynomial matrix X. As Q2(λ)K2(λ) has full
row rank for all λ ∈ C also X(λ) has full row rank for all λ. From the fact that
rank(K2(L1B1 + L2D)) = rank(L1B1 + L2D) it follows that the number of rows of
Q2 and Q1 are the same. Hence X is square, and therefore unimodular. This now
implies that BDV (A, B, C, D)ext = ker (Q2K2L2)(

d
dt ) = ker (Q1L2)(

d
dt ).

Finally, we will prove that ker (Q1L2)(
d
dt ) = im G( d

dt ). Indeed, we have G =
L−1
2 (L1B1 + L2D) is a left coprime factorization, so

im G(
d

dt
) = {w | there exists l such that L2(

d

dt
)w = (L1B1 + L2D)(

d

dt
)l}.

Clearly the full (w, l)-behavior of this is represented by the polynomial latent variable
representation L2(

d
dt )w = (L1B1 +L2D)( d

dt )l. Since Q1 is a minimal left annihilator
of L1B1 + L2D, Proposition 10.3 then tells us that the result of eliminating l here is
represented by (Q1L2)(

d
dt )w = 0. This proves our claim. The converse implication

(2. ⇒ 1.) is trivially true.

Thus, our third problem will be resolved if we can find necessary and sufficient
conditions for controllability of the external behavior of a driving variable represen-
tation. We will investigate this now.

It will turn out that this involves the notion of weakly unobservable subspace
associated with the system (A, B, C, D). This notion was studied in detail in [12].
Wewill review its definition and properties here. Originally, theweakly unobservable
subspace was studied in the context of the disturbance decoupling problem for input-
state-output systems. It consists of all initial states for which there exists an input
function that makes the corresponding output function identically equal to zero:

Definition 10.14 Consider the system ẋ = Ax +Bu, y = Cx +Du, with state space
R
n. For given initial state x0 ∈ R

n and input function u, denote the corresponding
output by yu(t, x0). Then the weakly unobservable subspace is defined as

V∗(A, B, C, D) := {x0 ∈ R
n | there exists u such that yu(t, x0) = 0 for all t ≥ 0}

This subspace also plays a prominent role in a generalization of the classical Kalman
decomposition, the so-called ninefold canonical decomposition, see [1]. It has the
following feedback characterisation: V∗(A, B, C, D) is the largest subspace V of Rn

for which there exists an F such that (A + BF)V ⊂ V and (C + DF)V = {0}. It can
even be computed recursively from the data (A, B, C, D) in finitely many steps, see
[12], Chap.7.

An important property that we will need is that the sum of the reachable subspace
and the weakly unobservable subspace is the so-called output null controllable sub-
space (see Exercise 4.1 in [12]):

Lemma 10.15 Consider the system ẋ = Ax + Bu, y = Cx + Du. let R be the
reachable subspace. Then we have:

http://dx.doi.org/10.1007/978-3-319-20988-3_7
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R + V∗(A, B, C, D) =
{x0 ∈ R

n | there exists u and T > 0 such that yu(t, x0) = 0 for all t ≥ T}.

For this reason, if R + V∗(A, B, C, D) = R
n, then the system is sometimes called

output null controllable.
We will now proceed with stating the third main result of this paper, giving neces-

sary and sufficient conditions for controllability of the external behavior of a driving
variable representation. The result states that controllability is equivalent to output
null controllability, with the driving variable interpreted as input, and the manifest
variable as output.

Theorem 10.16 Let G ∈ R(ξ)
p×m
p . Let (A, B, C, D) be a realization of G. Then the

following two statements are equivalent:

1. BDV (A, B, C, D)ext is controllable,
2. R + V∗(A, B, C, D) = R

n.

Proof (1. ⇒ 2.) For a given initial state x0 and driving variable trajectory v, the
resulting external trajectory will be denoted by wv(t, x0). Now let x0 ∈ R

n. Consider
the two external trajectories w1(t) := w0(t, x0) and w2(t) := 0. By controllability
there exists a third external trajectory, say wv(t, x̄0), and T > 0 such that wv(t, x̄0) =
w1(t) for t ≤ 0 and wv(t, x̄0) = w2(t) = 0 for t ≥ T . We will now first prove that,
in fact, x̄0 − x0 ∈ V∗(A, B, C, D).

Indeed, by linearity we have wv(t, x̄0 − x0) = 0 for all t ≤ 0. Now consider the
time-reversed system ẋ = −Ax − Bv, w = Cx + Dv. Let wvR(t, x̄0 − x0) denote
its external trajectory corresponding to the time-reversed driving variable vR(t) :=
v(−t) and initial state x̄0 − x0. It is easily seen that for all t ≥ 0 we have wvR(t, x̄0 −
x0) = wv(−t, x̄0 − x0) = 0. This implies that x̄0 − x0 ∈ V∗(−A,−B, C, D), the
weakly unobservable subspace associated with the time-reversed system. By their
feedback characterization, we have V∗(−A,−B, C, D) = V∗(A, B, C, D), which
proves the claim that x̄0 − x0 ∈ V∗(A, B, C, D).

Next, it follows from the characterisation in Lemma 10.15 that x̄0 ∈ R +
V∗(A, B, C, D). Wrapping things up then leads to x0 = x̄0 − (x̄0 − x0) ∈ R+
V∗(A, B, C, D), which proves condition 2.

(2. ⇒ 1.) By linearity it suffices to prove that for every external trajectory w(t)
there exists T > 0 and an external trajectory w′(t) such that w′(t) = w(t) for t ≤ 0
and w′(t) = 0 for t ≥ T . let w(t) = wv(t, x0). Since x0 ∈ R + V∗(A, B, C, D), by
Lemma 10.15 there exists a driving variable trajectory v1(t) such that wv1(t, x0) = 0
for t ≥ T . Define now v̄(t) := v(t) for t ≤ 0 and v̄(t) := v1(t) for t ≥ 0. Define
w′(t) := wv̄(t, x0). Then w′(t) = w(t) for t ≤ 0 and w′(t) = 0 for t ≥ T . Hence
BDV (A, B, C, D)ext is controllable.

Thus we immediately obtain the following corollary:

Corollary 10.17 Let G ∈ R(ξ)
p×m
p . Let (A, B, C, D) be a realization of G. Then the

following two statements are equivalent:
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1. BDV (A, B, C, D)ext = im G( d
dt ),

2. R + V∗(A, B, C, D) = R
n.

This result generalizes Theorem 4.5 in [5] that states that controllability of the pair
(A, B) is a sufficient condition for condition 1. to hold.

We note that the necessary and sufficient condition for our third problem differs
from the one that we established for the first two problems. It turns out, however,
that the condition R + N = R

n does provide a necessary and sufficient condition
for controllability of the (w, v)-behavior associated with a driving variable repre-
sentation, so of the external behavior with only the state x eliminated. Denote this
behavior by

BDV (A, B, C, D)(v,w) := {(v, w) | there exists xsuch that (x, v, w) ∈ BDV (A, B, C, D)}

Then the final theorem of this paper states the following:

Theorem 10.18 Let BDV (A, B, C, D) be the full behavior of the driving variable
representation (10.5). Then the following statements hold:

1. BDV (A, B, C, D) is controllable if and only if R = R
n.

2. BDV (A, B, C, D)(v,w) is controllable if and only if R + N = R
n.

3. BDV (A, B, C, D)ext is controllable if and only if R + V∗(A, B, C, D) = R
n.

Proof 1. The full behavior of the driving variable representation is equal to
ker R( d

dt ), with

R(s) :=
[

sI − A − B 0
−C − D I

]

ObviouslyBDV (A, B, C, D) is controllable if and only if R(λ) has full row rank
for all λ ∈ C. This is, however, equivalent with the condition that

[
λI − A − B

]
has full row rank for all λ ∈ C. This holds if and only if the pair (A, B) is
controllable, equivalently R = R

n.
2. This follows immediately from Theorem 10.11 by interpreting the (w, v)- be-

havior as input output behavior of the representation ẋ = Ax+Bv, w = Cx+Dv
with input v and output w.

3. This is a restatement of Theorem 10.16.

10.6 Concluding Remarks

In this paper we have considered three open problems on the relation between the
external behaviors of state representations associated with realizations of proper real
rational matrices, and the behaviors represented by these rational matrices. These
problems had been studied before in [5], where however only sufficient conditions
were obtained. In the present paper we have complemented the results in [5] by
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establishing necessary and sufficient conditions in terms of the reachability subspace,
the unobservable subspace and the weakly unobservable subspace associated with
the realization.
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Chapter 11
Modeling and Analysis of Energy
Distribution Networks Using Switched
Differential Systems

Jonathan C. Mayo-Maldonado and Paolo Rapisarda

Abstract It is a pleasure to dedicate this contribution to Prof. Arjan van der Schaft
on the occasion of his 60th birthday. We study the dynamics of energy distribution
networks consisting of switching power converters and multiple (dis-)connectable
modules. We use parsimonious models that deal effectively with the variant com-
plexity of the network and the inherent switching phenomena induced by power
converters. We also present the solution to instability problems caused by devices
with negative impedance characteristics such as constant power loads. Elements of
the behavioral system theory such as linear differential behaviors and quadratic dif-
ferential forms are crucial in our analysis.

11.1 Introduction

In recent years, the development of a new paradigm of energy generation and dis-
tribution systems has become a pressing research question. Issues such as the urge
to reduce CO2 emissions, the compelling advantages of renewable energy genera-
tion, and the undesirable power losses in complex transmission lines, have motivated
the development of distributed energy generation systems based on renewable ener-
gies [31]. However, the intermittent nature of renewable energies is reflected in the
characteristics of the voltages/currents (e.g., amplitude and frequency) provided by
transducers, prompting to regulate such variables to satisfy the nominal requirements
of the the loads.

In order to achieve voltage/current/frequency regulation and distribution of elec-
tricity, interconnections of power converters are implemented; however, their inter-
action can display unstable behaviors (see [3, 30, 32]). A common example of this
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issue is the negative impedance instability produced by current/voltage controlled
converters behaving as constant power loads (see [17]). In order to address instability
problems, we first need to choose a modeling framework that is suitable to describe
the network characteristics. We consider the network as a complex switched system
whose dynamic modes with variant state space dimension are induced by switching
power converters and the arbitrary (dis-)connection of loads.

There exist traditional approaches to switched systems based on state space- (see
e.g., [7]) and descriptor form- (see e.g., [23]) representations, where the dynamic
modes share a global state space. However, the fact that the dynamicmodes of energy
distribution networks do not necessarily share the same state space engenders three
main disadvantages in current approaches:

(1) Loss of parsimony. The complexity of “lower order modes” needs to be incre-
ased by adding fictitious variables and equations, only to satisfy a predefined
global structure, see [11, 12].

(2) State representations are not given a priori. The modeling of elements of the
network as impedances offer considerable computational advantages when deal-
ing with complex scenarios (see e.g., [6]). Such approach leads directly to higher
order descriptions and not state space representations. Consequently, additional
computations must be performed to derive state space models.

(3) Loss of modularity. The incremental modeling of the dynamic modes in the bank
is not permitted, i.e., new dynamicmodes cannot be added to the underlying bank
without altering the existing ones. The need to allow for incremental modeling
arises naturally in an energy distribution network when new loads are connected
to the network, see [11].

These issuesmotivated the development of the switched linear differential systems
framework (SLDS) in [9–12, 18, 19], which is not representation-oriented, and thus
permits the use of the type of models that are most natural for each application (e.g.,
the modeling of impedances). This approach is based on the concepts of behavioral
system theory, and allows themodeling of dynamicmodes expressed by sets of linear
differential equations that do not necessarily share the same state space, as well as the
introduction to new dynamic modes to the bank without altering the existing ones. In
this chapter, we study the notion of passivity in the SLDS framework, using quadratic
differential forms (see [27]) as a tool to model energy functions of the network. We
also derive a systematic procedure to design passive stabilizing filters in terms of
standard bilinear- and linear matrix inequalities, that can be easily constructed from
the higher order models.

11.2 Notation

We use the following notation. The space of n dimensional real vectors is denoted
by R

n, and that of m × n real matrices by R
m×n. R•×m denotes the space of real

matrices with m columns and an unspecified finite number of rows. Given matrices
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A, B ∈ R
•×m, col(A, B) denotes the matrix obtained by stacking A over B. The ring

of polynomials with real coefficients in the indeterminate s is denoted by R[s]; the
ring of two-variable polynomials with real coefficients in the indeterminates ζ and η

is denoted by R[ζ, η]. Rr×w[s] denotes the set of all r× w matrices with entries in
s, and R

n×m[ζ, η] that of n× m polynomial matrices in ζ and η. The set of rational
m× n matrices is denoted by Rm×n(s). The set of infinitely differentiable functions
from R to R

w is denoted by C∞(R,Rw). D(R,Rw) is the subset of C∞(R,Rw)

consisting of compact support functions. For a function f : [t − ε, t) → R
• we set

the notation f (t−) := limτ↗t f (τ ); and similarly for f : (t, t + ε] → R
• we set

f (t+) := limτ↘t f (τ ), provided that these limits exist.
We also use standard concepts and notation of the behavioral setting, in particular

those of linear differential behaviors, state maps and quadratic differential forms.
A simplified collection of the theory that is relevant for the presented results can be
found in Appendix A, p. 2046 of [12].

11.3 Modeling of Energy Distribution Networks

Consider the energy distribution network in Fig. 11.1, consisting of a switching power
converter feeding three types of loads represented by impedances. Z N represents a
nominal load, i.e., the load that is considered during the design stage of the converter
and which remains connected in the implementation. Zk , k = 1, . . . , L , represents
a switched impedance, i.e., a finite amount of loads that can be connected or dis-
connected arbitrarily and which are not necessarily known during the design stage,
e.g., domestic/commercial (dis-)connectable loads, (dis-)connectable electric vehi-
cles, etc. Finally, ZC P L represents the negative impedance of a switching power
converter behaving as a constant power load (CPL), which is a potential destibi-
lizer of the network (see [8]). The CPL is modeled according to [17] as a negative
impedance in parallel with a constant current source.

Fig. 11.1 Energy
distribution network
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Note that the complexity of the network is neither initially bounded nor fixed,
i.e., the McMillan degree associated to each impedance depends on their constitutive
reactive elements which in the case of Zk , k = 1, . . . , L , may change depending
on the loads that are connected during certain intervals of time. In the following
sections, we discuss a natural modeling approach that deals effectively with this type
of network.

11.3.1 Modeling of Loads as Impedances

When we study systems consisting of interconnections of port-driven electrical net-
works, e.g., transmission lines with points of common coupling, filters, loads, etc.,
we are compelled to adopt the calculus of m-port impedances for simplification
of computations, see, e.g., [6, 14, 15, 21, 29]. In the case of energy distribu-
tion networks, this is also a common approach for the study of stability, see, e.g.,
[8, 20, 25, 30].

Models based on impedance matrices describe the “input–output dynamics” of
the network in terms of the variables V := col(v1, . . . , vm) and I := col(i1, . . . , im),
corresponding, respectively, to the voltages across and currents through each port.
Let P

( d
dt

)
V = Q

( d
dt

)
I , with P, Q ∈ R

m×m[s], be an input–output representation
(see [16]) of the network obtained by applying current and voltage laws. Adopting
C∞ as the solution space, the external behavior of the network is defined as

B :=
{
col(V, I ) ∈ C∞(R,R2m)

∣∣∣∣ P

(
d

dt

)
V = Q

(
d

dt

)
I

}
. (11.1)

The impedance Z ∈ R
m×m(s) associated to the external behavior is defined as

Z(s) := P(s)−1Q(s). If the behavior B is controllable (see Chap. 5 of [16]), i.e.,
R(s) := [

Q(s) −P(s)
]
is such that rank R(s) is equal to rank R(λ) for all λ ∈ C,

then it admits an image representation

[
I
V

]
=

[
U
( d
dt

)
Y
( d
dt

)
]

z (11.2)

where z ∈ C∞(R,Rz) corresponds to a latent variable and U, Y ∈ R
m×m[s] are

such that Z(s) = Y (s)U (s)−1. Moreover, if M(λ) is of full column rank for all
λ ∈ C, we conclude that the latent variable z is observable from w := col(V, I )
and its number of components corresponds to the number of inputs, i.e., z = m. A
controllable behavior always admits an observable image representation (see [28],
Sect. VI-A).

Assuming controllability, the dynamic model of a network described as (11.2)
can be obtained in a simple way by series- and parallel computations, since any
complex m-port impedance matrix Z consists of the interconnection of impedances
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Fig. 11.2 Series/parallel
interconnection of
impedances/admittances

Fig. 11.3 Port-driven
electrical circuit

of lower complexity. The simplest components are 1-port impedances corresponding
to inductors, resistors, and capacitors, i.e., ZL(s) = Ls, Z R(s) = R, Zc(s) = 1

Cs .
The inverse of an impedance, if exists, is equal to an admittance denoted by Y , i.e.,
Y = Z−1.

Consider for instance the n-port networks in Fig. 11.2, whose terminals represent
an m number of terminal pairs. The resultant m-port impedance/admittance due to
series (Fig. 11.2a) and parallel (Fig. 11.2b) interconnections is computed as Z =
Z1 + Z2 and Y = Y1 + Y2, respectively.

Example 11.1 Consider the 1-port electrical circuit in Fig. 11.3. The 1-port
impedance of the circuit can be computed by series and parallel operations as

Z(s) = L1s+
(L2s + R)

(
1

C1s

)

(L2s + R) +
(

1
C1s

) = L1L2C1s3 + RL1C1s2 + (L1 + L2)s + R

L2C1s2 + RC1s + 1
,

(11.3)
which corresponds to the input–output description

L1L2C1
d3

dt3
I + RL1C1

d2

dt2
I +(L1+ L2)

d

dt
I + RI = L2C1

d2

dt2
V + RC1

d

dt
V +V .

Let for simplicity R = 1 Ω , L1 = L2 = 1 H and C = 1 F , then

[
V
I

]

︸︷︷︸
=:w

=
[

d3

dt3
+ d2

dt2
+ 2 d

dt + 1
d2

dt2
+ d

dt + 1

]

︸ ︷︷ ︸
=:M

(
d
dt

)

z ,
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Fig. 11.4 Simplification of the energy distribution network in Fig. 11.1

where z is a latent variable corresponding to the current through the inductor L2.
Since M(λ) is of full column rank for all λ ∈ C, we conclude that the latent variable
z is observable from w. ��

The calculus of impedances facilitates our analysis, for instance the energy dis-
tribution network in Fig. 11.1 can be simplified by computing ZTk , k = 1, . . . , L ,
as

1

ZTk (s)
= 1

Zk(s)
+ 1

Z N (s)
+ 1

ZC P L(s)
; k = 1, . . . , L .

The simplified network is depicted in Fig. 11.4.

Remark 11.2 It is important to emphasize that ZC P L , and consequently ZTk , k =
1, . . . , L , do not necessarily correspond to impedances of passive networks as in
traditional circuit theory, since ZC P L corresponds to the local approximation of a
constant power load which is by definition nonpassive (i.e., it is not positive-real in
the sense of [14]), tipically modeled as a negative resistor [17].

We have illustrated the modeling of loads as impedances, that gives rise in a
natural way to higher order descriptions. In the following section, we discuss a
modeling approach that permits the study of switching dynamics induced by the
DC–DC converter and the switched impedance ZTk , k = 1, . . . , L , directly in higher
order terms.

11.3.2 Switched Linear Differential Systems Framework

We now introduce the SLDS framework. We illustrate the main concepts of this
approach by modeling a switching power converter.

Definition 11.3 ([10])A switched linear differential system (SLDS) Σ is a quadruple
Σ = {P,F ,S,G} where
• P = {1, . . . , N } ⊂ N, is the set of indices;
• F = {B1, . . . ,BN }, withBi a linear differential behavior and i ∈ P , is the bank

of behaviors;
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• S = {s : R → P}, with s piecewise constant and right-continuous, is the set of
admissible switching signals; and

• G = {
(G−

k→ j (s), G+
k→ j (s)) ∈ R

•×w[s] × R
•×w[s] | 1 ≤ k, j ≤ N , k �= j

}
, is

the set of gluing conditions.

The set of switching instants associated with s ∈ S is defined by Ts := {t ∈
R | s(t−) �= s(t+)} = {t1, t2, . . . }, where ti < ti+1.

The set of all admissible trajectories satisfying the laws of the mode behaviors
and the gluing conditions is the switched behavior, and is the central object of study
in our framework.

Definition 11.4 ([10]) Let Σ = {P,F ,S,G} be a SLDS, and let s ∈ S. The s
-switched linear differential behavior Bs is the set of trajectories w : R → R

w that
satisfy the following two conditions:

1. for all ti , ti+1 ∈ Ts , w |[ti ,ti+1)∈ Bs(ti ) |[ti ,ti+1);
2. w satisfies the gluing conditions G at the switching instants for each ti ∈ Ts , i.e.,

G+
s(ti−1)→s(ti )

(
d

dt

)
w(t+i ) = G−

s(ti−1)→s(ti )

(
d

dt

)
w(t−i ) . (11.4)

The switched linear differential behavior (SLDB) BΣ of Σ is defined by BΣ :=⋃
s∈S Bs .

The trajectories inBΣ are piecewise infinitely differentiable functions from R to Rw

denoted by C∞
p (R,Rw), i.e., smooth when a mode is active and possibly discontin-

uous at switching instants.

Example 11.5 Consider the high-voltage switching power converter presented in
[2] and depicted in Fig. 11.5a. For practical purposes such as voltage/current/power
regulation, we are particularly interested in the dynamics at the input/output termi-
nals. Consequently, we define the external variable (the set of variables of interest)
as w := col(E, iL , v2, io).

By means of a switching signal, we can arbitrarily induce two possible electrical
configurations that occur when the transistor is in either closed (see Fig. 11.5b)
or open (see Fig. 11.5c) operation. Considering a standard modeling of two-port
impedances for each case, we can derive the following physical laws describing the
dynamics of the power converter.

Mode 1 :
{

L d
dt iL + RLiL − E = 0

(C1 + C2)
d
dt v2 + 1

R v2 − io = 0
.

Mode 2 :
{

LC1
d2

dt2
iL + RLC1

d
dt iL − C1

d
dt E + iL = 0

C2
d
dt v2 + 1

R v2 − io = 0
.

The mode behaviors are defined asB j := ker R j
( d
dt

)
, j = 1, 2, where
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Fig. 11.5 a High-voltage switching power converter, b electrical configuration when the transistor
is closed, c electrical configuration when the transistor is open

R1

(
d

dt

)
:=

[−1 L d
dt + RL 0 0

0 0 (C1 + C2)
d
dt + 1

R −1

]
;

R2

(
d

dt

)
:=

[
−C1

d
dt LC1

d2

dt2
+ RLC1

d
dt + 1 0 0

0 0 C2
d
dt + 1

R −1

]
.

As we show later, the physical constraints imposed by physics at switching instants
can be modeled using gluing conditions. ��

According to Definition 11.3 gluing conditions are algebraic constraints on the
trajectories of the dynamical modes at switching instants and in real-life situations
their selection is motivated by physical laws. For instance, at switching instants
conservation principles forbid instantaneous changes in conserved quantities (see
[13]) such as charge, flux,momentum,molarmass, volume, etc. Another well-known
example of this type of constraints is the case of state reset maps in multicontroller
systems that re-initialize a bank of switched controllers interconnected to a plant.

Example 11.6 (Cont’d from Example 11.5) At switching instants, the physical laws
of the circuit impose constraints to the trajectories of the external variable at switching
instants. By inspecting the circuits in Fig. 11.5 and using the principle of conservation
of charge (see [13], Sect. 3.3.3),wefind the following conditions at switching instants.
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When switching fromB1 toB2 at ti :

iL(t+i ) = iL(t−i ),

E(t+i ) − RLiL(t+i ) − L
d

dt
iL(t+i )

︸ ︷︷ ︸
v1(t

+
i )

= v2(t
−
i ),

v2(t
+
i ) = v2(t

−
i ). (11.5)

When switching fromB2 toB1 at ti :

iL(t+i ) = iL(t−i ),

(C1 + C2)v2(t
+
i ) = C1E(t−i ) − C1RLiL(t−i ) − LC1

d

dt
iL(t−i )

︸ ︷︷ ︸
C1v1(t

−
i )

+C2v2(t
−
i ). (11.6)

Consequently, the gluing conditions can be defined as

G+
1→2

(
d

dt

)
:=

⎡
⎣
0 0 1 0
1 0 (−RL − L d

dt ) 0
0 0 0 1

⎤
⎦ ; G−

1→2

(
d

dt

)
:=

⎡
⎣
0 0 1 0
0 0 0 1
0 0 0 1

⎤
⎦ ;

G+
2→1

(
d

dt

)
:=

[
0 0 1 0
0 0 0 (C1 + C2)

]
; G−

2→1

(
d

dt

)
:=

[
0 0 1 0

C1 0 (−C1RL − LC1
d
dt ) C2

]
.

Equations (11.5) and (11.6) can be compactly written as

G+
1→2

(
d

dt

)
w(t+i ) = G−

1→2

(
d

dt

)
w(t−i ) ;

G+
2→1

(
d

dt

)
w(t+i ) = G−

2→1

(
d

dt

)
w(t−i ) .

��
A realistic set of gluing conditions are well-defined and well-posed. In order to

introduce these concepts, we use the notion of state maps.

Definition 11.7 Let Σ be a SLDS and let X j ∈ R
n(Bj )×w[s], induce minimal

state maps for B j , j = 1, . . . , N . The gluing conditions are well-defined if there
exist constant matrices F−

j→k and F+
j→k , with j, k = 1, . . . , N , j �= k, such that

G−
j→k(s) = F−

j→k X j (s) and G+
j→k(s) = F+

j→k Xk(s), with j, k = 1, . . . , N , j �= k.

IfG := {(F−
j→k X j (s), F+

j→k Xk(s))} j,k=1,...,N , j �=k. arewell-defined,we call them

well-posed if for all k, j = 1, . . . , N with k �= j , there exists a re-initialisation map
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Fig. 11.6 Example: Switching between dynamical modes with different state space and well-posed
gluing conditions

L j→k : R
n(Bj ) → R

n(Bk ) such that given a switching signal s ∈ S such that
s(ti−1) = j and s(ti ) = k; for all ti ∈ Ts and all admissible w ∈ BΣ with associated
latent variable trajectories, it holds that X j

( d
dt

)
w(t+i ) = Lk→ j Xk

( d
dt

)
w(t−i ).

Well-defined and well-posed gluing conditions imply that if a transition occurs
between B j and Bk at ti , and if an admissible trajectory ends at a “final state”
v j := X j

( d
dt

)
w(t−i ), then there exists at most one “initial state” forBk , defined by

Xk
( d
dt

)
w(t+i ) =: vk , compatible with the gluing conditions. Moreover, the matrix

L j→k determines the reinitialization of the state space of Bk as a linear function of
that of B j , as illustrated in Fig. 11.6.

Example 11.8 (Cont’d Example 11.5) Consider the following state maps forB1 and
B2 respectively.

X1

(
d

dt

)
:=

[
0 0 1 0
0 0 0 1

]
; X2

(
d

dt

)
:=

⎡
⎣
0 0 1 0
1 0 (−RL − L d

dt ) 0
0 0 0 1

⎤
⎦ ;

inducing the states X1
( d
dt

)
w = col(iL , v2) and X2

( d
dt

)
w = col(iL , v1, v2). The

gluing conditions can be written as
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G+
1→2

(
d

dt

)
:= I3X2

(
d

dt

)
; G−

1→2

(
d

dt

)
:=

⎡
⎣
1 0
0 1
0 1

⎤
⎦ X1

(
d

dt

)
;

G+
2→1

(
d

dt

)
:=

[
1 0
0 (C1 + C2)

]
X1

(
d

dt

)
; G−

2→1

(
d

dt

)
:=

[
1 0 0
0 C1 C2

]
X2

(
d

dt

)
.

It is thus amatter of straightforwardverification to conclude that the gluing conditions
are well-defined and well-posed according to Definition 11.7. ��

The properties of well-definedness and well-posedness are in general satisfied for
common implementations of energy networks, consider for example the following
proposition.

Proposition 11.9 Assume that switching among the dynamical modes of a switched
electrical network does not involve short-circuiting of voltage sources or open-
circuiting of current sources. Then the gluing conditions are well-defined.

Proof If switching betweenmodes does not involve short- or open-circuiting sources,
no constraints on the input variables of the system are imposed at the switching
instants. Consequently, the gluing conditions only impose constraints on the output
variables of the modes, which are linear functions of the state variables. The claim
follows. ��

Well-posed gluing conditions (seeDefinition 11.7) guarantee that after a switching
instant, only one initial state for the new dynamical regime is specified from the final
state of the previous one. Such property holds since the switching cannot cause
any increase in the total amount of charge or flux stored in the system. On this
issue, see [13] where the analysis of a wide variety of physical systems exhibiting
discontinuities is presented, and [4, 5, 22]. In the rest of this paper, we assume that
the gluing conditions are well-posed.

11.3.3 Latent Variables

As discussed in the previous section, controllable mode behaviors can be described
using observable image representations w = M j

( d
dt

)
z j , j = 1, . . . N . It follows

that every trajectory of the latent variable z j corresponds to a unique trajectory of the
external variable w when the jth mode is active. In the rest of this chapter we adopt
the use of image representations, where w := (u, y) has m inputs and m outputs,
denoted by u and y, respectively, and corresponding to port-voltages and currents,
as discussed in Sect. 11.3.1.

Example 11.10 (Cont’d from Example 11.5) Recall that w := col(E, iL , v2, io). It
can be verified that the mode behaviors B j , i = 1, 2, are controllable and thus can
be described by w = M j

( d
dt

)
z j , j = 1, 2, where
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M1

(
d

dt

)
:=

⎡
⎢⎢⎣

L d
dt + RL 0
0 (C1 + C2)

d
dt + 1

R
1 0
0 1

⎤
⎥⎥⎦ ;

M2

(
d

dt

)
:=

⎡
⎢⎢⎣

LC1
d2

dt2
+ RLC1

d
dt + 1 0

0 C2
d
dt + 1

R
C1

d
dt 0
0 1

⎤
⎥⎥⎦ ;

and z1 := col(iL , v2), z2 := col(v1, v2). Moreover, since M j (λ), j = 1, 2, are full
column rank for all λ ∈ C we conclude that the latent variables z j , j = 1, 2 are
observable from w. ��

According to Definitions 11.3 and 11.4, the gluing conditions are algebraic con-
straints acting on the external variables at switching instants; however, they can be
rewritten in terms of latent variables z j , j = 1, . . . N , in the following manner.
Define

G
+
s(ti−1)→s(ti )

(
d

dt

)
:=

(
G+

s(ti−1)→s(ti )
Ms(ti )

)( d

dt

)
,

G
−
s(ti−1)→s(ti )

(
d

dt

)
:=

(
G−

s(ti−1)→s(ti )
Ms(ti −1)

)( d

dt

)
,

with s ∈ S. Consequently, if w and z j are related by an observable image represen-
tation w = M j

( d
dt

)
z j , the gluing conditions in (11.4) can be equivalently written

as

G
+
s(ti−1)→s(ti )

(
d

dt

)
zs(ti )(t

+
i ) = G

−
s(ti−1)→s(ti )

(
d

dt

)
zs(ti −1)(t

−
i ) .

Example 11.11 (Cont’d from Example 11.10) Given the gluing conditions in Exam-
ple 11.8, we can reformulate them in terms of latent variables using M1

( d
dt

)
and

M2
( d
dt

)
as follows.

G
−
1→2

(
d

dt

)
:= (

G−
1→2M1

) ( d

dt

)
=

⎡
⎣
1 0
0 1
0 1

⎤
⎦ ,

G
+
1→2

(
d

dt

)
:= (

G+
1→2M2

) ( d

dt

)
=

⎡
⎣

C1
d
dt 0
1 0
0 1

⎤
⎦

�

,

G
−
2→1

(
d

dt

)
:= (

G−
2→1M2

) ( d

dt

)
=

[
C1

d
dt 0

C1 C2

]
,
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G
+
2→1

(
d

dt

)
:= (

G+
2→1M1

) ( d

dt

)
=

[
1 0
0 C1 + C2

]
.

��

11.4 Modularity

One of the main features of this framework is its modularity; every time a dynamic
mode is added to the underlying bank, there is no need to modify the mathematical
description of the existing modes. In the case of the energy distribution network in
Fig. 11.4, the dynamic modes of the converter and the loads can be individually mod-
eled and linked in a single model by the elimination of auxiliary variable. Consider
the following proposition.

Proposition 11.12 Consider the energy distribution network in Fig.11.4. Assume
that the dynamical modes of the switching power converter can be described in image
form w = M j

( d
dt

)
z j , where M j ∈ R

4×2[s]; z j = col(z1, j , z2, j ) ∈ C∞
p (R,R2);

j = 1, 2; and w := [
V I i v

]�
. Let zk ∈ C∞

p (R,R), k = 1, . . . , L, then there

exist M̂ j,k ∈ R
4×2[s] such that the mode behaviors can be described by image

representations ⎡
⎢⎢⎣

V
I
i
v

⎤
⎥⎥⎦ = M̂ j,k

(
d

dt

)[
z1, j

z′
k

]
, (11.7)

with j = 1, 2, and k = 1, . . . , L.

Proof The impedance ZTk , k = 1, . . . , L , is described by a one-port, and conse-
quently can also be represented in observable image representation by M ′ ∈ R

2×1[s]
with external variables w′ := [

I ′ v
]� and a one-dimensional latent variable denoted

by z′
k . It follows from the elimination theorem (see Sect. 6 of [16]) that after the

elimination of the latent variable z2, j , j = 1, 2, the interconnection of this one-port
with the switching power converter has a number 2L of dynamic modes that can be
described as two-ports, corresponding to the image representations (11.7). ��
Example 11.13 Consider the energy distribution network in Fig. 11.4, where the
DC-DC converter is that of Fig. 11.5. Let pk, qk ∈ R[s], k = 1, . . . , L , define
Zk(s) := nk(s)

dk(s)
, k = 1, . . . , L . The mode dynamics with w := col(E, I, iL , v)

are described by w = M j,k
( d
dt

)
zk , where z1 := col(i1, z′

k), z2 := col(v1, z′
k),

k = 1, . . . , L , and j = 1, 2.
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M1,k

(
d

dt

)
:=

⎡
⎢⎢⎣

RL + L d
dt 0

0 dk
( d
dt

) + (C1 + C2)
d
dt nk

( d
dt

)
1 0
0 nk

( d
dt

)

⎤
⎥⎥⎦ ;

M2,k

(
d

dt

)
:=

⎡
⎢⎢⎢⎣

LC1
d2

dt2
+ RLC1

d
dt + 1 0

0 dk
( d
dt

) + C2
d
dt nk

( d
dt

)
C1

d
dt 0
0 nk

( d
dt

)

⎤
⎥⎥⎥⎦ ;

with k = 1, . . . , L . The gluing conditions can be obtained bydefining the impedances
Zk , k = 1, . . . , L and following the procedure exemplified in Examples 11.5 and
11.11. ��

As illustrated inExample 11.13, eachmode can bemodeled independently, i.e., we
compute the laws of each two-port network that depends on the mode of operation of
the converter and the model of the switched impedance Zk , 1, . . . , L . It can be easily
verified that the McMillan degree of each mode behavior is not fixed and depends
on the degree of the denominator of Zk , 1, . . . , L . However each mode exhibits only
the required level of complexity to describe each dynamic mode. This is in sharp
contrast with the traditional approach where the dynamic modes are represented by
d
dt x = Ai x , with Ai ∈ R

n×n , i.e., considering a global state space and where n is
the highest possible McMillan degree. The latter approach results in more complex
dynamic models (with more variables andmore equations), which has an impact also
on the complexity of stability analysis, simulation, control, etc. Moreover, there is
no compelling reason to resort to such non-parsimonious approach if we can study
the dynamic properties of the network directly in higher order terms, as shown in the
following section.

11.5 Passivity

The concept of passivity will be crucial for the development of stability conditions
and stabilization methods discussed in this chapter. To define passive SLDS, we
first introduce the following notation. Since we require the integration of functionals
acting on w ∈ BΣ , we assume that they involve piecewise infinitely differentiable
trajectories of compact support whose set is denoted byDp(R,Rw). Thus the trajec-
tories which we will be considering in the following belong toBΣ ∩ Dp(R,Rw).

Let s ∈ S be a fixed switching signal, with associated set of switching instants
Ts := {t1, t2, . . . , tn, . . .}. We denote by |Ts | the total number of switching instants,
possibly infinite, in Ts . Let

Φ := 1

2

[
0m×m Im

Im 0m×m

]
, (11.8)
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and let w ∈ BΣ ∩ Dp(R,Rw). If |Ts | = ∞, define

∫
QΦ(w) :=

∫ t−1

−∞
QΦ(w) dt +

∫ t−2

t+1
QΦ(w) dt + · · · +

∫ t−n+1

t+n
QΦ(w) dt + · · · .

If 0 < |Ts | < ∞, then define

∫
QΦ(w) :=

∫ t−1

−∞
QΦ(w) dt +

|Ts |∑
k=2

∫ t−k

t+k−1

QΦ(w) dt +
∫ ∞

t+|Ts |
QΦ(w) dt.

If |Ts | = 0, i.e., no switching takes place, then

∫
QΦ(w) :=

∫ +∞

−∞
QΦ(w) dt.

The definition of passive SLDS is as follows.

Definition 11.14 Let Σ be a SLDS and define Φ as in (11.8). Σ is passive if∫
QΦ(w) ≥ 0 for all w ∈ BΣ ∩ Dp(R,Rw).

In the previous definition, the quadratic differential form QΦ can be interpreted
as the power that is oriented into the system, and consequently its integral over the
real line measures the energy that is being supplied to, or flows out from the SLDS.
If the net flow of energy is nonnegative, then we call the SLDS passive. Passivity
implies input–output stability (see e.g., [26]), in the sense that unbounded output
trajectories cannot occur as a consequence of bounded input trajectories (see also
Sect. V of [10] for further elaboration).

In the SLDS framework, the concept of storage function arises in a natural way,
describing the energy stored in each individual dynamical mode.

Definition 11.15 Let Σ be a SLDS and let s ∈ S. An N -tuple
(
QΨ1 , . . . , QΨN

)
is

a multiple storage function for Σ with respect to QΦ if

(1) d
dt QΨi

Bi≤ QΦ , i = 1, . . . , N .
(2) ∀ w ∈ BΣ and ∀ tk ∈ Ts , it holds QΨs(tk−1)

(w)(t−k ) − QΨs(tk )
(w)(t+k ) ≥ 0 .

We now prove that the existence of a multiple storage function implies that the
SLDS is passive.

Theorem 11.16 Let Σ be a SLDS and let Φ := 1
2

[
0m×m Im

Im 0m×m

]
. Assume that there

exists a multiple storage function as in Definition 11.15. Then Σ is passive.

Proof Let t0 := −∞ and let sw ∈ S denote the switching signal that corresponds to
a given trajectory w ∈ BΣ . We consider the three possible cases, i.e., (1) |Ts | = ∞,
(2) 0 < |Ts | < ∞ and (3) |Ts | = 0. It follows from Theorem 4.3 of [24], that since
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there exists QΨi such that d
dt QΨi

Bi≤ QΦ , i = 1, . . . , N , then Bi , i = 1, . . . , N , is
passive (i.e., dissipative with respect to QΦ ).

Let a < b, then for all w ∈ BΣ with sw(t) = i for t ∈ [a, b], it holds that∫ b
a QΦ(w) dt ≥ QΨi (w)(b) − QΨi (w)(a), corresponding to the integration over

t ∈ [a, b] of QΨi ≤ QΦ , for w ∈ Bi ∈ Dp(R,Rw).
Since limt→±∞ w(t) = 0 for all w ∈ BΣ ∩ Dp(R,Rw) we obtain the following

expressions for cases (1) and (2), where s = sw:

(1)
∫

QΦ(w) ≥ (QΨs(t0)
(w)(t−1 ) − QΨs(t1)

(w)(t+1 )) + · · ·
+ (QΨs(tn−1) (w)(t−n ) − QΨs(tn )

(w)(t+n )) + · · · .

(2)
∫

QΦ(w) ≥ (QΨs(t0)
(w)(t−1 ) − QΨs(t1)

(w)(t+1 ))

+ Σ
|Ts |−1
k=2 (QΨs(tk−1)

(w)(t−k ) − QΨs(tk )
(w)(t+k ))

+ (QΨs(|Ts |−1) (w)(t−|Ts |) − QΨs(|Ts |) (w)(t+|Ts |)).

Since QΨs(tk−1)
(w)(t−k ) − QΨs(tk )

(w)(t+k ) ≥ 0, ∀ tk ∈ Ts , we conclude that in both

cases
∫

QΦ(w) ≥ 0.
Finally the claim for (3) when no switching takes place, i.e., sw(t) = i for all

t , follows readily from the existence of a storage function QΨi and Theorem 4.3
of [24]. ��

The conditions for the existence of a multiple storage function can be expressed
in terms of linear matrix inequalities according to the following result (see Theorem
4 of [10]) providing an LMI-based test for passivity of SLDS. In the following, the
coefficient matrix of F(s) = ∑N

i=0 Fi si ∈ R
q1×q2 [s] is defined by

F̃ := [
F0 F1 . . . FN

]
. (11.9)

Note that F(s) = F̃
[
Iq2 s Iq2 . . . Iq2s N

]�
.

Theorem 11.17 Let Σ be a SLDS with G well-defined and well-posed. Let Xk ∈
R
n(Bk )×z[s] be a minimal state map for Bk , acting on the latent variable zk ,

k = 1, . . . , N, and let Li→ j ∈ R
n(Bj )×n(Bi ) for all i, j ∈ P , i �= j , be the

re-initialisations maps of Σ . Denote the coefficient matrix of Mk(s) by M̃k :=[
Mk,0 . . . Mk,Lk

]
; then there exist Xk, j ∈ R

n(Bk )×m, k = 1, . . . , N, j = 1, . . . , Lk−
1 such that Xk(s) can be written as X̃k := [

Xk,0 . . . Xk,Lk−1
]
.

If there exist Kk = K �
k ∈ R

n(Bk )×n(Bk), k = 1 . . . , N, such that

M̃�
k Φ M̃k −

[
0m×n(Bk)

X̃�
k

]
Kk

[
X̃k 0n(Bk)×m

]−
[

X̃�
k

0m×n(Bk)

]
Kk

[
0n(Bk )×m X̃k

] ≥ 0 ,

(11.10)
and moreover, if for k, j = 1, . . . , N, k �= j , it holds that
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Kk − L�
k→ j K j Lk→ j ≥ 0 , (11.11)

then Σ is passive.

Based on this result, in the following section we develop a stabilization technique
for energy distribution networks.

11.6 Energy-Based Stabilization

To deal with instability of energy distribution networks, we use passive damping
(see, e.g., [1]), where a passive load (filter) is interconnected to the system in order
to guarantee stability.

We consider the case where the energy distribution network is unstable due to
the presence of constant power loads (see [17]). We proceed to design a filter that
guarantees stability when interconnected to the converter, see Fig. 11.7.

For ease of exposition, we consider only one impedance ZT (s) and the filter as
an additional load in the array depicted in Fig. 11.7. The impedance function of the
filter is given by

Z f (s) = p(s)

q(s)
; (11.12)

with an associated image form representation

[
i f

v

]
=

[
p( d

dt )

q( d
dt )

]
z′ , (11.13)

andwhose parameters need be computed. The interconnection of impedances (11.12)
and ZT (s) in Fig. 11.7 yields

Zint (s) := ZT (s)Z f (s)

ZT (s) + Z f (s)
= n(s)

d(s)
. (11.14)

Fig. 11.7 Energy
distribution network with a
stabilizing filter
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The first step in our procedure is to obtain image representations w = Mk
( d
dt

)
zk ,

i = 1, . . . , N , describing each mode as in Proposition 11.12, and exemplified in
Example 11.13. Similarly, we model the corresponding gluing conditions and com-
pute reinitialization maps as in Definition 11.7.

The second step in our procedure is the setting up of a system of matrix inequal-
ities corresponding to the conditions of Theorem 11.17. To make explicit the linear
dependence on the parameters of Zint , in the following we write Mk(s) and their
corresponding state maps Xk(s), respectively, as Mk ,̃n,d̃(s), and Xk ,̃n,d̃(s), where ñ,
d̃ are the coefficient matrices of the numerator and denominator of Zint , that also
involve the coefficients of the passive filter:

M̃�
k ,̃n,d̃

Φ M̃k ,̃n,d̃ −
[
0m×n(Bk )

X̃�
k ,̃n,d̃

]
Kk

[
X̃k ,̃n,d̃ 0n(Bk)×m

]

−
[

X̃�
k ,̃n,d̃

0m×n(Bk )

]
Kk

[
0n(Bk )×m X̃k ,̃n,d̃

] ≥ 0 , k = 1, . . . , N ,

Kk − L�
k→ j K j Lk→ j ≥ 0 , k, j = 1, . . . , N , k �= j . (11.15)

The third step is to formalize the requirement that the filter is passive. Define

Φ ′ := 1

2

[
0 1
1 0

]
, M ′(s) :=

[
p(s)
q(s)

]
, X ′(s) :=

⎡
⎢⎢⎢⎣

1
s
...

sdeg(p)−1

⎤
⎥⎥⎥⎦ , (11.16)

and denote the coefficient matrices of M ′ and X ′ by M̃ ′
p̃,̃q and X̃ ′, respectively. With

these positions, it follows from the positive-real lemma that q
p is positive-real if and

only if there exists K ′ = K ′� ∈ R
deg(p)×deg(p) such that

M̃ ′�̃
p,̃qΦ ′M̃ ′̃

p,̃q −
[
01×deg(p)

X̃ ′�
]

K ′ [X̃ ′ 0deg(p)×1
]

−
[

X̃ ′�
01×deg(p)

]
K ′ [0deg(p)×1 X̃ ′] ≥ 0 . (11.17)

If values of the parameters p̃ and q̃ exist such that the matrix inequalities (11.15),
(11.17) are satisfied for some Kk , k = 1, . . . , N and K ′, then the interconnection
of Fig. 11.7 is passive, and consequently i/o stable. Moreover, the filter q

p can be
implemented using only resistors, capacitors, inductors, and transformers (see [14]).

We close this section with a numerical example.

Example 11.18 (Cont’d from Example 11.13) We consider the implementation in
Fig. 11.8, with RL = 0.1Ω; L = 880µH; C1 = C2 = 220µF; R = 500Ω .
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According to (11.12), we define the impedance of the filter Z f (s) := p(s)
q(s) with

p(s) = a0s + a1 and q(s) = 1, for which the a-parameters will be computed.
We consider the total impedance as a constant power load, i.e., ZT (s) = −RC P

with −RC P = −300Ω . Considering (11.14), we obtain n(s) = 300(a0 + a1s) and
d(s) = 300− a0 − a1s. We thus substitute n

( d
dt

)
and d

( d
dt

)
in the dynamic models

computed in Example 11.13. Define state maps for each dynamical mode acting,
respectively, on the latent variables z1 and z2 as

X1

(
d

dt

)
:=

⎡
⎣
1 0
0 n

( d
dt

)
0 d

( d
dt

)

⎤
⎦ , X2 :=

⎡
⎣

C1
d
dt 0
1 0
0 n

( d
dt

)

⎤
⎦ ,

then for every tk ∈ Ts , the gluing conditions can be expressed as X2
( d
dt

)
z2(t

+
k ) =

L1→2X1
( d
dt

)
z1(t

−
k ) and X1

( d
dt

)
z1(t

+
k ) = L2→1X2

( d
dt

)
z2(t

−
k ), where

L1→2 :=

⎡
⎢⎢⎣
1 0 0
0 1 0
0 1 0
0 0 1

⎤
⎥⎥⎦ , L2→1 :=

⎡
⎣
1 0 0 0
0 C1

C1+C2

C2
C1+C2

0
0 0 0 1

⎤
⎦ .

We now solve simultaneously the bilinear matrix inequalities (11.15) and (11.17)
using standard solvers such as Yalmip. We thus obtain a solution a0 = 377, a1 =
293× 10−6, b2 = 377. Finally, the realization of the filter with impedance Z f (s) =
293 × 10−6s + 377 is shown in Fig. 11.9. ��

Fig. 11.8 Stable interconnection of a DC–DC converter with a passive filter and a constant power
load

Fig. 11.9 Realization of the
stabilizing filter
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11.7 Conclusions

We introduced a modeling approach for energy distribution networks based on the
switched linear differential framework in [12]. We also introduce the concept of
passive SLDS and we study its relevance in the study of networks, deriving a stabi-
lization method for switching power converters feeding potential destabilizers such
as constant power loads. We have shown that elements of behavioral system theory
such as linear differential behaviors and quadratic differential forms provide suitable
tools to study the network using higher order differential models obtained directly
from first principles.
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Chapter 12
Nonlinear Controller Design Based
on Invariant Manifold Theory

Noboru Sakamoto

Abstract The role of invariant manifold in nonlinear control theory is reviewed.
First, stable, center-stable and center manifold algorithms to compute flows on these
manifolds are presented. Next, application results of the computational methods
are illustrated for optimal stabilization, optimal output regulation and periodic orbit
design problems.

12.1 Introduction

Invariant manifold plays a central role in the analysis of the geometric structure of a
dynamical system and its history dates back to Poincare [2, 3, 8]. Especially, stable,
center-stable, center unstable and unstable manifolds around a fixed point locally
decompose phase space and gives a clear understanding of the dynamical system.

In nonlinear control theory, the significance of stable manifold of Hamiltonian
systems is recognized in [15, 16] and this line of research is extended in [10, 12].
Huang and Rugh [5, 6], Isidori and Byrnes [7] and present solvability conditions for
output regulation problem via center manifold theory, while, in [11], it is shown that
center-stable manifold is directly related to a solution for optimal output regulation
via Hamiltonian systems.

In this paper, we review the recent developments of nonlinear control designmeth-
ods based on invariant manifold theory. First, we show the computational algorithms
for stable, center-stable and center manifolds. These methods consists of solving
ordinary differential equations iteratively, which is easy to implement with a com-
puter, and provide flows on themanifolds.We first present the iterative algorithms for
computing the three types of invariant manifolds in Sect. 12.2 and then present their
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applications in nonlinear control problems. The applications include optimal swing
up and stabilization of an inverted pendulum [4], design of optimal servo system [11]
and computation of periodic orbits in the restricted three body problem [9].

N. Sakamoto had an opportunity to work with Arjan van der Schaft during the
years of 2005–2006 in Groningen. The work became a publication [12], from which
fundamentals of this paper came out.

12.2 Invariant Manifolds and Their Computational
Algorithms

Consider the following system

⎧
⎪⎨
⎪⎩

ẋ = Ax + X (t, x, y, z)

ẏ = By + Y (t, x, y, z)

ż = Cz + Z(t, x, y, z)

(12.1)

x ∈ R
nx , y ∈ R

ny , z ∈ R
nz . The functions X , Y , Z are Ck functions (k � 1) such

that X (t, 0, 0, 0) = 0, DX (t, 0, 0, 0) = 0, Y (t, 0, 0, 0) = 0, DY (t, 0, 0, 0) = 0,
Z(t, 0, 0, 0) = 0, DZ(t, 0, 0, 0) = 0 for all t ∈ R.

Assumption 12.1 (i) All the eigenvalues of A have negative real parts.
(ii) All the eigenvalues of B have zero real parts.
(iii) All the eigenvalues of C have positive real parts.

Under these conditions, it is known that there exist several invariant manifolds for
(12.1).

Definition 12.2 Ck-manifolds W s , W cs and W c in a neighborhood of the ori-
gin are said to be a stable, center-stable and center manifold, respectively, if
W s , W cs are W c are invariant under the flow of (12.1) as long as the solution
remains in the neighborhood and W s , W cs and W c are graphs of Ck functions
(y, z) = (v+(t, x), w+(t, x)), z = w∗+(t, x, y) and (x, z) = (u∗(t, y), w∗(t, y)),
respectively, with Dx v+(t, 0) = 0, Dx w+(t, 0) = 0, Dνw∗+(t, 0, 0) = 0 (ν = x, y),
Dyu∗(t, 0) = 0 and Dyw∗(t, 0) = 0 for all t ∈ R.

The following Lemma is derived using Assumption 12.1.

Lemma 12.3 There exist constants α > 0, K A > 1 and KC > 1 such that

|eAt x | � K Ae−αt |x | (t � 0),

|eCt z| � KC eαt |z| (t � 0),
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for all x ∈ R
nx , z ∈ R

nz . Moreover, for every 0 < ε < α there exists a Kε > 1 such
that

|eBt y| � Kεeε|t ||y| for all y ∈ R
ny . (12.2)

Assuming that appropriate cut-off functions [14] are already multiplied to (12.1)
to ensure the uniqueness of the invariant manifolds, the following Lemma can be
shown.

Lemma 12.4 There exists a continuous nonnegative nondecreasing function κ :
[0,∞) → [0,∞) with κ(0) = 0 such that

|X (t, x, y, z)| + |Y (t, x, y, z)| + |Z(t, x, y, z)| � κ(|x | + |y| + |z|)(|x | + |y| + |z|),
|X (t, x, y, z) − X (t, x ′, y′, z′)| � κ(δ)(|x − x ′| + |y − y′| + |z − z′|),
|Y (t, x, y, z) − Y (t, x ′, y′, z′)| � κ(δ)(|x − x ′| + |y − y′| + |z − z′|),
|Z(t, x, y, z) − Z(t, x ′, y′, z′)| � κ(δ)(|x − x ′| + |y − y′| + |z − z′|),

for all x, y, z, x ′, y′, z′ and t.

12.3 Algorithms for Invariant Manifold Computation

(i) Stable manifold algorithm:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xk+1(t, x0) = eAt x0 +
∫ t

0
eA(t−s) X (s, xk(s), yk(s), zk(s)) ds

yk+1(t, x0) = −
∫ ∞

t
eB(t−s)Y (s, xk(s), yk(s), zk(s)) ds

zk+1(t, x0) = −
∫ ∞

t
eC(t−s) Z(s, xk(s), yk(s), zk(s)) ds

(12.3)

with x1(t) = eAt x0, y1(t) = 0, z1(t) = 0.
(ii) Center-stable manifold algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xk+1(t, x0, y0) = eAt x0 +
∫ t

0
eA(t−s) X (s, xk(s), yk(s), zk(s)) ds

yk+1(t, x0, y0) = eBt y0 +
∫ t

0
eB(t−s)Y (s, xk(s), yk(s), zk(s)) ds

zk+1(t, x0, y0) = −
∫ ∞

t
eC(t−s) Z(s, xk(s), yk(s), zk(s)) ds

(12.4)
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with x1(t) = eAt x0, y1(t) = eBt y0, z1(t) = 0.
(iii) Center manifold algorithm:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xk+1(t, y0) =
∫ t

−∞
eA(t−s) X (s, xk(s), yk(s), zk(s))ds

yk+1(t, y0) = eBt y0 +
∫ t

0
eB(t−s)Y (s, xk(s), yk(s), zk(s))ds

zk+1(t, y0) = −
∫ +∞

t
eC(t−s) Z(s, xk(s), yk(s), zk(s))ds

(12.5)

with x1(t) = 0, y1(t) = eBt y0, z1(t) = 0.

Theorem 12.5 (i) For sufficiently small |x0|, xk(t, x0), yk(t, x0), zk(t, x0) in
(12.3) converge, uniformly with respect to x0, to a solution of (12.1). The limit
functions represent a flow on the stable manifold of (12.1).

(ii) For sufficiently small |x0| and |y0|, xk(t, x0, y0), yk(t, x0, y0), zk(t, x0, y0) in
(12.4) converge, uniformly with respect to x0 and y0, to a solution of (12.1).
The limit functions represent a flow on the center-stable manifold of (12.1).

(iii) For sufficiently small |y0|, xk(t, y0), yk(t, y0), zk(t, y0) in (12.5) converge,
uniformly with respect to y0, to a solution of (12.1). The limit functions represent
a flow on the center manifold of (12.1).

This theorem is obtained originally in [11, 12].

12.4 Optimal Regulator and Hamilton-Jacobi Equations

Hamilton-Jacobi equations (HJEs) are one of the fundamental equations in control
theory. HJEs are nonlinear partial differential equations of first order of the following
form

(HJ) H(x, p) := pT f (x) − 1

2
pT R(x)p + 1

2
xT Qx = 0

where p1 = ∂V/∂x1, . . . , pn = ∂V/∂xn . The role of HJEs is first recognized in
optimal regulator problem and later on, it is found that HJEs are related with system
dissipativity [17, 18], H∞ control [15, 16] and balanced realization theory [13].

Definition 12.6 A solution V (x) of (HJ) is said to be a stabilizing solution if x = 0
is an asymptotically stable equilibrium of a vector field ∂ H

∂p (x, p(x)), where p(x) =
(∂V/∂x)T (x).
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For example, let us consider the problem of optimal regulator:

�

⎧
⎨
⎩

dx

dt
= f (x(t)) + g(x(t))u(t)

y = h(x(t))

J = 1

2

∫ ∞

0
y(t)T y(t) + u(t)T R̄u(t) dt

where f : Rn → R
n , g : Rn → R

n×m are sufficiently smooth and R̄ > 0. If one
finds a stabilizing solution V (x) for the Hamilton-Jacobi equation

pT f (x) − 1

2
pT g(x)R̄−1g(x)T p + 1

2
h(x)T h(x) = 0, p = ∂V

∂x

T

,

then, the optimal regulator for (�, J ) is state feedback controller

u = −g(x)T ∂V

∂x
(x)

T

.

Suppose V (x) is a (not necessarily stabilizing) solution of (HJ). Then, the set

	V = {(x, p)|p = ∂V/∂x(x)}

is invariant under the flow of the associated Hamiltonian system derived from (HJ):

ẋ = ∂ H

∂p
(x, p), ṗ = −∂ H

∂x
(x, p) (12.6)

Conversely, if an n-dimensional manifold 	 in the (x, p)-space is invariant under
(12.6) and, at a point (x0, p0), the canonical projection π : (x, p) �→ x on 	

is surjective, then 	 possesses Lagrangian submanifold property and there exists
a solution V (x) of (HJ) around x0. If (x0, p0) = (0, 0) and the above conditions
such as the Lagrangian property hold, then the Hamiltonian flow of (12.6) on 	 is
convergent to the origin and therefore 	 is a stable manifold of (12.6). The function
V (x) defined on a neighborhood U of the origin satisfies

	 ∩ π−1(U) = {(x, p)|p = ∂V/∂x(x), x ∈ U}.

A sufficient condition for the local existence of the stable manifold, or equivalently,
the local stabilizing solution for (HJ) is obtained in [15]. It is a natural condition
based on a linearization argument. For the algebraic Riccati equation

(RIC) P A + AT P − P R(0)P + Q = 0,
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which is the linearization of (HJ), a symmetric matrix P is said to be the stabilizing
solution of (RIC) if it is a solution of (RIC) and A − R(0)P is stable.

Theorem 12.7 ([15]) If the Riccati equation has the stabilizing solution P, there
exists, locally around the origin, the stabilizing solution V (x) to (HJ) with (∂2V/

∂x2)(0) = P.

The theorem also says that if the stabilizing solution to (RIC) exists, an n-dimensional
stable manifold, from which the stabilizing solution to (HJ) can be derived, locally
exists around the origin.

Let us assume that the following algebraic Riccati equation has the stabilizing
solution P

P A + AT P − P R(0)P + Q = 0. (12.7)

The associated Hamiltonian system (12.6) is written as

(
ẋ
ṗ

)
=

⎛
⎜⎜⎝

∂ H

∂p

−∂ H

∂x

⎞
⎟⎟⎠ =

(
A −R(0)

−Q −AT

) (
x
p

)
+

(
N ′
1(x, p)

N ′
2(x, p)

)
(12.8)

where N ′
1(x, p), N ′

2(x, p) are higher order terms. Using the stabilizing solution P
for (12.7) and (12.8) can be put in a block-diagonalized form

(
ẋ
ṗ

)
=

(
A − R(0)P 0

−(A − R(0)P)T

) (
x
p

)
+

(
N1(x, p)

N2(x, p)

)
(12.9)

with appropriate linear coordinate transformation and therefore, it is shown that
(12.8) has a stable manifold and the stable manifold algorithm can be applied to
(12.9).

Example: Inverted pendulum optimal swing up and stabilization
The equations of motion of the inverted pendulum in Fig. 12.1 are

{
(M + m)ẍ + ml(θ̈ cos θ − θ̇2 sin θ) + bẋ = u

ml2θ̈ + mlẍ cos θ − mgl sin θ = 0.

In our experiment, input voltage u has a limitation and to explicitly consider it, we
put the above equations into the state-space equation with input saturation

ẋ = f (x) + g(x)sat(u)
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Fig. 12.1 Inverted pendulum on a cart (left schematic model, right experiment apparatus)

with

f (x) =

⎡
⎢⎢⎢⎢⎣

x2
mlx24 sin x3−bx2−mg cos x3 sin x3

M+m sin2 x3
x4

(M+m)g sin x3+bx2 cos x3−mlx24 sin x3 cos x3
l(M+m sin2 x3)

⎤
⎥⎥⎥⎥⎦

, g(x) =

⎡
⎢⎢⎢⎣

0
1

M+m sin2 x3
0

− cos x3
l(M+m sin2 x3)

⎤
⎥⎥⎥⎦

The optimal control is sought for the cost function

J =
∫ ∞

0
xT Qx + uT Ru dt, Q =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 4 0
0 0 0 40

⎞
⎟⎟⎠ , R = 1.

AHamilton-Jacobi equation including a saturation function is derived and the stable
manifold iteration (12.3) is applied. The feedback controller is constructed with 7th
order polynomials that interpolate the data obtained by the stablemanifold algorithm.
Figure12.2 shows the responses by the optimal control with saturation limit = 18[V]
while Fig. 12.3 depicts the responses with saturation = 12[V]. It is interesting to note
that the controller with smaller input limitation usesmore swings so that the swing up
is possible efficiently using smaller input voltage and these control strategy is derived
from the HJE defining the optimal control problem for the inverted pendulum.
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Fig. 12.2 2 swing responses
with |u| � 18[V]
(experiment)

Fig. 12.3 3 swing responses
with |u| � 12[V]
(experiment)

12.5 Optimal Output Regulation

Let us consider the set of equations of the form

ẋ = f (x) + g(x)u, x(t) ∈ R
n, f (0) = 0 (12.10)

e = h(x, w) (12.11)

ẇ = s(w), w(t) ∈ R
p, s(0) = 0, (12.12)

where f : Rn → R
n , g : Rn → R

n×m , s : Rp → R
p and h : Rn × R

p → R
r are

all sufficiently smooth. Output regulation problem is to find a controller u = u(x, w)

that stabilizes the system (12.10) with w = 0 so that the error (12.11) which consists
of the system state x and the state w of exosystem (12.12) is regulated 0 as t → ∞
for all initial values x(0), w(0) in some neighborhoods of the origin. This section
presents how to introduce optimality in output regulation theory based on the results
in [11].
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Denote A = ∂ f
∂x x(0), B = g(0), C = ∂h

∂x (0, 0), S = ∂s
∂w (0), Q = ∂h

∂w (0, 0).

Assumption 12.8 (i) The triple (A, B, C) is stabilizable and detectable.
(ii) The system is square, that is, the number of inputs and outputs are both r .
(iii) The system has relative degree 1, that is, Lgh(0, 0) is nonsingular.

Definition 12.9 (Optimal output regulation problem) Find a feedback controller
u(x, w) such that the closed loop system with w = 0 is locally asymptotically stable
at x = 0 and for any initial condition (x(0), w(0)) in a neighborhood of the origin
in Rn ×R

p, the error trajectory in (12.10) with u(x, w) minimizes the cost function

J = 1

2

∫ ∞

0
|e|2 + |ė|2 dt.

Note that J can be written as

J = 1

2

∫ ∞

0
|h(x, w)|2 + ∣∣L f h(x, w) + (Lgh(x, w))u + Lsh(x, w)

∣∣2 dt,

from which one sees that Assumption (12.8-iii) is necessary for the regularity of the
optimal control problem.

Assumption 12.10 (i) All the eigenvalues of S are on the imaginary axis.
(ii) The reference signal w(t) is bounded.
(iii) The zero dynamics of system (12.10) with output h(x, 0) has a hyperbolic

equilibrium at x = 0.

The above assumptions guarantee the existence of solution � ∈ R
n×p, � ∈ R

r×p

to the linear regulator equation

�S = A� + B�, C� + Q = 0. (12.13)

The Hamilton-Jacobi equation for the optimal output regulation (Definition 12.9) is

pT
x

{
f − g(Lgh)−1(L f h + Lsh)

}
+ pT

w s(w)

− 1

2
pT

x g(Lgh)−1(Lgh)−T gT px + 1

2
|h(x, w)|2 = 0 (12.14)

and the Hamiltonian system associated with (12.14) is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = (A − B(C B)−1C A)x − B(C B)−1QSw

− B(BT CT C B)
−1

BT px + N1(x, w, px )

ẇ = Sw + N2(w)

ṗx = CT Cx − CT Qw − (A − B(C B)−1C A)T px + N3(x, w, px )

ṗw = − QT Cx − QT Qw + ST QT (BT CT )−1BT px

− ST pw + N4(x, w, px , pw),

(12.15)
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where N1, N2, N3 and N4 are nonlinear terms.

Lemma 12.11 Under Assumptions 12.8 and 12.10, there exists a linear coordinate
trasformation in which the linear part of (12.15) is written

⎛
⎜⎜⎝

Ac 0 0 0
0 S 0 0
0 0 −Ac

T 0
0 0 0 −ST

⎞
⎟⎟⎠ ; Ac = A − B(C B)−1C A − B(BT CT C B)−1BT P,

where P is a stabilizing solution of a Riccati equation

P Ā + ĀT P − P RB P + CT C = 0;
with Ā = A − B(C B)−1C A, RB = B(BT CT C B)−1BT ,

and Ac is a stable matrix.

From Lemma 12.11, one knows that there exists a center-stable manifold in (12.15).

Theorem 12.12 Under Assumptions 12.8 and 12.10,

(i) there exists a center-stable manifold px = px (x, w) of (12.15) around the
origin (x, w) = (0, 0) such that it satisfies HJE (12.14) and is represented as a
derivative of a function of (x, w) defined in a neighborhood of (x, w) = (0, 0),

(ii) the solution of optimal output regulation problem is given by

u = −(Lgh)−1
{
(Lgh)−T g(x)T px (x, w) + L f h(x, w) + Lsh(x, w)

}
,

where px (x, w) represents the center-stable manifold of (12.15) around the
origin.

A numerical example: Consider the example with unstable linearization

(
ẋ1
ẋ2

)
=

(
1 0.5
3 1.6

) (
x1
x2

)
+

(
0

x31 + x32

)
+

(
1
1

)
u

exosystem: ẇ = 0

The goal is to design a feedback law u = u(x, w) that achieves x1 = w as t → ∞
in an optimal way:

J = 1

2

∫ +∞

0
(x1 − w)2 + (ẋ1)

2dt
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The Hamiltonian system in (12.15) is

⎛
⎜⎜⎜⎜⎜⎜⎝

ẋ1
ẋ2
ẇ
ṗ1
ṗ2
ṗw

⎞
⎟⎟⎟⎟⎟⎟⎠

= H

⎛
⎜⎜⎜⎜⎜⎜⎝

x1
x2
w
p1
p2
pw

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

0
x31 + x32

0
−3x21 p2
−3x22 p2

0

⎞
⎟⎟⎟⎟⎟⎟⎠

; H =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 −1 −1 0
2 1.1 0 −1 −1 0
0 0 0 0 0 0

−1 0 −1 0 −2 0
0 0 0 0 −1.1 0

−1 0 −1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The center-stable manifold iteration is applied to 10 times to the system with block-
diagonalized linear part. The approximation of the center-stable manifold has been
carried out to get a function px (x, w) describing the center-stable manifold. We
employed 11th order polynomials in x1, x2 and w for px (x, w). The closed loop
responses by the nonlinear optimal output regulation and by the linear output regu-
lation controller are shown below. From Figs. 12.4 and 12.5, it can be seen that the
nonlinear optimal regulator drives x1 to track w while the linear optimal regulator
fails to stabilize the system.

Fig. 12.4 State responses by
linear and nonlinear output
regulators

Fig. 12.5 Input responses
by linear and nonlinear
output regulators
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12.6 Computation of Center Manifold of Periodic Orbit

Purpose of this section is to discuss a framework for computing a center manifold of
a periodic orbit in a nonlinear system. This problem will be useful when analyzing
geometric structure of a complicated nonlinear dynamical system.

Let us consider a nonlinear system

q̇ = f (q), (12.16)

where f : Rn → R
n is a sufficiently smooth vector field. We assume that (12.16)

has an unstable periodic orbit denoted as qc satisfying qc(t + T ) = qc(t) for all
t ∈ R, where T is the period of qc. Defining x as the distance of perturbed trajectory
from the periodic orbit qc, namely, q = qc + x , we have

ẋ = A(t)x + N (t, x), (12.17)

where

A(t) = ∂ f

∂x
(qc(t))

and X (t, xe) is a nonlinear term and given by

N (t, x) = f (qc(t) + x) − f (qc(t)) − A(t)x . (12.18)

Let Φ(t) be the fundamental matrix of A(t) satisfying Φ̇(t) = A(t)Φ(t), Φ(0) = I .
Noting that A(t) is periodic with period T , it can be shown that there exists a constant

matrix Â ∈ R
n×n such that Φ(T ) = eÂT . It is possible to assume that Â is a real

matrix by taking double period 2T if necessary. Let L(t) = Φ(t)e− Ât . Then, by the
coordinate transformation x̂ = L(t)x , ẋ = A(t)x can be put into ˙̂x = Âx̂ . By this
transformation, (12.17) is written as

˙̂x = Âx + N̂ (t, x̂). (12.19)

The matrixΦ(T ) is called monodromy matrix and the above transformation is called
Floquet-Lyapunov transformation [1]. The linear part of (12.19) is now time-invariant
and the existence of a center manifold is equivalent to that Â has an eigenvalue on
the imaginary axis. When this condition is met, one can apply the center manifold
algorithm (12.5) after block-diagonalizing (12.19).

Example: Computation of a periodic orbit in the restricted three body problem
The Circular restricted three body problem (CRTBP) describes the motion of a mass-
less object in the gravity field by two main bodies (primaries) that move in circles
(see Fig. 12.6). Let m1, m2, m2 < m1, be the masses of the primaries and choose a
rotating coordinate system with the origin at the center of mass. x–y frame is taken
in such a way that x is directed from m1 to m2 and y is perpendicular to x with its
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Fig. 12.6 Circular restricted three body problem

positive direction being the velocity of m2. The z axis is taken to form the right-hand
coordinate system. Normalizing the distance between m1, m2 and normalizing time
so that the period of the circular motion around the center of mass is 2π , we get the
dimensionless equations of motion as follows

ẍ − 2 ẏ − x = − (1 − ρ)
x + ρ

r13
− ρ

x − (1 − ρ)

r23
(12.20)

ÿ + 2ẋ − y = − (1 − ρ)
y

r13
− ρ

y

r23
(12.21)

z̈ = − (1 − ρ)
z

r13
− ρ

z

r23
, (12.22)

where ρ = m2/(m1 + m2), r1 =
√

(x + ρ)2 + y2 + z2 and r2 =
√

(x − 1 + ρ)2 + y2 + z2.
Defining a vector q as q = [x, y, z, ẋ, ẏ, ż]T , (12.20)–(12.22) can be rewritten as

dq

dt
= f (q) , (12.23)

where f (q) is expressed as follows:

f (q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ
ẏ
ż

2 ẏ + x − (1 − ρ)
x+ρ

r31
− ρ

x−(1−ρ)

r32−2ẋ + y − (1 − ρ)
y

r31
− ρ

y
r32− (1 − ρ) z

r31
− ρ z

r32

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12.24)
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We linearize the equation of motion of the RTBP in order to obtain closed orbits
around the L2 equilibrium point. The linear system can be written as follows

ẋ = Ax . (12.25)

Here, the matrix A is given as

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

8.878 0 0 0 2 0
0 −2.939 0 −2 0 0
0 0 −3.939 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The eigenvalues and eigenvectors of matrix A are

λ =

⎡
⎢⎢⎢⎢⎢⎢⎣

−2.484
2.484
2.057i
2.057i
1.985i
1.985i

⎤
⎥⎥⎥⎥⎥⎥⎦

V =

⎡
⎢⎢⎢⎢⎣

0.328 −0.328 −0.131 −0.131 0 0
0.179 0.179 −0.417i 0.417i 0 0
0 0 0 0 0.450i −0.450i

−0.814 −0.814 −0.269i 0.269i 0 0
−0.444 0.444 0.858 0.858 0 0

0 0 0 0 −0.893 −0.893

⎤
⎥⎥⎥⎥⎦

.

Fig. 12.7 Horizontal and
vertical Lyapunov orbits
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From the two center eigenvectors, v3 and v4, corresponding to λ3 = λ4 = 2.057i ,
one can obtain a closed orbit for (12.25) in the x-y plane. From the other two center
eigenvectors, v5 and v6 corresponding to λ5 = λ6 = 1.985i , on the other hand, one
finds a closed orbit for (12.25) in the z-direction. We take these orbit as qc in (12.16)
and apply the center manifold algorithm to compute flows on the center manifolds of
qc. It is seen that the pairs (v3, v4) and (v5, v6) are directions for shifting to horizontal
and vertical center manifolds, respectively. The results are shown in Fig. 12.7.
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Chapter 13
On Geometric Properties of
Triangularizations for Nonlinear Control
Systems

Markus Schöberl and Kurt Schlacher

Abstract We consider triangular decompositions for nonlinear control systems. For
systems that are exactly linearizable by static feedback it is well known that a triangu-
lar structure exists in adapted coordinates using the Frobenius theorem to straighten
out a nested sequence of involutive distributions. This triangular form is based on
explicit ordinary differential equations from which it can be easily seen that exactly
linearizable systems are also flat. We will analyze this triangularization also from a
dual perspective using a Pfaffian system representation. This point of view allows
the introduction of a triangular form corresponding to implicit ordinary differential
equations. For systems that are flat but not exactly linearizable by static feedback, this
modified triangular form turns out to be useful in setting up a constructive algorithm
to compute so-called 1-flat outputs.

13.1 Introduction

In mathematical systems theory, the structural analysis of dynamical systems plays
a prominent role. One of the main objectives is the representation of systems in
a beneficial way, in order to make certain system properties visible. For nonlinear
control systems differential geometric concepts such as distributions, codistribu-
tions, and the Frobenius theorem can be used to construct system decompositions to
answer delicate problems such as controllability, observability, disturbance decou-
pling, input–output decoupling and exact linearization. In this context, outstanding
results have been reported, e.g., in [5, 6, 8, 10, 13, 19, 20], to name just a few.
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Furthermore, the famous textbooks [7, 11] provide an excellent introduction into
this geometric point of view regarding nonlinear control systems.

In what follows, we aim to characterize special decompositions of nonlinear con-
trol systems, namely triangular structures, in the context of the exact linearization
problem with static feedback and the flatness analysis. The paper [20] by Arjan van
der Schaft proposes a triangularization for general nonlinear systems regarding the
exact linearization problem. This was very inspiring for us and encouraged us to dig
deeper into that structure with the desire to analyzemore general triangular structures
that can be used for systems that are not exactly linearizable by static feedback but
possess the property to be flat. In the nonlinear control literature, much attention has
been put to the so-called affine multi-input systems of the form

ẋ = a(x) + B(x)u (13.1)

and to general nonlinear systems

ẋ = f (x, u) (13.2)

with n states x = (x1, . . . , xn) and m inputs u = (u1, . . . , um). The systems (13.1)
and (13.2) are termed exactly linearizable by static feedback, if in new coordinates
z for the state and v for the control, they can be represented as pure integrator chains
(Brunovsky canonical form). Besides the question whether a system possesses the
property to be exactly linearizable by static feedback also the more general question
regarding the flatness property is of interest in control and systems theory. A system
is termed flat if it enjoys the characteristic feature that the (time) evolution of the state
and input (control) variables can be recovered from that of the flat output without
integration, see [3, 4]. Hence, a system in Brunovsky form is trivially flat, as the
flat output are the top entries of the integrator chains. Furthermore, systems that are
flat but not exactly linearizable by static feedback, can be put to Brunovsky form by
using dynamic feedback—thus one derives the integrator chains on an extended state
manifold.A systematic testwhether a system is exactly linearizable by static feedback
is known since more than three decades and is based on the involutivity of certain
distributions. Contrary, a general systematic (reasonably practicable) procedure that
checks a system for flatness has not been discovered yet.

For the exact linearization problem of the affine input system (13.1) the distribu-
tions

Λi =
i∑

k=1

span{adk−1
a (bl)}m

l=1 (13.3)

where b j denotes the j th column of the matrix B(x) play a key role.

Remark 13.1 For the repeated application of the Lie-bracket of two vector fields v1
and v2, the following common notation will be used

ad0v1(v2) = v2 , adk
v1(v2) = [v1, adk−1

v1 (v2)] , k ≥ 1.
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Similarly, for the system (13.2) the distributions

Δi =
i∑

k=0

span{adk
f (∂ul )}m

l=1 =
i∑

k=0

span{adk
f (∂u)}

are of importance, with ∂ul = ∂/∂ul . Additionally, ρ1 ≥ ρ2 ≥ · · · ≥ ρr is met, where

ρ j = dim(Δ j ) − dim(Δ j−1) , j = 1, . . . , r,

with ρ0 = m and for simplicity we assume ρ1 = m (no redundant inputs). As
(13.1) is only a special case of (13.2), we now focus on general nonlinear systems.
In the paper [20] by Arjan van der Schaft and in the textbook [11] authored by Henk
Nijmeijer and Arjan van der Schaft, the following triangular form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

żr
...

żi
...

ż3
ż2
ż1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fr (zr , zr−1)
...

fi (zr , zr−1, . . . , zi−1)
...

f3(zr , zr−1, . . . , z3, z2)
f2(zr , zr−1, . . . , z3, z2, z1)
f1(zr , zr−1, . . . , z3, z2, z1, v)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13.4)

where the new state is partitioned into r blocks z = (z1, . . . , zr ) with

rank(
∂ fi

∂zi−1
) = dim(zi ) = ρi , zi = (z1i , . . . , zρi

i )

is introduced (z0 = v), which is based on the involutivity of the distributions Δi and
the existence of a real number r such that dim(Δr ) = m + n. The triangular form
(13.4) can be obtained (locally) by a state transformation x = φ(z) together with
a static feedback u = ψ(v, z), where the Frobenius theorem was heavily used in
straightening out the involutive distributions Δi . A slightly modified triangular form
can be obtained as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

żr
...

żi
...

ż3
ż2
ż1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fr (zr , ẑr−1)
...

fi (zr , zr−1, . . . , ẑi−1)
...

f3(zr , zr−1, . . . , z3, ẑ2)
f2(zr , zr−1, . . . , z3, z2, ẑ1)
f1(zr , zr−1, . . . , z3, z2, z1, v)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13.5)
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which accounts for the fact that in (13.4) the inputs for the system ( fr , . . . , fi )

are zi−1. As ρi ≥ ρi+1, we can introduce new coordinates zi such that we have a
decomposition of the variables in the form zi = (ẑi , yi ) and

rank(
∂ fi

∂ ẑi−1
) = dim(zi ) = ρi

is met if ρi > ρi+1. Otherwise, if ρi = ρi+1 the rank condition is also fulfilled but
we have zi = ẑi with dim(ẑi ) = dim(ρi+1).

Remark 13.2 In [11] based on the normal form (13.4), the system is transformed
directly to a Brunovsky like representation. However, to be able to compare our
results regarding amore general triangular form,we have introduced the intermediate
structure as in (13.5).

From the representation (13.5), the flatness of the system can be easily checked.
Indeed, the flat output is (yr , yr−1, . . . y1) with zr = yr where (some of) the yi ,
i = r −1, . . . , 1 can be empty. This follows (locally) by the implicit function theorem
when the triangular form (13.5) is worked through from the top to the bottom. It can
easily be checked that dim(y) = dim(yr , . . . , y1) = m is met, due to a dimension
argument regarding the ρi , see also [16], as dim(yi ) = ρi − ρi+1, i = r − 1, . . . , 1
and dim(yr ) = dim(zr ) = ρr .

Remark 13.3 As a consequence, if dim(zr ) < m, (zr = yr ) then in some lower
blocks additional yi have to appear.

In the following, we want to present two examples that are not exactly linearizable
by static feedback, but their flat outputs can also be read off by utilizing a triangular
form which is more general than (13.4) or (13.5), respectively.

13.1.1 Motivating Example I

We consider the model of an induction motor, which is of the class (13.1) with n = 5
and m = 2, reading as

ω̇ = (μψd iq − τL
J ), i̇d = vd

ψ̇d = η(Mid − ψd), i̇q = vq

ρ̇ = (n pω + ηM
iq
ψd

)

(13.6)

where an input transformation has already been applied,1 see also [2, 9, 16]. The
stator currents are id and iq , the rotor angular velocity is ω, whereas ψd and ρ

are functions of the rotor fluxes and the new inputs are vd and vq . The parameters
n P , μ, M, J, η are assumed to be constant. Furthermore, τL is the load-torque, and for

1From (13.6) it is readily observed that the model shows a singularity if ψd = 0.
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simplicitywe assume τL to be a known function ofω. Let us consider a decomposition
of (13.6) as

ω̇ = (μψd iq − τL
J )

ρ̇ = (n pω + ηM
iq
ψd

)
,

ψ̇d = η(Mid − ψd)

i̇q = vq
, i̇d = vd (13.7)

and a different decomposition which is obtained by combining the differential equa-
tions for ω̇ and ρ̇ in the form

ω̇ − μψ2
d

ηM ρ̇ = −μψ2
d

ηM n pω − τL
J ,

ψ̇d = η(Mid − ψd)

ρ̇ = (n pω + ηM
iq
ψd

)
,

i̇d = vd

i̇q = vq
. (13.8)

From the first decomposition (13.7), we deduce that when we consider the top block
(which is the most left system) that we can choose ω and ρ in an arbitrary manner (as
functions of time) from which iq and ψd follow without any integration. Continuing
with the next subsystem (the block in the center), we can derive id and vq again
by pure differentiation as ψd and iq are already prescribed. Finally from the last
subsystem vd follows. It is remarkable that (13.7) is not in the form (13.4) as the
dimensions of the subsystems are not decreasing from the bottom to the top (from
right to left). To obtain a triangular structure that meets this dimension requirement,
one can consider (13.8) but the block at the top is an implicit differential equation.
Nevertheless, also from the representation (13.8) it can be checked that (ω, ρ) is
a flat output, as from the first subsystem ψd can be computed without integration
when ω and ρ are prescribed. From the center block id and iq follow and finally
from the block at the bottom (the most right one) one obtains vd and vq . From this
example, it is clear that for the flatness analysis the important structural property
is the triangular form, and not the fact that the ordinary differential equations are
of explicit nature—also implicit differential equations can be put into a triangular
shape. This will be heavily exploited also in the next example.

13.1.2 Motivating Example II

Let us consider the following academic example

ẋ1 = u1

ẋ2 = u2 (13.9)

ẋ3 =
√

u1u2

belonging to the class (13.2) with n = 3 and m = 2. The system is not linearizable
by static feedback and contrary to the foregoing example, a pure regrouping or
combination of the equations does not allow to read off the flat outputs. However,
we can apply the transformation
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x1 = ẑ12 ẑ11, u1 = eẑ10 ẑ12
x2 = ẑ11 + y13 , u2 = eẑ10

x3 =
√

ẑ12 ẑ11 + y23

using the new coordinates (y13 , y23 , ẑ12, ẑ11, ẑ10).

Remark 13.4 The new variables are grouped into four blocks z = (z3, z2, z1, z0)
with zi = (ẑi , yi ). We have dim(z3) = 2 where ẑ3 is empty (z3 = y3). The three
remaining blocks zi , i = 2, 1, 0 are of dimension one, where yi is empty. It should
be noted, that the superscript indices are superficial for ẑ12, ẑ11, ẑ10 as the corresponding
blocks are of dimension one. However, to be consistent with what follows, we also
indicate these indices at this stage already.

Combining the differential equations, we obtain in the new coordinates the implicit
system

ẏ13

√
ẑ12 − 2 ẏ23 = 0

ẏ13 ẑ12 − ˙̂z12 ẑ11 = 0 (13.10)

˙̂z11 + ẏ13 = eẑ10

from which the flat output (y13 , y23 ) can be read off. Indeed, from the first differential
equation one can express ẑ12 once y13 and y23 are specified. The second differential
equation allows to derive ẑ11 as at that stage y13 and ẑ12 are already specified, and
finally from the last equation ẑ10 can be obtained. From the inverse transformation

ẑ10 = ln(u2), y13 = x2 − x1 u2

u1

ẑ11 = x1 u2

u1
, y23 = x3 − x1

√
u2

u1

ẑ12 = u1

u2

we obtain the flat output (y13 , y23 ) in the original coordinates (x, u). The flat output
is called 1-flat as it depends on the state x and on the control u but not on the deriv-
atives of the control, see also Sect. 13.4. Furthermore, it should be noted that the
transformation (x1, x2, x3, u1, u2) = ϕ(y13 , y23 , ẑ12, ẑ11, ẑ10) is not a state transforma-
tion together with static feedback, as all coordinates (state and control) are mixed
up—hence implicit differential equations are the outcome.

13.2 Mathematical Framework

In this section, we introduce the mathematical machinery needed for our analy-
sis. The main tools in the derivation of the normal form (13.4) were distributions,
the Lie-bracket, and the theorem of Frobenius. In the following, we will also use
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the dual object, namely codistributions that allow to derive the same representation
(13.4) using the so-called derived flag of a Pfaffian system. Furthermore, the use of
Pfaffian systems also allows to analyze dynamical systems which are described by
implicit differential equations—hence, in order to generalize the triangularization
(13.4) from the case of explicit to implicit differential equations we will make heavy
use of a system representation as a Pfaffian system based on codistributions. The
interested reader is referred to [1] for an extensive discussion on Pfaffian systems
and exterior algebra. In the next section, we summarize the main tools that will be
needed subsequently.

13.2.1 Exterior Algebra

Weconsider amanifold M with local coordinates (xi ), i = 1, . . . , nx and dim(M) =
nx . The tangent bundle T (M) and the cotangent bundle T ∗(M) possess the bases
{∂i } and {dxi }, respectively, with ∂i = ∂/∂xi . A Pfaffian system P on M can be
identified with a codistribution on M

P = span{ω1, . . . , ωn P } , ωi = ai
k(x)dxk

with dim(P) = n P , where the Einstein convention on sums has been applied (sum-
mation over k). The Pfaffian system P is called integrable iff dP = 0mod P is met,
which is equivalent to the existence of 1-forms αi

j such that dωi = αi
j ∧ ω j is met

for i = 1, . . . , n P , where d denotes the exterior derivative. Integrable Pfaffian sys-
tems allow a representation as

P = span{dh1, . . . , dhn P }

with h ∈ C∞(M). This implies the existence of coordinates (zi ) such that P =
span{dz1, . . . , dzn P } is met, or equivalently P⊥ = span{∂n P+1, . . . , ∂nx } for the
annihilator P⊥ which is a distribution on M meeting 2 v�ω = 0 for all ω ∈ P , v ∈
P⊥.
Remark 13.5 This is a variant of the well-known Frobenius theorem. P is invo-
lutive (integrable) iff P⊥ is involutive and vice versa. A distribution D is involu-
tive iff [vi , v j ] ∈ D for all vi , v j ∈ D, where [·, ·] denotes the Lie-bracket. For a
d-dimensional involutive distribution D, the Frobenius theorem guarantees the exis-
tence of local coordinates such that D = span{∂1, . . . , ∂d} is met—in this context
the Frobenius theorem is also recognized as straightening out theorem.

The following construction generates the largest involutive subcodistribution of a
Pfaffian system.

2With � we denote the contraction (hook) operator which in this case is the natural pairing between
vector fields and 1-forms.
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Definition 13.6 The derived flag of a Pfaffian system P is the following nested
sequence of systems

P = P(0) ⊃ P(1) ⊃ P(2) ⊃ · · ·

with P(k+1) := {ω ∈ P(k)
∣∣ dω = 0mod P(k)}.

If there is a k∗ such that P(k∗+1) = P(k∗) is met then P(k∗) is integrable. P(k∗) = {0}
means that P does not contain a nontrivial integrable subsystem.

Remark 13.7 Using distributions, the sequence from above can also be generated
from

P(k+1) = {Fk + [Fk, Fk]}⊥, Fk = (P(k))⊥, (13.11)

with [Fk, Fk] = span{[vi , v j ]}, vi , v j ∈ Fk .

To answer the question whether a Pfaffian system P is described with the minimal
number of variables one can construct so-called Cauchy characteristic vector fields.

Definition 13.8 The vector field v is called a Cauchy characteristic vector field of
P , if

v�P = 0 , v�dP ⊂ P (13.12)

is met. The distribution formed by all independent Cauchy characteristic vector fields
of P is denoted as C(P) which is an involutive distribution on M by construction,
see, e.g., [1] for a proof.

If dim(C(P)) = nc then the Pfaffian system P can be represented with nx − nc

coordinates. This minimal representation can be achieved by straightening out the
involutive distribution C(P) by using the Frobenius theorem.

Example 13.9 The system (13.9) can be represented as a Pfaffian system on a man-
ifold with coordinates (t, x1, x2, x3, u1, u2) as P = span{ω1, ω2, ω3} with

ω1 = dx1 − u1dt , ω2 = dx2 − u2dt , ω3 = dx3 −
√

u1u2dt. (13.13)

It should be noted that time t , the state variables (x1, x2, x3) as well as the inputs
(u1, u2) are coordinates on a six-dimensional manifold. However, also in a Pfaffian
representation the character of a dynamical system can be made visible as discussed
in the next section, where we additionally will make use of the condition that dt �= 0
has to be met. Hence, we will introduce a fibration with respect to time.

13.2.2 Dynamical Systems

To study dynamical systems, we consider the fibred manifold Z ×R → Rwith local
coordinates (zi ) for Z and the time t.The time coordinate plays an distinguished role,
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as the solutions of dynamical systems can be parametrized using the time coordinate,
e.g., as z(t). Consequently, a time-invariant dynamical system can be represented as

P = span{ωi } , ωi = ai
k(z)dzk − bi (z)dt , dim(z) ≥ dim(P) (13.14)

with the 1-forms ωi and we assume that the matrix [ai
k] is of maximal rank.

Due to the fibration with respect to the time coordinate, we can consider the
vertical annihilator V (P)⊥ consisting of vector fields that annihilate P and which
are tangential to the fibers of Z × R → R. Hence, V (P)⊥ = span{P, dt}⊥ or
equivalently

V (P)⊥ := {v ∈ T (Z)| v�ω = 0, ∀ω ∈ P}.

Given a dynamical system (13.14) (corresponding to implicit differential equations
in general) it is of interest whether it is possible to represent it in explicit form as
(13.2) which in Pfaffian description reads as

P = span{ϑ i } , ϑ i = dxi − f i (x, u)dt (13.15)

by means of a diffeomorphism (x, u) = ψ(z).

Theorem 13.10 The diffeomorphism (x, u) = ψ(z), which allows to find a gener-
ator of the system (13.14) in the form as in (13.15), exists iff V (P)⊥ is involutive.

Necessity can be seen as V (P)⊥ is already involutive in the representation (13.15),
indeed, V (P)⊥ = span{∂u}, and the transformation (x, u) = ψ(z) follows by using
the theorem of Frobenius, by straightening out V (P)⊥.

Remark 13.11 Instead of computing V (P)⊥ to check involutivity also the examina-
tion whether {P, dt} is integrable is possible.
It is readily observed that there is an (intrinsic) one-to-one correspondence between a
Pfaffian system (13.14) and the affine functions ωi

e = ai
k(z)ż

k − bi (z), see also [12].
Of particular importance will be the concept of parameterizable Pfaffian systems.

Definition 13.12 The Pfaffian system (13.14) is called parameterizable with respect
to x̂ with dim(x̂) = n P if in adapted coordinates (x, x̂) it takes the following special
form

ω̄i = mi
l (x, x̂)dxl − ni (x, x̂)dt (13.16)

and the Jacobian matrix [∂x̂ ω̄
i
e] has maximal rank nx = n P (where ω̄i

e = 0).

If the requirements of Definition 13.12 can be fulfilled, we can locally solve ω̄i
e = 0

for x̂ = g(x, ẋ). Hence, the variables x̂ are termed nonderivative and their evolution
can be obtained (locally) by means of the implicit function theorem (rank criteria).
It should be noted that ∂x̂ ∈ V (P)⊥ is met.

Remark 13.13 The crucial observation regarding systems that are parameterizable
with respect to some nonderivative variables x̂ is that the time evolution of x̂ can
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be obtained by pure differentiation, when the time evolution of x is prescribed. For
a system described by explicit differential equations, the inputs are nonderivative
variables and the system is parameterizable if we have as many independent inputs
as differential equations.

Example 13.14 (Example 13.9 continued). For the Pfaffian system (13.13), we have
V (P)⊥ = span{∂u1 , ∂u2} when we consider a fibration with respect to the time
coordinate t . Furthermore, C(P) = {} as no redundant variables are involved. From
this,we observe that for explicit systemsV (P)⊥ corresponds to the input distribution.

13.3 Exact Linearization: Pfaffian Approach

Naturally related to the nonlinear system (13.2) is the m-dimensional input distrib-
ution ∂u = {∂u1 , . . . , ∂um } as well as the vector field

fe = ∂t + f = ∂t + f i (x, u)∂i

describing the right-hand side of the ordinary differential equation (13.2) together
with ṫ = 1. The check for the exact linearization property of the system (13.2) can
equivalently be performed using the Pfaffian representation of the nonlinear control
system which is given in (13.15). The following theorem that uses the derived flag
(see Definition 13.6) to determine conditions of whether a nonlinear control system
is exactly linearizable by static feedback has been proved in [14, 18].

Theorem 13.15 The system (13.15) is exactly linearizable by static feedback if and
only if {P(k), dt} is integrable for every k and P(μ) = {0} for some μ and if each
P(k) is of constant dimension.

In [14], it is shown that the conditions of Theorem 13.15 correspond to the test
using the involutivity of distributions for the affine input system (13.1). For a general
nonlinear system, the equivalence can be shown as follows. The key observation is
that the requirement that {P(k), dt} is integrable (involutive) for every k corresponds
to the involution of the distributionsΔi . Thus,we have to show that {P( j), dt}⊥ = Δ j

or which is the same V (P( j))⊥ = Δ j holds. Indeed, (P(0))⊥ = span{∂u, fe} and

V (P(0))⊥ = {P(0), dt}⊥ = {∂u} = Δ0

where it is worth noting that V (P(0))⊥ does not include fe in contrast to (P(0))⊥.
Then using the fact that the derived flag can also be expressed using the annihilator
of the corresponding distributions, we have (P(1))⊥ = span{ fe, ∂u, [ f, ∂u]} as well
as

V (P(1))⊥ = {P(1), dt}⊥ = span{∂u, [ f, ∂u]} = Δ1. (13.17)

We furthermore have (P(2))⊥ = span{ fe, ∂u, [ f, ∂u], [ f, [ f, ∂u]]} since Δ1 is invo-
lutive. Then
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{P(2), dt}⊥ = span{∂u, [ f, ∂u], [ f, [ f, ∂u]]} = Δ2

and by continuing this procedure we see that

V (P( j))⊥ = {P( j), dt}⊥ = Δ j (13.18)

holds. Since dim(Δr ) = m + n and the derived flag is computed on a manifold of
dimensionm+n+1 it follows that P(r) = {0}with P(i) = { fe,Δi }⊥ , i = 0, . . . , r .

13.3.1 Triangularization

For a system that is exactly linearizable by static feedback, there exist adapted coor-
dinates according to the involutive distributions Δi in order to represent the system
in the triangular structure (13.4). The Pfaffian representation of the normal form
reads as

ωir
r = dzir

r − f ir
r (zr , zr−1)dt

... (13.19)

ω
i2
2 = dzi2

2 − f i2
2 (zr , . . . , z2, z1)dt

ω
i1
1 = dzi1

1 − f i1
1 (zr , . . . , z2, z1, v)dt.

Thus, with
ω

li
i = dzli

i − f li
i (zr , . . . , zi , zi−1)dt , li = 1, . . . , ρi (13.20)

the Pfaffian system P is of the form P = span{ωlr
r , . . . , ω

l1
1 } so that the basis is

already adapted to the sequence of the derivedflags since P(i) = span{ωlr
r , . . . , ω

li+1
i+1}

for i = 0, . . . , r − 1. Hence, the derived flag of the system (13.15) generates the
triangular structure, when the coordinates are adapted to the distributions Δi .

Remark 13.16 Let us consider for instance the distribution Δ1 = span{∂u, [ f, ∂u]}.
As Δ0 = span{∂u} and Δ1 are involutive, then also [ f, ∂u] is involutive and a basis
exists that [ f, ∂u] does not depend on the control u. The coordinates z1 are adapted
to the involutive distribution [ f, ∂u]. From P(1) = { fe,Δ1}⊥, we see that the first-
derived flag of P consists of differential forms in P that additionally annihilate
[ f, ∂u]. In adapted coordinates [ f, ∂u] corresponds to ∂z1 and thus P(1) does not
include the forms ω1 as dz1 would violate the condition.

On the contrary, startingwith the system P as in (13.15) it is readily observed that P(1)

is an implicit system.But, asV (P(1))⊥ = Δ1 is involutive, straightening outΔ1 gives
again an explicit control system (see Theorem 13.10) for which the procedure can be
continued. If in each step of the derived flag additionally the Cauchy characteristic
vector fields are taken into account—one represents the system with the minimal
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number of variables—then the sequence of the derived flag can be represented as

ωir
r = dzir

r − f ir
r (zr , ẑr−1)dt

... (13.21)

ω
i2
2 = dzi2

2 − f i2
2 (zr , . . . , z2, ẑ1)dt

ω
i1
1 = dzi1

1 − f i1
1 (zr , . . . , z2, z1, v)dt

where the redundant variables have been eliminated, using C(P(i)) if necessary.

13.4 Flat Systems and Triangularization

We consider a Pfaffian system dxi − f i (x, u)dt and we wish to derive a normal form
such that so-called 1-flat outputs can be read off easily. A 1-flat output y = ψ(x, u)

consists of functions yi with dim(y) = m depending on the state and the control but
not on the derivatives of the control, such that for the Pfaffian system the evolution
of x and u can be expressed by y and its derivatives without any integration. We are
looking for a coordinate transformation z = φ(x, u) such that in the new coordinates
z, the flat outputs which are among the z coordinates can be easily determined.

Motivated by the explicit triangular form (13.21), we can introduce the following
more general representation, corresponding to implicit ordinary differential equa-
tions

Ξr : Ar, jr
r,lr

dzlr
r − b jr

r dt

...

Ξ2 : Ar, j2
2,lr

dzlr
r + · · · + A2, j2

2,l2
dzl2

2 − b j2
2 dt (13.22)

Ξ1 : Ar, j1
1,lr

dzlr
r + · · · + A2, j1

1,l2
dzl2

2 + A1, j1
1,l1

dzl1
1 − b j1

1 dt

with
Ak, ji

i,lk
= Ak, ji

i,lk
(zr , . . . , zi , ẑi−1) , b ji

i = b ji
i (zr , . . . , zi , ẑi−1)

where again zi = (ẑi , yi ) is met, see also [17].

Remark 13.17 (Notation), e.g., Ar, j2
2,lr

are the components of a matrix Ar
2, where

the subscript index corresponds to Ξ2 (indicating the stage in the triangular form)
and the superscript index is in accordance with the derivative variables dzr . The
index lr is a summation index regarding dzlr

r with lr = 1, . . . , dim(zr ). The index
j2 = 1, . . . , dim(Ξ2) is indicating the number of equations (differential forms)
in Ξ2.
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Furthermore, dim(Ξe,i ) = dim(ẑi−1) has to be met and the Jacobian matrices
[∂ẑi−1Ξe,i ] have to be regular (where Ξe,i = 0) for all i = 1, . . . , r , where Ξe,i

denotes the implicit differential equation corresponding to Ξi .

Remark 13.18 Hence the implicit differential equations (in matrix vector notation)
take the form

Ar
r (zr , ẑr−1)żr − br (zr , ẑr−1)

...
. . .

Ar
2(zr , . . . , ẑ1)żr + · · · + A2

2,(zr , . . . , ẑ1)ż2 − b2(zr , . . . , ẑ1)
Ar
1(zr , . . . , ẑ0)żr + · · · + A2

1(zr , . . . , ẑ0)ż2 + A1
1(zr , . . . , ẑ0)ż1 − b1(zr , . . . , ẑ0).

(13.23)

Setting Sd,k = span{Ξr , . . . , Ξk+1}, it can be deduced from the triangular structure
that (13.22) enjoys the following properties that will be utilized in designing an
algorithm to transform flat systems into this form.

1. For the system Sd,k we have that span{∂ẑk } = Dk ⊂ V (Sd,k)
⊥, where Dk are

involutive distributions, and furthermore Dk ⊂ C(Sd,k+1) for k = 0, . . . , r − 1.
2. If we have a nontrivial decomposition for zk of the form zk = (ẑk, yk) with

dim(yk) > 0, then ∂yk ⊂ C(Sd,k).
3. Each subsystem Ξk is parameterizable with respect to the nonderivative variable

ẑk−1, i.e.,
ẑk−1 = hk−1(zr , . . . , zk, żr , . . . , żk)

for k = 1, . . . , r.

Furthermore, from the implicit triangular decomposition (13.22), we observe that we
have a decomposition of Sd,0 into a sequence of Pfaffian systems

Sd,0 ⊃ Sd,1 ⊃ Sd,2 ⊃ · · · (13.24)

as well as splittings of the form Sd,i = Sd,i+1 ⊕ Sd,i+1,c where all the Sd,i+1,c are
parameterizable with respect to the corresponding nonderivative variables ẑ.

Remark 13.19 It should be noted that for systems that are exactly linearizable by
static feedback, the sequence of the derived flag corresponds to (13.24), where addi-
tionally in each step the Pfaffian system {Sd,i , dt} is integrable, which guarantees a
sequence of explicit control systems in adapted coordinates.

From the representation (13.22), it can be seen that the y coordinates again qualify
for the flat outputs, where the system has to be analyzed from the top to the bottom
and using the implicit function theorem. Hence, we derive a sufficient condition
for control systems to be 1-flat, this is to say that if we find a transformation z =
φ(x, u) in order to represent the system (13.15) in the form (13.22) then the system
is obviously 1-flat. It should be noted, however, that this is no necessary criteria and
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that the algorithm we propose in the next section is of constructive nature only, thus
a failure of our constructive scheme does in general not prove that the system is not
1-flat.

13.4.1 Constructive Algorithm

In the following, we wish to derive the decompositions Sk = Sk+1⊕ Sk+1,c based on
the system Sk that occurs during the constructive scheme when starting with S0 = P
as in (13.15). To this end, the following steps need to be performed

1. Computation of V (Sk)
⊥, as these elements correspond to nonderivative variables.

The choice of an involutive Dk ⊂ V (Sk)
⊥ corresponds to a selection of nonderiv-

ative variables called ẑk . (This correspondence becomes obvious in an adapted
coordinate chart to be constructed by means of the Frobenius theorem.)

2. Construction of a splitting Sk = Sk+1 ⊕ Sk+1,c such that Dk ⊂ C(Sk+1), since
this guarantees that Sk+1 is independent of ẑk .

3. Check, if Sk+1,c is parameterizable with respect to the ẑk , which is possible only
if dim(Sk) = dim(Sk+1) + dim(Dk) holds.

Starting with k = 0 we seek for a decomposition Sk = Sk+1 ⊕ Sk+1,c and then
the whole procedure will be continued with Sk+1. If in Sk+1 further redundant vari-
ables appear (i.e., C(Sk+1) is nontrivial apart from the ẑk variables), then in Sk+1,c
additional free variables appear (called yk+1) corresponding to possible flat outputs.
The adapted coordinates can be constructed since Dk is involutive. Hence, in new
coordinates

Dk = span{∂ẑk } , ẑk = (ẑ1k , . . . , ẑ
nẑk
k )

with nẑk = dim(Dk). Consequently, if the system Sk+1,c is parameterizable with
respect to ẑk and if the system Sk+1 possesses a nontrivial Cauchy characteristic,
then it is clear that in Sk+1,c these redundant variables are candidates for possible flat
outputs. Hence, a solution for Sk+1 leads to a solution for Sk+1,c by pure differenti-
ation as Sk+1,c is parameterizable with respect to ẑk . This constructive scheme has
to be continued (if possible) until a parameterizable system is obtained, such that no
further decomposition is necessary in order to read off the flat outputs.

Hence, we have to construct Dk ⊂ V (Sk)
⊥ and Sk+1 ⊂ Sk such that Dk�dSk+1 ⊂

Sk+1 is met. Then also the necessary condition

Dk�dSk+1 ⊂ Sk (13.25)

has to be fulfilled. It should be noted that given V (Sk)
⊥ and Sk (a distribution and a

codistribution) we search for an involutive 3 subdistribution Dk , then the condition
Dk�dSk+1 ⊂ Sk+1 leads to partial differential equations, as Sk+1 ⊂ Sk . Using the

3dim(Dk) = 1 always guarantees involutivity but we can also search for higher dimensional ones.
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necessary condition (13.25) instead, only algebraic equations appear and based on
this observation we will demonstrate our constructive scheme in the next section
using examples. Furthermore, it should be mentioned that the constructive scheme,
if successful, does, in general, not lead to a unique decomposition of the system, as
branching points may appear—those branching points possibly require iterations of
the constructive scheme.

13.5 Examples

Let us consider the two motivating examples from Sect. 13.1. We will represent the
systems in a Pfaffian fashion, and we will sequentially derive the triangular form
(13.19) by applying the proposed machinery. It can be deduced that the induction
motor example is rather trivial compared to the academic example where in every
step based on the necessary condition (13.25) an involutive Dk has to be constructed
as well as a subcodistribution which is independent of the desired variables.

13.5.1 Induction Motor

The system of the induction motor (13.6) can be stated in a Pfaffian representation
as

S0

ω1
0 = dω − (μψd iq − τL

J )dt
ω2
0 = dψd − η(Mid − ψd)dt

ω3
0 = dρ − (n pω + ηM

iq
ψd

)dt

ω4
0 = did − vddt

ω5
0 = diq − vqdt.

We clearly have V (S0)⊥ = span{∂vd , ∂vq }, and thus, obviously

S1

ω1
1 = dω − (μψd iq − τL

J )dt
ω2
1 = dψd − η(Mid − ψd)dt

ω3
1 = dρ − (n pω + ηM

iq
ψd

)dt

with S1,c = span{ω4
0, ω

5
0}. Then we observe that V (S1)⊥ = span{∂id , ∂iq } and we

seek for D1 ⊂ V (S1)⊥ such that D1�dS2 ⊂ S2 where S2 ⊂ S1. A possible choice
for S2 is

ω1
2 = dω − μψ2

d

ηM
dρ + (

μψ2
d

ηM
n pω + τL

J
)dt
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where ω1
2 = ω1

1 − μψ2
d

ηM ω3
1. The complement S2,c can be represented as

ω2
2,c = dψd − η(Mid − ψd)dt

ω3
2,c = dρ − (n pω + ηM

iq
ψd

)dt

which is parameterizable with respect to id and iq . Then, since S2 is parameterizable
with respect to ψd , indeed

ηM

μ

(ω̇ + τL
J )

(ρ̇ − n pω)
= ψ2

d ,

a possible flat output is (ω, ρ). The triangular form consists of the systems S2, S2,c
and S1,c and is in accordance with the decomposition (13.8).

Remark 13.20 A different flat output which has also been achieved in [9] by an
alternative approach follows as

ρ − ω
ηM

μψ2
d

, ψd

and can be easily derived with the presented machinery, as the form ω1
2 is stated in

the two derivative variables ρ and ω. However, choosing

v2 = ∂ρ + μψ2
d

ηM
∂ω

(where v2 ∈ V (S2)⊥) and using the coordinate transformation (ρ, ω,ψd) =
ϕ2(ρ̂, ρ̄, ψd) straightening out v2 as

ρ = ρ̄ + ρ̂

ω = μψ2
d

ηM
ρ̂

ψd = ψd

we obtain

ω1
2 = d(

μψ2
d

ηM
)ρ̂ − μψ2

d

ηM
dρ̄ + ((

μψ2
d

ηM
)2ρ̂n p + τL

J
)dt

which is parameterizablewith respect to ρ̂, and thus the alternative flat output follows,
since ρ̄ and ψd can be assigned freely, if τL is assumed to be known.
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13.5.2 Academic Example

Let us consider again the system (13.9) formulated as a Pfaffian system S0 =
span{ω1

0, ω
2
0, ω

3
0} with

ω1
0 = dx1 − u1dt

ω2
0 = dx2 − u2dt

ω3
0 = dx3 −

√
u1u2dt

that has been considered also in [15] using a different approach. It can easily be seen
that V (S0)⊥ = span{∂u1 , ∂u2}. Choosing

v0 = u1∂u1 + u2∂u2

we observe that v0 ∈ C(S1) where S1 = span{ω1
1, ω

2
1}

ω1
1 =

√
u1u2dx1 − u1dx3

ω2
1 =

√
u1u2dx2 − u2dx3.

It should be noted that v0 and S1 have been constructed using the necessary condition
(13.25), hence v0�S1 ⊂ S0, but it can be readily observed that also v0�S1 ⊂ S1 is
met as desired. Straightening out v0 is based on the flow of v0 and we derive the
transformation (x1, x2, x3, u1, u2) = ϕ0(w1, w2, w3, w4, ẑ10) reading as

x1 = w1 , u1 = eẑ10w4

x2 = w2 , u2 = eẑ10

x3 = w3.

(13.26)

Thus, in the new coordinates we obtain a basis for the system S1 as

ω1
1 =

√
w4dw1 − w4dw3

ω2
1 =

√
w4dw2 − dw3.

The complement S1,c is, e.g., given by the single form

ω3
1,c = dx2 − u2dt = dw2 − eẑ10dt,

and it is clearly seen that the coordinate ẑ10 is not appearing in S1 and that S1,c is
parameterizable with respect to ẑ10. Then, with v1 ∈ V (S1)⊥ where

v1 = w4∂1 + ∂2 +
√

w4∂3
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we derive a further splitting, i.e,. v1 ∈ C(S2) with S2 = span{ω1
2} where

ω1
2 = −dw1 − w4dw2 + 2

√
w4dw3.

We have that S2 ⊂ S1 since

ω1
2 = − 1√

w4
ω1
1 −

√
w4ω2

1.

The complement S2,c can be chosen as

ω2
2,c =

√
w4dw2 − dw3.

Consequently, we use the flow with respect to v1 to straighten out v1 and derive

w1 = q4 ẑ11
w2 = ẑ11 + q2

w3 = √
q4 ẑ11 + q3

w4 = q4

(13.27)

such that S2 reads as

ω1
2 = −q4dq2 + 2

√
q4dq3.

From S2 the flat output can be read off. Indeed, (y13 , y23 ) with y13 = q2 and y23 = q3

is the flat output.

Remark 13.21 The complement S2,c in the new coordinates is given as

ω2
2,c =

√
q4dq2 − dq3 − ẑ11

2
√

q4
dq4.

Thus, S2,c is clearly parameterizable with respect to ẑ11.

From (x, u) = ϕ0(w, ẑ10) and w = ϕ1(q, ẑ11) using (13.26) and (13.27) and by
setting q4 = ẑ12 we obtain the coordinate transformation which we have presented
in Sect. 13.1. Additionally, we easily derive

−ẑ12dy13 + 2
√

ẑ12dy23√
ẑ12dy13 − dy23 − ẑ11

2
√

ẑ12
dẑ12

dẑ11 + dy13 − eẑ10dt
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based on the calculations from above (consisting of the systems S2, S2,c and S1,c in
new coordinates) which is of the desired triangular shape as in (13.19). It is readily
observed that this triangular form is also in accordancewith the representation (13.10)
by slightly rearranging the expressions.
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Chapter 14
Online Frequency Estimation of Periodic
Signals

Riccardo Marino and Patrizio Tomei

Abstract The problem of estimating online the unknown period of a periodic signal
is considered, with no a priori information on the period: this is a crucial problem
in the design of learning and synchronizing controls, in fault detection, and for
the attenuation of periodic disturbances. Given a measurable continuous, bounded
periodic signal, with nonzero first harmonic in its Fourier series expansion, a dynamic
algorithm is proposed which provides an online globally exponentially convergent
estimate of the unknown period. The period estimate converges from any initial
condition to a neighborhood of the true period whose size is explicitly characterized
in terms of the higher order harmonics contained in the signal. The accuracy of the
frequency estimation can be arbitrarily improved by increasing the order of a prefilter
which is incorporated in the estimation algorithm, at the expense of reducing the rate
of the exponential convergence. This online frequency estimation algorithm can be
used to design hybrid disturbance attenuation controllers for periodic disturbances
with unknown period.

14.1 Introduction

Arjan van der Schaft visited the University of Rome Tor Vergata during the summer
1990.Wehad the pleasure of collaboratingwith himandWitoldRespondekon several
aspects of almost disturbance decoupling for nonlinear systems [19] and on more
theoretical issues involving transformations of nonlinear systems into prime forms
[20]. Our collaboration started in 1986 during a summer visit of the first author at
Twente University: at that time, high-gain feedback was investigated to solve almost
input-output decoupling and almost disturbance decoupling problems [17, 18]. The
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first author first met Arjan at a conference on Differential Geometric Control Theory
in Michigan in 1982 and still remembers with pleasure an adventurous car trip from
northern Michigan to St. Louis, Missouri, where he was completing his Ph.D.

This paper is related to the design of feedback controls to attenuate the influence
of disturbances. While the strategy in [18, 19] is to reduce the L2-gain from the
disturbance to the output possibly by high-gain feedback since the disturbance is
totally unknown, in this paper we explore what can be done if the disturbance is
known to be periodic even though its period is unknown. The key step is clearly the
online estimation of the unknown period, according to the internal model principle.

Online frequency estimation of a periodic signal is a fundamental problem in
several engineering and scientific disciplines. The classical Fourier analysis estimates
the frequencies and the amplitudes of a periodic signal provided that the signal can be
stored and processed off-line. As far as feedback control is concerned, learning [32]
and synchronizing [27] control design and the attenuation of unmeasured periodic
disturbances require online frequency estimation. If the period is known, learning
controls can track periodic references for classes of linear and nonlinear systems
[14, 32]. According to the internal model principle, which was formulated in [6]
for linear systems, an error feedback control which is capable of tracking and/or
rejecting unknown sinusoidal signals must necessarily be able to reproduce such
signals: hence it should estimate their frequencies online. Fault detectors which are
based on frequency estimators require online algorithms as well.

Online frequency estimation algorithms can be divided into two classes: the local
ones, which converge for sufficiently close initial frequency estimates and the global
ones, which converge for any initial frequency estimate. Their convergence may be
either exponential or only asymptotic [10] and their domain of attraction may be
either global or only local. In addition, the convergence may occur for a suitable
tuning of the algorithm parameters or for any parameter value. These differences are
apparent in the comparison of several algorithms which are now available for the
online frequency estimation of a single sinusoidal signal with no a priori information
on the frequency. In [3] a continuous time version of the discrete-time notch filter
proposed by [28], which was inspired by commonly used Phase Locked Loop (PLL)
algorithms in signal processing, is shown to be locally asymptotically convergent.
The adaptation strategy for the frequency estimator presented in [3] was normalized
in [9] in order to obtain a globally asymptotically convergent algorithm, provided
that the adaptation gain is chosen to be sufficiently small depending on a known
bound on the amplitude of the sinusoidal signal. The adaptive notch filter proposed
in [9] was extensively analyzed in [4] andwas furthermodified in [24, 25] to show, by
means of averaging theory (see for instance [10, 30]) that the frequency estimate will
asymptotically converge to a neighborhood of the fundamental frequency even when
the signal is periodic but not purely sinusoidal, provided that the adaptation gain
and the higher order harmonics are sufficiently small. A similar result was presented
in [33] using a different algorithm based on gradient descent methods. Globally
exponentially convergent frequency estimation algorithms were obtained both for a
single sinusoid and for biased multiple sinusoids in 2002 by [22, 26, 31] without
any restriction on the algorithm design parameters. The key techniques are adaptive
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observers (see [21]) in [22, 26] and adaptive identifiers (see [29]) in [31], while the
state space representation of the measured signal allows for a linear parameterization
of the unknown frequencies; amplitudes and phases can be recovered as well (see
[7, 8] for a detailed analysis) from the estimation of the state variables. Different
frequency estimation techniques for sinusoidal signals are still actively studied with
the aim of exploring the robustness with respect to unaccounted disturbances (see
[1, 2, 5]).

We will follow the adaptive observer approach introduced in [22] in order to
address the global frequency estimation of periodic signals. Only local asymptotic
frequency estimators for periodic signals have been so far obtained by using an
adaptive notch filter with sufficiently small adaptation gain in [24, 25]: the stability
analysis has been carried out interpreting the adaptation gain as a small parameter
and applying the averaging theorems [10, 30].

In this paper, given a measurable continuous, bounded periodic signal, with
nonzero first harmonic in its Fourier series expansion, a dynamic adaptive algorithm
is proposed which provides an online globally exponentially convergent estimate of
the unknown frequency for any tuning of its parameters, including the adaptation
gain. No a priori information on the period is required. The frequency estimate con-
verges from any initial condition to a neighborhood of the true frequency whose
size is explicitly characterized in terms of the higher order harmonics contained in
the periodic signal. By increasing the order of a prefilter which is incorporated in
the estimation algorithm, the accuracy of the frequency estimation can be arbitrarily
improved, at the expense of reducing the rate of the exponential convergence. The
global stability analysis is carried out using Lyapunov functions and the property
of persistency of excitation which lead to a robust exponential convergence of the
estimation algorithm. When the periodic signal is a biased sinusoid, the unknown
frequency is exactly estimated from any initial condition and for any value of the
prefilter order, thus recovering a well-known result with improved robustness. Two
examples are carried out and simulated. In the first one, the proposedmethod is tested
on a complex signal and compared to the adaptive notch filter in [25]. In the sec-
ond one, the frequency estimator is used in conjunction with a disturbance rejection
compensator to attenuate a periodic disturbances with unknown frequency. Since
the frequency of the disturbance compensator is updated at every predefined time
interval, the overall disturbance compensator is of hybrid type. Preliminary results
have been presented in [15, 16] for robust compensation of periodic disturbances.

14.2 Main Results

Consider the bounded periodic signal y(t), y ∈ R, of unknown period T , which
is available for measurements. Assume that y(t) is continuous so that it can be
represented by its Fourier series expansion
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y(t) = a0
2

+
∞∑

k=1

[
ak cos

(
2πkt

T

)
+ bk sin

(
2πkt

T

)]

�= a0
2

+ a1 cos

(
2π t

T

)
+ b1 sin

(
2π t

T

)
+ ry(t) (14.1)

in which ry(t) contains the higher order harmonics of y(t); the first harmonic of
unknown frequency 1/T is assumed to be different from zero, i.e., (a2

1 + b21) > 0.
Let us consider the signal y f l(t) obtained by filtering y(t) through the stable linear
filter of order l ≥ 0

ẏ f 1 = −λ f y f 1 + λ f y, y f 1 ∈ R

ẏ f k = −λ f y f k + λ f y f,k−1, y f k ∈ R, 2 ≤ k ≤ l (14.2)

in which λ f is an arbitrary positive real. Let y f p be the steady-state periodic com-
ponent of y f l(t) in (14.2) which is obtained as the solution of

ẏ f p1 = −λ f y f p1 + λ f y, y f p1 ∈ R

ẏ f pk = −λ f y f pk + λ f y f p,k−1, y f pk ∈ R, 2 ≤ k ≤ l

y f p = y f pl (14.3)

with suitable initial conditions. The signal y f p may be rewritten as

y f p(t) = η1(t) + r(t) (14.4)

where η1(t) is the sum of the bias (if any) and of the first harmonic component of
frequency ω (which is different from zero by assumption) while r(t) contains all
remaining harmonics at higher frequencies kω, k ≥ 2. The differences

ỹ f i = y f i − y f pi , 1 ≤ i ≤ l

ỹ f = ỹ f l (14.5)

converge exponentially to zero. The signal η1(t) may be equivalently generated by
the exogenous system (exosystem)

η̇1 = η2

η̇2 = −θη1 + η3

η̇3 = 0 (14.6)

with suitable initial conditions, inwhich the parameter θ = (2π/T )2 = ω2 is defined
and η = [η1, η2, η3]T ∈ R

3. Let us introduce the unitary gain first-order stable filter

χ̇ = −λχ + λy f l , χ ∈ R (14.7)
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in which λ is an arbitrary positive real and y f l is generated by (14.2). From (14.4),
(14.6), (14.2) and (14.7), in the new state coordinates ηE = [χ, ληT ]T ∈ R

4, we
have

η̇E = AcηE − E1λχ + rλ(E1 + θ E3)

+λE1 ỹ f − λy f pθ E3

χ = CcηE (14.8)

in which Ei denotes the i th column of an identity matrix of suitable dimension and

Ac =

⎡
⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ .

Note that the unknown parameter θ = ω2 now appears linearly in the dynamic
equations (14.8). Make the time-varying change of coordinates (which is called
‘filtered transformation’ in [21])

z = ηE −
[

0
θξ(t)

]

ξ̇ = Dξ − λE2y f l , ξ ∈ R
3

μ = Ccξ, μ ∈ R (14.9)

in which

D =
⎡
⎣

−d2 1 0
−d3 0 1
−d4 0 0

⎤
⎦ (14.10)

is an arbitrary Hurwitz matrix, and

dA =
⎡
⎣

d3 − d2
2 + d2λ

d4 − d2d3 + d3λ
−d2d4 + d4λ

⎤
⎦ , Cc = [

1 0 0
]
.

From (14.8) and (14.9), we obtain

ż = Acz − E1λχ + rλ(E1 + θ E3)

+dμθ + λ(E1 + θ E3)ỹ f

χ = Ccz. (14.11)

The further change of coordinates
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wi = zi+1 − di+1z1, 1 ≤ i ≤ 3 (14.12)

transforms (14.11) into (w = [w1, w2, w3]T )

ẇ = Dw + dAχ + dBr + rλθ E2 + (dB + λθ E2)ỹ f

χ̇ = w1 + (d2 − λ)χ + rλ + θμ + λỹ f (14.13)

inwhich dB = [d2, d3, d4]T . Note that in (14.13) the unknownparameter θ appears in
the dynamics of the known signal χ multiplied by the known signalμ. The parameter
θ also appears in thew-dynamics where it is multiplied by the exponentially decaying
term ỹ f and by r(t), which is viewed as a disturbance. Let us introduce the adaptive
observer for (w, χ, θ) in (14.13)

˙̂w = Dŵ + dAχ, ŵ ∈ R
3

˙̂χ = Ccŵ + (d2 − λ)χ + θ̂μ + ko(χ − χ̂ ), χ̂ ∈ R

˙̂
θ = γμ(χ − χ̂), θ ∈ R (14.14)

in which γ is the positive adaptation gain and ko is the positive observer gain. The
dynamics for the estimate θ̂ of the parameter θ = ω2 is defined (see Fig. 14.1) in
terms of the signal μ generated by the linear filters (14.2) and (14.9) and of the error
χ − χ̂ generated by (14.2), (14.7) and (14.14). Defining the error signals χ̃ = χ − χ̂ ,
w̃ = w − ŵ, θ̃ = θ − θ̂ , from (14.5), (14.6), (14.9), (14.13) and (14.14), we obtain
the error dynamics

˙̃w = Dw̃ + d̄Br + d̄B ỹ f

˙̃χ = −koχ̃ + rλ + w̃1 + θ̃μ + λỹ f

˙̃
θ = −γμχ̃

ξ̇ = Dξ − λE2 ỹ f − λE2y f p = Dξ − λE2y f l

μ = Ccξ (14.15)

in which d̄B = dB + λθ E2. Since (14.9) is a linear dynamic system driven by y f l ,
the signal μ in (14.9) may be decomposed as

μ = μp + μ̃ (14.16)

in which μp is the periodic output of the system

ξ̇p = Dξp − λE2y f p

μp = Ccξp (14.17)

with proper initial condition ξp(0). Now, we are able to state and prove the following
theorem which characterizes the convergence properties of the estimation error θ̃ .
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Fig. 14.1 Block diagram for
the frequency estimator
(14.18)

Theorem 14.1 Let y(t) be a measurable continuous, bounded periodic signal of
unknown period T , with a2

1 + b21 > 0 in its Fourier series expansion (14.1). The
following online frequency estimator of order l + 9 in which ω̂ denotes the estimate
of ω = 2π/T (see the block diagram in Fig.14.1):

ẏ f 1 = −λ f y f 1 + λ f y, y f 1 ∈ R

ẏ f k = −λ f y f k + λ f y f,k−1, y f k ∈ R, 2 ≤ k ≤ l

χ̇ = −λχ + λy f l , χ ∈ R

ξ̇ = Dξ − λE2y f l , ξ ∈ R
3

μ = Ccξ, μ ∈ R

˙̂w = Dŵ + dAχ, ŵ ∈ R
3

˙̂χ = Ccŵ + (d2 − λ)χ + θ̂μ + ko(χ − χ̂ ), χ̂ ∈ R

˙̂
θ = γμ(χ − χ̂), θ ∈ R

ω̂ =
{√

θ̂ if θ̂ > 0
0 otherwise

(14.18)

is such that for any initial condition y f 1(0), . . ., y f l(0), χ(0), ξ(0), ŵ(0), χ̂(0), θ̂ (0),
for any integer l ≥ 0, for any λ f > 0, λ > 0, ko > 3, γ > 0 and for any Hurwitz
matrix D:

(i) all signals are bounded for any t ≥ 0;
(ii)

|θ̃ (t)| ≤ f (‖x̃(0)‖)e−β1t + β2

[
1

T

∫ T

0
r2y (τ )dτ

]1/2
, ∀t ≥ 0

in which f is a class-k function [10] of x̃ = [w̃T , χ̃ , θ̃ , ξ T − ξ T
p , ỹ f 1, . . . , ỹ f l ]T

and β1, β2 are positive reals which tend to zero as l tends to infinity with

β1 = O

⎡
⎣

(
λ2f

λ2f + ω2

)l
⎤
⎦

β2 = O

⎡
⎣

(
λ2f + ω2

λ2f + 4ω2

)l/2
⎤
⎦ .
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Proof The signalμp(t) in (14.17) is unbiased since the transfer function of the linear
system in (14.17) has a zero in the origin, while the signal μ̃(t) is exponentially
decaying and given by (ξ̃ = ξ − ξp)

˙̃
ξ = Dξ̃ − λE2 ỹ f , ξ̃ (0) = ξ(0) − ξp(0)

μ̃ = Cc ξ̃ . (14.19)

Note that (see [12], p. 494 and Abel’s Lemma [11])

supτ∈[0,T ]|μp(τ )| ≤ c1
λl

f

(λ2f + ω2)l/2
yM

supτ∈[0,T ]|μ̇p(τ )| ≤ c2
λl

f

(λ2f + ω2)l/2
yM (14.20)

where

yM = supτ∈[0,T ]|y(τ )|

and c1, c2 are positive constants independent on the filter parameters l and λ f . The
signal μp(t) may, in turn, be decomposed as

μp(t) = μp1(t) + μpr (t) (14.21)

where μp1 is the first unbiased harmonic at frequency ω and μpr contains all other
higher order harmonics. We can write

μp1(t) = |H1( jω)| λl
f

(λ2f + ω2)l/2

· · · (a2
1 + b21)

1/2 cos(ωt + ϕ0) (14.22)

in which H1(s) = Cc(s I − D)−1E2λ and ϕ0 is a suitable angle. From (14.21) and
(14.22), we have

∫ t+T

t
μ2

p(τ )dτ =
∫ T

0
[μ2

p1(τ ) + μ2
pr (τ )]dτ

≥
∫ T

0
μ2

p1(τ )dτ = |H1( jω)|2

×(a2
1 + b21)

T

2

λ2l
f

(λ2f + ω2)l
. (14.23)
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Define

μ̄p = μp/α, α = λl
f

(λ2f + ω2)l/2
. (14.24)

From (14.20), we have

supτ∈[0,T ]|μ̄p(τ )| ≤ c1yM
�= μ̄pM

supτ∈[0,T ]| ˙̄μp(τ )| ≤ c2yM
�= ˙̄μpM . (14.25)

Since by assumption a2
1 + b21 > 0, from (14.23) and (14.24) we have

∫ t+T

t
μ̄2

p(τ )dτ ≥ |H1( jω)|2(a2
1 + b21)

T

2
�= kp > 0, ∀t ≥ 0. (14.26)

Define q(t) as the solution of the scalar differential equation

q̇ = −q + μ̄2
p, q(0) = e−T kp (14.27)

so that, by construction,

supτ∈[0,T ]μ̄2
p(τ ) ≥ q(t) ≥ kpe−2T , ∀t ≥ 0. (14.28)

With reference to the first three equations in the error system (14.15), consider the
Lyapunov function

V = 1

2

[
χ̃2 + θ̃2

γ
+ w̃T Pw̃ + γ0(αq θ̃ − μ̄pχ̃ )2

]
(14.29)

where γ0, γ are positive reals and P > 0 satisfies the Lyapunov matrix equation
DT P + P D = −2I , in which D given by (14.10) is a Hurwitz matrix. From (14.29)
and (14.15), differentiating V with respect to time along the solutions of (14.15), we
obtain

V̇ = −koχ̃
2 + rλχ̃ + w̃1χ̃ + χ̃ θ̃μ + λỹ f χ̃

−θ̃μχ̃ − w̃T w̃ + w̃T Pd̄Br + w̃T Pd̄B ỹ f

+γ0(αq θ̃ − μ̄pχ̃)[−αq θ̃ + αθ̃μ̄2
p − α2qγ μ̄pχ̃

−αqγ μ̃χ̃ − ˙̄μpχ̃ − μ̄p(−koχ̃ + rλ + w̃1

+αθ̃μ̄p + θ̃ μ̃ + λỹ f )]
= −koχ̃

2 − w̃T w̃ − γ0α
2q2θ̃2
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+w̃1χ̃ + γ0αq θ̃ (−α2qγ μ̄p − ˙̄μp + μ̄pko)χ̃

+γ0χ̃
2(α2qμ̄2

pγ + μ̄p ˙̄μp − μ̄2
pko) − γ0αqμ̄p θ̃ w̃1

+γ0μ̄
2
pχ̃ w̃1 + γ0(αq θ̃ − μ̄pχ̃)(−αqγ χ̃ − μ̄p θ̃ )μ̃

+[γ0(αq θ̃ − μ̄pχ̃ )(−μ̄pλ) + λχ̃ + w̃T Pd̄B]ỹ f

+r [λχ̃ + w̃T Pd̄B − γ0(αq θ̃ − μ̄pχ̃)μ̄pλ]. (14.30)

By using Young’s inequality (2ab ≤ a2/k2 + k2b2), we can write

V̇ ≤ −φT Q(t)φ + ‖φ‖2ρ1(t) + ρ2(t) + r2ρ3(t) (14.31)

in which

φ = [ |χ̃ | |θ̃ | ‖w̃‖ ]T

ρ1 = γ0

∥∥∥∥
[

αqγ |μ̄p| (μ̄2
p + α2q2γ )/2

(μ̄2
p + α2q2γ )/2 |μ̄p|αq

]∥∥∥∥ |μ̃|

ρ2 = [α2q2λ2μ̄2
p + (γ0μ̄pλ + λ)2 + 4‖Pd̄B‖2]ỹ2f

ρ3 = 1

2
(λ2 + μ̄4

pλ
2 + q2μ̄2

pλ
2 + 2‖Pd̄B‖2) (14.32)

and Q(t) is a (3 × 3) symmetric matrix whose elements qi j are given by

q11 = ko(1 + γ0μ̄
2
p) − γ0α

2γ qμ̄2
p − γ0|μ̄p ˙̄μp| − 1

2
− γ 2

0

2
− 1

4

q22 = γ0α
2q2 − γ 2

0 α2

2
− γ 2

0

4

q33 = 1 − 1

4
− 1

16

q12 = −1

2
γ0αq(α2qγ |μ̄p| + | ˙̄μp| + ko|μ̄p|)

q13 = −1

2
(1 + γ0μ̄

2
p)

q23 = −1

2
γ0αq|μ̄p|.

By using again Young’s inequality, we can write

infτ∈[0,T ]λmin[Q(τ )] ≥ min
1≤k≤3

q̄kk
�= Qm (14.33)
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with

q̄11 = ko − 5

4
− γ0

(
α2γ μ̄4

pM + μ̄pM ˙̄μpM + γ0

2

)

q̄22 = γ0α
2{e−2T k2p − γ0[1

2
+ μ̄4

pM (α2μ̄3
pMγ + ˙̄μpM

+koμ̄pM )2 + μ̄6
pM ]} − γ 2

0

4

q̄33 = 3

16
− γ 2

0 μ̄4
pM .

Since by definition (14.24) 0 < α < 1, by choosing

ko ≥ 3

γ0 ≤ min

{
1,

√
3

4μ̄2
pM

, c1, c2

}

with

c1 = e−2T k2p
0.5 + μ̄4

pM (α2μ̄3
pMγ + ˙̄μpM + kobμ̄pM )2 + μ̄6

pM + 0.25α−2

c2 = 7

4[α2γ μ̄4
pM + μ̄pM ˙̄μpM + 0.5]

it follows that Q(t) is positive definite with

Qm = O(α2). (14.34)

Now, note that we can write for V (t)

V ≤ 1

2
φT

⎡
⎣
1 + 2γ0μ̄2

p 0 0
0 1

γ
+ γ0α

2q2 0
0 0 ‖P‖

⎤
⎦φ

≤ 1

2
‖φ‖2cV M (14.35)

with (recall that 0 < α < 1)

cV M = max

{
1 + 2γ0μ̄

2
pM ,

1

γ
+ γ0μ̄

2
pM , ‖P‖

}
. (14.36)

Since, from (14.29)
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V ≥ 1

2
cV m‖φ‖2 (14.37)

in which cV m = min
{
1, 1

γ
, λmin(P)

}
, from (14.31) and (14.35) we can write

V̇ ≤ −2
Qm

cV M
V + 2cV m Vρ1(t) + ρ2(t) + r2ρ3(t)

�= −cV + ρ̄1(t)V + ρ2(t) + r2ρ̄3 (14.38)

where

c = 2
Qm

cV M

ρ̄1(t) = 2cV mρ1(t)

ρ̄3 = 1

2
(λ2 + μ̄6

pMλ2 + μ̄4
pMλ2 + 2‖Pd̄B‖2). (14.39)

Recalling (14.2), (14.3), (14.5), (14.19), (14.32) and (14.39), we can write for any
t ≥ 0

ρ2(t) ≤ ρ20(‖[ỹ f 1(0), . . . , ỹ f l(0)]‖)e−2λ f t

ρ̄1(t) ≤ ρ̄10(‖[ỹ f 1(0), . . . , ỹ f l(0), ξ̃
T (0)]‖)e−λm t (14.40)

in which ρ20, ρ̄10 are class-k functions and

λm = min
1≤i≤3

{−Re[λi (D)]}

with λi being the i th eigenvalue of matrix D. By applying the comparison principle
and the variation of constants formula (see [13, 23]), from (14.38) we can write
(recall that ρ̄1 is exponentially decaying)

V (t) ≤ e‖ρ̄1‖1
[

V (0)e−ct +
∫ t

0
e−c(t−τ)ρ2(τ )dτ

+ρ̄3

∫ t

0
e−c(t−τ)r2(τ )dτ

]

≤ e‖ρ̄1‖1
[

V (0)e−ct +
∫ t

0
e−c(t−τ)ρ2(τ )dτ

+ρ̄3

N∑
k=0

e−ckT
∫ T

0
r2(τ )dτ

]
(14.41)
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with ‖ρ̄1‖1 = ∫ ∞
0 |ρ̄1(τ )|dτ and N such that 0 ≤ t − N T < T and ‖ρ̄1‖1 =∫ ∞

0 ρ̄1(τ )dτ . Since ρ2(t) is exponentially decaying, from (14.41) we can conclude
that all signals are bounded. Recalling (14.40) and (14.29), from (14.41) we have

θ̃2(t) ≤ 2γ e‖ρ̄1‖1
[
V (0)e−ct + ρ20

c
e−2λ f t

]

+2γ e‖ρ̄1‖1 ρ̄3
1

1 − e−cT

∫ T

0
r2(τ )dτ. (14.42)

Now, note that by defining

β =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a2
b2
...

ak

bk
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

Φ(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(2ωt)
sin(2ωt)

...

cos(kωt)
sin(kωt)

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

R = block diag
[

R2 · · · Rk · · · ]

Rk = Mk

[
cosψk − sinψk

sinψk cosψk

]

Mk = λl
f

(λ2f + k2ω2)l/2
, ψk = l arctan

−kω

λ f

we can write for ry(t) in (14.1) and r(t) in (14.4),

ry(t) = ΦT (t)β

r(t) = ΦT (t)Rβ. (14.43)

Since

‖R‖ = (λM AX (RT R))1/2 = λl
f

(λ2f + 4ω2)l/2

and, by Parseval Theorem,

1

T

∫ T

0
r2(τ )dτ = 1

2
βT RT Rβ ≤ 1

2

λ2l
f

(λ2f + 4ω2)l
βT β

= λ2l
f

(λ2f + 4ω2)l

1

T

∫ T

0
r2y (τ )dτ (14.44)
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from (14.44) and (14.42), we obtain statement (ii) with

f (‖x(0)‖) =
{
2γ e‖ρ̄1‖1

[
V (0) + ρ20

c

]}1/2

β1 = min
{ c

2
, λ f

}

β2 =
[
2γ ρ̄3e‖ρ̄1‖1 1

1 − e−cT

]1/2 λl
f

(λ2f + 4ω2)l/2
. (14.45)

Since by (14.39) and (14.34), c is O(α2), for sufficiently small α (and, consequently,
for sufficiently high order l) we can write

1

1 − e−cT

 1

cT
(14.46)

which implies that

β2 = O

⎡
⎣

(
λ2f + ω2

λ2f + 4ω2

)l/2
⎤
⎦ (14.47)

and

β1 = O

⎡
⎣

(
λ2f

λ2f + ω2

)l
⎤
⎦ .

The case l = 0 can be simply treated by considering y(t) in place of y f l(t) and
adjusting, accordingly, the various steps of the proof. �

Corollary 14.2 If y(t) is a biased sinusoidal signal with no higher order harmonics,
then the estimate ω̂(t) provided by the frequency estimator (14.18) in Theorem 14.1
is such that, for any integer l ≥ 0, |θ̃ (t)| ≤ f (‖x(0)‖)e−β1t , ∀t ≥ 0, in which f is
a class-k function.

Proof It follows directly from statement (ii) in Theorem 14.1, since ry(t) = 0 in
(14.1). �

Remark 14.3 If in Theorem 14.1, the hypothesis a2
1 + b21 > 0 is not satisfied but the

signal y(t) is not constant, then the algorithm (14.18) guarantees properties similar
to (i) and (ii) for the first nonzero harmonic in the signal y(t).

Remark 14.4 The frequency estimator (14.18) may be compared to the adaptive
notch filter proposed in [25] in the special case in which a0 = 0 in (14.1):
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ẋ1 = x2
ẋ2 = −ω̂2x1 − 2ζ ω̂x2 + 2ζ ω̂2y
˙̂ω = −γ x1(ω̂

2y − ω̂x2). (14.48)

They are both adaptive linear filters whose input is the periodic signal y(t) andwhose
output is the estimate ω̂: while (14.18) is a (l +9)-order adaptive linear filter in which
ω̂2 is the adapted filter parameter, the algorithm (14.48) is a third-order filter in which
ω̂ is the adapted filter parameter. They both guarantee the convergence of the estimate
ω̂ into a neighborhood of the true value ω = 2π/T : while (14.48) guarantees an
asymptotic convergence for sufficiently small initial errors, higher order harmonics
and adaptation gain γ , the algorithm (14.18) guarantees exponential convergence for
any initial condition and any parameters choice. For both algorithms ω̂ converges to
the true value ω if there are no higher order harmonics in (14.1).

Remark 14.5 From (14.4) and (14.6), an estimate of the amplitude and phase of the
first biased harmonic term can also be obtained. If we write η1(t) as

η1(t) = θ1 sin(ωt) + θ2 cosωt + θ3

the parameters θi may be estimated using the gradient method (see [29]) as

⎡
⎢⎣

˙̂
θ1˙̂
θ2˙̂
θ3

⎤
⎥⎦ = γ1(η1 − ηI )

⎡
⎣
sinωt
cosωt

1

⎤
⎦

ηI = θ̂1 sin(ωt) + θ̂2 cos(ωt) + θ̂3. (14.49)

in which γ1 > 0. Since, however, η1 and ω are not known, their estimates provided
by the frequency estimator (14.18) are used, so that in place of (14.49) we use

⎡
⎢⎣

˙̂
θ1˙̂
θ2˙̂
θ3

⎤
⎥⎦ = γ1(η̂1 − η̂I )

⎡
⎣
sin ω̂t
cos ω̂t

1

⎤
⎦

η̂I = θ̂1 sin(ω̂t) + θ̂2 cos(ω̂t) + θ̂3.

The recursive least square method could be also used [29].

14.3 Examples

As a first example, we consider the problem of estimating the period of the periodic
signal y(t) of frequency ω = 3 given by (see Fig. 14.2)
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Fig. 14.2 Periodic signals: left curve, y(t) in (14.50); right curve, y(t) in (14.51)

Fig. 14.3 Frequency estimator (14.18): upper curves, l = 2; lower curves, l = 1

y(t) =
21∑

k=1

sin(3kt + 0.3k) (14.50)

by means of the frequency estimator (14.18). The results are illustrated in Fig. 14.3
in which the following time histories are reported: the value of θ̂ (t) as obtained
by the algorithm (14.18), the relative error 1 − θ̂ (t)/θ between the true and the
estimated square of the frequency. The following parameters and initial conditions
have been adopted: γ = 30000, d2 = 4, d3 = 5, d4 = 2, λ f = 1, λ = 1, ko = 1,
θ̂ (0) = 0.1 and all other initial conditions set to zero. The upper curves refer to
the case in which a second-order filter is adopted (l = 2) while the lower curves
report the results obtained with l = 1. Figure14.3 shows that in the case l = 1 the
rate of convergence is increased while the accuracy is worse with respect to the case
l = 2. The previous results may be compared to those obtained by the adaptive notch
filter (14.48) illustrated in Remark 14.4 which are reported in Fig. 14.4. As suggested
by the authors in [25], the parameters used in the algorithm (14.48) are: γ = 0.1,
ζ = 0.35 while the initial value for ω̂ was ω̂(0) = 2.8 (10% less than the true value)
and null initial conditions. The upper curves in Fig. 14.4 report the time histories of
the square of the frequency estimate ω̂2(t) and of the relative error [ω2 − ω̂2(t)]/ω2
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Fig. 14.4 Adaptive notch filter (14.48): upper curves, y(t) as in (14.51), lower curves, y(t) as in
(14.50)

in the case in which the higher order harmonics in (14.50) are reduced by 90%, i.e.,
the following signal is applied (see Fig. 14.2)

y(t) = sin(3t + 0.3) + 0.1
21∑

k=2

sin(3kt + 0.3k). (14.51)

The lower curves illustrates the performance achieved when the complete signal
(14.50) was used. Figure14.4 shows that while the adaptive notch filter has good
performance when both the higher order harmonics and the initial estimate error are
small, a divergent behavior occurs when the complete signal (14.50) is applied. Note
that the initial frequency estimate error for the adaptive notch filter is much smaller
than the corresponding initial error for the frequency estimator (14.18).

As a second example, we consider the problem of attenuating a periodic distur-
bance assuming that it is the output of an unknown stable system D(s) whose input
y(t) is measurable (see Fig. 14.5)

Fig. 14.5 Block diagram for
the disturbance compensator
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y(t) =
5∑

k=1

1

k
sin(3kt + 0.3k). (14.52)

Note that the scheme in Fig. 14.5 applies to active noise cancelation if D(s) is the
transfer function between the source of noise and the listener. First of all, assuming
that the frequency of the periodic signal is known and given by θ̂D , the following
disturbance compensator is designed

ẋ1 = x2 − kc yatt

ẋ2 = −θ̂Dx1
ẋ3 = x4 − kc yatt

ẋ4 = −4θ̂Dx3
ẋ5 = x6 − kc yatt

ẋ6 = −9θ̂Dx5
yatt = y + x1 + x3 + x5 (14.53)

which is capable of cutting the first three harmonics in the periodic signal D(s)y(s)
when θ̂D = 3. We select D(s) = 1 for the simulation set-up. Then, the frequency
estimator (14.18) is used,with l = 2 and the sameparameters used in thefirst example
(with the exception of γ = 3000), to update every time interval T = 4 s the value of
θ̂D in (14.53), so that the overall disturbance compensator is hybrid. The results of the
simulation are illustrated by Fig. 14.6 in which are reported the time histories of the
disturbance y(t), the attenuated disturbance yatt (t), the discrete-time estimate θ̂D(t)

Fig. 14.6 Hybrid disturbance compensator
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and the continuous-time estimate θ̂ (t). It can be noted that, even though there is a
nonzero error in the frequency estimate, the attenuated signal yatt (t) is much smaller
than the original disturbance y(t). The residual error is due to two different causes:
the mismatch between the true and estimated period, and the remaining fourth and
fifth harmonics which are not blocked in (14.53).

14.4 Conclusions

The adaptive (l +9)-order frequency estimator (14.18) has been proposed to estimate
the period of a measured bounded continuous periodic signal: l denotes the order of
the linear prefilter. No a priori information on the period is required. Theorem 14.1
establishes that for any initial condition, the parameter estimation error converges
exponentially into a closed intervalwhose size depends on the higher order harmonics
in (14.1). By increasing the order l of the prefilter, the accuracy of the frequency
estimation can be arbitrarily improved, at the expense of reducing the rate of the
exponential convergence. If there are no higher order harmonics in (14.1), that is
(14.1) is a biased sinusoidal signal, then the frequency estimation error converges
exponentially to zero for any value of l, including l = 0. This result improves the
widely studied [3, 4, 9, 24, 25, 28] adaptive notch filter (14.48) whose frequency
estimate convergence into a neighborhood of the true value is proved to be asymptotic
and local in [25], provided that the adaptation gain is sufficiently small.Moreover, the
frequency estimator may be also used to provide, at each predefined time interval,
updated frequency estimates to disturbance compensators operating with constant
frequency, as it is shown in the included example.
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Chapter 15
Power-Based Methods for
Infinite-Dimensional Systems

Krishna Chaitanya Kosaraju and Ramkrishna Pasumarthy

Abstract In this chapter we aim to extend the Brayton Moser (BM) framework for
modeling infinite-dimensional systems. Starting with an infinite-dimensional port-
Hamiltonian system we derive a BM equivalent which can be defined with respect
to a non-canonical Dirac structure. Based on this model we derive stability and new
passivity properties for the system. The state variables in this case are the “effort”
variables and the storage function is a “power-like” function called the mixed poten-
tial. The new property is derived by “differentiating” one of the port variables. We
present our results with the Maxwell’s equations, and the transmission line with
non-zero boundary conditions as examples.
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Energy-based methods for modeling and control of complex physical systems
has been an active area of research for the past two decades. In particular, the
Hamiltonian-based formulation has proven to be an effective tool in modeling and
control of complex physical systems from several physical domains, both finite
and infinite-dimensional cases [7]. These systems are inherently passive with the
Hamiltonian when bounded from below, serving as the storage function and the
input and output pair are power conjugate. This resulted in development of so-called
“Energy-Shaping” methods for control of physical systems. In some cases the nat-
ural power conjugate port variables do not necessarily help in achieving the control
objectives due to the dissipation obstacle [13], motivating the search for alternate
passive maps. One possible alternative which has been explored extensively in the
finite-dimensional case is the “Brayton–Moser” (BM) framework for modeling of
electrical networks [2, 5, 6], which has been successfully adapted towards analyzing
passivity of RLC circuits [8] and for control of physical systems by “power shaping”
[7]. For further details on various energy and power-based modeling techniques we
refer to [9].

Most of the literature for control on the BM framework restricts to finite-
dimensional case only. One of the first results, in the infinite dimensional case,
appeared in [4], in which the authors present a stability theory in the BM framework
for a transmission line connected to the non-linear load. However, the proposed
Lyapunov functional does not preserve the pseudogradient-like structure of the sys-
tem, which is essential for boundary control, and to derive passive maps is not very
obvious. Later, in [10] the authors describe a electromagnetic fields analogue of the
Brayton Moser formulation of Maxwell equations, again mostly for zero boundary
conditions. In an earlier work [12], we have presented results on control by intercon-
nection of a transmission line by “power shaping” in the BM framework.

In this chapter we present a BM analogue of an infinite-dimensional port-
Hamiltonian systems, defined with respect to a constant Stokes Dirac structure [16].
The main results are deriving a new passivity property for mixed finite and infinite-
dimensional systems by “differentiating” one of the port variables (possibly the
boundary port) and a storage function directly related to the power of the system,
while preserving the structure of the system. This new storage function is instru-
mental in analyzing the stability of the system. We present our results for a general
Hamiltonian system, with Maxwell’s equations and the transmission line with non-
zero boundary conditions, as examples.

This chapter is organized as follows. In Sect. 15.2, we defined the Stokes Dirac
structure and its Brayton Moser formulation. In Sect. 15.3, we use Brayton Moser
framework to analyze stability and give admissible pairs for Maxwell’s equation
of electromagnetic fields and telegraphers equations of transmission line with zero
energy flow trough boundary. In Sect. 15.4, we present the admissible pairs and
stability for transmission line with non-zero energy flows through the boundary and
derive new passivity properties. Finally in Sect. 15.5, we derive conservation laws
and Casimirs in the BM framework.

Part of the results presented here have appeared in [11].
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Notations and Math Preliminaries

Let Z be an n dimensional Riemannian manifold with a smooth (n −1) dimensional
boundary ∂ Z . Ωk(Z), k = 0, 1, . . . , n denotes the space of all exterior k− forms on
Z . The dual space

(
Ωk(Z)

)∗
of Ωk(Z) can be identified with space of n − k forms

Ωn−k(Z) , the space of (n − k) forms on Z . There exists a natural pairing between
α ∈ Ωk(Z) and β ∈ (

Ωk(Z)
)∗

given by 〈β|α〉 = ∫
Z β ∧ α, were ∧ is the usual

wedge product of differential forms, resulting in the n form β ∧ α. Similar pairing
can be established between the boundary variables.

d denotes the exterior derivative and maps k forms on Z to k + 1 forms on Z.
The Hodge star operator ∗ (corresponding to Riemannian metric on Z ) converts p
forms to (n − p) forms. Given α, β ∈ Ωk(Z) and γ ∈ Ω l(Z), the wedge product
α ∧ γ ∈ Ωk+l(Z). We additionally have the following properties (for details on
theory of differential forms we refer to [1]).

α ∧ γ = (−1)klγ ∧ α , ∗ ∗α = (−1)k(n−k)α (15.1)∫

z
α ∧ ∗β =

∫

z
β ∧ ∗α (15.2)

d (α ∧ γ ) = dα ∧ γ + (−1)kα ∧ dγ (15.3)

Given a functional H(αp, αq), we compute its variation as

δH = H(αp + ∂αp, αq + ∂αq) − H(αp, αq)

=
∫

z

[
δp H ∧ ∂αp + δq H ∧ ∂αq

]
, (15.4)

where αp, ∂αp ∈ Ω p(Z) and αq , ∂αq ∈ Ωq(Z) and δp H ∈ Ωn−p(Z) and
δq H ∈ Ωn−q(Z) are variational derivatives of H(αp, αq) with respective to αp and
αq . Further, the time derivative of H(αp, αq) is

d H

dt
=

∫

z

(
δp H ∧ ∂αp

∂t
+ δq H ∧ ∂αq

∂t

)
.

Let G : Ωn−p(Z) → Ωn−p(Z) and R : Ωn−q(Z) → Ωn−q(Z), we call G ≥ 0, if
and only if ∀αp ∈ Ω p(Z)

∫

Z

(
αp ∧ ∗Gαp

) ≥ 0

G is said to be symmetric if 〈αp|Gαp〉 = 〈Gαp|αp〉.
Lastly, for Z ⊂ R

n , given f (z, t) : Z ×R → R, we denote
∂ f

∂t
(z, t) as ft , similarly

∂ f

∂z
(z, t) as fz .
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15.2 From Port-Hamiltonian to Brayton Moser Equations

The basic concept needed in the formulation of a port-Hamiltonian system is that of
a Dirac structure, which is a geometric object formalizing general power conserving
interconnections [15].

Definition 15.1 Let V be a an infinite-dimensional linear space. There exists on
V × V ∗ a canonically defined symmetric bilinear form

� ( f1, e1), ( f2, e2) �:=< e1 | f2 > + < e2 | f1 > (15.5)

with fi ∈ V, ei ∈ V ∗, i = 1, 2 and <|> denoting the duality product between
V and its dual subspace V ∗. A constant Dirac structure on V is a linear subspace
D ⊂ V × V ∗ such that

D = D⊥, (15.6)

where⊥ denotes the orthogonal complement with respect to the bilinear form�,�.

Let now ( f, e) ∈ D = D⊥. Then as an immediate consequence of (15.5)

0 =� ( f, e), ( f, e) �= 2 < e | f > .

Thus for all ( f, e) ∈ D we have < e | f >= 0, expressing power conservation with
respect to the dual power variables f ∈ V and e ∈ V ∗
The Stokes Dirac Structure [16]: Define the linear spaceFp,q = Ω p(Z)×Ωq(Z)×
Ωn−p(∂ Z) called the space of flows and Ep,q = Ωn−p(Z)×Ωn−q(Z)×Ωn−q(∂ Z),
the space of efforts, with integers p, q satisfying p + q = n + 1. Then, the linear
subspace D ⊂ Fp,q × Ep,q

D = {(
f p, fq , fb, ep, eq , eb

) ∈ Fp,q × Ep,q |[
f p

fq

]
=

[∗G (−1)rd
d ∗R

] [
ep

eq

]
,

[
fb

eb

]
=

[
1 0
0 −(−1)n−q

] [
ep|∂ Z

eq |∂ Z

]}

where r = pq + 1, is Stokes Dirac structure with dissipation, [16] with respect to
the bilinear form

�
(

f 1p , f 1q , f 1b , e1p, e1q , e1b

)
,
(

f 2p , f 2q , f 2b , e2p, e2q , e2b

)
�

=
∫

Z
(e2p ∧ f 1p + e1p ∧ f 2p + e2q ∧ f 1q + e1q ∧ f 2q ) +

∫

∂ Z
(e2b ∧ f 1b + e1b ∧ f 2b ).

Consider a distributed parameter port Hamiltonian system on Ω p(Z) × Ωq(Z) ×
Ωn−p(∂ Z), with energy variables

(
αp, αq

) ∈ Ω p(Z) × Ωq(Z) representing two
different physical energy domains interacting with each other. The Hamiltonian H =∫

Z H, where H is the Hamiltonian density. Then the below system of equations
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represent an infinite-dimensional port-Hamiltonian system, with f p = − ∂αp
∂t , fq =

− ∂αq
∂t and the efforts as the co-energy variables, i.e. ep = δp H, eq = δq H .

− ∂

∂t

[
αp

αq

]
=

[∗G (−1)rd
d ∗R

] [
δp H
δq H

]
;
[

fb

eb

]
=

[
1 0
0 −(−1)n−q

] [
δp H |∂ Z

δq H |∂ Z

]

(15.7)

The time derivative of the Hamiltonian is computed as

d H

dt
≤

∫

Z
eb ∧ fb

This means that the increase in energy in the spatial domain is less than or equal to
power supplied to the system through its boundary. This implies that the system is
passive, with respect to the boundary variables, with the Hamiltonian H , which is
assumed to be bounded from below serving as the storage function.

15.2.1 The Brayton Moser Mixed Potential

Brayton and Moser in the early 1960s [5, 6] showed that the dynamics of a class
(topologically complete) of non-linear RLC-circuits can be written as

A(iL , vc)

[
diL
dt

dvc
dt

]
=

[
∂ P
∂iL
∂ P
∂vC

]
+

[
B�

Ec
Ec

−B�
Jc

JC

]
(15.8)

where A(iL , vC ) = diag{L(iL),−C(vC )} and iL the vector of currents through
inductors, vC vector of capacitor voltages, L(iL) the inductance matrix, C(vC ) the
capacitancematrix, BEc , BJc thematrices containing the elements {−1, 0, 1} decided
byKirchoff’s voltage and current laws. EC , JC are respectively the controlled voltage
and current sources. P is called the mixed potential function defined by

P(iL , vC ) = F(iL) − G(vC ) + i�L γ vc

where x = (iL , vC ) the system states. Here F is the content of all the current
controlled resistors, G is the co-content of all voltage controlled resistors. Matrix
γ contains elements {−1, 0, 1} depending on the network topology. Computing the
time derivative of P along the trajectories of (15.8) we have

Ṗ = ẋ� (
A(x) + A�(x)

)
ẋ + uT y,

where, u = (Ec, Jc)
� and y =

(
−BEc

diL
dt , BJc

dvC
dt

)�
.
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From the above expression we can conclude that the system is passive if (A(x) +
A�(x)) ≤ 0, with P the storage functions and u�y as the supply rate.

In case (A(x)+ A�(x)) ≤ 0 is not satisfied, then it is possible to find new ( Ã, P̃)

called an “admissible pair,” (refer [3, 13]) satisfying ( Ã(x) + Ã�(x)) ≤ 0. The
dynamics can then be equivalently be written as

Ã

[ diL
dt

dvc
dt

]
=

[
∂ P̃
∂iL
∂ P̃
∂vC

]
+

[
B�

Ec
Ec

−B�
Jc

JC

]
(15.9)

Remark 15.2 Contrast to the case where the total energy of the system serves as the
storage function and passivity is derived with respect to input–output variables which
are power conjugate, for example, the voltage and currents [15]. In this case, making
use of the mixed potential function as the storage function we derive passivity either
with respect to controlled voltages and the derivatives of currents, or the controlled
currents and the derivatives of the voltages.

The Infinite-Dimensional BM Formulation

We aim to write the infinite-dimensional port-Hamiltonian system, defined with
respect to a Stokes Dirac structure (15.7) in an equivalent BM form. To begin
with, we assume that the mapping from the energy variables (αp, αq) to the
co-energy variables (ep, eq) = (δp H, δq H) is invertible. This means the inverse
transformation from the co-energy variables to the energy variables can be written
as (αp, αq) = (δep H∗, δeq H∗). H∗ is the co-energy of H obtained by H∗(ep, eq) =∫

Z

(
(ep ∧ αp + eq ∧ αq) − H(αp, αq)

)
. Further, assume that the Hamiltonian H

splits as H(αp, αq) = Hp(αp) + Hq(αq), with the co-energy variables given by
ep = δp Hp, eq = δq Hq . Consequently the co-Hamiltonian can also be split as
H∗(ep, eq) = H∗

p(ep) + H∗
q (eq). We can now rewrite the spatial dynamics of the

infinite-dimensional port-Hamiltonian system, in terms of the co-energy variable as

[
δ2p H∗ 0
0 δ2p H∗

] [
− ∂ep

∂t

− ∂eq
∂t

]
=

[∗G (−1)rd
d ∗R

] [
δp H
δq H

]
(15.10)

To begin with, we consider the case of a system which is lossless, that is when R
and G are identically equal to zero in (15.7). Define P to be a functional of the form∫

Z eq ∧ dep. Its variation is given as

δP = P(ep + ∂ep, eq + ∂eq) − P = eq ∧ d∂ep + ∂eq ∧ dep + · · ·

Using the relation eq ∧ d∂ep = (−1)pq∂ep ∧ deq + (−1)n−qd
(
eq ∧ ∂ep

)
, and the

identity (15.4), we have

δeq P = dep(−1)(n−q)×q , δep P = (−1)pqdeq(−1)(n−p)×p.
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We can rewrite (15.10) in the following way

[
δ2p H∗ 0
0 δ2p H∗

][
∂ep
∂t
∂eq
∂t

]
=

[∗δeq P
∗δep P

]
(15.11)

Note that theHodge star operator in right hand side is necessary, because (δeq P, δep P) ∈
Ωq(Z) × Ω p(Z) , and (ėq , ėp) ∈ Ωn−q(Z) × Ωn−p(Z).

In order to incorporate dissipation we proceed as follows: Consider instead a
functional P defined as

P(ep, eq) =
∫

Z

(
eq ∧ dep + 1

2
Req ∧ ∗eq − 1

2
Gep ∧ ∗ep

)
(15.12)

The variation in P is computed as

P = eq ∧ d∂ep + ∂eq ∧ dep + 1

2
(eq ∧ R ∗ ∂eq + ∂eq ∧ ∗eq)

−1

2
(ep ∧ G ∗ ∂ep + ∂ep ∧ ∗ep)

=
∫

Z
∂eq ∧ dep + ∂ep ∧ (−1)pqdeq + 1

2
(eq ∧ R ∗ ∂eq + ∂eq ∧ ∗eq)

−1

2
(ep ∧ G ∗ ∂ep + ∂ep ∧ ∗ep)

=
∫

Z
∂eq ∧ (

dep + R ∗ eq
) + ∂ep ∧ (

(−1)pqdeq − G ∗ ep
)

where we have used the relation eq ∧ d∂ep = (−1)pq∂ep ∧ deq + (−1)n−qd(
eq ∧ ∂ep

)
, together with properties of the wedge form and the star operator defined

in (15.2) and (15.3). Lastly by making use of (15.4) we can write

[
δeq P
δep P

]
=

[
(dep + R ∗ eq)(−1)(n−q)×q(

(−1)pqdeq − G ∗ ep
)
(−1)(n−p)×p

]
, (15.13)

The dynamics (15.10) can now be written as

[
δ2p H∗ 0
0 δ2p H∗

] [
∂ep
∂t
∂eq
∂t

]
=

[∗δeq P
∗δep P

]
(15.14)

The dynamics are written as partial differential equations in the co-energy variables
(ep, eq). The above equations together with the mixed potential functional as defined
in (15.12) correspond to system of equations which are usually referred to as the
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Brayton Moser equations, [4]. The above system of equations can be written in a
concise way as follows,

Aut = ∗δu P. (15.15)

where u = (ep, eq)� and A =
[
δ2p H∗ 0
0 δ2p H∗

]
.

Boundary dynamics: The system (15.15) can be interconnected to other systems
via the boundary of the infinite-dimensional system, which can either be finite or
infinite-dimensional in nature. To include the dynamics arising due to the boundary
we need to append the Eq. (15.15) in order to incorporate the boundary dynamics.

[
A 0
0 Ab

] [
ut

ub
t

]
=

[ ∗δu P
∗δub Pb + (−1)(n−p)×peq |∂ Z

]
(15.16)

with a new mixed potential function

P(ep, eq) =
∫

Z
P(ep, eq) +

∫

∂ Z
Pb(ep, eq)

with Pb taking into account themixedpotential function arising through the boundary
dynamics. ub represents the states of the systems interconnected at the boundary. The
variation in Pd id given by,

δP =
∫

Z

(
δeq P ∧ ∂eq + δep P ∧ ∂ep

)

+
∫

∂ Z

(
δeq Pb ∧ ∂ep +

(
δep Pb + (−1)(n−p)×peq

)
∧ ∂ep

)

Now with U = (u, ub)� and

δUP =

⎡
⎢⎢⎣

δeq P
δep P

δeq Pb|∂ Z(
δep Pb + (−1)(n−p)×peq

) |∂ Z

⎤
⎥⎥⎦ (15.17)

the Brayton Moser equations incorporating boundary dynamics can be written as

AUt = ∗δUP,

where A = diag(A, Ab).
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15.2.2 The Dirac Formulation

In this section we aim to find an equivalent Dirac structure formalism of the Brayton
Moser equations of infinite-dimensional system. As we shall see such a formulation
would result in a non-canonical Dirac structure. For the finite-dimensional version
of the Dirac formalism of BM equations we refer to [7]. Denote by fs = −ut as
the space of flows within the spatial domain and es = δu P , as the space of effort
variables again in the spatial domain. Further denote by fb = −ub as the space
of boundary flows and eb = δub P as the space of boundary efforts. Consider the
following subspace

D = (( fs, es, fb, eb) ∈ Fs × Es × Fb × Eb : −A fs = ∗es, − Ab fb = ∗eb)

It can easily be shown that the above defined subspace constitutes a non-canonical
Dirac structure, with respect to the bilinear form

� ( f 1s , e1s , f 1b , e1b), ( f 2s , e2s , f 2b , e2b) �
=

∫

Z

(
e1s ∧ f 2s + e2s ∧ f 1s + f 1s ∧ ∗(A + A�) f 2s

)

+
∫

∂Z

(
e1b ∧ f 2b + e2b ∧ f 1b + f 1b ∧ ∗(Ab + A�

b ) f 2b

)

The above Dirac structure satisfies the power balance equation

0 =
∫

Z
δu P ∧ut +

∫

∂ Z
δub Pb ∧ub

t +
∫

Z
ut ∧∗(A+ A�)ut +

∫

∂ Z
ub

t ∧∗(A+ A�)ub
t

Remark 15.3 In the above Dirac structure formalism, we have assumed the case
where ∗∗ = 1, where ∗ is the hodge star operator. This is at least true for the case
when the spatial domain is of dimension n = 1 and n = 3, which include respectively
the case of the transmission line and the Maxwell’s equations, which will be the two
examples we will use in the rest of the chapter.

15.3 Admissible Pairs and Stability

Once we have written down the equations in the BM framework (sometimes also
referred to as the pseudogradient form) we can pose the following question; does
the mixed potential function serve as a storage function (or a Lyaunov function) to
infer passivity (or equivalently stability) properties of the system? Below we aim to
answer these questions with the aid of two examples.
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15.3.1 Example: Maxwell Equations

The spatial domain Z ⊂ R
3 is a three-dimensional boundary with a smooth two-

dimensional boundary ∂ Z . The energy variables are the electric field inductionD and
magnetic field induction B. D = 1

2Di j zi ∧ z j and B = 1
2Bi j zi ∧ z j are 2−forms on

Z . The co-energy variables are electric field intensity E and Magnetic field intensity
H, their relationship with energy variables are given by,

∗ D = εE , ∗ B = μH, (15.18)

where ε(t, z) denotes the electric permittivity and μ(t, z) the magnetic permeability.
The co-energy variables are one-forms, linearly related to energy variables. The
Hamiltonian H is written as

H(D,B) =
∫

Z

1

2
(E ∧ D + H ∧ B) =

∫

Z

(
1

2ε
∗ D ∧ D + 1

2μ
∗ B ∧ B

)

(15.19)

Therefore δDH = E and δBH = H. Taking into account dissipation term in the
system, the dynamics can be written in the port-Hamiltonian form as

− ∂

∂t

[D
B

]
=

[
0 −d
d 0

] [
δDH
δBH

]
+

[
Jd

0

]
=

[∗σ −d
d 0

] [
δDH
δBH

]
. (15.20)

where ∗Jd = σE , Jd denotes the current density and σ(z, t) is the specific conduc-
tivity of the material. In addition we define the boundary variables as fb=δD H |∂ Z ,

eb = δB H |∂ Z . The rate of the Hamiltonian is given as

d

dt
H ≤

∫

∂ Z
H ∧ E

The Brayton Moser form of Maxwell’s equations:
In order to write the Maxwell’s equations in the BM form, we proceed as follows:
The aim is to rewrite the equations in terms of the co-energy variables, i.e.H and E .

Define themixedpotential functional corresponding to theMaxwell’s equations as

P =
∫

Z

(
H ∧ dE − 1

2
σE ∧ ∗E

)
, (15.21)
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which gives us the following form of Maxwell’s equations in terms of the mixed
potential

[−μI3 0
0 ε I3

] [Ht

Et

]
=

[ ∗dE
−σE + ∗dH

]
=

[∗δHP
∗δE P

]
(15.22)

15.3.1.1 Stability Analysis

To infer stability properties of the system (15.22) let us begin with the case of zero
energyflow through the boundary of the system.Themixed potential function (15.21)
obtained via (15.12) is not positive definite. Hence we cannot use it as Lyapunov/
storage functional. Moreover, the rate of this function is computed as

∂ P

∂t
=

∫

Z
(−μHt ∧ ∗Ht + εEt ∧ ∗Et )

It can be easily seen that the right-hand side of the above equation is not sign definite,
and hence P does not serve as a Lyapunov functional to infer any kind of stability
(or for that matter passivity) properties of the system. We thus need to look for other
possible Lyapunov functionals P̃ , or in other words admissible pairs Ã, P̃ as in
the case of finite-dimensional systems [8] which can prove stability of the system.
Moreover, in order to conclude stability, the admissible pair should be such that the
symmetric part of Ã is negative semidefinite. This can be achieved in the following
way, [4, 10]. Let

P̃ = λP + 1

2

∫

Z
(δHP ∧ M1 ∗ δHP + δE P ∧ M2 ∗ δE P)

with λ be a arbitrary constant and symmetric M1 and M2 mapping from Ω2(Z) →
Ω2(Z). Here the aim is to find λ, M1 and M2 such that

∂

∂t
P̃ = u�

t Ãut ≤ −K ||ut ||2 ≤ 0 (15.23)

where K ≥ 0 is a constant determined by the Ã. If we can find such a (P̃, Ã),
which satisfies the above condition, then we can conclude stability of the system, by
invoking the stability theorem in [4].

Below we present a constructive process to obtain new admissible pairs. The
variation in P̃ defined in (15.23) is computed as

[
δH P̃
δE P̃

]
=

[
λI M2d∗

M1d∗ (λI − σ M2)

] [
δHP
δE P

]
,
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applying Hodge star on both sides and using (15.22) we get

∗
[
δH P̃
δE P̃

]
=

[ −μλI εM2 ∗ d
−μM1 ∗ d ε (λI − σ M2)

] [Ht

Et

]
.

Further, if we let

Ã =
[ −μλI εM2 ∗ d
−μM1 ∗ d ε (λI − σ M2)

]

we arrive at the following relationship

Ãut = ∗δu P̃. (15.24)

Next we show that P̃ and Ã are admissible pairs if λ, M1 and M2 satisfy εM2 =
μM1

�= θ and 0 ≤ λ ≤ σ‖M2‖s , where ‖ · ‖s is spectral norm. Some calculations
show that the symmetric part of Ã = diag(−μλI,−ε (σ M2 − λI )) is negative
definite.

We note that P can be simplified to

P =
∫

z
H ∧ dE − 1

2
σE ∧ ∗E

=
∫

z
− 1

2σ
[δEP ∧ ∗δEP] + 1

2σ
dH ∧ ∗dH,

resulting in

P̃ =
∫

z
δE P ∧ σ M2 − λI

2σ
∗ δE P + 1

2σ
dH ∧ ∗dH

+1

2
(δHP ∧ M1 ∗ δHP) ≥ 0 (15.25)

Lastly, we choose M1 > 0 and M2 > 0 such that εM2 = μM1. The time derivative
of P̃ is

˙̃P = −
∫

Z
(μλHt ∧ ∗Ht + Et ∧ ∗(λI − σ M2)Et ) ≤ 0

thus implying stability.
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15.3.2 Example: The Transmission Line

In this section we first derive the Brayton Moser equivalent of the dynamics of
a transmission line modeled by the telegraphers equations. Similar to the case of
Maxwell’s equations we find the admissible pairs under zero boundary energy flow
conditions and infer stability of the system.

The spatial domain in case of the transmission is Z = [0, 1] ⊂ R with boundary
∂ Z = {0, 1}. The charge q(z, t) and flux densities φ(z, t) ∈ Ω1(Z) constitute the
energy variables,whereas the co-energy variable are voltage v(z, t) and current i(z, t)
∈ Ω0(Z). For simplicity, the relation between the energy and co-energy variables is
assumed to be linear, and is given by

∗ q = Cv, ∗ φ = Li (15.26)

where C and L are, respectively, the spatial capacitance and inductance per unit
length, which are assumed to be independent of z. The Hamiltonian H , which is the
total energy of the system, is written as

H = 1

2

∫

Z
(v ∧ q + i ∧ φ) (15.27)

Taking the dissipation term into account, the telegraphers equations written in port-
Hamiltonian form as [16]

− ∂

∂t

[
q
φ

]
=

[∗G d
d ∗R

] [
δq H
δφ H

]
(15.28)

where δq H = v, δφ H = i (using (15.26) and (15.27)). R, G, respectively, denote
the distributed resistance and conductance per unit length of the transmission line.
Further, we define the boundary variables as fb = δq H |∂ Z and eb = δφ H |∂ Z . The
rate of Hamiltonian is given by

d

dt
H = (v.i)|10

The Brayton Moser form:
The dynamics of the transmission line (15.27) can bewritten in an equivalent Brayton
Moser form as follows: Define a functional P as

P =
∫

Z

(
−v ∧ di + 1

2
Ri ∧ ∗i − 1

2
Gv ∧ ∗v

)
, (15.29)
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which will serve as the mixed potential function. Using the line voltage and current
as the state variables, we can rewrite the dynamics as follows:

[−L 0
0 C

] [
it

vt

]
=

[∗δi P
∗δv P

]
=

[
Gv + ∗di

−Ri − ∗dv

]
. (15.30)

with A
�= diag(−L , C) and u = (i(z, t) v(z, t))�.

15.3.2.1 Admissible Pairs and Stability

Similar to the case of Maxwell equations, we cannot use P and A directly to infer
stability. We, therefore, need to generate new admissible pairs P̃ and Ã satisfying
(15.23) and (15.24) such that P̃ > 0 and symmetric part of Ã < 0, resulting in
stability. As in the case of Maxwell’s equations, we propose a P̃ of the form

P̃ = λP + 1

2
δu P ∧ M ∗ δu P (15.31)

We choose M =
⎡
⎣

α

R
m2

m2
β

G

⎤
⎦ where α, β, m2 are positive constants satisfying α

L

R
=

β
C

G
and λ is a dimensionless constant. Such a choice will be clear in the following

discussions, which will eventually lead to a stability criterion. It is easy to check that
P̃ has units of power. To simplify the calculations we define new positive constants
θ , γ and ζ as follows:

θ
�= α

L

R
= β

C

G
, m2

�= 2γ

C R + LG

ζ
�= 2γ√

LC(α + β)
=⇒ m2 = ζθ√

LC
. (15.32)

To show that P̃ ≥ 0 we start with simplifying the right hand side of (15.31) in the
following way. Define

Δ1
�=

(
ζ

√
L

2
(Gv + iz) −

√
C

2
(Ri + vz)

)

Δ2
�=

(
ζ

√
C

2
(Ri + vz) −

√
L

2
(Gv + iz)

)
.

(15.33)
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Using (15.32), (15.33), and after some calculations, we can show that

1

2
〈δu P, Mδu P〉 = Δ2

1 + β

2G
(1 − ζ 2)(Gv + iz)

2

= Δ2
2 + α

2R
(1 − ζ 2)(Ri + vz)

2

P̃ as defined in (15.31) can then be written as follows

P̃ = α(1 − ζ 2) − λ

2R
(Ri + vz)

2 + Δ2
2 + λ

2R
v2z + λ

2
Gv2 (15.34)

= β(1 − ζ 2) + λ

2G
(Gv + iz)

2 + Δ2
1 − λ

2G
i2z − λ

2
Ri2 (15.35)

which implies that P̃ ≥ 0 as long as the following conditions are satisfied

0 ≤ λ ≤ α(1 − ζ 2), 0 ≤ ζ ≤ 1

− β(1 − ζ 2) ≤ λ ≤ 0 or equilvalently

− β(1 − ζ 2) ≤ λ ≤ α(1 − ζ 2), 0 ≤ ζ ≤ 1 (15.36)

Further the variational derivative of P̃ with respect to u is calculated as

δu P̃ =
[
(−λ + α)(vz + Ri) − m2R(Gv + iz)

(λ + β)(Gv + iz) − m2G(Ri + vz)

]
− ∂

∂z

[
β
G (Gv + iz) − m2(vz + Ri)
α
R (vz + Ri) − m2(Gv + iz)

]

=
[

L(λ − α − m2
∂
∂z ) C(Rm2 + β

G
∂
∂z )

L(Gm2 + α
R

∂
∂z ) −C(λ + β + m2

∂
∂z )

][
it

vt

]
.

Therefore

Ã =
[

L(λ − α − m2
∂
∂z ) C(Rm2 + β

G
∂
∂z )

L(Gm2 + α
R

∂
∂z ) −C(λ + β + m2

∂
∂z )

]
(15.37)

satisfies the gradient form (15.24).

Noting that conjugate of
∂

∂z
is − ∂

∂z
and using α

L

R
= β

C

G
from (15.32), the

symmetric part of Ã (15.37) is simplified to be

Ã + Ã∗

2
=

[
L(λ − α) γ

γ −C(λ + β)

]
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The symmetric part of Ã is negative semidefinite as long as the following conditions
are satisfied,

− β ≤ λ ≤ α, and (λ − α)(λ + β) + (α + β)2

4
ζ 2 ≤ 0. (15.38)

We now present the following result:

Proposition 15.4 If there exist non-zero α, β, λ and ζ satisfying (15.32), (15.36),
and (15.38) then P̃ defined in (15.31) and Ã defined in (15.37)with M are admissible
pairs for the transmission line dynamics. Additionally if the symmetric part of Ã is
negative semidefinite, i.e. (15.38) holds true, them the system of equations (15.30) is
stable.

Proof From (15.32) we define τ
�= α

β
= RC

LG
. Given a transmission line R, C, L , G

are fixed, therefore τ ≥ 0 is related to system parameters and thus can be treated as

one. Let λ
′ = λ

β
. Using this in (15.36) and (15.38) we get

− (1 − ζ 2) ≤ λ
′ ≤ τ(1 − ζ 2) (15.39)

(λ
′ − τ)(λ

′ + 1) + (τ + 1)2

4
ζ 2 ≤ 0 (15.40)

Now we have to show that for all τ ≥ 0 there exists a pair of λ
′
and ζ that satisfies

both the above equations. Given a ζ ∈ (0, 1) from (15.39) λ
′
lies between a positive

value and a negative value ∀τ ≥ 0. If we can show that (15.40) has a positive and
negative roots, then we can conclude the proof. The roots of (15.40) are

r1 = 1

2

(
τ − 1 + (τ + 1)

√
1 − ζ 2

)

r2 = 1

2

(
τ − 1 − (τ + 1)

√
1 − ζ 2

)

The aim is to find a condition on ζ such that r1 and r2 have a different signs, for
all τ > 0. For 0 < τ < 1 we have r2 < 0. In order to make r1 > 0 we need
ζ 2 < 4τ/(1 + τ)2. Further for τ > 1 we have r1 > 0, in which case we require
r2 < 0 which leads to the same condition on ζ that is ζ 2 < 4τ/(1 + τ)2. Note that

this is a valid condition on ζ since ∀τ ,
4τ

(1 + τ)2
≤ 1. Which implies ζ is bounded,

0 ≤ ζ 2 ≤ 4LC RG

(LG + RC)2
. (15.41)
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Therefore ∀ζ ∈ [0, 4τ

(1 + τ)2
] there exists a λ

′
which satisfies (15.39) and (15.40).

Finally for any β ∈ R
+, α = τβ, λ = λ

′
β and ζ ∈ [0, 4τ

(1 + τ)2
] satisfies (15.32),

(15.36) and (15.38).

15.4 Admissible Pairs and Stability for Non-zero Energy
Flow Through Boundary

In this section we derive the Brayton Moser formulation of infinite-dimensional
systems with non-zero energy flows through boundary. For simplicity, we limit our
discussion for systems evolving on spatial domain Z = (0, 1) of dimension n = 1
with point boundaries, ∂ Z = {0, 1}. For z ∈ Z , let u(z, t) be the states evolving on
the spatial domain Z , further let u0(t) and u1(t) denote the states evolving at the
boundary z = 0 and z = 1. Now consider the mixed potential function of the form

P(U ) = P(u) + P0(u0) + P1(u1) (15.42)

where u0 = u(0, t), u1 = u(1, t) and U = [u, u0, u1] with P(u) of the form
(15.29). P0 and P1 are the contributions to the mixed potential function arising
form the boundary dynamics. Similar to infinite-dimensional case, we represent the
overall dynamics of finite and infinite-dimensional system in Brayton Moser form.
Dynamics evolving on the spatial domain (15.30) are given by (i.e. for 0 < z < 1)

Aut = δu P,

dynamics at boundary z = 0 are represented by

A0u0t =
(

∂ P0

∂u0
− Puz

)∣∣∣∣
z=0

+ B0E0

with B0, E0 representing input matrix and source at z = 0 respectively. Further

Puz = ∂ P

∂uz
.

The dynamics at boundary z = 1 are represented using

A1u1t =
(

∂ P1

∂u0
+ Puz

)∣∣∣∣
z=1

+ B1E1

where B1 and E1 are input matrix and source at z = 1. Together they can be written
compactly in Brayton Moser form as

AUt = δUP + B E (15.43)
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where A = diag{A, A0, A1}, A, A0 and A1 ∈ R
2×2. B = [B0, B1] is the input

matrix and E = [E0 E1]� are the inputs to the system. The variational derivative of
P (15.42) with respect to U is

δUP =

⎡
⎢⎢⎢⎢⎣

δu P(
∂ P0

∂u0
− Puz

)∣∣∣∣
z=0(

∂ P1

∂u1
+ Puz

)∣∣∣∣
z=1

⎤
⎥⎥⎥⎥⎦

.

Further the time derivative of mixed potential function (15.42) is

d

dt
P =

∫ 1

0
(δu P · ut ) dz +

(
∂ P0

∂u0
− Puz

)∣∣∣∣
z=0

· u0t +
(

∂ P1

∂u1
+ Puz

)∣∣∣∣
z=1

· u1t

(15.44)

where ut = ∂u

∂t
, u0t = ∂u0

∂t
, u1t = ∂u1

∂t
. Using the Brayton Moser form (15.43), Ṗ

can be written as

d

dt
P =

∫ 1

0
(Aut · ut ) dz + A0u0t · u0t + A1u1t · u1t − E� B�Ut

=
∫ 1

0

(
u�

t
A + A�

2
ut

)
dz + u�

0t
A0 + A�

0

2
u0t + u1t

A1 + A�
1

2
u1t + E�y

(15.45)

where y = −B�Ut . It can be seen that for a positive definiteP , and negative definite
A the system is passive with input E and output y. In general P andA do not satisfy
these conditions. This motivates us to search for new admissible pairs P ≥ 0 and
A ≤ 0 which enables us derive cerain passivity/stability properties.

Definition 15.5 Admissible Pairs: We denote P̃ = P̃ + P̃0 + P̃1 and Ã =
diag{ Ã, Ã0,

Ã1} Admissible pairs if they satisfy the following:

(a) P̃ ≥ 0 and Ã ≤ 0 such that

Ãut = δu P̃ (15.46)

(b) P̃0 ≥ 0 and Ã0 ≤ 0 such that

Ã0u0t =
(

∂ P̃

∂u0
− P̃uz

)∣∣∣∣∣
z=0

+ B0E0 (15.47)
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(c) P̃1 ≥ 0 and Ã1 ≤ 0 such that

Ã1u1t =
(

∂ P̃

∂u1
+ P̃uz

)∣∣∣∣∣
z=1

+ B1E1 (15.48)

(d) Together we can write them as P̃ ≥ 0 and Ã ≤ 0 such that

ÃUt = δU P̃ + B Eb

yb = −B�Ut . (15.49)

Finally time derivative of P̃ is

˙̃P ≤ E�
b yb.

Which implies that the system is passivewith storage function P̃ and ports Eb and yb.
We next show how to derive these with the help of an example.

15.4.1 Example: Transmission Line with Circuit Elements
at the Boundary

Consider a transmission line, whose boundary is interconnected to certain circuit
elements as shown in Fig. 15.1. At z = 0 is a resistor R0 in series with inductor L0
connected to a voltage source E0. The other end of the transmission line z = 1 is
terminated with a resistor R1.

This gives us the following dynamics at the boundary

v0 + R0i0 + L0
di0
dt

= E0 z = 0

v1 = R1i1 z = 1
(15.50)

Transmission line

L R
0

R
1

0

E
0

z=0 z=1

i
0 i1

+

_

v

+

_

v1
0

Fig. 15.1 Transmission line with boundary
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where v0 = v(0, t), i0 = i(0, t) and v1 = v(1, t), i1 = i(1, t), let U =
[i, v, i0, v0, i1, v1]�.

Let u = [i, v]�, u0 = [i0, v0]�, u1 = [i1, v1]� and Puz = ∂ P

∂uz
, uz = ∂u

∂z .

Next we define the mixed potential functionP = P + P0+ P1 andA as follows:

P =
∫ 1

0

(
−1

2
Ri2 + 1

2
Gv2 + viz

)
dz

P0 = −1

2
R0i20 P1 = −1

2
R1i21

A = diag

{[
L −C
0 0

]
,

[
L0 0
0 0

]
,

[
0 0
0 0

]}

where P and A are defined in (15.29) and (15.30), respectively. The input matrices
B0 = [

0 0 1 0 0 0
]�, B1 = 0 and E1 = 0. The transmission line dynamics governed

by Eq. (15.28) together with the boundary dynamics given by (15.50) can be written
in a compact form as

⎡
⎢⎢⎢⎢⎢⎢⎣

L 0 0 0 0 0
0 −C 0 0 0 0
0 0 L0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

it

vt

i0t

v0t

i1t

v1t

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−Ri − ∂v
∂z

−Gv − ∂i
∂z

v0 + R0i0
−v0 − R0i0
−v1 + R1i1
v1 − R1i1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

E0.

It can easily be checked that usingP as a storage function does not result in anykind of
passivity properties of the system. Therefore, we find new admissible pairs satisfying
Definition 15.5. The admissible pairs for spatial domain, found in Sect. 15.3.2.1
for zero energy flow through boundary will satisfy (15.46). Therefore P̃ and Ã
remains same for transmission line with zero or with non-zero energy flow through
the boundary. For the rest of the example we choose that λ = −1, and input matrix
B0 = [

0 0 −1 0 0 0
]�. Next we aim to find Ã0 and P̃0 which satisfy (15.47). At

z = 0 we have

(
∂ P̃0

∂u0
− P̃uz

)∣∣∣∣∣
z=0

+ B0E0 =
⎡
⎣−m2Li0t + θv0t + v0 + ∂ P̃0

∂i0
− E0

θ i0t − m2Cv0t + ∂ P̃0

∂v0

⎤
⎦

Let us consider P̃0 of the form
1

2
R0i20 ,
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(
∂ P̃0

∂u0
− P̃uz

)∣∣∣∣∣
z=0

+ B0E0 =
[−m2Li0t + θv0t + v0 + R0i0 − E0

θ i0t − m2Cv0t

]

=
[−m2Li0t + θv0t − L0i0t

θ i0t − m2Cv0t

]
.

In the last stepwe used the boundary condition at z = 0, i.e. v0+R0i0−E0 = −L0i0t ,

further assuming that ∃ζ, θ satisfying
1

m2C
(1 − ζ 2)θ2 = L0,

(
∂ P̃0

∂u0
− P̃uz

)∣∣∣∣∣
z=0

+ B0E0 =
⎡
⎣−m2Li0t + θv0t −

(
1

m2C
(1 − ζ 2)θ2

)
i0t

θ i0t − m2Cv0t

⎤
⎦

=
⎡
⎣θv0t −

(
m2L + 1

m2C
(1 − ζ 2)θ2

)
i0t

θ i0t − m2Cv0t

⎤
⎦

=
⎡
⎣θv0t − θ2

m2C
i0t

θ i0t − m2Cv0t

⎤
⎦ =

⎡
⎣− θ2

m2C
θ

θ −m2C

⎤
⎦

[
i0t

v0t

]

in the last step we used m2 = ζθ√
LC

(15.32). Finally, we denote

Ã0 =
⎡
⎣− θ2

m2C
θ

θ −m2C

⎤
⎦ ≤ 0, (15.51)

u�
0t Ã0u0t ≤ 0.

Hence P̃0 = 1

2
R0i20 and Ã0 (15.52) satisfy (15.47), under the assumption that ζ and

θ are chosen such that, L0 = 1

m2C
(1 − ζ 2)θ2. Similarly under the assumption that

θ

m2
= R1, we can show that for Ã1 = − Ã0 and P̃1 = 1

2
R1i21 will satisfy (15.48).

But for all (i1t , v1t ) satisfying v1t = R1i1t = θ

m2C
i1t we have

Ã1u1t =
⎡
⎣

θ2

m2C
−θ

−θ m2C

⎤
⎦

[
i1t

v1t

]

=
⎡
⎣

θ2

m2C
−θ

−θ m2C

⎤
⎦

[
i1t

R1i1t

]
=

⎡
⎣

θ2

m2C
−θ

−θ m2C

⎤
⎦

⎡
⎣

i1t
θ

m2C
i1t

⎤
⎦ = 0
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That is we choose θ and m2 such that u1t is always in the nullspace of Ã1. Which
implies

u�
1t Ã1u1t = 0 ∀(i1t , v1t ).

Finally for Bb = [
0 0 −1 0 0 0

]� and Eb = E0 we get yb = di0
dt

. The time

derivative P̃ = P̃ + P̃0 + P̃1 is computed as

d

dt
P̃ ≤ E0

di0
dt

,

which implies that the system is passive with respect to input E0 and output
di0
dt

.

Remark 15.6 Note that in Hamiltonian case the storage function is

H = 1

2

∫ 1

0

(
Li2 + Gv2

)
+ 1

2
L0i20

and its time derivative is calculated to be
d

dt
H ≤ E0i0. The system is passive with

port variable E0 and i0.

15.5 Casimirs and Conservation Laws

Weobtain conservation lawswhich are independent from themixedpotential function
as follows [14, 16]: For simplicity, we consider the case of systems without dissipa-
tion. We further assume that the energy and the co-energy variables are related via a
linear relation, given by

αp = ∗ε ep and αq = ∗μ eq . (15.52)

We can write (15.10) in the following way:

[−μ 0
0 ε

] [
ėq

ėp

]
=

[∗δeq P
∗δep P

]
(15.53)

Consider a function C : Ωn−p(Z) × Ωn−q(Z) × Z → R, which satisfies

d(∗δepC) = 0, d(∗δeqC) = 0

d

dt
C(eq , ep) =

∫

Z

(
δeq C ∧ ėq + δep C ∧ ėp

)
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=
∫

Z

(
−δeq C ∧ ∗ 1

μ
dep(−1)(n−q)×q + δep C ∧ ∗1

ε
(−1)pqdeq (−1)(n−p)×p

)

=
∫

Z

(
−(−1)(n−q)×q 1

μ
dep ∧ ∗δeq C + (−1)p 1

ε
deq ∧ ∗δep C

)

=
∫

Z

(
−(−1)(n−q)×q 1

μ
[d(ep ∧ ∗δeq C) + (−1)q ep ∧ d(∗δeq C)]

+ (−1)p 1

ε
[d(eq ∧ ∗δep C) + (−1)pep ∧ d(∗δep C)]

)

=
∫

∂ Z

(
eq ∧ ∗δep C) |∂ Z +(ep ∧ ∗δeq C) |∂ Z

)

In the particular case when ∗δep C |∂ Z= ∗δeq C |∂ Z= 0, then dC
dt = 0, along the

system trajectories. Such a function is called a Casimir function.

15.5.1 Example: Transmission Line

In case of the lossless transmission line, the total current

CI =
∫ 1

0
i(t, z)dz

and the line voltage

Cv =
∫ 1

0
v(t, z)dz

are the systems conservation laws. This can easily be inferred by the following

d

dt
CI = −

∫ 1

0

1

l

∂v

∂z
= v

L
|0 − v

L
|1

d

dt
Cv = −

∫ 1

0

1

C

∂i

∂z
= i

C
|0 − i

C
|1

15.5.2 Example: Maxwell’s Equations

In case of Maxwell’s equations with no dissipation terms, it can easily be checked
that the magnetic field intensity

∫
Z H and the electric field intensity

∫
Z B constitute

the conserved quantities. This can be seen via the following expressions:
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∫

Z

d

dt
Ht = −

∫

∂ Z

1

μ
E

∫

Z

d

dt
Et =

∫

∂ Z

1

ε
H

Another class of conserved quantities can be identified in the following way:
Using (15.11), the system of equations (15.53) can be rewritten as

[−μ 0
0 ε

] [∗ėq

∗ėp

]
=

[ ∗dep(−1)(n−q)×q

∗(−1)pqdeq(−1)(n−p)×p

]
(15.54)

Note that

−d
(
μ ∗ ėq

) = d(dep(−1)(n−q)×q) = 0

d
(
μ ∗ ėp

) = d((−1)pqdeq(−1)(n−p)×p) = 0

This means that d(μ ∗ eq), d(ε ∗ ep) are differential forms which do not vary with
time.

In terms ofMaxwell’s Equations thiswouldmean d(μ∗H) is a constant three-form
representing the charge density and d(ε∗E) is actually zero. In standard electromag-
netic texts these would mean ∇ · D = J , and ∇ · B = 0, representing respectively
the Gauss’ electric and magnetic law.

15.6 Conclusions

The main results in this chapter deal with the Brayton Moser formulation of
infinite-dimensional systems, starting from the Hamiltonian formulation of infinite-
dimensional systems, defined with respect to a Stokes’ Dirac structure. This formula-
tion provides ameans to generate new passivemaps for infinite-dimensional systems,
while preserving the pseudogradient-like structure of the Brayton Moser formula-
tion. The preserving of the structure is key for boundary control by interconnection
of infinite-dimensional systems.
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Chapter 16
On Stabilization of Mixed Dimensional
Parameter Port Hamiltonian Systems
Via Energy Shaping

H. Rodríguez-Cortés

Abstract For systems described by Port-Hamiltonian (PH) equations, the Control
by Interconnection method, based on the existence of Casimir functions, provides
a simple and elegant procedure for stabilization of nonlinear systems with finite
dissipation. This work explores the possibility of extending this technique to the
case where the plant contains an infinite-dimensional subsystem. Conditions for the
existence of Casimir functions reveal the constraints for the application of the design
procedure. A simple example of an RLC circuit coupled with an infinite-dimensional
transmission line illustrates the main ideas of this paper.

16.1 Introduction

16.1.1 Meeting Prof. Arjan van der Schaft

During my Ph.D. studies, I had the opportunity to work on nonlinear control theory,
specifically on the energy-based control techniques. At that time, I was introduced
to port-Hamiltonian systems and the interconnection and damping assignment con-
trol method. Thanks to the excellent relationship of my Ph.D. advisor, Prof. Romeo
Ortega, with Prof. Arjan van der Schaft I had the opportunity to perform a research
stay at the University of Twente. During this visit, I took the DISC course on Nonlin-
ear Systems, and I had the opportunity to do research with Prof. Arjan van der Schaft.
Prof. van der Schaft proposed to explore the possibilities to extend the Control by
Interconnection technique to a system composed of finite- and infinite-dimensional
systems. This research was a challenging for me; I had little experience with partial
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differential equations. However, the expert guidance and humble patience of Prof.
van der Schaft allows us to construct a fundamental block to extend the Control by
Interconnection method to mixed finite- and infinite-dimensional systems. I always
will be grateful to Prof. van der Schaft by receiving me to answer most of the times
quite basic questions. However, I always came out of his office with new research
directions to follow. In 2013, Prof. van der Schaft visit my workplace, CINVESTAV-
IPN, to give us a seminar on his latest advances in modeling of infinite-dimensional
port-Hamiltonian systems. The seminar was inspiring to continue working on mod-
eling and control of infinite-dimensional port-Hamiltonian systems.

16.1.2 Technical Introduction

A set of lumped potential and kinetic energy storing elements together with a set
of lumped energy dissipative elements and a set of lumped external interconnec-
tion ports naturally describe finite-dimensional systems. On the other hand, infinite-
dimensional systems are devices that cannot be accurately described by the lumped
element assumption. For instance, elevated roadways, flexible structures for outer
space, transmission lines, and aircraft wing.Although, the same sets of items describe
both finite- and infinite-dimensional systems; the difference is that each component
is spatially distributed. Consequently, infinite-dimensional systems aremodeledwith
partial differential equations.

For both finite- and infinite-dimension systems, energy flows through the sets
of elements by means of power conserving interconnections derived from physical
laws like Kirchhoff’s laws and Newton’s second law. To every interconnection of
elements, there is associated two power variables, called flows and efforts, whose
product is the power [3]. In this framework, the power conserving interconnection
relates flows and efforts corresponding to the energy storing elements, the energy
dissipative elements, and ports in such a way that the total incoming power is always
zero.

Starting from some given energy level, determined by the initial conditions and
system’ sources, power will flow between elements until a point of minimal energy is
reached. If the sources are zero, these points correspond to the open-loop equilibria.
Motivated by the central role played by energy in the system’s behavior, the energy-
based control methods aim to shape the closed-loop energy [1], as well as the energy
flow pattern through the control action [9].

Among the energy-based control methods, passivity-based control (PBC) design
technique interprets the controller as another dynamical system interconnected with
the plant through a power preserving interconnection, with the aim of reshaping
the open-loop energy function [7, 8]. This energy shaping step of PBC precedes
the damping injection stage, where the dissipation structure is modified to enforce
attractivity of the desired equilibrium. These two fundamental principles of PBC
are independent of the dimension of the system so that it is natural to look for
its extension to the infinite-dimensional setting. Building a construction block to
extend the Control by Interconnection version of PBC to the infinite-dimensional
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framework is the objective of this work. In particular for a system composed of a
finite-dimensional controller interconnected to a finite-dimensional plant through an
infinite-dimensional system with spatial dimension equal one.

Instrumental for the developments of this work is the introduction of the notion
of a Dirac structure, which formalizes in a geometric language the concept of power
preserving interconnection for PH systems [12]. Roughly speaking, a Dirac struc-
ture is the subspace of the space of efforts and flows, where their inner product,
power, is equal to zero. Dirac structures for finite-dimensional implicit PH systems
are reported in [12] while [6] introduces Dirac structures for infinite-dimensional
systems. Dirac structures are important in our problem for two reasons: first, they
provide a natural framework to interconnect finite- and infinite-dimensional sys-
tems. Second, they give a geometric interpretation in terms of subspaces of the Dirac
structure to the Casimir functions, dynamic invariants [5], required for the design
of the PBC. The main contribution of this paper is the derivation of the conditions
of existence of the Casimir functions for the controller-infinite-dimensional system
plant. Interestingly enough, these conditions consist of the well-known conditions of
the finite-dimensional controller plant interconnection, plus a new set of conditions
stemming from the presence of the distributed parameter subsystem.

The organization of this manuscript is as follows. Section16.2 presents the Dirac
structure associated with PH models, for ease of reference it starts with finite-
dimensional systems, and then the infinite-dimensional case. Section16.3 presents
the principal contributions of this work. The interconnection between finite- and
infinite-dimensional system is described above. The conditions to guarantee the exis-
tence of Casimir functions for the interconnected system. Finally, Sect. 16.3 includes
a stabilization procedure for interconnected finite- and infinite-dimensional systems,
based on the results of [11], as well as a simple example. Section16.4 completes
this manuscript presenting some concluding remarks. The work in [10] contains the
main results of this chapter.

16.2 Dirac Structures and Port Controlled
Hamiltonian Systems

The concept of power preserving interconnection can be formalized geometrically
by means of the Dirac structure. In this section, we briefly introduce this notion for
both finite- and infinite-dimensional systems. Specifically, for infinite-dimensional
systems with scalar spatial dimension ranging in a segment [0, l]. The interested
reader is referred to [6, 12] for further details and generalizations.

16.2.1 Finite-Dimensional Systems

To define a Dirac structure for finite-dimensional systems, we consider the finite-
dimensional linear spaceF of flows f , and its dual,F∗, the space of efforts e. Power
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is then defined as P = 〈e | f 〉 with 〈·|·〉 denoting the duality product.1 As shown in
[12], on F × F∗ there exists the canonical symmetric bilinear form

〈〈( f1, e1), ( f2, e2)〉〉 def= 〈e1 | f2〉 + 〈e2 | f1〉 (16.1)

Definition 16.1 On the finite-dimensional linear spaceF , a constant Dirac structure
is a linear subspaceS ⊂ F×F∗ such thatS⊥ = S, whereS⊥ denotes the orthogonal
complement of S with respect to the bilinear form (16.1).

Hence, for all ( f, e) ∈ D the following holds 〈e, f 〉 = 0. As result, a Dirac struc-
ture models a power conserving interconnection. To model a finite-dimensional pH

system, the space of flows is partitioned as F def= FS × FR × FP . FS denotes the
space of flows fS connected to the energy storing elements, FR denotes the space of
flows fR connected the dissipative elements and FP denotes the space of external
flows fP connected to the environment. Analogously, the space of efforts becomes

F∗ def= F∗
S × F∗

R × F∗
P , with eS ∈ F∗

S . The efforts connected to the energy storing
elements, eR ∈ F∗

R the efforts connected to dissipative elements and eP ∈ F∗
P the

efforts connected to the environment. Hence, the total power becomes

P = 〈eS | fS〉 + 〈eR | fR〉 + 〈eP | fP 〉

This work considers port-Hamiltonian systems with Dirac structure in the input-
output form, that is,

D def=
{
( f, e) ∈ F × F∗

∣∣∣ fS = −J (x)eS − gR(x) fR − g(x) fP ,

eP = g�(x)eS, eR = g�
R (x)eS

}
(16.2)

where ( f, e)
def= ( fS, fR, fP , eS, eR, eP ), x ∈ R

n is the state of the system,
J (x) = −J �(x) is the interconnection matrix, and g(x), gS(x), gR(x) are input
matrices of suitable dimensions. From (16.2) it is easy to show that D = D⊥.
Furthermore, given that for all ( f, e) ∈ D = D⊥, we have that

0 = 〈〈( f, e), ( f, e)〉〉 = 2〈 f | e〉,

therefore P = 0 for all elements of D.
If we assume that the flow and effort variables of the dissipative elements are

related by fR = −R(x)eR , where R(x) = R�(x) ≥ 0, the following relationship
between the power variables holds

[
fS

eP

]
=

[−J (x) + R(x) −g(x)

g�(x) 0

] [
eS

fP

]
(16.3)

1If F is a Hilbert space, then F∗ can be naturally identified with F in such a way that for all
f ∈ F, e ∈ F∗ we have 〈e | f 〉 = 〈e, f 〉, where 〈·, ·〉 is the standard inner product; see e.g., [4].
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whereR(x)
def= gR(x)� R(x)gR(x). This model is a representation in power coordi-

nates of a PH system. Since the power equals the time derivative of energy, and the
Hamiltonian function, H(x) : Rn → R, defines the stored energy. It follows that

P(t) = d

dt
H [x(t)] =

〈
∂ H

∂x
[x(t)] | ẋ(t)

〉

as a result, the following relationship between power and energy coordinates for
energy storing elements hold2

fS = −ẋ, eS = ∂ H

∂x
(x)

In this way, we get the well-known model of a PH system in energy variables

ẋ = [J (x) − R(x)] ∂ H
∂x (x) + g(x) fP

eP = g�(x) ∂ H
∂x (x)

which clearly satisfies the energy balance

d

dt
H [x(t)] = −∂�H

∂x
[x(t)]R[x(t)]∂ H

∂x
[x(t)] + e�

P (t) fP (t)

To fit the standard input–output notation in the following, we denote eP = yp and
fP = u p.

16.2.2 Infinite-Dimensional Systems

ADirac structure for an infinite-dimensional system requires an infinite-dimensional
function space. Here, we consider a Dirac structure for an infinite-dimensional sys-
tem with spatial dimension one; see [6] for a general differential geometric setting
appropriate to multidimensional spatial domains.

We consider an infinite-dimensional function space with the following structure

E def= H1M (Z) × H1E (Z) × B, with H1M (Z),H1E (Z) denoting the spaces of eM

and eE , respectively. B denotes the external boundary efforts eb at Z . Additionally,
H1(Z) denotes the Sobolev space of L2 functions on Z with derivatives also in L2.
Thus, F̄ is the dual space of E with respect to the following duality product

2Strictly, the power variables fS, eS live in the tangent and cotangent spaces to the finite-dimensional
manifold of energy variables. fS, eS are in a no constant Dirac structure on a manifold, see [2] for
details.
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〈(eE , eM , eb), ( fE , fM , fb)〉 =
∫ �

0
[ fE (z)eE (z) + fM (z)eM (z)]dz + eb fb |�0

with ( fE , fM ) the flows, both functions on Z belonging to the dual Sobolev space
H1(Z)∗, and fb the boundary flow.

In an analogy with (16.1), the bilinear form between two elements of F̄ ×E takes
the form

〈〈( f 1, e1), ( f 2, e2)〉〉 def=
∫ �

0

(
e1E f 2E + e2E f 1E + e1M f 2M + e2M f 1M

)
dz +

(
e1b f 2b + e2b f 1b

)
|�0

(16.4)

where ( f i , ei )
def= (

f i
E , f i

M , f i
b , ei

E , ei
M , ei

b

) ∈ F̄ × E, i = 1, 2.
The following result defines the Dirac structure for an infinite-dimensional sys-

tems with scalar spatial dimension.

Proposition 16.2 The subspace

D̄ def=
{
( f, e) ∈ F̄ × E |

[
fE

fM

]
=

[
0 ∂

∂z
∂
∂z 0

] [
eE

eM

]
,

[
fb

eb

]
=

[
0 −1
1 0

] [
eEb

eMb

]}

(16.5)

of F̄ × E is a constant Dirac structure, with respect to the bilinear form (16.4).

Now,we verify that the infinite-dimensional Dirac structure satisfies a generalized
form of power conservation. From (16.4) it follows that 〈〈( f, e), ( f, e)〉〉 = 0, for all
( f | e) ∈ D̄. Hence, one obtains the energy balance property as follows:

2
∫ �

0
[eE fE + eM fM ] dz + 2eb fb |�0 =

∫ �

0
[eE fE + eM fM ] dz = eb(0) fb(0) − eb(�) fb(�)

eb(0) fb(0) represents power coming into the domain Z at 0 while eb(�) fb(�) rep-
resents the power going out of z at �.

In this case, the infinite-dimensional PH system in power coordinates follows
directly from the Dirac structure as

[
fE

fM

]
=

[
0 ∂

∂z
∂
∂z 0

] [
eE

eM

]
,

[
fb

eb

]
=

[
0 −1
1 0

] [
eEb

eMb

]
(16.6)

At the boundary, the following holds
[

f0
e0

]
=

[−eM0
eE0

]
;

[
f�
e�

]
=

[−eM�

eE�

]
(16.7)

To express the infinite-dimensional PH system in energy coordinates, we consider
the Hamiltonian density given by
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H : H1M
∗ × H1E

∗ × Z → L1

The total energy functional associated to theHamiltonian density isH = ∫ �

0 H(q̄)dz,

with q̄
def= [qE , qM , z]. We assume that H is differentiable, with the time derivative

given by [11]
dH
dt

=
∫ �

0

[
δ�

MH δ�
EH

]� [
c
∂qM

∂t

∂qE

∂t

]
dz

where δEH = δH
δqE

, δEH = δH
δqE

denote the variational derivative.

Similar to thefinite-dimensional framework, in the case of the infinite-dimensional
framework, the relationship between the power and energy coordinates is as follows:

fE = − ∂

∂t
qE , eE = δEH

fM = − ∂

∂t
qM , eM = δMH

as a result the infinite-dimensional PH system in energy coordinates gets the follow-
ing structure

[
∂
∂t qE
∂
∂t qM

]
=

[
0 − ∂

∂z
− ∂

∂z 0

] [
δEH
δMH

]
,

[
fb

eb

]
=

[
0 −1
1 0

] [
δEH |b
δMH |b

]
(16.8)

Straightforward computations show that the infinite-dimensional PH system satisfies
the energy balancing equation

dH
dt

= δ�
EH(0)δMH(0) − δ�

EH(�)δMH(�)

16.2.3 Example: Transmission Line

Here we present a PH model of a transmission line whose dynamics are described
by the telegrapher’s equations. For the sake of illustration, we first derive the trans-
mission line following a classical approach, and then using the Dirac framework. A
method to obtain an infinite-dimensional model of a dynamic system, typically starts
with spatially distributed finite-dimensional systems. Then, by taking the limit as the
finite-dimensional systems become infinitesimal in size, it is possible to construct an
infinite-dimensional model.

Consider the transmission line of Fig. 16.1, the dynamic equations for the nth
mesh are given by, see Fig. 16.2.

q̇n = λn

Ln
− λn−1

Ln−1
, λ̇n = qn+1

Cn+1
− qn

Cn
(16.9)
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Fig. 16.1 Transmission line

V (0) V (�)I(0) I(�)

�

Fig. 16.2 nth
finite-dimensional element
of the transmission line

λ̇n−1 λ̇n

λn−1
Ln−1

λn

Ln

qn
Cn

qn+1
Cn+1

q̇n q̇n+1

Reordering the first equation of (16.9) one gets

q̇n = − Ln(λn−1 − λn) − λn(Ln−1 − Ln)

Ln Ln−1

which is an approximation of the partial derivative with respect to the spatial coor-
dinate z ∈ [0, 1] of λ(z,t)

Ltl (z)
, with Ltl(z) the distributed inductance. Thus, we have

∂

∂z

λ(z, t)

Ltl(z)
≈ Ln(λn−1 − λn) − λn(Ln−1 − Ln)

Ln Ln−1

Therefore, in the limit of a differential spacing between the finite-dimensional
capacitive-inductive circuits, the system of ordinary differential equations becomes
a single partial differential equation of the form

∂

∂t
q(z, t) = − ∂

∂z

λ(z, t)

Ltl(z)

In a similar way we obtain for the second equation of (16.9)

∂

∂t
λ(z, t) = − ∂

∂z

q(z, t)

Ctl(z)

where Ctl(z) is the distributed capacitance.
In the Dirac structure framework, the model is given as follows. The energy

variables are electric charge and magnetic flux, qE (t) = q(z, t), qM (t) = λ(z, t),
respectively. The total energy functional is
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H = 1

2

∫ �

0

[
q2(z, t)

Ctl(z)
+ λ2(z, t)

Ltl(z)

]
dz

with variational derivative given by δH =
[

q(z,t)
Ctl (z)

λ(z,t)
Ltl (z)

]�
.

Power flows through the boundaries {0, l}, the boundary variables are current
and voltage. Finally, the telegrapher’s equations may be expressed as an infinite-
dimensional PH system of the form

[
∂
∂t q(z, t)
∂
∂t λ(z, t)

]
=

[
0 − ∂

∂z
− ∂

∂z 0

][
q(z,t)
Ctl (z)
λ(z,t)
Ltl (z)

]
,

[
fb

eb

]
=

[
0 −1
1 0

][
q(z,t)
Ctl (z)

|�0
λ(z,t)
Ltl (z)

|�0

]
(16.10)

at the boundary points {0, �} one has
[

eM0
eE0

]
=

[
− λ(0,t)

Ltl (0)
q(0,t)
Ctl (0)

]
;

[
eM�

eE�

]
=

[
− λ(�,t)

Ltl (�)
q(�,t)
Ctl (�)

]
(16.11)

Telegraphers equations satisfy the following energy balance equation

dH
dt

= q(0, t)

Ctl(0)

λ(0, t)

Ltl(0)
− q(�, t)

Ctl(�)

λ(�, t)

Ltl(�)

Since capacitance and inductance have upper and lower bounds on [0 �], that is,

Lm ≤ 1
Ltl (z)

≤ L M , Cm ≤ 1
Ctl (z)

≤ CM , Li , Ci > 0, i = M, m (16.12)

the energy balance equation is not singular.

16.3 Control by Interconnection: Mixed Finite-
and Infinite-Dimensional Case

The central building block of the Control by Interconnection technique is the exis-
tence of the Casimir functions. To explore the possibility of extending Control by
Interconnection to themixed finite- and infinite-dimensional framework, we consider
a PH plant connected to a PH controller through an infinite-dimensional system, as
illustrated in Fig. 16.3. In order to make clear the interconnection, we will work in
power coordinates. The respective models in power coordinates are (16.3) for the
plant,

[
fc

yc

]
=

[
0 −1
1 0

] [
ec

uc

]
(16.13)
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Fig. 16.3 Interconnection
constraints

ΣΣ Σ

yc = f0 −f� = up

uc = e0 e� = yp

controller plant

distributed parameter
subsystem

for the controller and (16.6) for the infinite-dimensional system. Hence, the inter-
connection constraints are

yc = f0 uc = e0
yp = e� u p = − f�

(16.14)

In order to get the closed-loop dynamics, we replace the interconnection constraints
(16.14) into (16.3), (16.13) and (16.6), and we obtain

fs = − [J (x) − R(x)] es + g(x) f� = − [J (x) − R(x)] ep − g(x)eM�

fc = −e0 = −eE0

fE = ∂
∂z eM

fM = ∂
∂z eE

yp = g(x)T es = eE�

yc = ec = −eM0

where we have considered (16.7). The following equations describe the closed-loop
dynamics expressed in energy coordinates,

⎡
⎢⎢⎣

ẋ
ẋc

∂
∂t qE (z, t)
∂
∂t qM (z, t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

J (x) − R(x) 0 0 0
0 0 0 0
0 0 0 − ∂

∂z
0 0 − ∂

∂z 0

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

∂
∂x H(x)
∂

∂xc
Hc(xc)

δMH(q̄)

δEH(q̄)

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎣

g(x) 0
0 1
0 0
0 0

⎤
⎥⎥⎦
[

δMH(q̄) |�
δEH(q̄) |0

]

[
δEH(q̄) |�
δMH(q̄) |0

]
=

[
g(x)� ∂

∂x H(x)

− ∂
∂xc

Hc(xc)

]

(16.15)

In the extended space χ = [x, xc, qE (z, t), qM (z, t)]�, the closed-loop total energy
function is as follows:

Hcl(χ) = H(x) + Hc(xc) + H(q̄)
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with the energy rate equals to

Ḣcl(χ) = −∂� H

∂x
(x)R(x)

∂ H

∂x
(x)

16.3.1 Casimir Functions

Casimir functions are dynamic invariants [5]. Hence, a function C(χ) will be a
Casimir function provided the following holds

⎡
⎢⎢⎣
0
0
0
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−J (x) − R(x) 0 0 0
0 0 0 0
0 0 0 ∂

∂z
0 0 ∂

∂z 0

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

∂
∂x C(χ)

∂
∂xc

C(χ)

δMC(χ)

δEC(χ)

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎣

−g(x) 0
0 −1
0 0
0 0

⎤
⎥⎥⎦
[

δMC(χ) |�
δEC(χ) |0

]

[
δEC(χ) |�
δMC(χ) |0

]
=

[
g�(x) ∂

∂x C(χ)

− ∂
∂xc

C(χ)

]

(16.16)

From the third and fourth relations of (16.16), it follows that every Casimir function
of (16.15) should be linear with respect to the spatial variables, that is,

δMC(χ) = constant as a function of z
δEC(χ) = constant as a function of z

(16.17)

then, one has

δMC(χ) = δMC(χ) |0 = δMC(χ) |� = − ∂
∂xc

C(χ)

δEC(χ) = δEC(χ) |0 = δEC(χ) |� = g(x)T ∂
∂x C(χ)

(16.18)

Now, by replacing (16.18) into (16.16) and taking into account (16.17), the conditions
for a Casimir function (16.16) reduce to

[
J (x) + R(x) −g(x)

g�(x) 0

][
∂
∂x C(χ)

∂
∂xc

C(χ)

]
= 0

[
δEC(χ)

δMC(χ)

]
=

[
g�(x) ∂

∂x C(χ)

− ∂
∂xc

C(χ)

]

The right Casimir functions for the Control by Interconnection method are the ones
that relate the energy coordinates of the interconnected system. In particular, we
consider Casimir functions of the form
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C(χ) = −xc + F(x) + F(q̄(z, t)) (16.19)

Hence, we have

Proposition 16.3 The functions −xc + F(x) + F(q̄(z, t) are Casimir functions of
the interconnected PH system (16.15) if and only if the function F(x) satisfies

R(x)
∂

∂x
F(x) = 0,

∂

∂x

�
F(x)J (x) = g�(x). (16.20)

and the functional F(q̄(z, t)) satisfies (16.17) and

δEF(q̄(z, t)) = 0, δMF(q̄(z, t)) = 1 (16.21)

if yp = e� or
δEF(q̄(z, t)) = 1, δMF(q̄(z, t)) = 0 (16.22)

if yp = f�.

Before closing this section, we analyze the interconnection shown in Fig. 16.4. In
this system, a finite-dimensional subsystem with two external ports, modeled as

f p = − [J (x) − R(x)] es − g1(x)u p1 − g2(x)u p2

yp1 = g�
1 (x)es, yp2 = g�

2 (x)es

has an external port connected to the controller and the other one connected to an
infinite-dimensional subsystem. In this case, the infinite-dimensional subsystem rep-
resents a non-modeled dynamics, and the interconnection constraints are as follows:

[
f0
e0

]
=

[
0 1

−1 0

] [
yp2
u p2

]
,

[
u p1
uc

]
=

[
0 −1
1 0

] [
yp1
yc

]

For this system, it is not possible to find Casimir functions of the form (16.19). Thus,
we cannot apply the Control by Interconnection methodology.

Fig. 16.4 Interconnection
constraints

Σ Σ
Σ

up2 = f0 f�yc = −up1

yp2 = −e0 e�uc = yp1

controller plant

distributed parameter
subsystem
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16.3.2 Control Design

The idea behind the stability argument for infinite-dimensional systems is the same
as for finite-dimensional systems in that we wish to show that the equilibrium solu-
tion corresponds to a strict extremum of the total energy. In the case of infinite-
dimensional systems, care must be taken to specify the norm associated with the
stability argument. Since, stability with respect to one norm does not necessarily
imply stability with respect to other.3

In the case of mixed lumped and distributed parameter systems, we will define
stability in the sense of Lyapunov as follows:

Definition 16.4 The equilibrium point χr∗ of a distributed parameters system is said
to be stable in the sense of Lyapunov with respect to the norm ‖ · ‖, if for every
ε > 0 there exist δ > 0 such that ‖ χr (0) − χr∗ ‖< δ ⇒‖ χr − χr∗ ‖< ε for all
t > 0, where χr (0) is the initial condition of χr .

The underlying mathematical procedure for a proof of linear stability in the sense
of Lyapunov based on the Hamiltonian structure of a mixed lumped and distributed
parameters system can be summarized in the following steps [11]:

1. Define the total energy of the interconnected system restricted to the state space
χr as the candidate Lyapunov function.

Hd(χr ) = H(x) + H(q̄(z, t)) + Hc(F(x) + F(q̄(z, t))),

with Hc(·) to be defined.
2. Show that the equilibrium point χr∗ satisfies the first-order necessary conditions

to be an extremum of the candidate Lyapunov function, that is,

∇Hd(χr∗)
def=

⎡
⎢⎢⎣

∂
∂x [H(x∗) + Hc(F(x∗) + F(q̄∗))]
δM [H(q̄∗) + Hc(F(x∗) + F(q̄∗))]
δE [H(q̄∗) + Hc(F(x∗) + F(q̄∗))]

⎤
⎥⎥⎦ ≡ 0 (16.23)

3. Introduce the nonlinear functional

N (Δχr ) = Hd(χr∗ + Δχr ) − Hd(χr∗) (16.24)

proportional to the second variation of Hd(χr ) in the sense that its Taylor expan-
sion about Δχr is given by

N (Δχr ) ≈ 1

2
∇2Hd(χr∗)

3In an infinite-dimensional space not every convergent sequence on the unit, ball converges to a
point on the unit ball. Unit balls on infinite-dimensional spaces need not to be compact [11].
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and determine the convexity conditions, with respect to a suitable norm, that the
functional (16.24) must satisfy to assure that is definite, that is,

c1 ‖ Δχr ‖2≤ Hd(χr∗ + Δχr ) − Hd(χr∗) ≤ c2 ‖ Δχr ‖2 (16.25)

with c1, c2 > 0. In our context, an appropriate choice of the norm is

‖ Δχr ‖=
(

| Δx |2 +
∫ �

0
Δq2

M (z, t)dz +
∫ �

0
Δq2

E (z, t)dz

) 1
2

with | · | the usual Euclidean norm.

16.3.3 Example: RLC with a Transmission Line

In this section, we illustrate the Control by Interconnection method of mixed finite-
and infinite-dimensional systems. We consider a finite-dimensional controller con-
nected to a finite-dimensional plant, an RCL circuit through an infinite-dimensional
system, the transmission line, as shown in Fig. 16.5.

The energy coordinates for the interconnected system are

χ = [x1, x2, xc, q(z, t), λ(z, t)]�

with x1 the capacitor’s electric charge, x2 the inductor’s magnetic flux, xc the con-
troller state, q(z, t), λ(z, t) the distributed electric charge and λ(z, t) the distributed
magnetic charge. Additionally, the power preserving interconnection constraints are
given by

yc = −V (0, t) = −q(0, t)

Ctl
, uc = I (0, t) = −λ(0, t)

Ltl
,

yp = I (�, t) = −λ(�, t)

Ctl
, u p = V (�, t) = −q(�, t)

Ltl

(16.26)

+ −ẋ2

+

−
x1
C

− +Rx2
L

+

−

up

yp

Plant

�

+

−

V (0, t)

+

−

V (�, t)

I(0, t) I(�, t)−

+

yc

uc

Co
n
t
r
o
l
le
r

Fig. 16.5 Finite-dimensional controller, infinite-dimensional transmission line, finite-dimensional
plant
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with Ctl and Ltl the constants capacitance and inductance of the transmission line,
respectively. Note that the interconnection constraints are well-defined in the sense
that voltages couple with voltages and the same for currents.

The following equations describe the closed-loop dynamics in energy variables

⎡
⎢⎢⎢⎢⎣

ẋ1
ẋ2
ẋc

∂
∂t q(z, t)
∂
∂t λ(z, t)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
−1 −R 0 0 0
0 0 0 0 0
0 0 0 0 − ∂

∂z
0 0 0 − ∂

∂z 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x1
Cx2
L

∂ Hc
∂xc

(xc)
q(z,t)

Ctl
λ(z,t)

Ltl

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

0 0
1 0
0 −1
0 0
0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎣

q(�, t)

Ctl
λ(0, t)

Ltl

⎤
⎥⎦

⎡
⎢⎣

λ(�, t)

Ltl
q(0, t)

Ctl

⎤
⎥⎦ =

⎡
⎢⎣

− x2
L

−∂ HC

∂xc
(xc)

⎤
⎥⎦

(16.27)
The total closed-loop energy function is defined by

Hcl(χ) = 1

2

x21
C

+ 1

2

x22
L

+ Hc(xc) + 1

2

∫ �

0

(
q2(z, t)

Ctl(z)
+ λ2(z, t)

Ltl(z)

)
dz

with energy rate given by

Ḣcl(χ) = −R
( x2

L

)2

In order to apply the Control by Interconnection methodology, we will find the
Casimir functions of the form (16.19) for the closed-loop dynamics (16.27). To
perform this task, we follow the result in Proposition 16.3. It is easy to verify that

C(χ) = −xc + x1 +
∫ �

0
q(z, t) dz

is a Casimir function for (16.27). This Casimir function defines the following invari-
ant set Ω = {χ | xc = x1 + ∫ �

0 q(z, t) dz}. Thus, the total energy function restricted
to Ω takes the following form

Hd (χr ) = 1

2

x21
C

+ 1

2

x22
L

+ Hc

(
x1 +

∫ �

0
q(z, t) dz

)
+ 1

2

∫ �

0

(
q2(z, t)

Ctl (z)
+ λ2(z, t)

Ltl (z)

)
dz

with χr = [x1, x2, q(z, t), λ(z, t)]�. In the following we will show that by selecting

Hc(xc) = 1

2

1

Cc
x̃2c + kx̃c, x̃c = xc − xc∗
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with Cc > 0, k ∈ R and xc∗ the equilibrium point for the state of the controller,
we can shape the closed-loop energy in such a way that it has a minimum at the
equilibrium point χr∗ = [ x1∗

C , 0, q∗(z), λ∗(z)
]�. From the first-order conditions

(16.23) one has

∇Hd(χr∗) =

⎡
⎢⎢⎢⎣

x1∗
C + k
0

q∗(z)
Ctl

+ k
λ∗(z)

Ltl

⎤
⎥⎥⎥⎦ ≡ 0 ⇒

k = − x1∗
C

q∗(z) = Ctl
x1∗
C

λ∗(z) = 0
(16.28)

In order to verify the second-order conditions, we compute the functional (16.24) to
this end we get

N (Δχr ) = 1

2

Δx21
C

+ 1

2

Δx22
L

+
∫ �

0

(
Δq2(z, t)

Ctl(z)
+ Δλ2(z, t)

Ltl(z)

)
dz

+1

2

1

Cc

(
Δx1 +

∫ �

0
Δq(z, t) dz

)2 (16.29)

Now, we verify condition (16.25) with respect to the following norm

‖ χr ‖=
(

Δx21 + Δx22 +
∫ �

0
Δq2(z, t) dz +

∫ �

0
Δλ2(z, t) dz

) 1
2

It is easy to see that, we can find c2i , cλi , i = 1, 2 which satisfy

c21Δx22 ≤ 1

2

Δx22
C

≤ c22Δx22

cλ1

∫ �

0
Δλ2(z, t) dz ≤

∫ �

0

Δλ2(z, t)

Ltl
dz ≤ cλ2

∫ �

0
Δλ2(z, t) dz

therefore condition (16.25) reduces to find cai , i = 1, 2 such that

ca1 ‖ Δχr ‖2≤ Δx21
2C

+
∫ �

0

Δq2(z, t)

Ctl
dz +

(
Δx1 + ∫ �

0 Δq(z, t) dz
)2

2Cc
≤ ca2 ‖ Δχr ‖2

Let us first consider the upper bound, for which we have

Nr (Δχr ) ≤ 1

2

Δx21
C

+ CM

∫ �

0
Δq2(z, t) dz

+ 1

2

1

Cc

[
Δx21 + 2 | Δx1 ||

∫ �

0
Δq(z, t) dz | +

(∫ �

0
Δq(z, t) dz

)2]

≤
(

1

2C
+ 1

Cc

)
Δx21 +

(
CM + 1

Cc
�

)∫ �

0
Δq2(z, t) dz
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where we considered the relationship in (16.12),

| Δx1 ||
∫ �

0
Δq(z, t) dz |≤ 1

2
| Δx1 |2 +1

2
|
∫ �

0
Δq(z, t) dz |2

and (∫ �

0
Δq(z, t) dz

)2

≤ �

∫ �

0
Δq2(z, t) dz

Therefore by choosing

ca2 > max

{
1

2C
+ 1

Cc
, CM + 1

Cc
�

}

we get an upper bound. Now, for the lower bound, we have that

Nr (Δχ) ≥ 1

2

Δx21
C

+ Cm

∫ �

0
Δq2(z, t) dz

therefore selecting

ca1 ≤ min

{
1

2C
, Cm

}

we get a lower bound. Finally, we have

c1
def= min

{ 1
2C , Cm, c21, cλ1

}

c2
def= max

{
1
2C + 1

Cc
, CM + 1

Cc
�, c22, cλ2

}

Hence, we have proved.

Proposition 16.5 Consider the closed-loop dynamics described by (16.27) with the
PH controller given by

ẋc = −λ(0,t)
Ltl

yc = 1

Cc
xc −

(
1

Cc
+ 1

C

)
x1∗ − x1∗

CCc

∫ �

0
Ctl dz

(16.30)

The closed-loop dynamics has an stable equilibrium in the sense of Definition 16.4 at

χ∗ =
[

x1∗
C

, 0, x1∗ + x1∗
C

∫ �

0
Ctl(z) dz,

x1∗
C

Ctl(z), 0

]�
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16.4 Conclusions

We have presented a few more details of the Control by Interconnection of mixed
finite- and infinite-dimensional systems reported in [10]. It is glad for the authors
that the results presented in [10] effectively were a fundamental step for many other
works on control of infinite-dimensional PH systems.

In the last years, my research focused on control of aerial vehicles. Aerial vehicles
are subject to aerodynamic forces which are modeled using dimensional analysis.
Hence, the aerodynamic forces have the form F = 1/2ρSV 2CF with F the aerody-
namic force, ρ the air density, S a characteristic area of the body and CF the force
coefficient. This model does not allow to obtain a natural4 PH model for this kind of
vehicles since the model of forces has not physics behind it. However, these aerody-
namic forces come from the interaction between the air flow and the vehicle geom-
etry which obeys Navier–Stokes equations. Hence, we have an infinite-dimensional
system, aerodynamic forces, connected to a finite-dimensional system, the vehicle
dynamics. The work of Prof. van der Shaft on model and control of PH systems
undoubtedly inspires this future work.
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Chapter 17
Network Topology and Synchronization
of Systems with Linear Time-Delayed
Coupling

Erik Steur and Henk Nijmeijer

Abstract We consider networks of square input–output systems that interact via
linear, time-delayed coupling functions. For given system dynamics, we give con-
ditions for the construction of a (local, global) synchronization diagram. We show
that a condition for (local, global) synchronization is that the coupling strength and
time-delay are contained in the intersection of scaled copies of the (local, global)
synchronization diagram, where the scaling factors are the nonzero eigenvalues of
the symmetric Laplacian matrix.

17.1 Introduction

There are many examples of networks of interacting dynamical systems that exhibit
collective behavior: Fireflies emit their light pulses at the same instants in time; crick-
ets chirp in unison for extended periods of time; and the electrons move coherently in
(arrays of) superconductive Josephson junctions, cf. [22, 30]. The most unambigu-
ous form of collective behavior is that of synchronization, which refers to the state
in which all systems in the network behave identically. Whether or not a network of
systems will synchronize depends on, besides the specific systems’ dynamics and
coupling functions, the network topology. In this chapter, we consider networks of
systems that interact via linear time-delay coupling functions of the form

ui (t) = σ
∑

j

ai j [y j (t − τ) − yi (t − τ)] (17.1)
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and we relate conditions for synchronization of the systems to the topology of the
network. In (17.1) ui (t) is the input of system i , yi (t − τ) and y j (t − τ) are the time-
delayed outputs of systems i and j , respectively, positive constant σ is the coupling
strength, and positive constants ai j are defined by the network. The time-delay τ

accounts for sensor and actuator dynamics, in particular, sensor and actuator delays.
Such coupling functions appear in, e.g., car-following models [26], where the time-
delay, which correlates with the reaction time of the driver, typically takes values
between 0.6 and 2 s.

In the delay-free case, i.e., τ = 0, the influence of network topology on syn-
chronization has been studied in [2, 3, 21, 33]. In [33] a conjecture was posed that
states that systems in network G1 synchronize for coupling strength σ1 if and only
if systems in network G2 synchronize for coupling strength σ2 and the following
relation holds:

σ1λ2(G1) = σ2λ2(G2),

where constant λ2(G) is the algebraic connectivity of network G (i.e., the Fiedler
eigenvalue of the Laplacian matrix of G) [9]. Although this conjecture was shown to
be wrong [20], there is a rich class of systems for which the conjecture seems to hold
true, i.e., for those systems that do not show a desynchronizing bifurcation as the
coupling strength is increased. A somewhat similar method was proposed in [21],
in which the concept of a Master Stability Function (MSF) was introduced. In this
approach, the coupling parameters (i.e., coupling strength and network topology) are
lumped into a single (possibly complex) parameterκ , and subsequently the stability of
a linear time-varying system that describes the local dynamics around a synchronous
solution is assessed as function of this parameter κ . Then if there exists a nonempty
setK such that for κ ∈ K the zero solution of this linear system is stable, the condition
for synchronization of a network G is that σλ j (G) ∈ K for all nonzero eigenvalues
λ j of the Laplacian matrix of G. However, it is shown in [15] that the MSF approach
might fail if the isolated system (i.e., a single system without coupling) does not
have an attractor. Assuming the isolated system to have an attractor might even not
be sufficient to conclude that the systems synchronize; It is known that with negative
Lyapunov exponents, the criteria used for stability of the MSF, a linear time-varying
system may be unstable [14]. In particular, it is shown in [1, 31] that the dynamics
of coupled chaotic systems might produce a specific type of intermittent behavior
associated with a temporal loss of synchrony; This phenomenon, called attractor
bubbling, may occur despite the Lyapunov exponents of the MSF all being negative.

In this chapter we develop a MSF-like approach, which allows the construction
of a local synchronization diagram S; This local synchronization diagram is the set
of coupling strengths σ and time-delays τ for which the zero solution of a particular
linear time-varying system is uniformly asymptotically stable. Under the assumption
that the isolated systemhas an attractorwith a neighborhoodwith inflowingboundary,
we show that the condition for local synchronization, that is, synchronization of
systems whose mutual distance in initial data is small, is that the coupling strength σ

and time-delay τ are in the intersection of scaled copies of S. Here the scaling factors
are the nonzero eigenvalues of the Laplacian matrix of the network G. See Fig. 17.1
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Fig. 17.1 a Synchronization diagram S. b Two scaled copies of S, denoted by S2 and S3, and their
intersection

for a graphical example for a network of three systems, where we have assumed the
network to be connected and the eigenvalues of the Laplacian matrix of that network
to be real. (Under the assumption that a network is connected its Laplacian matrix
has a simple zero eigenvalue.) In addition, we present a class of systems for which
we are able to construct a global synchronization diagram. The intersection of scaled
copies of this global synchronization diagram gives the conditions on σ and τ for
which a network of systems synchronizes without requiring the mutual distances in
initial data to be small.

The results we present in this chapter are, in part, reported in [27].

Notation We let R = (−∞,∞) denote the real numbers, R+ := {x ∈ R | x > 0}
and R+ := R+ ∪ {0}. For a positive integer n, Rn is the n-fold Cartesian product
R×R× · · · ×R. We let | · | be the Euclidean norm in Rn : for x ∈ R

n , |x | = √
x�x

where � denotes transposition. We denote by ⊗ the Kronecker (tensor) product of
two matrices (cf. [13]). We let In be the n × n identity matrix, and 1n (respectively,
0n) the n-dimensional vector with all entries equal to 1 (respectively, 0). For an n×n-
dimensional matrix A we let ‖A‖ := max|x |=1 |Ax | be the matrix norm induced by
| · |. Given two sets X and Y , C(X ,Y) denotes the set of continuous functions that
map X into Y .

17.2 Problem Setting

Let G = (V, E, A) be an undirected weighted graph with V = {1, 2, . . . , N } the set
of vertices and E ⊂ V × V the set of edges. Recall that G being an undirected graph
means that E is unordered. A = (

ai j
)
is the N × N weighted adjacency matrix:

ai j =
{

wi j if (i, j) ∈ E
0 otherwise
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where wi j is the weight of edge (i, j) ∈ E . We suppose that wi j = w ji such that A
is symmetric. We shall assume that G contains no self-loops (i.e., G has no edges of
the form (i, i)) and thus G is a simple graph. In addition, we shall assume that G is
connected, that is, for every two vertices i, j ∈ V there exists a path between i and j .

Letting

D =

⎛
⎜⎜⎜⎝

d1
d2

. . .

dN

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

∑
j a1 j ∑

j a2 j

. . . ∑
j aN j

⎞
⎟⎟⎟⎠

we define
L = D − A

to be the Laplacian matrix of G. It is well-known that the Laplacian matrix of a
connected graph has a simple zero eigenvalue, cf. [4]. Gerschgorin’s Disc Theorem
[13] implies that all other eigenvalues (which are real as L is symmetric) are positive.
We always order the eigenvalues λ1, λ2, . . . , λN of L nondecreasingly

0 = λ1 < λ2 ≤ · · · ≤ λN .

We assign each vertex i ∈ V the dynamics

{
ẋi (t) = f (xi (t)) + Bui (t)
yi (t) = Cxi (t)

(17.2)

with state xi (t) ∈ R
n , input ui (t) ∈ R

m and output yi (t) ∈ R
m , 1 ≤ m ≤ n,

(sufficiently) smooth vectorfield f : Rn → R
n , and matrices B and C of appropriate

dimensionswithC B similar to a positive definitematrix. Systems (17.2) onG interact
via the following linear time-delay coupling law

ui (t) = σ
∑
j∈Ni

ai j [y j (t − τ) − yi (t − τ)], (17.3)

where positive constant σ is the coupling strength, nonnegative constant τ is a time-
delay, and

Ni = { j ∈ V | (i, j) ∈ E}

is the set of neighbors of system i . Then the dynamics of the coupled systems (17.2)
and (17.3) are given by the following delay-differential equation

ẋ(t) = F(x(t)) − σ(L ⊗ BC)x(t − τ) (17.4)
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where

x(t) =

⎛
⎜⎜⎜⎝

x1(t)
x2(t)

...

xN (t)

⎞
⎟⎟⎟⎠ , F(x(t)) =

⎛
⎜⎜⎜⎝

f (x1(t))
f (x2(t))

...

f (xN (t))

⎞
⎟⎟⎟⎠ .

The state-space of (17.4) is C = C ([−τ, 0],RNn
)
, the space of continuous functions

that map the interval [−τ, 0] into RNn . For φ ∈ C we let ‖φ‖ := sup−τ≤θ≤0 |φ(θ)|.
We remark that we also use the notation ‖ · ‖ for the induced matrix norm, however,
no confusion should arise. Given t ≥ 0, for xt ∈ C we let xt (θ) := x(t + θ),
−τ ≤ θ ≤ 0. For given initial data φ ∈ C and a constant T > 0, a solution of (17.4)
is a function xt = xt (·) = xt (·;φ) ∈ C such that x0 = φ and xt satisfies (17.4) for
all t ∈ [0, T ). We assume that the solutions of our coupled systems are uniformly
(ultimately) bounded (see [5] for a definition) such that T = ∞. Conditions for
(ultimate) boundedness expressed at the level of the systems’ dynamics can be found
in [27, 28]. We shall write x(t;φ) instead of xt (0;φ).

A solution xt of the coupled systems (17.4) is a synchronous solution if and only if

xt (θ) = IN ⊗ st (θ), ∀θ ∈ [−τ, 0], ∀t ≥ 0,

where st ∈ C ([−τ, 0],Rn). Note that, because coupling (17.3) is noninvasive, the
asymptotic synchronous solution st satisfies the ordinary differential equation

ṡ(t) = f (s(t)).

The coupled systems (17.4) are said to synchronize if its solutions converge asymp-
totically to a synchronous solution:

lim
t→∞ ‖xt − IN ⊗ st‖ = 0.

17.3 Conditions for Local Synchronization

Weaddressfirst the problemof local synchronization, i.e., synchronizationof systems
with initial data that satisfy

‖φi − φ j‖ < δ, φi , φ j ∈ C ([−τ, 0],Rn)

with δ some small positive constant. We consider the case that the isolated system

ṡ(t) = f (s(t))
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has an attractorAwith basin of attractionB. We suppose that there is a neighborhood
U of A contained in B, and we let U and ∂U be the closure of U , respectively, the
boundary of U . We remark that in general such a neighborhood U does not need to
exist, i.e.,whenA is aweak attractor [16]. Furthermore,we assume that U is inflowing
invariant with respect to the vectorfield f [8, 32]; That is, there is a positive constant
μ such that

〈N (s), f (s)〉 ≤ −μ, ∀s ∈ ∂U ,

where N (s) is the outward normal of ∂U at point s and 〈·, ·〉 is the innerproduct in
R

n . We denote

CU = {
φ ∈ C | φ(θ) = col(φ1(θ), φ2(θ), . . . , φN (θ)),

φi (θ) ∈ U , i = 1, 2, . . . , N , −τ ≤ θ ≤ 0
}
.

Theorem 17.1 Suppose that the isolated system (17.2) has an attractor A with an
inflowing invariant neighborhood U contained in B. Let there exists a nonempty set
S ⊂ R+ × R+ such that for any (σ, τ ) ∈ S the zero solution of the linear system

η̇(t) = J (t)η(t) − σ BCη(t − τ) (17.5)

with

J (t) := ∂ f

∂xi
(ξ(t))

is uniformly asymptotically stable for all ξ ∈ C(R,U). Let

S j :=
{
(σ, τ ) ∈ R+ × R+ | (σλ j , τ ) ∈ S

}

be a scaled copy of S with nonzero eigenvalue λ j of L as scaling factor. If

(σ, τ ) ∈ ∩N
j=2S j ,

then there is a constant δ = δ(σ, τ ) > 0 such that solutions of the coupled systems
(17.2) and (17.3), with initial data φ ∈ CU for which ‖φi − φ j‖ < δ for all i, j =
1, 2, . . . , N, are contained in CU . Moreover, the coupled systems (17.2) and (17.3)
locally synchronize.

Proof Since L is symmetric there exists a nonsingular (N −1)×(N −1)-dimensional
matrix U such that
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U

⎛
⎜⎝

λ2
. . .

λN

⎞
⎟⎠ U−1 = L2,

(
1 0�

N−1
1N−1 −IN−1

)
L

(
1 0�

N−1
1N−1 −IN−1

)
=

(
0 L�

1
0N−1 L2

)

with L1 a (N − 1)-dimensional vector. See [24] for details. We remark that L1 has
at least one nonzero entry; If not the network would not be connected. Let the zero
solution of the system

⎛
⎜⎝

η̇2(t)
...

η̇N (t)

⎞
⎟⎠ = (IN−1 ⊗ J (t))

⎛
⎜⎝

η2(t)
...

ηN (t)

⎞
⎟⎠ − σ

⎛
⎜⎝

⎛
⎜⎝

λ2
. . .

λN

⎞
⎟⎠ ⊗ BC

⎞
⎟⎠

⎛
⎜⎝

η2(t − τ)
...

ηN (t − τ)

⎞
⎟⎠

be uniformly asymptotically stable for (σ, τ ) ∈ ∩N
j=2S j such that, for

⎛
⎜⎝

ζ2(t)
...

ζN (t)

⎞
⎟⎠ = (U ⊗ In)

⎛
⎜⎝

η2(t)
...

ηN (t)

⎞
⎟⎠

the zero solution of the system

⎛
⎜⎝

ζ̇2(t)
...

ζ̇N (t)

⎞
⎟⎠ = (IN−1 ⊗ J (t))

⎛
⎜⎝

ζ2(t)
...

ζN (t)

⎞
⎟⎠ − σ (L2 ⊗ BC)

⎛
⎜⎝

ζ2(t − τ)
...

ζN (t − τ)

⎞
⎟⎠ (17.6)

is uniformly asymptotically stable.We remark that the zero solution of a linear system
being uniformly asymptotically stable implies the zero solution of that system to be
exponentially stable, cf. Theorem 4.5 of [11]. Thus there exist positive constants α, β

such that for any solution ζ(·;ψ) of (17.6) through ψ ∈ C ([−τ, 0],R(N−1)n
)
the

following estimate holds:

|ζ(t;ψ)| ≤ βe−αt‖ψ‖, ∀t ≥ 0.

Denote ⎛
⎜⎜⎜⎝

x̃1(t)
x̃2(t)

...

x̃N (t)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

x1(t)
x1(t) − x2(t)

...

x1(t) − xN (t)

⎞
⎟⎟⎟⎠ ,
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such that

˙̃x1(t) = f (x̃1(t)) − σ
(

L�
1 ⊗ BC

)
⎛
⎜⎝

x̃2(t − τ)
...

x̃N (t − τ)

⎞
⎟⎠ (17.7)

and ⎛
⎜⎝

˙̃x2(t)
...

˙̃xN (t)

⎞
⎟⎠ =

⎛
⎜⎝

f̃ (t, x̃2(t))
...

f̃ (t, x̃N (t))

⎞
⎟⎠ − σ (L2 ⊗ BC)

⎛
⎜⎝

x̃2(t − τ)
...

x̃N (t − τ)

⎞
⎟⎠ (17.8)

with f̃ (t, x̃i (t)) := f (x̃1(t)) − f (x̃1(t) − x̃i (t)). It now follows that if x̃1(t) ∈ U
for all t ≥ 0, then the zero solution of (17.8) is locally exponentially stable, cf.
Theorem 4.6 of [11]. In particular, for φ ∈ C with ‖φi − φ j‖ < δ1, where δ1 is
small enough to ensure that the linear part of (17.8) dominates the nonlinearities,
and K = (

1 + 1
2α

)
β2e2ατ , there is a positive constant γ such that

∣∣∣∣∣∣∣

⎛
⎜⎝

x̃2(t;φ)
...

x̃N (t;φ)

⎞
⎟⎠

∣∣∣∣∣∣∣
≤ K e−γ t‖φ‖ ≤ K δ1, ∀t ≥ 0.

To prove the theorem we are left to show that x̃1(t) ∈ U for all t ≥ 0. Pick

δ2 <
μ

σ K |L1|‖BC‖
and

δ = min (δ1, δ2) .

Suppose that there is a positive constant t1 such that x̃1(t1) ∈ ∂U and x̃1(t) /∈ U
for some t > t1. Because f is inflowing invariant with constant μ, the x̃1-dynamics
(17.7) can only cross the boundary ∂U at t = t1 if

∣∣∣∣∣∣∣
σ

(
L�
1 ⊗ BC

)
⎛
⎜⎝

x̃2(t − τ)
...

x̃N (t − τ)

⎞
⎟⎠

∣∣∣∣∣∣∣
≥ μ.

But
∣∣∣∣∣∣∣
σ

(
L�
1 ⊗ BC

)
⎛
⎜⎝

x̃2(t − τ)
...

x̃N (t − τ)

⎞
⎟⎠

∣∣∣∣∣∣∣
≤ σ |L1|‖BC‖K

∣∣∣∣∣∣∣

⎛
⎜⎝

x̃2(t − τ)
...

x̃N (t − τ)

⎞
⎟⎠

∣∣∣∣∣∣∣

≤ σ |L1|‖BC‖K < δμ.
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hence t1 = ∞. �

Equation (17.5) is a MSF for the time-delay coupled systems (17.2) and (17.3).
However, contrary to the MSF approach for the delay-free case presented in [21], we
do assume that the isolated system has an attractorAwith inflowing invariant neigh-
borhood U . In addition, we evaluate (17.5) along all possible solutions in U instead
of a single solution onA. However, to verify uniform asymptotic stability of the zero
solution (17.5) for all possible solutions in U , one usually has to construct a Lya-
punov functional on U . See [27] for an example. We remark that a synchronization
diagram computed using the Lyapunov functional approach tends to be conservative
in the sense that it is contained, but not equal to the true synchronization diagram. In
case the isolated system has a fixed point or periodic orbit as attractor, we can obtain
a better estimate of the true synchronization diagram S.
Corollary 17.2 Assume that the attractor A defined in Theorem 17.1 is an asymp-
totically stable fixed point or an orbitally stable period orbit. Let ξ(·) be a solution of
ξ̇ (t) = f (ξ(t)) with ξ(−τ) ∈ A, i.e., ξ(·) is a solution of the isolated system on A.
Suppose that there exists a nonempty set S ⊂ R+ ×R+ such that for any (σ, τ ) ∈ S
the zero solution of the linear system

η̇(t) = J (t)η(t) − σ BCη(t − τ)

with

J (t) := ∂ f

∂xi
(ξ(t))

is uniformly asymptotically stable. If

(σ, τ ) ∈ ∩N
j=2S j ,

then the conclusions of Theorem 17.1 hold.

Proof Consider the linearization of (17.7) and (17.8) around the synchronous solu-
tion on A:

ζ̇ (t) = (IN ⊗ J (t))ζ(t) −
((

0 L�
1

0N−1 L2

)
⊗ BC

)
ζ(t − τ).

As shown in the proof of Theorem 17.1, one can find new coordinates such that the
matrix L2 is the matrix above becomes diagonal. Denote this diagonal matrix by�2.
Thus in these new coordinates the system has a block-triangular structure. IfA is an
equilibrium, then J (t) = J is a stable matrix, and it is easy to see that the conditions
of the corollary imply that the characteristic equation

Δ(ρ; σ, τ) = det

(
ρ INn − (IN ⊗ J ) − σ

((
0 L�

1
0N−1 �2

)
⊗ BC

)
exp(−ρτ)

)
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has no roots in the closed right half of the complex plane. If A is a periodic orbit,
then J (t) = J (t + T ) for some nonzero constant T , i.e., J (t) is T -periodic. We
now use Floquet theory (cf. [12]) to conclude the proof. First, we observe that the
monodromy matrix of the block-triangular system has a block-triangular structure.
Then our conditions imply that all Floquet multiplier except one are contained in
the open unit disk in the complex plane. Moreover, as the Floquet multipliers are
independent of t (cf. [12], Sect. 8.1, Lemma 1.3) it suffices to linearize around a
single periodic synchronous solution. �

17.4 Example: Local Synchronization
of FitzHugh-Nagumo Neurons

We consider the network shown in Fig. 17.2 with dynamics

f (xi (t)) =
( 2

25

(
xi,2(t) − 4

5 xi,1(t)
)

xi,2(t) − 1
3 x3i,2(t) − xi,1(t)

)
, B =

(
0
1

)
, C = (

0 1
)
.

The system above is the FitzHugh-Nagumo (FHN) neuron [10, 17], which is a model
of the excitable membrane dynamics of a neuron.

Let us first show that the isolated FHN neuron has a periodic attractor. Consider
the function V : Rn → R+

V (xi (t)) = 25
4 x2i,1(t) + 1

2 x2i,2(t).

Then
V̇ (xi (t)) = − 4

5 x2i,1(t) −
(
1
3 x2i,2(t) − 1

)
x2i,2(t),

Fig. 17.2 Example network.
Each edge has weight 1
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and it follows that the set

Ω =
{

xi (t) ∈ R
2 | V (xi (t)) ≤ 75

4

}

is positively invariant with respect to the dynamics of the isolated FHN neuron.
One easily verifies that this system has a single equilibrium in Ω , the origin, which
is unstable. Hence by the Poincaré-Bendixson theorem (cf. [29]) the isolated FHN
neuron has a periodic orbit. In fact, applying Liénard’s theorem (cf. [29]) to the
system obtained after the well-defined change of coordinates

xi (t) �→
(

vi (t)
wi (t)

)
=

(
xi,2(t)

x2,i (t) − 1
3 x32,i (t) − xi,1(t)

)
,

i.e., (
v̇i (t)
ẇi (t)

)
=

(
wi (t)

− (
v2i (t) − 27

25

)
wi (t) − 2

25

( 4
15v3i (t) + 1

5vi (t)
)
)

,

we conclude thatΩ contains a unique and orbitally stable period attractor with period
time T .

By Corollary 17.2, we may then determine the synchronization diagram S by
computing the Floquet multipliers of the linear T -periodic system

(
η̇1(t)
η̇2(t)

)
=

(− 8
125

2
25−1 1 − ξ22 (t)

) (
η1(t)
η2(t)

)
− σ

(
0 0
0 1

)(
η1(t − τ)

η2(t − τ)

)
,

where ξ2(t) = ξ2(t + T ) satisfies

(
ξ̇1(t)
ξ̇2(t)

)
=

( 2
25

(
ξ2(t) − 4

5ξ1(t)
)

ξ2(t) − 1
3ξ2(t) − ξ1(t)

)

with initial conditions on the unique periodic attractor. The synchronization diagram,
which we computed with the numerical software package DDE-Biftool [7, 25], is
shown in Fig. 17.3a. The Laplacian matrix of the network shown in Fig. 17.2 is

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 0 −1 −1 −1 −1 −1 0
0 4 −1 −1 0 0 −1 −1

−1 −1 4 −1 0 0 −1 0
−1 −1 −1 5 −1 0 −1 0
−1 0 0 −1 3 0 0 −1
−1 0 0 0 0 2 −1 0
−1 −1 −1 −1 0 −1 5 0
0 −1 0 0 −1 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Fig. 17.3 a Synchronization diagram S for the FHN neuron. b Zoom of the left of (a). c Seven
scaled copies of S and their intersection. d Zoom of the left of (c)

and has eigenvalues (approximated using Matlab®)

λ1 = 0, λ2 = 1.3643, λ3 = 2.3083, λ4 = 2.9266,

λ5 = 4.9626, λ6 = 5.7110, λ7 = 6.2899, λ8 = 6.4374.

The seven scaled copies of S and their intersection are shown in Fig. 17.3c. By
Corollary 17.2, for any values of the coupling strength and time-delay belonging to
this intersection, the network of FHN neurons locally synchronizes.

17.5 Conditions for Global Synchronization

In this section,we introduce a class of systems forwhich there exists a global synchro-
nization diagram. This global synchronization diagram allows for the construction
of a set of values of the coupling strength and time-delay for which a network of
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systems globally synchronizes. First, since we have assumed the matrix C B to be
similar to a positive definite matrix, it is possible to find new coordinates

xi (t) �→
(

zi (t)
yi (t)

)

with zi (t) ∈ R
n−m . See [6, 23] for details about this transformation. In these new

coordinates the systems’ dynamics read as

żi (t) = q(zi (t), yi (t)) (17.9a)

ẏi (t) = a(zi (t), yi (t)) + C Bui (t) (17.9b)

where q : R
n−m × R

m → R
n−m and a : R

n−m × R
m → R

m are (sufficiently)
smooth vectorfields.

We shall assume that

A1. There exists a nonempty set SB ∈ R+ × R+ such that for (σ, τ ) ∈ SB the
solutions of the coupled systems are uniformly bounded with bound B that is
independent of N .

In addition we assume that

A2. There exists a positive definite matrix P = P� and a positive constant κ such
that [

∂q

∂zi
(zi , yi )

]T

P + P

[
∂q

∂zi
(zi , yi )

]
≤ −κ In−m

for all zi ∈ R
n−m and yi ∈ R

m .

The latter assumption implies that the system

żi (t) = q(zi (t), yi (t))

is an exponentially convergent systemwith respect to input yi (t) [18, 19]. Interesting
is that such an exponentially convergent system has an exponentially stable steady-
state solution that is solely determined by the vectorfield q and input signal yi (·). It
then follows that for any two input signals yi (·), y j (·) that satisfy

lim
t→∞ |yi (t) − y j (t)| = 0,

the solutions of the systems

żi (t) = q(zi (t), yi (t))

and
ż j (t) = q(z j (t), y j (t))
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satisfy
lim

t→∞ |zi (t) − z j (t)| = 0,

independent of the initial conditions of those systems.
We first give a result about global synchronization of two coupled systems.

Lemma 17.3 Consider two coupled systems (17.9a) and (17.3) and let a12 = a21 =
1. Suppose that assumptions A1 and A2 hold. Then there exist two positive constants
σ̄ and γ̄ such that if

(σ, τ ) ∈ S∗ ∩ SB,

where
S∗ :=

{
(σ, τ ) ∈ R+ × R+ | σ ≥ σ̄ and στ ≤ γ̄

}
,

then the two coupled systems globally synchronize.

The set S∗ is shown in Fig. 17.4. The proof of the lemma follows from the proof
of the next theorem.

Theorem 17.4 Consider a network of coupled systems (17.9a) and (17.3) and sup-
pose that assumptions A1 and A2 hold. If

(σ, τ ) ∈ S∗
2 ∩ S∗

N ∩ SB,

where

S∗
j :=

{
(σ, τ ) ∈ R+ × R+

∣∣∣
(

λ j

2
σ, τ

)
∈ S∗

}
, j = 2, N ,

withS∗ as in Lemma 17.3, then the network of coupled systems globally synchronizes.

Proof Let

ỹ j (t) = y1(t) − y j (t), z̃ j (t) = zi (t) − z j (t), j = 2, . . . , N ,

Fig. 17.4 The global
synchronization diagram S∗
for two coupled systems with
its shape predicted by
Lemma 17.3
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z̃(t) = col(z̃2(t), . . . , z̃N (t)) and ỹ(t) = col(ỹ2(t), . . . , ỹN (t)), to obtain

˙̃z(t) = q̃(z1(t), y1(t), z̃(t), ỹ(t)) (17.10a)

˙̃y(t) = ã(z1(t), y1(t), z̃(t), ỹ(t)) − σ(L2 ⊗ C B)ỹ(t − τ) (17.10b)

with

q̃(z1(t), y1(t), z̃(t), ỹ(t)) :=
⎛
⎜⎝

q(z1(t), y1(t)) − q(z1 − z̃2(t), y1(t))
...

q(z1(t), y1(t)) − q(z1 − z̃N (t), y1(t))

⎞
⎟⎠ ,

ã(z1(t), y1(t), z̃(t), ỹ(t)) :=
⎛
⎜⎝

a(z1(t), y1(t)) − a(z1 − z̃2(t), y1(t))
...

a(z1(t), y1(t)) − a(z1 − z̃N (t), y1(t))

⎞
⎟⎠ ,

and the (N − 1) × (N − 1)-dimensional matrix L2 defined in the proof of Theorem
17.1. Recall that there is a matrix U such that

U−1L2U =
⎛
⎜⎝

λ2
. . .

λN

⎞
⎟⎠ .

We assume without loss of generality that ‖U−1‖ = 1. Using the equality

ỹ(t − τ) = ỹ(t) −
∫ 0

−τ

˙̃y(t + s)ds

we obtain

˙̃y(t) = ã(z1(t), y1(t), z̃(t), ỹ(t)) − σ(L2 ⊗ C B)ỹ(t)

+ σ(L2 ⊗ C B)

∫ 0

−τ

[ã(z1(t + s), y1(t + s), z̃(t + s), ỹ(t + s))

− σ(L2 ⊗ C B)ỹ(t + s − τ)]ds.
(17.11)

We now show that the conditions of the theorem imply that the function

V (z̃(t), ỹ(t)) = z̃�(t)(IN−1 ⊗ P)z̃(t) + 1
2 ỹ�(t)(U−�U−1 ⊗ Im)ỹ(t)

is a Lyapunov–Razumikhin function [12], that proves uniform asymptotic stability
of the origin of (17.10a) and (17.11), hence synchronization of the coupled systems.
Assumption A2 implies that there exists a positive constant c1 such that
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[q(z1(t), y1(t)) − q(z1 − z̃ j (t), y1(t))]� P

+ P[q(z1(t), y1(t)) − q(z1 − z̃ j (t), y1(t))] ≤ −c1|z̃ j (t)|2.

See [24] for details.Moreover, since the solutions of the coupled systems are assumed
to be bounded and the functions a and q are sufficiently smooth, there exist positive
constants c2, c3 and c4 such that

|2P[q(z1(t) − z̃ j (t), y1(t)) − q(z1(t) − z̃ j (t), y1(t) − ỹ j (t))]| ≤ c2|ỹ j (t)|,

and

|a(z1(t), y1(t)) − a(z1(t) − z̃ j (t), y1(t) − ỹ j (t))|
≤ |a(z1(t), y1(t)) − a(z1(t) − z̃ j (t), y1(t))|

+ |a(z1(t) − z̃ j (t), y1(t)) − a(z1(t) − z̃ j (t), y1(t) − ỹ j (t))|
≤ c3|z̃ j (t)| + c4|ỹ j (t)|.

Choose constant ν > 1 such that if

ν|ỹ(t)| ≥ |ỹ(t + θ)|

and
ν2V (z̃(t), ỹ(t)) ≥ (z̃(t + θ), ỹ(t + θ))

for −2τ ≤ θ ≤ 0, then

V̇ ≤ − W (z̃(t), ỹ(t))

= −
(

z̃(t)
ỹ(t)

)� (
c1 − c2+c4+γ c4

2
− c2+c4+γ c4

2 β1σλ2 − c3 − γ (c3 + β2σλN )

)(
z̃(t)
ỹ(t)

)
,

where γ = νβ2στλN , with positive constants β1 and β2 being the smallest, respec-
tively, largest eigenvalue ofC B. For a network of N = 2 systemswith a12 = a21 = 1
we have λ2 = λN = 2. It follows that whenever σ is sufficiently large and γ suffi-
ciently small, i.e., σ ≥ σ̄ and γ ≤ γ̄ for some positive constants σ̄ and γ̄ , then the
function W is negative definite. This proves Lemma 17.3. Then we conclude that for
any other network the function W negative definite if (σ, τ ) ∈ S∗

2 ∩ S∗
N . �

17.6 Example: Global Synchronization of
FitzHugh–Nagumo neurons

Let us show that the FHN neurons introduced in Sect. 17.4 satisfy the conditions of
Lemma 17.3. Let
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xi (t) =
(

xi,1(t)
xi,2(t)

)
=

(
zi (t)
yi (t)

)

and

f (xi (t)) =
(

q(zi (t), yi (t))
a(zi (t), yi (t))

)
=

( 2
25

(
yi (t) − 4

5 zi (t)
)

yi (t) − 1
3 y3i (t) − zi (t)

)
.

Then one easily verifies that assumption A2 holds with P = 1. We will now show
that assumption A1 is satisfied as well.

Proposition 17.5 Consider N time-delay coupled FHN neurons and suppose that

• maxi
∑

j∈Ni
ai j = 1;

• στ
(
6σ + 39

4

) ≤ 9
4 ;

• for each i = 1, . . . , N, φi ∈ C([−τ, 0],Rn), the initial data for the i th FHN
neuron, is Lipschitz continuous on [−τ, 0] with Lipschitz constant K ≤ 12.

Then the set Ω N := Ω × Ω × · · · × Ω with

Ω :=
{
(zi , yi ) ∈ R

2 | |zi | ≤ 15
4 and |yi | ≤ 3

}

is a positively invariant set for the coupled FHN neurons.

Proof Let us consider first an isolated FHN neuron. The nulclines of this isolated
neuron and the set Ω are shown in Fig. 17.5. From this picture it is clear that the
coupling (17.3) can drive the solution xi (t) = col(zi (t), yi (t)) outside of Ω though
the boundaries yi = ȳ or yi = −ȳ with ȳ = 3. Consider an arbitrary solution of
the coupled systems and let t1 ≤ 0 be such that this solution is contained in Ω N for
t ≤ t1. Suppose that at t1 the solution of the i th is at the boundary ȳ, i.e. yi (t1) = ȳ.
Write

Fig. 17.5 The set Ω (in
cyan) and nulclines of the
isolated (ui = 0) FHN
neuron. Thick black line
represents ẏi = 0, dashed
black line represents żi = 0

x

y

a

b

dc
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ui (t) = σ
∑
j∈Ni

ai j [y j (t − τ) − yi (t − τ)]

= σ
∑
j∈Ni

ai j [(y j (t − τ) − yi (t)) + (yi (t) − yi (t − τ))],

hence,

ui (t1) = σ
∑
j∈Ni

ai j [(y j (t1 − τ) − ȳ) + (ȳ − yi (t1 − τ))] ≤ σ(ȳ − yi (t1 − τ))

as |y j (t1 − τ)| ≤ ȳ for all j and
∑

j∈Ni
ai j ≤ 1. It then follows that yi (t) > ȳ for

some t > t1 requires

0 < ẏi (t1) ≤ a(zi , ȳ) + σ(ȳ − yi (t1 − τ)) ≤ −ν + σ(ȳ − yi (t1 − τ)),

where

ν = max
− 15

4 ≤zi ≤ 15
4

−a(zi , ȳ) = min
− 15

4 ≤zi ≤ 15
4

a(zi ,−ȳ) = 9

4
.

As |yi (t1 − τ)| ≤ ȳ we have

ẏi (t1) ≤ −ν + 2σ B1,

where B1 := ȳ = 3, hence to escape from Ω it is required that σ > ν
2B1

. Thus let
σ > ν

2B1
. For t1 > 0 we have

yi (t1) − yi (t1 − τ) =
∫ t1

t1−τ

⎡
⎣a(zi (s), yi (s)) − σ

∑

j∈Ni

ai j [y j (s − τ) − yi (s − τ)]
⎤
⎦ ds

≤ τ(B2 + 2σ B1),

where B2 := max(zi ,yi )∈Ω |a(zi , yi )| = 39
4 . Hence

ẏ(t1) ≤ −ν + στ(B2 + 2σ B1).

By assumption, στ(B2 + 2σ B1) = στ( 394 + 6σ) ≤ 9
4 = ν, which gives ẏ(t1) ≤ 0

for t1 > 0. Thus we can only have a crossing of ȳ at t1 = 0. If t1 = 0, i.e. φ1(0) = ȳ,
then we have

φi (0) − φi (−τ) ≤ K τ.

But K ≤ B2 + ν = 39
4 + 9

4 = 12 such that, as σ > ν
2B1

hence

K ≤ B2 + ν < B2 + 2B1σ,
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we have
στ K ≤ στ(B2 + 2B1σ) ≤ ν,

which implies ẏ(0) ≤ 0. The same reasoning gives that, if yi (t3) = −ȳ for some
t3 ≥ 0, then ẏ(t3) ≥ 0, hence solutions cannot escape from Ω N . ��

By Proposition 17.5, assuming the Lipschitz condition on the initial data, we
conclude that assumption A1 is satisfied for all

(σ, τ ) ∈ SB :=
{
(σ, τ ) ∈ R+ × R+ | στ

(
6σ + 39

4

) ≤ 9
4

}
.

Then Lemma 17.3 implies the existence of a non-empty set S∗ ∩ SB such that for
(σ, τ ) ∈ S∗ ∩ SB two time-delay coupled FHN neurons globally synchronize (in
Ω × Ω). Invoking Theorem 17.4 we derive conditions for global synchronization
(in Ω N ) of any network of N time-delay coupled FHN neurons.

17.7 Discussion

We have constructed a (local, global) synchronization diagram for time-delay cou-
pled systems and we have shown that a condition for (local, global) synchronization
of a network is that the coupling strength and time-delay belong to the intersection
of scaled copies of that (local, global) synchronization diagram. The scaling fac-
tors are the nonzero eigenvalues of the Laplacian matrix of the undirected, simple,
and connected network. We have demonstrated our results with a network of FHN
neurons.

We have assumed the network Laplacian matrix to be symmetric to ensure that the
eigenvalues (and thus the scaling factors) are real valued. A natural extension of this
work would be to allow for networks with asymmetric network Laplacian matrices,
e.g., in case of directed networks.

An other important extension would be to consider coupling functions of the form

ui (t) = σ
∑
j∈Ni

ai j [y j (t − τ) − yi (t)]. (17.12)

There is an important difference between this type of coupling and the coupling
functions considered in this chapter, i.e., coupling (17.3); coupling (17.12) is inva-
sive whereas the coupling (17.3) is not. For invasive coupling functions, the syn-
chronized dynamics depend on the values of the coupling strength and time-delay.
Thus for coupling (17.12), one has to impose additional conditions to ensure that
the synchronization manifold exists. A sufficient condition for existence of the syn-
chronization manifold is that the network adjacency matrix A = (

ai j
)
has constant

row-sums, e.g.,
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∑
j∈Ni

ai j = 1 ∀i = 1, . . . , N ,

cf. [28]. Under the assumption above, one can easily derive that the synchronization
diagram depends on σ , τ and σλ j (A), with λ j (A) being any eigenvalue of the
network adjacency matrix other than 1. (We remark that in case the network is
connected and all rows of A sum up to 1, the matrix A has a simple eigenvalue
equal to 1.) Thus for invasive coupling (17.12), the synchronization diagram and its
intersections need to be drawn in a three-dimensional space.

Finally, (for both types of coupling functions) it would be valuable to extend our
results to the multiple delay case.

17.8 Epilogue

This chapter is a tribute to the 60th birthday of Arjan van der Schaft. Over a period
of more than 35years, the second author has shared many ideas, papers, thoughts,
running miles, cigars, and much more with Arjan. It is my expectation that this will
continue for the next 35years; I look forward to that.
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Chapter 18
Examples on Stability
for Infinite-Dimensional Systems

Hans Zwart

Abstract By means of examples, we study stability of infinite-dimensional linear
and nonlinear systems. First we show that having a (strict) Lyapunov function does
not imply asymptotic stability, even not for linear systems. Second, we show that to
conclude (local) exponential stability from the linearization, care must be taken how
the linearization is obtained.

18.1 Introduction

I met Arjan for the first time when he was presenting his colloquium for his Ph.D
defence. He had already left for Twente, and 4 years later I would follow him.
Although we were colleagues for many years, our research did not touch. Arjan
worked on nonlinear system described by ordinary differential equations, and I was
working on linear systems, described by partial differential equations. This changed
when Arjan started to study port-Hamiltoninan systems described by partial differ-
ential equations. After some prior discussions, also together with Goran Golo, Arjan,
and I joined forces in the Ph.D. project of Javier Villegas. From that time on port-
Hamiltonian systems is really one of my research directions. Also inspired by Arjans
work is my more recent interest in nonlinear systems. The present paper is a result
of this.

For finite-dimensional systems the following two facts are well known and used
regularly when studying stability. If there exists a Lyapunov function V such that
V̇ < 0, then the equilibriumpoint is asymptotically stable. Second, if the linearization
of a nonlinear differential equation around a equilibriumpoint is exponentially stable,
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then the equilibrium point is locally exponentially stable for the original equation.
We address these questions for infinite-dimensional systems. That is, we study the
following abstract differential equation

ẋ(t) = Ax(t) + f (x(t)), x(0) = x0, (18.1)

where A is the infinitesimal generator of a C0-semigroup on the Hilbert space X , and
f : X �→ X is a locally Lipschitz continuous function with f (0) = 0. Under these
conditions, the abstract differential equation possesses for every initial condition x0
a unique (local) solution, see e.g. [2, Chap. 6], and so we can study the stability of
the equilibrium point xeq = 0.

In the following section, we show that having a Lyapunov function V satisfying
V̇ (x) < 0 for every x �= 0 does not have to imply that the equilibrium solution is
stable. We can even construct a linear counter example.

In Sect. 18.3, we study the question whether the exponential stability of the
C0-semigroup generated by A implies the same for the nonlinear equation (18.1).We
recall a positive result, but show by means of a simple example that the conditions
in this theorem cannot be weakened.

We end this introduction by introducing some notation. We denote the domain
of the operator A by D(A), and the class of bounded, linear operators from X to X
by L(X). Furthermore, the semigroup generated by A is denoted by (T (t))t≥0. We
say that the semigroup (T (t))t≥0 exponentially stable, when there exists a M and
ω0 > 0 such that ‖T (t)‖ ≤ Me−ω0t . It is asymptotically (or strongly) stable when
limt→∞ T (t)x0 = 0 for all x0 ∈ X .

18.2 Strict Lyapunov Function Does Not Imply Asymptotic
Stability

Let X be the Hilbert space L2(0,∞) equipped with the inner product

〈 f, g〉 :=
∫ ∞

0
f (ζ )g(ζ )(e−ζ + 1)dζ,

and let the operators T (t) : X → X , t ≥ 0, be defined by

(T (t) f )(ζ ) := f (ζ − t) for ζ > t and zero otherwise.

Hence T (t) is shifting the function f to the right. It is not hard to show that (T (t))t≥0
is a C0-semigroup on X , see e.g. [1].
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Since

‖T (t) f ‖2 =
∫ ∞

t
| f (ζ − t)|2(e−ζ + 1)dζ

=
∫ ∞

0
| f (ζ )|2(e−ζ+t + 1)dζ

≥
∫ ∞

0
| f (ζ )|2(e−ζ + 1)dζ = ‖ f ‖2

we see that T (t) is not asymptotically stable. In fact, for every nonzero f , T (t) f
does not converge to zero.

The infinitesimal generator A associated to this semigroup is given by

A f = −d f

dζ

with domain

D(A) = { f ∈ X | f is absolutely continuous,
d f

dζ
∈ X, and f (0) = 0}.

Consider next the standard Lyapunov function V (x) = ‖x‖2. Then for x ∈ D(A),

V̇ (x) = 〈Ax, x〉 + 〈x, Ax〉
=

∫ ∞

0

[
−x(ζ )′(ζ ) − x(ζ )x(ζ )′

]
(e−ζ + 1)dζ

=
[
−|x(ζ )|2(e−ζ + 1)

]∞
0

−
∫ ∞

0
|x(ζ )|2e−ζ dζ

= −
∫ ∞

0
|x(ζ )|2e−ζ dζ,

where we have used the boundary condition. Since the last expression is nonzero for
every x �= 0, we have that

V̇ (x) < 0, x �= 0. (18.2)

Hencewe have a strict Lyapunov function,whereas the system is not (asymptotically)
stable. The reason that this is possible lies in the fact that the trajectories are not
precompact. That is, for any x0 �= 0, the closure of {x(t) | t ≥ 0} is not a compact
subset of X . This lack of compactness excludes the use of LaSalle’s principle, which
is needed to conclude from (18.2) asymptotic stability.
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18.3 Linearization and Exponential Stability

One standard technique in finite-dimensional systems to check exponential stability
is to check the exponential stability of the linearization. For infinite-dimensional
systems, a similar result hold. However, before stating it, we first define two concepts
of derivative.

Definition 18.1 For f : X �→ X we say that D f (x) is its Fréchet derivative at x if
D f (x) is a bounded operator from X to X and

lim‖h‖→0

‖ f (x + h) − f (x) − (D f )(x)h‖
‖h‖ = 0.

Furthermore, we say that D f (x) is its Gateaux derivative at x if D f (x) is a bounded
operator from X to X and if for every h ∈ X there holds

lim
ε→0,ε∈R

‖ f (x + εh) − f (x) − ε(D f )(x)h

ε
‖ = 0.

Hence the Gateaux derivative calculates the derivative of f by looking at every
direction,whereas theFréchet derivative is uniform. It is easy to see that if f possesses
a Fréchet derivative, then it also has a Gateaux derivative, and they are equal.

Using the Fréchet derivative, the linearization result for (18.1) can be formulated.
For the proof, we refer to [3].

Theorem 18.2 Let f have zero Fréchet derivative at zero. If A generates an expo-
nentially stable semigroup on X, then (18.1) is (locally) exponentially stable around
zero.

In the above theorem, we assumed that the Fréchet derivative at the origin was zero.
By means of an example, we show that this condition cannot be replaced by the
condition that the Gateaux derivative at the origin must be zero.

As state space we take X = �2(N), and we consider the differential equation

ẋ(t) = −x(t) + f (x(t)), x(0) = x0 (18.3)

with f given by

( f (x))n = 3 n
√

(|xn|)xn . (18.4)

Hence our system is a diagonal (nonlinear) system with on the diagonal

ẋn(t) = (−1 + 3 n
√|xn(t)|)xn(t). (18.5)

We summarize results of these scalar differential equations in a lemma. The proofs
are left to the reader.
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Lemma 18.3 The differential equation (18.5) has the following properties.

• The equilibrium’s are ±3−n and zero.
• The right-hand side of (18.4) is locally Lipschitz continuous, and for |xn| ≤ r the

Lipschitz constant can be majorized by 3(1 + 1
n ) n

√
r .

• For xn(0) ∈ (−3−n, 3−n) the state converges to zero, and for |xn(0)| > 3−n the
state diverges.

• For |xn(0)| > 3−n there is a finite escape time.
• The linearization of (18.5) around zero is ẋn(t) = −xn(t) and thus exponentially

stable.

These results are used to characterize the behavior of the nonlinear system (18.3).

Theorem 18.4 For the nonlinear system (18.3) and (18.4) the following holds.

1. f is (locally) Lipschitz continuous from X to X.
2. f is Gateaux differentiable but not Fréchet at the origin. The Gateaux derivative

at the origin is zero.
3. The origin is an unstable equilibrium point.

Proof 1. Let x, z be two elements of X with norm bounded by r . Without loss of
generality, we may assume that r > 1. Since the norms are bounded by r , the same
holds for the absolute value of every element, i.e., |xn|, |zn| ≤ r . Hence we find that

‖ f (x) − f (z)‖2 =
∞∑

n=1

(
3 n
√

(|xn|)xn − 3 n
√

(|zn|)zn

)2

≤
∞∑

n=1

(
3(1 + 1

n
n
√

r)

)2

(xn − zn)2

≤ (6r)2‖x − z‖2,

where we have used Lemma 18.3 and the fact that r > 1. Thus f is Lipschitz
continuous, and so is the right-hand side of (18.3).

2. We show that the Gateaux derivative of f is zero. This implies that the (Gateaux)
linearization of (18.3) is ẋ(t) = −x(t).

For x ∈ X and ε ∈ R\{0} we have

‖ f (0 + εx) − f (0)

ε
− 0‖2 =

∞∑
n=1

9 n
√

ε2x2n x2n (18.6)

= 9
∞∑

n=1

n
√

ε2
n
√

x2n x2n
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Next take a δ ∈ (0, 1) and choose N such that
∑∞

n=N xn(t)2 ≤ δ. In particu-
lar, this implies that n

√
x2n ≤ 1 for n ≥ N . Now choose ε such that |ε| < 1 and∑N−1

n=1
n
√

ε2 n
√

x2n x2n ≤ δ. Combining these two gives that for this ε there holds that

‖ f (0 + εx) − f (0)

ε
− 0‖2 ≤ 9(δ + δ).

Since δ is arbitrarily, this show that

lim
ε→0

‖ f (0 + εx) − f (0)

ε
− 0‖2 = 0

and so 0 is the Gateaux derivative of (18.5).
If f would be Fréchet differentiable, then its derivative would equal the Gateaux

derivative, and thus zero. However, by choosing in Eq. (18.6) ε = 1 and x = (xn)n∈N
with xn = 0 for n �= N and xN = 2−N , we see that lim sup‖x‖→0 ‖ f (x)‖/‖x‖ > 0.

3. We choose x(0) = (x0n)n∈N with x0n = 0 for n �= N and x0N = 2−N . By
Lemma 18.3 we see that the N th equation of (18.3) is unstable, and thus the state
x(t) diverge. Since for N → ∞, there holds ‖x(0)‖ → 0, we see that there exists
an initial state arbitrarily close to zero which is unstable. Thus the nonlinear system
is not stable in the origin. �

The example is this section is not uniformly Lipschitz continuous, and almost
every solution of (18.3) will have finite escape time. The following simple adaptation
of (18.5) gives a uniformly Lipschitz continuous differential equation on X ,

ẋn(t) = (−1 + 3 n
√|xn(t)|)xn(t)

1 + xn(t)2
.
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Chapter 19
Model Reduction by Generalized Differential
Balancing

Yu Kawano and Jacquelien M.A. Scherpen

Abstract In this chapter, we give a generalization of differential balancing method
for model reduction of nonlinear systems in the direction to computation. We gen-
eralize concepts of differential controllability and observability functions, then use
them for model reduction. We show some stability properties are preserved under
the model reduction and estimate the error bound by the model reduction.

19.1 Introduction

For the second author, the work in this paper finds its roots in early work, [15], which
I did as a Ph.D. student under the supervision of Arjan at the University of Twenty.
It is my pleasure to write in the book of my teacher and mentor at the occasion of his
60th birthday. During my Ph.D. research Arjan was an inspiring researcher, teacher,
and supervisor, allowing me to pursue a research direction different from the original
plan. Even though I was impressed by his knowledge and ideas, I felt he was always
available for questions and open discussions, with or without the many (international)
visitors who came to spent time in the group in Twenty. Being one of the leaders in
the field of nonlinear control, Arjan contributed significantly to the bustling scientific
atmosphere in the group, greatly influencing my perspective on scientific life. After
years at different universities, we are now colleagues in Groningen. Ever since I
started in Groningen, we have been collaborating again, we share ideas and have
jointly supervised a few Ph.D. students. I very much appreciate these encounters,
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and I am honored to organize the workshop, edit the book, and contribute a chapter for
Arjan’s Festschrift with a topic that finds its roots in my Ph.D. work. Congratulations
Arjan!

Model order reduction problems have been widely studied because the reduced
order models are useful for analysis, design, control, and simulation. In both linear
and nonlinear control theory, a balanced realization is a useful state-space representa-
tion when studying model reduction problems [2, 7, 8, 15, 19], measuring importance
of state variables based on how much energy is minimally needed to reach that state
variable, and how much energy is obtained starting in that state variable. Besides
balancing, also moment matching [2] is a useful tool for model reduction for control,
in general computationally stronger than balanced order reduction, but not having a
priori error bound, and less intuition. For nonlinear systems, this method has only
been recently developed, see [3, 9]. Balancing for nonlinear systems has a longer
history [15], but there are still many recent developments, i.e., there are various other
types of nonlinear balancing such as a flow balancing [17, 18], incremental balancing
[4], and dynamic balancing [14]. These methods are developed to take into account
different properties of importance, such as incremental stability, for example [4]. In
general, it depends on the system analysis and the control goal which method is best.
In this paper we focus on balancing.

Recently, the authors presented a new balancing method based on contraction
theory [10]. Contraction theory has been studied in recent decades, and deals with
trajectories of nonlinear systems with respect to one another. One of the interesting
ideas of contraction theory is considering the infinitesimal metric instead of a feasible
distance function. In this setting, for instance, stability [1, 6, 11], optimal and H∞
control [12, 13], and dissipativity [5, 16] have been studied. However, if the system
order becomes large, the analysis and control becomes difficult, which motivates
the study of balancing in the contraction framework, called differential balancing
theory. Differential balancing theory is based on two energy functions, the so-called
differential controllability and observability functions. In [10], it is shown that these
two energy functions have close relationships with solutions to types of Lyapunov
equations in contraction theory. That is, well-known results on controllability and
observability Gramians in linear systems and control theory have partly been gener-
alized. Moreover, a new model reduction method has been established based on the
differential balancing, and this model reduction method is demonstrated for a system
for which we cannot apply the incremental balancing method of [4].

As with most of the nonlinear balancing methods, computation of the differential
energy functions is still not straightforward. Therefore, in this chapter, we general-
ize differential balancing into a direction that facilitates computations for obtaining
a reduced order model based on generalized differential balancing. This general-
ized method relies on so-called generalized differential energy functions, which give
bounds on the original differential energy functions, following similar principles
as in [4, 14]. The existence of these generalized differential functions guarantees
boundedness of trajectories of the variational system of the nonlinear system, which
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property is preserved under model reduction based on generalized differential bal-
ancing. In addition, generalized differential balancing has several advantages over
other computationally feasible methods as in [4, 14]. First, generalized differential
balancing does not require that the vector field of the system is an odd function in con-
trast to the generalized incremental balancing [4]. Second, an error bound for model
reduction is estimated differently from the dynamic balancing in [14]. Moreover,
generalized differential balancing can be directly applied to time-varying systems.

The remainder of this paper is organized as follows. In Sect. 19.2, we review
results on differential balancing such as the differential energy functions and the
differential balanced realization. In Sect. 19.3, we develop generalized differential
balancing and present a model reduction method based on generalized differential
balancing, which is illustrated by a system composed of 100 mass-spring-damper
systems with nonlinear springs. Finally in Sect. 19.4 we conclude the paper.

Notations Let R be the field of real numbers. Denote R≥0 := [0,∞) ⊂ R. It is

said that u : [a, b] → R
m is in Lm

2 [a, b] if ||u(t)||Lm
2 [a,b] :=

√∫ b
a ||u(t)||2dt < ∞,

where ||u(t)|| := √
uT(t)u(t). A curve γ on R

n is a class C2 mapping γ : R ⊃
[0, 1] → R

n . For matrix A(x, t) = (ai j ), denote δ f (A) := (∂ai j/∂t + (∂ai j/∂x) f ).
If A is invertible, we use the notation A−T to denote (A−1)T. For the vector valued
function F : Rn ×R → R

m , denote ∂ F(x, t)/∂x := [∂ F(x, t)/∂x1, . . . , ∂ F(x, t)/
∂xn], and ∂T F(x, t)/∂x := (∂ F(x, t)/∂x)T.

19.2 The Differential Balanced Realization

In this section, we review results on differential balancing [10] for nonlinear systems.
Consider the nonlinear time-varying system and its associated system of differ-

ential dynamics

ΣBC :
{

ẋ(t) := dx(t)/dt = f (x(t), t) + B(t)u(t),
y(t) = C(t)x(t),

dΣBC :
{

δ ẋ(t) := d

dt
δx(t) = ∂( f (x(t), t) + B(t)u(t))

∂x
δx(t) + B(t)δu(t),

δy(t) = C(t)δx(t),

where x(t) ∈ R
n , u(t) ∈ R

m and y(t) ∈ R
p are, respectively, the state, input and

output of ΣBC ; δx(t) ∈ R
n , δu(t) ∈ R

m and δy(t) ∈ R
p are, respectively, the state,

input, and output of dΣBC ; f : Rn ×R → R
n , B : R → R

n×m and C : R → R
p×n

are class C2. When u(t) ≡ 0 and δu(t) ≡ 0, we denote ΣBC and dΣBC by ΣC and
dΣC , respectively.

Remark 19.1 For each s ∈ [0, 1], let curve γ (s) be an initial condition for ΣBC

and u(·, s) be an input signal. If u(·, ·) is class C2, then x(·, s) is a solution to the
system ΣBC . Define δx(t) := ∂x(t, s)/∂s and δu(t) := ∂u(t, s)/∂s. Then, δx(·, s)
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is a solution to dΣBC from the initial condition ∂γ (s)/∂s. Also, the output signal is
given by δy(t, s).

For differential balancing, the following two energy functions play important roles
[10].

Definition 19.2 The differential controllability function of the system ΣBC is
defined as

LC(x0, δx0, t0) := infδu∈Lm
2 (−∞,t0]

1

2

∫ t0

−∞
||δu(t)||2dt,

for all feasible trajectories (x(t), u(t)) of ΣBC , where x(t0) = x0 ∈ R
n , δx(t0) =

δx0 ∈ R
n and δx(−∞) = 0.

Definition 19.3 The differential observability function of the systemΣC is defined as

LO(x0, δx0, t0) := 1

2

∫ ∞

t0
||δy(t)||2dt,

for all feasible trajectories x(t) of ΣC , where x(t0) = x0 ∈ R
n , δx(t0) = δx0 ∈ R

n ,
δx(∞) = 0.

It is not guaranteed that these two differential energy functions always exist. Note that
these energy functions are the controllability and observability functions for dΣBC

and dΣC , respectively. In the linear case, these two functions are nothing but the
controllability and observability functions, respectively. Similar to the linear case,
differential controllability and observability functions are characterized by Lyapunov
type of equations (note that hereafter we leave out arguments when clear from the
context for ease of notation) [10].

Theorem 19.4 Suppose that there exists a nonsingular, real symmetric, and class
C1 solution −∞ < P(x, t) < ∞ (∀x ∈ R

n,∀t ∈ R) to

− δ f (P(x, t)) + ∂ f (x, t)

∂x
P(x, t) + P(x, t)

∂T f (x, t)

∂x
= −B(t)BT(t), (19.1)

− δB(P(x, t)) = 0. (19.2)

Also, suppose that for all feasible trajectories (x̂(t), û(t)) of ˙̂x(t) = − f (x̂(t)) −
g(x̂(t))û(t), the trajectory δ x̂(t) of the following system is bounded for all t ≥ t0
and limt→∞ δ x̂(t) = 0.

d

dt
δ x̂(t) = −∂ f (x̂(t), t)

∂x
δ x̂(t) − B(t)BT(t)P−1(x̂(t), t)δ x̂(t). (19.3)

Then, LC(x0, δx0, t0) = 1
2δxT

0 P−1(x0, t0)δx0. �
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Theorem 19.5 Suppose that for all feasible trajectories x(t) of ΣC , the trajectory
δx(t) of dΣC is bounded for all t ≥ 0 and limt→∞ δx(t) = 0. If there exists a real
symmetric and class C1 solution −∞ < Q(x, t) < ∞ (∀x ∈ R

n,∀t ∈ R) to

δ f (Q(x, t)) + ∂T f (x, t)

∂x
Q(x, t) + Q(x, t)

∂ f (x, t)

∂x
= −CT(t)C(t), (19.4)

then LO(x0, δx0, t0) = 1
2δxT

0 Q(x0, t0)δx0. �

In terms of the differential controllability and observability functions, we define a
differentially balanced realization for the system ΣBC [10].

Definition 19.6 A realization of the associated system dΣBC is said to be a differ-
entially balanced realization on an open subset D ⊂ R

n ×R if there exists a diagonal
matrix

Λ(x, t) = diag{σ1(x, t), σ2(x, t), . . . , σn(x, t)}, (19.5)

where σ1(x, t) ≥ σ2(x, t) ≥ · · · ≥ σn(x, t) > 0 holds on D, and P(x, t) = Λ(x, t)
and Q(x, t) = Λ(x, t), respectively, satisfy (19.1), (19.2) and (19.4).

Theorem 19.7 Let P(x, t) and Q(x, t) be, respectively, real symmetric and class C1

solutions to (19.1), (19.2) and (19.4), where 0 < P(x, t) < ∞ and 0 < Q(x, t) < ∞
for all (x, t) ∈ R

n × R. The system dΣBC can be transformed into a differentially
balanced realization on an open subset D ⊂ R

n × R by a differential coordinate
transformation δz = T (x, t)δx. Moreover, σ 2

i (x, t) (i = 1, . . . , n) in (19.5) are the
eigenvalues of the product P(x, t)Q(x, t). �

19.3 Generalized Differential Balancing

19.3.1 Generalized Differential Energy Functions

In the previous section, balancing theory based on the contraction framework is
presented, which is a natural extension of linear balancing theory. From an application
perspective, it is worth constructing a computationally more feasible method. Here,
we present generalized differential balancing, inspired by generalized incremental
balancing as in [4].

We generalize concepts of differential energy functions as follows:

Definition 19.8 If there exists a uniformly positive definite matrix P̄(t) = P̄T(t)
such that

− d P̄(t)

dt
+ ∂ f (x, t)

∂x
P̄(t) + P̄(t)

∂T f (x, t)

∂x
≤ −B(t)BT(t) (19.6)
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for all x ∈ R
n, t ∈ R then the function LC(δx0, t0) := 1

2δxT
0 P̄−1(t0)δx0, is said to

be a generalized differential controllability function.

Definition 19.9 If there exists a uniformly positive definite matrix Q̄(t) = Q̄T(t)
such that

d Q̄(t)

dt
+ Q̄(t)

∂ f (x, t)

∂x
+ ∂T f (x, t)

∂x
Q̄(t) ≤ −CT(t)C(t) (19.7)

for all x ∈ R
n, t ∈ R then the function LO(δx0, t0) := 1

2δxT
0 Q̄(t0)δx0, is said to be

a generalized differential observability function.

Remark 19.10 If we compare (19.1) and (19.4) with (19.6) and (19.7), respectively,
we notice that equalities are relaxed into inequalities.

Note that these energy functions are the generalized controllability and observability
functions for dΣBC , respectively. Also, in the linear case, these two functions are
nothing but the generalized controllability and observability functions, respectively.
Similar to the linear case, generalized controllability and observability functions are
not unique, but they provide a lower bound for the differential controllability function
and an upper bound for the differential observability function.

Theorem 19.11 Suppose that the differential controllability function LC(x0, δx0, t0)
and a generalized differential controllability function L̄C(δx0, t0) exist. Then,

L̄C(δx0, t0) ≤ LC(x0, δx0, t0)

for all x0 ∈ R
n, δx0 ∈ R

n, t0 ∈ R. �

Theorem 19.12 Suppose that the differential observability function LO(x0, δx0, t0)
and a generalized differential observability function L̄O(δx0, t0) exist. Then,

L̄O(δx0, t0) ≥ LO(x0, δx0, t0)

for all x0 ∈ R
n, δx0 ∈ R

n, t0 ∈ R. �

19.3.2 Boundedness of Trajectories

Existence of the differential controllability and observability functions is not directly
related to controllability and observability, which is the case for linear systems.
However, existence of these differential energy functions implies boundedness of
trajectories of dΣBC .

Theorem 19.13 If there exists a generalized differential controllability function,
then δx(t) of the system dΣBC is bounded for any x0, δx0 ∈ R

n, u, δu ∈ Lm
2 [0,∞).
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Proof By differentiating the generalized differential controllability function L̄C
(δx, t) with respect to t , we have

d L̄C(δx(t), t)

dt

= 1

2

d

dt

(
δxT(t)P̄−1(t)δxT(t)

)

= 1

2
δxT(t)

d P̄−1(t)

dt
δx(t) + 1

2

(
δTx(t)

∂T f (x(t), t)

∂x
+ δTu(t)BT(t)

)
P̄−1(t)δx(t)

+ 1

2
δTx(t)P̄−1(t)

(
∂ f (x(t), t)

∂x
δx(t) + B(t)δu(t)

)

From (19.6) and d P̄−1(t)/dt = −P̄−1(t)(d P̄(t)/dt)P̄−1(t), we obtain

d L̄C(δx(t), t)

dt

≤ −1

2
δxT(t)P̄−1(t)B(t)BT(t)P̄−1(t)δx(t) + 1

2
δTu(t)BT(t)P̄−1(t)δx(t)

+ 1

2
δTx(t)P̄−1(t)B(t)δu(t)

= 1

2
||δu(t)||2 − 1

2
||δu(t) − B(t)P̄−1(t)δx(t)||2 ≤ 1

2
||δu(t)||2.

By integrating this inequality, we have

L̄C(δx(t), t) ≤ L̄C(δx0, t0) + 1

2

∫ t

t0
||δu(τ )||2dτ. (19.8)

Since the right-hand side is bounded, the left-hand side is also bounded. Moreover,
P̄(t) is uniformly positive definite, which implies that δx(t) is bounded. �

Theorem 19.14 If there exists a generalized differential observability function, then
there exists a positive real number α such that ||δx(t)||2 ≤ α||δx0||2 for system dΣC .
Moreover, limt→∞ ||δy(t)||2 = 0 holds.

Proof By differentiating differential observability function L̄O(δx(t), t)with respect
to t , from its definition, we have

d L̄O(δx(t), t)

dt
= 1

2

d

dt

(
δxT(t)Q̄(t)δxT(t)

)

= 1

2
δxT(t)

d Q̄(t)

dt
δx(t) + 1

2
δTx(t)

∂T f (x(t), t)

∂x
Q̄(t)δx(t)

+ 1

2
δTx(t)Q̄(t)

∂ f (x(t), t)

∂x
δx(t)

≤ −1

2
||δy(t)||2 ≤ 0.
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By integrating this inequality,

L̄O(δx(t), t) ≤ L̄O(δx0, t0) − 1

2

∫ t

t0
||δy(τ )||2dτ ≤ L̄O(δx0, t0). (19.9)

The uniform positive definiteness of Q̄(t) implies that there exist α2 ≥ α1 > 0 such
that

α1||δx(t)||2 ≤ L̄O(δx(t), t) ≤ L̄O(δx0, t0) ≤ α2||δx0||2,

and consequently ||δx(t)||2 ≤ α2
α1

||δx0||2.
On the other hand, (19.9) implies

1

2

∫ ∞

t0
||δy(τ )||2dτ ≤ L̄O(δx0, t0) − lim

t→∞ L̄O(δx(t), t) ≤ L̄O(δx0, t0). (19.10)

Since L̄O(δx0, t0) is bounded, from Barbalat’s lemma limt→∞ ||δy(t)||2 = 0. �
Remark 19.15 For a generalized controllability or observability function, if there
exists a positive real number α such that

−d P̄(t)

dt
+ ∂ f (x, t)

∂x
P̄(t) + P̄(t)

∂T f (x, t)

∂x
≤ −α In

or

d Q̄(t)

dt
+ Q̄(t)

∂ f (x, t)

∂x
+ ∂T f (x, t)

∂x
Q̄(t) ≤ −α In, (19.11)

then R
n is a contraction region [11] with respect to the uniformly positive definite

metric P̄(t) or Q̄(t), respectively. That is, any trajectory of the system ΣBC is
bounded.

19.3.3 The Generalized Differentially Balanced Realization

We are now ready to define a generalized differentially balanced realization in terms
of the generalized differential controllability and observability functions.

Definition 19.16 A realization of dΣBC is said to be a generalized differentially
balanced realization on an open subset D ⊂ R if there exists a diagonal matrix

Λ̄(t) = diag{σ̄1(t), σ̄2(t), . . . , σ̄n(t)}, (19.12)

where σ̄1(t) ≥ σ̄2(t) ≥ · · · ≥ σ̄n(t) > 0 on D holds, and P̄(t) = Λ̄(t) and
Q̄(t) = Λ̄(t).
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Theorem 19.17 Let L̄C(δx0, t0)and L̄O(δx0, t0)be generalized differential control-
lability and observability functions, respectively. For every system ΣBC , there exists
a coordinate transformation z = T (t)x which transforms dΣBC into a generalized
differentially balanced realization on a domain D ⊂ R. Also σ̄ 2

i (t) (i = 1, . . . , n)

in (19.12) are the eigenvalues of P̄(t)Q̄(t).

Proof In a similar manner as for the linear case, it can be shown that there exists a class
C1 and invertible matrix T (t) : R → R

n×n which achieves T (t)P̄(t)T T(t) = Λ̄(t)
and T −T(t)Q̄(t)T −1(t) = Λ̄(t), where Λ̄(t) = diag{σ̄1(t), . . . , σ̄n(t)}, and σ̄i (t) >

0 (i = 1, . . . , n). Moreover, T (t) can be chosen such that σ̄1(t) ≥ · · · ≥ σ̄n(t)
in a sufficiently small open subset D ⊂ R. Finally, P̄(t)Q̄(t) = T −1(t)Λ̄2(t)T (t)
implies that σ̄ 2

i (t) (i = 1, . . . , n) are eigenvalues of P̄(t)Q̄(t). �

19.3.4 Model Reduction and Error Bound

Now we can provide a model reduction procedure based on the generalized differen-
tially balanced realization. Moreover, we establish and estimate of the error bound
for the model reduction procedure.

In (19.12), suppose that σ̄k(t) > σ̄k+1(t) for k < n, which implies that zk is more
important than zk+1 in the sense of generalized differential energy. Hence, z1 until
zk are more important than zk+1 until zn . A possibility to reduce the number of states
is by truncation, i.e., to put zk+1 = 0, . . . , zn = 0. We partition the system in the
z-coordinates correspondingly as follows:

f̄ (z, t) =
[

f̄a(za, zb, t)
f̄b(za, zb, t)

]
:= T (t) f (T −1(t)z(t), t), B̄(t) =

[
B̄a(t)
B̄b(t)

]
:= T (t)B(t),

C̄(t) = [
C̄a(t) C̄b(t)

] := C(t)T −1(t),

where za := [z1, . . . , zk]T and zb := [zk+1, . . . , zn]T.
The reduced order system is obtained by simply substituting za = z̄a and zb = 0.

Σr
{ ˙̄za(t) = f̄a(z̄a(t), 0, t) + B̄a(t)u(t)

ȳa(t) = C̄a(t)z̄a(t)
.

Theorem 19.18 The state-space realization of reduced order system Σr
BC is a gen-

eralized differential balanced realization with singular value functions σ̄1(t) ≥ · · · ≥
σ̄k(t).

Proof Equations (19.6) and (19.7) in the z-coordinates are
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− d

dt
Λ̄(t) + Λ̄(t)

⎡
⎣

∂ f̄a
∂za

∂ f̄a
∂zb

∂ f̄b
∂za

∂ f̄b
∂zb

⎤
⎦

T

(za, zb, t) +
⎡
⎣

∂ f̄a
∂za

∂ f̄a
∂zb

∂ f̄b
∂za

∂ f̄b
∂zb

⎤
⎦ (za, zb, t)Λ̄(t)

≤ −
[

B̄a B̄T
a B̄a B̄T

b

B̄a B̄T
b B̄b B̄T

b

]
(t),

d

dt
Λ̄(t) +

⎡
⎣

∂ f̄a
∂za

∂ f̄a
∂zb

∂ f̄b
∂za

∂ f̄b
∂zb

⎤
⎦

T

(za, zb, t)Λ̄(t) + Λ̄(t)

⎡
⎣

∂ f̄a
∂za

∂ f̄a
∂zb

∂ f̄b
∂za

∂ f̄b
∂zb

⎤
⎦ (za, zb, t)

≤ −
[

C̄T
a C̄a C̄T

b C̄a

C̄T
b C̄a C̄T

b C̄b

]
(t).

Let Λ̄k(t) := diag{σ̄1(t), . . . , σ̄k(t)}. For za = z̄a and zb = 0, the upper left k × k
matrix equations become

− d

dt
Λ̄k(t) + Λ̄k(t)

∂T f̄a(z̄a, 0, t)

∂za
+ ∂ f̄a(z̄a, 0, t)

∂za
Λ̄k(t) ≤ −B̄a(t)B̄T

a (t),

d

dt
Λ̄k(t) + ∂T f̄a(z̄a, 0, t)

∂za
Λ̄k(t) + Λ̄k(t)

∂ f̄a(z̄a, 0, t)

∂za
≤ −C̄T

a (t)C̄a(t).

Thus, (1/2)dz̄T
a (t0)Λ̄

−1
k (t0)dz̄a(t0) and (1/2)dz̄T

a (t0)Λ̄k(t0)dz̄a(t0) are a generalized
differential controllability and observability functions for Σr

BC , respectively. �

Remark 19.19 For the reduced order system Σr
BC , Theorems 19.13 and 19.14 hold.

Next, we estimate an error bound of the trajectories of the original and reduced
system. Consider the dynamics of the error ξ := z − z̄,

⎧⎨
⎩

ξ̇a(t) = f̄a(ξa(t) + z̄a(t), ξb(t), t) − f̄a(z̄a(t), 0, t),
ξ̇b(t) = f̄b(ξa(t) + z̄a(t), ξb(t), t) + B̄b(t)u(t),
yξ (t) = C̄(t)ξ(t),

(19.13)

where ξb ≡ zb. Since z̄a(t) ∈ R
k can be seen as an external function of time, the

associated system of differential dynamics is

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δξ̇a(t) = ∂ f̄a(ξa(t) + z̄a(t), ξb(t), t)

∂ξa(t)
δξa(t) + ∂ f̄a(ξa(t) + z̄a(t), ξb(t), t)

∂ξb(t)
δξb(t),

δξ̇b(t) = ∂ f̄b(ξa(t) + z̄a(t), ξb(t), t)

∂ξa(t)
δξa(t) + ∂ f̄b(ξa(t) + z̄a(t), ξb(t), t)

∂ξb(t)
δξb(t)

+B̄b(t)δu(t),
δyξ (t) = C̄(t)δξ(t),

where δξb ≡ δzb. We can upper bound the effect of δu on δyξ as follows:
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Theorem 19.20 Consider the error dynamics (19.13). Suppose that σ̄1(t) ≥ · · · ≥
σ̄k(t) > σ̄k+1(t) ≥ · · · ≥ σ̄n(t) > 0 for all t ≥ t0 ∈ R

n; δz(t0) = δz̄(t0) = 0. Then,
for all t ∈ [t0,∞),

||δyξ (τ )||L p
2 [t0,t] ≤ 2

n∑
i=k+1

||σ̄i (τ )δu(τ )||Lm
2 [t0,t]. (19.14)

Proof Suppose that k = n − 1. Consider the dynamics of η := z + z̄:

⎧
⎨
⎩

η̇a(t) = f̄a(ηa(t) − z̄a(t), ηb(t), t) + f̄a(z̄a(t), 0, t) + 2B̄a(t)u(t),
η̇b(t) = f̄b(ηa(t) − z̄a(t), ηb(t), t) + B̄b(t)u(t),
yη(t) = C̄(t)η(t),

where zb ≡ ηb, and its associated system of differential dynamics is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

δη̇a(t) = ∂ f̄a(ηa(t) − z̄a(t), ηb(t), t)

∂ηa(t)
δηa(t) + ∂ f̄a(ηa(t) − z̄a(t), ηb(t), t)

∂ηb(t)
δηb(t)

+2B̄a(t)δu(t),

δη̇b(t) = ∂ f̄b(ηa(t) − z̄a(t), ηb(t), t)

∂ηa(t)
δηa(t) + ∂ f̄b(ηa(t) − z̄a(t), ηb(t), t)

∂ηb(t)
δηb(t)

+B̄b(t)δu(t),
δyη(t) = C(t)δη(t).

By using Λ̄(t) in (19.12), denote two differential energy functions.

2L̄C(η(t), δη(t), t) := δηT(t)Λ̄−1(t)δη(t),

2L̄O(ξ(t), δξ(t), t) := δξT(t)Λ̄(t)δξ(t).

Since Λ̄ satisfies (19.6) and (19.7), we obtain

2 ˙̄LC(η(t), δη(t), t) ≤ −δηTΛ̄−1 B̄ B̄TΛ̄−1δη + 2δuT B̄T
a Λ̄−1

n−1δηa

+2δηT
a Λ̄−1

n−1 B̄aδu + δuTσ̄−1
n B̄T

b δηb

+ δηT
b B̄bσ̄

−1
n δu,

2 ˙̄LO(ξ(t), δξ(t), t) ≤ −δξTC̄C̄Tδξ + δuTσ̄n B̄T
b δξb + δξT

b B̄bσ̄nδu.

Because of δξb ≡ δηb ≡ δxb, we have

2 ˙̄LO(ξ(t), δξ(t), t) + 2σ̄ 2
n (t) ˙̄LC(η(t), δη(t), t)

≤ −δξTC̄C̄Tδξ − σ̄ 2
n δηTΛ̄−1 B̄ B̄TΛ̄−1δη

+ 2σ̄ 2
n δuT B̄T

a Λ̄−1
n−1δηa + 2σ̄ 2

n δηT
a Λ̄−1

n−1 B̄aδu

+ 2σ̄ 2
n δuTσ̄−1

n B̄T
b δηb + 2σ̄ 2

n δηT
b B̄bσ̄

−1
n δu

≤ −||δyξ ||2 + 4σ̄ 2
n ||δu||2 − σ̄ 2

n ||2δu − B̄TΛ̄−1δη||2.
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Integrating over time we obtain

2L̄O(ξ(t), δξ(t), t) + 2σ̄ 2
n (t)L̄C(η(t), δη(t), t) − 2L̄O(ξ(t0), δξ(t0), t0)

− 2σ̄ 2
n (t0)L̄C(η(t0), δη(t0), t0)

≤
∫ t

t0

(
−||δyξ ||2 + 4σ̄ 2

n ||δu||2 − σ̄ 2
n ||2δu − B̄TΛ̄−1δη||2

)
dt.

From δz(t0) = δz̄(t0) = 0, we obtain δη(t0) = δξ(t0) = 0 and thus

L̄O(ξ(t0), δξ(t0), t0) = 0,

L̄C(η(t0), δη(t0), t0) = 0.

Because of L̄O(ξ(t), δξ(t), t) > 0, L̄C(η(t), δη(t), t) > 0 and σ̄n ||2δu− B̄TΛ̄−1δη||
≥ 0, we have

||δyξ (τ )||L2
p[t0,t] ≤ 2||σ̄n(τ )δu(τ )||L2

m [t0,t].

By repeating this procedure for i = n, . . . , k, we obtain (19.14). �

19.3.5 Example

We apply model reduction based on generalized differential balancing on a system
composed by 100 mass-spring-damper systems with nonlinear springs, see Fig.19.1,
where kl and kn are, respectively, spring constants of linear and nonlinear springs,
and m = kl = d = 1 and kn = 2. The characteristic of the nonlinear springs is
provided in the state-space description. The original state-space representation has
200 states, f , B and C are given by

f2i−1 = x2i (i = 1, . . . , 100),

f2 = −x2i−1 + x2i+1 − 2(x2i−1 − x2i+1)3 − x2i + x2i+2,

f2i = −x2i−1 + x2i−3 − 2(x2i−1 − x2i−3)3 − x2i−1 + x2i+1 − 2(x2i−1 − x2i+1)3

− x2i + x2i−2 − x2i + x2i+2 (i = 2, . . . , 99),

f200 = −x199 + x197 − 2(x199 − x197)3 − x200 + x198,

B = [
0 · · · 0 1

]T
, C = [

0 · · · 0 1 0
]
,

Fig. 19.1 Mass-spring-
damper systems with
nonlinear springs

m

d

kl kn

m

d

kl kn

m

d

kl kn
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Fig. 19.2 Error bound
versus order of reduced
model

order of reduced models
er

ro
r 

bo
un

ds

Fig. 19.3 Output trajectories
of 200-dimensional original
system and 20-dimensional
reduced order model

time

ou
tp
ut

s

where x2i−1 and x2i (i = 1, . . . , 100) are, respectively, position and velocity of the
i th mass-spring-damper subsystems. By solving both (19.6) and (19.7), we obtain
positive definite matrices, and consequently the system can be transformed into a
generalized differential balanced realization. Thus, we can provide an error bound
for model reduction using Theorem 19.20, which is shown in Fig. 19.2. For example,
it can be seen that the error bound is less than 2.24 × 10−2 for the 20-dimensional
reduced order model. Figure 19.3 shows output trajectories of the original system
and reduced order model starting from zero initial states and input u(t) = sin t .

19.4 Conclusion

In this chapter, we have presented results on generalized differential balancing for
nonlinear systems, which provides an approximation method for balanced truncation
with differential balancing constructed in the contraction framework. Generalized
differential balancing is based on two energy functions called generalized differen-
tial controllability and observability functions. The existences of these generalized
differential energy functions guarantee boundedness of trajectories of variational
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systems of the nonlinear systems, which is preserved under model reduction. We
also provide error bounds for model reduction based on generalized differential bal-
ancing. The simulation results for a 20-dimensional reduced order model from a
system composed of 100 mass-spring-damper systems show a good approximation
of the original 200 order model to a sinusoidal input signal.
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Chapter 20
Trajectory-Based Theory for Hybrid Systems

A. Agung Julius

Abstract This chapter presents a trajectory-based perspective in solving safety/
reachability analysis and synthesis problems and fault diagnosability analysis in hy-
brid systems. The main tool used in obtaining the results presented in this chapter
is the concept of trajectory robustness, which is derived from the theory of approx-
imate bisimulation. Trajectory robustness essentially provides a guarantee on how
far the system’s state trajectories can deviate (in L∞ norm) as a result of initial state
variations. It further leads to the possibility of approximating the set of the system’s
trajectories, which is infinite, with a finite set of trajectories. This fact, in turns, allows
us to pose the above problems as finitely many finite problems that can be practically
solved. In addition, these finite problems can be solved in parallel.
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20.2 Introduction

Hybrid systems are dynamical systems with interacting discrete and continuous
dynamics [1]. Intuitively, one way to describe a hybrid system is to think of it as
a multimodal dynamical system, where the dynamics of the continuous states de-
pends on the discrete state of the system,which is also called themode or the location.
Because of their modeling expressivity, hybrid systems have been used in modeling
of embedded systems [2–8], air traffic systems [9–14], automotive systems [15–
17], electronic circuits [18–20], genetic regulatory networks [21–23], computational
morphodynamics [24], and other fields.

In this chapter, we consider two types of hybrid systems, autonomous hybrid
systems and control hybrid systems. More formal definitions of these systems will
follow in Sect. 20.3.1. Intuitively, the autonomous hybrid systems do not admit any
input. They are the hybrid systems analog of ẋ = f (x). Hybrid control systems,
on the other hand, admit both continuous and discrete control inputs. They are the
hybrid systems analog of ẋ = f (x, u). In a sense, for autonomous hybrid systems,
the evolution of the states is completely determined by its initial state.1

Research involving autonomous hybrid systems is typically of the analysis type,
i.e., they are concernedwith provingwhether the systems have certain properties.One
of the most important analysis problems in hybrid systems is the reachability/safety
analysis, where the question of interest is whether the system can enter an undesirable
state during its execution. Reachability/safety analysis has a lot of important practical
applications, for example, in the safety analysis of air traffic systems [11, 12, 14,
25, 26], design verification for electronic circuits [18–20], design verification for
synthetic biology [21, 27], and model analysis for biochemical processes [28].

Another type of analysis problems that is also studied a lot is the observability
analysis (see e.g., the editorial [29]). Here, the question of interest is whether we can
infer certain properties of the state trajectories by observing certain aspects thereof.
An important problem of this type is fault diagnosis. The central question in fault
diagnosis is whether we can infer that the state trajectory is faulty (e.g., it involves a
directly unobservable fault event) from partial observation (e.g., by observing only
the a part of the events in the system). Fault diagnosis for hybrid systems is an active
research area, with applications in embedded control systems [30], process control
[31], and others.

For hybrid control systems, there is a strong research interest involving synthesis.
The synthesis part of the safety/reachability issue deals with the construction of
control laws/algorithms for systems with input and controllable events, in order to
achieve executions with desired properties (e.g., safety) despite uncertainties.

In this chapter, we review some results on reachability/safety analysis and syn-
thesis and fault diagnosis for hybrid systems. The underlying theme of the results is

1For simplicity, in this chapter we do not consider nondeterminism and stochasticity in the hybrid
system dynamics.
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that they are all trajectory based. That is, they make use of trajectories to represent
the systems, and they are based on reasoning at the trajectory level, instead of at the
system representation level.

20.3 Review of the Fundamentals

20.3.1 Hybrid Automata

Following [1], we define hybrid systems as hybrid automata. A hybrid automaton is
expressed as an octuple H = (L ,X , I nit, A,U , E, I nv,Σ), where:

• L is a finite set of discrete states, which are also called modes or locations.
• X is the continuos state space.
• I nit ⊂ X × L is the set of initial states.
• A is a finite set of transition symbols.
• U is the space of continuous input.
• E is the set of transitions.
• I nv : L → 2X defines the invariant sets of each location. For an � ∈ L , I nv(�) is
the set in which the continuous states must remain as long as the discrete state is
�.

• Σ assigns each location to its continuous dynamics. For each location � ∈ L , we
define

Σ(�) : ẋ = F�(x), x ∈ I nv(�), (20.1)

if the hybrid system is autonomous, or

Σ(�) : ẋ = F�(x, u), x ∈ I nv(�), u ∈ U , (20.2)

if the hybrid system admits control inputs. Here we assume that for each loca-
tion F� satisfies some conditions that guarantee well-posedness of the continuous
dynamics.

Each transition in E is a pentuple e = (�, �′, Guard, R, a) ∈ E , where � ∈ L
is the origin of the transition, �′ ∈ L is the target location, Guard ⊂ I nv(�) is the
guard set of the transition, and R : I nv(�) → I nv(�′) is the reset map. The symbol
a ∈ A is the symbol associated with the transition. The semantics of the execution
of a hybrid automaton can be explained as follows: (see illustration in Fig. 20.1a).
An execution trajectory of H is a sequence

(�0, x0, u0, e0,Δ0), (�1, x1, u1, e1,Δ1), . . . , (�N , xN , uN , ∅,ΔN ), (20.3)

where for all values of i that appear here Δi ∈ [0,∞), ei ∈ E , and ui : [0,Δi] → U
is the input signal, if the hybrid system admits input. If the system does not admit
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(a) (b)

Fig. 20.1 An illustration of (a) the execution trajectory of a hybrid automaton, b the concept of
trajectory robustness

any input, the execution trajectory is a sequence

(�0, x0, e0,Δ0), (�1, x1, e1,Δ1), . . . , (�N , xN , ∅,ΔN ). (20.4)

The initial state (x0, �0) ∈ I nit. Each element of the sequence is essentially an
interval of execution within which the discrete state is constant. These execution
intervals can be characterized recursively as follows. For the ith interval, the value
of the continuous state x(t) is given by ξi(t), which satisfies ξi(0) = xi and the ODE
given by Σ(�i). Within the time interval [0,Δi], ξi(t) ∈ I nv(�i). At time t = Δi,

the transition ei = (�i, �i+1, Guardi, Ri, a) occurs. That means ξi(Δi) ∈ Guardi

and the continuous state is reset for the next interval of execution. That is, for the
(i + 1)-st interval, the continuous state is initialized at ξi+1(0) = xi+1 = Ri(ξi(Δi)).
Further, the symbol a ∈ A is associated to the transition. If the transition is triggered
externally, for example, a can be considered the discrete command that is given to
the system. For the discussion in this chapter, we limit our attention to execution
trajectories with finitely many intervals, and that the last interval does not terminate
with a transition. Physically, the amount of time that elapses during the execution
trajectory above is

∑N
i=0 Δi. Also, we only stipulate that the transitions occur when

the continuous state is in the guard set of the transition. We do not stipulate (yet)
whether the transitions happen spontaneously, i.e., triggered by the system’s own
dynamics (example: a falling object bouncing off the floor), or they are triggered
externally (example: switching gear in manual transmission).

20.3.2 Trajectory Robustness

The key ingredient in our framework is the notion of trajectory robustness. With the
notion of trajectory robustness, we provide a guarantee on how far the system’s state
trajectories candeviate (in L∞ norm) as a result of initial state variations.This concept
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is easily extensible to treat system parameter variation, for example, by embedding
the parameters as static states in the system. Therefore, although not explicitly stated,
the following discussion also applies to variations in system parameter.

We construct trajectory robustness using the theory of approximate bisimulation,
which was developed by Girard and Pappas [32–34]. This theory was subsequently
extended to stochastic hybrid systems and trajectory-based analysis of hybrid systems
[35–39]. In the following, we review the application of approximate bisimulation in
establishing state trajectory robustness with respect to initial condition variation for
a nonlinear dynamical system

Σ : ẋ = F(x), x ∈ X , (20.5)

where x is the state of the system, and X is the state space. Suppose that we can
construct a differentiable function φ : X × X → R such that

φ(x, x′) ≥ ∥∥x − x′∥∥ ,∀x, x′ ∈ X , (20.6a)

dφ

dt
= ∂φ

∂x
F(x) + ∂φ

∂x′ F(x′) ≤ 0,∀x, x′ ∈ X . (20.6b)

Such a function φ(x, x′) is called a autobisimulation function [32–34].

Notation We denote the solution of (20.5) with initial state x0 as ξ(t, x0) and we
define the ball

Bφ(x, r) � {y ∈ X | φ(x, y) ≤ r} , x ∈ X , r > 0. (20.7)

From (20.6b), we can easily conclude that the value of φ is nondecreasing along
any two state trajectories of the system. From (20.6a), we can see that φ(x, x′) is an
upper bound for the Euclidean distance between the two states. Then by combining
these two properties, we can conclude that for all t ≥ 0,

ξ(t, x′
0) ∈ Bφ(ξ(t, x0), φ(x0, x′

0)), (20.8)∥∥ξ(t, x0) − ξ(t, x′
0)

∥∥ ≤ φ(x0, x′
0), (20.9)

for any initial state x′
0 ∈ X . Please refer to Fig. 20.1b for an illustration of this

concept.

Remark 20.1 The concept of trajectory robustness is very related to the concept of
contraction metric developed by Lohmiller and Slotine [40]. In general, there are
some differences between the two concepts. For example, autobisimulation function
can also be defined as a pseudometric if we are only concerned about the divergence
of the state trajectories in a certain subspace. Also, as the name suggests, bisimulation
functions are originally defined to bound the divergence between the state trajectories
of two different systems [33]. However, as defined in this chapter, if we also require
that φ is a metric in X , then it can be considered as a contraction metric.
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The autobisimulation function φ plays an essential role in establishing trajectory
robustness. If (20.5) defines a stable linear affine dynamics

Σ : ẋ = Ax + b, x, b ∈ R
n, A ∈ R

n×n, (20.10)

and A is Hurwitz, then φ can be using a quadratic Lyapunov function as follows
[33, 38].

φ(x, x′) =
√

(x − x′)T P(x − x′), (20.11)

where P is a symmetric positive definite matrix satisfying the Lyapunov Linear
Matrix Inequality

AT P + P A 
 0. (20.12)

If (20.5) defines a special class of nonlinear dynamics, the procedure above can
be extended. For example, if F(x) in (20.5) is polynomial, we can search for a
polynomial autobisimulation function. We refer the reader for more details on this
to [39], where sum-of-squares optimization technique [41] is used for this purpose.
For the discussion in this chapter, it suffices to consider the linear affine case above.

20.4 Approximation with Finite Behavior

Trajectory robustness gained from approximate bisimulation theory is a very useful
tool. It allows us to approximate a dynamical system or a hybrid system with a
representation that has finitely many trajectories. The main idea can be explained
as follows. Consider the dynamics given by (20.5), and suppose that the system is
known to have an initial state in a compact set I nit ⊂ X . This means, any trajectory
of the system can be written as ξ(t, x′

0), for some x′
0 ∈ I nit. Suppose that we have a

bisimulation function φ that satisfies (20.6a), (20.6b). See the illustration in Fig. 20.2.

Fig. 20.2 Approximation of
the sytem’s trajectories with
a set of one trajectory (left)
or finitely many trajectories
(right)
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If x0 ∈ X and r > 0 are such that

I nit ⊂ Bφ(x0, r), (20.13)

then for any trajectory of the system ξ(t, x′
0), we have

ξ(t, x′
0) ∈ Bφ(ξ(t, x0), r). (20.14)

Thus, we can think of a single trajectory ξ(t, x0) as an approximation of the entire
set of the system’s trajectories. Equation (20.14) essentially means that the accuracy
of this approximation is given by r.

The idea above can be further generalized and stated as follows.

Theorem 20.2 Consider a family of initial states x0,1, x0,2, . . . , x0,M ∈ X and pos-
itive numbers r1, r2, . . . , rM such that

I nit ⊂
M⋃

k=1

Bφ(x0,k, rk). (20.15)

For any x′
0 ∈ I nit there exists k ∈ {1, . . . , M} such that

ξ(t, x′
0) ∈ Bφ(ξ(t, x0,k), rk),∀t ≥ 0. (20.16)

The main point of this theorem is that the entire set of the system’s trajectories
can be approximated by a finite set of trajectories. Again, the numbers r1, r2, . . . , rM

essentially define the accuracy of this approximation. The smaller they are, the ap-
proximation is more accurate but we can expect to need more balls to cover I nit.

In the remainder of this section, wewill discuss the extension of this idea to hybrid
systems. We limit our discussion in this section to autonomous hybrid systems and
leave control hybrid systems for Sect. 20.7.3. Consider a hybrid automaton H as
defined in Sect. 20.3.1. Suppose that L = {�0, �1, . . . , �|L|} and that for each discrete
state �i ∈ L the continuous state dynamics

Σ(�i) : ẋ = F�i(x)

admits an autobisimulation function φi. Further, we assume that the guard sets of
the transitions define the boundary of the invariant sets of the locations. Also, we
assume the transitions in this system occur as soon as the continuous state hits a
guard of a transition. Consider an execution trajectory of such hybrid automaton,
as exemplified in (20.4). For simplicity of the discussion, let us assume that there
are only two intervals, i.e., the trajectory is (�0, x0, e0,Δ0), (�1, x1, ∅,Δ1). This
is illustrated in Fig. 20.3. The transition e0 = (�0, �1, Guard0, R0, a0). We define
Guard as the union of the guards of all transitions other than e0 that start in �0,
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Fig. 20.3 An illustration of an execution trajectory of a hybrid automaton and the concept of
trajectory robustness

R−1
0

(
Bφ1(x1, r1)

)
�

{
x ∈ Guard0 | R0(x) ∈ Bφ1(x1, r1)

}
,

G0 � Guard0\R−1
0

(
Bφ1(x1, r1)

)
.

We can formulate the following theorem (adapted from [38]).

Theorem 20.3 Suppose that r0, r1, ε0, ε′
0 > 0 are such that the following are true.

Bφ0(x0, r0) ⊂ I nit, (20.17a)

Bφ0(ξ0(t, x0), r0) � ∩(Guard ∪ G0), ∀t ∈ [0,Δ0 + ε0], (20.17b)

Bφ0(ξ0(t, x0), r0) � ∩I nv(�0), (20.17c)

Bφ0(ξ0(t, x0), r0) � ∩Guard0, ∀t ∈ [0,Δ0 − ε′
0] (20.17d)

Then, for any x′
0 ∈ Bφ0(x0, r0) the following are also true:

• The execution trajectory starting from (x′
0, �0) also exits �0 through transition e0.

• The transition occurs at time Δ′
0, where Δ′

0 ∈ [Δ0 − ε′
0,Δ0 + ε0].

• In the first interval, for all t ∈ [0,Δ′
0], ξ0(t, x′

0) ∈ Bφ0(ξ0(t, x0), r0).
• After the transition e0, the continuous state is reset into Bφ1(x1, r1).

This theorem can be generalized to trajectories with more intervals. Essentially,
it shows that the trajectory starting at (�0, x0) is an approximation of those starting
in the location �0 with initial continuous state in the neighborhood of x0 in the sense
that (i) the divergence of the continuous state trajectory is bounded in the sense of
Theorem 20.2, (ii) the sequence of transitions are preserved, and (iii) the divergence
of the transition times is bounded. Following the same idea as in Theorem 20.2, if
the set of initial states is compact, we can use Theorem 20.3 to approximate the set
of trajectories of a hybrid automaton with a finite set of trajectories.
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20.5 Safety/Reachability Analysis

Safety/reachability analysis is concerned with the question whether any of the sys-
tem’s state trajectories enters a predefined set of unsafe states. For a dynamical
system as in (20.5) with a set of initial states I nit, we define a set Unsafe ⊂ X
and ask whether there is an initial state x′

0 ∈ I nit such that ξ(t′, x0) ∈ Unsafe
for some t′ ∈ [0, T ]. If such initial state does not exist then the system is safe.2

This is illustrated in Fig. 20.4. The question described above is called bounded-time
safety/reachability analysis, because of the specified upper bound T . If the dynamics
(20.5) admits an autobisimulation function φ, then the following result can be stated.

Proposition 20.4 See the illustration in Fig.20.4. If r > 0 is such that

Bφ(ξ(t, x0), r) � ∩ Unsafe, ∀t ∈ [0, T ],

then there exists no initial state x′
0 ∈ Bφ(x0, r) from which the state trajectory enters

Unsafe in the time interval [0, T ].
This proposition allows us to generalize the safety property of the trajectory

initialized at x0 to other trajectories initialized at other states in its neighborhood.
Further, the safety of the entire system can be proved by analyzing the safety of
finitely many trajectories, as stated below.

Theorem 20.5 Consider a family of initial states x0,1, x0,2, . . . , x0,M ∈ X and pos-
itive numbers r1, r2, . . . , rM such that

I nit ⊂
M⋃

k=1

Bφ(x0,k, rk). (20.18)

If for each k ∈ {1, . . . , M}

Unsafe

safety is violated

Unsafe

Fig. 20.4 Left An illustration of the safety property. Right How trajectory robustness can be used
in safety/reachability analysis

2We assume that I nit and Unsafe do not intersect. Otherwise, the problem is trivial.
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Bφ(ξ(t, x0,k), rk) � ∩ Unsafe, ∀t ∈ [0, T ],

then the system is safe.

For an autonomous hybrid automatonH, safety/reachability analyis can be setup
by defining a set of unsafe states Unsafe ⊂ X × L . Again, the system is deemed
safe if for any state trajectory initialized in I nit ⊂ X × L , the resulting state trajec-
tory does not enter Unsafe. Next, we formulate the analog of Proposition 20.4 for
autonomous hybrid automaton. Consider the hybrid automaton discussed in Sect.
20.4, and its execution trajectory that is discussed in Theorem 20.3. The trajectory
is (�0, x0, e0,Δ0), (�1, x1, ∅,Δ1).

Proposition 20.6 Suppose that r0, r1, ε0, ε′
0 > 0 satisfy the conditions (20.17a),

(20.17d) in Theorem 20.3. In addition, suppose that

Bφ0(ξ0(t, x0), r0) � ∩ Unsafe, ∀t ∈ [0,Δ0 + ε0],
Bφ1(ξ1(t, x1), r1) � ∩ Unsafe, ∀t ∈ [0,Δ1].

Then, for any x′
0 ∈ Bφ0(x0, r0) the following are also true:

• The execution trajectory starting from (x′
0, �0) is safe until transition e0 that hap-

pens at time Δ′
0, i.e.,

ξ0(t, x′
0) /∈ Unsafe, ∀t ∈ [0,Δ′

0].

• Afterwards, in location �1, the execution trajectory is safe for Δ1 time units, i.e.,

ξ1(t, R0
(
ξ0(Δ

′
0, x′

0)
)
) /∈ Unsafe, ∀t ∈ [0,Δ1].

This proposition can be generalized to the case where the execution trajectory has
more intervals. Also, if the set of initial states I nit can be covered by the union of
balls as in Theorem 20.5, then we can prove that the system is safe. More details on
this idea is reported in [38, 42, 43].

20.6 Observability and Fault Diagnosability

Observability analysis can be intuitively explained as follows. Suppose that the set
B contains all trajectories of the system, and π1 : B → P1 and π2 : B → P2
are surjective maps with co-domains P1 and P2 respectively. The map π1 can be
considered as observation map that extracts information from the trajectories in B.
If this map is bijective, then all information from the trajectories in B is retained.
Otherwise, multiple distinct trajectories inB are mapped to the same element inP1,
representing the idea that some information (that distinguishes these trajectories)
is lost in the observation. The map π2 represents another aspect of the trajectories
in B. We say that P2 is observable from P1 if the composite map π−1

1 ◦ π2 is
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injective, where π−1
1 is the set-theoretic inverse map of π1. This means the observed

information from π1 can uniquely determine the output of π2.
In classical linear systems theory, this (behavioral) definition of observability

coincides with the notion of observability for state-space systems [44]. That is, if we
define the state-space system as

Σlin :
{

ẋ = Ax + Bu, x ∈ R
n, u ∈ R

m,

y = Cx + Du, y ∈ R
p,

(20.19)

we defineB to be the set of (x, u, y) trajectories that are compatible with this system
description. The map π1 takes such trajectories and retains only the x components.
The map π2 is the identity map. The characterization of observability as discussed
in the previous paragraph coincides with the well-known Kalman rank condition

rank[CT AT CT . . .
(

AT
)n

CT ] = n. (20.20)

For hybrid automata as in Sect. 20.3.1, the notion of observation can be more
general. In particular, in this chapter, we consider the observation that simply re-
tains only the discrete aspect of the trajectories. This can be made precise using the
following definition.

Definition 20.7 For a hybrid automatonH as defined in Sect. 20.3.1, we define the
function Γ : E → A to map any transition e ∈ E to its transition symbol. For an
execution trajectory

ω � (�0, x0, e0,Δ0), (�1, x1, e1,Δ1), . . . , (�N , xN , ∅,ΔN ), (20.21)

we define the map

πdiscrete(ω) � (Γ (e0),Δ0) , (Γ (e1),Δ1), . . . , (∅,ΔN ). (20.22)

The map πdiscrete essentially takes the execution trajectory and returns only the
symbols of the transitions and the intervals between the occurrence of the symbols.
Note that Γ is not necessarily injective, which implies that the transitions are not
necessarily distinguishable one from another. As an extreme case, A is a singleton.
That means we can only observe when a transition has occurred, but not which tran-
sition. Observability analysis for this kind of observation map has been considered,
for example by Di Benedetto et al. in [45] where the question is whether the discrete
state can be uniquely determined there from.

Fault diagnosability analysis is related to observability analysis. Suppose that
B, the set of trajectories of the system, can be divided into two disjoint partitions,
Bnom and Bfault. Bnom represents the normal behavior of the system, while Bfault
represents the faulty behavior of the system. That is, Bfault consists of trajectories
where a fault occurs. If we again define the observation map π1 : B → P1 as above,
then the system is fault diagnosable from the observation map π1 if for any p ∈ P1,
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Fig. 20.5 By approximating all the system’s trajectories with a set of finitely many trajectories, we
can reduce fault diagnosability analysis to a finite problem

π−1
1 (p) is either strictly in Bnom or strictly in Bfault. In other words, based on the

observation defined by π1, we can always conclude whether the trajectory is normal
or faulty.

Although the basic concept is easy to understand, in practice verifying fault di-
agnosabilty is difficult because the system typically has infinitely many trajectories.
However, if we can approximate the system with another one with finitely many
trajectories, as explained in Sect. 20.4, then the analysis is much simpler. This is
illustrated in Fig. 20.5.

Suppose that B can be approximated with B′ that only has finitely many trajec-
tories. That is, there exists an injective map α : B → B′ such that for any trajectory
ω ∈ B, α(ω) ∈ B′ is an approximation of ω. Intuitively, ω and α(ω) are close to
each other. To be precise, suppose that P1 is equipped with a metric ‖·‖p and

‖π1(ω) − π1(α(ω))‖p ≤ r, ∀ω ∈ B. (20.23)

Then, if we define

B′
nom � α(Bnom), B′

fault � α(Bfault),

we have the following result.
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Theorem 20.8 If for any ω1 ∈ B′
nom and ω2 ∈ B′

fault

‖π1(ω1) − π1(ω2)‖ > 2r (20.24)

then the system is fault diagnosable.

Note that checking the condition (20.24) in this theorem is practically possible
because both B′

nom and B′
fault have finitely many trajectories.

For an autonomous hybrid automaton, suppose that ω is an execution trajectory
given in (20.21) and α(ω) is the approximate trajectory in the sense of Theorem
20.3. From the theorem, we know that both trajectories have the same sequence of
transitions, and the timing of transitions are close. That is, if the observation map is
πdiscrete and πdiscrete(ω) is as given in (20.22), then

πdiscrete(α(ω)) = (
Γ (e0),Δ

′
0

)
, (Γ (e1),Δ

′
1), . . . , (∅,ΔN ), (20.25)

Δ′
k ∈ [Δk − ε,Δk + ε],∀k ∈ {0, 1, . . . , N − 1}, (20.26)

for some ε > 0. The distance between πdiscrete(ω) and πdiscrete(α(ω)) can be defined
in terms of the timing difference, and hence the distance can be bounded as in (20.23).
Therefore, we can use Theorem 20.8 to verify fault diagnosability for autonomous
hybrid automata based on observing the timing of the transitions and the respec-
tive transition symbols. This is the underlying idea behind some recent work on
fault diagnosability of some classes of hybrid systems [46] and probabilistic hybrid
systems [47].

20.7 Controller Synthesis

In this section, we discuss the controller synthesis problem related to safety/ reach-
ability properties. For a dynamical system given by

Σ : ẋ = F(x, u), x ∈ X , u ∈ U , (20.27)

where F is well-posed, the problem can be posed as follows. Given a compact set
of initial condition I nit ⊂ X , and a set of goal states Goal ⊂ X , we want to steer
the state starting from any initial state x0 ∈ I nit such that the state trajectories enter
Goal at time t = T and in the time interval [0, T ] the state remains safe (does not
enter a set of states termed Unsafe).

The notion of trajectory robustness discussed in Sect. 20.3.2 can also be used in
trajectory-based controller synthesis. The key concept in this approach is the control
autobisimulation function (CAF) [48, 49]. A continuously differentiable function
ψ : X × X → R is a control autobisimulation function of (20.5) if for any
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x, x′ ∈ X , ψ(x, x′) ≥ ∥∥x − x′∥∥, and there exists a function k : X → U such that

dψ

dt
= ∂ψ

∂x
f (x, k(x)) + ∂ψ

∂x′ f (x′, k(x′)) ≤ 0. (20.28)

Remark 20.9 The control autobisimulation function is an analog of the control Lya-
punov function (CLF) [50], for trajectory robustness [33, 38]. While control Lya-
punov function has been used to construct control laws that guarantee stability (e.g.,
[51]), we shall use the control autobisimulation function to construct control laws
that guarantee trajectory robustness.

A consequence of the existence of a CAF is the existence of a feedback control
law u = k(x), such that the closed-loop system

ẋ = F(x, k(x)), x ∈ X , (20.29)

has ψ(·, ·) as a autobisimulation function (see Sect. 20.3.2). For a given dynamical
system Σ in (20.27) and a control autobisimulation function ψ , the class of all feed-
back control laws k(·) that satisfy (20.28) is called the class of admissible feedback
laws.

Notation For a given dynamical system Σ in (20.27) and a feedback control law
u = k(x), the closed-loop trajectory with initial condition x(0) = x0 is denoted by
ξk(t, x0). For a control autobisimulation function ψ , x ∈ X , r > 0, we define the
ball

Bψ(x, r) � {y ∈ X | ψ(x, y) ≤ r}.

The trajectory-based controller synthesis paradigm can be stated as follows. We
first construct feedback controllers from the class of feasible feedback laws. By
definition, the closed-loop system will then admit a predefined autobisimulation
function. This means that the trajectory robustness property discussed in Sect. 20.3.2
is guaranteed to hold. Please refer to Fig. 20.6 for an illustration.

Theorem 20.10 Suppose that for a given initial state x0 ∈ I nit, we can design an
admissible feedback law u = k0(x) that results in a closed-loop execution trajectory
ξk0(t, x0) satisfying

Bψ(ξk0(t, x0), r0) � ∩ Unsafe, ∀t ∈ [0, T ], (20.30)

Bψ(ξk0(t, x0), r0) ⊂ Goal. (20.31)

Then, for any initial state x′
0 ∈ Bψ(ξk0(t, x0), r0), the closed-loop trajectory ξk0(t, x0)

is also safe for t ∈ [0, T ] and is in the Goal set at t = T .

Therefore, the admissible feedback law u = k0(x) is applicable not only for the
initial state x0 but also to other initial states in its neighborhood. The controller
synthesis procedure can be performed in two steps:
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Unsafe

Goal

Init

Fig. 20.6 An illustration for trajectory-based controller synthesis

Step 1 For a given initial state, synthesize an innerloop controller that endows the
system with the trajectory robustness property.

Step 2 Obtain finitely many trajectories resulting from Step 1 that have the desired
qualitative properties to cover I nit. Note that the controller in Step 1 can
depend on the initial state.

Effectively, the trajectory robustness approach allows us to reduce the problem
of finding a control law that works for infinitely many initial states in I nit to a
problem where this has to be done for finitely many initial states. Moreover, the
control law can depend on the initial state, and the control law for each initial state
can be designed independently of the others’. Steering the system from a particular
initial state, is arguably an easier task than finding a control law that works for the
entire I nit set. Thus, we break down a hard problem into a finite number of simpler
and parallelizable problems.

20.7.1 Controller Synthesis for Linear Affine Dynamics

The synthesis of the CAF and the controllers for systems with linear affine dynamics
is discussed below. In this case, F(x, u) in (20.27) takes the form

F(x, u) = Ax + f + Bu, x ∈ R
n, u ∈ R

m, (20.32)

where A ∈ R
n×n, f ∈ R

n, and B ∈ R
n×m. For such systems, we again construct

CAF as quadratic functions [48, 49]. That is, we assume that

ψ(x, x′) =
√

(x − x′)T P(x − x′), (20.33)

where P ∈ R
n×n is a positive definite matrix. In this case, the inequality (20.28)

becomes
(x − x′)T P

(
A(x − x′) + B(k(x) − k(x′))

) ≤ 0. (20.34)
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We then construct a feedback law of the form u(t) = k(x) = K x + v(t), where
K ∈ R

m×n, and v(t) ∈ R
m is a time-varying function, both to be determined later.

With this controller, (20.34) becomes

(x − x′)T P (A + BK ) (x − x′) ≤ 0. (20.35)

A well-known result in control theory (see e.g., [52, 53]) states that there exist P and
K such that (20.35) holds if and only if (A, B) is stabilizable. In this case, there are
well-known methods to synthesize the suitable P and K . For example, we can pose
(20.24) as a linearmatrix inequality (LMI) [54], which can be solved efficiently using
existing semidefinite programming software tools, such as SeDuMi or SDPT3. With
some modification, this method can also be used to handle magnitude constraint on
the input signal, ‖u‖L∞ ≤ M, for some M > 0 [48, 49].

Notice that given P and K that satisfy (20.35), we are still free to design v(t).
Whatever v(t) is, the control law is admissible. The remaining task in the controller
design is therefore to find v(t) that steers the trajectories of the closed-loop system
from I nit to the Goal set, without entering the Unsafe set. This corresponds to Step
2 in the previous section. The problem of finding such v(t) for a given initial state is
easier to solve than the original problem, because the control input is only required
to work for that particular initial state. We can use a variety of methods for this, for
example, using path planning methods from robotics [48], or by using human inputs
[49].

In this chapter, we use v(t) as a feedforward control input that depends on the
initial state x(0). It is actually possible to define v(t) through a feedback control law,
i.e., as a function of x(t). Such feedback law can be learned from the feedforward
control input, and is guaranteed to have the same safety property as the feedforward
controller above. For further discussion on this topic, the reader is referred to [55].

20.7.2 Controller Synthesis for Nonlinear Dynamics

The results from the previous section can be generalized to some classes of systems
with nonlinear dynamics [56]. We consider systems of the form:

Σ :
{

dx
dt = f (x) + g(x)u, x ∈ R

n, u ∈ R
m,

y = h(x), y ∈ R
m,

(20.36)

where y is the output of the system. We assume that the safety and goal reaching
properties of the system can be expressed in terms of y (instead of x).
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20.7.2.1 Feedback Linearizable Systems

If (20.36) is feedback linearizable (for a comprehensive discussion, the reader is
referred to standard textbooks on Nonlinear Control Systems such as [57, 58]), there
exists a feedback law

u(t) = κ(x) + λ(x)w(t), w(·) ∈ R
m, (20.37)

such that the closed-loop system, with new input w(t) and output y(t), is a linear
system. The necessary and sufficient conditions for feedback linearizability and the
design procedure for κ(x) and λ(x) are covered in the above-mentioned books. In
the context of our discussion, the linearizing feedback can be implemented as an
inner feedback loop. Once the system is linear, we can apply the results from the
previous section for controller synthesis. This method has been applied in designing
a controller for fully actuated flexible robot arms [59], whose dynamics are feedback
linearizable.

20.7.2.2 Differentially Flat Systems

Differentially flat systems are widely encountered in mechanical and robotics
systems. For examples and comprehensive discussion, the reader is referred to
[60–62]. The system in (20.37) is differentially flat if it has flat outputs. The outputs
y = (y1, . . . , ym) are flat outputs if x and u can be written as functions of y and its
time derivatives,

x = Ξ(y, ẏ, . . . , y(�)), u = Υ (y, ẏ, . . . , y(�+1)), (20.38)

for some integer �, and (y, ẏ, . . . , y(�)) are not constrained to satisfy a differential
equation by themselves. In other words, any sufficiently smooth trajectory y is ad-
missible as an output trajectory of the system.

A differentially flat system is related to a linear system, namely an �th order inte-
grator chain, through the transformation in (20.38). In the context of our discussion,
we can apply the results from the previous section for controller synthesis for the
integrator chain. The controller for the nonlinear system (20.37) can then be obtained
using the transformation in (20.38).

20.7.3 Controller Synthesis for Hybrid Systems

Consider the control hybrid automata defined in Sect. 20.3.1. For simplicity of the
discussion, let us assume that the continuous state dynamics in each location is linear
affine. That is, suppose that L = {�0, �1, . . . , �|L|} and that for each discrete state
�i ∈ L the continuous state dynamics is

Σ(�i) : ẋ = A�i x + f�i + B�i u,
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Guard 1
Guard 2

Fig. 20.7 Illustration of forcing and nonforcing guards of hybrid automata. From different initial
states in location �1, the trajectories can undergo different evolution and transition to different
locations. The set Guard 1 represents a nonforcing transition, while Guard 2 represents a forcing
transition

where A�i , B�i , and f�i are matrices with appropriate dimensions, and the pair
(A�i , B�i) is stabilizable. Therefore, the continuous state dynamics in each location
admits a control autobisimulation function ψi.

We assume there are two types of transitions, forcing and nonforcing. A forcing
transition occurs immediately when the continuous state hits the guard, which is the
case for autonomous hybrid automata in Sect. 20.4. See Fig. 20.7, where the guards
of forcing transitions are illustrated as lines on the boundary of the invariant set of
location �1. A nonforcing transition can happen at any time while the continuous
state is in its guard. In Fig. 20.7, this is illustrated by the transition from location �1
to �2. In this case, the guard set is “thick,” indicating that the transition can happen,
but not necessarily as soon as the guard is hit. The occurrence of a nonforcing tran-
sition can be user-triggered (corresponding to a discrete control input), or externally
triggered. Nonforcing transitions are useful to model events whose occurrence is not
predetermined (uncertain) because it is to be triggered by the user/controller, or it is
triggered externally at an a priori unknown time.

In defining the control specification, we define a set of initial state I nit ⊂ X × L .
We assume that there is a subset Unsafe ⊂ X × L of unsafe states. A trajectory of
the hybrid system corresponds to an unsafe execution if it enters the unsafe set. We
also define the set Goal ⊂ X × L , which must be entered by the state trajectory.
Again, the control problem is defined as finding the feedback control strategy that
is guaranteed to bring any initial state in I nit to the Goal set without entering the
Unsafe set.

Without any loss of generality, we can assume that the set I nit is contained in
(the invariant set of) one location, called �init ∈ L . If this is not the case, we can
divide the problem into several subproblems, each with an I nit set contained in a
specific location. Similarly, we can assume the Goal is also entirely contained in one
location, called �goal ∈ L .

Controller synthesis for hybrid systems can be done using a hierarchical approach,
which can be described in the following steps:
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Step 1: Discrete Synthesis. We compute a discrete trajectory that starts in �init and
ends in �goal. By discrete trajectory, we mean an alternating sequence of locations
and transitions

�init = �0
e0→ �1

e1→ �2
e2→ · · · eN−1→ �N = �goal. (20.39)

Each transition ei, i ∈ {0, . . . , N − 1}, is an element of E , originating in �i, and
targeting �i+1. We require that each transition here is either forcing or user-triggered.
Such a discrete trajectory is not necessarily unique, but at this step we only need one.
The computation of such a discrete trajectory is a standard procedure in formal
verification of discrete event systems [63]. For this purpose, there are many good
algorithms and computational tools that can be used, such as STRIPS and PDLL [64].

Step 2: Continuous Synthesis. In this step, we synthesize the continuous controller
for each of the visited locations (�0,1,...,N ) in order to implement the computed
discrete trajectory. In each location �i,, we define an initial set based on how �i is
reached from �i−1.We then formulate the control problem of bringing the continuous
state from this initial set to the interim goal set, which is the guard of transition ei that
will bring the state to location �i+1 without entering the forbidden set. The forbidden
set is defined as the union of Unsafe and the guards of other forcing transitions from
�i. This is thus an instance of the control problem discussed in Sect. 20.7.1. If we are
able to construct a continuous controller that implements the discrete trajectory, then
the hybrid control problem is solved. Otherwise, we go back to Step 1, and compute
another discrete trajectory.

Remark 20.11 The control problem that we discuss in this chapter is only concerned
with the safety/reachability property. In addition, it is possible to formulate an opti-
mal control problem in which a performance objective needs to be optimized while
maintaining the safety/reachability property. For further discussion on the trajectory-
based approach to this problem, the reader is referred to [65].

20.8 Concluding Remarks

We review some results that allow us to use trajectory-level reasoning in solving some
problems in safety/reachability analysis of hybrid systems, controller synthesis for
safety/reachability, and fault diagnosability of hybrid systems. The main feature of
this approach is the possibility to break down a problem involving infinitely many
trajectories of the system into one that only involves finitely many of them.

While we focus solely on safety/reachability property in this chapter, the dis-
cussion is actually generalizable to verification of and controller synthesis for other
properties, such as those that can be described with temporal logics. In addition,
there have also been extension work that consider stochasticity in the dynamics.
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Chapter 21
Controllability and Stabilizability
of Discontinuous Bimodal Piecewise
Linear Systems

Le Quang Thuan and Kanat Camlibel

Abstract Characterizing controllability like properties of bimodal piecewise linear
systems, i.e., piecewise linear systems with two modes, is known to be a notoriously
hard. In this chapter, we focus on discontinuous bimodal systems that are well-
posed in the sense of existence and uniqueness of solutions. The main results of the
chapter are Popov–Belevitch–Hautus-type necessary and sufficient conditions for
controllability and stabilizability of such systems.

21.1 Introduction

Since conceived byKalman, the concept of controllability has been comprehensively
studied for linear systems, nonlinear systems, infinite-dimensional systems, positive
systems, switching systems, hybrid systems, and behavioral systems. Easily verifi-
able conditions guaranteeing global controllability for large classes of systems are
available only for finite-dimensional linear systems. Even for smooth nonlinear sys-
tems, however, results on controllability are local in nature and there is no optimism
of obtaining general algebraic characterizations of global controllability [9]. Fur-
thermore, it has been shown in [2] that the problem of characterizing controllability
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for the simplest instances of piecewise linear systems is an undecidable problem, the
most undesirable category of problems from a computational complexity point of
view.

In this chapter, we focus on bimodal piecewise linear systems with possibly dis-
continuous vector fields and investigate controllability and stabilizability properties.
For bimodal piecewise linear systems, the state space is partitioned into two half-
spaces separated by a hyperplane and on each region the dynamics is linear. For such
systems, none of the existing results for smooth nonlinear systems can be employed
due to the lack of smoothness. Neither can the existing results on the controllability
of continuous piecewise affine dynamical systems [3, 5, 6, 10] be directly applied
to discontinuous bimodal piecewise linear systems. In fact, the results obtained in
the papers [3, 5, 6, 10] heavily rely on the continuity assumption that imposes a
certain common geometric structure of the linear subsystems of a piecewise linear
system. This common structure has played a key role in obtaining the algebraic nec-
essary and sufficient conditions for classes of continuous piecewise affine dynamical
systems in [3, 5, 6, 10]. For discontinuous systems, we will study first necessary
conditions for the existence and uniqueness of solutions. It turns out that these con-
ditions lead to algebraic characterizations of controllability and stabilizability for
discontinuous bimodal systems by playing a similar role to that of the continuity
played in [3, 5, 6, 10].

The outline of this chapter is as follows. In Sect. 21.2, after introducing the so-
called bimodal piecewise linear systems, we study the existence and uniqueness of
Filippov solutions. The main results will be presented in Sect. 21.3. In this section,
we consider controllability and stabilizability problems of bimodal piecewise linear
systems and present algebraic characterizations that are much akin to the classical
Popov–Belevitch–Hautus conditions. Section21.4 is devoted to the proofs of the
main results. Finally, conclusions follow in Sect. 21.5.

21.2 Discontinuous Bimodal Piecewise Linear Systems

Consider a dynamical system given by the differential inclusion of the form

ẋ(t) ∈ F(x(t), u(t)) (21.1)

where x ∈ R
n is the state, u ∈ R

m is the input, and F : R
n × R

m ⇒ R
n is a

set-valued mapping defined by

F(x, u) =

⎧⎪⎨
⎪⎩

{A1x + B1u} if cT x + dT u < 0

{A1x + B1u, A2x + B2u} if cT x + dT u = 0

{A2x + B2u} if cT x + dT u > 0
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with A1, A2 ∈ R
n×n, B1, B2 ∈ R

n×m , c ∈ R
n, and d ∈ R

m . Also, consider the
corresponding convexified differential inclusion

ẋ(t) ∈ G(x(t), u(t)) (21.2)

where G : Rn × R
m ⇒ R

n is the set-valued mapping defined by

G(x, u) =

⎧⎪⎨
⎪⎩

{A1x + B1u} if cT x + dT u < 0

conv{A1x + B1u, A2x + B2u} if cT x + dT u = 0

{A2x + B2u} if cT x + dT u > 0

with conv(S) stands for the convex hull of the nonempty set S. Throughout this
chapter, we will call the differential inclusions of the form (21.1) or (21.2) bimodal
piecewise linear systems.

The main goal of this chapter is to investigate controllability and stabilizability
problems for bimodal piecewise linear systems. In case, the implication

cT x + dT u = 0 =⇒ A1x + B1u = A2x + B2u (21.3)

holds, the set-valued mappings F and G boil down to single-valued Lipschitz
continuous functions. In this case, the system (21.1) becomes a particular type
of conewise linear systems. Its controllability/stabilizability has been studied in
[5, 6]. These papers exploit the structure imposed by continuity on the linear system
Σ(Ai , Bi , cT , dT ) as well as that of the overall system, and provide necessary and
sufficient conditions for controllability and stabilizability. In case (21.3) does not
hold, i.e., F , or G, is not continuous, one cannot apply neither the results nor the
approach of the papers [5, 6].

The present work aims at studying controllability and stabilizability problems
without requiring continuity. It turns out that existence and uniqueness of solutions
play a key role in the absence of continuity. In the sequel,wefirst definewhatwemean
by a solution of (21.1) and then provide necessary conditions that guarantee existence
and uniqueness of solutions. Later, we will exploit these necessary conditions in the
context of controllability and stabilizability.

Definition 21.1 An absolutely continuous function x : R → R
n is said to be a

Filippov solution of the system (21.1) for the initial state x0 and locally integrable
input u if x(0) = x0 and the pair (x, u) satisfies the differential inclusion (21.2) for
almost all t ∈ R.

For a given locally integrable input u, the right-hand side of (21.1) can be seen as a
set-valued mapping in t and x . Then, it follows from [7, Lem. 3] that the right-hand
side of (21.2) is upper semicontinuous in x . This leads to the following existence
result as a result of general existence theorems for upper semicontinuous differential
inclusions; see for instance [7, Thm. 5].
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Proposition 21.2 The bimodal piecewise linear system (21.1) admits a Filippov
solution for any initial state and locally integrable input.

Definition 21.3 We say that a bimodal piecewise linear system is well-posed if it
admits a unique Filippov solution for every initial state and locally integrable input.

Let T ∗(A, B, C, D) and V∗(A, B, C, D) be the smallest input-containing con-
ditioned and the largest output-nulling invariant subspaces of the linear system
Σ(A, B, C, D), respectively (see e.g., [1, 11]). Also let K(A, B, C, D) denote the
“friends” of V∗(A, B, C, D).

The following proposition presents necessary conditions for well-posedness of
the bimodal system (21.1).

Proposition 21.4 The following conditions are necessary for the bimodal system
(21.1) being well-posed:

1. V∗
1 (A1, B1, cT , dT ) = V∗

2 (A2, B2, cT , dT ) =: V∗.
2. K(A1, B1, cT , dT ) = K(A2, B2, cT , dT ) =: K.

3. (A1 − B1K )|V∗ = (A2 − B2K )|V∗ for all K ∈ K.

Proof Let x0 ∈ V∗
1 (A1, B1, cT , dT ), K ∈ K(A1, B1, cT , dT ), ũ(t) = −K

e(A1−B1K )t x0.Also, let x be the solutionof the differential equation ẋ = (A1−B1K )x
with x(0) = x0. Clearly, ũ(t) = −K x(t) and

(−1)ν ẋ(t) = A1(−1)νx(t) + B1(−1)ν ũ(t) (21.4a)

cT (−1)νx(t) + dT (−1)ν ũ(t) = 0 (21.4b)

for all t ∈ R and ν ∈ {1, 2}. Thus, (−1)νx is a Filippov solution of the bimodal
system (21.1) for the initial state (−1)νx0 and input (−1)ν ũ. On the other hand, let
x̃ and ỹ be the state and the output of the system

˙̃x(t) = A2 x̃(t) + B2ũ(t), x̃(0) = x0, (21.5a)

ỹ(t) = cT x̃(t) + dT ũ(t). (21.5b)

It turns out that ỹ(t) = 0 for all t ∈ R. Indeed, if this does not hold, then by noticing
that ỹ is real-analytic, there exist ε > 0 and ν ∈ {1, 2} such that

0 < (−1)ν ỹ(t) = (−1)ν[cT x̃(t) + dT ũ(t)] (21.6)

for all t ∈ (0, ε). Then, well-posedness of the system (21.1) yields a contradiction
between (21.4b) and (21.6).

Now, it follows from (21.5) and the fact “ỹ = 0” that x0 ∈ V∗
2 (A2, B2, cT , dT ) and

hence V∗
1 (A1, B1, cT , dT ) ⊆ V∗

2 (A2, B2, cT , dT ). Then, by symmetry one obtains

V∗
1 (A1, B1, cT , dT ) = V∗

2 (A2, B2, cT , dT ).
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It also follows from (21.5) and the fact “ỹ = 0” that x̃ is a Filippov solution of (21.1)
for the initial state x0 and input ũ. So, well-posedness implies that x(t) = x̃(t) for
all t . In particular, one gets ẋ(0) = ˙̃x(0), i.e., (A1 − B1K )x0 = (A2 − B2K )x0 for
all x0 ∈ V∗ and K ∈ K(A1, B1, cT , dT ). It means

(A1 − B1K )V∗ = (A2 − B2K )V∗ (21.7)

for all K ∈ K(A1, B1, cT , dT ). With (21.7), it is not hard to see that K(A1, B1, cT ,

dT ) = K(A2, B2, cT , dT ), and also the last statement holds.

We now ask ourself whether the smallest input-containing conditioned invariant
subspaces of the two linear subsystems coincide as a consequence of well-posedness.
In general, the answer is not affirmative as illustrated in the following example.

Example 21.5 Consider the bimodal system with scalar inputs of the form

ẋ1(t) ∈

⎧⎪⎨
⎪⎩

{0} if x2(t) < 0

[0, 1]u(t) if x2(t) = 0

{u(t)} if x2(t) > 0

(21.8a)

ẋ2(t) = u(t). (21.8b)

This system is of the form (21.1) with cT = [
0 1

]
, d = 0, and

A1 = A2 =
[
0 0
0 0

]
, B1 =

[
0
1

]
, B2 =

[
1
1

]
.

In terms of the set-valued relay function

sgn(η) :=

⎧⎪⎨
⎪⎩

−1 if η < 0

[−1, 1] if η = 0

1 if η > 0,

one can rewrite the bimodal system (21.8) in the form

ẋ1(t) ∈ 1

2
[sgn(x2(t))]u(t) + 1

2
u(t) (21.9a)

ẋ2(t) = u(t). (21.9b)

We prove that the system (21.9) is well-posed. To do so, it suffices to show that every
two Filippov solutions for the same initial state and locally integrable input coincide
in a neighborhood of the initial time t = 0.



390 L.Q. Thuan and K. Camlibel

Let x0 = col(x01 , x02 ) be an initial state and u be a locally integrable input. For
these initial data, the Eq. (21.9b) clearly admits the unique Filippov solution

x2(t) = x02 +
∫ t

0
u(s)ds. (21.10)

Substituting (21.10) into (21.9a), one obtains the following differential inclusion

ẋ1(t) ∈ 1

2
[sgn(x02 +

∫ t

0
u(s)ds

)]u(t) + 1

2
u(t). (21.11)

Due to continuity, it is easy to see that the system (21.11) locally admits the unique
Filippov solution if x02 �= 0. It turns out that this also holds if x02 = 0. In order to
show this, we will use the following result. Its proof will be presented in Sect. 21.4.

Lemma 21.6 For any given locally integrable function u : R → R and any positive
number T , the set

ΓT := {
h ∈ [0, T ] ∣∣

∫ h

0
u(s)ds = 0 and u(h) �= 0

}

has zero measure.

By this lemma, the right-hand side of the differential inclusion (21.11) is almost
everywhere equal to the single-valued locally integrable function v defined on R by

v(t) :=

⎧
⎪⎪⎨
⎪⎪⎩

0 if x2(t) < 0
u(t)

2
if x2(t) = 0

u(t) if x2(t) > 0.

In view of this, the differential inclusion (21.11) admits the unique Filippov solution

x1(t) = x01 +
∫ t

0
v(s)ds.

Therefore, the bimodal system (21.8) is well-posed. However, for the bimodal system
(21.8), one can easily check that the smallest input-containing conditioned invariant
subspaces of two linear subsystems are different and which are

T ∗
1 = span

{ [
0
1

] }
and T ∗

2 = span
{ [

1
1

] }
.
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The above example tells us the reason why we cannot use the approach of the papers
[5, 6] to solve controllability and stabilizability problems of the bimodal system
(21.1) in the case that (21.3) does not fulfill. To solve these problems, we need to
find a new technique.

21.3 Main Results

In this section, we present the main results of the chapter. Before doing this, we
define controllability and stabilizability concepts of well-posed bimodal piecewise
linear systems.

Definition 21.7 Assume that the bimodal piecewise linear system (21.1) is well-
posed. We say that the system is

• controllable if for any two states x0, xf there exist a positive real number T and a
locally integrable input u such that xu(T ; x0) = xf .

• stabilizable if for any initial state x0 there exists a locally integrable input u such
that lim

t→∞ xu(t; x0) = 0.

Here, xu(t; x0) denotes the unique Filippov solution of the bimodal system (21.1)
for the initial state x0 and input u.

The main results of this chapter are presented in the following two theorems. The
first one provides a verifiable and algebraic characterization for controllability of
well-posed bimodal piecewise linear systems.

Theorem 21.8 Suppose that dT + cT (s I − Ai )
−1Bi is right invertible as a rational

matrix, and also that the system (21.1) is well-posed. Then, the system (21.1) is
controllable if and only if the following implications hold:

1. λ ∈ C, z ∈ C
n, z∗ Ai = λz∗, z∗ Bi = 0 for all i = 1, 2 =⇒ z = 0.

2. λ ∈ R, z ∈ R
n, w1, w2 ∈ R, w1w2 � 0, and

[
zT wi

] [
Ai − λI Bi

cT dT

]
=

0 for all i = 1, 2 =⇒ z = 0.

For stabilizabilty, we also provide an algebraic necessary and sufficient condition
as follows.

Theorem 21.9 Suppose that dT + cT (s I − Ai )
−1Bi is right invertible as a rational

matrix, and also that the system (21.1) is well-posed. Then, the system (21.1) is
stabilizable if and only if the following implications hold:

1. λ ∈ C,Re(λ) � 0, z ∈ C
n, z∗ Ai = λz∗, z∗ Bi = 0 for all i = 1, 2 =⇒ z = 0.

2. λ ∈ R, λ � 0, z ∈ R
n, w1, w2 ∈ R, w1w2 � 0,

[
zT wi

] [
Ai − λI Bi

cT dT

]
=

0 for all i = 1, 2 =⇒ z = 0.

Proofs of these theorems will be given in the next section.
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21.4 Proofs

21.4.1 Proof of Lemma 21.6

In order to prove this lemma, note first that the following equality

ΓT =
∞⋃

k=1

(Ak
T

⋃
Bk

T

)
(21.12)

holds where Ak
T and Bk

T are measurable sets defined by

Ak
T := {h ∈ [0, T ] |

∫ h

0
u(s)ds = 0,

1

k
< u(h) < k} (21.13)

and

Bk
T := {h ∈ [0, T ] |

∫ h

0
u(s)ds = 0,−k < u(h) < −1

k
} (21.14)

for k = 1, 2, . . . . In view of the equality (21.12), the zeromeasure property of the sets
Ak

T ,Bk
T with k ∈ N would imply that ΓT has zero measure due to the subadditivity

of measure. Therefore, it suffices to show that Ak
T and Bk

T have zero measure for
k = 1, 2, . . . to complete the proof. Note that Bk

T is very similar to Ak
T so that it is

enough to verify only for Ak
T .

Clearly, for any nonempty bounded open set G ofR, the numbers h1 := inf(Ak
T ∩

G) and h2 := sup(Ak
T ∩ G) finitely exist, and

∫ h2

h1
u(s)ds =

∫ h1

0
u(s)ds −

∫ h2

0
u(s)ds = 0.

This implies that

∣∣
∫

G
u(s)ds

∣∣ = ∣∣
∫

G\Ak
T

u(s)ds
∣∣ �

∫

G\Ak
T

|u(s)|ds (21.15)

for any bounded open set G. On the other hand, since Ak
T is measurable and

bounded, there exists a sequence of bounded open sets {Gε : ε > 0} such that
Ak

T ⊆ Gε for all ε and the measure of the set Gε \ Ak
T tends to 0 as ε → 0; see for

instance [8, Lem. 3.1]. By the dominated convergence theorem of Lebesgue (see e.g.,
[8, Thm. 3.15]), one has

lim
ε→0

∫

Gε

u(s)ds =
∫

Ak
T

u(s)ds and lim
ε→0

∫

Gε\Ak
T

|u(s)|ds = 0.



21 Controllability and Stabilizability of Discontinuous … 393

Together with (21.13) and (21.15), these equalities imply that

1

k
meas(Ak

T ) = 1

k

∫

Ak
T

ds �
∫

Ak
T

u(s)ds = 0

where meas stands for the measure. Thus, the setAk
T has zero measure for all k � 1.

21.4.2 Proof of Theorem 21.8

21.4.2.1 Proof of the “only if” Part

For this part, we assume that the bimodal system (21.1) is controllable.Wewill prove
the implications 1 and 2 of Theorem 21.8 hold.

We consider the first implication and let λ ∈ C, z ∈ C
n be such that z∗ Ai = λz∗

and z∗Bi = 0 for all i = 1, 2. Then, for any input u, the Filippov solution xu(t; 0)
of the system (21.1) satisfies

z∗ ẋu(t; 0) = λz∗xu(t; 0) (21.16)

for all t ∈ R. Then, on the one hand, by solving the differential equation (21.16) one
gets

z∗xu(t; 0) = eλt z∗x(0) = 0

for all t ∈ R and any input u. On the other hand, xu(t; 0) is arbitrary due to control-
lability. As such, one gets z = 0.

Now, we consider the last implication and let λ ∈ R, z ∈ R
n, and w1, w2 ∈ R be

such that

w1w2 � 0 and
[
zT wi

] [
Ai − λI Bi

cT dT

]
= 0 for all i = 1, 2. (21.17)

Due to (21.17), for any locally integrable input u the Filippov solution xu(t; 0)
of the system (21.1) satisfies either zT ẋu(t; 0) � λzT xu(t; 0) or zT ẋu(t; 0) �
λzT xu(t; 0) for all t ∈ R. From this and Gronwall-Belman inequality, one gets
either zT xu(t; 0) � 0 or zT xu(t; 0) � 0 for any positive real number t and any
locally integrable input u. Then, controllability implies that z = 0.

21.4.2.2 Proof of the ‘if’ Part

Let T ∗
i and V∗

i be the smallest input-containing conditioned and the largest output-
nulling invariant subspaces of the linear system Σ(Ai , Bi , cT , dT ), respectively.
Also, let Ki be the set of all friends of the subspace V∗

i . Since the bimodal system
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(21.1) is well-posed, Proposition 21.4 implies that V∗
1 = V∗

2 =: V∗ andK1 = K2 =:
K.By taking K ∈ K and applying the feedback control u = −K x +v to the bimodal
system (21.1) where v is a new input, one obtains the following differential inclusion

ẋ(t) ∈

⎧⎪⎨
⎪⎩

{(A1 − B1K )x(t) + B1v(t)} if y(t) < 0

{(A1 − B1K )x(t) + B1v(t), (A2 − B2K )x(t) + B2v(t)} if y(t) = 0

{(A2 − B2K )x(t) + B2v(t)} if y(t) > 0
(21.18a)

y(t) = (cT − dT K )x(t) + dT v(t). (21.18b)

Since the system (21.1) is well-posed with locally integrable inputs, under the feed-
back control u = −K x + v the system (21.18) must be well-posed. Moreover,
controllability is invariant under this feedback control. Therefore, it suffices to prove
controllability of the system (21.18) under the conditions of Theorem 21.8 to com-
plete the proof.

The proof of controllability of the system (21.18) will finish in two steps. First,
we prove that its controllability follows from the one of a certain push–pull system
(see Proposition 21.10). Then, we show that controllability of the push–pull system
follows from the conditions of Theorem 21.8 (see Proposition 21.11).

For the first step, note that well-posedness of the system (21.1) impliesV∗
1 ∩ T ∗

1 =
V∗
2 ∩ T ∗

2 . Also note that since dT + cT (s I − Ai )
−1Bi is right invertible as a rational

matrix, the state space Rn admits the decomposition

R
n = X1 ⊕ X2 ⊕ X i

3 (21.19)

where X2 = (V∗
1 ∩ T ∗

1 ) = (V∗
2 ∩ T ∗

2 ),V∗ = X1 ⊕ X2, and T ∗
i = X2 ⊕ X i

3 for
i = 1, 2. The subspaces X 1

3 and X 2
3 may be different since T ∗

1 and T ∗
2 may be

different as shown in Example 21.5. However, they have the same dimension, say
n3. Let n1 and n2 be the dimensions of X1 and X2, respectively. For each i ∈ {1, 2},
we choose a basis

Bi = {qi
1, . . . , qi

n1 , qi
n1+1, . . . , qi

n1+n2 , qi
n1+n2+1, . . . , qi

n}

for Rn such that the first n1 vectors form a basis for X1, the second n2 for X2, and
the last n3 for X i

3 . Clearly, one can take such bases with the property that

q1
k = q2

k for all k = 1, 2, . . . , n1 + n2. (21.20)

Let Si be the matrix of basis transformation with respect to the basis Bi . By taking
(21.20) into account from now on, one clearly gets the implication

x ∈ V∗ =⇒ S1x = S2x . (21.21)
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With the matrices S1 and S2, we form a new system from (21.18) as

ζ̇ (t) ∈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{S1(A1 − B1K )S−1
1 ζ(t) + S1B1v(t)} if y(t) < 0

{S1(A1 − B1K )S−1
1 ζ(t) + S1B1v(t),

S2(A2 − B2K )S−1
2 ζ(t) + S2B2v(t)} if y(t) = 0

{S2(A2 − B2K )S−1
2 ζ(t) + S2B2v(t)} if y(t) > 0

(21.22a)

y(t) =
{

(cT − dT K )S−1
1 ζ(t) + dT v(t) if y(t) � 0

(cT − dT K )S−1
2 ζ(t) + dT v(t) if y(t) � 0.

(21.22b)

A solution of the system (21.22) is understood to be any triple (v, ζ, y) ∈ L1
loc

(R,Rm)× AC(R,Rn)× L1
loc(R,R) such that it satisfies (21.22) for almost all t . The

system is said to be controllable if for any two states ζ 0 and ζ f there exist a positive
number T and a solution (v, ζ, y) such that ζ(0) = ζ 0 and ζ(T ) = ζ f . It turns out
that controllability of the system (21.22) suffices for the one of the system (21.18).
To show this, we first reduce (21.22) into a canonical form. Let Li ∈ L(T ∗

i ). Since
V∗ ⊆ ker(cT − dT K ) and im(Bi − Li dT ) ⊆ T ∗

i , one immediately gets

Si (Bi − Li d
T ) =

⎡
⎣
0
B̃i

B̄i

⎤
⎦ and (cT − dT K )S−1

i = [
0 0 cT

i

]
(21.23)

where B̃i , B̄i and cT
i are n2 × m, n3 × m and 1 × n3 matrices, respectively. Note

that the systems Σ(Ai , Bi , cT , dT ) and Σ(Ai − Bi K , Bi , cT − dT K , dT ) share the
same V∗ and T ∗

i . Thus, one has

(Ai − Bi K − Li c
T + Li d

T K )V∗ ⊆ V∗ and (Ai − Bi K − Li c
T + Li d

T K )T ∗
i ⊆ T ∗

i .

As such, the matrix Si (Ai − Bi K − Li cT + Li dT K )S−1
i must have the following

form

Si (Ai − Bi K − Li c
T + Li d

T K )S−1
i =

⎡
⎣

A11 0 0
A21 A22 Ãi

0 0 Āi

⎤
⎦ (21.24)

where the row (column) blocks have n1, n2, and n3 rows (columns), respectively. Let
the matrix Si Li be also partitioned as Si Li = col(L1,i , L2,i , L3,i ) where L	,i is an
n	 × m matrix. With these partitions, the matrices Si (Ai − Bi K )S−1

i and Si Bi will
have the form

Si (Ai − Bi K )S−1
i =

⎡
⎣

A11 0 L1,i cT
i

A21 A22 L2,i cT
i + Ãi

0 0 L3,i cT
i + Āi

⎤
⎦ , Si Bi =

⎡
⎣

L1,i dT

L2,i dT + B̃i

L3,i dT + B̄i

⎤
⎦

(21.25)
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due to (21.23) and (21.24). Furthermore, we can assume without loss of generality
that ⎡

⎣
B̃i

B̄i

dT

⎤
⎦ =

⎡
⎣

B̃1
i B̃2

i
B̄1

i 0
dT

i 0

⎤
⎦

with the matrix col(B̄1
i , dT

i ) is of full column rank, and the matrix
[
cT

i dT
i

]
is of

full row rank. For such a partition, we, respectively, partition v into two component
groups as v = col(v1i , v2i ). Let ζ be partitioned as ζ = col(ζ1, ζ2, ζ3) with ζi ∈ R

ni .
Now, writing the system (21.22) in this representation, we obtain

ζ̇1 = A11ζ1 + Ψ 1(y) (21.26a)

ζ̇2 ∈ A21ζ1 + A22ζ2 + Ψ 2(y) +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{ Ã1ζ3 + B̃1
1v11 + B̃2

1v21} if y < 0

{ Ã1ζ3 + B̃1
1v11 + B̃2

1v21,

Ã2ζ3 + B̃1
2v12 + B̃2

2v22} if y = 0

{ Ã2ζ3 + B̃1
2v12 + B̃2

2v22} if y > 0

(21.26b)

ζ̇3 ∈ Ψ 3(y) +

⎧⎪⎨
⎪⎩

{ Ā1ζ3 + B̄1
1v11} if y < 0

{ Ā1ζ3 + B̄1
1v11, Ā2ζ3 + B̄1

2v12} if y = 0

{ Ā2ζ3 + B̄1
2v12} if y > 0

(21.26c)

y =
{

cT
1 ζ3 + dT

1 v11 if y � 0

cT
2 ζ3 + dT

2 v12 if y � 0
(21.26d)

where Ψ 	(	 = 1, 2, 3) is the bimodal linear function defined by

Ψ 	(y) :=
{

L	,1y if y � 0

L	,2y if y � 0.

From (21.26), controllability of the subsystem (21.26a), on the one hand, is clearly
necessary for the one of the overall system (21.26), and on the other hand, is sufficient
for controllability of the system (21.18) as stated in the following proposition.

Proposition 21.10 If the system (21.26a) is controllable with y is treated as input,
then the system (21.18) is controllable.

Proof Let x0 and xf be two arbitrary states. In what follows, we will construct a
solution of the system (21.18) such that x(0) = x0 and x(T ) = xf for some T > 0.
To do so, we first apply input v = 0 to the system (21.18) for the initial state x0.
Then, since the system (21.18) is well-posed, one can find an ε ∈ (0, 1) such that
the corresponding output y0(t; x0) = (cT − dT K )x0(t; x0) is smooth and

either y0(t; x0) � 0 for all t ∈ [0, ε] or y0(t; x0) < 0 for some t ∈ [0, ε] (21.27)
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due to [4, Theorem 2.3]. By [5, Lemma C.4], one can extend this output to a smooth
function y0 such that

either y0(t) � 0 for all t ∈ [0, 1] or y0(t) < 0 for some t ∈ [0, 1] (21.28)

and

y(k)
0 (1) = 0 for all k � 0. (21.29)

For such y0, it can be produced from the system (21.26) by some initial state ζ 0 and
input v0. To construct these data, we first define

	0 =
{
1 if y0(t) < 0 for some t ∈ [0, 1]
2 if y0(t) � 0 for all t ∈ [0, 1]

and then define col(ζ 0
1 , ζ 0

2 , ζ 0
3 ) = ζ 0 := S	0x0. The function y0, on the one hand,

steers the state ζ 0
1 to a state ζ̃ 0

1 at time t = 1 when applied to the system (21.26a).
On the other hand, it can be generated by the system

ζ̇3(t) = Ā	0ζ3(t) + B̄1
	0

v1	0 + Ψ 3(y(t)) (21.30a)

y(t) = cT
	0

ζ3(t) + dT
	0

v1	0 , (21.30b)

for the initial state ζ 0
3 and input v1	0 satisfying v1	0(t) = 0 for all t ∈ [0, ε] due to [10,

Lemma 4.5] and the invertibility of the system Σ( Ā	0 , B̄1
	0

, cT
	0

, dT
	0

). That means y0
can be generated by the system (21.26c) and (21.26d) for initial state ζ 0 and input
v1	0 . Moreover, v1	0 steers the state ζ 0

3 to the state ζ3(1) = 0 at time t = 1 due to
(21.29), (21.30) and again [10, Lemma 4.5]. Now, sinceX2 = V∗

	0
∩T ∗

	0
, this implies

that (A22, B̃2
	0

) is controllable. Thus, for given functions ζ1, ζ3, y0 and v1	0 , one can

find an input v2	0 such that when applied to the system

ζ̇2(t) = A21ζ1(t) + A22ζ2(t) + Ã	0ζ3(t) + B̃1
	0

v1	0 + B̃2
	0

v2	0 + Ψ 2(y0(t))

it steers ζ 0
2 to ζ2(1) = 0 at time t = 1. Altogether, note that the input v0 =

col(v1	0 , v2	0) can steer the state ζ 0 to the state col(ζ̃ 0
1 , 0, 0) at time t = 1, and

produces y0 and state trajectory ζ 0(t) with ζ 0(1) = col(ζ̃ 0
1 , 0, 0).

By employing similar ideas in the reverse time, for any T > 1 one can come up
with an output yf that is smooth on [T − 1, T ] with y(k)

f (T − 1) = 0 for all k � 0,
and an input vf = col(v1	1 , v2	1) such that starting from some state col(ζ̃ f

1 , 0, 0) at

time T − 1 this input steers it to ζ f := S	1xf at time T , and produces state trajectory
ζ f(t) with ζ f(T − 1) = col(ζ̃ f

1 , 0, 0).
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As shown in [5, Lemma C.1], since the system (21.26a) is controllable, one can
steer ζ̃ 0

1 to ζ̃ f
1 at a time T1 = hδ with δ > 0 and h ∈ Z+ by a smooth input ym such

that
y(i)
m (kδ) = 0 for all k = 0, 1, . . . , h and for all i ∈ N (21.31)

and either ym(t) � 0 for all t ∈ [(k−1)δ, kδ] or ym(t) < 0 for some t ∈ [(k−1)δ, kδ]
(k = 1, 2, . . . , h). For such ym, on each interval [(k −1)δ, kδ], one can find an index
	k , an input vk and a state trajectory col(ζ k

2 , ζ k
3 ) such that (21.26b)–(21.26d) are

satisfied for y(t) = ym(t − (k − 1)δ). Moreover,

ζ k
2 (0) = ζ k

2 (δ) = 0 and ζ k
3 (0) = ζ k

3 (δ) = 0 (21.32)

and in the overall system (21.26) it produces state trajectory ζ k(t).
Now, we take T = 2 + hδ and consider the function defined by

x(t) :=

⎧
⎪⎨
⎪⎩

S−1
	0

ζ 0(t) if 0 � t � 1

S−1
	k

ζ k(t − 1 − (k − 1)δ) if 1 + (k − 1)δ � t � 1 + kδ, k = 1, 2, . . . , h

S−1
	f

ζ f (t) if 1 + hδ � t � T

Note that the condition (21.32) together with ζ 0
3 (1) = 0 and ζ f

3 (T − 1) = 0 implies
that that x is absolutely continuous. Furthermore,

ẋ(t) :=

⎧
⎪⎨
⎪⎩

S−1
	0

ζ̇ 0(t) if 0 < t < 1

S−1
	k

ζ̇ k(t − 1 − (k − 1)δ) if 1 + (k − 1)δ < t < 1 + kδ, k = 1, 2, . . . , h

S−1
	f

ζ̇ f (t) if 1 + hδ < t < T .

In view of this, one can verify that x is a Filippov solution of the system (21.18) with
x(0) = x0 and x(T ) = xf . Therefore, the system (21.18) is controllable.

As planed, in the next step we will prove that controllability of the push–pull sys-
tem (21.26a) follows from the conditions of Theorem 21.8 as stated in the proposition
below.

Proposition 21.11 The implications 1 and 2 of Theorem 21.8 imply the system
(21.26a) is controllable.

Proof As shown in [5, Theorem IV.I], the system (21.26a) is controllable if and only
if the following two implications hold:

a. λ ∈ C, z ∈ C
n1, z∗ A11 = λz∗, z∗ [

L1,1 L1,2
] = 0 =⇒ z = 0.

b. λ ∈ R, z ∈ R
n1, zT A11 = λzT , (zT L1,1)(zT L1,2) � 0 =⇒ z = 0.

Therefore, it suffices to show that these implications, respectively, follow from those
of Theorem 21.8 to complete the proof. To do so, we first consider the first implica-
tion and note that the implication 1 of Theorem 21.8 is equivalent to the following
implication
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λ ∈ C, z ∈ C
n, z∗(Ai − Bi K ) = λz∗, z∗ Bi = 0 for all i = 1, 2 =⇒ z = 0.

(21.33)
By taking z = ST

1 col(z1, 0, 0)where z1 ∈ C
n1 , the implication (21.33) together with

(21.21) implies that the implication

{
λ ∈ C

z1 ∈ C
n1

,

⎡
⎣

z1
0
0

⎤
⎦

∗

Si (Ai − Bi K ) = λ

⎡
⎣

z1
0
0

⎤
⎦

∗

Si ,

⎡
⎣

z1
0
0

⎤
⎦

∗

Si Bi = 0, i = 1, 2 ⇒ z1 = 0

(21.34)
holds. Based on (21.34) and (21.25), one can easily come up with the implication

λ ∈ C, z1 ∈ C
n1 , z∗

1 A11 = λz∗
1, z∗

1L1,i
[
cT

i dT
i

] = 0 ∀i = 1, 2 =⇒ z1 = 0

holds. This clearly implies that the implication (a) holds. Now, we deal with the
second implication. Note that the implication 2 of Theorem 21.8 is equivalent to

λ ∈ R, z ∈ R
n,w1, w2 ∈ R, w1w2 � 0, and

[
zT wi

] [
Ai − Bi K − λI Bi

cT − dT K dT

]
= 0 for all i = 1, 2 =⇒ z = 0.

(21.35)

By taking z = ST
1 col(z1, 0, 0) where z1 ∈ R

n1 and post-multiplying the equation
of (21.35) by col(S−1

i , I ), the implication (21.35) together with (21.21) implies that
the system

⎡
⎢⎢⎣

z1
0
0
wi

⎤
⎥⎥⎦

T ⎡
⎢⎢⎣

A11 − λIn1 0 L1,i cT
i L1,i dT

i 0
A21 A22 − λIn2 L2,i cT

i + Ãi L2,i dT
i + B̃1

i B̃2
i

0 0 L3,i cT
i + Āi − λIn3 L3,i dT

i + B̄1
i 0

0 0 cT
i dT

i 0

⎤
⎥⎥⎦ = 0, ∀i = 1, 2

has no solution (λ, z1, w1, w2) with λ, w1, w2 ∈ R, 0 �= z1 ∈ R
n1 , w1w2 � 0. This

is equivalent to the system

zT
1 A11 = λzT (21.36a)

(zT
1 L1,i + wi )

[
cT

i dT
i

] = 0 (21.36b)

has no solution (λ, z1, w1, w2) with λ, w1, w2 ∈ R, z1 ∈ R
n1, z1 �= 0, w1w2 �

0. Moreover, by the construction, the vector
[
cT

i dT
i

]
is a nonzero vector. Thus,

nonexistence of solution of (21.36) is equivalent to the validity of the implication

λ ∈ R, z1 ∈ R
n1 , zT

1 A11 = λzT
1 , (zT

1 L1,1)(z
T
1 L1,2) � 0 =⇒ z1 = 0.

This means the implication (b) holds.
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21.4.3 Proof of Theorem 21.9

To prove the “if” part, we note that stabilizability of the systems (21.1) and (21.18)
is equivalent. Thus, it is enough to prove that the system (21.18) is stabilizable. To
do so, we first choose a basis for X1 in such a way that the matrix A11 is block
diagonal as

A11 =
[

Ā11 0
0 Ã11

]

where Ā11 is an n̄1 × n̄1 matrix which has only eigenvalues with negative real parts
and Ã11 is an ñ1× ñ1 matrix which has only eigenvalues with nonnegative real parts.
Accordingly, we decomposeX1 = X̄1 ⊕ X̃1 and partition A21, ζ1, L1,i and Ψ 1(y) as

A21 = [
Ā21 Ã21

]
, ζ1 =

[
ζ̄1

ζ̃1

]
, L1,i =

[
L̄1,i

L̃1,i

]
and Ψ 1(y) =

[
Ψ̄ 1(y)

Ψ̃ 1(y)

]
.

In these coordinates, the system (21.26) boils down to the form

˙̄ζ1 = Ā11ζ̄1 + Ψ̄ 1(y) (21.37a)

˙̃
ζ1 = Ã11ζ̃1 + Ψ̃ 1(y) (21.37b)

ζ̇2 ∈ Ā21ζ̄1 + Ã21ζ̃1 + A22ζ2 + Ψ 2(y) +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{ Ã1ζ3 + B̃1
1v11 + B̃2

1v21} if y < 0

{ Ã1ζ3 + B̃1
1v11 + B̃2

1v21,

Ã2ζ3 + B̃1
2v12 + B̃2

2v22} if y = 0

{ Ã2ζ3 + B̃1
2v12 + B̃2

2v22} if y > 0
(21.37c)

ζ̇3 ∈ Ψ 3(y) +

⎧⎪⎨
⎪⎩

{ Ā1ζ3 + B̄1
1v11} if y < 0

{ Ā1ζ3 + B̄1
1v11, Ā2ζ3 + B̄1

2v12} if y = 0

{ Ā2ζ3 + B̄1
2v12} if y > 0

(21.37d)

y =
{

cT
1 ζ3 + dT

1 v11 if y � 0

cT
2 ζ3 + dT

2 v12 if y � 0.
(21.37e)

In this form, by employing very similar arguments as in the proof of Proposition
21.11, one can show that the statements 1 and 2 of Theorem 21.9 imply that the
following implications hold:

1. λ ∈ C,Re(λ) � 0, z ∈ C
n1 , z∗

[
Ā11 0
0 Ã11

]
= λz∗, z∗

[
L̄1,1 L̄1,2

L̃1,1 L̃1,2

]
= 0 =⇒

z = 0,
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2. λ ∈ R, λ � 0, z ∈ R
n1 , zT

[
Ā11 0
0 Ã11

]
= λzT , (zT

[
L̄1,1

L̃1,1

]
)(zT

[
L̄1,2

L̃1,2

]
) �

0 =⇒ z = 0.

Consequently, one gets the following implications

a. λ ∈ C,Re(λ) � 0, z ∈ C
ñ1 , z∗ Ã11 = λz∗, z∗ [

L̃1,1 L̃1,2
] = 0 =⇒ z = 0,

b. λ ∈ R, λ � 0, z ∈ R
ñ1 , zT Ã11 = λzT , (zT L̃1,1)(zT L̃1,2) � 0 =⇒ z = 0.

On the other hand, since Ã11 has only eigenvalues with nonnegative real parts, the
first and the second implication above also hold for λ ∈ C with Re(λ) < 0 and
λ ∈ R with λ < 0, respectively. In view of this, the system (21.37b) is controllable
as shown in [5, Theorem IV.I]. Now, let x0 be an arbitrary state of the system (21.18).
Since the system (21.37b) is controllable, by similar arguments as in the proof of
Proposition 21.10, one can come upwith an input v0 which steers the state x0 to a state
xm = S−1

1 col(ζ̄m
1 , 0, 0, 0), for some ζ̄m

1 ∈ R
n̄1 , at a finite time by the system (21.18).

After this time instant, one can apply an input of the form vf = col(0, v2,f1 ) to steer
xm asymptotically to the origin at infinity. To see this, we consider the system (21.37)
for the initial state col(ζ̄m

1 , 0, 0, 0). For this initial state, note that the input v11 = 0
will keep the state ζ3 being zero at all time and produce the output being identically
zero by subsystem (21.37d) and (21.37e). Hence, the state ζ̃1 is also kept being zero
for all time by (21.37b) while the state ζ̄1 tends to zero as t tends to infinity due to the
stability of the matrix Ā11. For generated functions ζ̄1, ζ̃1 = 0, ζ3 = 0, y = 0 and
v11 = 0, since (A22, B̃2

1 ) is controllable, one can find an input v2,f1 such that it keeps

the state ζ2 being zero for all time. Altogether, the input col(0, ζ 2,f
1 ) applied to the

system (21.37) for the initial state col(ζ̄m
1 , 0, 0, 0) generates the trajectory ζ(t) with

lim
t→∞ ζ(t) = 0 and zero output. Then, note that the solution of the system (21.18) for

the initial state xm and the input vf = col(0, v2,f1 ) is xvf (t; xm) = S−1
1 ζ(t).Obviously,

lim
t→∞ xvf (t; xm) = S−1

1 lim
t→∞ ζ(t) = 0, i.e., the system (21.18) is stabilizable.

To prove the “only if” part, we first consider the first implication and let λ ∈
C,Re(λ) � 0 and z ∈ C

n be such that z∗ Ai = λz∗, z∗ Bi = 0 for all i = 1, 2.
Then, for any initial state x0 and input u, the Filippov solution xu(t; x0) of the
bimodal system (21.1) satisfies z∗ ẋu(t; x0) = λz∗xu(t; x0) for all t ∈ R. This
results in z∗xu(t; x0) = eλt z∗x0 for all t ∈ R. Since the system (21.1) is stabilizable,
Re(λ) � 0 implies that z = 0. Now, we consider the second implication and let
λ ∈ R, λ � 0, z ∈ R

n, and w1, w2 ∈ R such that

w1w2 � 0,
[
zT wi

] [
Ai − λI Bi

cT dT

]
= 0 for all i = 1, 2. (21.38)

It can be verified that for any initial state x0 and input u, due to (21.38) the Filip-
pov solution xu(t; x0) of the bimodal system (21.1) satisfies either zT ẋu(t; x0) �
λzT xu(t; x0) or zT ẋu(t; x0) � λzT xu(t; x0) for all t ∈ R. From this, by Gronwall-
Belman inequality, one gets either zT xu(t; x0) � eλt zT x0 or zT xu(t; x0) � eλt zT x0
for all x0 ∈ R

n, t ∈ R+ and for any input u. Then, stabilizability implies that z = 0.
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21.5 Conclusions

In this chapter, we have presented algebraic necessary and sufficient conditions for
controllability and stabilizability of bimodal piecewise linear systems with possibly
discontinuous vector fields. To come up with these conditions, we first studied well-
posedness of these systems with Filippov solution concept and established necessary
conditions for the system being well-posed. These conditions have a number of
implications that made it possible to present full characterizations of controllability
and stabilizability. Apart from the possible extensions of similar ideas to arbitrary
piecewise affine systems, feedback stabilization issue is one of the directions for
future work.
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