
Chapter 6
Heat and Mass Transfer of a Rotating Disk
for Large Prandtl and Schmidt Numbers

6.1 Laminar Flow

Convective heat and mass transfer over a single disk rotating in fluid with high
Prandtl or Schmidt numbers can be found in many practical and research appli-
cations. For instance, in electrochemistry, where the Schmidt numbers are several
orders of magnitude larger than unity, rotating disk electrode is involved in mea-
surements of the convective diffusion coefficient [1–14]. Another example is
naphthalene sublimation technique often used to measure mass transfer coefficients
αm [15–29].

The differential Eq. (1.28) of convective diffusion, including the time-averaged
fluctuating components, is analogous to the energy Eq. (2.5), provided that the
temperature T and the thermal diffusivity a are replaced by the concentration C and
the diffusion coefficient Dm, respectively. The Navier–Stokes and continuity
equations hold, if constant fluid properties are assumed.

If the Schmidt number Sc replaces the Prandtl number, and the nondimensional
function θ is written as

h ¼ ðC � C1Þ=ðCw � C1Þ; ð6:1Þ

then the self-similar Eqs. (2.32)–(2.36) for steady-state axisymmetric laminar flow
become valid for convective mass transfer.

Surface concentration on the disk does not vary; thus Cw ¼ const. Therefore,
rewritten convective diffusion Eq. (2.36) reduces to

h00 � ScHh0 ¼ 0: ð6:2Þ

The following equations (analogous to Eq. (3.4)) can be used for estimation of
the Sherwood number
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Sh ¼ K1Re
nR
x ; Shav ¼ K2Re

nR
u : ð6:3Þ

The constants K1 and K2 in Eq. (6.3) are affected by the boundary conditions,
flow type (laminar, transitional, or turbulent) and the Schmidt numbers. The
exponent nR is affected by the flow type, whereas K1 = K2 and nR = 1/2 in a laminar
flow regime.

Thus, the aforementioned analogy between convective heat and mass transfer,
enables the use of theoretical solutions or empirical experimental equations simply
via replacing C, Sc and Sh with of T, Pr and Nu (or vice versa), accordingly.

For laminar flow, Eqs. (2.32)–(2.36) for Pr > 1 and Sc > 1 at N = 0 and β = 0
were solved numerically using Mathcad [30]. Table 6.1 shows that the calculated
coefficient K1 is increasing with growing Pr or Sc numbers.

For the same Prandtl number, the constant K1 is an increasing function of the
exponent n*: the value of K1 at Pr = 0.71, 2.0 and 106 becomes 3.3, 2.73 and 2.2
times larger, respectively, if the constant n* changes from −1 to 3. Thus, at
increased Prandtl numbers, the influence of the exponent n* on the constant K1 gets
less pronounced.

The approximate Eq. (3.6) for the coefficient K1 for the boundary condition
(2.30), Pr ≥ 1 and nonzero values n* was derived by Dorfman [31]. Values of K1

by Eq. (3.6) surpass the exact solution. Equation (3.6) deviates from the exact
solution at n* ≤ 0 by 16–40 % even for Pr = 1. For n* = 0 and Pr = 1–3, this
deviation reaches 10–11 %. For larger exponents n* and Pr = 1–3, the deviation of

Table 6.1 Values of the constant K1, exact solution of Eqs. (2.32)–(2.36) for Pr > 1 [30]

Pr (Sc) n* = −2 n* = −1.5 n* = −1 n* = −0.5 n* = 0 n* = 1 n* = 2 n* = 3 n* = 4

1.0 0.0 0.1305 0.2352 0.3221 0.3963 0.5180 0.6159 0.6982 0.7693

1.5 0.0 0.1682 0.2979 0.4028 0.4906 0.6324 0.7450 0.8389 0.9199

2.0 0.0 0.1989 0.3482 0.4669 0.5653 0.7226 0.8466 0.9498 1.0386

2.28 0.0 0.2140 0.3728 0.4982 0.6016 0.7663 0.8960 1.0036 1.0963

2.5 0.0 0.2251 0.3907 0.5209 0.6280 0.7982 0.9319 1.0428 1.1383

3.0 0.0 0.2480 0.4279 0.5680 0.6826 0.8640 1.0061 1.1238 1.2251

5.0 0.0 0.3206 0.5445 0.7153 0.8533 1.0697 1.2382 1.3774 1.4971

10.0 0.0 0.4410 0.7368 0.9577 1.1341 1.4083 1.6206 1.7957 1.9460

15.0 0.0 0.5254 0.8710 1.1268 1.3300 1.6446 1.8877 2.0880 2.2599

20.0 0.0 0.5924 0.9776 1.2610 1.4855 1.8323 2.0999 2.3203 2.5095

50 0.0 0.8536 1.3925 1.7835 2.0909 2.5635 2.9269 3.2260 3.4825

100 0.0 1.1108 1.8009 2.2979 2.6871 3.2840 3.7422 4.1190 4.4421

500 0.0 1.9943 3.2033 4.0644 4.7351 5.7596 6.5442 7.1888 7.7413

1000 0.0 2.5467 4.0802 5.1691 6.0162 7.3083 8.2972 9.1096 9.8057

104 0.0 5.6363 8.9846 11.348 13.181 15.971 18.104 19.855 21.356

105 0.0 12.291 19.548 24.657 28.613 34.632 39.230 43.003 46.236

106 0.0 26.626 42.304 53.328 61.860 74.834 84.742 92.873 99.838
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Eq. (3.6) from the exact solution is smaller (1–6 %). However, at Pr → ∞, the
inaccuracy of Eq. (3.6) abruptly increases [30].

The functional dependence of the constant K1 on the Schmidt (or Prandtl)
number according to Dorfman’s Eq. (3.6) and the exact solution for n* = 0 (Tw =
const. or Cw = const.) is depicted in Fig. 6.1. The inaccuracies of Eq. (3.6) make it
unusable already for Sc = 1–3.

Equations (3.7) and (3.8) can be rewritten for mass transfer for Sc = 0–∞,
respectively

K1 ¼ 0:6109Sc=ð0:5301þ 0:3996Sc1=2 þ ScÞ2=3; ð6:4Þ

K1 ¼ 0:6Sc=ð0:56þ 0:26Sc1=2 þ ScÞ2=3: ð6:5Þ

Equations (6.4) and (6.5) result nearly in the same values. Maximal deviation of
them from the exact solution is 4 and 5 %, respectively, for Sc = 5–20 (Fig. 6.1).
For higher Schmidt numbers, inaccuracies of Eqs. (6.4) and (6.5) tend to zero
(Table 6.2).

Another expression was derived in the work [13]

K1 ¼ 0:621Sc=ð1þ 0:298Sc�1=3 þ 0:14514Sc�2=3Þ: ð6:6Þ

2 4 6 8 10 12 14 16
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

exact

 - 10

 - 11

 - 12

 - 13

4

3
5

2

6

1

 - 7

 - 8

 - 9

K 1

Sc

Fig. 6.1 Constant K1 in Eq. (6.3), laminar flow at Cw = const. [30]. 1—Exact solution; 2—
Eq. (3.6) for n* = 0; 3—Eqs. (6.4) and (6.5); 4—Eq. (6.6); 5—Eq. (6.7); 6—Eq. (6.8).
Experiments: 7—K1 = 0.59, Sc = 2.28 [15]; 8—K1 = 0.604, Sc = 2.28 [17]; 9—K1 = 0.625, Sc =
2.4 [20, 21, 26]; 10—K1 = 0.636, Sc = 2.44 [19]; 11—K1 = 0.625, Sc = 2.5 [25]; 12—K1 = 0.69,
Sc = 2.5 [24]; 13—K1 = 0.628, Sc = 2.5 [22]
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At the expense of a larger deviation from the exact solution for Sc = 1–2 (8 %
at Sc = 1 and 4 % already at Sc = 2) Eq. (6.6) ensures only deviations of less than
1–3 % at higher Prandtl or Schmidt numbers (Fig. 6.1; Table 6.2).

For Sc → 0, Eqs. (6.4)–(6.6) reduce to the asymptotic relation K1/Sc = 0.885
[32]. For Sc → ∞, they ensure agreement with another asymptotic K1 ¼ 0:62Sc1=3

[11, 32].
One more relation for K1 for Pr = 0−∞ was designed as a combination of

asymptotic solutions for the cases Pr → 0 and Pr → ∞ [2]. Rewritten, using Sc
number, this results in

K1 ¼ ð0:88447ScÞ�1:077 þ ð0:62048Sc1=3Þ�1:077
h i�1=1:077

: ð6:7Þ

For Sc = 2, Eq. (6.7) merges with the self-similar solution. Deviation of Eq. (6.7)
from the exact solution grows up to 3.2 % at Sc = 2.5, exhibits a maximum of 5.6 %
at Sc ≈ 20 and, for larger Schmidt numbers, diminishes to 2.7 % at Sc = 1000 and
0.6 % at Sc = 105.

Over the range of Sc < 2, deviation of Eq. (6.7) from the exact solution changes
its sign, and increases in absolute values being 3.4 % at Sc = 1 and 8.2 % at Sc = 0.1
(Table 6.2).

To conclude, preference should be rendered to that of Eqs. (6.4)–(6.7) that
ensures the lowest inaccuracy at the Schmidt numbers specific for the problem is to
be solved.

Application to electrochemistry problems. Levich [11] derived an asymptotic
solution for convective diffusion for very large Schmidt numbers Sc � 1

Table 6.2 Constant K1 by Eqs. (6.4)–(6.8), a rotating disk for Cw = const. or Tw = const. [30]

Pr (Sc) Exact (6.4) [33] (6.5) [34] (6.6) [13] (6.7) [2] (6.8) [11]

1.0 0.3963 0.3941 0.4025 0.4303 0.3827 0.62

2.0 0.5653 0.5753 0.5864 0.5892 0.5664 0.7812

2.28 0.6016 0.6144 0.6257 0.6238 0.6065 0.816

2.5 0.6280 0.6430 0.6543 0.6491 0.6358 0.8415

5.0 0.8533 0.8839 0.8946 0.8676 0.8855 1.0602

20.0 1.4855 1.5414 1.5414 1.4924 1.5688 1.6829

50 2.0909 2.1552 2.1424 2.0958 2.2019 2.2841

100 2.6871 2.753 2.7278 2.6915 2.8147 2.8778

500 4.7351 4.7885 4.7222 4.7400 4.8890 4.9209

1000 6.0162 6.056 5.9651 6.0218 6.1773 6.2000

104 13.181 13.126 12.904 13.192 13.3565 13.358

105 28.613 28.332 27.834 28.639 28.7954 28.7779

106 61.860 61.074 59.990 61.915 62.0461 62.000
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K1 ¼ 0:62Sc1=3: ð6:8Þ

It coincides with the asymptotic solution for heat transfer for Pr � 1 given in
[32].

Table 6.2 elucidates that Eq. (6.8) correlates well with the exact solution at
Sc > 500 (deviation for Sc = 500 is 3.9 % and reduces to zero for Sc → ∞).
Equation (6.8) overruns the exact solution by 7.1 % at Sc = 100 and by 56.7 % at
Sc = 1. Levich’s Eq. (6.8) was successfully validated in experimental studies [4, 5,
7, 8, 12, 14] at high Schmidt numbers.

Rotating disk electrodes are intensively employed in experimental electro-
chemical investigations [1, 11]. Convective diffusion, which displays itself as the
diffusion of the electrical current on the electrode, is modeled by Eq. (1.28).

For this case, Eq. (6.3) for laminar flow in view of Eq. (6.8) is usually rewritten
as [1, 11]

iL ¼ 0:62nFCFC1D2=3
m m�1=6x1=2; ð6:9Þ

where iL is the limiting diffusion current of electrons to the surface of a rotating disk
electrode; n is the number of electrons that are involved in the current; F is the disk
area; CF is the Faraday constant (96,485 C/mol); C∞ is the concentration at infinity,
mol/m3. Based on this, one can ascertain that the mass transfer coefficient can be
written as am ¼ iL=ðnFCFC0Þ, while Eq. (6.9) translates into Eq. (6.8).

In practice, the following tasks are actual: (1) searching a functional dependence
of iL on ω; (2) finding the diffusion coefficient Dm, whereas the value of iL is
measured; and (3) measurements of Volt–Ampere characteristics using a rotating
disk electrode.

Naphthalene sublimation technique for experimental determination of the
mass and heat transfer coefficients. Convective heat transfer from a surface to air
is analogous to convective mass transfer in naphthalene sublimation to air.
Naphthalene sublimation has been often employed to measure the average mass
transfer of an entire disk weighted before and after the measurement to determine
the amount of naphthalene lost by the disk as a result of experiments [19–21,
25–27]. Currently, accurate instrumentation is available for local pointwise scan-
ning of the naphthalene layer thickness and subsequent calculation of local mass
transfer coefficients for laminar, transitional, and turbulent flow [15–18, 22, 24, 28].
In frames of the analogy between the surface heat and mass transfer, constants K1 in
Eq. (3.4) for the Nusselt number and Eq. (6.3) for the Sherwood number can be
expressed as [23]

K1 ¼ C Prmp ; ð6:10Þ

K1 ¼ C Scmp ; ð6:11Þ
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where the coefficient C is identical in both equations. The effects of the Prandtl and
Schmidt numbers are described by respective multipliers in Eqs. (6.10) and (6.11).

Equations (6.10) and (6.11) are used for the Prandtl and Schmidt numbers
moderately diverging from unity: Pr = 0.7–0.74 for air, whereas Sc = 2.28–2.5 for
naphthalene sublimation in air. Therefore, the constant C is assigned to be equal to
the coefficient K1 at Sc = 1 and Pr = 1 at Tw = const. or Cw = const. (see Table 6.1),
i.e., C = 0.3963.

Authors [15–19, 24, 28] used the naphthalene sublimation technique to measure
rotating disk mass transfer and set the exponent mp to be the same for all values of
Pr and Sc, which yields a relation between the Nu and Sh numbers

Nu=Sh ¼ ðPr=ScÞmp : ð6:12Þ

The scatter of the values of the exponent mp in the literature amounted up to
45 %: mp = 1/3 [17], mp = 0.4 [15, 17, 18, 20], mp = 0.53 [19], and mp = 0.58 [24].

Erroneous values mp entail fallacious results of post-processing of the experi-
mental data from the naphthalene sublimation technique aimed at estimation of heat
transfer in air. An analysis and recommendation of the proper value mp were made
by the author [23].

Exponent mp can be detected from the self-similar solution of the problem
(Tables 3.1 and 6.1). Table 6.3 lists exponents mp for the Prandtl/Schmidt numbers
moderately deviating from unity [23]. It is evident from here that the function
mp(Pr) exhibits a decreasing trend and varies from mp = 0.5723 to mp = 0.5024, if
the Prandtl/Schmidt numbers grow from 0.7 up to 2.5. Consequently, the effective
exponent mp = 0.53 suggested in [19] is practically the average mp value weighted
over the range Pr = 0.7–2.5.

Figure 6.1 depicts different experimental data for the constant K1 in naphthalene
sublimation in air. These data agree well with the self-similar solution (see
Table 6.2); only the too large value K1 = 0.69 for Sc = 2.5 [24] falls out from the
overall picture.

Table 6.3 Value mp in Eqs. (6.10), (6.11) and (6.12) based on the exact solution of Eqs. (2.32)–
(2.36) for laminar flow [23, 30]

Pr (Sc) 0.5 0.6 0.7 0.71 0.72 0.8 0.9 0.95 0.99

mp 0.5954 0.5827 0.5723 0.5714 0.5705 0.5638 0.5571 0.5551 0.5632

Pr (Sc) 1.05 1.1 1.5 2 2.28 2.4 2.5 3 4

mp 0.5438 0.5424 0.5264 0.5123 0.5064 0.5041 0.5024 0.4949 0.4841

Pr (Sc) 5 10 20 50

mp 0.4765 0.4566 0.4411 0.4251
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Post-processing [23] of the measured results using Eq. (6.12) at mp = 0.53 to
reduce them to conditions of heat transfer at Pr = 0.71 yields the values K1 = 0.325
[17], K1 = 0.328 [20, 21, 26], K1 = 0.331 [19], K1 = 0.321 [25], K1 = 0.322 [22] that
agree well with the exact value K1 = 0.326 for Pr = 0.71 and Tw = const. (see
Table 3.1) and reliable experimental data (see Chap. 3). Falling out of the overall
good conformance are (a) the constant K1 = 0.318 resulting from the low value
K1 = 0.59 in naphthalene sublimation at Sc = 2.28 measured in [15], and (b) the
constant K1 = 0.354 stemming from the high experimental value K1 = 0.69 in
naphthalene sublimation obtained in [24] (see Fig. 6.1).

The use of the value mp = 0.4 suggested in [15, 17, 18, 20] and widely used
throughout the literature brings for the heat transfer in air at Pr = 0.71 [23]:
K1 = 0.37 [15]; K1 = 0.379 [17]; K1 = 0.384 [20, 21, 26]; K1 = 0.388 [19];
K1 = 0.378 [25]; K1 = 0.380 [22]; K1 = 0.417 [24]. All these recalculated data are
too large as compared to the exact value K1 = 0.326.

Taking the exponent mp = 1/3 [17], one can obtain for Pr = 0.71 [23] the
constants K1 = 0.4 [15]; K1 = 0.409 [17]; K1 = 0.416 [20, 21, 26]; K1 = 0.421 [19];
K1 = 0.411 [25]; K1 = 0.413 [22]; K1 = 0.454 [24]. They surpass the exact value
K1 = 0.326 to an even larger extent.

Involvement of the exponent mp = 0.58 [24] yields for Pr = 0.71 the values
K1 = 0.3 [15], K1 = 0.307 [17], K1 = 0.308 [20, 21, 26], K1 = 0.311 [19], K1 = 0.301
[25], K1 = 0.303 [22], that are too small [23]. Only the value K1 = 0.332 [24] is
acceptable, which is due to the high value mp = 0.58 chosen by the authors [24] to
agree with the exact solution K1 = 0.326. However, it is clear that the too large
exponent mp = 0.58 results from the too large value K1 = 0.69 in naphthalene
sublimation measured in [24], which is discordant with the measurements of the
other researchers.

Authors [25] rearranged Eq. (6.12) in the following way

Nu=ShSc¼2:5 ¼ f ðPrÞPr1=3: ð6:13Þ

The value K1 = 0.625 at Sc = 2.5 and function f(Pr) = 0.576, 0.634, 0.737, 0.842
and 0.926 at Pr = 0.1, 1, 2.5, 10 and 100, respectively, yield jointly the values
K1 = 0.321, 0.396, 0.625, 1.134 and 2.686 at the Prandtl numbers mentioned above.
This is fully consistent with the self-similar solution at Tw = const. (Table 6.1,
n* = 0). The correction function f(Pr) can be recast to incorporate the multiplier
Pr1/3. Use of Eq. (6.13) ensures higher accuracy than that conveyed by approaches
operating with a single value of mp, though Eq. (6.13) is less practical as Eq. (6.12),
because of the involvement of a tabulated function.

To conclude, Eq. (6.12) with the exponent mp = 0.53 [19] can be suggested as
the most accurate and practical one for post-processing of the measured laminar
mass transfer coefficients of a rotating disk in naphthalene sublimation in air in
order to recalculate it to laminar heat transfer in air. As an alternative, Eq. (6.13)
(or its modification) can be used.
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6.2 Transitional and Turbulent Flow for the Prandtl
and Schmidt Numbers Moderately Different
from Unity

Values of Pr ≤ 5 and Sc ≤ 5 are considered here as those moderately deviating from
unity. The objective is again a validation of the experimental technique dealing with
sublimation of naphthalene from a rotating disk in air at Sc = 2.28–2.5 [23].

Local Sherwood numbers in naphthalene sublimation experiments in air in
transitional and turbulent flow obtained in the recent works [15, 18] together with
the data for laminar flow and different empirical approximations are depicted in
Fig. 6.2. Recast Eq. (3.13) [15] for transitional flow (corrected range of validity)
and empirical equations [15, 18] for turbulent flow look as follows [15, 18]

Sh ¼ 2:0� 10�19Re4x for Rex ¼ ð1:9�2:75Þ � 105 (Ref. [15]); ð6:14Þ

Sh ¼ 0:0512Re0:8x for Rex � 2:75� 105 (Ref. [15]); ð6:15Þ

Sh ¼ 0:0518Re0:8x for Rex � 2:5� 105 (Ref. [18]): ð6:16Þ
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Fig. 6.2 Local Sherwood numbers for naphthalene sublimation in air [23, 30]. Experiments:
1—Sc = 2.28 [15]; 2—Sc = 2.4 [21]; 3—Sc = 2.4 [26]; 4—Sc = 2.44 [19]; 5—Sc not mentioned
[18]. Empirical approximations, Eq. (6.3): 6—laminar flow, nR = 1/2, K1 = 0.625 [20, 21, 25, 26];
7—laminar flow, nR = 1/2, K1 = 0.604 [17]; 8—transitional flow, nR = 4, K1 = 2 × 10−19,
Eq. (6.14) [15]; 9—turbulent flow, nR = 0.8, K1 = 0.0512, Eq. (6.15) [15]
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In practice, one often needs to estimate average Sherwood numbers Shav
(or average Nusselt numbers Nuav) of an entire disk, where areas occupied by
laminar/transitional flow or laminar/transitional/turbulent flow emerge at the same
time. For instance, only surface-averaged mass transfer coefficients of an entire disk
were measured in [19–21, 25, 26].

Measurements of the average Sherwood number over an entire disk covered
with areas of laminar, transitional and turbulent flow were performed by [19–21,
25, 26]. Reynolds analogy between mass transfer and fluid flow was involved to
derive a quite inconvenient theoretical solution for Shav for an entire disk [21, 26]
incorporating parameters, which were rather difficult to determine by means of the
used approach. More promising is the model for Shav first used in the paper [7] and
further generalized by the author of the present work [23, 30], which enables
verifications of the recent measurements of the local Sherwood numbers by means
of comparisons with the vast database for the average Sherwood numbers for an
entire disk.

The author [7] assumed that laminar-turbulent transition sets on instantly at a
radial coordinate rtr corresponding to the Reynolds number Reω,tr. Subsequently,
the value Shav for an entire disk can be found using the following integral

Shav ¼ 2
b

Zrtr
0

Shlamdr þ
Zb

rtr

Shturbdr

2
4

3
5: ð6:17Þ

Sherwood numbers are presented by Eq. (6.3) accompanied with the constants
K1,lam and nR = 1/2 for laminar flow, and K1,turb and nR = 0.8 for turbulent flow.

An integration of Eq. (6.17) yields

Shav ¼ K1;lamRe
1=2
x;tr

Rex;tr
Reu

� �1=2

þ 2
2nR þ 1

K1;turbRe
nR
u 1� Rex;tr

Reu

� �nRþ1=2
" #

:

ð6:18Þ

If Reu\Rex;tr , the second summand in Eq. (6.18) must be discarded.
Asymptotically at Reu � Rex;tr , Eq. (6.18) degenerates to Eq. (6.3) for turbulent
flow with

K2;turb ¼ 2
2nR þ 1

K1;turb: ð6:19Þ

Given n* = 0, which effectively means Tw = const. and Cw = const.,
Equation (6.18) translates into Eq. (3.25), while Eq. (6.19) turns to Eq. (3.35) in
view of the relation 2nR ¼ 1þ m resulting from Eqs. (2.78) and (3.31).

In [12] it is suggested taking into account regions of laminar, transitional and
turbulent flow separately. If the transition sets on at the radial location rtr1 (or at
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Reω,tr1) and ends at the radial location rtr2 (or Reω,tr2), a definite integral for Shav can
be written as

Shav ¼ 2
b

Zrtr1
0

Shlamdr þ
Zrtr2
rtr1

Shtrandr þ
Zb

rtr2

Shturbdr

2
4

3
5: ð6:20Þ

The transitional Sherwood number Shtran is specified by the first of Eq. (6.3)
complemented with experimental values of K1,tran and nR,tran for transitional flow.
Integration of Eq. (6.20) results in

Shav ¼ K1;lamRe
1=2
x;tr1

Rex;tr1
Reu

� �1=2

þ 2
2nR;tran þ 1

K1;tranRe
nR;tran
x;tr2

Rex;tr2
Reu

� �1=2

� 1� Rex;tr1
Rex;tr2

� �nR;tranþ1=2
" #

þ 2
2nR þ 1

K1;turbRe
nR
u 1� Rex;tr2

Reu

� �nRþ1=2
" #

:

ð6:21Þ

Equation (6.21) holds at Reu �Rex;tr2. If Reu\Rex;tr2, the last term in Eq. (6.21)
is discarded, whereas the second summand turns to

Shav ¼ K1;lamRe
1=2
x;tr1

Rex;tr1
Reu

� �1=2

þ 2
2nR;tran þ 1

K1;tranRe
nR;tran
u 1� Rex;tr1

Reu

� �nR;tranþ1=2
" #

: ð6:22Þ

Asymptotically for Reu � Rex;tr2, Eq. (6.21) transforms to the second of
Eq. (6.3), whereas the constant K2,turb is given by Eq. (6.19). A solution derived in
[12] is a particular case of Eq. (6.21), whose empirical constants resulting from
experiments [12] at high Sc numbers are fixed numerical values. Hence, the solution
[12] as it is can not be used to describe the experimental data for naphthalene
sublimation.

Substitution of numerical values of the constants resulting from measurements at
naphthalene sublimation in air [15] (see Eqs. (6.14), (6.15) and caption to Fig. 6.1)
into the general Eqs. (6.18)–(6.22) yields

(a) applied to Eq. (6.18)

Shav ¼ 0:59Re1=2x;tr
Rex;tr
Reu

� �1=2

þ 2
2:6

0:512Re0:8u 1� Rex;tr
Reu

� �1:3
" #

; ð6:23Þ

154 6 Heat and Mass Transfer of a Rotating Disk …



(b) applied to Eq. (6.19)

K2;turb ¼ 2
2:6

K1;turb ¼ 0:0394; ð6:24Þ

(c) applied to Eq. (6.21)

Shav ¼ 0:59� 1:9� 105 � Re�1=2
u þ 4

9
10�19ð2:75� 105Þ4:5

� Re�1=2
u 1� 1:9� 105

2:75� 105

� �4:5
" #

þ 0:0394Re0:8u 1� 2:75� 105

Reu

� �1:3
" #

; Reu � 2:75� 105; ð6:25Þ

(d) applied to Eq. (6.22)

Shav ¼ 0:59� 1:9� 105 � Re�1=2
u þ 4

9
10�19Re4u 1� 1:9� 105

Reu

� �4:5
" #

;

Reu ¼ 1:9�2:75ð Þ � 105:

ð6:26Þ

The Reynolds number Reω,tr (instant transition to turbulence) in Eq. (6.23)
remains a free parameter to be tuned for a better agreement with particular
experiments.

Figure 6.3 shows validations of Eqs. (6.23)–(6.28) by comparison with experi-
mental data. Experimental data 1, 5 and curve 6 for Shav for purely turbulent flow
stem from the works [23, 30] and result from reprocessing of the measured data
[15, 18] and Eq. (6.15) using Eq. (6.24). For laminar flow, we have K2,lam = K1,lam

(curves 7 and 8). Curve 9 combining Eqs. (6.25), (6.26) and incorporating
boundaries of transitional flow conforms to experiments [19, 21, 26] for Shav for an
entire disk depicted in Fig. 6.3.

In Fig. 6.3, experimental data 1 for Shav for an entire disk were calculated in [23]
using Eqs. (6.25), (6.26) and measurements [15] for laminar, transitional and tur-
bulent flow. These data points go beyond curve 9 at respective values of the
argument Reφ.

The replacement of the Reynolds number Reω,tr in Eq. (6.23) (instant transition
to turbulence) with its values at the onset and end of transition (i.e., 1.9 × 105 and
2.75 × 105) yields curves 10 and 11 lying above and below curve 9, respectively.
Reynolds number of the instant transition to turbulence Reω,tr = 2.35 × 105, an
arithmetic mean of values Reω,tr1 and Reω,tr2, substituted into Eq. (6.23) conveyed
curve 12, which agrees with curve 9.
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In the asymptotic case of Reφ → ∞, lines 9–12 coincide with curve 6 valid for
purely turbulent flow.

Thus, Eqs. (6.21) and (6.22) incorporating terms accounting for the coexistence
of laminar, transitional and turbulent flow areas ensure the best agreement with
experiments for the Shav number for an entire disk. Equation (6.18) resulting from a
simpler model [7] ensures the efficiency similar to that of Eqs. (6.21) and (6.22), if
an “effective” Reynolds number Reω,tr of the instant transition to turbulent flow is
chosen correctly.

Application to the naphthalene sublimation technique. Again, a recalculation
of the mass transfer to heat transfer data is performed using Eq. (3.4) and (6.3), with
the constants K1 defined in Eqs. (6.10) and (6.11), accordingly [23]. The factor C is
equal to the constant K1 for Sc = 1, Pr = 1 under conditions Tw = const. or Cw =
const.

Authors [15, 18] used the constant mp = 0.4 for a turbulent flow regime and
Pr = Sc = 0.7–2.5. Equation (6.12) at mp = 0.4 yields the value K1 = 0.0323 for heat
transfer in air at Tw = const. and Pr = 0.72, starting from the values K1 = 0.0512–
0.0518 (see Eqs. (6.15) and (6.16)) for Sc = 2.28 as a base for the recalculation. But,
in reality, experiments [35–37] (see Table 3.5) conveyed the value of the constant
K1 = 0.0188 at Tw = const. and Pr = 0.72. The theoretical model [38, 39] gave the
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Fig. 6.3 Average Sherwood numbers, naphthalene sublimation in air [23, 30]. Experiments:
1—Sc = 2.28 [15]; 2—Sc = 2.4 [21]; 3—Sc = 2.4 [26]; 4—Sc = 2.44 [19]; 5—Sc not mentioned
[18]. Calculation, Eq. (6.3): 6—turbulent flow, nR = 0.8, K2 = 0.0394, Eq. (6.24) [15]; 7—laminar
flow, nR = 1/2, K1 = 0.625 [20, 21, 25, 26]; 8—laminar flow, nR = 1/2, K1 = 0.59 [15]. Calculation
of Shav for the entire disk: 9—Eqs. (6.25) and (6.26); 10—Eq. (6.23) at Reω,tr = 1.9 × 105;
11—Eq. (6.23) at Reω,tr = 2.75 × 105; 12—Eq. (6.23) at Reω,tr = 2.35 × 105
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value K1 = 0.0187 for the same conditions. Thus, also for turbulent flow, an
erroneous value mp leads to fallacious translation of the naphthalene sublimation
data to heat transfer in air.

Equations (6.10), (6.11) are to be used for the Prandtl and Schmidt numbers
moderately diverging from unity: Pr = 0.7–0.74 for air; Sc = 2.28–2.5 for naph-
thalene sublimation. Hence, the constant C in Eqs. (6.10), (6.11) must be equal to
the coefficient K1 ¼ 0:0232 in turbulent flow at Sc = 1, Pr = 1 and conditions
Tw = const., Cw = const. (Table 3.7).

Detecting of the exponent mp for turbulent flow is performed using experimental
data. Only experimental Eqs. (6.15) and (6.16) [15, 18] can serve for this purpose.
Based on Eq. (6.15) as well as the values C = 0.0232, K1 = 0.0188 (at Tw = const.
and Pr = 0.72) [35–37], one can transform Eqs. (6.10) and (6.11) as follows

K1 ¼ 0:0232Pr0:64 for Pr� 1; ð6:27Þ

K1 ¼ 0:0232Sc0:96 for Sc� 1: ð6:28Þ

This means that the exponent mp for turbulent flow is not universal being a
function of the Prandtl and Schmidt numbers, which apparently results from dif-
ferent effects of the Pr or Sc larger and smaller than unity. Equations (6.27) and
(6.28) yield as a result

Nu=Sh ¼ Pr0:64=Sc0:96: ð6:29Þ

Using the idea of a correction function, Eq. (6.13), one can transform Eq. (6.29)
as

Nu=ShSc¼2:28 ¼ f ðPrÞ: ð6:30Þ

At Pr = 0.72, the correction function f(Pr) takes the value f(Pr) = 0.367.
As an alternative, one can use an effective value of the exponent mp so that

Nu=Sh ¼ ðPr=ScÞ0:87: ð6:31Þ

The exponent mp = 0.87 in Eq. (6.31) is more than twice larger than the value 0.4
mistakenly recommended in [15, 18]. Nevertheless, the value mp = 0.87 must not be
used in Eqs. (6.27) and (6.28) to avoid significant errors in predictions of the
constant K1.

The empirical Eq. (3.10) [37] for transitional flow at Tw = const. and Pr = 0.72 is
the most appropriate to be used jointly with Eq. (6.14) for transitional flow at Cw =
const. Thus, Eq. (6.12) should be recast in view of Eqs. (3.10) and (6.14) as follows

Nu=Sh ¼ ðPr=ScÞ0:6: ð6:32Þ
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Equation (3.10) is valid for Reω = 1.95 × 105–2.5 × 105, while Eq. (6.14) holds
at Reω = 1.9 × 105–2.75 × 105. These differences are though rather insignificant.

To conclude, Eqs. (6.29)–(6.31) should be employed to recalculate the data for
turbulent mass transfer for naphthalene sublimation in air to the conditions of heat
transfer in air. Equation (6.32) should be applied for transitional flow for the same
purpose [23].

6.3 Transitional and Turbulent Flow at High Schmidt
Numbers

High values of the Schmidt numbers can be encountered in electrochemistry
problems: Sc = 34–10,320 [4, 5, 7, 8, 12]. Main objectives of this section are
validation and development of recommendations for the further use of the experi-
mental and theoretical data of different authors [40].

Experimental data [7] for average Sherwood numbers for an entire disk at
Reφ = 0.278 × 106–1.8 × 106, Sc = 930–10,320 were described by a relation

Shav ¼ Sc1=3Re�1=2
u ½0:62Rex;tr þ 1:08� 10�2ðRe1:37u � Re10:37x;tr Þ�: ð6:33Þ

Here, Eq. (6.18) at K1,lam = 0.62Sc1/3, K1,turb = 0.0148Sc1/3, Reω,tr = 2.78 × 105

and nR = 0.87 was taken into account. In the transitional region at Reω = 2.3 × 105–
2.9 × 105, Eq. (6.33) lies below the experimental data [7] (in analogy to curve 12 in
Fig. 6.3), which results from simplifications incorporated in model (6.18) and
mentioned in Sect. 6.2.

A reduced form of Eq. (6.33) for purely turbulent flow [7] and an equation for
the local Sherwood numbers derived in [30, 40] have the following form

Shav ¼ 1:08� 10�2Re0:87u Sc1=3; ð6:34Þ

Sh ¼ 1:48� 10�2Re0:87x Sc1=3: ð6:35Þ

Measurements [4] of the average Sherwood numbers for an entire disk per-
formed at Reφ = 5 × 104–1.8 × 106, Sc = 345–6450 (transition at Reφ = 2.3 × 105–
2.9 × 105) for the region of turbulent flow were described by the relation

Shav ¼ 0:0725Re0:9u Sc0:33: ð6:36Þ

The authors [5] measured local Sh and average Shav numbers at laminar, tran-
sitional, and turbulent flow for Reω = 4 × 104–2.2 × 106, Sc = 680–7200 (transition
at Reω = 2.2 × 105–3.0 × 105). Sherwood numbers for the turbulent flow [5] and
average values for an entire disk (approximated in [30]) are given by the following
relations, respectively

158 6 Heat and Mass Transfer of a Rotating Disk …

http://dx.doi.org/10.1007/978-3-319-20961-6_3


Sh ¼ 1:09� 10�2Re0:91x Sc1=3; ð6:37Þ

Shav ¼ 7:67� 10�3Re0:91u Sc1=3; ð6:38Þ

Shav ¼ Sc1=3Re�1=2
u ½0:62Rex;tr þ 7:67� 10�3ðRe1:41u � Re1:41x;tr Þ�; ð6:39Þ

where the Reynolds number of the abrupt transition was Reω,tr = 2.78 × 105 [7].
Experiments [8] for Shav for an entire disk were performed at Reφ = 104–

1.18 × 107, Sc = 34–1400. For purely turbulent flow at Reφ = 8.9 × 105–1.18 × 107,
authors [8] obtained

Shav ¼ 1:17� 10�2Re0:896u Sc0:249: ð6:40Þ

Experiments for the local Sherwood numbers in transitional flow at
Reω = 2.0 × 105–3.0 × 105 and Sc = 1192–2465 were described by the empirical
Eq. (3.14) [12].

The authors [12] deduced empirical equations for Shav for turbulent flow (based
on experiments [4]), simultaneous existence of laminar and transitional flow, as
well as simultaneous existence of laminar, transitional and turbulent flow,
respectively

Shav ¼ 7:8� 10�3Re0:9u Sc1=3; ð6:41Þ

Shav ¼ Sc1=3Re�1=2
u ½0:89� 105 þ 9:7� 10�15Re3:5u �; ð6:42Þ

Shav ¼ Sc1=3Re�1=2
u ½7:8� 10�3Re1:4u � 1:3� 105�: ð6:43Þ

Equations (6.42) and (6.43) are particular cases of Eqs. (6.22) and (6.21),
accordingly, with Eq. (6.8) used for laminar, Eq. (3.14) for transitional and Eq. (6.
41) for turbulent flow.

Theoretical solutions for the local turbulent Sherwood numbers at high Schmidt
numbers derived in [9, 41] can be presented as follows, respectively,

Shav ¼ 7:07� 10�3Re0:9u Sc1=3; ð6:44Þ

Shav ¼ 5:93� 10�3Re0:91u Sc0:34: ð6:45Þ

A theoretical solution obtained in [10] coincides with Eq. (6.41). The solution
obtained in [42] has a form of Eq. (6.41) with the coefficient changed to
6.43 × 10−3.

In [43] a theoretical solution claimed to be valid for Sc = 0.72–∞ has been
proposed, however, as demonstrated in [30, 40], this relation is inaccurate.

Some of the theoretical and empirical relations for the Sherwood numbers for
purely turbulent flow, as well as for average Shav numbers for an entire disk
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simultaneously occupied by laminar, transitional, and turbulent flow areas agree
well with each other. Curves by Eqs. (6.34), (6.36), (6.44), and (6.45) practically
merge (see Fig. 6.4). Equation (6.41) significantly surpasses original experiments
[4]; corrected coefficient 6.43 × 10−3 [42] shifts predictions by Eq. (6.41) 9 %
below those by Eq. (6.44). Empirical Eqs. (6.34) and (6.36) practically coincide,
which corroborates the reliability of these experiments.

Equation (6.38) for turbulent flow and Eq. (6.39) for an entire disk significantly
surpass Eqs. (6.33) and (6.34), respectively (see Fig. 6.5). Only in Eq. (6.40) [8],
exponent 0.249 at the Schmidt number is not equal to 1/3. The large scatter of
experiments around the approximation curve [8] is rather an evidence that the
exponent 0.249 is erroneous. As demonstrated in [30, 40], differences between the

curves by Eq. (6.40) plotted in the relation Shav=Sc
1=3 versus Reφ for different Sc

values revealed in experiments [8] is rather significant. Hence, Eq. (6.40) should be
discarded as too inaccurate.

The exponent for the Reynolds number Reφ in Eq. (6.35) diverges from those in
Eqs. (6.15) and (6.16). Equation (6.35) can be recast to make the exponent for Reφ
equal to 0.8. This yields for the entire disk [30, 40]

ShavSc
�1=3 ¼ 0:62Re1=2x;tr

Rex;tr
Reu

� �1=2

þ 2
20:6

0:0365Re0:8u 1� Rex;tr
Reu

� �1:3
" #

:

ð6:46Þ
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Fig. 6.4 Average Sherwood
numbers at high Schmidt
numbers [30]. Approximation
of experiments: 1—laminar
flow, Levich’s Eq. (6.8);
2—Eq. (6.33) for an entire
disk [7]; 3—Eq. (6.34) [7];
4—Eq. (6.36) [4];
5—Eq. (6.41) [10, 12].
Theoretical solution:
6—Eq. (6.44) [9]
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Figure 6.5 depicts curves 2 and 4 plotted by Eqs. (6.33) and (6.46), respectively.
Here again Reω,tr = 2.78 × 105, like in Eq. (6.33). Curves 2 and 4 in fact merge for
Reφ ≤ 9.0 × 105; deviations start to become visible for Reφ > 9.0 × 105.

For purely turbulent flow, Eq. (6.46) reduces asymptotically to the relations

Sh ¼ 3:65� 10�2Re0:8x Sc1=3; ð6:47Þ

Shav ¼ 3:65� 10�2 2
2:6

Re0:8u Sc1=3 ¼ 2:81� 10�2Re0:8u Sc1=3: ð6:48Þ

Figure 6.6 demonstrates that Eq. (6.35) [7] used at Sc = 2.28 predicts Sherwood
numbers close to the experiments [15, 18] for naphthalene sublimation in air and
their approximation Eq. (6.15). Equations (6.35) (curve 10) and (6.15) (curve 9)
correlate well at larger Reynolds numbers Reω = 0.6 × 106–2.0 × 106. Curve 11,
Eq. (6.47), lies in the vicinity of curve 10 at smaller Reynolds numbers
Reω ≤ 0.7 × 106. Equation (6.47) yields K1 = 0.048 at Sc = 2.28, which is only
6.7 % below the value K1 = 0.0512 in Eq. (6.15). Curve 12 by Eq. (6.37) goes
noticeably beyond experiments and approximation curve 9 in Fig. 6.6.

Dependence 13 in Fig. 6.6 plotted by experimental Eq. (3.14) [12] for transi-
tional flow at Sc = 2.28 conforms well to Eq. (6.14) and experiments [15].

To conclude, the most reliable empirical relations for developed turbulent flow
and an entire disk relying on the analysis made above are Eqs. (6.33)–(6.36).
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numbers at high Schmidt
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6.4 An Integral Method for Pr and Sc Numbers Much
Larger Than Unity

Model with a constant value D � 1: The thickness of the thermal (or diffusion)
boundary layer at very high Pr or Sc numbers is much smaller than the thickness of
the velocity boundary layer (i.e., D � 1:). Hence, in Eq. (3.40) obtained for Δ =
const. and Tþ 	 TþðyþÞ, all summands in the parentheses in its left-hand part but
a* tend to zero

D2nþ1a
 ¼ 4þ m
4þ mþ n


ða
 � 2b
 þ c
ÞPr�np : ð6:49Þ

Relying on Eq. (6.49), one can derive analytical solutions for constants Δ and K1

D ¼ 4þ m
4þ mþ n


1� 2D3

C2

� �� � 1
2nþ1

Pr�
np

2nþ1; ð6:50Þ
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Fig. 6.6 Local Sherwood numbers for naphthalene sublimation [30]. Experiments: 1—Sc = 2.28
[15]; 2—Sc = 2.4 [21]; 3—Sc = 2.4 [26]; 4—Sc = 2.44 [19]; 5—Sc not mentioned [18]. Empirical
Eq. (6.3): 6—laminar flow, nR = 1/2, K1 = 0.625 [20, 25, 26]; 7—laminar flow, nR = 1/2,
K1 = 0.604 [17]; 8—transitional flow, nR = 4, K1 = 2 × 10−19 [15]; 9—turbulent flow, nR = 0.8,
K1 = 0.0512 [15]. Developed turbulent flow, Sc = 2.28: 10—Eq. (6.35) [7]; 11—Eq. (6.47);
12—Eq. (6.37) [5]. Transitional flow, Sc = 2.28: 13—Eq. (3.14) [12]
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K1 ¼ K3
4þ m

4þ mþ n

1� 2D3

C2

� �� � �n
2nþ1

Pr1þnp n
2nþ1�1ð Þ; ð6:51Þ

where the coefficients C2 and D3 are described in the comments to Eqs. (2.68) and
(2.69).

The cumulative exponent at the Prandtl number in Eq. (6.51) for Pr ≫ 1 must be
equal to 1/3 (see Sect. 6.3), which yields the following expression for пp

np ¼ 2
3
� 2nþ 1
nþ 1

: ð6:52Þ

As a result, the constants K1 and K2 in view of Eq. (3.35) can be written as

K1 ¼ K3
4þ m

4þ mþ n

1� 2D3

C2

� �� � �n
2nþ1

Pr1=3; ð6:53Þ

K2 ¼ K3
4þ m

4þ mþ n

1� 2D3

C2

� �� � �n
2nþ1 n
 þ 2

2þ n
 þ m
Pr1=3: ð6:54Þ

To enable validations against electrochemical experiments, let us further treat the
Sherwood numbers rather than the Nusselt numbers and replace Pr with Sc.

In Fig. 6.7, Eq. (6.54) for Shav (at n* = 0) is validated against the empirical
Eq. (6.34) [7] and theoretical Eq. (6.44) [9]. Curves 5 and 6 predicted by Eq. (6.54)
at n = 1/7 and 1/9 lie 20–30 % below the curves 3 and 4 suggested by Eqs. (6.34)
and (6.44), accordingly. Such a discrepancy between theory and measurements is
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too high. In addition, the slope of the curves 5 and 6 (exponents at Reφ being 0.8
and 0.833, constants K2 being 0.0207 and 0.0126, accordingly) distinctly deviates
from the slope of curves 3 and 4 (exponents at Reφ being 0.87 and 0.9, constants K2

being 0.0207 and 0.126, accordingly). Therefore, some model approaches incor-
porated in the present integral method partially fail at high Pr and Sc numbers and
need to be improved. In Eq. (3.32) for the coefficient K1, the total exponent at the
Reynolds number can be increased, provided that the relative thickness Δ is
assigned to be a decreasing function of the local Reynolds number Reω.

Model with a variable value of Δ. The present integral method incorporates a
model, in frames of which a boundary layer consists two parts. In the vicinity of the
wall, a viscous and heat conduction sub-layers emerge, where the velocity and
temperature profiles are described by Eq. (2.62). In the main part of the boundary
layer (outside of the viscous sub-layer), velocity components are described by the
power-law functions (see Chaps. 2 and 3). If Prandtl and Schmidt numbers are
slightly different from unity, the thermal/diffusion and velocity boundary layers
have a thickness of the same order of magnitude [30, 40]. Hence, integration of
Eq. (2.23) for the thermal boundary layer has been performed over the entire
velocity boundary layer. Viscous and heat conduction sub-layers are not taken into
account in this integration, because they are negligibly thin in comparison with the
overall boundary layer thickness. Velocity profiles in Eqs. (2.17)–(2.19) are inte-
grated in the same way [31, 38, 39, 44, 45].

At very high Prandtl and Schmidt numbers, the boundary layer structure changes
drastically. A very thin thermal/diffusion boundary layer is fully incorporated inside
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Fig. 6.8 Radial velocity profiles in the turbulent boundary layer over a free rotating disk [30].
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the viscous sub-layer of the velocity boundary layer; here the radial velocity profile
varies linearly depending on the coordinate z (curve 4 in Fig. 6.8). This fact is taken
into account in theoretical models [5, 9–11, 32, 42] for large Pr and Sc numbers.

Next to the wall, the radial velocity vr varies as a linear function

vr ¼ swr
l

z ¼ swa

lð1þ a2Þ1=2
z ¼ qV2


a

lð1þ a2Þ1=2
cf
2
z ¼ að1þ a2Þ1=2xAcRe

nR
x z: ð6:55Þ

Here the constant пR is defined in Eq. (3.31).
The coordinate of the boundary of the viscous sub-layer zþ1 , where the linear

model (6.55) holds, can be written as

z1
d
¼ zþ1

cð1þ a2Þ1=2A1=2
c Re1=ð1þ3nÞ

x

; ð6:56Þ

where zþ1 = 12.54; 13.44; 14.23 and 15.09 for n = 1/7; 1/8; 1/9 and 1/10, respec-
tively (see Chap. 2). According to Eq. (6.56), this corresponds to z1/δ = 0.01–0.02.
Figure 6.8 confirms the validity of the model (6.55) up to z=d

u ¼ 0:2, z=d ¼ 0:02,
or D ¼ dT=d ¼ 0:02.

In the power-law model, the Stanton number is given by Eq. (2.64). In Sect. 2.4.3,

the model assumption zþ1T
�
zþ1

� �nT�1
Pr�nT ¼ Pr�np completes Eq. (2.64), whereas

validations of this model against experiments deliver the value of the exponent пp.
At high Prandtl or Schmidt numbers, the entire thermal/diffusion boundary layer

is included inside the viscous sub-layer of the velocity boundary layer. Hence, one
can assume that the relation between the coordinates zþ1 and zþ1T (viscous and heat
conduction sub-layer) can be recast as

ðzþ1T=zþ1 ÞnT�1Pr�nT ¼ KaPr
�np : ð6:57Þ

Validations of the model (6.57) against experiments for the Nu or Sh numbers
enable finding the coefficient Kα and exponent пp. Consequently, given n = nT,
Eqs. (2.66) and (2.67) turn to

St ¼ ðcf=2ÞD�nPr�npKa ¼ AcRe
�2n=ð3nþ1Þ
x D�nPr�npKa; ð6:58Þ

Nu ¼ StRexPrð1þ a2Þ1=2 ¼ Acð1þ a2Þ1=2RenRx D�nPr1�npKa: ð6:59Þ

Substituting Eqs. (2.53), (6.55), (6.58) and (6.59) into Eq. (2.20), one can
transform the latter to the following notation:

n
2ðnþ 2Þ ax

d
dr

rd2D2RenRx DT
	 
 ¼ KaD

�nPr�npRenRx mDT ; ð6:60Þ

where Eq. (2.77) determines the boundary layer thickness δ, while DT ¼ Tw � T1.
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The condition Δ = const. is inapplicable to Eq. (6.60), otherwise the exponents at
the variable r on the left- and right-hand sides of Eq. (6.60) are not equal to each
other.

Let us assume the parameter Δ to be a power-law function

DðrÞ ¼ CDr
k: ð6:61Þ

Substituting Eq. (6.61) into Eq. (6.60) and keeping in mind Eqs. (2.30), (2.77),
(2.78) and (3.31), one can finally obtain

D ¼ CD
Rek=2x ; ð6:62Þ

CD
 ¼ CD

Pr�np=ð2þnÞ; ð6:63Þ

CD

 ¼ Ka2ðnþ 2Þ=n
ac2ð1� nk þ n
 þ 2nRÞ

� �1=ðnþ2Þ
; ð6:64Þ

k ¼ �2m=ð2þ nÞ: ð6:65Þ

Equation (6.59) for the Nu number and the expression for Nuav can be written as
follows:

Nu ¼ K1Re
nR

x ; ð6:66Þ

Nuav ¼ K2Re
nR

u ; ð6:67Þ

nR
 ¼ nR þ mn=ð2þ nÞ; ð6:68Þ

K1 ¼ KaK3C
�n
D

Pr

1=3; ð6:69Þ

K2 ¼ 2K1=ð2nR
 þ 1Þ; ð6:70Þ

np ¼ ð2þ nÞ=3: ð6:71Þ

Equation (6.71) takes into account the fact that the total exponent at the Pr
number in Eq. (6.69) must be equal to 1/3.

Thus, in Eqs. (6.66) and (6.67), the total exponent nR* at the Reynolds number is
larger than that in Eq. (3.31) due to the additional term mn=ð2þ nÞ (see Eq. (6.68)).
This summand emerges as a result of the model with the variable parameter Δ
being a subsiding function of the coordinate r or, in other words, local Reω (see Eq.
(6.62)).

The values of the exponent nR* are: nR* = 0.84 at n = 1/7, and nR* = 0.868 at
n = 1/9. The latter agrees well with the exponent 0.87 at the Reφ number in the
experiment-based Eq. (6.35) [7]. To bring Eq. (8.73) at nR* = 0.868 into agreement
with Eq. (6.35), the constant Kα must be equal to Kα = 1.254, which yields at n* = 0
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Nu ¼ 1:52� 10�2Re0:868x Pr1=3; ð6:72Þ

Nuav ¼ 1:11� 10�2Re0:868u Pr1=3; ð6:73Þ

D ¼ 18:31Re�0:3158
x Pr�1=3: ð6:74Þ

In Fig. 6.7, curve 7 by Eq. (6.73) and curve 3 by Eq. (6.34) merge.
Equations (6.72) and (6.35) are also practically identical.

The parameter range in experiments [7] is Reφ = 0.278 × 106–1.8 × 106,
Sc = 930–10,320. At minimal values Sc = 930 and Reω = 0.278 × 106 [7], Eq. (6.74)
yields Δ = 0.036. Parameter Δ is a decreasing function of the Schmidt and Reynolds
numbers. Thus Δ = 0.015 at Sc = 10,320 and Reω = 0.278 × 106, whereas Δ = 0.02
at Sc = 930 and Reω = 1.8 × 106. This conforms to the limit D� 0:02 restricting
validity of the linear model of the radial velocity profile.

Model with variable Δ and profile T+ depending on Reω. In the theoretical
works [9–11, 42], the Nusselt number at high Pr values is described by a relation

Nu ¼ KNð1þ a2Þ1=2ðcf=2Þ1=2RexPr1=3; ð6:75Þ

where KN is an empirical constant; Eq. (2.82) at n = 1/7 was used for cf/2. Local and
average Nusselt numbers take a form of Eqs. (6.66) and (6.67), respectively, with

K1 ¼ KNð1þ a2Þ1=2A1=2
c Pr1=3; ð6:76Þ

nR
 ¼ ð2nþ 1Þ=ð3nþ 1Þ; ð6:77Þ

while the constants K1 and K2 are related with Eq. (6.70). At n = 1/7, Eq. (6.77)
brings nR* = 0.9.

Matching Eqs. (6.44) and (6.75) in view of Eq. (6.70), one can obtain
KN = 0.05986.

Substitution of Eq. (6.61) into the thermal boundary layer equation yields again
Eq. (6.62) for Δ with

CD
 ¼ CD

Pr�1=3; ð6:78Þ

CD

 ¼ KN2ðnþ 2Þ=n
ac2ð1þ 2mþ 2k þ n
 þ 2nRÞA1=2

c

" #1=ðnþ2Þ
; ð6:79Þ

k ¼ ð2n� 1Þ=ð3nþ 1Þ: ð6:80Þ

Setting the values n = 1/7 and n* = 0 into Eqs. (6.62), (6.78)–(6.80) one can
obtain
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D ¼ 12:54Re�1=4
x Pr�1=3: ð6:81Þ

At the lower experimental limit of Sc = 930 and Reω = 0.278 × 106 [7], the value
of Δ in view of Eq. (6.81) reduces to Δ = 0.037. For the conditions Sc = 10,320 and
Reω = 0.278 × 106: Δ = 0.016. For Sc = 930 and Reω = 1.8 × 106: Δ = 0.023. These
values for Δ conform to the data obtained by Eq. (6.74) and the upper limiting
boundary D� 0:02 of the validity of the linear model for the radial velocity.

According to the models with a constant and variable value of Δ, the function T+

in wall coordinates, defined by the power-law Eq. (2.23) at n = nT does not depend
on the Reynolds number, which is consistent with the results presented in [48, 49].

Model incorporating Eq. (6.75) results in the profile of T+ being a function of
Reω

Tþ ¼ ðzþÞnð1þ a2Þ�n=2c�nA�n=2
c C�n

D
K
�1
N Pr2=3Re�0:5ð2n2þnÞ=ð3nþ1Þ

x : ð6:82Þ

To conclude, a novel methodology for simulations of temperature/concentration
profiles for the values of Pr and Sc much larger than unity was outlined in this
section. An original integral method enabled evaluating a relative thickness Δ of
the thermal/diffusion boundary layers that has not been attained by the other
investigators. It was demonstrated that the model with a subsiding function Δ(r)
yields a new summand in the expression for the exponent at the Reynolds number,
which determines functional dependence of Nu or Sh numbers on the local radius
r. Consequently, theoretical relations obtained for Nusselt and Sherwood numbers
are in a good consistency with the selected empirical equations.
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