
Chapter 5
Heat and Mass Transfer in Rotating
Cone-and-Disk Systems for Laminar
Flows

5.1 General Characterization of the Problem

In the past, non-rotating conical diffusers (Fig. 5.1) were modeled using simplified
Navier–Stokes equations without flow pre-swirl at the inlet [1]. Flow pre-swirl
effects on the heat transfer were for the first time studied by the author of this
work [2].

Cone-and-plate devices, where flow develops in a gap with small angles
γ = 1…0.5° between a rotating cone and a stationary plate (Fig. 5.2), are used in
viscosimetry [3–5]. Medicine employs such devices for nurturing endothelial cells
that grow as a monolayer on the non-rotating plate, whereas a cone rotates slowly to
renew the feeding fluid and simultaneously not to damage the cells [6–8].

Flow regimes in cone-and-plate devices were studied experimentally [8], sim-
ulated using CFD codes [3, 8] and using perturbation techniques [5–7]. Self-similar
Navier–Stokes and energy equations were derived and solved by the author of this
work [2, 9–11].

Convective heat transfer in cone-and-disk configurations, with one of them
rotating or both co-rotating/contra-rotating, along with a stationary conical diffuser,
depends strongly on the radial temperature distribution on the disk [2, 9, 10].
Simulations were done mostly for air (Pr = 0.71); new phenomena in heat and mass
transfer for other values of the Prandtl and Schmidt numbers were first investigated
by the author in [11].

For the small angle γ, the Navier–Stokes Eqs. (2.1)–(2.3) can be simplified [5–7]
for the considered laminar flow
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A perturbation solution of Eqs. (5.1)–(5.3) by the method of expansion in the
small parameter Re ¼ ReXg21=12 (where g1 ¼ h=r) yields [5]

vr=ðXrÞ ¼ Reð1:8~z2 � ~z4 � 0:8~zÞ; ð5:4Þ

vu
�ðXrÞ ¼ ~zþ Re2ð�83~zþ 70~z4 þ 63~z5 � 50~z7Þ=175; ð5:5Þ

vz=ðXrÞ ¼ Reg1ð~z2 � ~z3Þ: ð5:6Þ

Based on Eqs. (5.4) and (5.5), one can derive expressions for the flow swirl
angle on the surface of a stationary disk φw, whereas a cone is rotating

uw ¼ arctan[0:8Re
�ð1� 83Re2=175Þ� for Re ¼ 0� 1:452; ð5:7Þ

uw ¼ arctanð0:8ReÞ for Re � 1: ð5:8Þ

Fig. 5.2 Schematic of fluid
flow in a gap with a rotating
cone and a stationary disk [9]

Fig. 5.1 Schematic of
swirling flow in a stationary
conical diffuser [9]
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Equation (5.7) agrees well with measurements [5] and Eq. (5.8) just for Re ≤ 0.5
(Fig. 5.3). Equation (5.8) that formally holds just for Re � 1 correlates nevertheless
with the measurements up to Re = 2. Authors [5] deduced only Eq. (5.8), whereas
Eq. (5.7) automatically stemming from Eqs. (5.4) and (5.5) was ignored in [5]. At
Re = 1.452, Eq. (5.7) predicts the value φw = 90°, whereas the expression in
brackets of the function arctan tends effectively to infinity; this contradicts to the
physics of the problem.

A series expansion in the small parameter Re, with up to 70 terms, were used
also in the works [6, 7] to solve Eqs. (5.1)–(5.3). However, the parameter φw
predicted by the authors [6, 7] deviated from experiments [5] at Re = 0.5–1 more
noticeably than Eq. (5.8). In addition, the parameter φw predicted in [6, 7] at
Re = 1.2928 exhibits an asymptotical trend to infinity contradictive to the physics of
the problem.

This chapter summarizes results of simulations of convective heat transfer in the
geometries “stationary conical diffuser” (Fig. 5.1) and “rotating cone-and-disk”
without initial flow swirl (Fig. 5.2). Such pioneering studies based on full
self-similar forms of the Navier–Stokes equations together with the thermal
boundary layer equation have been for the first time performed by the author of the
present work [2, 9–11].

5.2 Self-similar Navier–Stokes and Energy Equations

Considering a steady-state axisymmetric laminar flow and heat transfer, we will
solve the Navier–Stokes Eqs. (2.1)–(2.3) and the reduced Eqs. (5.1)–(5.3) together
with the energy Eq. (2.12) for laminar flow. For the configurations “rotating
cone-and-disk” without initial swirl, the boundary conditions are given by
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Fig. 5.3 Flow swirl angle on the surface of a stationary disk with a rotating cone [9].
Computations: 1—Eq. (5.7); 2—Eq. (5.8) [5]; 3—self-similar Eqs. (5.19)–(5.22) [10];
4—self-similar Eqs. (5.24)–(5.26) [10]. Data 5—experiments [5]
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z ¼ 0: vr ¼ 0; vz ¼ 0; vu ¼ xr; Tw � T1 ¼ c0r
n� ; ð5:9Þ

z ¼ h: vr ¼ 0; vz ¼ 0; vu ¼ Xr; T ¼ T1: ð5:10Þ

For the geometry “stationary conical diffuser,” the boundary conditions are
given by

z ¼ 0: vr ¼ vu ¼ vz ¼ 0; Tw � T1 ¼ c0r
n� ; ð5:11Þ

z ¼ z1 ¼ h=2: vr ¼ vr1; vu ¼ vu1; dvr=dz ¼ 0; T ¼ T1: ð5:12Þ

Here, c0 and n* are the constants, while the conditions at z ¼ z1 ¼ h=2 are
denoted with a subscript “1.” We will study convective heat transfer of a disk (but
not a cone) under the wall boundary conditions (5.9) and (5.11) that match with
Eq. (2.30) for a single disk.

The exponent n* in Eqs. (5.9) and (5.11) takes negative, zero, or positive values
−2 ≤ n* ≤ 4. Cone heat/mass transfer is unimportant for the current study; therefore,
the temperature T∞ and the concentration C∞ on the surface of the cone are
assumed to be constant and equal to those of the fluid at infinity. In case of
convective diffusion in bioengineering applications, the boundary concentration on
the plate/disk Cw is lower than that on the cone/infinity C∞, because endothelial
cells digest feeding culture from the fluid.

The boundary layer equation for the temperature is used instead of the full
energy equation; this model assumption is justified above in Chaps. 2–4.

Self-similar variables and functions enable simplifying partial differential
Eqs. (2.1)–(2.3), (5.1)–(5.3) and (2.12) and translating them to ordinary non-linear
differential equations to be solved numerically with the help of the software like
Mathcad [1, 12–17].

Self-similar variables and functions can be derived with the help of group theory
[2, 9, 10]. Let us enter a linear transformation of differential equations

r ¼ Aa1r; z ¼ Aa2z; vr ¼ Aa3vr;

vu ¼ Aa4vu; vz ¼ Aa5vz; p ¼ Aa6p;
ð5:13Þ

with αk (k = 1, …, 6) and the parameter of transformation A being constants [12].
Transformations (5.13) are substituted into Eqs. (2.1)–(2.3), (5.1)–(5.3) and (2.12).
If the exponents at the constant A are identical for every summand, this means that
the non-transformed and transformed equations are invariant, which yields

a1 ¼ a2 ¼ a; a3 ¼ a4 ¼ a5 ¼ �a; a6 ¼ �2a; ð5:14Þ
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z=z ¼ r=r; vrr ¼ vrr; vur ¼ vur; vzr ¼ vzr; p � r2 ¼ p � r2: ð5:16Þ

Morgan’s theorem states [12] that Eq. (5.16) serve as similarity variables, if the
boundary conditions are independent of the coordinate r.

The self-similar variables and functions were formulated using Eqs. (5.15) and
(5.16)

g ¼ z=r; F ¼ vrr=m; G ¼ vur
�
m; H ¼ vzr=m; ð5:17Þ

P ¼ pr2
�ðqm2Þ; h ¼ ðT � T1Þ=ðTw � T1Þ: ð5:18Þ

Function θ does not change its form because of the linearity of the energy
equation. Substituting Eqs. (5.17) and (5.18) into Eqs. (2.1)–(2.3) and (2.12), one
can deduce

F2 þ G2 þ 2Pþ F0Lþ gP0 þ F00M ¼ 0; ð5:19Þ

G0Lþ G00M ¼ 0; ð5:20Þ

P0 � Hð1þ FÞ � H0L� H00M ¼ 0; ð5:21Þ

H0 � gF00 ¼ 0; ð5:22Þ

h00 ¼ Pr n�Fhþ h0ðH � gFÞ½ �: ð5:23Þ

Here, M ¼ 1þ g2 and L ¼ 3gþ gF � H. In ordinary differential Eqs. (5.19)–
(5.23), primes denote derivatives with respect to the η-coordinate.

A substitution of Eqs. (5.17) and (5.18) into Eqs. (5.1)–(5.3) gives

G2 þ 2Pþ gP0 þ F00 ¼ 0; ð5:24Þ

G0 gF � Hð Þ þ G00 ¼ 0; ð5:25Þ

P0 ¼ H00: ð5:26Þ

Boundary conditions (5.9) and (5.10) can be rewritten as

g ¼ 0: F ¼ H ¼ 0; G ¼ G0; h ¼ 1; ð5:27Þ

g ¼ g1: F ¼ H ¼ 0; G ¼ G1; h ¼ 0; ð5:28Þ

with g1 ¼ h=r; G0 ¼ Rex ¼ xr2=m; G1 ¼ ReX ¼ Xr2=m.
Boundary conditions (5.11) and (5.12) can be rearranged as

g ¼ 0: F ¼ G ¼ H ¼ 0; h ¼ 1; ð5:29Þ
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g ¼ g1: G ¼ G1; F ¼ F1; F0 ¼ 0; h ¼ 0: ð5:30Þ

Here, g1 ¼ 0:5h=r, and subscripts “0” and “1” denote functions at η = 0 and
η = η1, accordingly.

Boundary conditions (5.27) and (5.28) for the functions G0 ¼ Rex and G1 ¼
ReX are r-dependent and do not comply with the self-similarity requirements that
the self-similar functions must be constant at the boundaries. Self-similar fuctions
are Eq. (5.29) (G0 = 0) for a stationary disk and Eq. (5.30) with G1 = const.,
F1 = const., which imply the free vortex laws for the velocity components vr and vφ
in the middle of the stationary conical diffuser

ðvuÞg¼g1
¼ G1m=r; ðvrÞg¼g1

¼ F1m=r: ð5:31Þ

We treat here Eqs. (5.27) and (5.28) as locally self-similar, with G0 and G1 being
parameters at each specific r-coordinate [2, 10]. As demonstrated beneath, this
model yields the results that are in good agreement with experiments and theoretical
predictions.

5.3 Rotating Disk and/or Cone

5.3.1 Numerical Values of Parameters in the Computations

The Mathcad software has been used to obtain a numerical solution of
Eqs. (5.19)–(5.26). Angles of conicity for the simulations were γ = 4° (small
η1 = 0.0698) and γ = 45° (relatively large η1 = 1). The value of η1 varying over the
span of γ = 1–5° was shown to have no influence on the results of simulations.

Values of the Prandtl and Schmidt numbers were Pr = Sc = 0.1–100 for a
configuration with a rotating cone and a stationary disk, Pr = Sc = 0.1–800 for a
stationary cone and a rotating disk, and Pr = Sc = 0.71 for the rest of the geometries.
In the simulations, the value of Re ¼ Rexg21=12 (or Re ¼ ReXg21=12) was set to be
unity, which yields ReΩ = 12, Reω = 12 at η1 = 1, and Reω = 2463, ReΩ = 2463 at
η1 = 0.0698. The exponent n* in Eq. (5.23) took negative, zero, or positive values
−2 ≤ n* ≤ 4 that enable modeling different radially decreasing, constant, or
increasing distributions of Tw on the disk surface.

5.3.2 Rotating Cone and Stationary Disk

Figures 5.4, 5.5, and 5.6 depict velocity profiles predicted in [9] for Re = 1
(Reω = 2463) by Eqs. (5.19)–(5.22), (5.24)–(5.26) and those computed in the work
[5] with a help of the method of expansion in the small parameter Re.
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Fig. 5.4 Profiles of the radial velocity component in a gap between a rotating cone and a
stationary disk [9]. 1—Eqs. (5.19)–(5.22); 2—Eqs. (5.24)–(5.26); 3—Eq. (5.4) [5]
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Fig. 5.5 Profiles of the axial velocity component in a gap between a rotating cone and a stationary
disk [9]. 1—Eqs. (5.19)–(5.22); 2—Eqs. (5.24)–(5.26); 3—Eq. (5.6) [5]
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Fig. 5.6 Profiles of the tangential velocity component (1, 2) and temperature θ (3–5) in a gap
between a rotating cone and a stationary disk [9]. 1—Eqs. (5.19)–(5.22) and (5.24)–(5.26);
2—Eq. (5.5) [5]; 3—Eqs. (5.19)–(5.23) at n* = 2; 4—(5.19)–(5.23) at n* = 0; 5—(5.19)–(5.23) at
n* = −1
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The axial velocity component (Fig. 5.5) is an order of magnitude smaller than
the radial velocity component (Fig. 5.4), which, in turn, is an order of magnitude
smaller than the tangential velocity component (Fig. 5.6). Curves predicted by
Eqs. (5.19)–(5.22) and (5.24)–(5.26) practically merge, which certifies validity of
the simplified Eqs. (5.24)–(5.26) for small angles of conicity γ. Data of [5] for the
radial velocity vr agree well with the simulations in Fig. 5.4; however, discrepancies
between the data of [5] and the simulations for components vz and vφ are more
distinct (Figs. 5.5 and 5.6).

To validate the accuracy of the simulations of the tangential velocity, experi-
mental data [5] and predictions [9] for the flow swirl angle on the disk surface
uw ¼ arctan[vr

�ðXr � vuÞ�z¼0 ¼ arctanð�F0
w

�
G0

wÞ were compared. Predictions
and experiments correlate for the Reynolds number depicted in Fig. 5.3. It can be
also concluded that the velocity profiles in Figs. 5.4, 5.5, and 5.6 predicted by
Eqs. (5.19)–(5.22) and (5.24)–(5.28) model the flow in the gap more realistically
than those by Eqs. (5.4)–(5.8) [5].

Figure 5.6 shows temperature profiles in the gap computed at for Pr = 0.71. The
temperature curves demonstrate the decreasing trend from unity at the disk surface
to zero at the cone wall. The form of the curves is affected by the value of n*. Near
the disk, derivatives of the θ profiles diminish with increasing n*.

To compute the local Nusselt number, the following expression was used:

Nu ¼ qwr
kðTw � T1Þ ¼ �h0g¼0: ð5:32Þ

To enable comparisons with Eqs. (3.4) and (3.5) for the rotating disks, the
Nusselt number may be rearranged using a derivative with respect to the variable
f ¼ z

ffiffiffiffiffiffiffiffi
X=m

p

Nu ¼ K1Re
1=2
X ð5:33Þ

K1 ¼
�ðdh=dgÞg¼0

Re1=2X

¼ � dh
df

� �
f¼0

: ð5:34Þ

Based on these expressions, it was calculated at η1 = 0.0698 (or ReΩ = 2463) that
Nu = 15.28, 13.40, 9.35 and K1 = 0.308, 0.270, 0.188 at n* = −1, 0, 2, accordingly.
These values of the coefficient K1 match fairly well with those for a single rotating
disk (see Table 3.8). For larger values of n*, the coefficient K1 diminishes, which
is observed in centripetal flow over a stationary disk imposed by a rotating cone
(to compare, an increase in the coefficient K1 together with n* occurs in centrifugal
flow over a rotating disk, see Chaps. 3 and 4).

Given η1 = 1 and Re = 1 (or ReΩ = 12), the Nusselt numbers are Nu = 1.047,
0.954, 0.760 with K1 = 0.302, 0.275, 0.219 for the same exponents n*. One can
conclude that the coefficient K1 is conservative and only weakly dependent on the
conicity angle γ.
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5.3.3 Rotating Disk and Stationary Cone

Radial flow pattern here is opposite to that considered above: the flow is centripetal
over the cone, and centrifugal over the disk (Fig. 5.7).

The tangential velocity vφ demonstrates a trend linearly subsiding from a disk
toward a cone, while the profile of axial velocity component vz looks
mirror-symmetrical as compared to the vz profile in Fig. 5.5. The temperature profile
θ in Fig. 5.7 for Pr = 0.71 almost merges with the vφ/(ωr) curve.

To compute the Nusselt number at the disk, Eqs. (5.32)–(5.34) are again
employed; as Ω = 0, it must be replaced with ω while defining the Re number and
coordinate ζ. Based on this, the calculated Nusselt numbers for η1 = 0.0698, Re = 1
(Reω = 2463) are Nu = 13.33, 15.35, 19.13 and K1 = 0.269, 0.309, 0.386 at Pr = 0.71,
and n* = −1, 0, 2, accordingly. It is evident that the coefficient K1 is an increasing
function of n*. However, the rate of increase is lower than that for a single rotating
disk, where K1 = 0.189, 0.326, 0.519 for the identical values n* (Table 3.1). Given
η1 = 1 and Re = 1 (Reω = 12), the computed Nusselt numbers are Nu = 0.96, 1.041, 1.
197 and K1 = 0.277, 0.301, 0.345 for identical exponents n* and Pr = 0.71. Thus, the
coefficient K1 is again very weakly dependent on the conicity angle γ.

5.3.4 Effects of Prandtl and Schmidt Numbers

Effects of the Prandtl or Schmidt numbers are considered for the geometries with a
rotating disk and stationary cone or a stationary disk and a rotating cone [11].

Rotating disk and stationary cone. As the Pr numbers increase, curves of the
temperature profiles θ for n* = 0 and n* = −1 shift downward exhibiting a non-linear
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Fig. 5.7 Velocity and temperature profiles in the gap between a rotating disk and a stationary cone
at Re = 1 (Reω = 2463) and η1 = 0.0698 [9]. 1—vr/(ωr); 2—vφ/(ωr); 3—20vz/(ωr); 4—θ(Pr = 0.71,
n* = 0)
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trend of variation due to diminished heat conduction, whereas the function θ at
Pr ≥ 100 becomes zero inside the gap between the cone and the disk (Figs. 5.8 and
5.9). For n* ≥ 0, curves of θ demonstrate qualitatively analogous trend. With
respect to the profiles of θ for n* = −1, the condition dθ/dη → 0 in the vicinity of
the cone is attained already at Pr ≥ 20 (Fig. 5.9).

Over the range 0 ≤ n* ≤ 4, the constant K1 increases with the Prandtl number
(Table 5.1); the trend persists also at n* = −0.5, i.e., when negative gradient dTw/
dr is weak.

As seen from Table 5.1, signs of vr and dTw/dr become different and coefficient
K1 diminishes for larger Prandtl numbers, when the wall temperature gradient dTw/
dr is strongly negative (n* = −1). Let us write the coefficient K1 at n* = 0 as follows:
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Fig. 5.8 Temperature profiles θ in the gap for n* = 0 [11]. Solid lines rotating disk and stationary
cone. Dash-dot lines stationary disk and rotating cone. 1—Pr = 0.71; 2—Pr = 10; 3—Pr = 100
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Fig. 5.9 Temperature profiles θ in the gap for n* = −1 [11]. Dashed lines rotating disk and
stationary cone. Solid lines stationary disk and rotating cone. 1—Pr = 0.71; 2—Pr = 10;
3—Pr = 100

136 5 Heat and Mass Transfer …



K1 ¼ K1;Pr¼1Pr
mp ; ð5:35Þ

where K1,Pr=1 = 0.318. This enables determining a function for the exponent mp(Pr)
presented in Table 5.2, whose asymptotic limit is mp = 0.372 for high Prandtl
numbers. To compare, this limit for a single rotating disk is mp = 1/3 at Pr→∞ [9]
(see Chap. 6).

Rotating cone and stationary disk. Profiles of θ for n* = 0 and n* = −1 at
Pr = 0.71 span practically linear between unity on the disk surface and zero on the
cone wall; further, for larger Prandtl numbers, profiles of θ shift upward demon-
strating a non-linear trend of variation owing to reduced heat conduction (Figs. 5.8
and 5.9). For Pr ≥ 100, the derivative dθ/dη in the vicinity of the disk exhibits zero
values.

For n* > 0, Pr ≤ 1 and n* = −1, Pr ≤ 1, curves of θ practically merge with the
profile predicted for Pr = 0.71, n* = 0. Curves of θ demonstrate a S-shape at n* = −1
and Pr = 1–10 (Fig. 5.9). Profiles of θ become non-physical at Pr > 1, n* > 0 and
Pr > 10, n* = −1.

For larger Pr numbers and n* < 0, the constant K1 increases (because signs of vr
and dTw/dr are the same); at n* ≥ 0, the coefficient K1 diminishes due to the
opposite signs of vr and dTw/dr (Table 5.3).

Application to the cone-and-plate devices. The results described in Sect. 5.3.4
become applicable to mass transfer upon replacement of T, Pr, Nu with C, Sc, Sh,

Table 5.1 Coefficient K1, for rotating disk and stationary cone [11]

Pr(Sc) n* = −1 n* = −0.5 n* = 0 n* = 1 n* = 2 n* = 4

0.1 0.2858 0.2887 0.2915 0.2972 0.3029 0.3141

0.5 0.2745 0.2890 0.3032 0.3309 0.3579 0.4094

0.71 0.2687 0.2892 0.3094 0.3483 0.3855 0.4556

1.0 0.2607 0.2898 0.3180 0.3718 0.4225 0.5155

5.0 0.1650 0.3155 0.4447 0.6552 0.8172 0.9048

10.0 0.0842 0.3829 0.6082 0.9265 0.9860 1.5737

50 0.00008 0.8744 1.3572 1.9492 2.3432 2.8986

100 0.0 1.1745 1.7882 2.5295 3.0225 3.7184

400 0.0 2.0005 2.9876 4.1627 4.9419 6.0423

800 0.0 2.5742 3.8435 5.3051 6.2862 7.6717

Table 5.2 Exponent mp in Eq. (5.35) at Tw = const., rotating disk, and stationary cone [11]

Pr(Sc) 0.71 0.9 1.1 2 2.28 2.4 2.5 10

mp 0.0805 0.0901 0.0978 0.1319 0.1409 0.1446 0.1476 0.2817

Pr(Sc) 100 200 400 600 800

mp 0.375 0.3752 0.3739 0.3729 0.3724
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respectively. Here, data for K1 at n* = 0 from Tables 5.1, 5.2, and 5.3 are to be used,
since the wall boundary condition for mass transfer is Cw = const. [9]. It is evident
that the coefficients K1 for a stationary disk and a rotating cone are always smaller
than the K1 values for a rotating disk and a stationary cone. This difference becomes
more pronounced at larger Schmidt numbers and is equal to 14.6 % at Sc = 0.71;
2.6 times at Sc = 5; 46.1 times at Sc = 20, and asymptotically tends to infinity in the
limit at infinite Schmidt numbers.

Thus, one can enhance efficiency of a cone-and-plate device used in bioengi-
neering for nurturing endothelial cells spread on the plate via assigning the disk to
rotate and fixing the cone instead of the currently used devices “rotating cone—
stationary plate.”

5.3.5 Co-rotating Disk and Cone

Here, the ratio between the ReΩ and Reω numbers makes a crucial influence on the
flow pattern. If ReΩ > Reω (cone revolves faster), fluid flow over the cone is
centrifugal, and centripetal over the disk. If ReΩ < Reω (disk revolves faster), a
reverse flow pattern emerges. Equations (5.32)–(5.34) (reference angular speed Ω)
were used to compute the Nusselt number for Pr = 0.71. A situation with
approximately the same angular speeds of a disk and a cone was considered. Given
Reω = 1.01ReΩ, Eqs. (5.32)–(5.34) yield Nu = 14.31, 14.35, 14.43 and K1 = 0.288,
0.289, 0.291; given Reω = 0.99Reω, one can obtain Nu = 14.35, 14.31, 14.23 and
K1 = 0.289, 0.288, 0.287 at n* = −1, 0, 2, accordingly. In both cases, we pre-set
Re = 1 and η1 = 0.0698 (ReΩ = 2463). The computed Nusselt numbers were
Nu = 0.999, 1.001, 1.004 and K1 = 0.288, 0.289, 0.290 at Reω = 1.01ReΩ, Re = 1
and η1 = 1 (ReΩ = 12).

Table 5.3 Coefficient K1, rotating cone, and stationary disk [11]

Pr(Sc) n* = −1 n* = −0.5 n* = 0 n* = 1 n* = 2 n* = 4

0.1 0.2913 0.2887 0.2860 0.2807 0.2752 0.2643

0.5 0.3021 0.2889 0.2755 0.2479 0.2193 0.1587

0.71 0.3078 0.2892 0.2700 0.2302 0.1883 0.0971

0.9 0.3130 0.2894 0.2651 0.2140 0.1593 0.0373

1.0 0.3158 0.2896 0.2625 0.2054 0.1436 0.0040

2.0 0.3436 0.2924 0.2375

10.0 0.5712 0.3679 0.0895

50 0.0001

100 0.0
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The coefficient K1 is practically the same for all considered cases. For larger
values of n*, Nusselt numbers increase in centrifugal flow over the disk and
decrease in centripetal flow. Variation of the conical spacing practically does not
affect the coefficient K1.

5.3.6 Counter-Rotating Disk and Cone

The most complex flow pattern emerges here with centrifugal flow over a disk and a
cone and centripetal flow in the center of the conical cavity (Fig. 5.10). The axial
velocity vz is negative in the vicinity of the walls and positive in the center of the
gap; the tangential velocity vφ/(Ωr) behaves as a linear function increasing between
−1 and 1, whereas the temperature function θ at Pr = 0.71 monotonically dimin-
ishes from unity to zero.

Given η1 = 0.0698, Re = 1, and Reω = −ReΩ = 2463, profile of vr is symmetrical
relative to the center of the gap (curve 2, Fig. 5.10).

Equations (5.32)–(5.34) (reference velocity Ω) were used to compute the Nusselt
number for Pr = 0.71. Nusselt number increases with n* over the disk surface:
Nu = 14.21, 14.44, 14.85 and K1 = 0.286, 0.201, 0.299 at n* = −1, 0, 2. The
conditions η1 = 1, Re = 1, Reω = 12, and ReΩ = −12 yield a non-symmetrical radial
velocity profile vr, since the radial flow is stronger near the cone (curve 4, Fig. 5.8).
As a result, increasing n* is accompanied with a decreasing Nusselt number on the
disk: Nu = 1.011, 0.989, 0.942 and K1 = 0.292, 0.285, 0.272, given the same set of
the n* values as that used above.

Thus, here heat transfer is almost insensitive to the value and sign of dTw/dr on the
disk surface. Variation of the conical gap spacing and revolution speeds of a cone and
a disk influence on the vr profile and qualitative trend of the dependence of Nu on n*.
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Fig. 5.10 Counter-rotating disk and a cone at Re = 1 [9]: 1—vφ/(ωr); 2, 4—10vr/(ωr); 3—100vz/
(ωr); 5—θ (Pr = 0.71, n* = 0). Here 1–3—Reω = −ReΩ = 2463 and η1 = 0.0698;
4—Reω = −ReΩ = 12 and g1 ¼ 1
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5.4 Radially Outward Swirling Flow in a Stationary
Conical Diffuser

A non-rotating diffuser with conicity of γ = 35° or η1 = 0.35 was studied here
(Fig. 5.2). The physical interpretation of Eqs. (5.30) and (5.31) is that they describe
a free vortex expanding along the centerline of the gap. In practice, potential flow in
the form of a free vortex spans over a significant height of the conical gap pushing
the boundary layers toward the walls. Hence, Eqs. (5.30) and (5.31) describe a
somewhat idealized vortex flow pattern.

Simulations demonstrated that non-swirling purely radial flow (G1 = 0) does not
undergo separation from the walls at F1 < 63. Separation starts at F1 ≈ 63, whereas
at F1 > 63, a pronounced recirculation flow region is visible over the disk
(Fig. 5.11).

Responsible for the onset of separation is the large conicity of the diffuser: a
reduced conicity η1 = 0.035 shifts the separation value of F1 to about 7500. Flow
swirl (G1 = 97.96, Re ¼ G1g21=12 ¼ 1) causes accentuated recirculation region over
the disk (Fig. 5.11).

Given a zero radial velocity F1 = 0 at the inlet to the diffuser, the radial velocity
vr becomes negative over the entire gap height excluding the point η = η1 (curve 6
in Fig. 5.11; |F|max relates to the minimum point of the plot of F/|F|max at η/η1 ≈ 0.4,
i.e., Fmax = −24.28). For larger values of F1, the recirculation area reduces, whereas
the centrifugal flow area near the center of the conical gap grows up. The tangential
velocity G/G1 shows a linear distribution between 0 at η = 0 (disk) and 1 (cone) for
η = η1 (curve 1 in Fig. 5.12).

The diffuser is used to restore the static pressure, which grows with r as the
velocity components ðvrÞg¼g1

and ðvuÞg¼g1
decrease. To ensure self-similarity of the

function P in Eq. (5.18), the quantity P must denote the excess pressure p–p∞,
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Fig. 5.11 Profiles of the radial velocity F/F1 (1–4) or F/|F|max (5, 6) in a gap between a disk and a
cone [9]. G1 = 0: 1—F1 = 2; 2—F1 = 63; 3—F1 = 90. G1 = 97.96: 4—F1 = 20; 5—F1 = 10,
|F|max = 20.66; 6—F1 = 0, |F|max = 24.28
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where p = p∞ = const. for r → r∞. Thus, the parameter P shows the pressure
recovery level; in non-swirling flow (G1 = 0), P increases with F1 (Fig. 5.13).

Flow swirl G1 = 97.96 entails noticeable additional augmentation of the pressure
recovery parameter P, whereas the contribution of F1 in the range F1 = 0–20 is
rather insignificant. As can be seen from Fig. 5.14, curves Nu(F1) computed by
Eq. (5.32) for F1 = 50–63 demonstrate maxima at n* = 2 and 0 and minima at
n* = −1.

For non-swirling flow (G1 = 0) and non-zero inlet radial velocity F1, the Nusselt
numbers increase together with the exponent n* (curves 1–3, Fig. 5.14).

If the exponent n* remains within the range n* = 0–2 and the radial velocity F1

increases, the Nusselt numbers (a) demonstrate a trend of augmentation under the
conditions of non-separating centrifugal flow, (b) stay practically constant, if the
function F1 approaches the onset of separation, and (c) show a reduction for cen-
tripetal secondary flow over the disk (curves 1 and 2 in Fig. 5.14). These trends
become rather insignificant at n* = 0.
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Fig. 5.12 Profiles of the tangential velocity component G/G1 and temperature θ in the gap
between a cone and a disk [9]. 1—G/G1 for F1 = 30, G1 = 97.96; 2—θ for G1 = 97.96 and F1 = 10;
3—θ for G1 = 97.96 and F1 = 30; 4—θ for G1 = 97.96 and F1 = 60 (Pr = 0.71, n* = 2)
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Fig. 5.13 Static pressure
drop in the gap for G1 = 0
(curves 1–4) and G1 = 97.96
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Flow with initial swirl G1 = 97.96 demonstrates different signs of vr and dTw/
dr accompanied with reduced Nusselt numbers at n* = 2 and 0 (curves 4 and 5 in
Fig. 5.14) as compared to the flow without swirl. Given n* = −1, signs of vr and
dTw/dr become the same, accompanied with increased Nusselt numbers (curve 6 in
Fig. 5.14) as compared to non-swirling fluid. Although, for G1 = 97.96 and
increasing F1, the radially inward flow persists in the vicinity of the disk, the shapes
of the curves 4, 5, and 6 for Nu(F1) are analogous to curves 1, 2, and 3 plotted for
non-swirling flow for the same values of n* (see Fig. 5.14).

Temperature profiles 2 and 3 in Fig. 5.12 for swirling flow (G1 = 97.96) and
n* = 2 show a decreasing behavior at F1 > 21. For F1 ≤ 21, the temperature curve 4
in Fig. 5.11 exhibits a maximum near the wall, if fluid flows centripetally in the
direction of the decrease in Tw. This causes the Nusselt number curve 4 in Fig. 5.14
to become negative: the disk is heated by the fluid (whereas positive Nu numbers
mean fluid heated by a disk).

To conclude, in this chapter, self-similar solutions of the Navier–Stokes and
energy equations were derived for fluid flow in a conical gap depicted in Figs. 5.1
and 5.2. Simulations were performed for the cases “rotating cone–stationary disk,”
“rotating disk–stationary cone,” “co-rotating or contra-rotating disk and cone,” and
“non-rotating conical diffuser.” Effects of the boundary conditions and various
Prandtl/Schmidt numbers on the pressure, velocity, and temperature pattern, as well
as on the Nusselt/Sherwood numbers, were studied.
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