
Chapter 3
Free Rotating Disk

3.1 Laminar Flow

A flow and heat transfer pattern over a single rotating disk is schematically depicted
in Fig. 2.1. Self-similar velocity and temperature profiles, F0, G0, H0 and θ, com-
puted numerically using the Mathcad software as a solution of Eqs. (2.32)–(2.36)
for β = 0, N = 0 [1] agree well with computations [2–5] and experiments [6–8]
(Fig. 3.1). Derivatives of the F0 and G0profiles at the disk wall, as well as the mass
flow rate in the boundary layer are given by the following relations [3, 4]

G0
0w ¼ dG0=df0ð Þf¼0 = � 0:6159; F0

0w ¼ dF0=df0ð Þf¼0¼ 0:5102; ð3:1Þ

a0 ¼ �F0
0w=G

0
0w ¼ 0:8284; _md=ðlrÞ ¼ 0:8845Re1=2x : ð3:2Þ

In laminar flow, the boundary layer over a rotating disk has a constant thickness
δ0. Assuming G0 = 0.01 at the outer edge of the boundary layer, one can obtain
δ0 = 5.5(ω/v)1/2 [3]. The numerical coefficient is higher for smaller values of G0

defining the location of δ0, which, however, is unimportant in the integral method
approach [1, 3].

For a single rotating disk, the moment coefficient of CM is given by [2]

CM ¼ 3:87Re�1=2
u : ð3:3Þ

Equation (3.3) agrees with experiments [9] and differs modestly from the data
[10, 11] (Fig. 3.2), which might be attributed to a poorer accuracy of the
measurements.

Generally, the heat transfer rate over rotating disks follows the relations

Nu ¼ K1Re
nR
x ; Nuav ¼ K2Re

nR
u : ð3:4Þ
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Flow regime, Prandtl number and function of the wall temperature determine
coefficients K1 and K2 in Eq. (3.4). The constant nR is determined by the flow
regime. For instance, K1 = K2, nR = 1/2 in laminar flow [2–4, 6]. For an isothermal
rotating disk at Pr = 0.71–0.72 (air), the most reliable experiments yield K1 = 0.32–
0.34 [3, 4, 6, 15–25] (Fig. 3.3).

Values of the constant K1 obtained by the author [1] are presented in Table 3.1.
They result from a solution of Eqs. (2.32)–(2.36) for β = 0, N = 0 under

condition (2.30)
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Fig. 3.1 Velocity and temperature profiles in laminar flow over a free rotating disk [1].
Computations: 1—F0, 2—G0, 3—(−H0), 4—θ for n* = 0, Pr = 0.71. Experiments: 5—F0 [7],
6—F0 [6], 7—F0 [8], 8—G0 [7], 9—G0 [6], 10—G0 [8], 11—θ for n* = 0, Pr = 0.71 [6]. Subscript
“0”: a free disk
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Fig. 3.2 Moment coefficient of a free rotating disk [1]. Laminar flow: 1—Eq. (3.3). Turbulent flow:
2—Eq. (2.80), n = 1/7; 3—(2.80), 1/9: 4—(3.18); 5—(3.19), 6—(3.20). Experiments: 7, 8, 9—[9],
10—[10], 11—[11], 12—[12], 13—[13]. Data 7–11 cited according to [2, 5]; data [12, 13]
processed in [14]. Subscript “0”: a free disk
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K1 ¼ �h0f¼0: ð3:5Þ

For Tw = const. and qw = const., the exponent in Eq. (2.30) for laminar flow is
the same: n* = 0. The constant K1 in an increasing function of the parameter n*: e.g.
for air at Pr = 0.71, the value of K1 grows up by 313 % with n* increasing from −1
to 3 (see Table 3.1). For non-isothermal disks and smaller values of the Pr number,
there are no experimental data in literature that would enable validation of the
constant K1.
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Fig. 3.3 Local Nusselt numbers on a rotating disk [1]. Experiments [6]: 1—qw = const.; 2—
Tw ≈ const. 3–10—calculations, Eq. (3.4). Turbulent flow, nR = 0.8: 3—K1 = 0.0169 [26]; 4—
K1 = 0.0163 [6]; 5—K1 = 0.0187 [26]. Laminar flow, nR = 0.5: 6—K1 = 0.34 [6]. Transitional
flow: 7—nR = 4, K1 = 10.0 × 10−20 [23]; 8—nR = 4, K1 = 2.65 × 10−20 [6]; 9—nR = 2.8,
K1 = 8.01 × 10−14 [27, 28]; 10—nR = 2.8, K1 = 1.2 × 10−13 [1]

Table 3.1 Constant K1 according to the exact solution of Eqs. (2.32)–(2.36) [1, 29, 30]

Pr n* = −2 n* = −1.5 n* = −1 n* = −0.5 n* = 0 n* = 1 n* = 2 n* = 3 n* = 4

1.0 0.0 0.1305 0.2352 0.3221 0.3963 0.5180 0.6159 0.6982 0.7693

0.9 0.0 0.1217 0.2204 0.3029 0.3737 0.4905 0.5849 0.6643 0.7331

0.8 0.0 0.1124 0.2046 0.2824 0.3495 0.4608 0.5513 0.6276 0.6939

0.72 0.0 0.1045 0.1911 0.2647 0.3286 0.4352 0.5223 0.5959 0.6599

0.71 0.0 0.1035 0.1893 0.2624 0.3259 0.4319 0.5185 0.5918 0.6555

0.6 0.0 0.0917 0.1691 0.2358 0.2943 0.3929 0.4742 0.5433 0.6036

0.5 0.0 0.0802 0.1490 0.2091 0.2623 0.3531 0.4287 0.4935 0.5502

0.4 0.0 0.0675 0.1267 0.1792 0.2263 0.3078 0.3767 0.4362 0.4887

0.3 0.0 0.0536 0.1017 0.1452 0.1849 0.2550 0.3153 0.3682 0.4153

0.2 0.0 0.0381 0.0732 0.1058 0.1362 0.1912 0.2400 0.2838 0.3234

0.1 0.0 0.0204 0.0399 0.0586 0.0766 0.1104 0.1417 0.1709 0.1981
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The first known approximate solution valid for gases was derived by Dorfman [2]

K1 ¼ K2 ¼ 0:308 n� þ 2ð Þ1=2Pr1=2: ð3:6Þ

Values of K1 predicted by Eq. (3.6) by 34–238 % surpass the data from
Table 3.1 for n* = −1.5–0. These deviations are magnified with decreasing Pr
number.

For the conditions of Tw = const. and Pr = 0–∞, the following theoretical
solutions for the constant K1 were derived in the works [31, 32], respectively

K1 ¼ 0:6109Pr=ð0:5301þ 0:3996Pr1=2 þ PrÞ2=3; ð3:7Þ

K1 ¼ 0:6Pr=ð0:56þ 0:26Pr1=2 þ PrÞ2=3: ð3:8Þ

Predictions by Eqs. (3.7) and (3.8) divert from the data in Table 3.1 by maxi-
mum 4 and 5 %, accordingly. In the limit at Pr → 0, Eqs. (3.7) and (3.8) tend to a
relation K1 * Pr that conforms to the asymptotic equation K1=Pr ¼ 0:885 derived
in [33]. For Pr → ∞, Eqs. (3.7) and (3.8) reduce to a relation K1 � 0:62Pr1=3,
which coincides with that obtained in the work [33]. Validity of Eqs. (3.7) and (3.8)
is restricted by the case of n* = 0.

3.2 Transition to Turbulent Flow

Increasing the angular velocity of the disk rotation causes instability of laminar flow
and set up of spiral vortices followed by a development of turbulence. Authors [34]
detected 32 spiral waves over a rotating disk, with the angle ε between a perpen-
dicular to the spiral and the radial direction being about 14°. Visualization [35] by
means of a thin layer of Kaolin on the surface of a disk revealed simultaneous
co-existence of the regions of laminar flow, laminar flow with 28–31 spiral vortices
and turbulent flow. The number of spiral vortices is a function of the local Reynolds
number Reω [36–40]. For instance, 14–16 vortices with the angle ε = 20° were
detected in [37]. The number of vortices nv can be predicted by an empirical
equation [40]

nv ¼ 0:0698 � Re1=2x : ð3:9Þ

Equation (3.9) is confirmed by experimental data [37, 40, 41].
Detailed theoretical investigations of instabilities emerging in flow over a

rotating disk were performed in [8, 42–54]. At the onset of instability, the predicted

value Re1=2x ¼ 286 conforms to the experimental values [40]. Averaging of the
Reynolds number at the onset of transition to turbulent regime yields the value

Re1=2x ¼ 513 [42].
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Experimental data of different authors summarizing the Reynolds numbers at the
onset of instability, beginning and end of transition to turbulent flow are docu-
mented in Table 3.2. Table 3.3 lists results of averaging within every sub-group of
techniques (heat and mass transfer techniques; thermo-anemometry; visualization
and acoustics).

Table 3.2 Values of the Reynolds number at the onset of instability, beginning and end of
transition to turbulent flow [1]

No. Experimental technique Values of the Reynolds number Reω
Onset of
instability

Beginning of
transition

End of transition

1 Thermoanemometer [34] 2.1 × 105 3.1 × 105

2 Thermoanemometer [56] 8.8 × 104 2.5 × 105 3.2 × 105

3 Thermoanemometer [40] 8.6 × 104 (2.6–2.8) × 105

4 Thermoanemometer [41] 9 × 104 (2.95–3.1) × 105

5 Thermoanemometer/visualization
[57]

(2.4–2.63) × 105

6 Thermoanemometer [38, 39] (2.4–2.6) × 105

7 Thermoanemometer [8] (2.5–2.64) × 105

8 Thermoanemometer [7] 2.5 × 105

9 Thermoanemometer [54, 58] 9.5 × 104 3.4 × 105

10 Acoustic measurements [59] 1.35 × 105 2.55 × 105 2.75 × 105

11 Visualization (Kaolin) [35] 1.8 × 105 3.0 × 105

12 Visualization (naphthalene)
and acoustic measurements [37]

1.5 × 105

(0.33–1.9) × 105
2.65 × 105

13 Visualization in water [60] (2.8–2.86) × 105 (3.2–4.6) × 105

14 Heat transfer coefficient [17] 2.0 × 105 2.4 × 105

15 Heat transfer coefficient [6] 2.9 × 105 3.6 × 105

16 Heat transfer coefficient [23] 1.95 × 105 2.5 × 105

17 Heat transfer coefficient [27, 28] 2.5 × 105 3.2 × 105

18 Heat transfer coefficient [61] 2.4 × 105

19 Heat transfer coefficient [62] 2.4 × 105

20 Heat transfer coefficient [63] 2.2 × 105 3.4 × 105

21 Mass transfer coefficient
(naphthalene sublimation) [18]

2.7 × 105

22 Mass transfer coefficient
(naphthalene sublimation) [16]

1.9 × 105 2.75 × 105

23 Mass transfer coefficient
(naphthalene sublimation) [64]

1.8 × 105

24 Mass transfer coefficient
(naphthalene sublimation) [20]

2.0 × 105

25 Mass transfer coefficient
(electrochemistry) [42]

1.7 × 105 2.6 × 105 3.5 × 105

26 Mass transfer coefficient
(electro-chemistry) [65–67]

2.3 × 105 2.9 × 105

27 Mass transfer coefficient
(electrochemistry) [68]

2.2 × 105 3.0 × 105
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Different criteria for determining the critical values of Reω apparently entailed
inconsistency of experimental data. In spite of the setup of spiral vortices already
for Reω = (1.14–1.4) × 105, surface heat and mass transfer rates deviate from the
laminar flow data at larger Reynolds numbers Reω = 1.85 × 105. Also, disagreement
between experiments may have been resulted from possible vibrations, different
roughness etc. The ratio of the Reynolds numbers at the setup and end of the
transition to turbulent flow yields the value 1.21; this agrees with the respective
ratio 1.3 for a flat plate flow [55].

The heat/mass transfer rate measured in the transitional flow regime at the same
local Reynolds number Reω was different in various experiments

Nu ¼ 10:0� 10�20 � Re4x for Rex ¼ 1:95�2:5ð Þ � 105 Ref. 23½ �; ð3:10Þ

Nu ¼ 2:65� 10�20 � Re4x for Rex ¼ 2:9�3:6ð Þ � 105 Ref. 6½ �; ð3:11Þ

Nu ¼ 8:01� 10�14 � Re2:8x for Rex ¼ 2:6�3:2ð Þ � 105 Ref. 27; 28½ �; ð3:12Þ

Sh ¼ 20:0� 10�20 � Re4x for Rex ¼ 2:0�2:5ð Þ � 105 Ref. 16½ �; ð3:13Þ

Sh ¼ 3:4� 10�14 � Re3xSc1=3 for Rex ¼ 2:0�3:0ð Þ � 105 Ref. 67½ �: ð3:14Þ

In fact, Eqs. (3.11) and (3.12) from one side, and Eqs. (3.10), (3.13) and (3.14)
from the other side form two different groups that suggest the different ranges of the
Reynolds numbers Reω for transitional flow, which is in line with the data from
Table 3.2.

Equation (3.12) does not follow the original experiments [27, 28]. Corrected
coefficient K1 = 1.2 × 10−13 (with the end of transition to turbulent flow at
Reω = 3.7 × 105) [1] is consistent with experiments [6, 27, 28] and Eq. (3.11)
(Fig. 3.3). Equation (3.10) is in disagreement with Eqs. (3.12) and (3.13) for
Reω = (2.5–2.9) × 105 (Fig. 3.3).

Equation (3.13) conforms to the experiments [16], though its validity should be
modified to the range Reω = (1.9–2.75) × 105 [1]. Equation (3.14) deduced for large
Schmidt numbers Sc = 1192–2465 is in a good consistency with Eq. (3.13) for
Sc = 2.28.

Table 3.3 Averaged Reω numbers for boundaries of flow regimes over a rotating disk [1]

No. Experimental technique Values of the Reynolds number Reω
Onset of
instability

Beginning of
transition

End of
transition

1 Thermoanemometer 1.14 × 105 2.54 × 105 3.15 × 105

2 Visualization and acoustic
measurements

1.4 × 105 3.08 × 105 3.3 × 105

3 Methods of heat and mass
transfer

1.85 × 105 2.3 × 105 3.1 × 105

4 Average value 1.46 × 105 2.64 × 105 3.18 × 105
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Roughness of the disk surface may provoke earlier transition to turbulent flow in
comparison with a smooth disk. In laminar flow, surface roughness does not
influence heat transfer. In experiments for Reω > 5.6 × 104 [19, 69, 70], heat transfer
increased very moderately at the expense of the enlarged surface area of a rough
disk.

Surface roughness noticeably affects the boundaries of the flow regimes. The
Reynolds number at onset of the spiral vortices (whose number diminished from 32
to 25) decreased from Reω = 0.95 × 105 on a smooth disk to Reω = 0.5 × 105 on a
rough disk [58].

In experiments [57] on a rough disk, the onset of transition to turbulence began
at Reω = (0.23–1.23) × 105 (on a smooth disk, at Reω = (2.4–2.63 × 105). The
boundary of the end of transition also shifted down to Reω = 2.55 × 105 on a rough
disk in comparison with Reω = 3.4 × 105 on the smooth disk in [58]. In the paper
[18], the end of transition shifted down to Reω = 2.0 × 105 on a rough disk as
compared to Reω = 2.7 × 105 on a smooth disk.

At the beginning of the transition to turbulent flow, the heat and mass transfer
rate in the experiments [18] on a rough disk was by 34 % higher in comparison with
a smooth disk over the range of the Reynolds numbers studied in that work.

3.3 Turbulent Flow

3.3.1 Parameters of the Boundary Layer

Tangential vφ and radial vr velocity components described by the power-law
function (2.40) and the quadratic Eq. (2.58), respectively, are in a good agreement
with the experiments [7, 12] (see Figs. 2.2, 2.3 and 2.4). In addition, Eq. (2.58)
conforms to the experimental data in the outer part of the boundary layer better than
Eq. (2.41) (Fig. 2.4).

Temperature profiles θ approximated by the power-law Eq. (2.53) at nT = 1/4–1/5
match well to the profiles measured in the work [6] for qw = const. (see Fig. 2.5).

This chapter represents a validation of the present integral method (described in
Chap. 2) in comparison with the von Karman’s method, Eq. (2.41), often incor-
porated in many integral methods. On the basis of Eqs. (2.40) and (2.41) [71], the
rest of boundary layer parameters can be written as Eqs. (2.77)–(2.81) with their
constants expressed as [3, 4]

a2 ¼ 4ð2þ 3=nÞð1þ 2=nÞð3þ 1=nÞ
ð16n�3 þ 85n�2 þ 145n�1 þ 66Þ=n2 ; ð3:15Þ

cð3nþ1Þ=ðnþ1Þ ¼ C�2=ðnþ1Þ
n

2ðnþ 1Þð2nþ 2Þð3nþ 1Þðnþ 2Þð1þ a2Þð1�nÞ=½2ðnþ1Þ�

3ð11nþ 5Þan ;

ð3:16Þ
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em ¼ 2pac
ð1þ nÞð2þ nÞ ; eM ¼ 6pac

�
n2

ð1þ 1=nÞð2þ 1=nÞð1þ 2=nÞ : ð3:17Þ

Constants α, γ, εm and εM computed by Eqs. (2.83)–(2.86) (present integral
method) and (3.15)–(3.17) (von Karman’s method) are listed in Table 3.4.
Computed values for γ, and εM are practically identical for both methods at the same
values of n, while the constants α and εm representing the approximation of vr are
noticeably different.

Values of the flow swirl angle α = tanφw from Table 3.4 are plotted in Fig. 3.4
together with experiments [6, 7] and predictions by other models [72, 76].
Experimental data for the parameter α behave as a decreasing function of the
Reynolds number Reω within the limits suggested by Eq. (2.83) at n = 1/7 (upper)
and n = 1/9 (lower). The exponent n diminishes for larger Reω [2, 3], which is
followed with a decrease in the α values (like in the experiments). The highest
magnitude of α = 0.162 (at n = 1/7) by von Karman’s Eq. (3.15) matches to the
lowest level of α found experimentally [6, 7, 72].

Table 3.4 Constants of the solution for a free disk [1]

Coefficient Equation, source n = 1/7 n = 1/8 n = 1/9 n = 1/10

Cn (2.49), [71] 8.74 9.71 10.6 11.5

α (2.83), [73] 0.2087 0.1842 0.1649 0.1493

α (3.15), [3] 0.162 0.143 0.128 0.116

γ (2.84), [73] 0.5299 0.4977 0.4773 0.4597

γ (3.16), [3] 0.526 0.497 0.479 0.463

εm (2.85), [73] 0.1806 0.1542 0.1355 0.1204

εm (3.17), [3] 0.219 0.187 0.164 0.146

εM (2.86), [73] 0.1466 0.1127 0.0901 0.0734

εM (3.17), [3] 0.1458 0.1122 0.0896 0.073
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Fig. 3.4 Tangent α of the flow swirl angle at the wall [1]. Present integral method [1, 74, 75],
Eq. (3.15): 1—n = 1/7; 2—1/9 (or 1/7, von Karman [71]). 3—model [72]; 4—Eq. (2.44) [76],
α = 0.2003 for n = 1/7, b = 0.7, c = 1.2; 5—model [77]. Experiments: 6—[7]; 7—[6]
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As it can be seen from Fig. 3.5, for Reω ≥ 0.75 × 106, the dimensionless mass
flow rate predicted by Eq. (2.85) for n = 1/9 (the present integral method) is in good
agreement with experiments [6, 72, 78] and predictions by the von Karman’s
method for n = 1/7. For n = 1/7–1/8 and Reω = (0.5–0.75) × 106, Eq. (2.85) also
reasonably estimates the mass flow rate, although it incorrectly predicts the func-
tional dependence of _md

�ðq1xr3Þ on Reω. At the same time, approach [71] yields
inaccurate predictions for Reω = (0.5–0.75) × 106.

Equation (2.42) for α = 0.18 for n = 1/7 was employed in [77]. The value α = 0.
18 insignificantly differs from the values by the present integral method given in
Table 3.4.

In the work [79], velocity profiles did not exhibit self-similarity in turbulent flow
over the range Reω ≈ (3.1–6.64) × 105, whereas the wall value α increased together
with Reω (or r/b). The rather complicated integral method based on Eq. (2.43) and
original experiments [79] tried to model this phenomenon. However, because of its
excessive complexity, the method [79] was not developed further to include a
model for heat transfer.

The work [72] also employed Eq. (2.42) together with an empirical equation for
the mass flow rate in the boundary layer. However, the accuracy of this integral
method did not exceed that of the von Karman’s method [71].

To conclude, the present integral method, Chap. 2, enables a more accurate
prediction of the radial velocity distributions, values of α and mass flow rate in the
boundary layer than other integral methods. The values of the parameter n must be
selected based on Figs. 2.2, 2.3, 2.4, 3.5 and 3.6, as well as the data for the Nusselt
number presented below.

Predictions of the moment coefficient CM by Eq. (2.80) for n = 1/7 are in good
agreement with the experiments in Fig. 3.2 for Reφ < 2.0 × 106. For larger values
of Reφ, predictions by Eq. (2.80) lie below the experiments. Values n = 1/8–1/10
used in Eq. (2.80) shift the predictions close to experiments at Reφ ≥ 3.0 × 106

(see Fig. 3.2).
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Fig. 3.5 Dimensionless mass flow rate through the boundary layer [1]. Equation (2.85): 1—n =
1/7; 2—1/8; 3—1/9; 4—1/10; 5—1/7, von Karman’s method (3.17) [71]. Experiments: 6—[72]; 7
—[78]; 8—Shevchuk based on experimental data of [6]; 9—[79]
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Logarithmic velocity profiles yield in the end the following equations for CM

C�1=2
M ¼ 1:97 lg Reu

ffiffiffiffiffiffi
cM

p� �þ 0:03; ð3:18Þ

CM ¼ 0:982 lgReu
� ��2:58

: ð3:19Þ

Equation (3.19) of Dorfman [2] yields the best overall match with the experi-
ments, while Eq. (3.18) [80] sets the upper level restriction for the experimental
data in Fig. 3.2.

In the paper [14] also employing a logarithmic model, the following approxi-
mation for the coefficient CM was derived, which is valid over the range
Reφ ≈ 4.0 × 105–2.0 × 106

CM ¼ 0:13Re�0:185
u : ð3:20Þ

Equation (3.20) agrees well with the experiments [12, 13] re-evaluated in [14],
though it is by 5–10 % higher than the data of other authors for Reφ ≥ 2.0 × 106 (see
Fig. 3.2).

Logarithmic velocity profiles entail noticeable complications of mathematical
models; therefore they were practically rarely used in integral methods.

3.3.2 Surface Heat Transfer: Different Experiments
and Solutions

The integral method of Dorfman [2], applied together with the boundary condition
(2.30) and nR = 0.8, yielded known solutions for the coefficients K1 and K2 in Eq.
(3.4)

K1 ¼ 0:0197 n� þ 2:6ð Þ0:2Pr0:6; ð3:21Þ

K2 ¼ K1 n� þ 2ð Þ= n� þ 2:6ð Þ: ð3:22Þ

The multiplier Pr0.6 was obtained by the authors [3, 4].
Table 3.5 represents results for the coefficients K1 and K2 depending on n* and

computed by Eqs. (3.21) and (3.22) together with experimental data from different
sources. Measurements [17, 61, 81–83] for Tw = const. (or n* = 0) made mainly in
1950th and 1960th are in good agreement with Eqs. (3.21) and (3.22). However, the
modern accurate measurements for K1 are lower than the Dorfman’s predictions in
Table 3.5: by 4.4 % [6, 15, 23, 62, 63] and 9.5 % [84]. Experimental values [62, 63]
are estimations made by the author of the present work based on the published data.

For the thermal boundary condition qw = const. (or n* = −0.6), the coefficient K1

in measurements [6, 27, 28] was by 14.1 % smaller than the estimation by
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Eq. (3.21) (Table 3.5). CFD simulations [85] for qw = const. are approximated by
Eq. (3.4) at nR = 0.83 and K1 = 0.0111, K2 = 0.0086. Authors [81] obtained the
same value K2 = 0.015 for the cases qw = const. and Tw = const., which does not
look trustworthy.

For n* = −0.2, predictions by Eqs. (3.21) and (3.22) by up to 10 % surpass the
Nusselt numbers measured in [86, 87]. Empirical values of the coefficient K1 were
not estimated in [86, 87], apparently because the Tw distribution did not comply
with Eq. (2.30).

The so called theory of local modelling [2–4, 88] (see Sect. 2.3.2) yields a
solution for the Nusselt number for the situation, where Eq. (2.30) does not hold.
This solution proved to be insufficiently accurate and has therefore not been further
developed.

Average Nusselt number for an entire disk. Average Nusselt numbers Nuav for
an entire disk, where laminar, transitional and turbulent flows co-exist simulta-
neously, are often of interest in technical applications.

It was assumed in the model [61] that transition to turbulence takes place
abruptly at the Reynolds number Reω,tr calculated at a coordinate rtr. Following this
assumption, one can present Nuav (see its definition in Nomenclature) as follows

Nuav ¼
b
R tr
0 NulamðTw � T1Þdr þ R b

tr NuturbðTw � T1Þdr
h i

R b
tr ðTw � T1Þrdr

: ð3:23Þ

The Nusselt numbers to be substituted in Eq. (3.23) are defined by Eq. (3.4) for
Nu, where the constants are K1,lam, nR = 1/2 for laminar flow, and K1,turb, nR for
turbulent flow.

If the disk temperature is described by Eq. (2.30), this yields [1]

Nuav ¼ K1;lamRe
1=2
x;tr

Rex;tr
Reu

� �n�=2þ1=2

þ 2þ n�
2nR þ 1þ n�

K1;turbRe
nR
u 1� Rex;tr

Reu

� �n�=2þnRþ1=2
" #

:

ð3:24Þ

Table 3.5 Values of the constants K1 and K2 for nR = 0.8 and Pr = 0.72 [1]

Coefficient Source or equation n* = −0.6 n* = 0 n* = 2 n* = 6

K2 [17, 61, 81, 82] 0.015

K1 [83] 0.0194

K1 [84] 0.0179

K2 [84] 0.0138

K1 [6, 15, 23, 62, 63] 0.0188

K2 [23, 62] 0.0145

K1 [6, 27, 28] 0.0163

K1 Dorfman, Eq. (3.21) 0.0186 0.0196 0.022 0.0249

K2 Dorfman, Eq. (3.22) 0.013 0.0151 0.0191 0.0231
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For Tw = const. (or n* = 0), Eq. (3.24) simplifies to [1]

Nuav ¼ K1;lamRe
1=2
x;tr

Rex;tr
Reu

� �1=2

þ 2
2nR þ 1

K1;turbRe
nR
u 1� Rex;tr

Reu

� �nRþ1=2
" #

:

ð3:25Þ

Equation (3.24) holds, if Reu �Rex;tr. Given Reu\Rex;tr, the second term in
Eq. (3.24) vanishes. Asymptotically at Reu 	 Rex;tr , the turbulent flow fully
occupies a disk, and Eq. (3.24) turns into Eq. (3.4) for Nuav, where [1]

K2;turb ¼ 2þ n�
2nR þ 1þ n�

K1;turb: ð3:26Þ

Once nR = 0.8, Eqs. (3.22) and (3.26) become identical.
In Fig. 3.6, curve 4 is based on Eq. (3.25) for the case Tw = const. and the values

nR = 0.8, 2K1;turb=ð2nR þ 1Þ ¼ 0:015, K1,lam = 0.4, Reω,tr = 2.4 × 105 [61]. Curve 4
lies by 15 % lower than the original experimental data [61] for Reω ≤ 6.5 × 105.
A smaller value of Reω,tr = 2.0 × 105 (curve 5) provides a better match of Eq. (3.25)
with experiments [1].

3.3.3 Effect of Approximation of the Radial Velocity Profile

Effect of the tangent of the flow swirl angle was taken into account via a model

tanu ¼ að1� nÞr: ð3:27Þ
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Fig. 3.6 Average Nusselt numbers of an entire disk rotating in still air [1]. Experiments: 1—[61].
Calculations by Eq. (8.4): 2—developed turbulent flow, nR = 0.8, K2 = 0.015 (Table 3.5) [61];
3—laminar flow, nR = 1/2, K1 = 0.4 [61]. Calculation of Nuav for an entire disk: 4—Eq. (3.25) at
Reω,tr = 2.4 × 105 [61]; 5—Eq. (3.25) at Reω,tr = 2.0 × 105 [1]

48 3 Free Rotating Disk

http://dx.doi.org/10.1007/978-3-319-20961-6_8


For the constant σ, the values σ = 2, 1 and 0 were selected, which enabled
undertaking parametric studies, whereas the value σ = 2 remained the major one in
the present integral method. In the end, solutions for the parameters in Eqs. (2.77)–
(2.87) look as

a ¼ C1

ð3þ mÞB0 þ ð4þ mÞD0

� 	1=2
; ð3:28Þ

H9 ¼ aD0ð4þ mÞ; ð3:29Þ

eM ¼ 8pacD0: ð3:30Þ

Here B0 = B1 and D0 = D1 for σ = 2; D0 = 1/(n + 1) − 1/(n + 2) − 1/(2n + 1) +
1/(2n + 2) and B0 = D2 for σ = 1; B0 = 1/(2n + 1) and D0 = 1/(n + 1) − 1/(2n + 1) for
σ = 0 [1]. The case with σ = 2 coincides with Eqs. (2.83)–(2.87) at κ = 0, β = 0.

The effect of the exponent σ on the radial velocity profiles is elucidated in
Fig. 3.7.

Table 3.6 lists numerical data for the constants α, γ and εM computed by
Eqs. (3.28)–(3.30) (data for σ = 1 and 2 partially repeat those from Table 3.4).

In Fig. 3.7, the radial velocity profile for σ = 0 is qualitatively and quantitatively
different from the other vr profiles. Anyway, in spite of this, the deviation of the
calculated CM values for σ = 0 from the basic case of σ = 2 is 5 % at maximum
(Table 3.6).
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Fig. 3.7 Profiles of the radial velocity component in the turbulent boundary layer over a free
rotating disk [1]. 1—n = 1/7, 2—1/8, 3—1/9. Equation (2.41), [71]: 4—n = 1/7. Equation (2.44):
5—σ = 0, n = 1/7. Experiments: 6—Reω = 0.4 × 106, 7—0.65 × 106, 8—0.94 × 106, 9—1.6 × 106

[12], 10—0.6 × 106, 11—1.0 × 106 [7]
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Equation (2.70), complemented with Eqs. (3.27)–(3.30), can be analytically
solved only for the condition D� 1 [75, 89]. For σ = 2, such a solution degenerates
to Eqs. (2.89)–(2.91) at N = 0 and β = 0.

Thus, for D� 1, the coefficients in Eq. (3.4) can be written as

nR ¼ ðnþ 1Þ=ð3nþ 1Þ; ð3:31Þ

K1 ¼ K3D
�nPr1�np ; ð3:32Þ

D�n ¼ 4þ m
2þ mþ n�

KVPr
�np þ ð1� KVÞ

� 	�1

; ð3:33Þ

K1 ¼ K3Pr
4þ m

2þ mþ n�
KV þ ð1� KVÞPrnp

� 	�1

; ð3:34Þ

K2 ¼ K1 n� þ 2ð Þ= 2þ n� þ mð Þ; ð3:35Þ

K3 ¼ Acð1þ a2Þ1=2 ¼ C�2=ðnþ1Þ
n c�2n=ðnþ1Þð1þ a2Þ0:5ð1�nÞ=ðnþ1Þ; ð3:36Þ

Table 3.6 Constants in Eqs. (2.77)–(2.80), (3.28) and (3.30)–(3.41) at different σ [1, 89]

Coefficient n = 1/7 n = 1/8 n = 1/9 n = 1/10

α, σ = 2 0.2087 0.1842 0.1649 0.1493

α, σ = 1 0.162 0.143 0.128 0.116

α, σ = 0 0.0925 0.0818 0.0733 0.0664

γ, σ = 2 0.530 0.4977 0.4773 0.4597

γ, σ = 1 0.526 0.497 0.479 0.463

γ, σ = 0 0.616 0.588 0.571 0.556

εM, σ = 2 0.1466 0.1127 0.0901 0.0734

εM, σ = 1 0.146 0.112 0.09 0.073

εM, σ = 0 0.139 0.107 0.086 0.0704

KV, σ = 2 0.203 0.183 0.1661 0.1523

KV, σ = 1 0.167 0.15 0.1364 0.125

KV, σ = 0 0.111 0.10 0.0909 0.0833

K3, σ = 2 0.02683 0.02079 0.01673 0.0137

K3, σ = 1 0.0267 0.0207 0.0166 0.0136

K3, σ = 0 0.0255 0.0198 0.016 0.0131

nR 0.8 0.8182 0.8333 0.8462

m 0.6 0.6363 0.6667 0.6923

np, σ = 2 0.5018 0.4894 0.4797 0.4719

np, σ = 1 0.48 0.471 0.463 0.457

np, σ = 0 0.45 0.444 0.44 0.436
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KV ¼ 1� D2�=A1�: ð3:37Þ

In Eq. (3.37), the constants are defined as [1]: D2* = D2 and A1* = A1 for σ = 2;
D2* = 1/(2n + 1) − 1/(2n + 2) and A1* = 1/(n + 1) − 1/(n + 2) for σ = 1; D2* = 1/
(2n + 1) and A1* = 1/(n + 1) for σ = 0. Parameters K3 and KV presented in Table 3.6
do not depend on n*. In view of the relation 2nR ¼ 1þ m [which follows from
Eqs. (2.78) and (3.31)], Eqs. (3.35) and (3.26) become identical.

Let us denote G ¼ Prnp 2þ mþ n�ð Þ= 4þ mð Þ, use the Taylor’s series expansion
of the entire term in brackets in Eq. (3.34) for Pr → 1, n* → 2 in the neighborhood
of G = 1 and neglect summands of an infinitesimal order. As a result, one can obtain
[74, 75, 89]

Nu ¼ K3
2þ mþ n�

4þ m

� �KV

RenRx Pr1�np 1�KVð Þ: ð3:38Þ

Let us further consider a solution for the most widely used value n = 1/7 and
round down: KV = 0.2. In doing so, Eq. (3.38) becomes identical to the Dorfman’s
solution (3.21), if one sets the overall exponent for the Pr number equal to 0.6 and
keeps this unchanged and independent of n. Based on this, the unknown parameter
np can be determined as

np ¼ 0:4=ð1� KV Þ: ð3:39Þ

Table 3.6 contains numerical values of the parameter np calculated by Eq. (3.39).
Equation (3.38) coincides with Eq. (3.34) solely for Pr → 1 and n* → 2.
A mathematical interpretation of this fact is that Eq. (3.38) represents a particular
case of Eq. (3.34).

For D
 1 and N = 0 and β = 0 (a single rotating disk), Eq. (2.89) remains
transcendental

D2nþ1 a� � 2b�Dþ c�D2� � ¼ 4þ m
2þ mþ n�

a� � 2b� þ c�ð ÞPr�np : ð3:40Þ

In Eq. (3.40), пT = n has been set and the subscript “T” at the coefficients a*, b*
and c* has been omitted. Equation (3.40) holds for the case Pr ≥ 1 (or Sc ≥ 1):
naphthalene sublimation in air, flows of liquids etc. Therefore, an analysis of
Eq. (3.40) is relegated to Chap. 6.

Table 3.7 and Fig. 3.8 illustrate the influence of the parameter σ on the coeffi-
cients K1 and K2 in Eqs. (3.34) and (3.35) [as compared to Eqs. (3.21) and (3.22)] in
a form of a dependence on the parameter n* for Pr numbers 0.72 (air) and 1.0.
Equation (3.34) at σ = 2 demonstrates the best agreement with experiments,
especially for n* ≤ 0, which confirms the choice of the value σ = 2 as a major one
in the present integral method.
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Data in Tables 3.5 and 3.7 elucidate also inaccuracies of the
Dorfman’s Eqs. (3.21) and (3.22), which amplify as soon as the Prandtl number
diverges from unity.

Figure 3.3 demonstrates that the local Nusselt numbers by Eq. (3.34) at
K1 = 0.0169 for qw = const. and K1 = 0.0187 for Tw = const. agree well with
experiments [6].

Using the definition of the Nu number and Eq. (3.4), one can determine the
exponent n* in Eq. (2.30) for the boundary condition qw = const. [26]

Table 3.7 Constants in Eqs. (3.34) and (3.35) for different values σ [75, 89]

Coefficient Equation n* = −0.6 n* = 0 n* = 2 n* = 6

Calculation for Pr = 0.72

K1 Equation (3.34), σ = 2 0.0169 0.0187 0.022 0.0246

K2 Equation (3.35), σ = 2 0.0118 0.0144 0.0191 0.0229

K1 Equation (3.34), σ = 1 0.0176 0.0191 0.0219 0.0240

K1 Equation (3.34), σ = 0 0.0180 0.0191 0.0209 0.0222

Calculation for Pr = 1

K1 Dorfman, Eq. (3.21) 0.0226 0.0238 0.0267 0.0303

K2 Dorfman, Eq. (3.22) 0.0158 0.0183 0.0232 0.0282

K1 Equation (3.34), σ = 2 0.0212 0.0232 0.0268 0.0296

K2 Equation (3.35), σ = 2 0.0149 0.0178 0.0233 0.02755

K1 Equation (3.34), σ = 1 0.0219 0.0237 0.0267 0.0289

K1 Equation (3.34), σ = 0 0.0222 0.0235 0.0255 0.0269
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Fig. 3.8 Effect of the exponents n* and σ on the constant K1 in turbulent air flow (Pr = 0.72) [1].
Experiments: 1—[6, 27, 28]; 2—[15, 23, 62, 63]; 3—[84]; 4—[83]; 5—[85], K1, lower limit;
6—[85], K1, upper limit; 7—[2, 3, 4]. Calculations: 8—Eq. (3.21) [2]; 9—Eq. (3.34), σ = 2;
10—Eq. (3.34), σ = 1; 11—Eq. (3.34), σ = 0
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Tw � T1
T1

¼ qwb
kT1K1

Re�ðnþ1Þ=ð3nþ1Þ
u xðn�1Þ=ð3nþ1Þ: ð3:41Þ

For the case qw = const., Eq. (3.41) yields the value n* = (n − 1)/
(3n + 1) = −m [26]. Table 3.6 summarizes the values of the parameter m calculated
at different values of n.

Experimental disk temperature distributions measured in [6] are depicted in
Fig. 3.9. Flow was turbulent at Reω > 3.6 × 105 [6]. For Reφ = 1.6 × 106 illustrated
in Fig. 3.9, the turbulent region was localized over the span x = 0.474–1.0. The disk
itself comprised three annular regions [6]: an unheated region at x = 0–0.15; regions
x = 0.15–0.4 and 0.4–0.96 heated via two separate heaters having the same power.
Data 1 and 2 correspond to the cases with both heaters or only the external one
switched on, respectively.

For the case 1, calculations have only been performed for the region x > 0.5,
where the disk temperature predicted by Eq. (3.41) at qw = const. (i.e. n* = −0.6)
fairly well matches the measurements. Here the experimental data are: K1 = 0.0163,
qw = 710 W/m3, T∞ = 298.9 K, Reφ = 1.6 × 106, b = 0.5 m; λ = 0.02624 W/(m K)
for air at T∞ ≈ 300 K [90].

The wall temperature distribution in the heated region x > 0.5 in case 2 (internal
heater off) was practically constant (see Fig. 3.9).

Thus, for the case qw = const. (or n* = −0.6), the constant K1 = 0.0169 calculated
by Eq. (3.34) at n = 1/7, nR = 0.8 and σ = 2 differs from the measured value
K1 = 0.0163 [6, 27, 28] by only 3.7 %. Dorfman’s constant K1 = 0.0186 by
Eq. (3.21) diverts from the measurements by 14.1 %. For 1/n = 8.7647 and
nR = 0.83, Eq. (3.34) yields the value K1 = 0.0115, which means only 3.6 %
mismatch to the value K1 = 0.0111 obtained in simulations [85].

For the case Tw = const. (or n* = 0), the value K1 = 0.0187 (Tw = const.)
calculated by Eq. (3.4) at n = 1/7, nR = 0.8 and σ = 2 much better than K1 = 0.0196
by Dorfman’s formula (3.21) agrees with experimental value K1 = 0.0188 [6, 15,
23, 62, 63] (deviation 0.5 %).
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Fig. 3.9 Experimental temperature distribution [6] and its computation over the surface of a
rotating disk [1]. 1—qw = const.; 2—Tw ≈ const. Computation [26]: 3—Eq. (3.41)
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3.3.4 Arbitrary Distribution of the Wall Temperature

The disk temperature distributions Tw measured in experiments [86, 87], Fig. 3.10,
do not agree with the analytical approximations by Eqs. (2.29) and (2.30).
Reliability of these experimental data was proved in [50] by a numerical solution of
the differential Eqs. (2.9)–(2.15) using the Cebeci–Smith model of turbulence [90].
A numerical version of Dorfman’s method (n = 1/7) was employed in [86, 87] to
model these experimental conditions. Numerically computed Nusselt numbers,
similarly to those obtained by the analytical Dorfman’s method, agreed well with
the experiments for dTw/dr > 0 and noticeably exceeded them for dTw/dr ≈ 0 and
dTw/dr < 0 [86, 87].

The numerical version of the present integral method, Eqs. (2.72) and (2.73),
was used by the author [91] to simulate the experimental conditions [86, 87].

Experimental disk temperature distributions were divided in [86, 87] into four
groups complying with Eq. (2.30) at positive (n* = 0.4 and 0.6), approximately
constant (n* = 0.1), and negative (n* = −0.2) gradients of the wall temperature Tw.
Scatter of the distributions of Tw within each group was less than 10–15 % for
different values of Reφ.

Agreement of Eq. (2.30) with the measurements at the n* values mentioned
above is rather conventional. Obviously, Eq. (2.30) does not assume maxima,
minima and inflection points visible in curves depicted in Fig. 3.10 within the
region of determination of Tw. However, for convenience, this classification was left
unchanged here.

Computed local Nusselt numbers are depicted in Figs. 3.11, 3.12 and 3.13.
Experimental distributions of Tw used as the boundary conditions were
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Fig. 3.10 Disk temperature variation: symbols—experiments [87], lines—polynomial approxi-
mations of the experiments by [1]. 1—n* = 0.1, Reφ = 1.135 × 106; 2—n* = 0.1 and
Reφ = 1.19 × 106; 3—n* = 0.1 and Reφ = 3.2 × 106; 4—n* = −0.2 and Reφ = 2.65 × 106;
5—n* = 0.4 and Reφ = 2.67 × 106; 6—n* = 0.4 and Reφ = 3.14 × 106; 7—n* = 0.6 and
Reφ = 1.59 × 106; x = r/b
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approximated by a 7th-order polynomial, see Fig. 3.10 [1, 91]. Comparisons of the
simulations with the experimental data enabled developing hints for the choice of
the n and nT values.

Results for the case n* = 0.1 are plotted in Fig. 3.11 [1, 91]. Computations and
experiments for Reφ = 1.08 × 106–3.2 × 106 match well for n = nT = 1/6, though
values n = nT = 1/5 provide a better agreement for the smaller value
Reφ = 0.819 × 106.
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Fig. 3.11 Variation of the Nusselt number for n* = 0.1: symbols 1–7—experiments [87]. Lines—
simulations [1, 91]: 8—n = nT = 1/5; 9—n = 1/6, nT = 1/5; 10–16—n = nT = 1/6. 1, 8, 10—
Reφ = 0.819 × 106; 2, 9, 11—Reφ = 1.08 × 106; 3, 12—Reφ = 1.35 × 106; 4, 13—Reφ = 1.6 × 106;
5, 14—Reφ = 1.88 × 106; 6, 15—Reφ = 2.14 × 106; 7, 16—Reφ = 3.2 × 106; x = r/b
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Fig. 3.12 Radial variation of the Nusselt number [1]. Case n* = 0.6: 1, 2—experiments [87];
5, 6—calculations, n = nT = 1/6.5; 7—calculation, n = nT = 1/7. Case n* = 0.4: 3, 4—experiments
[87]; 8, 10—calculations, n = nT = 1/6; 9, 11—calculations, n = nT = 1/7. Reynolds numbers Reφ:
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Figure 3.12 depicts calculations for similar cases n* = 0.4 and n* = 0.6 [1, 91]. At
smaller Reynolds numbers Reφ < 1.71 × 106, a better agreement with experiments is
yield using the exponents n = nT = 1/6.5. For the larger values Reφ = 2.67 × 106 and
3.14 × 106, exponents n = nT = 1/6 and 1/7, respectively, are required. Exponents
n and nT for the simulations in Fig. 3.12 are slightly smaller as compared to the case
n* = 0.1, where dTw/dr ≈ 0 (Fig. 3.11).

In Fig. 3.13, for the negative wall temperature gradient dTw/dr < 0 (n* = −0.2),
the values of nT = 1/4 and n = 1/6 were needed for Reφ = (0.548–1.08) × 106.
Exponents nT = 1/5 and n = 1/6 were used for a larger value Reφ = 2.65 × 106. Thus,
for the same value of the Reynolds number Reφ, the negative gradient dTw/dr < 0
entails the need to use a larger value nT, whereas the value n = 1/6 remains the same
(in comparison with the data in Fig. 3.11).

Profiles of the velocity and temperature were not obtained in the measurements
[86, 87]. Because of this, an estimation of the exponents n and nT is made based on
the distribution of the Nusselt number. The lower rate of the radial variation in the
Nu numbers in Fig. 3.13 (case n* = −0.2) results in a smaller value of the exponent
nR in Eq. (3.4) and, hence, larger exponents n and nT. Numerical simulations
confirm this trend. The experimental investigation [6], among other results,
revealed that temperature profiles for qw = const. (dTw/dr < 0, n* ≈ −0.6) and
Reω = 106 were characterized by the exponents nT = 1/4–1/5 (see Fig. 2.5). These
exponents correlate with our simulations for the case of n* = −0.2.

To conclude, in case of an arbitrary variation of the disk temperature, predictions
of turbulent heat transfer of a rotating disk using a numerical version of the present
integral method match well with the experiments [87], whereas the exponent nT in
the temperature profile approximation depends on the thermal boundary conditions.
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Fig. 3.13 Radial variation of the Nusselt number [1]. Case n* = −0.2: 1–3—experiments [87].
Calculations [91]: solid lines 4, 5—n = 1/6, nT = 1/4; dashed lines 5, 6—1/6 and 1/5; dash-dotted
lines 5, 6—both 1/6. Reynolds numbers Reφ: 1, 4—0.548 × 106; 2, 5—1.08 × 106; 3, 6—
2.65 × 106
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3.4 Generalized Analytical Solution for Laminar
and Turbulent Flow

As said above, Dorfman’s Eq. (3.6) for the Nusselt number in laminar regime at
Pr = 1–0.1 by up to 238 % exceeds the self-similar solution, Table 3.1. The more
accurate Eqs. (3.7) and (3.8) [31, 32] are valid only for Tw = const. (n* = 0). To
improve this situation, an approximate solution for the Nusselt number valid over
the range Pr = 1–0.1 and possessing significantly higher accuracy than Eq. (3.6)
was derived in [1, 29, 30].

Equation (2.18) of the velocity boundary layer and Eq. (2.20) of the thermal
boundary layer were rewritten as

d
dr

r4dKVKm

 � ¼ cf

2
r4ð1þ a2Þ1=2; ð3:42Þ

d
dr

r2dKHKm Tw � T1ð Þ
 � ¼ vcf
2
r2ð1þ a2Þ1=2ðTw � T1Þ: ð3:43Þ

Here χ is the Reynolds analogy parameter defined by Eq. (2.52).
The parameters for the turbulent boundary layer are given by Eqs. (2.77)–(2.82);

additional conditions are KV = const. and Km = const. The majority of the constants
in Eqs. (2.77)–(2.82) for turbulent flow are listed in Sect. 2.5, while Km = αA1,
KV ¼ 1� D2=A1.

By setting n = 1 and m = 0, Eqs. (2.77)–(2.82) can be used also for laminar flow.
The constants in Eqs. (2.77)–(2.82) for laminar flow were first obtained in [3, 4] by
solving and integrating the self-similar Eqs. (2.32)–(2.35)

a ¼ 0:8284; KV ¼ 0:3482; Km ¼ I1a

dðx=mÞ1=2
¼ I1a

c
; ð3:44Þ

I1 ¼ a�1
Z1
0

vr
xr

dðz
ffiffiffiffiffiffiffiffi
x=m

p
Þ ¼ 0:5338;Ac ¼ 0:6159ð1þ a2Þ�1=2: ð3:45Þ

If boundary condition (2.30) holds, the dimensionless temperature θ and
shape-factor of the temperature profile KH are also self-similar, i.e. independent of
the coordinate r. Substituting Eqs. (2.30), (2.77)–(2.82), (3.44) and (3.45) into Eqs.
(3.42) and (3.43) yields

ð4þ mÞcKVKm ¼ Acð1þ a2Þ1=2; ð3:46Þ

ð2þ mþ n�ÞcKHKm ¼ vAcð1þ a2Þ1=2: ð3:47Þ

Equation (3.47) contains two unknown quantities: KH and χ, which can be
connected by Eq. (2.51) of Dorfman [2]. The present integral method for turbulent
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flow validated in Sect. 3.3 enables elaborating a novel model linking KH and χ,
which is much more accurate than Eq. (2.51) and originates automatically from our
boundary layer model [29]

b2KH ¼ 1� vPrnpð1� KV Þb1: ð3:48Þ

Correction multipliers b1 and b2 take account of laminar flow. These multipliers
are equal to unity for turbulent flow, and the exponent np is defined by Eq. (3.39).

Solving Eq. (3.47) with account for Eq. (2.52), one can assure that the first of
Eq. (3.4) again describes the Nusselt number at nR ¼ ðnþ 1Þ=ð3nþ 1Þ and

K1 ¼ ð2þ mþ n�ÞcKHKmPr: ð3:49Þ

If one equates the relations for χ resulting from Eqs. (3.47) and (3.48), derives
KH from this equation and substitutes it into Eq. (3.49), this yields

K1 ¼ Acð1þ a2Þ1=2Pr 4þ m
2þ mþ n�

KVb2 þ ð1� KV ÞPrnpb1
� 	�1

; ð3:50Þ

K3 ¼ Acð1þ a2Þ1=2: ð3:51Þ

Equations (3.50) and (3.34) coincide for turbulent flow, where b1 = 1 and b2 = 1.
Setting n = 1, m = 0, nR ¼ 1=2 for laminar flow, one can obtain from Eq. (3.45) for
Ac

Acð1þ a2Þ1=2 ¼ 0:6159: ð3:52Þ

In the asymptotic case of Pr → 0, Eq. (3.50) reduces to its asymptotic form,
which looks for b2 = 1 identically to the solution derived in [3]

K1 ¼ 0:6159Prð2þ n�Þ=ð4KVÞ: ð3:53Þ

Comparing Eq. (3.50) with the self-similar solution, Table 3.1, one can find the
coefficients b1 and b2. To satisfy Eq. (3.53), b1 must be finite and b2 = 1 at Pr → 0.
Let us set

b2 ¼ 1þ b3Pr
np1 ; b1 ¼ const:; b3 ¼ const: ð3:54Þ

The coefficients b1 and b3 are independent of the Prandtl number and are
determined at Pr = 1. Further, exponents np1 and np were found separately for every
Pr number from Table 3.1. In this procedure, the coefficient K1 from the self-similar
solution has been substituted into Eq. (3.50) for n* = 0 and n* = 2. Finally, we
obtained [29]
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b1 ¼ 0:6827; b3 ¼ 0:5939; ð3:55Þ

whereas the values of the exponents are listed in Table 3.8.
For computational purposes, the exponents np1 и np were described as

polynomials

np1 ¼
X7
0

aiPr
i; np ¼

X7
0

ciPr
i; ð3:56Þ

where a0 = 1, a1 = −0.008073, a2 = −0.3558, a3 = 0.5485, a4 = 1.799, a5 = −6.432,
a6 = 7.354, a7 = −2.915, c0 = 0.925, c1 = −1.171, c2 = 3.532, c3 = −3.376,
c4 = −5.725, c5 = 15.59, c6 = −12.28, c7 = 3.208.

The coefficient K1 computed by Eq. (3.50) is presented in Table 3.9. It diverges
from the self-similar solution, Table 3.1, by maximum 3.1 % (for n* = −1.5 and
Pr = 1); the errors become negligible for Pr ≤ 0.1 [1, 29, 30].

On both sides of Eq. (3.43), the exponents for the r-coordinate must be the same,
which yields the expression 1þ mþ n� ¼ 1 for qw = const. For laminar flow,
m = 0, hence, n* = 0. Therefore, the Nusselt number for laminar flow for qw = const.
is exactly the same as that for Tw = const. In turbulent flow, as shown above,
n* = −m for qw = const.

To conclude, as can be seen from Fig. 3.14, the exact and approximate solutions
for air (Pr = 0.72) are in good agreement with each other as well as with experi-
mental results.

Table 3.8 Values of np and np1 depending on the Prandtl number [1, 29, 30]

Pr 0.9 0.8 0.72 0.71 0.6 0.5 0.4 0.3 0.2 0.1 0.01

np 0.7290 0.7349 0.7436 0.7435 0.7529 0.7608 0.7721 0.7860 0.8036 0.8338 0.9156

np1 0.9349 0.9354 0.9316 0.9334 0.9366 0.9439 0.9519 0.9602 0.9765 0.9893 0.999

Table 3.9 Values of the constant K1 by Eqs. (3.50) and (3.54)–(3.56) [1]

Pr n* = −2 n* = −1.5 n* = −1 n* = −0.5 n* = 0 n* = 1 n* = 2 n* = 3 n* = 4

1.0 0.0 0.1261 0.2311 0.3199 0.3961 0.5197 0.6159 0.6928 0.7557

0.72 0.0 0.1019 0.1887 0.2635 0.3286 0.4365 0.5223 0.5921 0.6500

0.71 0.0 0.1009 0.187 0.2612 0.3259 0.4332 0.5185 0.5880 0.6457

0.5 0.0 0.0788 0.1477 0.2084 0.2623 0.3539 0.4287 0.4910 0.5437

0.1 0.0 0.0204 0.0399 0.0586 0.0766 0.1104 0.1417 0.1707 0.1977

0.01 0.0 0.00219 0.00438 0.00655 0.00871 0.01301 0.01726 0.02148 0.02565
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3.5 Finding a Wall Temperature Distribution
for Arbitrary Nusselt Numbers

3.5.1 Solution of the Problem

Usually the thermal boundary layer equation is solved as a direct problem of
searching the Nusselt number at a given wall temperature, Eq. (2.30), or in a
modified form

DT ¼ xn� ; ð3:57Þ

where DT ¼ DT=DTx¼1 is the relative non-dimensional temperature difference on a
surface.

The solution for the Nusselt number (3.4) found in such a way can be rewritten
as

Nu ¼ K1Re
ðnþ1Þ=ð3nþ1Þ
u x2ðnþ1Þ=ð3nþ1Þ

¼ K1Re
ðnþ1Þ=ð3nþ1Þ
u x1þm; 2ðnþ 1Þ=ð3nþ 1Þ ¼ 1þ m:

ð3:58Þ

An inverse problem searches for a distribution of ΔT, if the Nusselt number is
given

Nu ¼ K1Re
ðnþ1Þ=ð3nþ1Þ
u xmx ; Nub ¼ K1Re

ðnþ1Þ=ð3nþ1Þ
u xmx�1; ð3:59Þ

where mx = const. is an arbitrarily selected exponent not equal to 1þ m as in
Eq. (3.58). An application in practice is e.g. a transient technique of experimental

-2 -1 0 1 2 3 4
0.0

0.2

0.4

0.6

K
1

n
*

 - 1

 - 2

 - 3

 - 4

 - 5

 - 6

Fig. 3.14 Effect of the exponent n* on the constant K1 in Eq. (3.4) for laminar flow at Pr = 0.72
[1]. 1—Exact solution [29, 30], 2—Eq. (3.50), 3—Eq. (3.6). Experiments for n* = 0: 4—0.335
[6, 18, 22], 5—0.33 [15, 17, 23], 6—0.32 [16]
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finding of time-independent Nusselt numbers, whereas the measured distributions
of ΔT are unsteady. Here a steady-state distribution of ΔT may be found only via
solving an inverse problem.

To solve this problem [1, 92], the thermal boundary layer Eq. (3.43) in the
integral form can be transformed to

d
dx

Rex�dKHKmDT

 � ¼ Nu

Pr
DT: ð3:60Þ

Equation (2.77) can be presented in the form valid for laminar and turbulent flow

�d ¼ C�
dx

m; C�
d ¼ cRe�2n=ð3nþ1Þ

u : ð3:61Þ

To remind, in laminar flow m = 1 and Km
�d ¼ I1aRe�1=2

u [see Eq. (3.44)].
Equation (2.52) can be used to evaluate the Reynolds analogy parameter v

v ¼ Nu
Cf

2Rexð1þ a2Þ1=2Pr
¼ Cvx

mx�m�1; ð3:62Þ

Cv ¼ K1

Acð1þ a2Þ1=2Pr
: ð3:63Þ

Let us use the notation

m�
x ¼ mx � m: ð3:64Þ

In terms of Eq. (3.64), one can make sure that Eq. (3.58) holds at
m�

x ¼ 1;mx ¼ 1þ m:
In view of Eqs. (3.62)–(3.64), one can rewrite Eq. (3.48) such as

KH ¼ a� þ b�xm
�
x�1; ð3:65Þ

a� ¼ 1
b2

; b� ¼ �Prnpð1� KVÞ b1b2 Cv: ð3:66Þ

An integration of Eq. (3.60) in view of Eqs. (3.61)–(3.66) yields [1]

DT ¼ a� þ b�
a� þ b�xm

�
x�1 x

�2�m a�x1�m�
x þ b�

a� þ b�

� � 1
1�m�x

x�1

" #� K1
PrKmc b�

ð3:67Þ

DT ¼ KH

KHx¼1

� 	� K1
PrKmc b�ð1�m�x Þ

�1

x�2�m: ð3:68Þ
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3.5.2 The Limiting Case of the Solution

For m�
x ! 1, Eq. (3.68) degenerates to [1]

DT ¼ x
K1

PrKmcða�þb�Þ�2�m: ð3:69Þ

Equations (3.57) and (3.69), being combined and transformed, yield

n� ¼ K1

PrKmcða� þ b�Þ � 2� m: ð3:70Þ

Specifying the value of n* and keeping in mind that a� þ b� ¼ KH at m�
x ¼ 1,

one can obtain Eq. (3.50) for K1 valid under the conditions (2.30) or (3.57). In
doing so, Eq. (3.57) can be treated as a specific case of Eq. (3.68) at m�

x ¼ 1.

3.5.3 Properties of the Solution for the Temperature
Difference on the Wall

The point of extremum xext of the Eq. (3.68) for DT is located at [1, 93]

xext ¼
K1

PrKmc
� b�ðmx þ 1Þ
a�ð2þ mÞ

" # 1
1�m�x

: ð3:71Þ

Expression v ¼ D�nPr�np and Eq. (3.62) for the Reynolds analogy parameter χ
yield a relation for the normalized thermal boundary layer thickness D [1]

D ¼ ðvPrnpÞ�1=n ¼ ðCvx
m�

x�1PrnpÞ�1=n ¼ ðCvPr
npÞ�1=nxð1�m�

x Þ=n: ð3:72Þ

For the boundary condition (3.57) with m�
x ¼ 1, Eq. (3.72) results in the relation

Δ = const. The function Δ(x) is increasing or decreasing at m�
x\1 or m�

x [ 1,
respectively.

In view of its physical nature, parameter KH may be only positive.
Equation (3.65) for KH exhibits a limiting point where KH = 0, whose parameters are

vcrit ¼
1

b1Prnpð1� KVÞ ; ð3:73Þ

Dcrit ¼ ðvcritPrnpÞ�1=n ¼ 1
b1ð1� KV Þ

� 	�1=n

; ð3:74Þ
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xcrit ¼ vcrit
Cv

� 	1=ðm�
x�1Þ

: ð3:75Þ

Equations (3.71)–(3.75) can be used in the analysis of the behavior of DT .

3.5.4 Analysis of the Solution

The novel solution described above in Sect. 3.5 holds for a much wider range of
thermal boundary conditions at the wall and incorporates previously known
solutions as a specific case, provided that one of the parameters degenerates to
unity [1, 92].

Indeed, Eq. (3.67) [or (3.68)] for the temperature difference and Eq. (3.59) for
the Nusselt number contain two independent parameters: K1 and mx. At mx ¼ 1þ m
(or m�

x = 1), Eqs. (3.67), (3.68) and (3.59) reduce to the known Eq. (3.57) for DT
and Eq. (3.58) [or (3.4)] for Nu with only one independent parameter: K1 or n*.
Equations (3.57), (3.67) and (3.68) for DT do not depend on the Reynolds number
Reφ.

Both one-parameter Eq. (3.58) [or (3.4)] and two-parameter Eq. (3.59) represent
monotonic distributions of the Nusselt number, i.e. the sign of the derivative
dNu=dx is constant over the entire range of variation of the radial coordinate x.

At m�
x = 1, the sign of the derivative dDT=dx in Eq. (3.57) is also constant. On

the contrary, at m�
x ≠ 1, functions of DT given by Eq. (3.67) or (3.68) are

non-monotonic and enable predicting curves of DT exhibiting points of maxima
and minima.

Application to laminar flow. For validation of the model, experiments [94–96]
(laminar air flow for Reφ = 53500, Pr = 0.71) were chosen. Let us assume that the
temperature difference DT is determined by one-parameter Eq. (3.57) at n* = −1,
while the Nusselt number Nub is constant and determined by Eq. (3.58) with
K1 = 0.187 (here m = 0, m�

x ¼ mx).
Setting the value K1 = 0.187 and replacing mx = 1 by mx = 0.6 in Eq. (3.59)

yields a radial dependence for Nub starting at infinity at x → 0 and further
monotonically subsiding (curve 1 in Fig. 3.15). Based on Eq. (3.68), the temper-
ature difference DT is a non-linear function of the coordinate x being zero at x = 0,
having a maximum DT = 2.55 at x ≈ 0.2 and further diminishing as a function
similar to x�1 (curve 1 in Fig. 3.16). Obviously, DT = 1 at x = 1. At the point of
maximum, Eqs. (3.73)–(3.75) hold.

If n* = 2 in Eq. (3.57), the function DT(x) is increasing; at the same time, the
Nusselt number Nub is constant with K1 = 0.5185 (and mx = 1). Provided that
K1 = 0.5185 and mx = 1.6 in Eq. (3.59), the function Nub(x) is monotonically
increasing.
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Given this combination of K1 and mx, the temperature difference decreases from
DT ! 1 and reaches a point of minimum at x ≈ 0.4 with DT = 0.4075. Further at
x > 0.4, the function DT demonstrates a trend of increase as a function similar to x2.

Curves 3 and 4 in Figs. 3.15 and 3.16 were plotted to outline the heat transfer
regimes situated between the cases 1 and 2 discussed above.

Application to turbulent flow. For our analysis, we selected the experiments
[86, 87], while the equality n = nT was always held while using Eqs. (3.59) and
(3.68) [93, 97]. The results of simulations for the case n* = 0.1 (performed at
n = nT = 1/6) are shown in Figs. 3.17 and 3.18. In the region x ≈ 0.3–0.85, an
approximation DT ¼ c0�xn� at n* = 0.06, c0� = 1.16 for Reφ = (1.08–1.35) × 106 and
at n* = 0.06, c0� = 1.26 for Reφ = (2.14–3.2) × 106 locally correlates with exper-
imentally measured function DT .
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Fig. 3.16 Radial distribution of the temperature difference DT ¼ ðTw � T1Þ=ðTw � T1Þx¼1 by
Eq. (3.68) for laminar flow (m = 0) at Reφ = 53500, Pr = 0.71 [1]. 1—mx = 0.6, K1 = 0.187; 2—
mx = 1.6, K1 = 0.5185; 3—mx = 1.1, K1 = 0.4; 4—mx = 0.9, K1 = 0.3

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

4

3

2

1

Nu
b

x=r/b

Fig. 3.15 Radial distribution of the Nusselt number Nub by Eq. (3.59) for laminar flow (m = 0) at
Reφ = 53,500, Pr = 0.71 [1]. 1—mx = 0.6, K1 = 0.187; 2—mx = 1.6, K1 = 0.5185; 3—mx = 1.1,
K1 = 0.4; 4—mx = 0.9, K1 = 0.3
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As a result, calculations by Eq. (3.58) [with K1 given by Eq. (3.34)] agree well
with measured Nu numbers over the same range of x (here the exact value c0* is
unimportant).

At the same time, for x > (0.7–0.85) experimental temperature difference DT
diminishes, while the predicted DT continues increasing. Owing to this, predicted
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Fig. 3.17 Radial variation of the temperature difference DT for Pr = 0.72, case conventionally
n* = 0.1 [1]. Experiments [87]: 1—Reφ = 1.08 × 106; 2—1.6 × 106; 3—1.88 × 106; 4—2.14 × 106;
5—3.2 × 106. Calculations by Eq. (3.68) for n = 1/6: 6—K1 = 0.0232 and mx = 1.48; 7—0.0229
and 1.43; 8—0.0224 and 1.38. Approximation DT ¼ c0�xn� : 9—c0� = 1.16 and n* = 0.06;
10—c0� = 1.25 and n* = 0.06
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Fig. 3.18 Radial variation of the Nusselt number, case conventionally n* = 0.1 [1]: 1–5—
experiments [87]; 6–11—calculations by Eqs. (3.58) and (3.59) for n = nT = 1/6. Solid lines,
Eq. (3.59): 6, 7—K1 = 0.0232, mx = 1.48; 8–10—K1 = 0.0224, mx = 1.38. Dashed lines 6–10—
Eq. (3.58), K1 = 0.0232, nR = 0.778, mx = 1.556. Dash-dotted lines 11–13—Dorfman’s Eq. (3.21)
for n* = 0.1. 1, 6, 13—Reφ = 1.08 × 106; 2, 7—1.6 × 106; 3, 8—1.88 × 106; 4, 9, 12—2.14 × 106; 5,
10, 11—3 × 106
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Nusselt numbers surpass the experimental data. This tendency becomes more
noticeable at larger Reynolds numbers Reφ. Dorfman’s Eq. (3.21) at n* = 0.1,
n = nT = 1/7 (see curves 11–13 in Fig. 3.18 and explanations to them) diverges from
experiments even more noticeably.

Using Eq. (3.59) for the Nusselt number, Fig. 3.18, and Eq. (3.68) for DT can
provide a better agreement between simulations and experiments (see Fig. 3.17).
While Eq. (3.57) ensures a positive sign of dDT=dx for any x, Eq. (3.68), on the
contrary, enables rather flexible modeling of the sign of the derivative dDT=dx,
which changes here from “plus” to “minus” with increasing x. This ensures a more
close agreement between the computed and measured values of the Nusselt number
(Fig. 3.18).

Predictions for the case n* = −0.2 (performed for n = nT = 1/6) are depicted in
Figs. 3.19 and 3.20. A fair consistency of the computed and measured functions of
DT is evident for x ≥ 0.6 (Fig. 3.19). Qualitative agreement of the sign of the
predicted and measured function dDT=dx demonstrates only curve 4 over the range
x = 0.35–0.45. Important is that the approximation DT ¼ c0�xn� correlates with the
experiments for x > 0.6 only for n* = −1.5 (and c0* = 1.14), though the value
suggested in [86, 87] is n* = −0.2 (curve 6).

The Nusselt numbers in Fig. 3.20 were computed for two different values of the
Reynolds numbers. Experimental data 1 and upper lines 3–6 relate to the value
Reφ = 2.65 × 106, whereas experiments 2 and lower lines 3–6 correspond to
Reφ = 1.08 × 106. Curves for the Nu number depend noticeably on the values for K1

and mx.
The lower curve 4 of the Nu number in Fig. 3.20 computed by Eq. (3.58) for

Reφ = 1.08 × 106 conforms to the experiments 2. Nevertheless, at x ≈ 0.4 the flow is
laminar, thus an agreement with it testifies that the computed curve 4 lies lower than
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Fig. 3.19 Radial variation of the temperature difference DT ¼ ðTw � T1Þ=ðTw � T1Þx¼1 for
Pr = 0.72, n* = −0.2 [1]. Experiments [87]: 1—Reφ = 1.08 × 106; 2–2.65 × 106. Calculations by
Eq. (3.68) for n = 1/6: 3—K1 = 0.0157, mx = 1.3; 4—K1 = 0.0137, mx = 0.775. Approximation
DT ¼ c0�xn� : 5—c0* = 1.14, n* = −1.5; 6—c0* = 1.0, n* = −0.2
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it should be expected. Therefore, for Reφ = 2.65 × 106 experimental points 1
significantly exceed the upper curve 4 at x ≤ 0.7, where turbulent flow is developed.

Using Eq. (3.59) with DT predicted by Eq. (3.68), one can attain a good
agreement with the experiments for the Nu number, if the coefficients K1 and mx are
properly selected.

Dorfman’s Eq. (3.21) at n* = −0.2 predicts much too high Nusselt numbers as
compared to the experimental data (curves 6 in Fig. 3.20).

Predictions and measurements for n* = 0.4 and n* = 0.6 are depicted in Figs. 3.21
and 3.22. Values n = nT = 1/6.5 and n = nT = 1/6 were used for Reφ = 1.59 × 106 and
2.67 × 106, accordingly. The value n* = 0.6 in Eq. (3.57) indeed conforms to the
experiments at x = 0.3–0.6 and Reφ = 1.59 × 106 (Fig. 3.21). However, experiments
for Reφ = 2.67 × 106 can be better simulated with n* = 0.7 rather than with n* = 0.4
[87].

In addition, Eq. (3.68) ensures a variation of the absolute value of dDT=dx in the
radial direction and a wide range of selection of the parameters K1 and mx

(Fig. 3.21).
The local Nusselt numbers in Fig. 3.22 show that Eqs. (3.59) and (3.68) with

carefully selected values K1 and mx enable a better agreement with experiments than
Eqs. (3.57) and (3.58), which can be seen for the larger value Reφ = 2.67 × 106. As
the curves 6 and 7 in Fig. 3.22 prove, the deviation of the Dorfman’s Eq. (3.21) is
not significant.

Thus, Eqs. (3.59) and (3.68) essentially expand the possibilities for analytical
predictions of heat transfer over a rotating disk subject to arbitrary thermal
boundary conditions.
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Fig. 3.20 Variation of the Nusselt number, n* = −0.2 [1]: 1, 2—experiments [87]; 3–5—
Eq. (3.58), n = nT = 1/6; 6—Dorfman’s Eq. (3.21), n* = −0.2. Lower lines 3–6 and symbol
1—Reφ = 1.08 × 106; upper lines 3–6 and symbol 2—Reφ = 2.65 × 106. Lower line 3—Eq. (3.59),
K1 = 0.0157, mx = 1.3; upper line 3—Eq. (3.59), K1 = 0.0137, mx = 0.775. Lines 4—Eq. (3.58),
K1 = 0.0156, nR = 0.778, mx = 1.556, n* = −1.5. Lines 5—numerical modelling (see Fig. 3.13)
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Fig. 3.21 Radial variation of the temperature difference DT ¼ ðTw � T1Þ=ðTw � T1Þx¼1 for
Pr = 0.72, cases n* = 0.4 (data 1, 2, 6, 8) and n* = 0.6 (data 3, 4, 5, 7) [1]. Experiments [87]:
1—Reφ = 2.67 × 106; 2–3.14 × 106; 3—0.615 × 106; 4—1.71 × 106. Calculations by Eq. (3.68):
5—K1 = 0.0219, mx = 1.48, n = 1/6.5; 6—K1 = 0.0249, mx = 1.34, n = 1/6. Calculations by
Eq. (3.57): 7—n* = 0.6, 8—n* = 0.7
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Fig. 3.22 Radial variation of the Nusselt number [1]. 1, 2—experiments [87]. 3—numerical
modelling (Fig. 3.12). Case n* = 0.4 (upper group of lines, Reφ = 2.67 × 106), calculations at
n = nT = 1/6: 4—Eq. (3.59), mx = 1.34, K1 = 0.0249; 5—Eq. (3.58), n* = 0.7, K1 = 0.0262,
nR = 0.778, mx = 1.556. Case n* = 0.6 (lower group of lines, Reφ = 1.59 × 106), calculations at
n = nT = 1/6.5: 4—Eq. (3.59), mx = 1.48, K1 = 0.0219; 5—Eq. (3.58), mx = 1.58, K1 = 0.02265,
nR = 0.7896, n* = 0.6. Line 6—Dorfman’s Eq. (3.21), n* = 0.4; line 7—Eq. (3.21), n* = 0.6
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3.6 Theory of Local Modelling

The bedrock of the theory of local modelling is Eq. (2.51) at Ms = const. and n* = 2
(see Sect. 2.3.2), which results in the Dorfman’s solutions (3.6) and (3.21).
An improvement of this model can be attained via setting a variable value of Ms

dependent on the parameter n* [1]. Let us rewrite the thermal boundary layer
Eq. (3.60) such as

1
DT

d
dr

Re��T rDT

 � ¼ Nu=Pr: ð3:76Þ

Let us further substitute Eq. (2.51) and boundary condition (2.30) into Eq. (3.76).
As a result, the Nusselt number can be expressed as

Nu ¼ M
1

1þr
s ð2nR þ n� þ 1Þ r

1þrð1þ a2Þ 1
2ð1þrÞRe

1
1þr
x Pr

1þr�ns
1þr : ð3:77Þ

We wish to elucidate just the basic features of the theory; hence, listed below are
the solutions for only a single value Pr = 0.72. As a result, Eq. (3.34), together with
the equations for Ms and St for turbulent flow (n = 1/7) can be written as

1
K1

¼ 34:99þ 48:33
2:6þ n�

; ð3:78Þ

Ms ¼ 1:252

34:99þ 48:33=ð2:6þ n�Þð Þ1:25 2:6þ n�ð Þ0:25 ; ð3:79Þ

St ¼ 1:475 � Re���0:25
T

34:99þ 48:33=ð2:6þ n�Þð Þ1:25 2:6þ n�ð Þ0:25 : ð3:80Þ

For laminar flow, the constant K1 given by Eq. (3.50) and the Stanton number
for Pr = 0.72 can be expressed as

K1 ¼ 0:4435
0:3486þ 2:002=ð2þ n�Þ ; ð3:81Þ

St ¼ 0:2922 � Re���1:0
T

2þ n�ð Þ 0:3486þ 2:002=ð2þ n�Þð Þ2 : ð3:82Þ

To conclude, Eqs. (3.80) and (3.82) essentially improve agreement with
experiments, however, at the expense of ignoring the basic postulate of the theory:
Ms = const. The mathematical formulation of Eqs. (3.80) and (3.82) was suggested
in analogy to Eq. (3.34) obtained by means of a fundamentally different theoretical
model.
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3.7 Unsteady Heat Transfer

3.7.1 Transient Experimental Technique

Thermochromic liquid crystals are used for experimental measurements of
steady-state heat transfer rate over a surface using a transient technique. The fol-
lowing physical phenomenon lies behind this technique: after a short time from the
onset of unsteady heating/cooling, the heat transfer coefficient accepts a
time-independent value equivalent to that for steady-state heat transfer subject to
identical thermal boundary conditions.

Experimental data reduction operates by employing a one-dimensional heat
conduction solution for a semi-infinite wall subject to a convective boundary
condition for a step change in the fluid temperature T∞ [98–105]

FtðtÞ ¼ TwðtÞ � T1
Tw;i � T1

¼ expðc2Þ � erfc(cÞ; c ¼ a
ffiffiffiffiffiffiffi
awt

p
=kw ð3:83Þ

where Tw,i and T∞ are constants; aw and λw denote the thermal diffusivity and
conductivity of the body, accordingly. Given a measured curve of the surface
temperature Tw(t), Eq. (3.83) can be solved to find the heat transfer coefficient α.
The semi-infinite-plate model holds, if conduction heat transfer does not penetrate
deeply into the body.

A solution for a plate with a thickness s having identical heat transfer coefficients
at both sides [13, 106] replaces Eq. (3.83), if a plate is relatively thin

FtðtÞ ¼ #ðt; y ¼ 1Þ; #ðt; yÞ ¼
X1
m¼1

Em cosðlmyÞ expð�l2mFoÞ; ð3:84Þ

Em ¼ 2 sinðlmÞ
lm þ sinðlmÞ cosðlmÞ

; cotðlmÞ ¼ lm=Bi; ð3:85Þ

where Eq. (3.85) defines eigenvalues μn; #ðt; yÞ ¼ ðTðt; yÞ � T1Þ=ðTw;i � T1Þ;
y = z/(0.5s).

It will be shown below that the transient technique for measurements of surface
heat transfer coefficients described above can be applied for a Plexiglas® disk
subject to even very strongly non-uniform initial temperature distribution. A disk
made of aluminium is not usable for this purpose [1], because of strong radial heat
conduction effects.

70 3 Free Rotating Disk



3.7.2 Self-similar Equations for Unsteady Convective Heat
Transfer

Self-similar functions and independent variables for unsteady heat transfer in
stationary flow over a rotating disk were obtained in [1, 107, 108]. As a result,
Eq. (2.12) of the thermal boundary layer and the boundary condition (2.29) take the
form

h00 ¼ Pr g�hþ h0ðH � g=2Þ þ n�Fh½ �; ð3:86Þ

g ¼ z
.
ðmtÞ1=2;HðgÞ ¼ vzðt=mÞ1=2 ð3:87Þ

g� ¼ t
Ft

dFt

dt
; ð3:88Þ

h ¼ 1 for g ¼ 0 and h ¼ 0 for g ! 1: ð3:89Þ

Here primes denote derivatives with respect to the similarity variable η.
The solution of Eq. (3.86) requires specifying the function H(η). For this pur-

pose, the time-independent Eqs. (2.32)–(2.35) (for N = 0, β = 0) must be
non-dimensionalized and solved with respect to the similarity variable η instead of
f ¼ z

ffiffiffiffiffiffiffiffi
x=m

p
. As a result, at the non-dimensionalization of the velocity components

and the static pressure in Eq. (2.26), parameter 1/t replaces the angular velocity ω

FðgÞ ¼ vrr=t;GðgÞ ¼ vut=r; and PðgÞ ¼ �pt=ðqmÞ; ð3:90Þ

whereas Eqs. (2.32)–(2.35) and functions F, G, H and P still do not depend on time.
As soon as vu ¼ xr at z ¼ 0, the new function GðgÞ ¼ xt at g ¼ 0. Therefore,

the boundary conditions (2.27) and (2.28) can be finally rewritten to a new
self-similar form

g ¼ 0: F ¼ H ¼ 0; G ¼ xt; ð3:91Þ

g ! 1: G ¼ F ¼ 0: ð3:92Þ

To calculate the Nusselt number Nub, the following relations are used

Nub ¼ K1Re
1=2
u ; K1 ¼ � dh

df

� �
f¼0

¼ 1ffiffiffiffiffi
xt

p dh
dg

� �
g¼0

: ð3:93Þ

The new non-dimensional parametric variable ωt arises in Eqs. (3.91) and (3.93).
Equations (3.87) and (3.90) were derived with the help of the group theory [90].

Authors of the work [31] employed self-similar functions almost identical to
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Eqs. (3.87) and (3.90) with a difference to within a constant; however, this model
was not formally grounded from the mathematical point of view.

3.7.3 Cooling of an Isothermal Rotating Disk

Mathcad software was used to numerically solve Eqs. (3.86) and (2.32)–(2.35) [in
view of Eqs. (3.90)–(3.92)] for the condition Tw = const. (or n* = 0) [1, 107, 108].

Equation (3.88) with account for Eq. (3.83) transforms to

g� ¼ c2 � c=ðp1=2FtÞ; c ¼ K1Pr
�1=2 aw=að Þ1=2 k=kwð Þ ffiffiffiffiffi

xt
p

: ð3:94Þ

In simulations, physical properties and geometric parameters were: for
Plexiglas® [96] λw = 0.19 W/(m2 K), aw = 1.086 × 10−7 m2/s; for air [90]
λ = 0.02624 W/(m2 K), a = 2.216 × 10−5 m2/s; Pr = 0.71; thickness of the disk
s = 0.01 m; Reφ = 5.35 × 104 that means ω = 52.36 1/s (500 r.p.m.) [96]. The value
of K1 = 0.326 at Tw = const. was used in calculation of the Biot number in
Eq. (3.84) and parameter γ that gives c ¼ 0:0768

ffiffiffiffiffi
xt

p
, Bi = 0.395.

The constant K1, together with the Nusselt number Nub, become very fast
time-independent (see Fig. 3.23): at ωt ≈ 130 or t ≈ 2.5 s (setting 1 % deviation
from the steady-state as a threshold), whereas Ft(t) ≈ 0.96 [1]. The curves for
K1(t) predicted using Eqs. (3.83) and (3.84) practically coincide (see Fig. 3.23).

If heat transfer coefficients of an isothermal disk of a thickness s (Fig. 2.1) are
identical at z = 0 and z = −s, solution (3.84) testifies that already for Fo = 0.3 (or t =
69 s) the function Ft(t) with an inaccuracy of 0.37 % is represented by just the first
term of Eq. (3.84). In other words, a so-called regular regime of heat transfer [106]
is established.

As seen in Fig. 3.23, during the initial time period, dimensionless surface
temperatures Ft(t) calculated by Eqs. (3.83) and (3.84) practically coincide and start
diverging at Fo = 0.456, when the process of cooling involves the entire thickness
of the thin disk, which afterwards cools down much faster than the disk with a
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Fig. 3.23 Variation of K1 and
Ft with time [1]. 1—K1;
2—Ft(t), Eq. (3.83); 3—FtðtÞ,
Eq. (3.84)
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semi-infinite thickness. In [109, 110], this limiting Fourier number equals to 0.25
and 1.0, respectively.

The problem of unsteady cooling of a finite-thickness disk considered here was
simulated also as a conjugate problem using the commercial CFD software CFX-5
[111]. The temporal curve of the cooling rate of the disk surface obtained from the
CFD simulations and presented in Fig. 3.24 agrees rather well with that predicted
by Eq. (3.84).

3.7.4 Unsteady Two-Dimensional Heat Conduction
in a Non-uniformly Heated Disk

Differential equation of unsteady 2D heat conduction in the plate together with the
boundary conditions can be written as [108]

@#

@Fo
¼ 1

H2

@2#

@x2
þ 1

x
@#

@x

� �
þ @2#

@y2
; ð3:95Þ

Fo ¼ 0: # ¼ xn� ; ð3:96Þ

x ¼ 0:
@#

@x
¼ 0; x ¼ 1:

@#

@x

� �
x¼1

¼ �Bi1#x¼1; ð3:97Þ

y ¼ 0:
@#

@y
¼ 0; y ¼ 1:

@#

@y

� �
y¼1

¼ �Bi2#y¼1; ð3:98Þ

Fig. 3.24 Variation of the parameters K1 and Ft in time according to the self-similar solution and
simulations using the CFX-5 [111]. 1—K1, self-similar solution; 2—K1, CFX-5; 3—Ft(t),
Eq. (3.83); 4—Ft(t), Eq. (3.84); 5—Ft(t), CFX-5

3.7 Unsteady Heat Transfer 73



where x = r/b and y = z/(0.5s). In fact, Eq (3.96) is Eq. (2.30) reformatted with the
help of the new variables. Here the Biot numbers Bi1 and Bi2 characterize con-
vective heat transfer from the cylindrical and flat surfaces of the disk, respectively.

The method of separation of variables was used to solve Eqs. (3.95)–(3.98)
analytically [108], where the final solution can be presented as

#ðFo; x; yÞ ¼
X1
n¼1

X1
m¼1

DnEmJ0ðlxnxÞ cosðlymyÞ exp �ðl2xn=H2 þ l2ymÞFo
h i

; ð3:99Þ

Dn ¼ 1F2ð1þ n�=2; 1; 2þ n�=2;�l2xn=4Þ=ð2þ n�Þ
0:5½J20ðlxnÞ þ J21 ðlxnÞ�

; ð3:100Þ

J1ðlxnÞ
J0ðlxnÞ

¼ Bi1
lxn

: ð3:101Þ

Here, Em and μym are defined by Eq. (3.85); J0 and 102 are Bessel functions of
the first kind and zero/first order, accordingly. Ignoring radial heat conduction,
Eq. (3.99) simplifies to Eq. (3.84). In Eq. (3.100), 1F2 is a hypergeometric function
of �l2xn=4 [112].

Figures 3.25 and 3.26 depict radial variations of the disk temperature in cases
with n* = −1 and 2, where n* is strongly different from zero. Figures 3.25 and 3.26
demonstrate that during cooling of a Plexiglas® disk the surface temperature
#w=#wðx ¼ 1Þ in fact repeats the initial functions (3.96) over practically entire disk
surface.

Strictly saying, Eq. (3.96) contradicts with the steady-state boundary conditions
(3.97) for x = 0 and x = 1. Hence, time-dependent distributions #w=#wðx ¼ 1Þ are
distorted in the neighborhood of the locations x = 0 and x = 1; therefore the
behavior of the heat transfer coefficient α2,t is studied within a region of x = 0.2–0.9.

To conclude, the transient technique for measurements of surface heat transfer
can be used together with a Plexiglas® disk subject to any initial temperature
distribution.
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Fig. 3.25 Variation of the
function #w=#wðx ¼ 1Þ with
x according to Eq. (3.99) at
n* = −1 [1]. 1—Eq. (3.96);
2—Fo = 0.00652;
3—Fo = 0.869;
5—Fo = 2.607
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